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Abstract

We propose and analyze a conforming finite element method for a two-dimensional nonisother-
mal fluid-membrane interaction problem. The problem consists of a Navier-Stokes/heat system,
commonly known as the Boussinesq system, in the free-fluid region, and a Darcy-heat coupled
system in the membrane. These systems are coupled through buoyancy terms and a set of trans-
mission conditions on the fluid-membrane interface, including mass conservation, balance of nor-
mal forces, the Beavers-Joseph-Saffman law, and continuity of heat flux and fluid temperature.
We consider the standard velocity-pressure-temperature variational formulation for the Boussinesq
system, along with a dual-mixed scheme coupled with a primal formulation for the Darcy and Heat
equations in the membrane region. The latter yields the introduction of the trace of the porous
medium pressure as a suitable Lagrange multiplier. For the associated Galerkin scheme, we em-
ploy Bernardi-Raugel and Raviart-Thomas elements for velocities, piecewise constant elements for
pressures, continuous piecewise linear functions for temperatures, and continuous piecewise linear
functions for the Lagrange multiplier on a partition of the interface. We prove well-posedness
for both the continuous and discrete schemes and derive corresponding error estimates. Finally,
we present numerical examples to confirm the predicted convergence rates and demonstrate the
performance of the method.

Key words: nonisothermal fluid-membrane, Navier—Stokes equation, Darcy equation, heat equation,
mixed finite element method.
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1 Introduction

Membrane-based water filtration devices have been widely used in recent years to produce clean
water for human consumption. Among the different types of water treatment processes that use a
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membrane to eliminate impurities, micro-filtration (MF), ultra-filtration (UF), nano-filtration (NF),
reverse osmosis (RO), and membrane distillation (MD) are commonly employed.

Numerous experimental studies have been conducted to enhance the efficiency of these processes.
However, experimentation can be costly, involving expensive equipment and staff training. In this
regard, computational fluid dynamics (CFD) provides a cost-effective means for conducting numerical
simulations that can guide important decisions for process optimization (see, for example, [Il, 24, 29,
35, A0, A1, 45, 48, 49] and references therein). In particular, a detailed review of different mathematical
models for simulating water treatment processes can be found in [A0].

In this work, our focus is on proposing and analyzing a conforming numerical scheme for a non-
isothermal fluid-membrane model that arises in membrane desalination processes [A1, &8]. To this end,
we adopt the mesoscopic model given by the coupled Navier-Stokes/Darcy model (see [0, Section
3.3.1]) and consider suitable coupling conditions prescribed on the common free flow-porous interface,
including conservation of mass, balance of the normal stresses, and the Beavers-Joseph-Saffman con-
dition. In the literature, there exists an extensive list of numerical methods for approximating the
solution of the Navier-Stokes/Darcy system, including conforming and nonconforming schemes, such
as those introduced in [2, 2, I3, I35, 20, 2R, 80, B2].

In particular, in [32], the authors introduce and analyze a discontinuous Galerkin (DG) discretiza-
tion for the nonlinear coupled problem, employing the nonsymmetric interior penalty Galerkin (NIPG),
symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (ITPG) bilinear
forms for the discretization of the Laplacian in both media, and the upwind Lesaint-Raviart discretiza-
tion of the convective term in the free fluid domain. On the other hand, in [?], the authors propose an
iterative subdomain method that uses the velocity-pressure formulation for the Navier-Stokes equation
and the primal formulation for the Darcy equation. Finally, in [20], the authors extend the work in
[26] to the Navier-Stokes/Darcy model and introduce a conforming numerical scheme to approximate
the solution of the problem. The variational formulation is based on the standard velocity-pressure
formulation for the Navier-Stokes equation and the dual-mixed formulation for the Darcy equation,
resulting in the velocity and pressure of the fluid in both media as the main unknowns of the coupled
system. Since one of the interface conditions becomes essential, they proceed similarly to [26] and
incorporate the trace of the porous medium pressure as an additional unknown.

Now, when it comes to numerical methods for coupling fluid flow with the heat equation, it is
noteworthy that the literature offers an extensive list of contributions for the Navier-Stokes/heat
coupled problem, commonly referred to as the Boussinesq problem [6, B, 04, 6, [, 22, 23, B7, B8, 3Y]
and the references therein. However, the number of contributions for the Darcy-heat coupled system is
relatively limited. In fact, the first contribution on the analysis of a finite element method for Darcy’s
problem coupled with the heat equation is presented in [4] (see also [5]). There, the authors introduce
two finite element discretizations for the coupled system with temperature-dependent viscosity. One
of the difficulties in the analysis of [d] is the fact that the velocity lives in H(div), which forces the
trial and test spaces for the temperature to be different, preventing the utilization of classical results
for elliptic problems to obtain the well-posedness of the continuous formulation. More recently, in
[27] it is introduced a new fully-mixed finite element method for the model studied in [@]. There, the
authors employ a Banach spaces-based analysis to prove well-posedness of the continuous problem
and its corresponding finite element discretization.

Here, we focus on analyzing a finite element discretization for the Navier-Stokes/Darcy/Heat cou-
pled system in two dimension, which, to the best of our knowledge, represents the first contribution
in this direction. Specifically, we study the steady-state case of the model previously studied in [36],
where a coupled system is given by the Boussinesq system in the free-fluid domain and the Darcy-heat
coupled system in the membrane region. These equations are supplemented with appropriate inter-



face conditions, including continuity of heat-flux, temperature, mass conservation, balance of normal
stresses, and the Beavers-Joseph-Saffman condition.

We use a velocity-pressure-temperature variational formulation in both domains, which yields the
introduction of a suitable Lagrange multiplier representing the trace of the porous media pressure
on the interface. Then, we combine the theory developed in [20] and [4], and similarly to [I7] (see
also [6]), make use of a suitable lifting of the temperature data to prove the existence of a solution
by means of a fixed-point strategy and under a smallness assumption on data. In addition, under a
restrictive assumption on the temperature solution, we prove uniqueness.

In terms of the discretization of the formulation, we utilize Bernardi-Raugel and Raviart-Thomas
elements for the velocities in the free-fluid and porous media domains, respectively. For the pressure
and temperature, we employ piece-wise constant and Lagrange elements, respectively, in both do-
mains. Additionally, for the Lagrange multiplier, we use continuous and piece-wise linear functions.
The analysis of the discrete scheme employs a similar approach to the continuous case, and under a
smallness assumption on data and on the temperature in the membrane, we obtain the convergence
of the Galerkin scheme and its corresponding rate.

The remainder of the paper is organized as follows. In Section B, we present the model problem,
derive the corresponding variational formulation, and analyze the existence and uniqueness of the
solution. Next, in Section B, we define a conforming numerical scheme and analyze its well-posedness.
In Section @, we perform the error analysis and derive the corresponding order of convergence of the
scheme. Finally, in Section B, we provide some numerical results illustrating the performance of the
method and confirming the theoretical rate of convergence.

We end this section by introducing definitions and fixing some notations. Let O C R%, d € {2,3},
denote a domain with Lipschitz boundary I". For s > 0 and p € [1,400], we denote by W*P(Q)
the usual Sobolev space endowed with the norm || - [|s 0. If s = 0, W%(O) corresponds to the
usual Lebesgue space L?(0O), which is endowed with the norm || - ||op.0. If p = 2, we write H*(O) in
place of W%2(0), and denote the corresponding Lebesgue and Sobolev norms by | - [lo.0 and | - |50,
respectively, and the seminorm by | - [s.0. In addition, H}(O) will denote the space of functions in
H!(O) with null trace on I', and L3(O) will be the space of L?(O) functions with zero mean value over
O, that is

12(0) = {veLz((’)):/Ov:O}.

