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Abstract. We establish simultaneous approximation properties of weighted
first-order Sobolev orthogonal projectors onto spaces of polynomials of bounded
total degree in the Euclidean unit ball. The simultaneity is in the sense that
we provide bounds for the projection error in both a weighted L2 norm and
a weighted H1 seminorm, both involving the same weight of the generalized
Gegenbauer type x 7→ (1 − ‖x‖2)α, α > −1. The Sobolev orthogonal pro-
jectors producing the approximations are with respect to an alternative yet
equivalent inner product for the corresponding uniformly weighted H1 space.
In order to obtain our approximation bounds, we study the orthogonal polyno-
mial structure of this alternative Sobolev inner product obtaining, among other
results, a characterization of its orthogonal polynomials as solutions of certain
Sturm–Liouville problems. We do not rely on any particular basis of orthog-
onal polynomials, which allows for a streamlined and dimension-independent
exposition.

Key words: Weighted Sobolev space; Approximation; Ball; Orthogonal polyno-
mials; Orthogonal projection
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1. Introduction

1.1. Purpose. Let ‖·‖ denote the Euclidean norm on Rd and let Bd be its unit
ball. Given α > −1, let the weight function Wα : Bd → Rd be defined by Wα(x) :=

(1 − ‖x‖2)α. Given an integer N ≥ 0, let Πd
N be the space of d-variate algebraic

polynomials of total degree no higher than N . Let also L2
α be the weighted Lebesgue

space L2
α(Bd,Wα) := {W−1/2

α f | f ∈ L2(Bd)}, whose natural squared norm is
‖u‖2α :=

∫
Bd |u(x)|2Wα(x) dx. Further, given an integer m ≥ 0, let Hm

α be the
weighted Sobolev space whose squared norm is ‖u‖2α,m,S :=

∑m
k=0

∥∥∇ku∥∥2

α
(the ‘S’

stands for ‘standard’), with ∇k denoting the weak k-fold gradient.
The purpose of this work is proving that, for each integer m ≥ 1, each function

u ∈ Hα,m and each degree N that is high enough, there exists an algebraic poly-
nomial uN ∈ Πd

N such that the following simultaneous approximation bounds hold:

‖u− uN‖α ≤ CN
−m ‖∇mu‖α , (1a)

‖∇u−∇uN‖α ≤ CN
1−m ‖∇mu‖α ; (1b)

here, C is a positive constant that does not depend on the function u nor the degree
N (see Corollary 4.7 for the precise formulation of this result).
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The approximants in (1) will be of the form uN = Sα,1N u, where Sα,1N : H1
α → Πd

N

is an orthogonal projector with respect to the alternative (yet equivalent in the
sense of inducing the same Hilbert space topology) Sobolev inner product

〈u, v〉α,1 := 〈∇u,∇v〉α + c−1
α 〈u, 1〉α〈v, 1〉α, (2)

where, in turn, 〈·, ·〉α denotes the inner product of L2
α and its vectorizations and

tensorizations and cα = 〈1, 1〉α. For this reason, the structure of orthogonal poly-
nomials with respect to the inner product in (2) will be of paramount importance
to us (which is why we give this non-standard inner product the shorter label).
Among its features that we will provide lie an orthogonal decomposition of the
associated Sobolev orthogonal polynomial spaces (Lemma 3.8) and weak (Theo-
rem 3.11) and strong (Theorem 3.14) Sturm–Liouville problems that are satisfied
by their members.

We will employ these features to derive bounds on the projection error u−Sα,1N u
in the norm induced by the Sobolev inner product (2) (that is, a best approximation
error; Theorem 4.2) and in the L2

α norm (Theorem 4.6) in terms of other best
approximation errors in both cases. Then, we will recast those bounds in terms of
seminorms as in (1) (Corollary 4.7).

We were originally drawn into the study of polynomial approximation results
such as (1) for the weighted Sobolev space H1

α because the latter is, in the α > 1
case and up to simple isomorphisms, equal to certain Maxwellian-weighted Sobolev
spaces on Euclidean balls naturally arising in the analysis of kinetic models of dilute
polymers [9, Eq. (2.3b) & Rem. 5.8].

1.2. Related results. Approximants of the form uN = SαNu, where S
α
N : L2

α → Πd
N

is the standard L2
α orthogonal projector, satisfy (1a) in isolation [8, Cor. 2.4]. This

can also be gleaned from [19, Th. 1.1, Th. 1.2 & Cor. 1.3]. However, such L2
α

orthogonal projector behaves quantifiably worse than (1b) for the gradient; indeed,
it follows from the case r = 1 of [7, Th. 1.1] that, for N high enough,

‖∇u−∇SαNu‖α ≤ C N
3/2−m ‖u‖α,m,S

for some positive constant C. By standard arguments (cf. the proof of Corol-
lary 4.7), one might replace the norm ‖u‖α,m,S with the ‖∇mu‖α seminorm in the
above bound. However, the power on N cannot be lowered in the m = 1 case [7,
Th. 5.1], in which this bound actually encodes a divergence rate.

In [14, Th. 4.1] it is shown that, in the unweighted (α = 0) case, approximants
of the form uN = S−1

N u satisfy the simultaneous approximation bounds (1), where
S−1
N : H1(Bd)→ Πd

N is the orthogonal projection operator with respect to an equiv-
alent inner product for the Sobolev space H1(Bd) proportional to

(u, v) 7→
∫
Bd

∇u(x) · ∇v(x) dx+ λ0

∫
Sd−1

u(x)v(x) dσd−1(x), (3)

where λ0 is an arbitrary positive constant, Sd−1 = ∂Bd is the unit sphere and σd−1

is its standard surface measure. The result [14, Th. 4.1] also provides bounds in
terms of other best approximation errors. This important work also encompasses
approximation in Sobolev spaces Wm,p(Bd) of higher regularity m and general
integrability parameter p ∈ (1,∞) [14, Th. 4.1 and Th. 4.2] and relies heavily on
explicit bases of orthogonal polynomials with respect to (3) and other Sobolev inner
products.
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Analogous results concerning unweighted L2 simultaneous approximation of a
function and its first and second derivatives in the unit triangle, whose orthogonal
structure is much more complicated than that of the ball, are obtained in [22,
Th. 1.2 & Th. 1.3].

There is also [16], which provides error bounds for the best approximation in
Πd
n with respect to a Sobolev inner product proportional to (u, v) 7→ ρ

∫
Bd ∇u(x) ·

∇v(x)Wα(x) dx+ u(0)v(0), ρ > 0 arbitrary and α ≥ 0. As part of their argument,
explicit bases of orthogonal polynomials with respect to that inner product are con-
structed in terms, ultimately, of Jacobi polynomials and any L2(Sd−1)-orthogonal
basis of spherical harmonics.

We now mention other works delving on the structure of multivariate Sobolev
polynomials which, unlike the already mentioned [14] and [22], are not explicitly
concerned with approximation results. We start with [20], where an orthogo-
nal basis of Sobolev orthogonal polynomials in the ball with respect to an inner
product proportional to (u, v) 7→

∫
Bd ∆

(
(1− ‖x‖2)u(x)

)
∆
(

(1− ‖x‖2)v(x)
)

dx is

constructed in terms of Jacobi polynomials and any L2(Sd−1)-orthogonal basis of
spherical harmonics.

In [21] similar bases of Sobolev orthogonal polynomials are constructed for inner
products proportional to (3) and (u, v) 7→ ρ

∫
Bd ∇u(x) ·∇v(x) dx+u(0)v(0), where

in both cases ρ is an arbitrary positive constant. This work also notes in [21,
Cor. 2.4] that the space of orthogonal polynomials of degree n ≥ 1 with respect to
the inner product (3) admits an orthogonal decomposition of the form

Hdn ⊕ (1− ‖x‖2)V1
n−2, (4)

where Hdn is the space of d-variate spherical harmonics of degree n and V1
n−2 is the

space of L2
1-orthogonal polynomials of degree n− 2 (cf. (6)); it further notes in [21,

Rem. 2.1] the correct form of a similar decomposition for the spaces of orthogonal
polynomials with respect to the inner product studied in [20]. This work goes on
to provide in [21, Cor. 2.5] a fourth-order differential equation that is satisfied by
the Sobolev orthogonal spaces with respect to the inner product (3).

