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Abstract

We propose and analyze a conforming finite element method for a two-dimensional nonisother-
mal fluid-membrane interaction problem. The problem consists of a Navier-Stokes/heat system,
commonly known as the Boussinesq system, in the free-fluid region, and a Darcy-heat coupled
system in the membrane. These systems are coupled through buoyancy terms and a set of trans-
mission conditions on the fluid-membrane interface, including mass conservation, balance of nor-
mal forces, the Beavers-Joseph-Saffman law, and continuity of heat flux and fluid temperature.
We consider the standard velocity-pressure-temperature variational formulation for the Boussinesq
system, along with a dual-mixed scheme coupled with a primal formulation for the Darcy and Heat
equations in the membrane region. The latter yields the introduction of the trace of the porous
medium pressure as a suitable Lagrange multiplier. For the associated Galerkin scheme, we em-
ploy Bernardi-Raugel and Raviart-Thomas elements for velocities, piecewise constant elements for
pressures, continuous piecewise linear functions for temperatures, and continuous piecewise linear
functions for the Lagrange multiplier on a partition of the interface. We prove well-posedness
for both the continuous and discrete schemes and derive corresponding error estimates. Finally,
we present numerical examples to confirm the predicted convergence rates and demonstrate the
performance of the method.

Key words: nonisothermal fluid-membrane, Navier–Stokes equation, Darcy equation, heat equation,
mixed finite element method.
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1 Introduction

Membrane-based water filtration devices have been widely used in recent years to produce clean
water for human consumption. Among the different types of water treatment processes that use a
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membrane to eliminate impurities, micro-filtration (MF), ultra-filtration (UF), nano-filtration (NF),
reverse osmosis (RO), and membrane distillation (MD) are commonly employed.

Numerous experimental studies have been conducted to enhance the efficiency of these processes.
However, experimentation can be costly, involving expensive equipment and staff training. In this
regard, computational fluid dynamics (CFD) provides a cost-effective means for conducting numerical
simulations that can guide important decisions for process optimization (see, for example, [1, 24, 29,
35, 40, 41, 45, 48, 49] and references therein). In particular, a detailed review of different mathematical
models for simulating water treatment processes can be found in [40].

In this work, our focus is on proposing and analyzing a conforming numerical scheme for a non-
isothermal fluid-membrane model that arises in membrane desalination processes [41, 48]. To this end,
we adopt the mesoscopic model given by the coupled Navier-Stokes/Darcy model (see [40, Section
3.3.1]) and consider suitable coupling conditions prescribed on the common free flow-porous interface,
including conservation of mass, balance of the normal stresses, and the Beavers-Joseph-Saffman con-
dition. In the literature, there exists an extensive list of numerical methods for approximating the
solution of the Navier-Stokes/Darcy system, including conforming and nonconforming schemes, such
as those introduced in [2, 12, 13, 15, 20, 28, 30, 32].

In particular, in [32], the authors introduce and analyze a discontinuous Galerkin (DG) discretiza-
tion for the nonlinear coupled problem, employing the nonsymmetric interior penalty Galerkin (NIPG),
symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (IIPG) bilinear
forms for the discretization of the Laplacian in both media, and the upwind Lesaint-Raviart discretiza-
tion of the convective term in the free fluid domain. On the other hand, in [2], the authors propose an
iterative subdomain method that uses the velocity-pressure formulation for the Navier-Stokes equation
and the primal formulation for the Darcy equation. Finally, in [20], the authors extend the work in
[26] to the Navier-Stokes/Darcy model and introduce a conforming numerical scheme to approximate
the solution of the problem. The variational formulation is based on the standard velocity-pressure
formulation for the Navier-Stokes equation and the dual-mixed formulation for the Darcy equation,
resulting in the velocity and pressure of the fluid in both media as the main unknowns of the coupled
system. Since one of the interface conditions becomes essential, they proceed similarly to [26] and
incorporate the trace of the porous medium pressure as an additional unknown.

Now, when it comes to numerical methods for coupling fluid flow with the heat equation, it is
noteworthy that the literature offers an extensive list of contributions for the Navier-Stokes/heat
coupled problem, commonly referred to as the Boussinesq problem [6, 8, 14, 16, 17, 22, 23, 37, 38, 39]
and the references therein. However, the number of contributions for the Darcy-heat coupled system is
relatively limited. In fact, the first contribution on the analysis of a finite element method for Darcy’s
problem coupled with the heat equation is presented in [4] (see also [5]). There, the authors introduce
two finite element discretizations for the coupled system with temperature-dependent viscosity. One
of the difficulties in the analysis of [4] is the fact that the velocity lives in H(div), which forces the
trial and test spaces for the temperature to be different, preventing the utilization of classical results
for elliptic problems to obtain the well-posedness of the continuous formulation. More recently, in
[27] it is introduced a new fully-mixed finite element method for the model studied in [4]. There, the
authors employ a Banach spaces-based analysis to prove well-posedness of the continuous problem
and its corresponding finite element discretization.

Here, we focus on analyzing a finite element discretization for the Navier-Stokes/Darcy/Heat cou-
pled system in two dimension, which, to the best of our knowledge, represents the first contribution
in this direction. Specifically, we study the steady-state case of the model previously studied in [36],
where a coupled system is given by the Boussinesq system in the free-fluid domain and the Darcy-heat
coupled system in the membrane region. These equations are supplemented with appropriate inter-
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face conditions, including continuity of heat-flux, temperature, mass conservation, balance of normal
stresses, and the Beavers-Joseph-Saffman condition.

We use a velocity-pressure-temperature variational formulation in both domains, which yields the
introduction of a suitable Lagrange multiplier representing the trace of the porous media pressure
on the interface. Then, we combine the theory developed in [20] and [4], and similarly to [17] (see
also [6]), make use of a suitable lifting of the temperature data to prove the existence of a solution
by means of a fixed-point strategy and under a smallness assumption on data. In addition, under a
restrictive assumption on the temperature solution, we prove uniqueness.

In terms of the discretization of the formulation, we utilize Bernardi-Raugel and Raviart-Thomas
elements for the velocities in the free-fluid and porous media domains, respectively. For the pressure
and temperature, we employ piece-wise constant and Lagrange elements, respectively, in both do-
mains. Additionally, for the Lagrange multiplier, we use continuous and piece-wise linear functions.
The analysis of the discrete scheme employs a similar approach to the continuous case, and under a
smallness assumption on data and on the temperature in the membrane, we obtain the convergence
of the Galerkin scheme and its corresponding rate.

The remainder of the paper is organized as follows. In Section 2, we present the model problem,
derive the corresponding variational formulation, and analyze the existence and uniqueness of the
solution. Next, in Section 3, we define a conforming numerical scheme and analyze its well-posedness.
In Section 4, we perform the error analysis and derive the corresponding order of convergence of the
scheme. Finally, in Section 5, we provide some numerical results illustrating the performance of the
method and confirming the theoretical rate of convergence.

We end this section by introducing definitions and fixing some notations. Let O ⊆ Rd, d ∈ {2, 3},
denote a domain with Lipschitz boundary Γ. For s ≥ 0 and p ∈ [1,+∞], we denote by Ws,p(O)
the usual Sobolev space endowed with the norm ∥ · ∥s,p,O. If s = 0, W0,p(O) corresponds to the
usual Lebesgue space Lp(O), which is endowed with the norm ∥ · ∥0,p,O. If p = 2, we write Hs(O) in
place of Ws,2(O), and denote the corresponding Lebesgue and Sobolev norms by ∥ · ∥0,O and ∥ · ∥s,O,
respectively, and the seminorm by | · |s,O. In addition, H1

0(O) will denote the space of functions in
H1(O) with null trace on Γ, and L2

0(O) will be the space of L2(O) functions with zero mean value over
O, that is

L2
0(O) :=

{
v ∈ L2(O) :

∫
O
v = 0

}
.

Given p, q ∈ (1,+∞) satisfying 1/p+1/q = 1, in what follows, we will denote by W1/q,p(Γ) the trace
space of W1,p(O) and by W−1/q,q(Γ) the dual space of W1/q,p(Γ) endowed with the norms ∥ · ∥1/q,p;Γ
and ∥ · ∥−1/q,q;Γ, defined respectively by

∥ϕ∥1/q,p,Γ := inf
{
∥ψ∥1,p,O : ψ ∈ W1,p(O), ψ|Γ = ϕ

}
∀ϕ ∈ W1/q,p(Γ),

and

∥ψ∥−1/q,p,Γ = sup
ξ∈W1/q,p(Γ)\{0}

⟨ψ, ξ⟩Γ
∥ξ∥1/q,p,Γ

∀ψ ∈ W−1/q,q(Γ).

where ⟨·, ·⟩Γ denotes the duality parity between W−1/q,q(Γ) and W1/q,p(Γ), which coincides with the
inner product on L2(Γ) when restricted to L2(Γ). When p = 2, we will write H1/2(Γ) := W1/2,2(Γ),
∥ · ∥1/2,2,Γ = ∥ · ∥1/2,Γ, H−1/2(Γ) := W−1/2,2(Γ) and ∥ · ∥−1/2,2,Γ = ∥ · ∥−1/2,Γ.

Additionally, we recall that H(div;O) :=
{
w ∈ L2(O) : divw ∈ L2(O)

}
, endowed with the norm

∥w∥div;O :=
(
∥w∥20,O + ∥divw∥20,O

)1/2
is a standard Hilbert space in the realm of mixed problems

(see, e.g., [11]).
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For simplicity, in what follows for any scalar fields v and w, vector fields v = (vi)i=1,d and w =
(wi)i=1,d, and tensor fields A = (aij)i,j=1,d and B = (bij)i,j=1,d, we will denote

(v, w)O :=

∫
O
vw, (v,w)O :=

∫
O
v ·w, and (A,B)O :=

∫
O
A : B,

where A : B :=
d∑

i,j=1

aijbij .

By M and M we will denote the corresponding vectorial and tensorial counterparts of the generic
scalar functional space M, In turn, when no confusion arises, | · | will denote the Euclidean norm in
Rd or Rd×d. Furthermore, given a non-negative integer k and a subset S of Rd, Pk(S) stands for the
space of polynomials defined on S of degree ≤ k.

In the sequel we will employ 0 as a generic null vector, and use C and c, with or without subscripts,
bars, tildes or hats, to denote generic positive constants independent of the discretization parameters,
which may take different values at different places.

Now we recall some useful estimates that will be employed in the forthcoming analysis. We begin
with the well-known Hölder inequality:

|(f, g)O| ≤ ∥f∥0,p,O ∥g∥0,q,O, ∀ f ∈ Lp(O), ∀ g ∈ Lq(O), with 1/p+ 1/q = 1. (1.1)

We further recall that the following Sobolev inequality holds: there exists a constant CSob,O > 0,
depending only on |O| and q, such that

∥w∥0,q,O ≤ CSob,O ∥w∥1,O ∀w ∈ H1(O), (1.2)

for 1 ≤ q < ∞ when d = 2 and 1 ≤ q ≤ 6 when d = 3. This means that H1(O) is continuously
embedded into Lq(O) for the aforementioned ranges of q. In addition, we have the following continuous
embeddings (see [42, Theorem 1.3.4] and [9, Proposition 1.4.2.]):

Wq,r(O) ↪→ C0(O) and W1,s(O) ↪→ W1,t(O), (1.3)

for all q > d
r , and for all 1 ≤ t ≤ s ≤ ∞, respectively.

Finally, given a real number l > 0, we recall from [4] the truncation function τl and its primitive
πl, defined by

τl(t) :=

{
t if |t| ≤ l,

l sgn (t) if |t| > l,
∀ t ∈ R and πl(t) :=

∫ t

0
τl(s) ds, (1.4)

respectively, where sgn (t) = 1 if t ≥ 0, or sgn (t) = −1 if t < 0. It is clear that τl belongs to W1,∞(R).
Moreover, for any ψ ∈ H1

0(O), we have τl(ψ) ∈ H1
0(O) ∩ L∞(O) and

∇τl(ψ) :=

{
∇ψ if |ψ| ≤ l,

0 if |ψ| > l,
a.e. in O. (1.5)

On the other hand, we observe that πl is a Lipschitz continuous function, piecewise C1(R), and satisfies
πl(0) = 0. In addition, for all ψ ∈ H1

0(O), we have that πl(ψ) ∈ H1
0(O) and

∇πl(ψ) = τl(ψ)∇ψ. (1.6)
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2 Continuous problem

In this section, we present the model problem and derive the corresponding variational formulation.
Next, we discuss the stability properties of the different forms involved and analyze the well-posedness
of the resulting formulation.

2.1 The model problem

In order to describe the geometry of the problem, we let Ωf and Ωm be two bounded and simply
connected polygonal domains in R2, such that ∂Ωf ∩ ∂Ωm = Σ ̸= ∅, and Ωf ∩ Ωm = ∅. Then, we let
Γf := ∂Ωf \ Σ , Γm := ∂Ωm \ Σ, and denote by n the unit normal vector on the boundaries, which is
chosen pointing outward from Ω := Ωf ∪ Ωm ∪ Σ and Ωf (and hence inward to Ωm when seen on Σ).
On Σ we also consider a unit tangent vector t (see Fig. 2.1).

Figure 2.1: Sketch of the geometry of the domains.

The problem we are interested in consists of the movement of an incompressible viscous fluid subject
to a heat source occupying Ωf which flows towards and from a porous membrane Ωm through Σ, where
Ωm is saturated with the same fluid (see [36, 41]). The mathematical model is defined by two separate
groups of equations and a set of coupling terms. In the free fluid domain Ωf , the motion of the fluid
can be described by the following Navier–Stokes/Heat system:

σf = 2µ e(uf) − pf I in Ωf , (2.1a)

−divσf + (uf · ∇)uf − gf θf = 0 in Ωf , (2.1b)

divuf = 0 in Ωf , (2.1c)

−κf ∆ θf + uf · ∇ θf = 0 in Ωf , (2.1d)

where µ > 0 is the dynamic viscosity of the fluid, uf is the fluid velocity, pf is the fluid pressure,
σf is the Cauchy stress tensor, I is the 2 × 2 identity matrix, θf is the fluid temperature, κf > 0
is the fluid thermal conductivity, gf ∈ L2(Ωf) is the external force per unit mass, div is the usual
divergence operator div acting row-wise on each tensor, and e(uf) is the strain rate tensor given by
e(uf) := 1

2

(
∇uf + (∇uf)

t
)
, where the superscript t denotes transposition.

In the porous membrane Ωm the behavior of the fluid can be described by the following Darcy-Heat
system,

K−1 um + ∇ pm − gm θm = 0 in Ωm, (2.2a)

divum = 0 in Ωm, (2.2b)

−κm∆ θm + um · ∇ θm = 0 in Ωm, (2.2c)
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where um represents the fluid velocity, pm the fluid pressure, θm the fluid temperature, gm ∈ L3(Ωm)
a given external force, κm > 0 the thermal conductivity, and K ∈ [L∞(Ωm)]

2×2 is a symmetric and
uniformly positive definite tensor in Ωm representing the intrinsic permeability κ of the membrane
divided by the dynamic viscosity µ of the fluid. Throughout the paper we assume that there exists
CK > 0 such that

ξtK(x) ξ ≥ CK |ξ|2, (2.3)

for almost all x ∈ Ωm, and for all ξ ∈ R2.