Given p, q € (1,400) satisfying 1/p+1/q = 1, in what follows, we will denote by W'/¢?(T) the trace
space of W'P(0O) and by W_I/q’q(r) the dual space of Wl/q’p(r) endowed with the norms || - Hl/q,p;F
and || - || -1 /4,40, defined respectively by

16]11/qp.r = int { ¥l p.0 - € WPO), 9l = ¢} Ve W/OP(D),

and

Wloyjapr = swp 08 gy e wot/aar),
cewt/ar oy 1€ll1/gpT

where (-,-)p. denotes the duality parity between W—1/%49(T") and W'/4P(T'), which coincides with the
inner product on L?(I") when restricted to L2(I'). When p = 2, we will write H/2(T") := W1/22(T"),
[l - ||1/2,2,r =" ||1/2,1“7 H_l/Q(F) = W_I/Q’Q(F) and || - ||—1/2,2,r =" ”—1/2,1“'

Additionally, we recall that H(div; O) := {W € L2(0) : divw € L2((’))}, endowed with the norm

1/2
Wllaiv-o = ([|[W]|2, + ||divw]? is a standard Hilbert space in the realm of mixed problems
; 0,0 0,0
(see, e.g., [IT]).



For simplicity, in what follows for any scalar fields v and w, vector fields v = (v;)j=14 and w =
(w;)i=1,d, and tensor fields A = (a;;)i j—1,4 and B = (bi;)i j=1,4, we will denote

(v,w)o ::/ vw, (V,W)o ::/ v-w, and (A,B)o ::/ A : B,
@ @] @

d
where A : B .= Z aijbij.
i,j=1
By M and M we will denote the corresponding vectorial and tensorial counterparts of the generic
scalar functional space M, In turn, when no confusion arises, |- | will denote the Euclidean norm in
R? or R¥4, Furthermore, given a non-negative integer k and a subset S of R, Py (S) stands for the
space of polynomials defined on S of degree < k.

In the sequel we will employ 0 as a generic null vector, and use C and ¢, with or without subscripts,
bars, tildes or hats, to denote generic positive constants independent of the discretization parameters,
which may take different values at different places.

Now we recall some useful estimates that will be employed in the forthcoming analysis. We begin
with the well-known Holder inequality:

[(F9)ol < flopollglogo,  VfelP(0), Vge L O), with 1/p+1/¢=1. (1.1)

We further recall that the following Sobolev inequality holds: there exists a constant Cgon0 > 0,
depending only on |O| and ¢, such that

0,00 < Csob.0 w10 Yw e HY(0), (1.2)

[w

for 1 < g < oo whend=2and 1< q <6 when d =3. This means that H'(O) is continuously
embedded into L?(O) for the aforementioned ranges of ¢. In addition, we have the following continuous
embeddings (see [d2, Theorem 1.3.4] and [9, Proposition 1.4.2.]):

WIT(0) — CO(O) and WH¥(O) — WH(0), (1.3)
for all ¢ > %, and for all 1 <t < s < oo, respectively.

Finally, given a real number [ > 0, we recall from [d] the truncation function 7; and its primitive
77, defined by

) =" <L Vier  and  m) /t (s)d (1.4)
() = n m(t) = 71(8) ds, .
’ Isen(t) if [t > I, : o

respectively, where sgn (t) = 1if t > 0, or sgn (t) = —1 if t < 0. It is clear that 7; belongs to W1 (R).
Moreover, for any 1 € H}(O), we have 7(v)) € H{(O) N L°(O) and

Vi i || <1,

a.e. in O. (1.5)
0 if [ > 1,

V() = {

On the other hand, we observe that 7; is a Lipschitz continuous function, piecewise C!(R), and satisfies

m(0) = 0. In addition, for all ¢ € H}(O), we have that m () € H}(O) and

Vm () = () V. (1.6)



2 Continuous problem

In this section, we present the model problem and derive the corresponding variational formulation.
Next, we discuss the stability properties of the different forms involved and analyze the well-posedness
of the resulting formulation.

2.1 The model problem

In order to describe the geometry of the problem, we let 2y and €, be two bounded and simply
connected polygonal domains in R?, such that Q¢ N 0Ny, = X # 0, and Qf N Q= 0. Then, we let
I := 0% \i , T i= 0O \i, and denote by n the unit normal vector on the boundaries, which is
chosen pointing outward from Q := Qf U Q,, UX and Q¢ (and hence inward to €, when seen on ).
On ¥ we also consider a unit tangent vector t (see Fig. ECT).

Figure 2.1: Sketch of the geometry of the domains.

The problem we are interested in consists of the movement of an incompressible viscous fluid subject
to a heat source occupying )¢ which flows towards and from a porous membrane ), through X, where
Qy, is saturated with the same fluid (see [38, &1]). The mathematical model is defined by two separate
groups of equations and a set of coupling terms. In the free fluid domain ¢, the motion of the fluid
can be described by the following Navier—Stokes/Heat system:

or=2pe(us) — prI in Qy, la

(2.1a)

—dives + (ug-V)ug — gey =0 in (2.1b)

divug =0 in @y, (2.1c)

—ke Al + us- VO =0 in Qf, (2.1d)

where p > 0 is the dynamic viscosity of the fluid, u¢ is the fluid velocity, pr is the fluid pressure,

oy is the Cauchy stress tensor, I is the 2 x 2 identity matrix, 6 is the fluid temperature, k¢ > 0

is the fluid thermal conductivity, g¢ € L?(Q¢) is the external force per unit mass, div is the usual

divergence operator div acting row-wise on each tensor, and e(ug) is the strain rate tensor given by
e(ur) == 1 (Vus + (Vug)?), where the superscript ¢ denotes transposition.

In the porous membrane ), the behavior of the fluid can be described by the following Darcy-Heat
System,

K'uy +Vpn — gubm=0 in Qp, (2.2a)
divuy, =0 in Qp, (2.2b)
—Bkm Ay +uy-VO,=0 in Qp, (2.2¢)



where uy, represents the fluid velocity, py, the fluid pressure, 6y, the fluid temperature, gy, € L3(Qy,)
a given external force, Ky > 0 the thermal conductivity, and K € [LOO(Qm)]2X2 is a symmetric and
uniformly positive definite tensor in €2, representing the intrinsic permeability « of the membrane
divided by the dynamic viscosity g of the fluid. Throughout the paper we assume that there exists

Ck > 0 such that
§'K(2) € > Ck €, (2.3)
for almost all € Q,,, and for all £ € R2,

The transmission conditions that couple the systems (E1) and (E2) on the interface ¥ are given by

O =6n on X, (2.4a)
keVOr-n=k,VO,-n on X, (2.4b)

U -n=uy,-n on X%, (2.4c)

orn + ddit (uf-t)t= —pmn on X, (2.4d)

Vt-k-t

where ag is a dimensionless constant which depends only on the geometrical characteristics of the
membrane (see [B]).

The first and second conditions represent the continuity of the temperature and the heat flux,
respectively, while (244d) is a consequence of the incompressibility of the fluid and the conservation of
mass across % (see [36]). In turn, the fourth condition (E4d) can be decomposed, at least formally,
into its normal and tangential components as follows:

(ofn)-n = —p, and (ofn)-t = — (uf-t) on X. (2.5)

vt-Kk-t
The first equation in (275) corresponds to the balance of normal forces, whereas the second one is known
as the Beavers—Joseph—Saffman law, which establishes that the slip velocity along X is proportional to
the shear stress along ¥ (assuming also, based on experimental evidence, that uy, -t is negligible). We
refer to [B, 34, d4] for further details on this interface condition. Finally, the Navier—Stokes/Darcy/Heat
system (2), (Z22) and (Z4) is complemented with suitable boundary conditions:

u = 0 on TI¥, uy-n = 0 on Iy,
(2.6)
0f = Oplr; on If, 0m = Oplr, on Iy,

where 0p € W3/4’4(F) is given function defined on I' := I'f U I'y,.