In [18] Sobolev orthogonal polynomials with respect to the inner product (3) are
shown to satisfy the same second-order Sturm–Liouville problem L(α)y = (α)ny
(cf. (12) and (13)) that Wα-Lebesgue orthogonal polynomials satisfy for α > −1,
but with α = −1. Families of polynomial solutions for the same Sturm–Liouville
problem are also constructed for α = −2,−3, . . . ; in the α = −2 case, an explicit
perturbation of the corresponding family is shown to consist of Sobolev orthogonal
polynomials with respect to the inner product (u, v) 7→ ρ

∫
Bd ∆u(x)∆v(x) dx +∫

Sd−1 u(x)v(x) dσd−1(x), ρ > 0 arbitrary [18, Th. 4.1].
In [17] orthogonal bases of Sobolev orthogonal polynomials with respect to a

standard weighted Sobolev inner product proportional to (u, v) 7→ ρ
∫
Bd ∇u(x) ·

∇v(x)Wα(x) dx +
∫
Bd u(x)v(x)Wα(x) dx, ρ > 0 arbitrary, are constructed for all

α > −1 in terms of any L2(Sd−1)-orthogonal basis of spherical harmonics and
new families of univariate Sobolev orthogonal polynomials. There is also a brief
aside to construct orthogonal bases of Sobolev orthogonal polynomials with re-
spect to inner products proportional to (u, v) 7→ ρ

∫
Bd ∇u(x) · ∇v(x)Wα+1(x) dx+∫

Sd−1 u(x)v(x) dσd−1(x), ρ > 0 arbitrary and α > −1, in terms of Jacobi polynomi-
als and any L2(Sd−1)-orthogonal basis of spherical harmonics.
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In [4], orthogonal bases of Sobolev orthogonal polynomials in the ball with re-
spect to inner products proportional to (u, v) 7→

∫
Bd u(x)v(x)Wα(x) dx+ρ

∫
Sd−1

∂u
∂ν (x) ∂v∂ν (x) dσd−1(x),

ρ > 0 arbitrary, α > −1, where ∂
∂ν = x · ∇ is the outward normal derivative oper-

ator, are constructed in terms of univariate Sobolev orthogonal polynomials with
respect to a perturbation of the standard Jacobi inner product and any L2(Sd−1)-
orthogonal basis of spherical harmonics.

In [15], orthogonal bases of Sobolev orthogonal polynomials in the ball with
respect to inner products proportional to (u, v) 7→

∫
Bd u(x)v(x)Wα(x) dx+ρ

∫
Bd(x·

∇u(x))(x · ∇v(x))Wα(x) dx, ρ > 0 arbitrary, α > −1, are constructed in terms of
univariate Sobolev orthogonal polynomials with respect to another perturbation of
the standard Jacobi inner product and any L2(Sd−1)-orthogonal basis of spherical
harmonics.

1.3. Additional preliminary definitions and outline of the rest of this
work. We will denote the set of strictly positive integers by N and let N0 := {0}∪N.
We denote the canonical basis of Rd by {e1, . . . , ed}; that is, for 1 ≤ i, j ≤ d, the
j-th component of ei is 1 if i = j and 0 otherwise. Given a multi-index γ ∈ [N0]d

and a sufficiently (strongly or weakly) differentiable function f we shall write |γ| =∑d
i=1 γi and ∂γf = ∂|γ|/(∂xγ

1

1 · · · ∂x
γd
d ); we also use ∂i := ∂ei = ∂/∂xi, 1 ≤ i ≤ d.

We adopt the convention Πd
n = {0} for n < 0.

Given m ∈ N0, the inner product 〈u, v〉α,m,S on Hm
α defined by

〈u, v〉α,m,S :=

m∑
k=0

〈∇ku,∇kv〉α (5)

is of course the inner product that induces the standard weighted Sobolev inner
product ‖·‖α,m,S. This inner product is equivalent to the commonly used (u, v) 7→∑
|γ|≤m〈∂γu, ∂γv〉α.
The rest of this work is organized as follows. In Section 2 we mostly collect

known properties of Lebesgue orthogonal polynomial spaces with respect to the
L2
α-inner product, including characterizations as eigenspaces of Sturm–Liouville

operators and prove a variant of a known approximation result. Section 3 and
Section 4 form the core of this work. In Section 3 we introduce Sobolev orthogonal
polynomial spaces with respect to the (α, 1)-inner product of (2), derive a useful
orthogonal decomposition and characterize them as eigenspaces of new Sturm–
Liouville operators. In Section 4 we prove bounds for the error committed by the
corresponding Sobolev orthogonal projection operators onto polynomials in terms
of other best approximation errors and weave them into the desired simultaneous
approximation bounds (1). In Section 5 we succinctly discuss certain aspects of the
orthogonal structure of polynomials with respect to the (α, 1)-inner product that
do not play a direct role in the core of this work, but feature repeatedly in the
literature cited above in Subsection 1.2; then, we finish with a brief conclusion.

2. Lebesgue orthogonal polynomials

Given n ∈ N0, we denote by Vαn the space of L2
α-orthogonal polynomials of degree

n; that is,

Vαn := {p ∈ Πd
n | (∀ q ∈ Πd

n−1) 〈p, q〉α = 0}. (6)
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We adopt the convention Vαn = {0} for n < 0. There holds (cf. [5, Sec. 3.1])

(∀n ∈ N0) dim(Vαn ) =

(
n+ d− 1

n

)
. (7)

For every α > −1, as Wα is centrally symmetric, from [5, Th. 3.3.11] there follows
the parity relation

(∀n ∈ N0) (∀ pn ∈ Vαn ) (∀x ∈ Bd) pn(−x) = (−1)n pn(x). (8)

We denote by projαn the orthogonal projection from L2
α onto Vαn and we have already

introduced in Subsection 1.2 the notation Sαn for the orthogonal projection from
L2
α onto Πd

n. We will denote the entrywise application of Sαn to members of vector-
or higher-order tensor-valued variants of L2

α by Sαn as well. From [5, Th. 3.2.18],
Πd
n =

⊕n
k=0 Vαk and L2

α =
⊕∞

k=0 Vαk , whence

(∀n ∈ N0) Sαn =

n∑
k=0

projαk and (∀u ∈ L2
α) u =

∞∑
k=0

projαk (u),

the latter series converging in L2
α.

Let us introduce the first-order angular differential operator [3, Sec. 1.8]

Di,j := xi∂j − xj∂i (9)

Note that Dj,i = −Di,j ; in particular, Di,i = 0. It is immediate to check that these
operators satisfy the relations Di,j(f g) = Di,jf g + f Di,jg and that they vanish
on radial functions.

Given any α ∈ R and j ∈ {1, . . . , d} let the first-order differentiation operator
dαj be defined by

dαj q(x) := −(1− ‖x‖2)−α
∂

∂xj

(
(1− ‖x‖2)α+1q(x)

)
= −(1− ‖x‖2) ∂jq(x) + 2(α+ 1)xj q(x). (10)

Clearly, for all α ∈ R and j ∈ {1, . . . , d}, dαj Πd
n ⊆ Πd

n+1.
Given α ∈ R, we define the second-order differential operator L(α) by

L(α)(q) := −W−1
α div (Wα+1∇q)−

∑
1≤i<j≤d

(xi∂j − xj∂i)2q

(9),(10)
=

d∑
j=1

dαj ∂jq −
∑

1≤i<j≤d

D2
i,jq. (11)

Members of Vαn , α > −1, satisfy the second-order Sturm–Liouville problem [5,
Eq. (5.2.3) and Th. 8.1.3]

(∀ pn ∈ Vαn ) L(α)(pn) = λ(α)
n pn, (12)

where
λ(α)
n = n(n+ d+ 2α). (13)

The angular differential operator Di,j is minus its own adjoint in the sense of
the following result (see [3, Prop. 1.8.4] for a variant on the unit sphere).

Proposition 2.1. Let d ∈ N, α > −1, f, g ∈ C1(Bd). Then,

〈Di,jf, g〉α = −〈f,Di,jg〉α.
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Proof. As the weight Wα is a radial function,(
Di,jf g + f Di,jg

)
Wα = div(f gWα (xiej − xjei))

in the open unit ball Bd. Let r ∈ (0, 1). Because of Lebesgue’s dominated con-
vergence theorem, the integral of the left-hand side above over Bd is the one-sided
limit as r → 1− of the corresponding integral over rBd, which, on account of the
divergence theorem, vanishes. �

Given any polynomial p and i, j ∈ {1, . . . , d}, clearly Di,jp can only be a poly-
nomial of the same degree as p or null. Combining this fact with Proposition 2.1
we find that, for all α > −1, there holds the inclusion

Di,jVαn ⊆ Vαn . (14)

The other two operators comprising the Sturm–Liouville operator L(α) of (11),
when α > −1, satisfy another adjointness relation [7, Prop. 3.2(ii)]: For f, g ∈
C1(Bd),

〈∂jf, g〉α+1 = 〈f, dαj g〉α. (15)
Still under the assumption that α > −1, these two operators also satisfy the inclu-
sions [7, Prop. 3.2(iii)]

dαj Vα+1
n ⊆ Vαn+1. (16)

and [14, Lem. 2.11]
∂jVαn ⊆ Vα+1

n−1 . (17)
With the help of Proposition 2.1 and (15), for α > −1 the Sturm–Liouville

operator of (11) can be shown to be self-adjoint with respect to L2
α; indeed, for all

p ∈ C2(Bd) and q ∈ C1(Bd),

〈L(α)p, q〉α = 〈∇p,∇q〉α+1 +
∑

1≤i<j≤d

〈Di,jp,Di,jq〉α =: Bα(p, q). (18)

Thus, the Sturm–Liouville problem (12) satisfied by L2
α-orthogonal polynomials can

be immediately recast into the weak form (cf. [7, Eq. (6)]):

(∀ pn ∈ Vαn ) (∀ q ∈ C1(Bd)) Bα(pn, q) = λ(α)
n 〈pn, q〉α. (19)

Let us note that the sesquilinear form Bα defined in (18) still makes sense if its
arguments lie in H1

α. It is straightforward to check that, for every u ∈ H1
α and

almost every x ∈ Bd,

(1− ‖x‖2) ‖∇u(x)‖2 +
∑

1≤i<j≤d

|Di,ju(x)|2 = ‖∇u(x)‖2 − |x · ∇u(x)|2 ≤ ‖∇u(x)‖2 ,

so
(∀u, v ∈ H1

α) |Bα(u, v)| ≤ ‖∇u‖α ‖∇v‖α . (20)
We recall that Hdn denotes the space of d-variate spherical harmonics (i.e., ho-

mogeneous and harmonic polynomials) of degree n [3, Sec. 1.1], [5, Sec. 4.1]. The
members of the Hdn are in a one-to-one relation with their restrictions to the unit
sphere Sd−1 and to the latter is the term ‘spherical harmonic’ commonly reserved;
we won’t follow that practice. We adopt the convention Hdn = {0} if n < 0. From
[5, Th. 4.1.2],

dim
(
Hdn
)

=

(
n+ d− 1

d− 1

)
−
(
n+ d− 3

d− 1

)
. (21)



SOBOLEV ORTHOGONAL POLYNOMIALS IN THE BALL 7

For n ∈ N0, let {Y nν }
dim(Hd

n)
ν=1 be an L2(Sd−1)-orthogonal basis ofHdn. Also, let P

(α,β)
n

denote the Jacobi polynomial of parameter (α, β) and degree n [5, Subsec. 1.4.4].