The transmission conditions that couple the systems (2.1) and (2.2) on the interface Σ are given by

θf = θm on Σ, (2.4a)

κf ∇ θf · n = κm∇ θm · n on Σ, (2.4b)

uf · n = um · n on Σ, (2.4c)

σf n +
αd µ√
t · κ · t

(uf · t) t = −pm n on Σ, (2.4d)

where αd is a dimensionless constant which depends only on the geometrical characteristics of the
membrane (see [3]).

The first and second conditions represent the continuity of the temperature and the heat flux,
respectively, while (2.4c) is a consequence of the incompressibility of the fluid and the conservation of
mass across Σ (see [36]). In turn, the fourth condition (2.4d) can be decomposed, at least formally,
into its normal and tangential components as follows:

(σf n) · n = −pm and (σf n) · t = − αd µ√
t · κ · t

(uf · t) on Σ. (2.5)

The first equation in (2.5) corresponds to the balance of normal forces, whereas the second one is known
as the Beavers–Joseph–Saffman law, which establishes that the slip velocity along Σ is proportional to
the shear stress along Σ (assuming also, based on experimental evidence, that um · t is negligible). We
refer to [3, 34, 44] for further details on this interface condition. Finally, the Navier–Stokes/Darcy/Heat
system (2.1), (2.2) and (2.4) is complemented with suitable boundary conditions:

uf = 0 on Γf , um · n = 0 on Γm,

θf = θD|Γf
on Γf , θm = θD|Γm on Γm,

(2.6)

where θD ∈ W3/4,4(Γ) is given function defined on Γ := Γf ∪ Γm.

2.2 The variational formulation

In this section we proceed similarly to [26, Section 2] and derive a weak formulation for the coupled
problem given by (2.1), (2.2), (2.4) and (2.6). To this end, let us first introduce further notations
and definitions. In the sequel we will employ the following subspaces of H(div; Ωm) and H1(Ω⋆),
respectively

HΓm(div; Ωm) :=
{
v ∈ H(div; Ωm) : v · n = 0 on Γm

}
,

H1
Γ⋆
(Ω⋆) :=

{
v ∈ H1(Ω⋆) : v = 0 on Γ⋆

}
,
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with ⋆ ∈ {f,m}. Notice that the latter implies the definition of the following subspace of H1(Ωf)

H1
Γf
(Ωf) := [H1

Γf
(Ωf)]

2.

To derive our weak formulation, first we multiply (2.1b) by a test function vf ∈ H1
Γf
(Ωf), integrate

by parts and employ (2.1a) and (2.4d), to obtain

2µ (e(uf), e(vf))Ωf
+

⟨
αd µ√
t · κ · t

(uf · t),vf · t
⟩

Σ

+ ((uf · ∇)uf ,vf)Ωf
− (pf , divvf)Ωf

+ ⟨λ,vf · n⟩Σ − (θf gf ,vf)Ωf
= 0,

(2.7a)

for all vf ∈ H1
Γf
(Ωf), where λ ∈ H1/2(Σ) is a further unknown representing the trace of the porous

medium pressure on Σ, that is λ = pm|Σ.
Next, we multiply (2.2a) by vm ∈ HΓm(div; Ωm), and integrate by parts to obtain

(K−1
m um,vm)Ωm − ⟨vm · n, λ⟩Σ − (pm,divvm)Ωm − (θm gm,vm)Ωm = 0 ∀vm ∈ HΓm(div; Ωm).

(2.7b)

Now, to incorporate (2.1d) and (2.2c) to the variational system, we first define the spaces

Ψ∞ := {ψ ∈ H1(Ω) : ψ|Ωm ∈ L∞(Ωm)} and Ψ∞,0 := Ψ∞ ∩H1
0(Ω),

and notice that if ψ ∈ Ψ∞,0, then ψ|Ωf
∈ H1

Γf
(Ωf) and ψ|Ωm ∈ H1

Γm
(Ωm) ∩ L∞(Ωm). Then, we let

ψ ∈ Ψ∞,0, and multiply (2.1d) and (2.2c) by ψ|Ωf
and ψ|Ωm , respectively, to obtain

κf (∇θf ,∇ψ)Ωf
− κf ⟨∇θf · n, ψ⟩Σ + (uf · ∇θf , ψ)Ωf

= 0,

and
κm (∇θm,∇ψ)Ωm + κm ⟨∇θm · n, ψ⟩Σ + (um · ∇θm, ψ)Ωm = 0,

and summing up both equations, and using (2.4b), we finally get

κf (∇θf ,∇ψ)Ωf
+ κm (∇θm,∇ψ)Ωm + (uf · ∇θf , ψ)Ωf

+ (um · ∇θm, ψ)Ωm = 0 ∀ψ ∈ Ψ∞. (2.7c)

Finally, we incorporate the equations (2.1c), (2.2b), and (2.4c), weakly as follows

(qf ,divuf)Ωf
= 0, (qm,divum)Ωm = 0 and ⟨uf · n− um · n, ξ⟩Σ = 0, (2.7d)

for all qf ∈ L2(Ωf), qm ∈ L2(Ωm), and ξ ∈ H1/2(Σ), respectively.

As a consequence of the above, we define p := pfχf + pmχm, θ := θfχf + θmχm, with χ⋆ being the
characteristic function:

χ⋆ :=

{
1 in Ω⋆,

0 in Ω \ Ω⋆,

for ⋆ ∈ {f,m}, to obtain the variational problem: Find uf ∈ H1
Γf
(Ωf), um ∈ HΓm(div; Ωm), p ∈ L2(Ω),

λ ∈ H1/2(Σ) and θ ∈ H1(Ω), with θ|Γ = θD, such that (2.7a)–(2.7d) hold.

We observe that θ ∈ H1(Ω) if and only if (2.4a) holds, so the interface condition (2.4a) is imposed on
the temperature space. In turn, we notice that since um ∈ HΓm(div; Ωm) and∇θ|Ωm = ∇θm ∈ L2(Ωm),
then um · ∇θm ∈ L1(Ω), which justify the introduction of the space Ψ∞,0 for the test function ψ in
(2.7c).
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Now, let us observe that if (uf ,um, p, λ, θ) is a solution of the resulting variational problem, then
for all c ∈ R, (uf ,um, p+ c, λ+ c, θ) is also a solution. Consequently, we avoid the non-uniqueness of
(2.7a)–(2.7d) by requiring from now on that p ∈ L2

0(Ω).

In this way, we let:

u := (uf ,um) ∈ H := H1
Γf
(Ωf)×HΓm(div; Ωm),

(p, λ) ∈ Q := L2
0(Ω)×H1/2(Σ),

where H and Q are endowed with the norms

∥v∥H := ∥vf∥1,Ωf
+ ∥vm∥div;Ωm ∀v ∈ H,

∥(q, ξ)∥Q := ∥q∥0,Ω + ∥ξ∥1/2,Σ ∀ (q, ξ) ∈ Q,

and arrive at the following variational problem: Find (u, (p, λ)) ∈ H×Q and θ ∈ H1(Ω), with θ|Γ = θD,
such that

AF(u,v) + OF(uf ;uf ,vf) + B(v, (p, λ)) − D(θ,v) = 0 ∀v = (vf ,vm) ∈ H,

B(u, (q, ξ)) = 0 ∀ (q, ξ) ∈ Q,

AT(θ, ψ) + OT(u; θ, ψ) = 0 ∀ψ ∈ Ψ∞,0,

(2.8)

where the forms AF : H × H → R, OF : H1
Γf
(Ωf) × H1

Γf
(Ωf) × H1

Γf
(Ωf) → R, B : H × Q → R,

D : H1(Ω) × H → R, AT : H1(Ω) × Ψ∞,0 → R, and OT : H × H1(Ω) × Ψ∞,0 → R, are defined
respectively, as

AF(u,v) := aF,f(uf ,vf) + aF,m(um,vm),

OF(wf ;uf ,vf) := ((wf · ∇)uf ,vf)Ωf
,

B(v, (q, ξ)) := − (q, divvf)Ωf
− (q, divvm)Ωm + ⟨vf · n− vm · n, ξ⟩Σ ,

D(θ,v) := (θ gf ,vf)Ωf
+ (θ gm,vm)Ωm ,

AT(θ, ψ) := κf(∇θ,∇ψ)Ωf
+ κm(∇θ,∇ψ)Ωm ,

OT(w; θ, ψ) := (wf · ∇θ, ψ)Ωf
+ (wm · ∇θ, ψ)Ωm ,

(2.9)

with
aF,f(uf ,vf) := 2µ (e(uf), e(vf))Ωf

+
⟨

αd µ√
t·κ·t(uf · t),vf · t

⟩
Σ
,

aF,m(um,vm) := (K−1 um,vm)Ωm .

2.3 Existence and stability of solution

Now we address the existence and stability of solution of problem (2.8). We start the analysis by
deriving the stability properties of the forms involved.

2.3.1 Stability properties

We begin by observing that, after simple computations, the bilinear forms AF, B and AT are bounded,
that is,

|AF(u,v)| ≤ CAF
∥u∥H ∥v∥H ∀u,v ∈ H, (2.10)

|B(v, (q, ξ))| ≤ CB∥v∥H ∥(q, ξ)∥Q ∀v ∈ H,∀ (q, ξ) ∈ Q,

|AT(θ, ψ)| ≤ CAT
∥θ∥1,Ω ∥ψ∥1,Ω ∀ θ ∈ H1(Ω), ∀ψ ∈ Ψ∞. (2.11)
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In turn, employing (1.1) and (1.2), it is easy to see that

|D(θ,v)| ≤ CD (∥gf∥0,Ωf
+ ∥gm∥0,3,Ωm) ∥θ∥1,Ω ∥v∥H ∀ θ ∈ Ψ∞, ∀v ∈ H. (2.12)

Similarly, for OF we utilize (1.1) and (1.2), to obtain

|OF(wf ;uf ,vf)| ≤ COF
∥wf∥1,Ωf

∥uf∥1,Ωf
∥vf∥1,Ωf

∀wf ,uf ,vf ∈ H1
Γf
(Ωf).

Now, we let V be the kernel of the bilinear form B, that is

V := {v ∈ H : B(v, (q, ξ)) = 0 ∀ (q, ξ) ∈ Q}. (2.13)

From the definition of B we observe that v = (vf ,vm) ∈ V if and only if

(q, divvf)Ωf
+ (q, divvm)Ωm = 0 ∀ q ∈ L2

0(Ω) and ⟨vf · n− vm · n, ξ⟩Σ = 0 ∀ ξ ∈ H1/2(Σ).

Then, noting that L2(Ω) = L2
0(Ω)⊕ R, and taking ξ ∈ R in the latter equation, we deduce that

(q, divvf)Ωf
+ (q, divvm)Ωm = 0 ∀ q ∈ L2(Ω),

which implies
divvf = 0 in Ωf and divvm = 0 in Ωm.

According to the above, we can rewrite V as

V := {v = (vf ,vm) ∈ Vf ×Vm : vf · n− vm · n = 0 on Σ},

with
Vf := {vf ∈ H1

Γf
(Ωf) : divvf = 0 in Ωf},

Vm := {vm ∈ HΓm(div; Ωm) : divvm = 0 in Ωm}.

Next, we employ the well-known Korn’s inequality (see, e.g., [21]) for the bilinear form aF,f , and
the fact that K−1 is symmetric and positive definite (cf. (2.3)) for aF,m, to deduce that

aF,f(vf ,vf) ≥ 2µαf ∥vf∥21,Ωf
and aF,m(vm,vm) ≥ CK ∥vm∥2div;Ωm

, (2.14)

for all vf ∈ H1
Γf
(Ωf), and for all vm ∈ Vm, with αf > 0. Using these estimates we deduce that the

form AF(·, ·)+OF(wf ; ·, ·) : H×H → R, is elliptic on V for suitable wf ∈ Vf . More precisely, we have
the following lemma. For its proof, we refer the reader to [20, Lemma 2].

Lemma 2.1 Let wf ∈ Vf be such that

∥wf · n∥0,Σ ≤ 2µαf

C2
trC

2
Sob,Σ

, (2.15)

where Ctr > 0 is the constant of the well-known trace inequality (see [25, Theorem 1.4]). There holds

AF(v,v) + OF(wf ;vf ,vf) ≥ αF ∥v∥2H ∀v ∈ V, (2.16)

with αF := 1
2 min {µαf , CK}.
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We also recall from [20, Lemma 1] that the bilinear form B satisfies the following inf-sup condition

sup
v∈H\{0}

B(v, (q, ξ))

∥v∥H
≥ β ∥(q, ξ)∥Q ∀ (q, ξ) ∈ Q, (2.17)

with β > 0.

We continue by introducing the following lemma that summarizes some properties of the form OT.

Lemma 2.2 The following identity holds true:

OT(w; θ, ψ) = −OT(w;ψ, θ) ∀w ∈ V, ∀ θ, ψ ∈ Ψ∞,0. (2.18)

In addition, there exist positive constants COT
, C̃OT

, such that

|OT(w; θ, ψ)| ≤ COT
∥w∥H∥ψ∥1,Ω (∥θ∥0,3,Ωf

+ ∥θ∥0,∞,Ωm) ∀w ∈ H, ∀ θ, ψ ∈ Ψ∞,0, (2.19a)

|OT(w; θ, ψ)| ≤ C̃OT
∥w∥H ∥ψ∥1,Ω (∥θ∥1,Ωf

+ ∥θ∥0,∞,Ωm) ∀w ∈ H, ∀ θ, ψ ∈ Ψ∞,0. (2.19b)

Proof. Let w ∈ V and θ, ψ ∈ Ψ∞,0 be given. Noticing that ψ|Ωm ∈ H1
Γm

(Ωm) ∩ L∞(Ωm), it readily
follows that ∇(θ|Ωmψ|Ωm) = θ|Ωm∇(ψ|Ωm) + ψ|Ωm∇(θ|Ωm) ∈ L2(Ωm). Then, integrating by parts the
two terms defining the form OT (cf. (2.9)) and using the fact that divw⋆ = 0 in Ω⋆, for ⋆ ∈ {f,m},
and wf · n−wm · n = 0 on Σ, we easily obtain (2.18).

Now, for (2.19a) we employ (2.18) and (1.1), to obtain

|OT(w; θ, ψ)| = |OT(w;ψ, θ)|

≤ |(wf · ∇ψ, θ)Ωf
| + |(wm · ∇ψ, θ)Ωm |

≤ ∥wf∥0,6,Ωf
|ψ|1,Ωf

∥θ∥0,3,Ωf
+ ∥wm∥div;Ωm |ψ|1,Ωm ∥θ∥0,∞,Ωm .