2.2 The variational formulation

In this section we proceed similarly to [26, Section 2] and derive a weak formulation for the coupled
problem given by (2), (22), (24) and (E8). To this end, let us first introduce further notations
and definitions. In the sequel we will employ the following subspaces of H(div;€y,) and H!(€,),
respectively

Hp  (div; Q) = {v € H(div;Qy,): v-n=0 on Fm},

HL (Q,) = {veHl(Q*): v=0 on r*},



with « € {f,m}. Notice that the latter implies the definition of the following subspace of H'(£2)

HY, (Q) := [Hp, (Q0)]%.

To derive our weak formulation, first we multiply (2-IH) by a test function vf € H%f (€), integrate
by parts and employ (21d) and (E4d), to obtain

2 (e(ur), e(ve))o, + <\/,%(uf't)yvf‘t>z + ((ug - V)ug, v)o, — (pr, div ve)o; (2.7a)
+ A veen)y — (Orgr, vi)o, = 0,

for all v¢ € H%f(Qf), where A € HY/2(X) is a further unknown representing the trace of the porous
medium pressure on X, that is A = py|x.

Next, we multiply (2228) by vy, € Hr, (div; Qy,), and integrate by parts to obtain

(K;llum,vm)gm — (Vi -, Ay — (Pm, divvim)o, — (Om 8m; Vim)o, = 0 Vv € Hp, (div; Q).
(2.7b)

Now, to incorporate (2Id) and (E=Zd) to the variational system, we first define the spaces
Voo :={ e H(Q) : ¢la, €L®(m)} and Vg := Vs NHj(Q),

and notice that if 1) € Wy, then ¢|q, € H%f(Qf) and ¥[g, € H{ (Qw) NL>®(Qu). Then, we let
Y € Yo 0, and multiply (EId) and (222d) by ¢|q, and ¢|q,,, respectively, to obtain

ke (VO Vi), — ke (VO -m,¥)5 + (ur - VO, ¥)a, = 0,
and
Rm (vemy vd})Qm + Km <vem : n,¢>2 + (um : vema w)ﬂm = Oa
and summing up both equations, and using (E-2H), we finally get

ke (VOr, V), + km (VOm, V)a,, + (ur- Vo, ), + (Um - VO, ¥)a,, =0 Ve Uy, (2.7¢)
Finally, we incorporate the equations (21d), (E22H), and (24d), weakly as follows
(gr,divug)g, = 0, (gm,divum)o, =0 and (uf-n—uy-nf)y =0, (2.7d)

for all ¢r € L2(Q), qum € L*(Qm), and & € H/2(X), respectively.

As a consequence of the above, we define p := prxt + PrXm, 0 := Oexs + O xm, With xx being the
characteristic function:
1 in €,
Xx 1=

0 in Q\Q,

for x € {f,m}, to obtain the variational problem: Find us € H%\f(Qf), uy, € Hr, (div; Qn), p € L2(Q),
A € HY/%(%) and 6 € HY(Q), with 0| = 0p, such that (227d)-(E2Zd) hold.

We observe that § € H' () if and only if (2Z3) holds, so the interface condition (22d) is imposed on
the temperature space. In turn, we notice that since uy,, € Hr, (div; Q) and V0|q, = VO, € L?(Qn),

then uy, - V6, € LY(Q), which justify the introduction of the space Vo0 for the test function 7 in



Now, let us observe that if (ug, uy,,p, A, 0) is a solution of the resulting variational problem, then
for all ¢ € R, (uf, up,p + ¢, A + ¢, 0) is also a solution. Consequently, we avoid the non-uniqueness of
(E=@)—(E7d) by requiring from now on that p € L3(Q).

In this way, we let:

u = (ug, uy) € H:= Hy () x Hr,, (div; Q).
(. ) € Q:=L§(Q) x HV*(3),

where H and Q) are endowed with the norms
Ivile = lIvelles + [vmllave, Vv eH,

@9l = lldlog + lElhes V(g6 €Q,

and arrive at the following variational problem: Find (u, (p, \)) € HxQ and § € H'(Q), with 0| = 0p,
such that

Ap(u,v) + Op(us;ug,ve) + B(v,(p,\)) — D(@,v) = 0 Vv=(vgvy) € H,
B(u,(¢,§)) = 0 V(g,¢)€Q, (2.8)
Ar(0,%) + Or(w;0,¢) = 0 Vi € Uuop,
where the forms Ap : Hx H — R, Oy : H%f(Qf) X H%f(Qf) X H%f(Qf) —- R, B:HxQ — R,

D:HY Q) xH — R, A : HY(Q) x Usop — R, and O : H x HY(Q) x U o — R, are defined
respectively, as

Ap(u,v) = ap¢(uf, ve) + apm(Um, Vi),
Op(wgup, ve) = ((wr- V)uyg, vi)o;,
B(v,(¢.€)) = — (¢, divve)o, — (¢,divvm)o, + (vi-n— vy -n &y, (2.9)
D(0,v) = (0gr,ve)o, + (08m: Vin)Qu
Ar(6,v) = ke(VO, V), + km(VO, V),
O1(w;6,1) = (wg-V0,¥)q, + (Wm - VO,9)q,.,
with
arc(ur,ve) = 2u(e(ur),e(vi)o, + (i (ur ), vit)
ap,m(Um, Vi) = (K~ um, vin)a,, -

2.3 Existence and stability of solution

Now we address the existence and stability of solution of problem (ZR). We start the analysis by
deriving the stability properties of the forms involved.

2.3.1 Stability properties

We begin by observing that, after simple computations, the bilinear forms Ar, B and At are bounded,
that is,

[Ar(u,v)| < Cap [ulu|vle  Vu,veH, (2.10)
[B(v,(¢:9) < Callvlal(gle  VveH, V() €Q,
[AT(0,9)] < Carllfliel¥lhe V0 eHY(Q),VY € Ve (2.11)



In turn, employing () and (2), it is easy to see that

[D(0,v)| < Cp (lIgtllo,or + lgmllos.om) 10lallvie VO € ¥, Vv e H. (2.12)
Similarly, for Or we utilize (IT) and (), to obtain

Ok (wrs ug, vi)| < Cop Wil lluelle [[vellue,  Vwr, ug, vi € Hp ().
Now, we let V be the kernel of the bilinear form B, that is
V:i={veH:B(v,(¢,§)) =0 V(q¢) €Q}. (2.13)
From the definition of B we observe that v = (v¢,vy,) € V if and only if
(¢,divve)g, + (¢, divvm)o, =0 VYgeLi(Q) and (vi-n—vy -néy=0 VEC H'/?(%).
Then, noting that L2(Q) = L3(Q) ® R, and taking ¢ € R in the latter equation, we deduce that
(¢,divve)a, + (¢, divvm)a, =0 Vg€ L*(9Q),

which implies
divve=0 in Q and divvy, =0 in Q.

According to the above, we can rewrite V as
Vi={v=(vi,vin) EVixVp:vi-n—vy,-n=0 on X},

with
V= {v; € H%f(Qf) cdivve =0 in  Qf},

Vi = {vm € Hr (div;Qn) :divvy, =0 in Oy}

Next, we employ the well-known Korn’s inequality (see, e.g., [21]) for the bilinear form ap ¢, and
the fact that K—1 is symmetric and positive definite (cf. (233)) for ap m, to deduce that

aps(ve,ve) > 2uae||vellf o, and  apm(Vin, vin) > Ok [Vinlldivon (2.14)

for all v¢ € H%f(Qf), and for all vy, € Vy,, with af > 0. Using these estimates we deduce that the
form Ap(-,-) 4+ Or(wy;-,-) : Hx H — R, is elliptic on V for suitable w¢ € V¢. More precisely, we have
the following lemma. For its proof, we refer the reader to [20, Lemma 2].
Lemma 2.1 Let w¢ € V¢ be such that

2uag

Ws - < —
Iwe-nlo < &

, (2.15)
rcgob,E

where Cyy > 0 is the constant of the well-known trace inequality (see [2H, Theorem 1.4]). There holds
Ap(v,v) + Op(wg; v, vi) > ar ||[V|% Vv eV, (2.16)

with o := 1 min {uog, Cx}.