Proposition 2.2 ([5, Prop. 5.2.1]). Let d ∈ N, α > −1 and n ∈ N0. Then, the
polynomials Pnj,ν , where j ∈ {0, . . . , bn/2c} and ν ∈ {1, . . . ,dim(Hdn−2j)}, defined
by

Pnj,ν(x) := P
(α,n−2j+ d−2

2 )
j (2 ‖x‖2 − 1)Y n−2j

ν (x),

form an L2
α(Bd)-orthogonal basis of Vαn .

As every Jacobi polynomial of degree 0 is the constant function 1, it follows from
Proposition 2.2 that, for all α > −1,

(∀n ∈ N0) Hdn ⊆ Vαn (22)

with equality if n = 0 or n = 1, so

Vα0 = span({1}) and Vα1 = span
(
(x 7→ xi)

d
i=1

)
. (23)

We finish this section with a variant of Theorem 1.1 and Theorem 1.2 of [19]
where the L2

α-best approximation error of a regular enough function is bounded
in terms of best approximation errors of its gradient and of its image under the
Sturm–Liouville operator L(α). First, we state a density result.

Proposition 2.3 ([7, Lemma 2.2]). Let d ∈ N and α > −1. Then, C∞(Bd) is
dense in Hm

α .

Theorem 2.4. Let d ∈ N and α > −1. Then,

(∀u ∈ H1
α) (∀N ∈ N0) ‖u− SαN (u)‖α ≤ (λ

(α)
N+1)−1/2 inf

pN∈Πd
N

‖∇u−∇pN‖α (24)

and

(∀u ∈ H2
α) (∀N ∈ N0) ‖u− SαN (u)‖α ≤ (λ

(α)
N+1)−1

∥∥∥L(α)(u)− SαN (L(α)(u))
∥∥∥
α
.

(25)

Proof. Let v ∈ H1
α. By Proposition 2.3, it is the limit in H1

α of a sequence of C1(Bd)
functions. Hence, exploiting the bound (20) and the structure of the Sobolev inner
product (5), we can extend (19) to:

(∀ pn ∈ Vαn ) Bα(pn, v) = λ(α)
n 〈pn, v〉α.

Then, given any N ∈ N0 and any polynomial q ∈ Πd
N ,

Bα(q, v) =

N∑
n=0

Bα(projαn(q), v) =

N∑
n=0

λ(α)
n 〈projαn(q), v〉α,

so

Bα(v − q, v − q) = Bα(v, v) +

N∑
n=0

λ(α)
n

[
‖projαn(q)‖2α − 2<〈projαn(q), v〉α

]
. (26)

As the eigenvalues λ(α)
n are nonnegative (13), a minimizer of the left-hand side

of (26) among all q ∈ Πd
N is obtained by minimizing what lies inside the square

brackets of the right-hand side for each n independently, and that is attained by
choosing q so that projαn(q) = projαn(v) for 0 ≤ n ≤ N ; hence,

(∀ v ∈ H1
α) (∀N ∈ N0) SαN (v) ∈ arg min

q∈Πd
N

Bα(v − q, v − q). (27)
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Now, for all N ∈ N0,

0 ≤ Bα(v − SαN (v), v − SαN (v))
(26)
= Bα(v, v)−

N∑
n=0

λ(α)
n ‖projαn(v)‖2α .

Thus, every partial sum of the series of non-negative terms
∑∞
n=0 λ

(α)
n ‖projαn(v)‖2α

is bounded by the finite quantity Bα(v, v), so the series converges and we obtain
the Bessel-type bound

(∀ v ∈ H1
α) (∀N ∈ N0)

∞∑
n=0

λ(α)
n ‖projαn(v)‖2α ≤ B

α(v, v). (28)

Therefore, given u ∈ H1
α and N ∈ N0,

‖u− SαN (u)‖2α =

∞∑
n=N+1

‖projαn(u)‖2α ≤ sup
n≥N+1

(λ(α)
n )−1

∞∑
n=N+1

λ(α)
n ‖projαn(u)‖2α

(28)
≤ (λ

(α)
N+1)−1Bα(u− SαN (u), u− SαN (u))

(27)
= (λ

(α)
N+1)−1 min

pN∈Πd
N

Bα(u− pN , u− pN )
(20)
≤ (λ

(α)
N+1)−1 inf

pN∈Πd
N

‖∇u−∇pN‖2α ,

whence (24).
Let w ∈ C2(Bd). From (12), (13), (18) and the self-adjointness of Bα made

evident there, for all n ∈ N0 and qn ∈ Vαn ,

〈L(α)w, qn〉α = λ(α)
n 〈w, qn〉α = 〈λ(α)

n projαn(w), qn〉α.
So, let u ∈ H2

α and N ∈ N0. The above equality, the fact that L(α) is a contin-
uous map from H2

α to L2
α (cf. the second form in (11)) and the density result in

Proposition 2.3 give

(∀n ∈ N0) projαn(L(α)u) = λ(α)
n projαn(u). (29)

Then, the bound (25) follows from

‖u− SαN (u)‖2α ≤ sup
n≥N+1

(λ(α)
n )−2

∞∑
n=N+1

∥∥∥λ(α)
n projαn(u)

∥∥∥2

α

(29)
= (λ

(α)
N+1)−2

∞∑
n=N+1

‖projαn(L(α)u)‖2α = (λ
(α)
N+1)−2‖L(α)u− SαN (L(α)u)‖2α.

�

3. Sobolev orthogonal polynomials

In Theorem 2.4 we exploited the strong (12) and weak (19) forms of the Sturm–
Liouville problem that the L2

α-orthogonal polynomials satisfy to obtain the bounds
(24) and (25), which in turn can be used to prove a bound of the type (1a) (cf. [8,
Cor. 2.4]). The purpose of this Section 3 is proving that polynomials orthogonal
with respect to the (α, 1)-inner product for H1

α introduced in (2) satisfy their own
strong and weak Sturm–Liouville problems, so that later, in Section 4, we can
reproduce the argument of Theorem 2.4 to obtain analogous bounds for an H1

α-
best approximation error that, in turn, will be used to obtain the simultaneous
approximation bounds (1) in full.
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Recalling that Sαn is the L2
α-orthogonal projection onto Πd

n, that Vα0 = span({1})
and cα = 〈1, 1〉α, we can express the (α, 1)-inner product as

〈u, v〉α,1 = 〈∇u,∇v〉α + 〈Sα0 (u), Sα0 (v)〉α, (30)

which will be our preferred form. Roughly speaking, the lower-order term of (30)
will mostly get out of the way; by way of contrast, in [17], concerning the construc-
tion of bases of orthogonal polynomials for the first-order standard Sobolev inner
product 〈∇u,∇v〉α + 〈u, v〉α, it is stated that

Likely, it is this tangle between the two terms that makes this
case so much more complicated than [the case of (3)].

We do not introduce a term-balancing positive constant before any of the two terms
of (30) because, as will be proved later (Subsection 5.2), doing so does not alter
its orthogonal polynomial spaces nor the orthogonal projection operators onto the
latter. This inner product (30) belongs to the wider family (31) of inner products,
all of whose members will prove useful later.

Proposition 3.1. Let d ∈ N, α > −1 and m ∈ N0. Then,

〈u, v〉α,m := 〈∇mu,∇mv〉α + 〈Sαm−1(u), Sαm−1(v)〉α (31)

defines an inner product for Hm
α equivalent to the standard (α, 1,S)-inner product

given in (5).

Proof. This is [8, Prop. 2.6] with the help of the fact that 〈∇mu,∇mv〉α is equivalent
to
∑
|γ|=m〈∂γu, ∂γv〉α. �

Remark 3.2. We remark in passing that the Hα
m spaces, with their intrinsic def-

inition as given in Subsection 1.1, are indeed Hilbert spaces [13]. Also, neither
the standard inner product of (5) nor the alternative inner product of (31) involve
traces, whose existence in general depends on the dimensionality of their associated
sets and properties of the involved weights (see, e.g., [12, Th. 9.15]). Of course,
one might use function restriction operators instead in certain classes of functions
(e.g., polynomials, smooth functions), which, however, might fail to be complete
with respect to the desired norm.