Then, applying (1.2) to ∥wf∥0,6,Ωf
we easily deduce (2.19a). Finally, from (2.19a) and (1.2) applied

to ∥θ∥0,3,Ωf
we easily obtain (2.19b), which concludes the proof. □

On the other hand, using the Poincaré inequality, we obtain

AT(ψ,ψ) ≥ αT ∥ψ∥21,Ω ∀ψ ∈ H1
0(Ω), (2.20)

with constant αT := CPmin{κf , κm}, where CP > 0 is the corresponding Poincaré’s constant. Com-
bining this estimate and (2.18) one easily deduce that for a given w ∈ V, AT(·, ·) + OT(w; ·, ·) is
elliptic on Ψ∞,0, that is

AT(ψ,ψ) + OT(w;ψ,ψ) ≥ αT ∥ψ∥21,Ω ∀ψ ∈ Ψ∞,0. (2.21)

However, the latter is not valid for any ψ ∈ H1
0(Ω) since ψ|Ωm would not belong to L∞(Ωm) and

consequently OT(w;ψ,ψ) would not be well-defined. Moreover, since the space for the temperature
unknown θ is different to the one for the test functions ψ in the third equation of (2.8), namely H1(Ω)
and Ψ∞,0, respectively, estimate (2.21) is not sufficient to study the well-posedness of our problem.
According to the above, now we employ the truncation function defined in (1.4) to prove that for any
w ∈ V, AT(·, ·) + OT(w; ·, ·) : H1(Ω) × Ψ∞ → R induces an invertible operator. More precisely, we
have the following lemma.
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Lemma 2.3 Let w ∈ V. The following inf-sup conditions hold

sup
ψ∈Ψ∞,0\{0}

AT(θ, ψ) + OT(w; θ, ψ)

∥ψ∥1,Ω
≥ αT ∥θ∥1,Ω ∀ θ ∈ H1

0(Ω), (2.22a)

and

sup
θ∈H1

0(Ω)

AT(θ, ψ) + OT(w; θ, ψ) > 0 ∀ψ ∈ Ψ∞,0 \ {0}. (2.22b)

Proof. Let w ∈ V. First, we recall that for any l > 0 and ϕ ∈ H1
0(Ω), τl(ϕ) belongs to H1

0(Ω)∩L∞(Ω)
and ∇πl(ϕ) = ∇ϕ τl(ϕ), which implies that

OT(w;ϕ, τl(ϕ)) = (wf ,∇ϕ τl(ϕ))Ωf
+ (wm,∇ϕ τl(ϕ))Ωm = (wf ,∇πl(ϕ))Ωf

+ (wm,∇πl(ϕ))Ωm ,

and then, integrating by parts and using the fact that divw⋆ = 0 in Ω⋆, for ⋆ ∈ {f,m}, and wf · n−
wm · n = 0 on Σ, we obtain

OT(w;ϕ, τl(ϕ)) = 0 ∀ϕ ∈ H1
0(Ω). (2.23)

In this way, from (2.20), (2.23) and the fact that AT(ϕ, τl(ϕ)) = AT(τl(ϕ), τl(ϕ)), for all ϕ ∈ H1
0(Ω), it

readily follows that for any l > 0 and θ ∈ H1
0(Ω), there holds

sup
ψ∈Ψ∞,0\{0}

AT(θ, ψ) + OT(w; θ, ψ)

∥ψ∥1,Ω
≥ AT(θ, τl(θ)) + OT(w; θ, τl(θ))

∥τl(θ)∥1,Ω
≥ αT ∥τl(θ)∥1,Ω.

The latter and the strong convergence of τl(θ) to θ in H1(Ω), imply (2.22a) (see [4, Lemma 2.5]).

Finally, for (2.22b) we recall that Ψ∞,0 ⊆ H1
0(Ω) and employing the coercivity of AT(·, ·)+OT(w; ·, ·)

given in (2.21), to obtain that for any ψ ∈ Ψ∞,0 \ {0}, there holds

sup
θ∈H1

0(Ω)

AT(θ, ψ) + OT(w; θ, ψ) ≥ AT(ψ,ψ) + OT(w;ψ,ψ) ≥ αT ∥ψ∥21,Ω > 0,

which concludes the proof. □

2.3.2 An equivalent reduced problem

To simplify the analysis of existence and stability of solutions of (2.8), we now introduce a reduced
equivalent version of the problem. To do this, we let E : W3/4,4(Γ) → W1,4(Ω) be the usual lifting
operator (see for instance [21, Corollary B.53]), satisfying

γ0(E(ζ)) = ζ and ∥E(ζ)∥1,4,Ω ≤ c∥ζ∥3/4,4,Γ ∀ ζ ∈ W3/4,4(Γ), (2.24)

where γ0 : W1,4(Ω) → W3/4,4(Γ) is the trace operator. In turn, we let δ > 0 and, similarly to [6,
Lemma 2.8], define the function βδ : R2 → R given by

βδ(x) :=


1 if 0 ≤ dist(x,Γ) ≤ δ,

2− δ−1dist(x,Γ) if δ ≤ dist(x,Γ) ≤ 2δ,

0 if dist(x,Γ) ≥ 2δ,

(2.25)
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where dist(x,Γ) denotes the distance from the point x to the boundary Γ. Observe that βδ is continuous
and satisfies

βδ ∈ W1,∞(Ω), 0 ≤ βδ ≤ 1 in Ωδ, βδ ≡ 0 in Ω \ Ωδ, and ∥∇βδ∥0,4,Ωδ
≤ δ−1|Ωδ|1/4,

(2.26)
where Ωδ := {x ∈ Ω : dist(x,Γ) < 2δ}. In this way, in order to handle the non-homogeneous Dirichlet
boundary condition for the temperature, we introduce the extension operator

Eδ := βδE : W3/4,4(Γ) → W1,4(Ω). (2.27)

In the following lemma we summarize some properties of this operator.

Lemma 2.4 For all ζ ∈ W3/4,4(Γ), Eδ(ζ) lies in L∞(Ω) and satisfies the estimate

∥Eδ(ζ)∥0,∞,Ω ≤ ∥E(ζ)∥0,∞,Ωδ
. (2.28)

In addition, there exist Clift,1, Clift,2 > 0, such that

∥Eδ(ζ)∥0,3,Ω ≤ Clift,1 δ
1/12 ∥ζ∥3/4,4,Γ ∀ζ ∈ W3/4,4(Γ), (2.29a)

∥Eδ(ζ)∥1,Ω ≤ Clift,2 δ
−3/2(1 + δ2)1/2 ∥ζ∥3/4,4,Γ ∀ζ ∈ W3/4,4(Γ). (2.29b)

Proof. We begin the proof by observing that the first Sobolev’s embedding in (1.3) with q = 1 and
r = 4 guarantees the fact that Eδ(ζ) ∈ C0(Ω) ⊆ L∞(Ω), for all ζ ∈ W3/4,4(Γ). In addition, using the
second and third properties of βδ (cf. (2.25)) given in (2.26), there holds

∥Eδ(ζ)∥0,∞,Ω = ∥Eδ(ζ)∥0,∞,Ωδ
≤ ∥E(ζ)∥0,∞,Ωδ

,

which implies (2.28).

Now, to derive (2.29a) and (2.29b) we proceed similarly to [17, Lemma 3.2]. In fact, we first apply
the Hölder inequality (1.1) with p = 4 and q = 4/3 and the estimate in (2.24), to obtain

∥Eδ(ζ)∥30,3,Ω ≤ ∥E(ζ)∥30,3,Ωδ
≤ |Ωδ|1/4∥E(ζ)∥30,4,Ω ≤ (2δ)1/4 ∥E(ζ)∥31,4,Ω ≤ c δ1/4∥ζ∥33/4,4,Γ,

which implies (2.29a). Similarly, but now applying Hölder’s inequality with p = q = 2 and the
properties of βδ in (2.26), it is follows that

∥∇(Eδ(ζ))∥0,Ω ≤ ∥∇(βδ)E(ζ)∥0,Ωδ
+ ∥βδ∇(E(ζ))∥0,Ωδ

≤ c δ−1 |Ωδ|1/4 ∥E(ζ)∥0,4,Ω + |Ωδ|1/4 ∥∇(E(ζ))∥0,4,Ω
≤ c δ−3/4(1 + δ2)1/2 ∥ζ∥3/4,4,Γ.

which gives (2.29b).

□
Given a fixed δ > 0 now we define the following lifting for the Dirichlet datum θD ∈ W3/4,4(Γ):

θ1 := Eδ(θD) ∈ W1,4(Ω), (2.30)

and decompose the unknown θ ∈ H1(Ω) as θ = θ0 + θ1, with θ0 ∈ H1
0(Ω). In turn, we recall from the

second equation of (2.8) that the unknown u = (uf ,um) ∈ H satisfies B(u, (q, ξ)) = 0 ∀ (q, ξ) ∈ Q,
which implies that u ∈ V (cf. (2.13)). According to the above, now we introduce the reduced version
of problem (2.8) on the kernel V, which consists in finding (u, θ0) ∈ V ×H1

0(Ω), such that

AF(u,v) + OF(uf ;uf ,vf) − D(θ0,v) = D(θ1,v) ∀v ∈ V,

AT(θ0, ψ) + OT(u; θ0 + θ1, ψ) = −AT(θ1, ψ) ∀ψ ∈ Ψ∞,0.
(2.31)

It is not difficult to see that problems (2.31) and (2.8) are equivalent. This result is established next.
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Lemma 2.5 If (u, (p, λ), θ) ∈ H×Q×H1(Ω) is a solution of (2.8), then u ∈ V and (u, θ0) = (u, θ−
θ1), with θ1 defined in (2.30) is a solution to (2.31). Conversely, if (u, θ0) ∈ V ×H1

0(Ω) is a solution
to (2.31), then there exists p ∈ L2

0(Ω) and λ ∈ H1/2(Σ) such that (u, (p, λ), θ) = (u, (p, λ), θ0 + θ1) is
a solution to (2.8).

Proof. The proof follows from the definition of the lifting θ1 (cf. (2.30)) and the inf-sup condition
(2.17). We omit further details and refer the reader to [39, Lemma 2.1] for a similar result. □

According to the previous lemma, to prove existence of solution of problem (2.8), it suffices to prove
existence of solution of problem (2.31). In addition, by deriving the stability of solution of problem
(2.31) one can easily obtain the corresponding stability for (2.8). We begin with the latter.

2.3.3 Stability of solution

The following theorem addresses the stability of solution of the reduced problem (2.31).

Theorem 2.6 Let θ1 = Eδ(θD) ∈ W1,4(Ω), with δ > 0 satisfying

CDCOT

αFαT
(∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm)Clift,1 δ
1/12 ∥θD∥3/4,4,Γ ≤ 1

4
, (2.32)

and let (u, θ0) = ((uf ,um), θ0) be a solution of (2.31). If we assume that

∥uf · n∥0,Σ ≤ 2µαf

C2
trC

2
Sob,Σ

, (2.33)

and that the lifting θ1 satisfies the estimate

CD COT

αF αT
(∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm) ∥θ1∥0,∞,Ω ≤ 1

4
, (2.34)

then, there holds
∥u∥H ≤ Cu (∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm) ∥θ1∥1,Ω, (2.35)

and
∥θ0∥1,Ω ≤ Cθ ∥θ1∥1,Ω, (2.36)

with Cu and Cθ, being positive constants depending on the stability constants given in Section 2.3.1
(see (2.40) and (2.44) below for explicit expressions of Cu and Cθ, respectively).

Proof. Let (u, θ0) ∈ V ×H1
0(Ω) be a solution of (2.31) and to simplify the notation, let

γg := ∥gf∥0,Ωf
+ ∥gm∥0,3,Ωm . (2.37)

Noticing that the first equation of (2.31) can be written as

AF(u,v) + OF(uf ;vf ,uf) = D(θ0,v) + D(θ1,v), ∀v ∈ V,

we take v = u, and owing to (2.33) we can make use of the ellipticity of AF(·, ·) +OF(uf ; ·, ·) given in
(2.16), and the continuity of D, to obtain

αF ∥u∥H ≤ CD γg ∥θ0∥1,Ω + CDγg ∥θ1∥1,Ω. (2.38)
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In turn, from the second equation of (2.31), the inf-sup condition (2.22a), and the continuity of AT

and OT (cf. (2.11) and (2.19a), respectively), we obtain

αT ∥θ0∥1,Ω ≤ sup
ψ∈Ψ∞,0\{0}

|AT(θ0, ψ) + OT(u; θ0, ψ)|
∥ψ∥1,Ω

= sup
ψ∈Ψ∞,0\{0}

| − AT(θ1, ψ) − OT(u; θ1, ψ)|
∥ψ∥1,Ω

≤ CAT
∥θ1∥1,Ω + COT

∥u∥H (∥θ1∥0,3,Ωf
+ ∥θ1∥0,∞,Ωm) .

(2.39)
In this way, from (2.38), (2.39), there holds

∥u∥H ≤ CD(CAT
+ αT)

αF αT
γg∥θ1∥1,Ω +

CDCOT

αF αT
γg∥u∥H (∥θ1∥0,3,Ωf

+ ∥θ1∥0,∞,Ωm)

≤ CD(CAT
+ αT)

αF αT
γg∥θ1∥1,Ω +

CDCOT

αF αT
γg∥u∥H

(
Clift,1δ

1/12∥θD∥3/4,4,Γ + ∥θ1∥0,∞,Ω

)
,

where in the last inequality we employed (2.29a). In this way, from (2.34) and (2.32) we deduce (2.35),
with

Cu := 2α−1
F α−1

T CD (CAT
+ αT) . (2.40)

In turn, by combining (2.39) and (2.35), we get

∥θ0∥1,Ω ≤ α−1
T

[
CAT

∥θ1∥1,Ω + COT
Cu γg ∥θ1∥1,Ω

(
Clift,1δ

1/12∥θD∥3/4,4,Γ + ∥θ1∥0,∞,Ω

)]
. (2.41)

In addition, using the definition of Cu in (2.40), from (2.32) and (2.34), we obtain, respectively

α−1
T COT

Cu γg ∥θ1∥1,ΩClift,1 δ
1/12 ∥θD∥3/4,4,Γ ≤

(
CAT

+ αT

2αT

)
∥θ1∥1,Ω, (2.42)

and

α−1
T COT

Cu γg ∥θ1∥1,Ω ∥θ1∥0,∞,Ω ≤
(
CAT

+ αT

2αT

)
∥θ1∥1,Ω. (2.43)

Therefore, by combining (2.41), (2.42), and (2.43), we achieve (2.36) with

Cθ := α−1
T (2CAT

+ αT) . (2.44)

□

Remark 2.1 Observe that, according to (2.28), the condition (2.34) can be replaced by

CD COT

αF αT
(∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm) ∥E(θD)∥0,∞,Ωδ
≤ 1

4
,

which, in other words, means that the L∞-norm of the extension of the datum θD must be small enough
on Ωδ := {x ∈ Ω : dist(x,Γ) < 2δ}, where Ωδ is a small portion of the domain Ω near the boundary Γ.
In particular, if δ is small enough so that ∥E(θD)∥0,∞,Ωδ

≈ ∥θD∥0,∞,Γ, one could simply assume that

CD COT

αF αT
(∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm) ∥θD∥0,∞,Γ ≤ 1

4
.

On the other hand, assumption (2.33) suggests that the magnitude of the inflow on the interface
must be bounded, which is a reasonable assumption for this kind of phenomena. Otherwise, the porous
medium would act as a wall which would prevent the fluid to penetrate.
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We end this section by deriving the corresponding estimate for the pressure p and the Lagrange
multiplier λ.

Corollary 2.7 Let (u, θ0) = ((uf ,um), θ0) ∈ V × H1
0(Ω) be a solution of (2.31) and let (p, λ) ∈ Q be

such that (u, (p, λ), θ) = (u, (p, λ), θ0 + θ1) ∈ H×Q×H1(Ω) is a solution to (2.8). If we assume that
the hypotheses of Theorem 2.6 hold, then there exist C1, C2 > 0, such that

∥(p, λ)∥Q ≤ (C1 + C2γg∥θ1∥1,Ω)γg∥θ1∥1,Ω,

with γg = ∥gf∥0,Ωf
+ ∥gm∥0,3,Ωm.