We also recall from [20, Lemma 1] that the bilinear form B satisfies the following inf-sup condition

sup BV S s10 ol V@o eq (2.17)

vem(o; lIvlm
with g > 0.

We continue by introducing the following lemma that summarizes some properties of the form Or.

Lemma 2.2 The following identity holds true:
Or(w;0,v) = —Or(w;1,0) Vw eV, Vl,¢pe Uy (2.18)
In addition, there exist positive constants Co., GOT; such that
0r(w;0,¢)| < Copllwlall¢llia (10lloze + 10lo,000.)  VYWEH, V0,4 € Usp,  (2.19a)

01(w;0,9)| < Cor Wl [¥lre (I0lluer + llloccs,) — VweH, VO, € Yo (219b)

Proof. Let w € V and 0,9 € W, o be given. Noticing that v¥|q, € Hll“m(Qm) N L*(Q), it readily
follows that V(0|q,,%|0.) = 0la.V(%la.) + ¥]a, V(0la,.) € L2(Qwm). Then, integrating by parts the
two terms defining the form Ot (cf. (2Z9)) and using the fact that divw, = 0 in Q,, for x € {f,m},
and w¢-n — wy, - n =0 on X, we easily obtain (ZIR).

Now, for (219a) we employ (218) and (I), to obtain

< ’(Wf -V, 0)9f| + ‘(Wm -V, G)Qm’

< wellog.0¢ [¥l.0: 100039 + W lldiviom [¥11,0m 1010,00,0m-

Then, applying (I2) to ||w¢l/o,6,0, we easily deduce (ETUd). Finally, from (ZT9a) and ([2) applied
to ||0]0,3,0, we easily obtain (P-T9H), which concludes the proof. O

On the other hand, using the Poincaré inequality, we obtain

Ar(,9) > ar|¥llig Ve € Hy(Q), (2.20)

with constant ar := Cp min{k¢, ky, }, where Cp > 0 is the corresponding Poincaré’s constant. Com-
bining this estimate and (ZI8) one easily deduce that for a given w € V| Ap(-,-) + Op(w;-,-) is
elliptic on W, o, that is

Ar(¥,9) + Or(wi,¥) > ar [¥[lg Vo € T (2.21)

However, the latter is not valid for any 1 € H§(Q) since v|q, would not belong to L>°(Qy,) and
consequently Op(w; 1, 1) would not be well-defined. Moreover, since the space for the temperature
unknown 6 is different to the one for the test functions v in the third equation of (Z8), namely H!()
and U o, respectively, estimate (22211) is not sufficient to study the well-posedness of our problem.
According to the above, now we employ the truncation function defined in () to prove that for any
w eV, Ar(-,-) + Or(w;-,-) : HY(Q) x ¥, — R induces an invertible operator. More precisely, we
have the following lemma.
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Lemma 2.3 Let w € V. The following inf-sup conditions hold
Ar(0,¢) + Or(w; 6,9)

sup > ot ||6]1,0 Vo € HY(), (2.22a)
$EVa0\{0} 1]l
and
sup Av(0,1) + Or(wi6,9) > 0 Vi€ Uago ) {0}, (2.22D)
0eH} ()

Proof. Let w € V. First, we recall that for any [ > 0 and ¢ € H}(Q), 7,(¢) belongs to H§(£2) NL>®(£)
and Vm(¢) = Vo 11(¢), which implies that

Or(w; ¢, 7(¢)) = (We, Vo 71(d)) o + (Wi, VOT1(9)) 00 = (We, V()0 + (Win, V(€)@

and then, integrating by parts and using the fact that divw, = 0 in €,, for x € {f, m}, and w¢ - n —
w - n =0 on X, we obtain

Or(w;¢,m(¢)) =0 V¢ e Hy(Q). (2.23)

In this way, from (E220), (Z23) and the fact that Ar(¢,7(¢)) = Ar(ri(¢), Ti(9)), for all ¢ € HY(Q), it
readily follows that for any [ > 0 and 6 € H}(£2), there holds

qp  ATE:Y) T Or(wib.4) | Ar(0.1(0) + Or(wi6.n0) o | oo

YEW o0 0\{0} [ RIGHES - [EAACHIFRS

The latter and the strong convergence of 7,(#) to 6 in H'(2), imply (22223) (see [@, Lemma 2.5]).

Finally, for (Z227H) we recall that ¥, o C H{(Q2) and employing the coercivity of Ar(-,-)+Or(w;-, )
given in (2721), to obtain that for any 1 € ¥ \ {0}, there holds

SuI() )AT(0,¢) + Op(w;0,¢) > Ar(v,%) + Or(w;,v) > ar|¢|fq > 0,
HeH} (2

which concludes the proof. U

2.3.2 An equivalent reduced problem

To simplify the analysis of existence and stability of solutions of (E8), we now introduce a reduced
equivalent version of the problem. To do this, we let E : W3/44T") — Wh4(Q) be the usual lifting
operator (see for instance [21, Corollary B.53]), satisfying

W(EQ) =¢ and [E(Q)Ihae < cllClsaar ¥Y¢ e WD), (2.24)

where g : WIA(Q) — W3/44(T') is the trace operator. In turn, we let § > 0 and, similarly to [,
Lemma 2.8], define the function 85 : R? — R given by

1 if 0 < dist(x,T) <6,
Bs(x) := ¢ 2 —§ dist(x,I') if § < dist(x,T") < 26, (2.25)
0 if dist(x,I") > 24,
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where dist(x, I') denotes the distance from the point x to the boundary I'. Observe that (5 is continuous
and satisfies

BseWhe(Q), 0<fs<1 in Q5 Bs=0 in Q\Qs, and [|Vfslloaq, < QY4
(2.26)
where Q5 := {x € Q : dist(x,I') < 20}. In this way, in order to handle the non-homogeneous Dirichlet
boundary condition for the temperature, we introduce the extension operator

Es := B5E : W¥/44() — Wh(Q). (2.27)
In the following lemma we summarize some properties of this operator.
Lemma 2.4 For all { € W3/44(T), E5(¢) lies in L>®(Q) and satisfies the estimate
IEs(Olloco,2 < [E(O)]l0,00,0- (2.28)
In addition, there exist Cig. 1, Chigr2 > 0, such that
IEs(O)losa < Chia 612 IClls/aar  YC € W4T, (2.29a)
IE5(C)llne < Cunz 6721+ 62 [Clsaar V¢ € WHHD). (2:29b)

Proof. We begin the proof by observing that the first Sobolev’s embedding in (=3) with ¢ = 1 and
r = 4 guarantees the fact that Es(¢) € CO(Q) C L>®(Q), for all ¢ € W3/44(T). In addition, using the
second and third properties of s (cf. (2223)) given in (E228), there holds

IEs(Ollo,oc2 = [1Es(O)]l0,00,025 < [IE(C)

|07OO7Q(57

which implies (228).

Now, to derive (22294d) and (2229H) we proceed similarly to [T7, Lemma 3.2]. In fact, we first apply
the Holder inequality (I) with p = 4 and ¢ = 4/3 and the estimate in (2224), to obtain

IEs ()13 5.0 < NEQIR 5.0, < 126 IEQ 40 < 26V IEQIT a0 < ¢6IC13 40r

which implies (E229d). Similarly, but now applying Hoélder’s inequality with p = ¢ = 2 and the
properties of 85 in (2228), it is follows that

IV(Es(O)lloe < [IV(Bs)E) lo,s + 185V (E())0,05
< e QY EQ) loaq + 1926V IV (EQ))
<cd 1+ )Y Cll3jaar-

0,4,

which gives (22298).
O
Given a fixed § > 0 now we define the following lifting for the Dirichlet datum fp € W3/44(I):
0, == Es(fp) € WH(Q), (2.30)

and decompose the unknown 6 € HY(Q) as 6 = 6y + 01, with 6y € H}(2). In turn, we recall from the
second equation of (ZX) that the unknown u = (u¢,uy) € H satisfies B(u, (¢,£)) = 0 V(¢,&) € Q,
which implies that u € V (cf. (E13)). According to the above, now we introduce the reduced version
of problem (E=8) on the kernel V, which consists in finding (u,6) € V x H}(Q), such that

AF(U,V) + OF(Uf; Uf,Vf) — D(Go,v) = D(91,V) Vv eV,
Ar(0o,¥) + Or(w;bo +01,9) = —Ar(01,4) VY € Voo,
It is not difficult to see that problems (231) and (Z) are equivalent. This result is established next.