Given n ∈ N0, we denote by Vα,1n the space of H1
α-orthogonal polynomials of

degree n with respect to the (α, 1)-inner product given in (30); that is,

Vα,1n :=
{
p ∈ Πd

n | (∀ q ∈ Πd
n−1) 〈p, q〉α,1 = 0

}
. (32)

In common with the orthogonal polynomial spaces with respect to any inner product
that is well defined over polynomials, Vα,1n inherits the dimension of the space of
d-variate homogeneous polynomials of degree n [5, Sec. 3.1]:

dim
(
Vα,1n

)
=

(
n+ d− 1

n

)
. (33)

Also, as ∇1 = 0, for all u ∈ H1
α, 〈u, 1〉α,1 = 〈Sα0 (u), 1〉α, whence
(∀n ∈ N) Vα,1n ⊥α 1. (34)

Thus, we have the following analogue of (23): For all α > −1,

Vα,10 = span({1}) and Vα,11 = span
(
(x 7→ xi)

d
i=1

)
. (35)

On account of (17), one might expect Vα,1n to be related to Vα−1
n . The following

result states that this is indeed the case, with equality, if α > 0 and n 6= 2.
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Proposition 3.3. Let d ∈ N, α > 0 and n ∈ N0 \ {2}. Then, Vα,1n = Vα−1
n .

Proof. If n = 0 or n = 1 this comes from (23) and (35). Let us suppose now that n ≥
3 and let pn ∈ Vα−1

n . Then, 〈pn, 1〉α = 〈pn, x 7→ (1−‖x‖2)〉α−1 = 0, so Sα(pn) = 0.

Hence, given q ∈ Πd
n−1, 〈pn, q〉α,1 = 〈∇pn,∇q〉α

(17)
= 0. This establishes that Vα−1

n

is a subspace of Vα,1n . As, per (7) and (33), dim(Vα−1
n ) = dim(Vα,1n ), we obtain the

desired equality. �

After a fashion, the rest of this work can be seen as an effort to extend the
consequences of the above result to the whole natural range for α, namely (−1,∞).

If α > 0, from (16), dα−1
j Vαn ⊆ Vα−1

n+1 . Combining this with (17), it is immedi-
ate that ∂idα−1

j Vαn ⊆ Vαn . Even though the inclusion dα−1
j Vαn ⊆ Vα−1

n+1 cannot be
extended to α > −1, its combination with (17) can, as we prove below in Proposi-
tion 3.5. First, however, we need the following commutation relations, the first of
which already appears in the proof of [3, Lemma 1.8.3].

Proposition 3.4. Let d ∈ N, i, j, k, l ∈ {1, . . . , d} and α ∈ R. Then,

∂iDk,l −Dk,l ∂i = δi,k∂l − δi,l∂k (36)

and
∂id

α−1
j − dαj ∂i = 2Di,j + 2αδi,jI, (37)

where I is the identity operator.

Proof. Equations (36) and (37) are direct consequences of the definition of the
operators Dk,l and dαj in (9) and (10), respectively, and the rules of calculus. �

Proposition 3.5. Let d ∈ N, α > −1 and n ∈ N0.
(i) Let i, j ∈ {1, . . . , d}. Then,

∂id
α−1
j Vαn ⊆ Vαn .

(ii) Let i, j, k, l ∈ {1, . . . , d}. Then,

∂iDk,ld
α−1
j Vαn ⊆ Vαn .

Proof. Let pn ∈ Vαn . By (37) in Proposition 3.4, ∂idα−1
j pn coincides with dαj ∂ipn +

2Di,jpn+2αδi,jpn. The first term belongs to Vαn because of (17) and (16), the second
because of (14) and the third for free. Thus, we have proved part i. Similarly, by
(36) in Proposition 3.4, ∂iDk,ld

α−1
j pn coincides with Dk,l∂id

α−1
j pn+δi,k∂ld

α−1
j pn−

δi,l∂kd
α−1
j pn. Each of the resulting three terms belongs to Vαn because of part i with

the help of (14) in the case of the first. This accounts for part ii. �

Let Mα denote the second-order differential operator defined by

Mα(u)(x) := (1− ‖x‖2)1−α∆
(

(1− ‖x‖2)1+αu(x)
)

(10)
=

d∑
j=1

dα−1
j dαj u(x).

(38)

In Lemma 3.8 it will be proved that this operator transforms certain Lebesgue
orthogonal polynomials into Sobolev orthogonal polynomials. But first, we need
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some preliminary propositions and the inclusion, valid for all α > −1, n ∈ N0 and
i ∈ {1, . . . , d},

∂iHdn ⊆ Hdn−1, (39)

which is easily derived from the fact that the partial derivative ∂i and the Laplacian
∆ commute.

Proposition 3.6. Let d ∈ N and α > −1.
(i) Let n ∈ N0, hn ∈ Hdn and pn ∈ Πd

n. Then,

〈∇hn,∇pn〉α = n(2n+ d+ 2α) 〈hn, pn〉α.

(ii) Let n ∈ N0, hn ∈ Hdn and pn−2 ∈ Πd
n−2. Then,

〈hn,Mα(pn−2)〉α = 〈∇hn,∇Mα(pn−2)〉α = 0.

Proof. We start by stating the fact that, for all n ∈ N0 and Hdn,

−
∑

1≤i<j≤d

D2
i,jhn = n(n+ d− 2)hn. (40)

Indeed, as hn ∈ V0
n (cf. (22)), by (11), (12) and (13), n(n + d)hn = −∆hn + 2x ·

∇hn−
∑

1≤i<j≤dD
2
i,jhn; as hn is harmonic and homogeneous of degree n, ∆hn = 0

and x · ∇hn = nhn [4, Eq. (12)]. Alternatively, one might infer (40) by extending
the corresponding result on the unit sphere, on which

∑
1≤i<j≤dD

2
i,j becomes the

Laplace–Beltrami operator [3, Th. 1.4.5 and Th. 1.8.3].
When n = 0, part i is obviously true. So, let n ≥ 1, hn ∈ Hdn and let us consider

first the special case in which pn ∈ Vαn . From (22), Hdn ⊆ Vαn . By (17), every
component of both ∇hn and ∇pn belongs to Vα+1

n−1 , so, by [7, Prop. 3.4],

〈∇hn,∇pn〉α+1 =
α+ 1

n+ d/2 + α
〈∇hn,∇pn〉α. (41)

Also, by Proposition 2.1 and (40),∑
1≤i<j≤d

〈Di,jhn, Di,jpn〉α = n(n+ d− 2)〈hn, pn〉α. (42)

Combining (41) and (42) with the weak form of the Sturm–Liouville problem that
hn satisfies as a member of Vαn (cf. (18) and (19)), we find that

λ(α)
n 〈hn, pn〉α =

α+ 1

n+ d/2 + α
〈∇hn,∇pn〉α + n(n+ d− 2)〈hn, pn〉α.

Rearranging the above equation and using the expression (13) for λ(α)
n accounts

for part i in the special case in which pn ∈ Vαn . From this special case the general
pn ∈ Πd

n case follows upon the observation, arising from (22) and (39), that hn is
L2
α-orthogonal to pn−projαn(pn) and ∇hn is [L2

α]d-orthogonal to ∇(pn−projαn(pn)).
Let now hn ∈ Hdn and pn−2 ∈ Πd

n−2. It is easy to check that

∆
[
(1− ‖x‖2)α+1 pn−2(x)

]
= (1− ‖x‖2)α+1 ∆pn−2(x)− 4(α+ 1)(1− ‖x‖2)α x · ∇pn−2(x)

+ 2(α+ 1)
[
2α(1− ‖x‖2)α−1 − (2α+ d) (1− ‖x‖2)α

]
pn−2(x).
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Hence, using the first form of the operator Mα in (38),

〈hn,Mα(pn−2)〉α = 〈hn,∆pn−2〉α+2 − 4(α+ 1)〈hn, x · ∇pn−2〉α+1

+ 4α(α+ 1)〈hn, pn−2〉α − 2(α+ 1)(2α+ d)〈hn, pn−2〉α+1.

As hn ∈ Vαn ∩ Vα+1
n ∩ Vα+2

n (cf. (22)), 〈hn,Mα(pn−2)〉α vanishes and, by part i, so
does 〈∇hn,∇pn〉α. �

Proposition 3.7. Let d ∈ N, α > −1 and n ∈ N0. Then,Mα(Vα+1
n ) ⊆ Vαn⊕αVαn+2.

Proof. Let pn ∈ Vα+1
n . From the second form of Mα given in (38) and (10),

Mα(pn) ∈ Πd
n+2. Now, for all q ∈ Πd

n−1, by integration by parts

〈Mα(pn), q〉α =

∫
Bd

pn(x) ∆
(

(1− ‖x‖2) q(x)
)

(1− ‖x‖2)α+1 dx = 0,

where the absence of boundary terms is a consequence of the fact that α > −1 and
the vanishing of the latter integral comes about because the part under the conjuga-
tion bar is a polynomial of degree equal or less than n−1. Thus,Mα(pn) ⊥α Πd

n−1.
As the Laplacian operator and multiplication by centrally symmetric functions pre-
serve the parity of a function, Mα(pn) inherits the parity of pn given in (8), which,
in turn, is the opposite of that of Vαn+1, whence Mα(pn) ⊥α Vαn+1. �

We can now provide an orthogonal decomposition of the Sobolev orthogonal
spaces Vα,1n closely related to that in [21, Cor 2.4] reproduced in (4) (we discuss
how closely in Subsection 5.3). Other related decompositions can be found in [21,
Rem. 2.1] and [18, Th. 4.1] and there is the hint of one in [22, Eq. (7.2)].