Proof. The result is a direct consequence of the inf-sup condition (2.17) and the first equation of (2.8).
In fact, it is easy to see that

β ∥(p, λ)∥Q ≤ sup
v∈H\{0}

B(v, (p, λ))

∥v∥H

= sup
v∈H\{0}

−AF(u,v) − OF(uf ;uf ,vf) + D(θ,v)

∥v∥H
≤

(
CAF

∥u∥H + COF
∥uf∥21,Ωf

+ CDγg ∥θ∥1,Ω
)

≤ (CAF
+ COF

Cu γg ∥θ1∥1,Ω)Cuγg ∥θ1∥1,Ω + CD γg(Cθ + 1)∥θ1∥1,Ω,

which implies the result. □

2.3.4 Existence of solution

In what follows we proceed similarly to [4, Section 2.3] to prove existence of solution of (2.31) by means
of a Galerkin’s method and a fixed-point strategy. More precisely, since the trial and test spaces are
different, we introduce a Galerkin scheme for (2.31) to obtain a finite-dimensional square system of
nonlinear equations. Then, we apply the Brouwer Fixed Point Theorem to prove existence of solution
of the resulting finite-dimensional problem and pass to the limit to obtain the desired solution.

We begin by recalling from [10, Propositions 9.1 and 3.25] that W1,4
0 (Ω) is separable and has a

countable basis. In turn, since V is a closed subspace of H = H1
Γf
(Ωf) ×HΓm(div; Ωm) and H1

Γf
(Ωf)

and HΓm(div; Ωm) are separable, V is also separable and has a countable basis. Then, we let {φi}i∈N
and {zi}i∈N := {(zi,f , zi,m)}i∈N be the countable bases of W1,4

0 (Ω) and V, respectively and for a fixed
n ∈ N, we let Ψn = ⟨{φ1, . . . , φn}⟩ andVn = ⟨{z1, . . . , zn}⟩. We define the following finite-dimensional
nonlinear problem: Find (un, θn,0) := ((un,f ,un,m), θn,0) ∈ Vn ×Ψn, such that

AF(un,v) + OF(un,f ;un,f ,vf) − D(θn,0,v) = D(θ1,v),

AT(θn,0, ψ) + OT(un; θn,0 + θ1, ψ) = −AT(θ1, ψ),
(2.45)

for all (v, ψ) := ((vf ,vm), ψ) ∈ Vn ×Ψn, with θ1 defined as in (2.30).

Notice that (2.45) is a discrete version of (2.31) since W1,4
0 (Ω) ⊆ L∞(Ω) and W1,4

0 (Ω) ⊆ H1
0(Ω)

(owing to (1.3)).

In what follows, we prove that problem (2.45) has at least one solution by means of the classical
Brouwer’s fixed point theorem in the following form (see [10]):

Theorem 2.8 Let Y be a compact and convex subset of a finite dimensional Banach space X, and let
f : Y → Y be a continuous mapping. Then, f has at least one fixed point.
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To apply Theorem 2.8 to the context of problem (2.45), we first define the compact and convex set

Xn := {(w, ϕ) ∈ Vn ×Ψn : ∥w∥H ≤ Cu (∥gf∥0,Ωf
+ ∥gm∥0,3,Ωm)∥θ1∥1,Ω, ∥ϕ∥1,Ω ≤ Cθ ∥θ1∥1,Ω} ,

with Cu and Cθ defined in (2.40) and (2.44), respectively. In turn, we let Jn : Xn → Vn ×Ψn be the
operator defined by

Jn(w, ϕ) = (un, θn,0) ∀ (w, ϕ) = ((wf ,wm), ϕ) ∈ Xn, (2.46)

where (un, θn,0) is the unique solution (to be verified below) of the linearized version of problem (2.45):
Find (un, θn,0) ∈ Vn ×Ψn, such that

AF(un,v) + OF(wf ;un,f ,vf) = D(ϕ,v) + D(θ1,v) ∀v ∈ Vn,

AT(θn,0, ψ) + OT(w; θn,0, ψ) = −AT(θ1, ψ) − OT(w; θ1, ψ) ∀ψ ∈ Ψn.
(2.47)

Then, it is clear that (un, θn,0) ∈ Vn×Ψn is a solution of problem (2.45), if and only if, Jn(un, θn,0) =
(un, θn,0).

According to the above, to prove existence of solution to (2.45) in what follows we equivalently
prove that Jn satisfies the hypotheses of Theorem 2.8. Before doing that, we must verify that Jn is
well-defined. This is addressed in the following Lemma.

Lemma 2.9 Let δ > 0 satisfying (2.32) and let θ1 = Eδ(θD) ∈ W1,4(Ω) be such that (2.34) holds. If
we assume further that θD satisfies the following estimate

Cu (∥gf∥0,Ωf
+ ∥gm∥0,3,Ωm)Clift,2 δ

−3/4(1 + δ2)1/2 ∥θD∥3/4,4,Γ ≤ 2µαf

C3
trC

2
Sob,Σ

(2.48)

then, Jn(Xn) ⊆ Xn and for each (w, ϕ) ∈ Xn, there exists a unique (u, θ) ∈ Xn, such that Jn(w, ϕ) =
(u, θ).

Proof. Given (w, ϕ) = ((wf ,wm), ϕ) ∈ Xn, we first observe that (2.47) is an uncoupled system of
linear equations. Thus, to prove that operator Jn is well-defined it suffices to prove the well-posedness
of the two equations in (2.47) separately.

For the subsequent analysis, we let γg as in (2.37), that is γg = ∥gf∥0,Ωf
+ ∥gm∥0,3,Ωm .

First, we use the well-known trace inequality with constant Ctr > 0 (see [25, Theorem 1.4]), and
estimates (2.29b) and (2.48), to obtain

∥wf · n∥0,Σ ≤ Ctr∥wf∥1,Ωf
≤ CtrCu γg∥θ1∥1,Ω

≤ CtrCu γg Clift,2 δ
−3/4(1 + δ2)1/2 ∥θD∥3/4,4,Γ

≤ 2µαf

C2
tr C

2
Sob,Σ

,

(2.49)

which implies that wf satisfies (2.15). Then, thanks to Lemma 2.1 we have that AF(·, ·) +OF(wf ; ·, ·)
is elliptic on Vn, which together with the Lax–Milgram Lemma implies that there exists a unique
u ∈ Vn solution to the first equation of (2.47). Similarly, since Ψn ⊆ Ψ∞,0 and Vn ⊆ V, from (2.21)
we have that AT(·, ·) +OT(w; ·, ·) is Ψn-elliptic. Then, owing to the Lax–Milgram Lemma we obtain
that there exists a unique θ ∈ Ψn, solution to the second equation of (2.47). According to the above,
we have proved that there exists a unique (u, θ) ∈ Vn ×Ψn, such that Jn(w, ϕ) = (u, θ).
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To conclude that Jn(Xn) ⊆ Xn, it remains to prove that the aforementioned solution (u, θ) belongs
to Xn. To that end, we first notice that, since u satisfies the first equation in (2.47), from the ellipticity
of AF(·, ·) + OF(wf ; ·, ·), the continuity of D, the fact that ϕ ∈ Xn, and the definitions of Cθ and Cu

(cf. (2.44) and (2.40), respectively), we have

∥u∥H ≤ α−1
F (CD ∥ϕ∥1,Ω γg + CD ∥θ1∥1,Ω γg) ≤ α−1

F CD (Cθ + 1) γg ∥θ1∥1,Ω ≤ Cu γg ∥θ1∥1,Ω.

Similarly, since θ satisfies the second equation of (2.47), from the estimate above, the ellipticity of
AT(·, ·) +OT(w; ·, ·) (cf. (2.21)), the continuity of AT (cf. (2.11)) and OT (cf. (2.19a)), and estimate
(2.29a), it follows that

∥θ∥1,Ω ≤ α−1
T

[
CAT

∥θ1∥1,Ω + COT
∥u∥H

(
Clift,1δ

1/12∥θD∥3/4,4,Γ + ∥θ1∥0,∞,Ω

)]
≤ α−1

T

[
CAT

∥θ1∥1,Ω + COT
Cu γg ∥θ1∥1,Ω

(
Clift,1δ

1/12∥θD∥3/4,4,Γ + ∥θ1∥0,∞,Ω

)]
.

In this way, noticing that the estimate above coincides with estimate (2.41), analogously to the proof
of Theorem 2.6, we easily obtain ∥θ∥1,Ω ≤ Cθ∥θ1∥1,Ω. According to the above, (u, θ) ∈ Xn which
implies that Jn(Xn) ⊆ Xn, which concludes the proof. □

Now we establish the continuity of operator Jn.

Lemma 2.10 If we assume that the hypotheses of Lemma 2.9 hold, then Jn is a continuous operator.

Proof. Let (w, ϕ) = ((wf ,wm), ϕ) ∈ Xn and {(wj , ϕj)}j∈N = {((wf,j ,wm,j), ϕj)}j∈N ⊆ Xn, be such

that ∥wj −w∥H
j→∞−→ 0 and ∥ϕj − ϕ∥1,Ω

j→∞−→ 0, and let {(uj , θj)}j∈N = {((uf,j ,um,j), θj)}j∈N ⊆ Xn

and (u, θ) = ((uf ,um), θ) ∈ Xn given, respectively, by

Jn(wj , ϕj) = (uj , θj) ∀ j ∈ N and Jn(w, ϕ) = (u, θ).

To prove the continuity of Jn it suffices to prove that ∥uj − u∥H
j→∞−→ 0 and ∥θj − θ∥1,Ω

j→∞−→ 0. To
that end, given j ∈ N, from (2.47) and the definition of Jn (cf. (2.46)), we first observe that

AF(u− uj ,v) + OF(wf ;uf ,vf) − OF(wf,j ;uf,j ,vf) = D(ϕ− ϕj ,v) ∀v = (vf ,vm) ∈ Vn,

AT(θ − θj , ψ) + OT(w; θ, ψ) − OT(wj ; θj , ψ) = −OT(w −wj ; θ1, ψ) ∀ψ ∈ Ψn.
(2.50)

In turn, noticing that wf satisfies (2.49), we have that AF(·, ·) + OF(wf ; ·, ·) is elliptic (cf. (2.16)) on
Vn. Then, from (2.50) with v = u−uj , adding and subtracting OF(wf,j ;uf ,uf −uf,j) and employing

the continuity of OF and D, and the fact that wf,j
j→∞−→ wf and ϕj

j→∞−→ ϕ, we arrive at

αF ∥u− uj∥H ≤ COF
∥wf −wf,j∥1,Ωf

∥uf∥1,Ωf
+ CD ∥ϕ− ϕj∥1,Ω γg

j→∞−→ 0, (2.51)

where γg = ∥gf∥0,Ωf
+ ∥gm∥0,3,Ωm .

Similarly, in the second equation of (2.50), we let ψ = θ − θj , add and subtract OT(wj ; θ, θ − θj),
and employ the coercivity of AT(·, ·) +OT(wj ; ·, ·) given in (2.21), the continuity of OT (cf. (2.19b)),

and the fact wj
j→∞−→ w, to obtain

αT ∥θ − θj∥1,Ω ≤ C̃OT
∥w −wj∥H (∥θ + θ1∥1,Ωf

+ ∥θ + θ1∥0,∞,Ωm)
j→∞−→ 0. (2.52)

In this way, according to the definition of Jn (cf. (2.46)), from (2.51) and (2.52) we obtain that

Jn(wj , ϕj)
j→∞−→ Jn(w, ϕ), which implies the continuity of Jn. □

Now we are in position of establishing the solvability result for the finite-dimensional nonlinear
problem (2.45).
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Theorem 2.11 Let δ > 0 satisfying (2.32) and let θ1 = Eδ(θD) ∈ W1,4(Ω) be such that (2.34) holds.
Assume further that (2.48) holds. There exists at least one (un, θn,0) ∈ Xn solution to problem (2.45).

Proof. The proof follows from Lemmas 2.9, 2.10 and Theorem 2.8. □

Now we address the solvability of the reduced problem (2.31). This result is established in the
following Theorem.

Theorem 2.12 Let δ > 0 satisfying (2.32) and let θ1 = Eδ(θD) ∈ W1,4(Ω) be such that (2.34) holds.
Assume further that (2.48) holds. Then, there exists at least one solution (u, θ0) ∈ V × H1

0(Ω) to
problem (2.31).

Proof. In what follow we proceed similarly to the proof of [4, Theorem 2.3]. To that end, for each n ∈ N,
we let (un, θn,0) := ((uf,n,um,n), θn,0) ∈ Xn be a solution of problem (2.45) and let {(un, θn,0)}n∈N ⊆
V×H1

0(Ω) be the resulting sequence. In turn, for a fixed 1 ≤ i ≤ n, we let (zi, φi) := ((zi,f , zi,m), φi) ∈
Vn ×Ψn be the i-th basis function of Vn ×Ψn.

First we notice that, since (un, θn,0) ∈ Xn, then for all n ∈ N,

∥un∥H ≤ Cu (∥gf∥0,Ωf
+ ∥gm∥0,3,Ωm)∥θ1∥1,Ω and ∥θn,0∥1,Ω ≤ Cθ ∥θ1∥1,Ω,

thus {(un, θn,0)}n∈N is a uniformly bounded sequence of V × H1
0(Ω), which together with the fact

that V is a closed subspace of H, implies that there exists a subsequence, namely {(ûn, θ̂n,0)}n∈N ⊆
{(un, θn,0)}n∈N, that weakly converges to some function (u, θ0) = ((uf ,um), θ0) in V×H1

0(Ω), that is,

ûn = (ûf,n, ûm,n)
n→∞
⇀ u = (uf ,um) ∈ V ⊆ H = H1

Γf
(Ωf)×HΓm(div; Ωm) and θ̂n,0

n→∞
⇀ θ0 ∈ H1

0(Ω).
(2.53)

In the sequel we prove that (u, θ0) is a solution to (2.31). In fact, from the second weak convergence
in (2.53) we have that for each i ∈ N, there holds

|AT(θ̂n,0 − θ0, φi)| ≤ max{κf , κm}|(∇(θ̂n,0 − θ0),∇φi)Ω|
n→∞−→ 0,

thus
lim
n→∞

AT(θ̂n,0, φi) = AT(θ0, φi). (2.54)

Now, recalling that φi ∈ Ψ∞,0 for all i ∈ N, by applying the Green formula (2.18), we deduce that

OT(ûn; θ̂n,0+θ1, φi) = −OT(ûn;φi, θ̂n,0+θ1) = − (ûf,n(θ̂n,0+θ1),∇φi)Ωf
− (ûm,n(θ̂n,0+θ1),∇φi)Ωm .