(2.31)
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Lemma 2.5 If (u,(p,)\),0) € Hx Q x HY(Q) is a solution of (Z8), then u € V and (u,0p) = (u,0 —
61), with 61 defined in (2230) is a solution to (2=31). Conversely, if (u,0p) € V x H}(2) is a solution
to (2231, then there exists p € LE(Q) and A € HY2(X) such that (u, (p, \),0) = (u, (p, \), 0 + 01) is
a solution to (ZR).

Proof. The proof follows from the definition of the lifting 6; (cf. (2230)) and the inf-sup condition
(21). We omit further details and refer the reader to [89, Lemma 2.1] for a similar result. O

According to the previous lemma, to prove existence of solution of problem (ER), it suffices to prove
existence of solution of problem (P=31). In addition, by deriving the stability of solution of problem
(223T) one can easily obtain the corresponding stability for (28). We begin with the latter.

2.3.3 Stability of solution

The following theorem addresses the stability of solution of the reduced problem (2=3T).

Theorem 2.6 Let 01 = Es(0p) € WH4(Q), with § > 0 satisfying

CpCo 1
—P=O (|lgeflo.g; + 18mll0,3.0) Clite1 872 00 l3/a0r < 7, (2.32)
[e5e %y 4
and let (u,0p) = ((ug,um), bp) be a solution of (B=3T). If we assume that
s < it (233
ur -njloy =~ 53 .
Cgrcgob,E
and that the lifting 01 satisfies the estimate
CpCor
=D 0 . 0 < 2.34
DLt (g, + lmloson) ilocn < 5 (2.34)
then, there holds
[ullm < Cu(llgtlloqr + llgmllos.on) [101]L0, (2.35)
and
1ol < CollO1]]1,0, (2.36)

with Cy and Cy, being positive constants depending on the stability constants given in Section EZ31
(see (E20) and (224A) below for explicit expressions of Cy and Cy, respectively).

Proof. Let (u,6p) € V x H}(Q) be a solution of (2231) and to simplify the notation, let

’Yg = ”ngO,Qf + HgmH07379m' (237)
Noticing that the first equation of (2231) can be written as
Arp(u,v) + Orp(ug; v, ug) = D(6p,v) + D(01,v), VveV,

we take v = u, and owing to (Z333) we can make use of the ellipticity of Ap(-,-) + Or(us;-,-) given in
(218), and the continuity of D, to obtain

ar [ullg < Cprgllfolli.e + Coyg 0110 (2.38)
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In turn, from the second equation of (E=3T), the inf-sup condition (EZ2Zd), and the continuity of A
and O (cf. (E10) and (219d), respectively), we obtain

At (0 7/ — Ar(0 — -0
ar ol < sup [A1(00,¢) + Or(u; 6o, ¥)| _ sup | 1(61,9) — Or(u;01,7)|
YEWa 0\ {0} %110 YEV 0 0\{0} [9]]1,0
< Carllillne + Coq llullm ([[01ll03.0; + 161l0,00,00m) -

(2.39)
In this way, from (P=38), (2=39), there holds

CD(CA —I-OéT) CpCo
Jullg < ——F——F%llO1llia+ “vgllullm (101]l0,3,00 + [[01]0,00,00m)
ap aT ap aT
Cp(Ca, + ar) CpCo
< S O ol + 2= g e (G 18200 aaar + [61]l00e0)
afF o afF aT

where in the last inequality we employed (2229a). In this way, from (E234) and (E=32) we deduce (E233),
with
Cy = 2041;1 a,}l Cp (Cap + aT). (2.40)

In turn, by combining (E=39) and (235), we get

Boll1e < ozt [Caylon

1o + Cop Cug I0ille (Clinad" 20plls/aar + 101lo0e0)] - (2:41)

In addition, using the definition of Cy, in (220), from (2232) and (EZ3d), we obtain, respectively

Car + «
1.0 Clite,1 62 (|0pl3/4ar < (; T) 161
aT

a1’ Cor Curg 161

and

Lo (2.43)

_ CA —l—aT
%W%@%MMMmmns<T)m

205”[‘
Therefore, by combining (241), (222), and (2243), we achieve (2238) with

Cp:=ap' (204, + ar). (2.44)
0

Remark 2.1 Observe that, according to (Z228), the condition (2=34) can be replaced by

Cp Cor
ar at

)

=

(Igtllo.ar + lgmllo3.0m) IEED)llo.c0.05 <

which, in other words, means that the L°°-norm of the extension of the datum 0p must be small enough
on Qs :={x € Q: dist(x,I") < 25}, where Qs is a small portion of the domain ) near the boundary T".
In particular, if 6 is small enough so that ||E(6p)|l0,00,.05 = |0D]l0,00,0s 0ne could simply assume that

Cp Coy 1

) < =
po— (Ilgello.or + llgmllo3,00) [1€Dll0,co,r < 1

On the other hand, assumption (2233) suggests that the magnitude of the inflow on the interface
must be bounded, which is a reasonable assumption for this kind of phenomena. Otherwise, the porous
medium would act as a wall which would prevent the fluid to penetrate.
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We end this section by deriving the corresponding estimate for the pressure p and the Lagrange
multiplier .

Corollary 2.7 Let (u,6p) = ((ug,um),0) € V x H}(Q) be a solution of (Z31) and let (p,\) € Q be
such that (u, (p, \),0) = (u, (p,\), 00+ 61) € H x Q x HY(Q) is a solution to (ZR). If we assume that
the hypotheses of Theorem 228 hold, then there exist C, Cy > 0, such that

[, Mllq < (C1 + Cavgllbr

[L.0)7elf1][1,0;

with Tg = ||ngO,Qf + Hgm 0,3,2m -

Proof. The result is a direct consequence of the inf-sup condition (217) and the first equation of (23).
In fact, it is easy to see that

B(v,(p, A
Bl Nle < sup D)
vemfo; |[vlm
= sup —AF(U, V) - OF(Uf;Uf,Vf) + D(Q,V)
vEH\{0} vl

IN

(Cap Il + Cop [luelli o + Cpg l6]

1,0)
< (Cap + Cop CurgllO1]l1,0)Curg 101]l1,0 + Cp vg(Co + 1)[|01]1,0,

which implies the result. O

2.3.4 Existence of solution

In what follows we proceed similarly to [@, Section 2.3] to prove existence of solution of (2Z31) by means
of a Galerkin’s method and a fixed-point strategy. More precisely, since the trial and test spaces are
different, we introduce a Galerkin scheme for (2231) to obtain a finite-dimensional square system of
nonlinear equations. Then, we apply the Brouwer Fixed Point Theorem to prove existence of solution
of the resulting finite-dimensional problem and pass to the limit to obtain the desired solution.

We begin by recalling from [I0, Propositions 9.1 and 3.25] that W(I)A(Q) is separable and has a
countable basis. In turn, since V is a closed subspace of H = H%f(Qf) x Hr,, (div; Qy,) and H%f ()
and Hp,_(div;€,,) are separable, V is also separable and has a countable basis. Then, we let {¢; }ien
and {2z;}ien := {(2it, Zim) }ien be the countable bases of Wé’4(Q) and V, respectively and for a fixed
n e N, welet ¥,, = ({¢1,...,0n}) and V,, = ({21, ...,2,}). We define the following finite-dimensional
nonlinear problem: Find (uy,8n0) = ((Wnf, Upm),0no) € Vi, X ¥y, such that

AF(unav) + OF(un,ﬁun,fan) - D(en,07v) = D(917V)7
Ar(0n0,%) + Or(uni o +01,9) = —Ar(61,9),
for all (v,v¢) := ((v¢, Vi), %) € Vy, x Uy, with 61 defined as in (2230).
Notice that (243) is a discrete version of (2231) since W(l)’4(Q) C L*(Q) and W(l]’4(Q) C H}(Q)
(owing to (I33)).