Lemma 3.8. Let d ∈ N and α > −1. Then,

Vα,1n =

{
Vαn if n ≤ 2,

Hdn ⊕α,1Mα(Vα+1
n−2 ) if n ≥ 3.

Proof. The cases n = 0 and n = 1 come directly from (23) and (35). Now, given
p2 ∈ Vα2 and q ∈ Πd

1, as Sα0 (p2) = 0, 〈p2, q〉α,1 =
∑d
i=1〈∂ip2, ∂iq〉α, which in turn

vanishes because, by (17) and (23), the ∂ip2 belong to Vα+1
1 = Vα1 . Thus, Vα2 ⊆ V

α,1
2

and as dim(Vα2 ) = dim(Vα,12 ) (cf. (7), (33)), the desired equality for the case n = 2
follows.

Let us suppose from now on that n ≥ 3. Let hn ∈ Hdn. From (22), Sα0 (hn) = 0.
Hence, for all q ∈ Πd

n−1, 〈hn, q〉α,1 =
∑d
i=1〈∂ihn, ∂iq〉α = 0, the latter equality

following from (22) and (39) on account of each of the ∂iq belonging to Πd
n−2.

Therefore, hn ∈ Vα,1n .
Let pn−2 ∈ Vα+1

n−2 . Then,M
α(pn−2) ∈ Πd

n and, from Proposition 3.7, Sα0 (Mα(pn)) =

0. Also, from (16), for every j ∈ {1, . . . , d}, dαj pn−2 ∈ Vαn−1. Thus, for all q ∈ Πd
n−1,

〈Mα(pn−2), q〉α,1 =

d∑
i=1

〈∂iMα(pn−2), ∂iq〉α
(38)
=

d∑
j=1

d∑
i=1

〈
∂id

α−1
j dαj pn−2, ∂iq

〉
α
.

As, per Proposition 3.5, each of the ∂idα−1
j maps Vαn−1 into itself and all the ∂iq

belong to Πd
n−2, we find that Mα(pn−2) ∈ Vα,1n .
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Let {v1, . . . , vr} be any basis of Vα+1
n−2 (by (7), r =

(
n+d−3
n−2

)
) and let a1, . . . , ar be

scalars such that
∑r
i=1 aiMα(vi) = 0. Then, using the definition (38),

(∀x ∈ Bd) ∆

(
(1− ‖x‖2)1+α

r∑
i=1

ai vi(x)

)
= 0.

Thus x 7→ (1−‖x‖2)1+α
∑r
i=1 ai vi(x) is harmonic in the unit ball and vanishes on

the unit sphere. As a consequence of the maximum principle for harmonic functions
[10, Th. 2.4], it must be the null function and so must be

∑r
i=1 ai vi. As the vi

are mutually linearly independent, we conclude that a1 = · · · = ar = 0 and so
{Mα(v1), . . . ,Mα(vr)} is a basis of Mα(Vα+1

n−2 ). From part ii of Proposition 3.6
and the fact (cf. (22)) that Sα0 (Hdn) = {0}, the vector space Mα(Vα+1

n−2 ) is (α, 1)-
orthogonal to Hdn. Hence,

dim
(
Hdn ⊕Mα(Vα+1

n−2 )
)

= dim
(
Hdn
)

+ dim
(
Mα(Vα+1

n−2 )
)

(21)
=

(
n+ d− 1

d− 1

)
−
(
n+ d− 3

d− 1

)
+

(
n+ d− 3

n− 2

)
=

(
n+ d− 1

n

)
(33)
= dim

(
Vα,1n

)
.

As Hdn⊕Mα(Vα+1
n−2 ) ⊆ Vα,1n with equality of dimensions, the proof is completed. �

Remark 3.9. By direct computation using the first form in (38), for all d ∈ N and
α > −1, there holds Mα(1)(x) = 2(α + 1)

(
(2α + d) ‖x‖2 − d

)
. With the help of

known formulae [1, Sec. 1.1 and Sec. 1.8] it is possible to evaluate 〈Mα(1), 1〉α,1 =
〈Mα(1), 1〉α = −2 dΓ(1/2)d Γ(α + 2)/Γ(d/2 + α + 2) 6= 0. Therefore, for all d ∈ N
and α > −1, the polynomialMα(1) does not belong to Vα,12 , so the latter orthogonal
polynomial space does not fit into the decomposition pattern that Lemma 3.8 sets
for Vα,1n , n ≥ 3.

We are now in position to provide a weak Sturm–Liouville problem that is satis-
fied by the (α, 1)-orthogonal polynomials. As a preliminary step, we show that first-
order partial derivatives of a Sobolev orthogonal polynomial in Vα,1n are Lebesgue
orthogonal polynomials in Vαn−1.

Proposition 3.10. Let d ∈ N, α > −1 and n ∈ N0. Then, for all k ∈ {1, . . . , d},
∂kVα,1n ⊆ Vαn−1.

Proof. If n = 0 or n = 1 this is immediate. If n = 2, Lemma 3.8 states that
pn ∈ Vα2 , so by (23) and (17), ∂kpn ∈ Vα1 . If n ≥ 3, it transpires from Lemma 3.8
that there exist hn ∈ Hdn and rn−2 ∈ Vα+1

n−2 such that pn = hn+Mα(rn−2). By (22)
and (39), ∂khn ∈ Vαn−1. On the other hand, by the second form ofMα given in (38),
∂kMα(rn−2) =

∑d
l=1 ∂kd

α−1
l dαl rn−2, so through (16) and part i of Proposition 3.5,

we infer that ∂kMα(rn−2) ∈ Vαn−1. �

Theorem 3.11. Let d ∈ N, α > −1, n ∈ N0 and pn ∈ Vα,1n . Then, for all
q ∈ C2(Bd),

Bα,1(pn, q) :=

d∑
k=1

Bα(∂kpn, ∂kq)

= 〈∇∇pn,∇∇q〉α+1 +
∑

1≤i<j≤d

〈Di,j∇pn, Di,j∇q〉α = λ(α,1)
n 〈pn, q〉α,1, (43)
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where

λ(α,1)
n =

{
0 if n ≤ 1,

λ
(α)
n−1 if n ≥ 2.

(44)

Proof. If n ≤ 1, both ∇∇pn and, for all admissible i and j, Di,j∇pn vanish and
the desired result immediately follows.

From now on we suppose that n ≥ 2. From Proposition 3.10, ∂kpn ∈ Vαn−1 for
every k ∈ {1, . . . , d}. As for every q ∈ C2(Bd), ∂kq ∈ C1(Bd), we can substitute
n← n−1, pn ← ∂kpn and q ← ∂kq in the weak Sturm–Liouville problem (19), sum
up with respect to k and obtain the desired result upon realizing that, on account
of the Lebesgue orthogonality relation (34), Sα0 (pn) = 0 and hence 〈∇pn,∇q〉α =
〈pn, q〉α,1. �

Given α > −1, let us define a rank-1 perturbation L̃(α) of the second-order
differential operator L(α−1) of (11) by

(∀ q ∈ H2
α) L̃(α)(q) := L(α−1)(q) + 2 projα0 (x · ∇q). (45)

Below we will prove that L̃(α) is (α, 1)-self-adjoint and that the strong Sturm–
Liouville problem it defines is satisfied by the (α, 1)-orthogonal polynomials. First,
however, we need some relations connecting the L(α) and L(α−1) operators.

Proposition 3.12. Let d ∈ N and α ∈ R. Then,

L(α) − L(α−1) = 2 (x · ∇). (46)

and, for all k ∈ {1, . . . , d},

L(α)∂k = ∂kL(α−1) − (d+ 2α− 1)∂k. (47)

Proof. The relation (46) is a direct consequence of (10) and (11).
By repeated application of (36) of Proposition 3.4, for all i, j satisfying 1 ≤ i <

j ≤ d and k ∈ {1, . . . , d},

D2
i,j∂k = Di,j (∂kDi,j − δk,i∂j + δk,j∂i)

= ∂kD
2
i,j − δk,i∂jDi,j + δk,j∂iDi,j − δk,i(∂jDi,j + ∂i) + δk,j(∂iDi,j − ∂j)

= ∂kD
2
i,j − 2δk,i∂jDi,j + 2δk,j∂iDi,j − δk,i∂i − δk,j∂j ,

so

−
∑

1≤i<j≤d

D2
i,j∂k

= −∂k
∑

1≤i<j≤d

D2
i,j + 2

d∑
j=k+1

∂jDk,j − 2

k−1∑
i=1

∂iDi,k +

d∑
j=k+1

∂k +

k−1∑
i=1

∂k

= −∂k
∑

1≤i<j≤d

D2
i,j + 2

d∑
j=1

∂jDk,j + (d− 1)∂k. (48)

By (36) and (37) of Proposition 3.4 and the fact that ∂j and ∂k commute, we find
that, for all j, k ∈ {1, . . . , d},

dαj ∂j∂k = ∂kd
α−1
j ∂j − 2Dk,j∂j − 2αδk,j∂j

= ∂kd
α−1
j ∂j − 2(∂jDk,j − δj,k∂j + ∂k)− 2αδk,j∂j ,
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whence
d∑
j=1

dαj ∂j∂k = ∂k

d∑
j=1

dα−1
j ∂j − 2

d∑
j=1

∂jDk,j − 2(d+ α− 1)∂k. (49)

Summing (48) and (49) and using the first second form in (11) for both L(α) and
L(α−1), we obtain (47). �

Lemma 3.13. Let d ∈ N and α > −1. Then, the operator L̃(α) is self-adjoint in H1
α

with respect to the (α, 1)-inner product; indeed, for all p ∈ C3(Bd) and q ∈ C2(Bd),〈
L̃(α)(p), q

〉
α,1

= Bα,1(p, q) + (d+ 2α− 1)〈∇p,∇q〉α.