(2.55)
In turn, since {ûf,n}n∈N converges weakly to uf in H1(Ωf) and since H1(Ωf) is compactly embedded
in L4(Ωf), it follows that {ûf,n}n∈N converges strongly to uf in L4(Ωf), and analogously we have that

{θ̂n,0}n∈N converges strongly to θ0 in L4(Ω). These strong convergences and the fact that θ1 ∈ W1,4(Ω),
imply that

lim
n→∞

(ûf,n(θ̂n,0 + θ1),∇φi)Ωf
= (uf (θ0 + θ1),∇φi)Ωf

. (2.56)

On the other hand, the strong convergence of {θ̂n,0}n∈N to θ0 in L4(Ω) and the fact that ∇φi ∈ L4(Ω)

imply that {θ̂n,0∇φi}n∈N convergences strongly to θ0∇φi in L2(Ω). Then, similarly to (2.56), this
strong convergence and the weak convergence of {ûm,n}n∈N to um in L2(Ωm), imply that

lim
n→∞

(ûm,n(θ̂n,0 + θ1),∇φi)Ωm = (um (θ0 + θ1),∇φi)Ωm . (2.57)
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In this way, from the second equation of (2.45), and from (2.54), (2.55), (2.56) and (2.57), it follows
that

−AT(θ1, φi) = lim
n→∞

[
AT(θ̂n,0, φi) + OT(ûn; θ̂n,0 + θ1, φi)

]
= lim

n→∞

[
AT(θ̂n,0, φi) − OT(ûn;φi, θ̂n,0 + θ1)

]
= AT(θ0, φi) − OT(u;φi, θ0 + θ1) = AT(θ0, φi) + OT(u; θ0 + θ1, φi).

(2.58)

Analogously to the above, from the first equation of (2.45) and using the fact that {ûf,n}n∈N and

{θ̂n,0}n∈N converge strongly to u in L4(Ωf) and θ0 in L4(Ω), respectively, we deduce that

D(θ1, zi) = lim
n→∞

[
AF(ûn, zi) + OF(ûn,f ; ûn,f , zi,f) − D(θ̂n,0, zi)

]
= AF(u, zi) + OF(uf ;uf , zi,f) − D(θ0, zi).

(2.59)

In this way, from (2.58), (2.59), and the fact that the basis {(zi, φi)}i∈N is dense in V ×W1,4
0 (Ω), we

obtain
AF(u,v) + OF(uf ;uf ,vf) − D(θ0,v) = D(θ1,v) ∀v ∈ V,

AT(θ0, ψ) + OT(u; θ0 + θ1, ψ) = −AT(θ1, ψ) ∀ψ ∈ W1,4
0 (Ω).

(2.60)

Since each term in the first and second equation of (2.60) defines a continuous linear functional on
V and W1,4

0 (Ω), respectively, particularly from the second equation of (2.60), we deduce (2.1d) and
(2.2c) in the sense of distributions, that is

−κf ∆ θf + uf · ∇ θf = 0 and − κm∆ θm + um · ∇ θm = 0.

Hence, recalling that uf · ∇θ0|Ωf
∈ L2(Ωf) and um · ∇θ0|Ωm ∈ H1

Γm
(Ωm)

′, we observe that the second
equation of (2.60) implies the identity

AT(θ0, ψ) + (uf ·∇θ, ψ)Ωf
+ ⟨um ·∇θ, ψ⟩H1

Γm
(Ωm)′,H1

Γm
(Ωm) + OT(u; θ1, ψ) = −AT(θ1, ψ) ∀ψ ∈ H1

0(Ω).

Therefore, since um · ∇θ0|Ωm also belongs to L1(Ωm), from the latter we can recover the equation

AT(θ0, ψ) + OT(u; θ0 + θ1, ψ) = −AT(θ1, ψ) ∀ψ ∈ Ψ∞,0,

thus, (u, θ0) satisfies (2.31), which concludes the proof. □

2.4 Uniqueness of solution

The uniqueness result for problem (2.8) is established in the following theorem.

Theorem 2.13 Assume that the hypotheses of Theorems 2.6 and 2.12 hold and let (u, (p, λ), θ) =
(u, (p, λ), θ0+θ1) ∈ H×Q×H1(Ω) be a solution to (2.8), with θ1 = Eδ(θD) ∈ W1,4(Ω) and θ0 ∈ H1

0(Ω).
Assume further that θ0|Ωm ∈ L∞(Ωm) and that

(C1 γg + C2)Clift,2δ
−3/2(1 + δ2)1/2∥θD∥3/4,4,Γ + C3∥θ0∥0,∞,Ωm + C3∥θ1∥0,∞,Ωm + C4γg < 1, (2.61)

with γg = ∥gf∥0,Ωf
+ ∥gm∥0,3,Ωm and C1, C2, C3 and C4 the positive constants given in (2.66). Then

the solution of problem (2.8) is unique.
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Proof. Let (u, (p, λ), θ) = (u, (p, λ), θ0 + θ1) ∈ H×Q×H1(Ω) and (u, (p, λ), θ) = (u, (p, λ), θ0 + θ1) ∈
H × Q × H1(Ω) be two solutions of problem (2.8). It follows that (u, θ0), (u, θ0) ∈ V × H1

0(Ω) are
solutions of (2.31), which implies

AF(u− u,v) + OF(uf ;uf ,vf) − OF(uf ;uf ,vf) − D(θ0 − θ0,v) = 0 ∀v ∈ V,

AT(θ0 − θ0, ψ) + OT(u; θ0, ψ) − OT(u; θ0, ψ) + OT(u− u; θ1, ψ) = 0 ∀ψ ∈ Ψ∞,0.
(2.62)

From the first equation of (2.62) we observe that by adding and subtracting OF(uf ;uf ,vf), taking
v = u−u, employing the coercivity of AF(·, ·) +OF(u; ·, ·) (cf. (2.16)) , and the continuity of OF and
D, we have

αF ∥u− u∥H ≤ COF
∥uf − uf∥1,Ωf

∥uf∥1,Ωf
+ CD γg ∥θ0 − θ0∥1,Ω. (2.63)

In turn, in the second equation of (2.62) we add and subtract OT(u; θ0, ψ), recall the fact that
θ0|Ωm , θ0|Ωm ∈ L∞(Ωm) to define ψ = θ0 − θ0 ∈ Ψ∞,0, and then employ the coercivity of AT(·, ·) +
OT(u; ·, ·) (cf. (2.21)) and the continuity of OT (cf. (2.19b)), to get

αT ∥θ0 − θ0∥1,Ω ≤ C̃OT
∥u− u∥H

(
∥θ0 + θ1∥1,Ωf

+ ∥θ0 + θ1∥0,∞,Ωm

)
. (2.64)

Then, summing up (2.63) and (2.64), we arrive at

∥u− u∥H + ∥θ0 − θ0∥1,Ω ≤ α−1
F

[
COF

∥uf − uf∥1,Ωf
∥uf∥1,Ωf

+ CD γg ∥θ0 − θ0∥1,Ω
]

+α−1
T

[
C̃OT

∥u− u∥H
(
∥θ0 + θ1∥1,Ωf

+ ∥θ0 + θ1∥0,∞,Ωm

)]
,

and then, using the fact that ∥uf∥1,Ωf
≤ ∥u∥H ≤ Cuγg∥θ1∥1,Ω (cf. (2.35)) and ∥θ0 + θ1∥1,Ωf

≤
∥θ0 + θ1∥1,Ω ≤ (Cθ + 1)∥θ1∥1,Ω (cf. (2.36)), we obtain

∥u− u∥H + ∥θ0 − θ0∥1,Ω ≤
(
(C1γg + C2)∥θ1∥1,Ω + C3∥θ0∥0,∞,Ωm + C3∥θ1∥0,∞,Ωm

)
∥u− u∥H

+C4γg∥θ0 − θ0∥1,Ω,
(2.65)

where

C1 := α−1
F COF

Cu, C2 := α−1
T C̃OT

(Cθ + 1) , C3 := α−1
T C̃OT

, and C4 := α−1
F CD. (2.66)

In this way, recalling that estimate (2.29b), implies

∥θ1∥1,Ω ≤ Clift,2 δ
−3/2(1 + δ2)1/2 ∥θD∥3/4,4,Γ,

from (2.65) and (2.61) we readily obtain that u = u and θ0 = θ0. Now, for the pressure and the
Lagrange multiplier, from the inf-sup condition (2.17) we have that

β ∥(p− p, λ− λ)∥Q ≤ sup
v∈H\{0}

B(v, (p− p, λ− λ))

∥v∥H

= sup
v∈H\{0}

−AF(u− u,v)−OF(uf ;uf ,vf) +OF(uf ;uf ,vf) +D(θ0 − θ0,v)

∥v∥H
,

which after simple computations implies that ∥(p − p, λ − λ)∥Q ≤ 0, thus p = p and λ = λ, which
concludes the proof. □
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3 Galerkin scheme

In this section we introduce and analyze a finite element scheme to approximate the solution of problem
(2.8). We start by introducing the Galerkin scheme and reviewing the discrete stability properties of
the forms involved. As we shall see next in the forthcoming sections, the analysis of the associated
discrete scheme is analogous to the analysis of the finite-dimensional problem (2.47), employed to
study the continuous problem (2.31).

3.1 Discrete problem

Let T f
h and T m

h be the respective triangulations of the domains Ωf and Ωm formed by shape-regular
triangles of diameter hT and denote by hf and hm their corresponding mesh sizes. Assume that they
match on Σ so that Th := T f

h ∪T m
h is a triangulation of Ω := Ωf ∪Σ∪Ωm. Hereafter h := max{hf , hm}.

Given an integer l ≥ 0, for each T ∈ Th, we let Pl(T ) be the space of polynomials functions on T of
degree equal or less than l. Moreover, for each T ∈ T f

h , we denote by BR(T ) the local Bernardi–Raugel
space (see [7, 31]),

BR(T ) := [P1(T )]
2 ⊕ {η2 η3 n1, η1 η3 n2, η1 η2 n3},

where {η1, η2, η3} are the baricentric coordinates of T , and {n1,n2,n3} are the unit outward normals
to the opposite sides of the corresponding vertices of T . In turn, for each T ∈ T m

h we consider the
local Raviart–Thomas space of the lowest order (see [43])

RT0(T ) := span{(1, 0), (0, 1), (x1, x2)}.

Hence, we define the following finite element subspaces:

Hh(Ωf) := {vf ∈ H1(Ωf) : vf |T ∈ BR(T ) ∀T ∈ T f
h}, Hh,Γf

(Ωf) := Hh(Ωf) ∩H1
Γf
(Ωf),

Hh(Ωm) := {vm ∈ H(div; Ωm) : vm|T ∈ RT0(T ) ∀T ∈ T m
h }, Hh,Γm

(Ωm) := Hh(Ωm) ∩HΓm
(div; Ωm),

Lh(Ω) := {q ∈ L2(Ω) : q|T ∈ P0(T ) ∀T ∈ Th}, Lh,0(Ω) := Lh(Ω) ∩ L2
0(Ω),

Ψh := {ψ ∈ H1(Ω) : ψ|T ∈ P1(T ) ∀T ∈ Th}, Ψh,0 := Ψh ∩H1
0(Ω).

It remains to introduce the finite element subspace for H1/2(Σ). To do that we denote by Σh the
partition of Σ inherited from T f

h (or T m
h ) and assume, without loss of generality, that the number of

edges of Σh is even. Then, we let Σ2h be the partition of Σ arising by joining pairs of adjacent edges
of Σh. If the number of edges of Σh is odd, we simply reduce it to the even case by adding one node
to the discretization of the interface and locally modify the triangulation to keep the mesh conformity
and regularity. According to the above, we define the following finite element subspace for H1/2(Σ)

Λh(Σ) := {ξh ∈ C0(Σ) : ξh|e ∈ P1(e) ∀ e ∈ Σ2h}.

Now, we let Ih : C0(Ω) → Ψh be the well-known Lagrange interpolation operator and recall that,
under the assumption θD ∈ W3/4,4(Γ) and for a given δ > 0, Eδ(θD) belongs to W1,4(Ω) ⊆ C0(Ω) (cf.
(1.3)). For a fixed δ > 0 (to be specified below), we define the following approximation to θD:

θδD,h = Ih(Eδ(θD))|Γ ∈ {ψD,h ∈ C0(Γ) : ψD,h|e ∈ P1(e) for all e ∈ EΓ}, (3.1)

where EΓ stands for the set of edges on Γ.

Let us observe that since Ω is a polygonal domain, Ωδ is also a polygon that can be discretized by
shaped-regular triangles. According to this, for the forthcoming analysis we let T δ

h be a triangulation
of Ωδ and assume that T δ

h ⊆ Th.
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In this way, defining the global spaces

Hh := Hh,Γf
(Ωf)×Hh,Γm(Ωm) and Qh := Lh,0(Ω)× Λh(Σ),

the Galerkin scheme associated to (2.8) reads: Find uh := (uh,f ,uh,m) ∈ Hh, (ph, λh) ∈ Qh and
θh ∈ Ψh, such that θh|Γ = θδD,h, and

AF(uh,vh) + OhF(uh,f ;uh,f ,vh,f) − B(vh, (ph, λh)) − D(θh,vh) = 0 ∀vh ∈ Hh,

B(uh, (qh, ξh)) = 0 ∀ (qh, ξh) ∈ Qh,

AT(θh, ψh) + OhT(uh; θh, ψh) = 0 ∀ψh ∈ Ψh,0,

(3.2)

where AF, B, D, and AT are the form defined in Section 2.2, while OhF and OhT are the skew-symmetric
convection forms (see [47]), defined by

OhF(wf ;uf ,vf) := ((wf · ∇)uf ,vf)Ωf
+

1

2
(divwf ,uf vf)Ωf

,

for all wf ,uf ,vf ∈ Hh,Γf
(Ωf), and

OhT(w; θ, ψ) := (wf · ∇θ, ψ)Ωf
+ (wm · ∇θ, ψ)Ωm +

1

2
(divwf , θ ψ)Ωf

,

for all w = (wf ,wm) ∈ Hh and for all θ, ψ ∈ Ψh. The motivation for this choice is given later on in
Remark 3.1.

3.2 Existence of solution of the discrete scheme

In what follows we prove that the discrete problem (3.2) has at least one solution under suitable
assumptions on the data. We begin the discussion by establishing the stability properties of the forms
involved restricted to the corresponding discrete spaces.

3.2.1 Discrete stability properties

We begin by observing that the forms AF, B, D, and AT are continuous with the same constants
described in Section 2.3.1 (see (2.10)-(2.11)). In turn, by using estimate (1.2) with p = 4, it is easy to
see that

|OhF(wf ;uf ,vf)| ≤ ĈOF
∥wf∥1,Ωf

∥uf∥1,Ωf
∥vf∥1,Ωf

∀wf ,uf ,vf ∈ Hh,Γf
(Ωf), (3.3)

with ĈOF
:= C2

Sob,Ωf

(
1 +

√
2
2

)
. Furthermore, we observe that integrating by parts, there holds

OhF(wf ;vf ,vf) =
1

2

⟨
wf · n, |vf |2

⟩
Σ

∀wf ,vf ∈ Hh,Γf
(Ωf).

Now, let Vh be the discrete kernel of B, that is

Vh := {v ∈ Hh : B(v, (q, ξ)) = 0 ∀ (q, ξ) ∈ Qh}. (3.4)

Similarly to the continuous case, v = (vf ,vm) ∈ Vh if and only if

(q, divvf)Ωf
+ (q, divvm)Ωm = 0 ∀ q ∈ Lh,0(Ω) and ⟨vf · n− vm · n, ξ⟩Σ = 0 ∀ ξ ∈ Λh(Σ),
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which imply that

(divvf , q)Ωf
= 0 ∀ q ∈ Lh(Ωf) and divvm = 0 in Ωm,

where Lh(Ωf) is the set of functions of Lh(Ω) restricted to Ωf , more precisely,

Lh(Ωf) := {q ∈ L2(Ωf) : q|T ∈ P0(T ) ∀T ∈ T f
h}.