In what follows, we prove that problem (EZ3) has at least one solution by means of the classical
Brouwer’s fixed point theorem in the following form (see [I0]):

(2.45)

Theorem 2.8 Let Y be a compact and convex subset of a finite dimensional Banach space X, and let
f:Y =Y be a continuous mapping. Then, f has at least one fized point.
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To apply Theorem 8 to the context of problem (E43), we first define the compact and convex set

|61

X = {(w,0) € Vo x Uy, [[wllm < Cu (llgtllo.0r + 18mllo3.0.)

1o, lI9lle < Collbrllal,

with Cy and Cy defined in (240) and (E44), respectively. In turn, we let 7, : X,, = V,, x ¥,, be the
operator defined by

TIn(W, 0) = (up,0,0) YV (w, ) = (wg, wn), ¢) € X, (2.46)

where (uy, 0, 0) is the unique solution (to be verified below) of the linearized version of problem (ZZ3):
Find (uy,0n,0) € Vy, x ¥y, such that

Ap(uy,v) + Op(Wesupe,ve) = D(¢,v) + D(61,v) Vv eV,

247
Aoy §) + Or(wibno ) — — Av(Br,0) — On(wif ) Vo€ W, (247)

Then, it is clear that (uy,,0,0) € V,, X ¥, is a solution of problem (ZZ3), if and only if, 7, (u,,0,,0) =
(un, 9n,0> .

According to the above, to prove existence of solution to (E43H) in what follows we equivalently
prove that 7, satisfies the hypotheses of Theorem Z8. Before doing that, we must verify that 7, is
well-defined. This is addressed in the following Lemma.

Lemma 2.9 Let § > 0 satisfying (2232) and let 01 = Es(0p) € WH4(Q) be such that (2234) holds. If
we assume further that Op satisfies the following estimate
2po

03.0m) Clitt2 641+ 032 |0p |3 /sar < 55—
Ci Cop 5

Cu (llgtllo.gr + llgm (2.48)

then, J,(X,) C X,, and for each (w, @) € X,,, there exists a unique (u,0) € X,,, such that J,(w, ¢) =
(u,0).

Proof. Given (w,¢) = ((wg, wn),¢) € X, we first observe that (247) is an uncoupled system of
linear equations. Thus, to prove that operator 7, is well-defined it suffices to prove the well-posedness
of the two equations in (247) separately.

For the subsequent analysis, we let vg as in (2237), that is vg = [|&¢]l0,0; + [|8ml[0,3,0m-

First, we use the well-known trace inequality with constant Cy, > 0 (see [25, Theorem 1.4]), and
estimates (2220H) and (E48), to obtain

[we-nllos < Culwello, < Ci Cuvgllfllie

IN

Cir Cu g Chife,2 073/4(1 + 62)1/2 |60 ll3/4,4,0 (2.49)

2o

2 2 )
Ctr CSob,E

IN

which implies that wy¢ satisfies (2213). Then, thanks to Lemma P71 we have that Agp(-,-) + Op(wyg; -, -)
is elliptic on V,,, which together with the Lax—Milgram Lemma implies that there exists a unique
u € V,, solution to the first equation of (Z44). Similarly, since ¥,, C ¥ g9 and V,, C V, from (EZ21)
we have that Ap(-,-) + Op(w;-, ) is ¥,-elliptic. Then, owing to the Lax—Milgram Lemma we obtain
that there exists a unique 0 € ¥,,, solution to the second equation of (Z47). According to the above,
we have proved that there exists a unique (u,0) € V,, x ¥,,, such that J,(w, ¢) = (u,0).
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To conclude that J,(X,,) C X,,, it remains to prove that the aforementioned solution (u, ) belongs
to X,,. To that end, we first notice that, since u satisfies the first equation in (247), from the ellipticity
of Ap(-,-) + Op(ws;-,-), the continuity of D, the fact that ¢ € X,,, and the definitions of Cy and Cy
(cf. (Z22) and (M), respectively), we have

lullg < op' (Coldllevg + Colltilleve) < ap Cp(Co+ g libillie < Cuvg l161ll10-

Similarly, since 6 satisfies the second equation of (E7), from the estimate above, the ellipticity of
Ar(+,-) + Orp(w;-,-) (cf. (2221)), the continuity of Ay (cf. (E11)) and Op (cf. (219d)), and estimate
(ZZ94), it follows that

10]10 < o' [Carlifr

10 + Coq lulla (Cuw, 18 2(10pl3/a.41 + 1101]l0,00,2) ]

<ap' [Ca.lltn

10 + Cor Curglfille (Cue 18 10pll3/04r + [61ll0,00.0)] -

In this way, noticing that the estimate above coincides with estimate (EZ21), analogously to the proof
of Theorem B, we easily obtain [|0||1. o < Cy||61]/1,0. According to the above, (u,6d) € X,, which
implies that 7,(X,,) C X,,, which concludes the proof. O

Now we establish the continuity of operator 7,.

Lemma 2.10 If we assume that the hypotheses of Lemma 22 hold, then J, is a continuous operator.

Proof. Let (w,¢) = ((wr, wm), ¢) € Xy and {(wj, ¢j)}jen = {((Wrj, Wi j), ¢5)}jen € Xa, be such
that [w; — wile =5 0 and |¢; — 1o "= 0, and let {(u;,60;)}jen = {((ur, ), 0)}jen € X
and (u,0) = ((ug,un),0) € X,, given, respectively, by
jn(wj7¢j) = (uj,Gj) VjeN and jn(W,d)) = (11,9).
To prove the continuity of 7, it suffices to prove that ||u; — u||u 2% and 16; — 81,0 %0, To
that end, given j € N, from (227) and the definition of 7,, (cf. (248)), we first observe that
Ap(u—u;,v) + Or(wrug, vi) — Op(wejiugg, ve) = D(¢—¢j,v) Vv = (v, Vm) € Vi,

AT(9 - ejvw) + OT(W7 va) - OT(W], 93) 1/}) = - OT(W - Wy, 91;¢) V¢ € \I/n
(2.50)
In turn, noticing that wy satisfies (2229), we have that Ap(-,-) + Or(wy; -, -) is elliptic (cf. (Z18)) on
V.. Then, from (2250) with v = u — u;, adding and subtracting Or (W j; ur, uf — uy ;) and employing

the continuity of Or and D, and the fact that wy ; =y w and ¢; =y ¢, we arrive at

j—>
Loy luellie + Cpllé — djliare = 0, (2.51)

ar ||lu—ujllg < Copllwr — wij

Where 'Vg = ||gf||079f + ||gmH07379m'

Similarly, in the second equation of (Z20), we let ¢ = § — 6;, add and subtract Or(w;;6,0 — 0;),
and employ the coercivity of Ar(-,-) + Or(wj;-,-) given in (E2211), the continuity of Ot (cf. (ZT9H)),
and the fact w; = w, to obtain

Jj—o0

ar [0 = 0il1e < Cop llw —wjlle (10 + 01 ]l10 + 110 + 61 ]l0,00.00) = 0. (2.52)

In this way, according to the definition of 7, (cf. (228)), from (Z51) and (2552) we obtain that
TIn(Wj, ¢5) 2% 7.(w, ), which implies the continuity of J,. O

Now we are in position of establishing the solvability result for the finite-dimensional nonlinear
problem (ZZ3).
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Theorem 2.11 Let § > 0 satisfying (232) and let 01 = Es(0p) € WH4(Q) be such that (2234) holds.
Assume further that (E248) holds. There ezists at least one (U, 0p0) € X, solution to problem (ZZ3).