Proof. Let us first notice that, as the gradient of any constant functions vanishes,
∇L̃(α) = ∇L(α−1) (cf. (45)). Using this fact, the equation (18) encoding the self-
adjointness of L(α) with respect to L2

α, the definition of the sesquilinear form Bα,1

in (43) and the relation (47) of Proposition 3.12, we have〈
∇L̃(α)(p),∇q

〉
α

=
〈
L(α)(∇p) + (d+ 2α− 1)∇p,∇q

〉
α

= Bα,1(p, q) + (d+ 2α− 1)〈∇p,∇q〉α.

Using the definition (45) of L̃(α), the self-adjointness of L(α) encoded in (18) and
the relation (46) of Proposition 3.12, we also have

projα0

(
L̃(α)(p)

)
= projα0

(
L(α)(p)

)
=
〈L(α)(p), 1〉α
‖1‖2α

=
〈p,L(α)(1)〉α
‖1‖2α

= 0,

and the desired result follows from the structure (30) of the (α, 1)-inner product. �

Theorem 3.14. Let d ∈ N, α > −1, n ∈ N0 and pn ∈ Vα,1n . Then,

L̃(α)(pn) = λ̃(α,1)
n pn, where λ̃(α,1)

n = n(n+ d+ 2α− 2).

Proof. From Theorem 3.11 and Lemma 3.13, for any polynomial q,〈
L̃(α)(pn), q

〉
α,1

= λ(α,1)
n 〈pn, q〉α,1 + (d+ 2α− 1)〈∇pn,∇q〉α

(34)
=

(
λ(α,1)
n +

{
d+ 2α− 1 if n ≥ 1,

0 if n = 0

)
〈pn, q〉α,1

(13),(44)
= λ̃(α,1)

n 〈pn, q〉α,1.

As L̃(α)(pn) itself is a polynomial (cf. (45)), the desired result follows. �

4. Approximation results

Let us denote by projα,1n the (α, 1)-orthogonal projection from H1
α onto Vα,1n (32)

and by Sα,1n the (α, 1)-orthogonal projection from H1
α onto Πd

n. Clearly,

Πd
n =

n⊕
k=0

Vα,1k and Sα,1n =

n∑
k=0

projα,1n .

Proposition 4.1. Let d ∈ N and α > −1. Then, polynomials are dense in Hm
α .
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Proof. By Proposition 2.3, C∞(Bd) is dense in Hm
α ; hence, so is the larger space

Cm(Bd). Now, by [10, Lem. 6.37], every Cm(Bd) function extends to a Cm(Rd)
function with compact support, so by [6, Cor. 3] it can be approximated to within
any positive distance by a polynomial in the norm f 7→

∑
|γ|≤m ‖∂γf‖L∞(Bd), which

is stronger than the norm of Hm
α . �

As, by the above Proposition 4.1, polynomials are dense in H1
α, there holds

H1
α =

⊕∞
k=0 V

α,1
k so, by generic properties of Hilbert spaces [2, Th. I.4.13],

(∀u ∈ H1
α) u =

∞∑
k=0

projα,1k (u) and ‖u‖2α,1 =

∞∑
k=0

‖projα,1k (u)‖2α,1, (50)

the first series above converging in H1
α.

From its definition in (43) within Theorem 3.11, it is clear that the sesquilinear
form Bα,1 is still well defined on H2

α and, with the help of the bound (20) for Bα,
that it satisfies the bound

(∀u, v ∈ H2
α)

∣∣Bα,1(u, v)
∣∣ ≤ ‖∇∇u‖α ‖∇∇v‖α ; (51)

i.e., Bα,1 : H2
α ×H2

α → C is a bounded sesquilinear form and hence, continuous.
We can now state one of our main approximation results, which provides bounds

on the H1
α-best approximation error with respect to the (α, 1)-inner product of (30)

in terms of other best approximation errors. This result lies at the foundation of
the bound (1b) that will be attained later in Corollary 4.7.

Theorem 4.2. Let d ∈ N and α > −1. Then,

(∀u ∈ H2
α) (∀N ≥ 1)

‖u− Sα,1N (u)‖α,1 ≤ (λ
(α,1)
N+1)−1/2 inf

pN∈Πd
N

‖∇∇u−∇∇pN‖α (52)

and

(∀u ∈ H3
α) (∀N ≥ 2)

‖u− Sα,1N (u)‖α,1 ≤ (λ̃
(α,1)
N+1)−1

∥∥∥L̃(α)(u)− Sα,1N (L̃(α)(u))
∥∥∥
α,1

. (53)

Proof. We claim that, for all v ∈ H2
α and N ∈ N0,

Sα,1N (v) ∈ arg min
q∈Πd

N

Bα,1(v − q, v − q). (54)

and
∞∑
n=0

λ(α,1)
n

∥∥projα,1n (v)
∥∥2

α,1
≤ Bα,1(v, v). (55)

Indeed, (54) and (55) are obtained by the same arguments that led to (27) and (28)
in the proof of Theorem 2.4, but with the (α, 1)-orthogonality taking the place of
the L2-orthogonality and substituting Bα ← Bα,1, (19) ← (43) and (20) ← (51).
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Thus, given u ∈ H2
α and N ≥ 1 (so that λ(α,1)

n > 0 for n ≥ N + 1; cf. (13) and
(44)),

‖u− Sα,1N (u)‖2α,1 ≤ sup
n≥N+1

(λ(α,1)
n )−1

∞∑
n=N+1

λ(α,1)
n

∥∥projα,1n (u)
∥∥2

α,1

(55)
≤ (λ

(α,1)
N+1)−1Bα,1(u− Sα,1N (u), u− Sα,1N (u))

(54)
= (λ

(α,1)
N+1)−1 min

pN∈Πd
N

Bα,1(u−pN , u−pN )
(51)
≤ (λ

(α,1)
N+1)−1 inf

pN∈Πd
N

‖∇∇u−∇∇pN‖2α ,

whence (52).
Let u ∈ H3

α and N ≥ 2, so that λ̃(α,1)
n > 0 for n ≥ N + 1 (cf. Theorem 3.14).

Continuing with the parallels with the proof of Theorem 2.4, in the same way that
(29) is obtained there, here we obtain

(∀n ∈ N0) projα,1n (L̃(α)u) = λ̃(α,1)
n projα,1n (u), (56)

where, instead of (12), (13), (18) and the continuity of L(α) as a map from H2
α to

L2
α that are relevant for (29), we use Theorem 3.14, Lemma 3.13 and the continuity

of L̃(α) as a map from H3
α to H1

α. Then, the bound (53) follows from∥∥∥u− Sα,1N (u)
∥∥∥2

α,1
≤ sup
n≥N+1

(λ̃(α,1)
n )−2

∞∑
n=N+1

∥∥∥λ̃(α,1)
n projα,1n (u)

∥∥∥2

α,1

(56)
= (λ̃

(α,1)
N+1)−2

∞∑
n=N+1

∥∥∥projα,1n (L̃(α)u)
∥∥∥2

α,1

= (λ̃
(α,1)
N+1)−2

∥∥∥L̃(α)u− Sα,1N (L̃(α)u)
∥∥∥2

α,1
.

�

Remark 4.3. If d + 2α > 0, the bound (53) in Theorem 4.2 can start earlier at
N = 1 and, if d+ 2α > 1, at N = 0.

Proposition 4.4 below echoes [7, Prop. 3.1] in establishing connections between
orthogonal projection operators with respect to two different inner products.

Proposition 4.4. Let d ∈ N, α > −1 and n ∈ N0.
(i) Let qn ∈ Vα,1n . Then, qn = projαn−2(qn) + projαn(qn).

(ii) Let u ∈ H1
α. Then, projαn(u) = projαn

(
projα,1n (u)) + projα,1n+2(u)

)
.

(iii) Let u ∈ H1
α. Then,

projαn(u) = projα,1n (u) + projαn ◦ projα,1n+2(u)− projαn−2 ◦ projα,1n (u).

Proof. From Lemma 3.8, for n ≥ 3, every qn ∈ Vα,1n is of the form qn = hn +
rn, where hn ∈ Hdn ⊆ Vαn (cf. (22)) and rn ∈ Mα(Vα+1

n−2 ) ⊆ Vαn−2 ⊕α Vαn (cf.
Proposition 3.7). The same Lemma 3.8 states that, for n ≤ 2, Vα,1n = Vαn . Thus,
for all n ∈ N0, Vα,1n ⊆ Vαn−2 ⊕α Vαn , which implies part i.