According to the above, we observe that the discrete kernel (3.4) can be written as

Vh := {v = (vf ,vm) ∈ Vh,f ×Vh,m : ⟨vf · n− vm · n, ξ⟩Σ = 0 ∀ ξ ∈ Λh(Σ)}, (3.5)

where
Vh,f := {vf ∈ Hh,Γf

(Ωf) : (q, divvf)Ωf
= 0 ∀ q ∈ Lh(Ωf)},

Vh,m := {vm ∈ Hh,Γm(Ωm) : divvm = 0 in Ωm}.

Remark 3.1 We observe here that if v := (vf ,vm) ∈ Vh, then vf is not necessarily divergence-free,
which motivates the introduction of the convective forms OhF and OhT.

On the other hand, our election of finite element spaces and the definition of the bilinear form B
allow us to prove that there exist h0 > 0 and β̂ > 0, independent of h, such that for any hm < h0,
there holds:

sup
v∈Hh\{0}

B(v, (q, ξ))

∥v∥H
≥ β̂ ∥(q, ξ)∥Q ∀ (q, ξ) ∈ Qh. (3.6)

Its proof can be found in [20, Lemma 9], which is based on the proof of [26, Lemma 4.3].

Let us observe now that the forms aF,f , aF,m, and AT, are elliptic with the same constants of the
continuous case (see (2.14) and (2.20)), that is,

aF,f(vf ,vf) ≥ 2µαf ∥vf∥21,Ωf
, aF,m(vm,vm) ≥ CK ∥vm∥2div;Ωm

, and AT(ψ,ψ) ≥ αT ∥ψ∥21,Ω,
(3.7)

for all vf ∈ Hh,Γf
(Ωf), for all vm ∈ Vh,m and for all ψ ∈ Ψh,0, respectively. In particular, using the

ellipticity of aF,f and aF,m one can deduce that the form AF(·, ·) + OhF(wf ; ·, ·), is elliptic on Vh for
suitable wf ∈ Hh,Γf

(Ωf). More precisely, we have the following discrete version of Lemma 2.1. For its
proof we refer the reader to [20, Lemma 10].

Lemma 3.1 Let wf ∈ Hh,Γf
(Ωf), be such that

∥wf · n∥0,Σ ≤ 2µαf

C2
trC

2
Sob,Σ

.

There holds
AF(v,v) + OhF(wf ;vf ,vf) ≥ αF ∥v∥2H ∀v ∈ Vh.

We conclude this section by establishing some useful properties of OhT, similar to the ones provided
in Lemma 2.2.
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Lemma 3.2 If w ∈ Vh is given, then the following identities hold

OhT(w; θ, ψ) = −OhT(w;ψ, θ) ∀ θ, ψ ∈ Ψh,0, (3.8a)

|OhT(w; θ, ψ)| ≤ ĈO1
T
∥w∥H∥ψ∥1,Ω (∥θ∥0,3,Ωf

+ ∥θ∥0,∞,Ωm) ∀ θ, ψ ∈ Ψh,0, (3.8b)

|OhT(w; θ, ψ)| ≤ ĈO2
T
∥w∥H ∥ψ∥1,Ω (∥θ∥1,Ωf

+ ∥θ∥0,∞,Ωm) ∀ θ, ψ ∈ Ψh,0, (3.8c)

where ĈO1
T
:= CSob,Ωf

(
1 +

√
2
2

)
and ĈO2

T
:= C2

Sob,Ωf

(
1 +

√
2
2

)
.

Proof. Given w ∈ Vh, we recall that divwm = 0 in Ωm. Then, integrating by parts one can easily
obtain (3.8a). In turn, using (3.8a) and proceeding analogously to the proof of estimate (2.19a), it is
easy to deduce (3.8b). Finally, by combining (3.8b) and (1.2), we obtain (3.8c). □

Observe that, similarly to the continuous case, by combining (3.8a) and the third estimate in (3.7),
for a given w ∈ Vh, it is possible to obtain

AT(ψ,ψ) + OhT(w;ψ,ψ) ≥ αT ∥ψ∥21,Ω ∀ψ ∈ Ψh,0. (3.9)

3.2.2 The discrete lifting

For the sake of the subsequent analysis, and analogously to the continuous case, given δ > 0 now we
introduce the discrete extension operator Eδ,h : W3/4,4(Γ) → Ψh given by Eδ,h := IhEδ, where Eδ is
the extension operator defined in (2.27) and Ih is the Lagrange interpolation operator. Then, it is
clear from (3.1) that there holds

θδD,h = Eδ,h(θD)|Γ. (3.10)

In what follows we derive some useful estimates for the operator Eδ,h that will allow us to prove
existence and stability of solution of problem (3.2). To that end we first recall that the Lagrange
operator Ih satisfies the following approximation property (see, eg. [21, Theorem 1.103]): Given
p > 2, l ∈ {0, 1}, 0 ≤ m ≤ l + 1 and T ∈ Th, there holds

|Ih(ψ)− ψ|m,p,T ≤ chl+1−m
T |ψ|l+1,p,T ∀ψ ∈ Wl+1,p(T ). (3.11)

In addition, we recall the following inverse inequality (see [21, Lemma 1.138]):

∥ψh∥l,p,T ≤ Ch
m−l+2( 1

p
− 1

q
)

T ∥ψh∥m,q,T ∀ψh ∈ Ψh, (3.12)

for any T ∈ Th, l ≥ 0, 0 ≤ m ≤ l and p, q ≥ 1.

Finally, for all ψ ∈ W1,4(Ω) ⊆ C0(Ω), it is easy to see that

∥Ih(ψ)∥0,∞,T ≤ 3∥ψ∥0,∞,T , ∀T ∈ Th. (3.13)

Lemma 3.3 The following estimates hold:

∥Eδ,h(ζ)∥0,3,Ω ≤ Ĉlift,1 δ
1/12(hδ−1 + h+ 1) ∥ζ∥3/4,4,Γ, (3.14a)

∥Eδ,h(ζ)∥1,Ω ≤ Ĉlift,2 δ
1/4(2 + δ−1) ∥ζ∥3/4,4,Γ, (3.14b)

∥Eδ,h(ζ)∥0,∞,Ω ≤ 3∥E(ζ)∥0,∞,Ωδ
, (3.14c)

for all ζ ∈ W3/4,4(Γ), where Ĉlift,1, Ĉlift,2 > 0 are constants indepedent of h and δ.
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Proof. Given ζ ∈ W3/4,4(Γ), we first use estimate (3.11) and recall that Eδ = βδE (cf. (2.27)), to
obtain

∥Eδ,h(ζ)∥0,3,Ω = ∥Ih(Eδ(ζ))∥0,3,Ω ≤ ∥Ih(Eδ(ζ))− Eδ(ζ)∥0,3,Ω + ∥Eδ(ζ)∥0,3,Ω

≤ ch|Eδ(ζ)|1,3,Ω + ∥Eδ(ζ)∥0,3,Ω

≤ ch(∥(∇βδ)E(ζ)∥0,3,Ωδ
+ ∥βδ∇E(ζ)∥0,3,Ωδ

) + ∥Eδ(ζ)∥0,3,Ω.

(3.15)

Now, for the first term in the above inequality Hölder’s inequality we have

∥(∇βδ)E(ζ)∥30,3,Ωδ
=

∫
Ωδ

|∇βδ|3|E(ζ)|3 ≤ ∥|∇βδ|3∥0,4,Ωδ
∥|E(ζ)|3∥0,4/3,Ω = ∥∇βδ∥30,12,Ωδ

∥E(ζ)∥30,4,Ω.

Then, we recall that βδ (cf. (2.25)) satisfies |∇βδ| = δ−1 a.e in {x ∈ Ωδ : δ ≤ dist(x,Γ) ≤ 2δ} and
∇βδ vanishes elsewhere, to obtain

∥(∇βδ)E(ζ)∥0,3,Ωδ
≤ δ−1|Ωδ|1/12∥E(ζ)∥0,4,Ω.

Similarly, using again Hölder’s inequality and the fact that βδ ≤ 1, we have

∥βδ∇E(ζ)∥30,3,Ωδ
≤ ∥|βδ|3∥0,4,Ωδ

∥|∇E(ζ)|3∥0,4/3,Ω ≤ |Ωδ|1/4∥∇E(ζ)∥30,4,Ω,

which implies
∥βδ∇E(ζ)∥0,3,Ωδ

≤ |Ωδ|1/12|E(ζ)|1,4,Ω. (3.16)

In this way, combining (3.15)–(3.16), applying (2.29a) and employing (2.24) and the fact that |Ωδ| ≈ δ,
we readily obtain (3.14a).

To derive (3.14b) we first recall that T δ
h ⊆ Th, make use the fact that Eδ(ζ) = 0 in Ω\Ωδ and employ

estimate (3.12), to obtain

|Eδ,h(ζ)|21,Ω = |Ih(Eδ(ζ))|21,Ωδ
=

∑
T∈T δ

h

|Ih(Eδ(ζ))|21,T ≤
∑
T∈T δ

h

hT ∥Ih(Eδ(ζ))∥21,4,T

≤

 ∑
T∈T δ

h

h2T

1/2

∥Ih(Eδ(ζ))∥21,4,Ωδ
,

which combined with the fact that h2T ≈ |T | and estimate (3.11) with p = 4, implies

|Eδ,h(ζ)|1,Ω ≤ C|Ωδ|1/4∥Ih(Eδ(ζ))∥1,4,Ωδ
≤ Cδ1/4(∥Ih(Eδ(ζ))− Eδ(ζ)∥1,4,Ωδ

+ ∥Eδ(ζ)∥1,4,Ωδ
)

≤ C1δ
1/4|Eδ(ζ)|1,4,Ωδ

+ C2δ
1/4∥Eδ(ζ)∥1,4,Ωδ

≤ δ1/4Ĉ∥Eδ(ζ)∥1,4,Ωδ
.

(3.17)
Then, using again that βδ ≤ 1 in Ωδ, |∇βδ| = δ−1 a.e in {x ∈ Ωδ : δ ≤ dist(x,Γ) ≤ 2δ} and ∇βδ
vanishes elsewhere, there holds

∥Eδ(ζ)∥1,4,Ωδ
= ∥βδE(ζ)∥1,4,Ωδ

≤ ∥βδE(ζ)∥0,4,Ωδ
+ ∥βδ∇E(ζ)∥0,4,Ωδ

+ ∥(∇βδ)E(ζ)∥0,4,Ωδ

≤ (2 + δ−1)∥E(ζ)∥1,4,Ω,

which together with (3.17) and (2.24), imply (3.14b).

Finally, for (3.14c) we first notice that, since T δ
h ⊆ Th and Eδ(ζ) = 0 in Ω\Ωδ, then

∥Eδ,h(ζ)∥0,∞,Ω = ∥Ih(Eδ(ζ))∥0,∞,Ωδ
= ∥Ih(βδE(ζ))∥0,∞,Ωδ

.

Then, employing the second property of βδ in (2.26) and using the fact that βδE(ζ) is continuous,
from the identity above we readily obtain (3.14c).

□
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3.2.3 Main result

Similarly to the continuous case, let us fix δ > 0 (to be specified below in Theorem 3.5) and decompose
the discrete temperature θh as θh = θh,0+ θh,1, with θh,1 = Eδ,h(θD,h) ∈ Ψh and θh,0 = θh− θh,1 ∈ Ψh,0

and analogously to the analysis of the continuous problem we introduce the reduced version of problem
(3.2): Find (uh, θh,0) ∈ Vh ×Ψh,0 such that

AF(uh,v) + OhF(uh,f ;uh,f ,vf) − D(θh,0,v) = D(θh,1,v) ∀v ∈ Vh,

AT(θh,0, ψ) + OhT(uh; θh,0 + θh,1, ψ) = −AT(θh,1, ψ) ∀ψ ∈ Ψh,0,
(3.18)

where Vh is the discrete kernel of B defined in (3.5).

Using the discrete inf-sup condition (3.6) and analogously to the continuous case we readily obtain
that both problems (3.2) and (3.18) are equivalent.

Lemma 3.4 Assume that hm < h0, with h0 being the positive constant that allows us to derive the
inf-sup condition (3.6). If (uh, (ph, λh), θh) ∈ Hh ×Qh ×Ψh is a solution of (3.2), then uh ∈ Vh and
(uh, θh,0) = (uh, θh − θh,1) is a solution to (3.18). Conversely, if (uh, θh,0) ∈ Vh × Ψh,0 is a solution
of (3.18), then there exists (ph, λh) ∈ Qh, such that (uh, (ph, λh), θh) = (uh, (ph, λh), θh,0 + θh,1) is a
solution to (3.2).

Notice that since (3.18) is a finite-dimensional problem, we can use the same strategy employed in
Section 2.3.4 to analyze problem (2.45). To that end, let us now define the compact and convex set

Xh := {(w, ϕ) ∈ Vh ×Ψh,0 : ∥w∥H ≤ Cu (∥gf∥0,Ωf
+ ∥gm∥0,3,Ωm)∥θh,1∥1,Ω, ∥ϕ∥1,Ω ≤ Cθ ∥θh,1∥1,Ω} ,

(3.19)
with Cu and Cθ defined in (2.40) and (2.44), respectively, and the operator Jh : Xh → Vh × Ψh,0

given by
Jh(w, ϕ) = (uh, θh,0) ∀ (w, ϕ) ∈ Xh,

where (uh, θh,0) is the solution of the linearized version of problem (3.18): Find (uh, θh,0) ∈ Vh×Ψh,0

such that

AF(uh,v) + OhF(wf ;uh,f ,vf) = D(ϕ,v) + D(θh,1,v) ∀v ∈ Vh,

AT(θh,0, ψ) + OhT(w; θh,0, ψ) = −AT(θh,1, ψ) − OhT(w; θh,1, ψ) ∀ψ ∈ Ψh,0.

Now we state the main result of this section.

Theorem 3.5 Let h0 be the positive constant that allows to derive the inf-sup condition (3.6), and
assume that h ≤ min{h0, δ}, with δ > 0 be such that

CDĈO1
T

αFαT
(∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm)Ĉlift,1 δ
1/12(2 + δ) ∥θD∥3/4,4,Γ ≤ 1

4
. (3.20)

Let θh,1 = Eδ,h(θD) ∈ Ψh be such that

CD ĈO1
T

αF αT
(∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm)∥θh,1∥0,∞,Ω ≤ 1

4
, (3.21)

and assume further that θD ∈ W3/4,4(Γ) satisfies

Cu (∥gf∥0,Ωf
+ ∥gm∥0,3,Ωm) Ĉlift,2 δ

1/4(2 + δ−1) ∥θD∥3/4,4,Γ ≤ 2µαf

C3
trC

2
Sob,Σ

. (3.22)
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Then, there exists at least one (uh, (ph, λh), θh) ∈ Hh × Qh × Ψh solution to (3.2). Moreover, there
exists C > 0, independent of h, such that

∥uh∥H + ∥(ph, λh)∥Q + ∥θh∥1,Ω ≤ C
(
∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm + ∥θD∥3/4,4,Γ
)
. (3.23)

Proof. First, let us observe that assumption h ≤ min{h0, δ} implies that estimate (3.14a) with ζ = θD
becomes

∥θh,1∥0,3,Ω = ∥Eδ,h(θD)∥0,3,Ω ≤ Ĉlift,1 δ
1/12(2 + δ) ∥θD∥3/4,4,Γ.