Proof. The proof follows from Lemmas P29, 210 and Theorem PZR. O

Now we address the solvability of the reduced problem (P=3T). This result is established in the
following Theorem.

Theorem 2.12 Let § > 0 satisfying (232) and let 1 = Es(0p) € WH*(Q) be such that (2234) holds.
Assume further that (248) holds. Then, there exists at least one solution (u,fp) € V x H{(Q) to
problem (2231).

Proof. In what follow we proceed similarly to the proof of [4, Theorem 2.3]. To that end, for eachn € N,
we let (Up,0n0) == (U5, Umn),On0) € X, be a solution of problem (PZ3) and let {(uy, 050) tnen €
V x H}(Q) be the resulting sequence. In turn, for a fixed 1 < i < n, we let (z;, ¢i) := (Zif, Zim), @i) €
V,, X ¥, be the i-th basis function of V,, x ¥,,.

First we notice that, since (uy,0,,0) € X,,, then for all n € N,

[unllm < Cu(llgtlloor + lgmllosau)llfille and  ||0hollie < Coll01l1,0,

thus {(Wn, 0n.0) bnen is a uniformly bounded sequence of V x H}(Q), which together with the fact
that V is a closed subspace of H, implies that there exists a subsequence, namely {(Uy,0n,0)}neny €
{(Wn, 01.0) }nen, that weakly converges to some function (u, ) = ((ug, up), o) in V x H(Q2), that is,

Uy = (Ut Omn) "5 u = (up,up) € V.CH = HE (Q)xHr,, (div; Q) and 6,0 "= 6y € H5(Q).

(2.53)
In the sequel we prove that (u,6p) is a solution to (231). In fact, from the second weak convergence
in (Z53) we have that for each ¢ € N, there holds

n—,oo

| A (B0 — B0, ¢i)| < max{ke, km H(V (0o — b0), Vi )a| =30,

thus

~

lim At(0n,0,90:) = Ar(bo, ¢i). (2.54)

n— o0

Now, recalling that ¢; € ¥ for all ¢ € N, by applying the Green formula (EI8), we deduce that

O1(@in; Ono+01,9:) = — O1(8n; 91, 00 +01) = — (Tt (On0+61), Veor)o, — (B (Bno+01), Vioi)a,.
(2.55)

In turn, since {U¢p }nen converges weakly to ur in H'(Q)y) and since H!(€2) is compactly embedded

in L4(Q), it follows that {Us, }nen converges strongly to ug in L4(¢), and analogously we have that

{00 }nen converges strongly to 6 in L*(2). These strong convergences and the fact that §; € W14(€),

imply that

~

lim (ﬁf,n(en’o + 91), chi)gf = (Uf (90 + 91), V(,Di)Qf. (2.56)

n—o0

On the other hand, the strong convergence of {én,o}neN to fp in L4(2) and the fact that Vi, € L4(Q)
imply that {0, 0V; }nen convergences strongly to 6pV; in L2(Q). Then, similarly to (2358), this
strong convergence and the weak convergence of {Um n }nen t0 U in L2(€y,), imply that

~

lim (U (0n,0 + 01), Vei)a, = (Um (6o + 61), Vi), (2.57)

n—oo

18



In this way, from the second equation of (24H), and from (E254), (E553), (E558) and (E551), it follows
that

~ ~

—Ap(01,9) = lim [AT(Hn,Ov‘Pi) + Or(Up;Onp0 + 91,%‘)}

n—oo

= tim [Ar(Buo,20) — On(@ni i, 00 + 01| (2.58)

n—o0

= At(0o, ;) — Or(u; 94,00 + 01) = A1 (0o, i) + O1(0;6p + 61, ;).

Analogously to the above, from the first equation of (Z2H) and using the fact that {uf,},en and
{010 }nen converge strongly to u in L*(Qy) and 6y in L4(Q), respectively, we deduce that

~

D(0:,2;) = nlg{.lo [AF(ﬁnazi) + Or(Qy1;Up f,2if) — D(0no,2i)

(2.59)
= Ap(u,z;) + Or(us;ug,z¢) — D(6o,2;).

In this way, from (E58), (2259), and the fact that the basis {(z;, ¢;i) }ien is dense in 'V x W(I)A(Q), we

obtain
Ap(u,v) + Or(ug;ug,vg) — D(Op,v) = D(61,v) Vvev,

2.60
Ar(0o,0) + Or(u; g +01,9) = —Ar(01,9) Yo € Wyt(Q). (260

Since each term in the first and second equation of (280) defines a continuous linear functional on
V and Wé’4(ﬂ), respectively, particularly from the second equation of (Z80), we deduce (2Id) and
(2224) in the sense of distributions, that is

—ktAbO + up-VO =0 and —rkpnAbly + uy-Vo,=0.

Hence, recalling that us - V|o, € L?(€) and uy, - Vélg,, € H%m(in)’ , we observe that the second
equation of (E760) implies the identity

(. 9) + (ar- V0, 6)o, + (V0,601 @) + Or(ws01,0) = — Ar(0h, ) Vob € HY(Q).
Therefore, since uy, - Vfgl|q,, also belongs to L!(£2,), from the latter we can recover the equation

Ar(0o,v) + Or(u; 00 + 61,) = — Ar(01,9) Vo € ¥,

thus, (u,6p) satisfies (2=31), which concludes the proof. O

2.4 Uniqueness of solution

The uniqueness result for problem (228) is established in the following theorem.

Theorem 2.13 Assume that the hypotheses of Theorems 28 and ZI3 hold and let (u,(p,\),0) =
(u, (p, ), 00+01) € Hx QxHY(Q) be a solution to (ZR), with 61 = Es(0p) € WH4(Q) and 6y € H5(Q).
Assume further that 0olq,, € L°°(Qm) and that

(C17g + Ca) Cuini 262 (14 6*) 2100 13 /a.4.0 + C3[100]10,00,0m + C5[101ll0.00,00 + Cavg < 1, (2.61)

with vg = ||8tllo.0; + |8mll0,3,0m and Ci, Ca, C3 and Cy the positive constants given in (Z68). Then
the solution of problem (ER) is unique.
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Proof. et (u, (p, \),0) = (u, (5, A), 0o + 01) € H x Q x H(9) and (@, (5, %),7) = (&, (5, X), o + 01) €
H x Q x HY(Q) be two solutions of problem (E=). It follows that (u,6)), (a,fp) € V x H}(Q) are
solutions of (Z23T), which implies

AF(u—ﬁ, V) + OF(Uf;uf,Vf) — Op(ﬁf;ﬁf,Vf) — D(GO —go,v) = 0 Vveyv,

_ _ 2.62
Ar(0p — 0o,7¢) + Or(u;0p,v) — O1(W;6p,v¢) + Or(u—1w;01,¢0) = 0 Vi€ Uy (2.62)

From the first equation of (Z62) we observe that by adding and subtracting Op(us; Ug, v¢), taking
v = u— 1, employing the coercivity of Ap(+, )+ Op(u;-,-) (cf. (E18)) , and the continuity of Op and
D, we have

1.9, + Cogllfo — gOHl,Q- (2.63)

In turn, in the second equation of (Z62) we add and subtract Ot(u;6fp,), recall the fact that
00l 0ol € L°(Qm) to define ¢ = 0y — 0y € ¥oo g, and then employ the coercivity of Ar(:,-) +
Or(u;-,-) (cf. (2220)) and the continuity of Ot (cf. (ET9H)), to get

ap [u—1llmg < Coyllur — (1,0, [T

ar |0 — ol < Coy lu—allw (|80 + 61

I + 100+ 01l0,00,0) - (2.64)
Then, summing up (263) and (Z64), we arrive at
Ju—dlm + |0 — ollio < ap' [Copllur — Tell10; 18t ll10 + Cp e 100 — Ooll1.0]

oz [Cop u— e (180 + Ol + 1o+ 6illosc)|

and then, using the fact that el < [Ullg < Cuvellbillia (cf. (2338)) and |00 + 6110, <
1600+ 01]]1,0 < (Co + 1)]|61]/1,0 (cf. (2238)), we obtain

lu =l + 1o — folle < ((Cryg + C2)ll61ll1.0 + Csllfoll0,00,00 + Call01ll0,00,0,) 0 — 1