Because of (50), the series
∑∞
k=0 projα,1k (u) converges to u in H1

α. Because of the
continuous embedding of H1

α in L2
α, the same series converges to u in L2

α as well.
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Then, part ii follows from

(∀ pn ∈ Vαn ) 〈u, pn〉α =

∞∑
k=0

〈projα,1k (u), pn〉α
i
= 〈projα,1n (u) + projα,1n+2(u), pn〉α.

Adding and subtracting projαn−2

(
projα,1n (u)

)
to the right-hand side of part ii and

using part i to combine projαn ◦ projα,1n (u) and projαn−2 ◦projα,1n (u) into projα,1n (u),
we obtain part iii. �

We now intend to prove another of our main approximation results, Theorem 4.6,
which bounds the L2-error committed by the (α, 1)-best approximation in terms of
the corresponding (α, 1)-best approximation error. This result, in conjunction with
Theorem 4.2, lies at the foundation of the bound (1a) that will be attained later in
Corollary 4.7. First, we provide a bound on the difference between the SαN and the
Sα,1N projection operators in Lemma 4.5.

Lemma 4.5. Let d ∈ N and α > −1. Then,

(∀u ∈ H1
α) (∀N ≥ 2) ‖SαN (u)− Sα,1N (u)‖α ≤ (λ

(α)
N−1)−1/2‖u− Sα,1N (u)‖α,1.

Proof. For every n ≥ 3 and pn ∈ Vα,1n ,

‖pn‖2α
Prop. 4.4(i)

=
∥∥projαn−2(pn)

∥∥2

α
+ ‖projαn(pn)‖2α

(19)
=

1

λ
(α)
n−2

Bα(projαn−2(pn),projαn−2(pn)) +
1

λ
(α)
n

Bα(projαn(pn),projαn(pn))

≤ 1

λ
(α)
n−2

Bα(pn, pn)
(20)
≤ 1

λ
(α)
n−2

‖∇pn‖2α .

Hence, as long as n ≥ 2,∥∥∥projαn−1 ◦projα,1n+1(u)
∥∥∥2

α
≤
∥∥∥projα,1n+1(u)

∥∥∥2

α
≤ 1

λ
(α)
n−1

∥∥∥projα,1n+1(u)
∥∥∥2

α,1
. (57)

Now, for all N ≥ 0,

SαN (u)− Sα,1N (u) =
N∑
n=0

(
projαn(u)− projα,1n (u)

)
Prop. 4.4(iii)

=

N∑
n=0

(
projαn ◦ projα,1n+2(u)− projαn−2 ◦ projα,1n (u)

)
= projαN ◦ projα,1N+2(u) + projαN−1 ◦ projα,1N+1(u),

where, in the last equality, we have used the fact that the sum over n telescopes
and the fact that Vα−2 = Vα−1 = {0}. Combining this with (57) we have that, for all
N ≥ 2,∥∥∥SαN (u)− Sα,1N (u)

∥∥∥2

α
≤ 1

λ
(α)
N

∥∥∥projα,1N+2(u)
∥∥∥2

α,1
+

1

λ
(α)
N−1

∥∥∥projα,1N+1(u)
∥∥∥2

α,1

≤ 1

λ
(α)
N−1

∥∥∥u− Sα,1N (u)
∥∥∥2

α,1
.

The desired result follows upon taking square roots. �
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Theorem 4.6. Let d ∈ N and let α > −1. Then,

(∀u ∈ H1
α) (∀N ≥ 2)

‖u− Sα,1N (u)‖α ≤
(

(λ
(α)
N+1)−1/2 + (λ

(α)
N−1)−1/2

)
‖u− Sα,1N (u)‖α,1

Proof. This follows from (24) of Theorem 2.4, Lemma 4.5 and the obvious fact that
infpN∈Πd

N
‖∇u−∇pN‖α ≤ ‖∇u−∇S

α,1
N (u)‖α. �

Theorem 4.2 and Theorem 4.6 are analogous to Theorem 2.4 in the sense that
they bound projection residuals in terms of powers of eigenvalues and best approx-
imation errors. We now turn them into bounds of the form (1), which are given in
terms powers of projection degrees and weighted Sobolev seminorms.

Corollary 4.7. Let d ∈ N and α > −1. Then, for all integers m ≥ 1, there exists
C = C(d, α,m) > 0 such that

(∀u ∈ Hm
α ) (∀N ≥ m− 1) ‖∇u−∇Sα,1N (u)‖α ≤ CN1−m ‖∇mu‖α . (58)

and

(∀u ∈ Hm
α ) (∀N ≥ max(m− 1, 1)) ‖u− Sα,1N (u)‖α ≤ CN−m ‖∇mu‖α . (59)

Proof. We begin by observing that, from its definition in (45), it is straightforward
to check that the operator L̃(α) belongs to L(Hk+2

α ,Hk
α) for all k ∈ N0. On account

of the norm equivalence given in Proposition 3.1, we are free to express this fact in
the form

(∀ k ∈ N0) (∀u ∈ Hk+2
α ) ‖L̃(u)‖α,k ≤ ck ‖u‖α,k+2 , (60)

where ck > 0 only depends on α, d and, of course, k.
Next, as the Sα,1N are (α, 1)-orthogonal projections,

(∀u ∈ H1
α) (∀N ≥ 0) ‖u− Sα,1N (u)‖α,1 ≤ ‖u‖α,1 . (61)

From (52) of Theorem 4.2 and bounding the infimum there by the result of taking
the particular choice pN = 0,

(∀u ∈ H2
α) (∀N ≥ 1) ‖u− Sα,1N (u)‖α,1 ≤ (λ

(α,1)
N+1)−1/2 ‖u‖α,2 . (62)

If m is odd and m ≥ 3, by applying (53) of Theorem 4.2 m−1
2 times, (61) once and

(60) m−1
2 times, we find that there exists C1 = C1(d, α,m) > 0 such that

(∀u ∈ Hm
α ) (∀N ≥ 2) ‖u− Sα,1N (u)‖α,1 ≤ C1(λ̃

(α,1)
N+1)−

m−1
2 ‖u‖α,m . (63)

If m is even and m ≥ 4, by applying (53) of Theorem 4.2 m−2
2 times, (62) once and

(60) m−2
2 times, we find that for thesem there also exists some C1 = C1(d, α,m) > 0

such that

(∀u ∈ Hm
α ) (∀N ≥ 2) ‖u− Sα,1N (u)‖α,1 ≤ C1(λ̃

(α,1)
N+1)−

m−2
2 (λ

(α,1)
N+1)−1/2 ‖u‖α,m .

(64)
From (13), (44) of Theorem 3.11 and Theorem 3.14 and the restriction α > −1,

we find that λ(α,1)
N+1 is positive for all N ≥ 1 and λ̃

(α,1)
N+1 is positive for all N ≥ 2.

As limN→∞ λ
(α,1)
N+1N

−2 = limN→∞ λ̃
(α,1)
N+1N

−2 = 1, it follows that there exists C2 =
C2(d, α) > 0 such that

(∀N ≥ 1) (λ
(α,1)
N+1)−1/2 ≤ C2N

−1 and (∀N ≥ 2) (λ̃
(α,1)
N+1)−1/2 ≤ C2N

−1.
(65)
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Combining (65) with (61) for m = 1, (62) for m = 2, (63) for odd m ≥ 3 and (64)
for even m ≥ 4 and exploiting the fact that each of the orthogonal projectors Sα,1N

leaves polynomials of degree ≤ N invariant, we find that, for all m ≥ 1, there exist
constants C3 = C3(d, α,m) > 0 and C4 = C4(d, α,m) > 0 such that

(∀u ∈ Hm
α ) (∀N ≥ m− 1)

‖u− Sα,1N (u)‖α,1 = ‖u− Sαm−1(u)− Sα,1N

(
u− Sαm−1(u)

)
‖α,1

≤ C3N
1−m ∥∥u− Sαm−1(u)

∥∥
α,m
≤ C4N

1−m ‖∇mu‖α , (66)

from which (58) follows.
From (13), in the same way we obtained (65), we obtain that there exists C5 =

C5(d, α) > 0 such that

(∀N ≥ 2) (λ
(α)
N+1)−1/2 + (λ

(α)
N−1)−1/2 ≤ C5N

−1.

Combining the above equation with Theorem 4.6 and (66) find that, for all m ≥ 1,
there exists a constant C6 = C6(d, α,m) > 0 such that

(∀u ∈ Hm
α ) (∀N ≥ max(m− 1, 2)) ‖u− Sα,1N (u)‖α ≤ C6N

−m ‖∇mu‖α .
This encompasses all instances of (59) except for the two very special cases (m,N) =
(1, 1) and (m,N) = (2, 1). In the first special case, using the continuous embedding
of H1

α in L2
α and the fact that Sα,11 is an orthogonal projection, we find that there

exists a constant C7 = C7(d, α) > 0 such that

(∀u ∈ H1
α) ‖u− Sα,11 (u)‖α = ‖u− Sα0 (u)− Sα,11 (u− Sα0 (u))‖α

≤ C7 ‖u− Sα0 (u)‖α,1 = C7 ‖∇u‖α .
For the second special case, in a very similar vein we find that there exists a constant
C8 = C8(d, α) > 0 such that

(∀u ∈ H2
α) ‖u− Sα,11 (u)‖α ≤ C8 ‖∇∇u‖α .