Then, for a given (w, ϕ) = ((wf ,wm), ϕ) ∈ Xh, analogously to the proof of Lemma 2.9 we make use
of assumptions (3.20), (3.21), (3.22) and the aforementioned inequality to deduce that there exists a
unique (u, θ) ∈ Xh, such that Jh(w, ϕ) = (u, θ), thus Jh is well-defined and satisfies Jh(Xh) ⊆ Xh.
In addition, using the same arguments employed in the proof of Lemma 2.10, we can deduce that Jh is
continuous. According to the above, and analogously to the proof of Theorem 2.11, we employ Theorem
2.8 to obtain that there exists (uh, θh,0) ∈ Xh such that (3.18) holds, which together with Lemma
3.4 implies that there exists (ph, λh) ∈ Qh, such that (uh, (ph, λh), θh) = (uh, (ph, λh), θh,0 + θh,1) is a
solution to (3.2).

Finally, using the fact that (uh, θh,0) ∈ Xh and proceeding analogously to the proof of Corollary
2.7 we easily deduce that (uh, (ph, λh), θh) satisfies (3.23), which concludes the proof. □

Remark 3.2 Observe that, owing to (3.14c) and similarly to Remark 2.1, assumption (3.21) becomes

3CD ĈO1
T

αF αT
(∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm)∥E(ζ)∥0,∞,Ωδ
≤ 1

4
,

and again one could take an small enough δ in such a way ∥E(θD)∥0,∞,Ωδ
≈ ∥θD∥0,∞,Γ, and simply

assume that
3CD ĈO1

T

αF αT
(∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm) ∥θD∥0,∞,Γ ≤ 1

4
.

4 Error analysis

In this section we address the error analysis and provide the theoretical rate of convergence for the
Galerkin scheme (3.2). We begin with some notations and preliminary results.

Let us assume that the hypotheses of Theorem 2.13 hold and let (u, (p, λ), θ) = (u, (p, λ), θ0+ θ1) ∈
H × Q × H1(Ω) be a solution to (2.8), with θ1 = Eδ(θD) ∈ W1,4(Ω) and θ0 ∈ H1

0(Ω). In addition,
we assume that the hypotheses of Theorem 3.5 and let (uh, (ph, λh), θh) = (uh, (ph, λh), θh,0 + θh,1) ∈
Hh ×Qh ×Ψh be a solution to (3.2), with θh,1 = Eδ,h(θD) ∈ Ψh and θh,0 ∈ Ψh,0. Then to simplify the
subsequent analysis, we write

euf
= uf − uh,f , eum = um − uh,m, ep = p− ph, eλ = λ− λh, eθ = θ − θh. (4.1)

We decompose these errors as

euf
= ϱuf

+ χuf
, eum = ϱum

+ χum
, ep = ϱp + χp, eλ = ϱλ + χλ, eθ = ϱθ + χθ, (4.2)

with

ϱuf
= uf − v̂h,f , ϱum

= um − v̂h,m, ϱp = p− q̂h, ϱλ = λ− ξ̂h, ϱθ = θ − ψ̂h,

χuf
= v̂h,f − uh,f , χum

= v̂h,m − uh,m, χp = q̂h − ph, χλ = ξ̂h − λh, χθ = ψ̂h − θh,
(4.3)
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where v̂h = (v̂h,f , v̂h,m) ∈ Vh, (q̂h, ξ̂h) ∈ Qh, and ψ̂h ∈ ΨΓ
h. Here, Ψ

Γ
h is the set of functions in Ψh that

coincide with θδD,h (cf. (3.10)) on Γ, that is

ΨΓ
h := {ψh ∈ Ψh : ψh|Γ = θδD,h}.

Finally, we let
eu = (euf

, eum), ϱu = (ϱuf
,ϱum

) and χu = (χuf
,χum

).

Let us recall that, since the inf-sup condition (3.6) holds, it is possible to prove that there exists
c > 0, independent of h, such that (see for instance [25, Theorem 2.6])

inf
vh∈Vh

∥u− vh∥H ≤ c inf
vh∈Hh

∥u− vh∥H. (4.4)

Now we provide some useful properties of the convective terms that will allow us to derive the
desired error estimates.

Lemma 4.1 Let u := (uf ,um) ∈ V and θ ∈ H1(Ω). The following identities hold

OhF(uf ;uf ,vf) = OF(uf ;uf ,vf) and OhT(u; θ, ψ) = OT(u; θ, ψ), (4.5)

for all vf ∈ Hh,Γf
(Ωf) and for all ψ ∈ Ψh, respectively. In addition, for any uh ∈ Hh and θ ∈ H1(Ω),

such that θ|Ωm ∈ W1,4(Ωm), there holds

|OhT(uh; θ, ψ)| ≤ ĈO3
T
∥uh∥H (∥θ∥1,Ωf

+ ∥θ∥1,4,Ωm) ∥ψ∥1,Ω ∀ψ ∈ Ψh,0, (4.6)

where ĈO3
T
is a positive constant independent of h.

Proof. Given u := (uf ,um) ∈ V and θ ∈ H1(Ω), it is clear that divu⋆ = 0 in Ω⋆ for ⋆ ∈ {f,m}, which
readily implies (4.5). On the other hand, given uh ∈ Hh and employing the Hölder inequality (1.1),
we have that for all ψ ∈ Ψh,0, there holds

|OhT(uh; θ, ψ)| ≤ |(uh,f · ∇θ, ψ)Ωf
| + |(uh,m · ∇θ, ψ)Ωm |+

1

2
|(divuh, θψ)Ωf

|

≤ ∥uh,f∥0,4,Ωf
|θ|1,Ωf

∥ψ∥0,4,Ωf
+ ∥um∥div;Ωm |θ|1,4,Ωm ∥ψ∥0,4,Ωm

+
1

2
∥divuh,f∥0,Ωf

∥θ∥0,4,Ωf
∥ψ∥0,4,Ωf

.

Then, applying the Sobolev inequality (1.2) to ∥uf∥0,4,Ωf
, ∥θ∥0,4,Ωf

, ∥ψ∥0,4,Ωf
and ∥ψ∥0,4,Ωm , we easily

deduce (4.6). □
The following preliminary estimate is an intermediate step to obtain the desired convergence result.

Lemma 4.2 Let us assume that the hypotheses of Theorem 2.13 hold and let (u, (p, λ), θ) = (u, (p, λ),
θ0 + θ1) ∈ H × Q × H1(Ω) be a solution to (2.8), with θ1 = Eδ(θD) ∈ W1,4(Ω) and θ0 ∈ H1

0(Ω). In
addition, we assume that the hypotheses of Theorem 3.5 and let (uh, (ph, λh), θh) = (uh, (ph, λh), θh,0+
θh,1) ∈ Hh × Qh × Ψh be a solution to (3.2), with θh,1 = Eδ,h(θD) ∈ Ψh and θh,0 ∈ Ψh,0. Finally, let
γg = ∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm and assume that θ|Ωm ∈ W1,4(Ωm) holds. There hold

αF ∥χu∥H ≤ ĈOF
∥χuf

∥1,Ωf
∥uf∥1,Ωf

+ CD γg ∥χθ∥1,Ω + L1, (4.7)

αT ∥χθ∥1,Ω ≤ ĈO2
T
∥χu∥H (∥θ∥1,Ωf

+ ∥θ∥0,∞,Ωm) + L2, (4.8)

28



and

β̂ ∥(χp, χλ)∥Q ≤ CAF
∥eu∥H + ĈOF

∥euf
∥1,Ωf

∥uf∥1,Ωf
+ ĈOF

∥uh,f∥1,Ωf
∥euf

∥1,Ωf

+CDγg∥eθ∥1,Ω + ∥(ϱp, ϱλ)∥Q,
(4.9)

where L1 and L2 are defined later in (4.11) and (4.12) which depend on the solutions u, uh and θ.

Proof. Using the definition of the errors given in (4.1), employing (4.5) and subtracting (2.8) and
(3.2), we readily obtain

AF(eu,v) +
[
OhF(uf ;uf ,vf) − OhF(uh,f ;uh,f ,vf)

]
− D(eθ,v) +B(v, (ϱp, ϱλ)) = 0,

B(eu, (q, ξ)) = 0,

AT(eθ, ψ) +
[
OhT(u; θ, ψ) − OhT(uh; θh, ψ)

]
= 0,

(4.10)

for all v ∈ Vh, (q, ξ) ∈ Qh and ψ ∈ Ψh,0. Then, adding and subtracting suitable terms and employing
the decompositions (4.2) and (4.3), the first equation in (4.10) can be rewritten as

AF(χu,v) + OhF(uh,f ;χuf
,vf) = −OhF(χuf

;uf ,vf) + D(χθ,v) − AF(ϱu,v) − OhF(uh,f ;ϱuf
,vf)

−OhF(ϱuf
;uf ,vf) + D(ϱθ,v)−B(v, (ϱp, ϱλ)),

for all v ∈ Vh. In particular, for v = χu, employing the ellipticity of the bilinear form AF(·, ·) +
OhF(uh,f ; ·, ·), and the continuity of AF, O

h
F, and D (cf. (2.10), (3.3) and (2.12), respectively), we obtain

(4.7) where

L1 := CAF
∥ϱu∥H + ĈOF

(∥uh,f∥1,Ωf
+ ∥uf∥1,Ωf

) ∥ϱuf
∥1,Ωf

+CD γg ∥ϱθ∥1,Ω + CB∥(ϱp, ϱλ)∥Q.
(4.11)

On the other hand, from the third equation of (4.10), after a simple computations it can be obtained
the identity

AT(χθ, ψ) + OhT(uh;χθ, ψ) = −AT(ϱθ, ψ) − OhT(ϱu; θ, ψ)

−OhT(χu; θ, ψ) − OhT(uh; ϱθ, ψ),

for all ψ ∈ Ψh,0. Then, noticing that χθ ∈ Ψh,0, we take ψ = χθ in the latter identity, employ the
ellipticity of the bilinear form AT(·, ·) + OhT(uh; ·, ·) (cf. (3.9)), the continuity of AT (cf. (2.11)), and
estimates (4.6) and (3.8c), to obtain (4.8) with

L2 := CAT
∥ϱθ∥1,Ω + ĈO2

T
∥ϱu∥H (∥θ∥1,Ωf

+ ∥θ∥0,∞,Ωm) + ĈO3
T
∥uh∥H (∥ϱθ∥1,Ωf

+ ∥ϱθ∥1,4,Ωm) . (4.12)

Now, to estimate χp and χλ we observe that from the discrete inf-sup condition (3.6), there holds

β̂ ∥(χp, χλ)∥Q ≤ sup
v∈Hh\{0}

B(v, (χp, χλ))

∥v∥H

≤ sup
v∈Hh\{0}

B(v, (ep, eλ))

∥v∥H
+ sup

v∈Hh\{0}

B(v,−(ϱp, ϱλ))

∥v∥H

≤ sup
v∈Hh\{0}

B(v, (ep, eλ))

∥v∥H
+ ∥(ϱp, ϱλ)∥Q.

(4.13)
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In turn, from the first equations of (4.10), adding and subtracting suitable terms, we obtain

B(v, (ep, eλ)) = AF(eu,v) + OhF(uf ;uf ,vf) − OhF(uh,f ;uh,f ,vf) − D(eθ,v)

= AF(eu,v) + OhF(euf
;uf ,vf) + OhF(uh,f ; euf

,vf) − D(eθ,v),

for all v ∈ Hh. Then, utilizing the last identity, from (4.13) and the continuity of the forms involved,
we obtain

β̂ ∥(χp, χλ)∥Q ≤ CAF
∥eu∥H + ĈOF

∥euf
∥1,Ωf

∥uf∥1,Ωf
+ ĈOF

∥uh,f∥1,Ωf
∥euf

∥1,Ωf

+CDγg∥eθ∥1,Ω + ∥(ϱp, ϱλ)∥Q.

□

Theorem 4.3 Let us assume that the hypotheses of Lemma 4.2 hold and let (u, (p, λ), θ) = ((uf ,um),
(p, λ), θ0+θ1) ∈ H×Q×H1(Ω) be the unique solution of (2.8) and (uh, (ph, λh), θh) = ((uh,f ,uh,m), (ph,
λh), θh,0 + θh,1) ∈ Hh × Qh × Ψh be a solution to (3.2). Finally, let γg = ∥gf∥0,Ωf

+ ∥gm∥0,3,Ωm and
assume further that

C1γgδ
−3/2(1 + δ2)1/2∥θD∥3/4,4,Γ + C2γg∥θ∥0,∞,Ωm ≤ 1

2
, (4.14)

with C1 , C2 > 0, independent of h, δ, γg and θD. There exists C > 0, independent of the aforemen-
tioned datum, such that

∥eu∥H + ∥(ep, eλ)∥Q + ∥eθ∥1,Ω ≤ C

{
inf

vh,f∈Hh,Γf
(Ωf)

∥uf − vh,f∥1,Ωf
+ inf

vh,m∈Hh,Γm (Ωm)
∥um − vh,m∥div;Ωm

+ inf
qh∈Lh,0(Ω)

∥p− qh∥0,Ω + inf
ξh∈Λh(Σ)

∥λ− ξh∥1/2,Σ + inf
ψh∈ΨΓ

h

(
∥θ − ψh∥1,Ωf

+ ∥θ − ψh∥1,4,Ωm

)}
.

(4.15)

Proof. Let us first recall that from (2.35), (2.36) and (2.29b) with ζ = θD, the following estimates hold

∥uf∥1,Ωf
≤ CuγgClift,2 δ

−3/2(1 + δ2)1/2 ∥θD∥3/4,4,Γ,

∥θ∥1,Ωf
≤ (Cθ + 1)Clift,2 δ

−3/2(1 + δ2)1/2 ∥θD∥3/4,4,Γ.
(4.16)

Then, combining (4.7), (4.8), and (4.16), we obtain

∥χu∥H ≤
(
C1γgδ

−3/2(1 + δ2)1/2∥θD∥3/4,4,Γ + C2γg∥θ∥0,∞,Ωm

)
∥χu∥H

+α−1
F α−1

T CDγgL2 + α−1
F L1,

with
C1 := α−1

F Clift,2

(
ĈOF

Cu + α−1
T CDĈO2

T
(Cθ + 1)

)
and C2 := α−1

F α−1
T CDĈO2

T
,

which together with (4.14), implies that

∥χu∥H ≤ 2α−1
F α−1

T CDγgL2(ϱu, ϱθ) + 2α−1
F L1. (4.17)
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Now, to estimate L1 and L2 we recall that (uh, θh,0) ∈ Xh (cf. (3.19)) which yields ∥uh,f∥1,Ωf
≤

∥uh∥H ≤ Cu γg∥θh,1∥1,Ω, which combined with (3.14b), implies

∥uh,f∥1,Ωf
≤ ∥uh∥H ≤ CuγgĈlift,2 δ

1/4(2 + δ−1) ∥θD∥3/4,4,Γ. (4.18)

Then, from the latter, the definition of L1 and L2, we get

L1 ≤ c1 (∥ϱu∥H + ∥ϱθ∥1,Ω + ∥(ϱp, ϱλ)∥Q) , (4.19)

L2 ≤ c2 (∥ϱθ∥1,Ω + ∥ϱθ∥1,4,Ωm + ∥ϱu∥H) , (4.20)

with c1, c2 being positive constants independent of h. In this way, using (4.17), (4.19), (4.20) and
the fact that W1,4(Ωm) is continuously embedded in H1(Ωm), which implies ∥ϱθ∥1,Ω ≤ c(∥ϱθ∥1,Ωf

+
∥ϱθ∥1,4,Ωm), we readily obtain

∥χu∥H ≤ c3 (∥ϱu∥H + ∥ϱθ∥1,Ωf
+ ∥ϱθ∥1,4,Ωm) + c4∥(ϱp, ϱλ)∥Q, (4.21)

with c3, c4 > 0, independent of h.

Now, to estimate ∥χθ∥1,Ω we simply substitute (4.21) in (4.8) and employ (4.14), the second estimate
in (4.16) and (4.20), to obtain

∥χθ∥1,Ω ≤ c5 (∥ϱu∥H + ∥ϱθ∥1,Ωf
+ ∥ϱθ∥1,4,Ωm + ∥(ϱp, ϱλ)∥Q) , (4.22)

with c5 > 0, independent of h.

According to the above, from (4.2), (4.21), (4.22), the triangle inequality, the fact that v̂h =
(v̂h,f , v̂h,m) ∈ Vh, (q̂h, ξ̂h) ∈ Qh, and ψ̂h ∈ ΨΓ

h are arbitrary and (4.4), we obtain

∥eu∥H + ∥eθ∥1,Ω ≤ c6

{
inf

vh,f∈Hh,Γf
(Ωf)

∥uf − vh,f∥1,Ωf
+ inf

vh,m∈Hh,Γm (Ωm)
∥um − vh,m∥div;Ωm

+ inf
qh∈Lh,0(Ω)

∥p− qh∥0,Ω + inf
ξh∈Λh(Σ)

∥λ− ξh∥1/2,Σ + inf
ψh∈ΨΓ

h

(
∥θ − ψh∥1,Ωf

+ ∥θ − ψh∥1,4,Ωm

)}
,

(4.23)

with c6 > 0, independent of h.

Finally, and similarly to the above, from (4.9), the first inequality in (4.16), (4.18), (4.23) and the
triangle inequality, we deduce that there exists c7 > 0, independent of h, such that

∥(ep, eλ)∥Q ≤ c7

{
inf

vh,f∈Hh,Γf
(Ωf)

∥uf − vh,f∥1,Ωf
+ inf

vh,m∈Hh,Γm (Ωm)
∥um − vh,m∥div;Ωm

+ inf
qh∈Lh,0(Ω)

∥p− qh∥0,Ω + inf
ξh∈Λh(Σ)

∥λ− ξh∥1/2,Σ + inf
ψh∈ΨΓ

h

(
∥θ − ψh∥1,Ωf

+ ∥θ − ψh∥1,4,Ωm

)}
,

which together with (4.23) implies (4.15) and concludes the proof. □
We conclude this section by deriving the theoretical rate of convergence for the Galerkin scheme

(3.2). To that end we recall that the discrete spaces satisfy the following approximation properties
(see [7, 11, 21, 25]):

(APuf
h ) For each vf ∈ H2(Ωf) ∩H1

Γf
(Ωf), there exists vh,f ∈ Hh,Γf

(Ωf), such that

∥vf − vh,f∥1,Ωf
≤ Ch ∥vf∥2,Ωf

.
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(APum
h ) For each vm ∈ H1(Ωm) ∩ HΓm(div; Ωm), with divvm ∈ H1(Ωm), there exists vh,m ∈

Hh,Γm(Ωm), such that

∥vm − vh,m∥div;Ωm ≤ Ch {∥vm∥1,Ωm + ∥divvm∥1,Ωm} .

(APp
h) For each q ∈ H1(Ω) ∩ L2

0(Ω), there exists qh ∈ Lh,0(Ω) such that

∥q − qh∥0,Ω ≤ Ch ∥q∥1,Ω.

(APλ
h) For each ξ ∈ W3/2,2(Σ), there exists ξh ∈ Λh(Σ) such that

∥ξ − ξh∥1/2,Σ ≤ Ch ∥ξ∥3/2,2,Σ.

(APθ
h) For each ψ ∈ H2(Ω), with ψ|Γ = θD and ψ|Ωm ∈ W2,4(Ωm), there exists ψh ∈ ΨΓ

h, such that

∥ψ − ψh∥1,Ωf
+ ∥ψ − ψh∥1,4,Ωm ≤ Ch{∥ψ∥2,Ωf

+ ∥ψ∥2,4,Ωm} .

Using this approximation properties we obtain the following result.

Theorem 4.4 Assume the same hypotheses in Theorem 4.3 hold, let (u, (p, λ), θ) = ((uf ,um), (p, λ),
θ0+θ1) ∈ H×Q×H1(Ω) be the unique solution of (2.8) and (uh, (ph, λh), θh) = ((uh,f ,uh,m), (ph, λh),
θh,0 + θh,1) ∈ Hh ×Qh ×Ψh be a solution to (3.2). Assume further that uf ∈ H2(Ωf), um ∈ H1(Ωm),
divum ∈ H1(Ωm), p ∈ H1(Ω), λ ∈ H3/2(Σ), θ|Ωf

∈ H2(Ωf), and θ|Ωm ∈ W2,4(Ωm). Then, there exists
Crate > 0, independent of h and the continuous and discrete solutions, such that

∥eu∥H + ∥(ep, eλ)∥Q + ∥eθ∥1,Ω ≤ Crateh {∥uf∥2,Ωf
+ ∥um∥1,Ωm + ∥divum∥1,Ωm + ∥p∥1,Ω
+ ∥λ∥3/2,2,Σ + ∥θ∥2,Ωf

+ ∥θ∥2,4,Ωm

}
.

Proof. The result is a direct consequence of Theorem 4.3 and the approximation properties (APuf
h ),

(APum
h ), (APp

h), (APλ
h) and (APθ

h). □

5 Numerical results

In this section we present some numerical results illustrating the performance of our finite element
scheme (3.2) on a set of quasi-uniform triangulations of the corresponding domains and considering
the finite element spaces introduced in Section 3. Our implementation is based on a FreeFem++ code
[33], in conjunction with the direct linear solver UMFPACK [19]. In order to solve the nonlinear
problem, we propose the Newton-type strategy: Starting with the initial guess u0 = (u0

f ,u
0
m) ∈ Hh

and θ0 ∈ Ψh, for n ≥ 1, find un ∈ Hh, (p
n, λn) ∈ Qh, and θ

n ∈ Ψh, such that θh|Γ = θδD,h and

AF(u
n,v) + OhF(u

n−1
f ;unf ,vf) + OhF(u

n
f ;u

n−1
f ,vf)

−B(v, (pn, λn)) − D(θn,v) = OhF(u
n−1
f ;un−1

f ,vf),

B(un, (q, ξ)) = 0,

AT(θ
n, ψ) + OhT(u

n−1; θn, ψ) + OhT(u
n; θn−1, ψ) = OhT(u

n−1; θn−1, ψ),

for all v = (vf ,vm) ∈ Hh, (q, ξ) ∈ Qh, and ψ ∈ Ψh.
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The iterations are terminated once the relative error of the entire coefficient vectors between two
consecutive iterates is sufficiently small, that is

∥coeffn+1 − coeffn∥l2
∥coeffn+1∥l2

≤ tol,

where ∥·∥l2 stands for the usual euclidean norm in Rdof, with dof denoting the total number of degrees
of freedom defining the finite element subspaces Hh(Ωf), Hh(Ωm), Lh(Ω), Λh(Σ), and Ψh, and tol is a
fixed tolerance. For each example shown below we simply take u0 = 0 and θ0 = 0 as initial guess and
tol = 1e− 6.

Now, we introduce some additional notations. We denote by hΣ := max{he : e ∈ Σ2h}. As in
Section 4, the individual errors for each variable are denoted by euf

, eum , eλ, ep and eθ and let
ep⋆ = ep|Ω⋆ , eθ⋆ = eθ|Ω⋆ , for ⋆ ∈ {f,m}. In addition, we define the experimental rates of convergence
ruf

, rum , rpf , rpm , rλ, rθf and rθm , as

ruf
:=

log(euf
/e′uf

)

log(hf/h
′
f)
, rum :=

log(eum/e
′
um

)

log(hm/h′m)
, rpf :=

log(epf/e
′
pf
)

log(hf/h
′
f)
, rpm :=

log(epm/e
′
pm)

log(hm/h′m)
,

rλ :=
log(eλ/e

′
λ)

log(hΣ/h′Σ)
, rθf :=

log(eθf/e
′
θf
)

log(hf/h
′
f)
, rθm :=

log(eθm/e
′
θm

)

log(hm/h′m)
,

where h⋆ and h′⋆ (⋆ ∈ {f,m,Σ}) denote two consecutive mesh sizes with their respective errors e, e′

(or e, e′).

Example 1: Manufactured Exact Solution

In our first example we illustrate the accuracy of our method considering a manufactured exact solution
defined on Ω = Ωf ∪Σ∪Ωm, with Ωf := (−1/2, 1/2)× (0, 1/2) and Ωm := (−1/2, 1/2)× (−1/2, 0). We
consider the following parameters µ = 1, gf = (0,−1)t, gm = (0,−1)t, αd = 1, κf = 1, κm = 1, K = I,
and κ = I and the terms on the right-hand side are adjusted so that the exact solution is given by the
functions

uf(x, y) :=

(
16y cos(πx)2(y2 − 1/4)

8π cos(πx) sin(πx)(y2 − 1/4)2

)
in Ωf ,

um(x, y) :=

(
−2y cos(πx)2

−2π cos(πx) sin(πx)(y2 − 1/4)

)
in Ωm,

p⋆(x, y) := exp(y) sin(x) in Ω⋆,

θ⋆(x, y) := exp(−xy) in Ω⋆,

with ⋆ ∈ {f,m}. We notice that uf |Σ = um|Σ, θf |Σ = θm|Σ, and κf ∇θf |Σ = κm∇θm|Σ. We notice
also that these functions do not satisfy the interface conditions (2.5), thus the difference must be
incorporated as a functional at the right-hand side of the resulting system.

In Table 5.1 we summarize the history of convergence for a sequence of quasi-uniform triangulations.
We observe there that the rate of convergence O(h) predicted by Theorem 4.4 is attained in all the
cases.

Example 2: Nondimensional problem

In our second example we are interested in studying the phenomenon on a square cavity with dif-
ferentially heated walls. To that end, we let Ω = Ωf ∪ Σ ∪ Ωm, with Ωf := (0, 1) × (0, 3/4) and
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dof hf euf
ruf

epf rpf eθf rθf
216 0.3207 0.5592 – 0.2104 – 0.0813 –
834 0.1804 0.3492 0.8189 0.1133 1.0767 0.0390 1.2762
3026 0.1013 0.1844 1.1057 0.0565 1.2039 0.0199 1.1657
11738 0.0503 0.0855 1.0989 0.0292 0.9398 0.0099 0.9945
45622 0.0247 0.0424 0.9875 0.0145 0.9926 0.0050 0.9674
180930 0.0123 0.0208 1.0226 0.0070 1.0338 0.0025 0.9818
725890 0.0065 0.0103 1.1014 0.0035 1.1007 0.0012 1.1210

dof hm eum rum epm rpm eθm rθm
216 0.3663 0.1752 – 0.0330 – 0.0953 –
834 0.1804 0.0748 1.2018 0.0137 1.2349 0.0377 1.3073
3026 0.0951 0.0398 0.9856 0.0072 1.0013 0.0200 0.9917
11738 0.0488 0.0198 1.0416 0.0035 1.0802 0.0098 1.0692
45622 0.0247 0.0099 1.0091 0.0017 0.9984 0.0050 0.9764
180930 0.0143 0.0050 1.2604 0.0008 1.2650 0.0025 1.2636
725890 0.0064 0.0024 0.8754 0.0004 0.8686 0.0012 0.8831

dof hΣ eλ rλ iteration

216 0.2500 0.0470 – 5
834 0.1250 0.0308 0.6107 5
3026 0.0625 0.0114 1.4330 5
11738 0.0312 0.0051 1.1391 5
45622 0.0156 0.0026 0.9634 5
180930 0.0078 0.0013 1.0307 5
725890 0.0039 0.0006 1.0442 5

Table 5.1: Example 1: Degree of Freedom, mesh sizes, errors, rates of convergence and number of
iterations for the coupled problem.

Ωm := (0, 1)× (3/4, 1), and similarly to [36, Section 2.4] we consider the problem with dimensionless
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Figure 5.1: Example 2: Velocity vector field (left), pressure (center) and temperature (right).

numbers

σf = 2 e(uf) − pf I in Ωf ,

−divσf + (uf · ∇)uf − Raf gf θf = 0 in Ωf ,

divuf = 0 in Ωf ,

−∆ θf + Prf uf · ∇ θf = 0 in Ωf ,

um + Da∇pm − Ram gm θm = 0 in Ωm,

divum = 0 in Ωm,

−∆ θm + Prm um · ∇θm = 0 in Ωm,

∇ θf · n = ∇ θm · n on Σ,

σf n +
αd√
Da

(uf · t) t = −pm n on Σ,

θ = θD on Γ,

where Pr⋆ and Ra⋆ represent the Prandtl and Rayleigh numbers in the domain Ω⋆ for ⋆ ∈ {f,m}
and Da represents the Darcy number. Here, we fix the Prandtl, Rayleigh and Darcy numbers as
Prf = 0.5, Prm = 0.5, Raf = 2000, Ram = 2000, and Da = 1, and consider αd = 1. For the boundary
condition, we choose θD(x, y) = 0.5(1 − cos(2πx))(1 − y) on Γ and observe that θD = 0 on the left,
bottom and right walls whereas on the top wall θD has a sinusoidal profile with a peak of temperature
θD = 1 at x = 0.5. In Figure 5.1 we display the approximate solutions obtained with dof = 45726.
In Figure 5.1 we show the velocity vector field (left), the pressure (center) and temperature (right).
There, it is possible to see the expected physical behavior from [18], that is, convection currents form
inside the cavity in a symmetric configuration. However, in our case, the interface plays a role in
the phenomenon, and as reported in [46], we observe that the velocity field has an expected velocity
decrease when it crosses the interface from the free fluid region to the porous medium.
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Anal. Numér, vol. 29, no. 7, pp. 871–921, (1995).

[7] Bernardi, C. & Raugel, G. Analysis of some finite elements for the Stokes problem. Math.
Comp, vol. 44, no. 169, pp. 71–79, (1985).

[8] Boland, J. & Layton, W. An analysis of the finite element method for natural convection
problems. Numer. Methods Partial Differential Equations, vol. 6, pp. 115–126, (1990).

[9] Brenner, S. & Scott, L. The mathematical theory of finite element methods, Third edition.
Texts in Applied Mathematics, 15. Springer, New York, (2008).

[10] Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universi-
text. Springer, New York, (2011).

[11] Brezzi F. & Fortin M. Mixed and Hybrid Finite Element Methods. Springer Series in Com-
putational Mathematics, 15. Springer-Verlag, New York, (1991).
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[26] Gatica, G.N., Meddahi, S. & Oyarzúa, R. A conforming mixed finite-element method for
the coupling of fluid flow with porous media flow. IMA J. Numer. Anal, vol. 29, no. 1, pp. 86–108,
(2009).

[27] Gatica, G.N., Meddahi, S. & Ruiz-Baier, R. An Lp spaces-based formulation yielding a
new fully mixed finite element method for the coupled Darcy and heat equations. IMA J. Numer.
Anal, vol. 42, no. 4, pp. 3154–3206, (2022).
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