Hence, (59) holds with C = max(C6, C7) if m = 1, C = max(C6, C8) if m = 2 and
C = C6 if m ≥ 3. �

5. Miscellaneous results and conclusion

In this section we collect some results addressing certain features that appear
recurrently in the literature cited in Subsection 1.2 but did not play an explicit role
in the main body of the present work.

5.1. A commutation relation involving differentiation and projection.
Differentiation-projection commutation relations involving Sobolev orthogonalities
have been obtained in [14, Th. 4.5], [22, Th. 5.6, Th. 7.5, etc.] and [16, Prop. 4.3
and Prop. 5.5] and exploited in the pursuit of approximation results; see also [7,
Prop. 3.2(v)] and [19, Lem. 3.1] for variants involving Lebesgue orthogonalities only.
In this subsection we prove our own.

Given d ∈ N, α > −1 and i ∈ {1, . . . , d} and understanding H1
α to be equipped

with the (α, 1)-inner product, let Tαi : L2
α → H1

α denote the Hilbert space adjoint
[2, Def. II.2.4] of the partial differentiation operator ∂i : H1

α → L2
α. The operator

Tαi satisfies the relation

(∀ f ∈ L2
α) (∀ v ∈ H1

α) 〈v, Tαi (f)〉α,1 = 〈∂iv, f〉α. (67)
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Proposition 5.1. Let d ∈ N, α > −1, i ∈ {1, . . . , d}. Then,

(∀n ∈ N0) Tαi (Vαn ) ⊆ Vα,1n+1.

Proof. Let pn ∈ Vαn . Given any k ∈ N0 with k 6= n + 1 and qk ∈ Vα,1k , we
know from Proposition 3.10 that ∂iqk ∈ Vαk−1, whence, by (67), 〈qk, Tαi (pn)〉α,1 =

〈∂iqk, pn〉α = 0. Hence, projα,1n+1(Tαi (pn)) is the only possibly non-vanishing term
in the expansion (50) of Tαi (pn) in terms of its projections onto Sobolev orthogonal
polynomial spaces. �

Lemma 5.2. Let d ∈ N, α > −1, i ∈ {1, . . . , d} and n ∈ N0. Then,

(∀u ∈ H1
α) ∂i projα,1n+1(u) = projαn(∂iu).

Proof. We know from Proposition 3.10 that ∂i projα,1n+1(u) belongs to Vαn . The
desired result follows upon the observation that, for all vn ∈ Vαn ,

〈∂i projα,1n+1(u), vn〉α = 〈projα,1n+1(u), Tαi (vn)〉α,1 = 〈u, Tαi (vn)〉α,1 = 〈∂iu, vn〉α,
where the first and third equalities come from the operational definition of the map
Tαi in Proposition 5.1 and the second from the fact that Tαi maps Vαn into Vα,1n+1. �

Remark 5.3. We managed to prove some of our main results (e.g., (52) of Theo-
rem 4.2) based on the commutation relation of Lemma 5.2 without recourse to the
characterization of Sobolev orthogonal polynomials as solutions of Sturm–Liouville
problems, but could not do so for others (e.g., (53) of Theorem 4.2).

5.2. Term-balancing constant. Unlike many Sobolev inner products studied in
the literature (including most of those cited in Subsection 1.2), our (α, 1)-inner
product of (30) does not feature a term-balancing positive constant. We will show
here that, were we to introduce one, the resulting orthogonal polynomial spaces and
corresponding orthogonal projection operators onto them would remain the same.
Indeed, given d ∈ N, α > −1 and a term-balancing constant ρ > 0, let us define
the (α, 1, ρ)-inner product on H1

α through

〈u, v〉α,1,ρ := ρ 〈∇u,∇v〉α + 〈Sα0 (u), Sα0 (v)〉α.
Further, for all n ∈ N0, we define the corresponding space of orthogonal polynomials
of degree n by

Vα,1,ρn :=
{
p ∈ Πd

n | (∀ q ∈ Πd
n−1) 〈p, q〉α,1,ρ = 0

}
and let projα,1,ρn denote the (α, 1, ρ)-orthogonal projector from H1

α onto Vα,1,ρn .

Proposition 5.4. Let d ∈ N, α > −1 and ρ > 0. Then, for all n ∈ N0, Vα,1,ρ =
Vα,1n and projα,1,ρn = projα,1n .

Proof. The equality Vα,1,ρ0 = span({1}) = Vα,10 is obvious. So, let us suppose now
that n ≥ 1 and let pn ∈ Vα,1,ρn . For exactly the same reasons as in (34), there holds
Vα,1,ρn ⊥α 1. In particular, Sα0 (pn) = 0, whence, for all q ∈ Πd

n−1,

0 = 〈pn, q〉α,1,ρ = ρ〈∇pn,∇q〉α = ρ〈pn, q〉α,1.
Thus, Vα,1,ρn ⊆ Vα,1n . As both the involved inner products are well-defined on
d-variate polynomials, dim(Vα,1,ρn ) = dim(Vα,1n ), so actually Vα,1,ρn = Vα,1n .

Let u ∈ H1
α and n ∈ N0. Then, u(ρ)

n := projα,1,ρn (u) is characterized by the pair
of statements (i) u(ρ)

n ∈ Vα,1,ρn and (ii) 〈u − u(ρ)
n , qn〉α,1,ρ = 0 for all qn ∈ Vα,1,ρn .
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From the above equality of orthogonal polynomial spaces, it is immediate that (i’)
u

(ρ)
n ∈ Vα,1n . Further, using (i) and the same equality of orthogonal polynomial

spaces, we have that, for all qn ∈ Vα,1n ,

0 = 〈u− u(ρ)
n , qn〉α,1,ρ = ρ〈∇u−∇u(ρ)

n ,∇qn〉α + 〈Sα0 (u− u(ρ)
n ), Sα0 (qn)〉α

= 〈u− u(ρ)
n , qn〉α,1 ×

{
1 if n = 0,

ρ if n ≥ 1.

because∇qn = 0 if n = 0 and because, as mentioned above, qn ∈ Vα,1n = Vα,1,ρn ⊥α 1

if n ≥ 1. Hence, we have (ii’) 〈u − u(ρ)
n , qn〉α,1 = 0 for all qn ∈ Vα,1n , which, in

conjunction with (i’), ensures that u(ρ)
n = projα,1n (u). �

5.3. Multiplication operator in the unweighted case. In the unweighted
(α = 0) case, the operator M0 of (38), which, by Lemma 3.8, maps the Lebesgue
orthogonal polynomial space V1

n−2 onto a subspace of the Sobolev orthogonal poly-
nomial space V0,1

n , can be substituted with the multiplication-by-(1 − ‖x‖2) oper-
ator. As a consequence, for n 6= 2, the orthogonal decomposition of V0,1

n given in
Lemma 3.8 is exactly the decomposition of the orthogonal polynomials with respect
to the inner product (3) given in [21, Cor. 2.4] and reproduced in (4).

Proposition 5.5. Let d ∈ N.
(i) For all n ∈ N0,M0(V1

n) = (1− ‖x‖2)V1
n.

(ii) For all n ∈ N0 \ {2},

V0,1
n = Hdn ⊕ (1− ‖x‖2)V1

n−2

=
{
p ∈ Πd

n | (∀ q ∈ Πd
n−1) p ⊥ q with respect to (3)

}
.

(68)

Proof. For all u ∈ C2(Bd),

∆
(

(1− ‖x‖2)u(x)
)

= div
(

(1− ‖x‖2)∇u(x)− 2u(x)x
)

(11)
= −L(0)(u)(x)−

∑
1≤i<j≤d

(xi∂j − xj∂i)2u(x)− 2x · ∇u(x)− 2d u(x)

(46)
= −L(1)(u)(x)−

∑
1≤i<j≤d

(xi∂j − xj∂i)2u(x)− 2d u(x).

This shows, via (12) and (14), that ∆
(

(1− ‖x‖2)V1
n

)
⊆ V1

n. If u ∈ V1
n is such

that ∆
(

(1− ‖x‖2)u(x)
)

= 0, then u is the null function as a consequence of the
maximum principle for harmonic functions [10, Th. 2.4]. Then, from the rank-
nullity theorem of Linear Algebra [11, Th. 50/1], ∆

(
(1− ‖x‖2)V1

n

)
= V1

n. Thus,
part i follows from the first form of M0 given in (38).

The first equality in (68) is simply Lemma 3.8 in combination with part i (if
n ≥ 3) and with (35) (if n ≤ 1). The second equality in (68) is the decomposition
(4), trivially extended to the n = 0 case, and this accounts for part ii. �

Remark 5.6. If n = 2, the second equality of (68) in part ii of Proposition 5.5 is
true by (4), but the first equality is false on account of part i and Remark 3.9.
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5.4. Conclusion. We have proved our desired simultaneous approximation bounds
(1) in Corollary 4.7. To do so, we have delved into the rich structure of orthogonal
polynomials with respect to the (α, 1)-inner product of (2) and (30) arguing, as in
[7], mostly in terms of orthogonal polynomial spaces instead of particular bases of
them. We expect that these results and techniques will generalize readily to other
domains and families of symmetry-respecting weights.
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