+Cuygllf0 — Ooll1.0,
(2.65)

where
Cy = aptCop Cuy Co:=a3'Coy (Co+1), C3:=a7'Co,, and Cyp:=ap'Cp.  (2.66)
In this way, recalling that estimate (2229H), implies
”91HLQ < C'lift,2 573/20 + 52)1/2 ”9D||3/4,4,F,

from (2Z6H) and (ZGl) we readily obtain that u = @ and 6y = fy. Now, for the pressure and the
Lagrange multiplier, from the inf-sup condition (2I7) we have that

B(v,(p—p,A— )

Blp=pA=Nlq < sup

veH\{0} vl i
= sup —Ap(u—1,v) — Op(us; us, v¢) + Op(ag; g, ve) + D(0g — 0o, v)
veH\{0} HVHH s

which after simple computations implies that [[(p — p,A — A)[lq < 0, thus p = p and A = A, which
concludes the proof. O
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3 Galerkin scheme

In this section we introduce and analyze a finite element scheme to approximate the solution of problem
(2]). We start by introducing the Galerkin scheme and reviewing the discrete stability properties of
the forms involved. As we shall see next in the forthcoming sections, the analysis of the associated
discrete scheme is analogous to the analysis of the finite-dimensional problem (E47), employed to
study the continuous problem (2231).

3.1 Discrete problem

Let 77f and T, be the respective triangulations of the domains ¢ and €y, formed by shape-regular
triangles of diameter hr and denote by h¢ and hy, their corresponding mesh sizes. Assume that they
match on ¥ so that T, := 77f UT.™ is a triangulation of Q := Q; UX UQy,. Hereafter h := max{hs, hm }.

Given an integer [ > 0, for each T' € T, we let P;(T") be the space of polynomials functions on 7" of
degree equal or less than [. Moreover, for each T' € T,f, we denote by BR(T') the local Bernardi-Raugel
space (see [, BT]),

BR(T) := [P1(T)]* ® {n2 nsn1, 1 n3 2, n2 mz},

where {1, 72,713} are the baricentric coordinates of T', and {n;, ny,n3} are the unit outward normals
to the opposite sides of the corresponding vertices of T'. In turn, for each T € 7, we consider the
local Raviart—-Thomas space of the lowest order (see [43])

RTy(T) := span{(1,0), (0,1), (x1,x2)}.

Hence, we define the following finite element subspaces:

Hy, (%) := {vi € HY(Q¢) : v¢|r € BR(T) VT €T}, Hy, r, (Q) := Hy,(Q) N HE (Q),

H;, () :={vm € H(div; Q) : Vu|r € RTo(T) VT € T,"}, Hpr, (Qm) == Hp(Qm) N Hr,, (div; Q4,),
Lu(Q):={q e L?(Q) : qlr € Po(T) VT € Tn}, Lpo(2) := Lp(Q) N LE(Q),

Uy = {y e HY(Q) : ¢|r € PL(T) VT €T}, Uy 0= ¥, NH(Q).

It remains to introduce the finite element subspace for H'/2(X). To do that we denote by %, the
partition of ¥ inherited from 7;Lf (or 7,") and assume, without loss of generality, that the number of
edges of ¥y, is even. Then, we let 395, be the partition of ¥ arising by joining pairs of adjacent edges
of 3. If the number of edges of ¥} is odd, we simply reduce it to the even case by adding one node
to the discretization of the interface and locally modify the triangulation to keep the mesh conformity
and regularity. According to the above, we define the following finite element subspace for H/ (%)

Ap(Z) == {&, € CUD) : &le € Pi(e) Ve € Top).

Now, we let I, : CO(Q2) — ¥}, be the well-known Lagrange interpolation operator and recall that,
under the assumption fp € W3/44(T") and for a given § > 0, E5(fp) belongs to W4(Q) € C(Q) (cf.
(=3)). For a fixed § > 0 (to be specified below), we define the following approximation to 6p:

9]‘;7,1 =I1,(Es(0p))|r € {¢p,n € CO(F) :Ypnle € Pi(e) for alle € &r}, (3.1)

where &t stands for the set of edges on I

Let us observe that since € is a polygonal domain, (25 is also a polygon that can be discretized by
shaped-regular triangles. According to this, for the forthcoming analysis we let E‘S be a triangulation
of Q05 and assume that 7;{5 C T
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In this way, defining the global spaces
Hy, o= Hpr () x Hyp, (Qm)  and - Qp := L p(R2) X An(2),

the Galerkin scheme associated to (ZR) reads: Find w, := (upg,upm) € Hy, (pp, An) € Qp and
0y, € Wy, such that 6,|p = H%h, and

Ap(up,vi) + Ok(upgsuns, vig) — B(Vh, (prs An)) — D(Oh,vi) = 0 Vv € Hy,
B(up, (qn, &) = 0 V(an, &) € Qn,  (3.2)
Ar(On,¢n) + Oh(ap; Op, ) = 0 Yo, € Uy,

where Ap, B, D, and At are the form defined in Section P22, while Olfi and Off are the skew-symmetric
convection forms (see [47]), defined by

1 ..
Og(Wf;Uf,Vf) = ((Wf . V)Uf,Vf)Qf + 5 (leWf,llf Vf)Qf,

for all w, ug, vy € Hy, 1, (), and

1, ..
O%(W;H,Q/}) = (wg-V0,¥)q, + (W - VO,¢)q,, + 3 (divwg, 09)qy,

for all w = (wg, wy,) € Hy, and for all 0,1 € ¥;,. The motivation for this choice is given later on in
Remark BT

3.2 Existence of solution of the discrete scheme

In what follows we prove that the discrete problem (B7) has at least one solution under suitable
assumptions on the data. We begin the discussion by establishing the stability properties of the forms
involved restricted to the corresponding discrete spaces.

3.2.1 Discrete stability properties

We begin by observing that the forms Ap, B, D, and At are continuous with the same constants
described in Section 2231 (see (210)-(211)). In turn, by using estimate (I"2) with p = 4, it is easy to
see that

Ok (wesug, ve)| < Cop Iwellno, lluellie Ivellue, ¥ we,ug, ve € Hyp (), (3.3)

with C*OF = Cgob,szf (1 + @) Furthermore, we observe that integrating by parts, there holds

1
O%(Wf; Vf,Vf) == 5 <Wf -n, |Vf‘2>2 VWf,Vf € Hh’Ff(Qf).

Now, let Vj, be the discrete kernel of B, that is

Vi :={veH,:B(v,(¢,¢) =0 V(g,¢ € Qun} (3.4)
Similarly to the continuous case, v = (v¢, vyy) € Vy, if and only if

(g;divve)a, + (¢,divvm)a, =0 Vg€ Lpo(Q) and (vi-n—vy-ndy =0 VEeA(X),
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which imply that
(divve, @), =0 VgeLp(Q) and divvy, =0 in Qy,
where Ly, (€2) is the set of functions of Ly, () restricted to ¢, more precisely,
Li(Qf) == {q € L3(Q) : ¢|7 € Po(T) VT € TL}.
According to the above, we observe that the discrete kernel (B4) can be written as
Vi ={v=wVm) E Vi X Vim : (vin—vy 0§y =0 VEeA(X)}, (3.5)

where '
Ve = {vi € Hyr () : (¢,divve)o, =0 Vge Lp(Q)},

Vh,m = {Vm S Hh,Fm (Qm) :div Vm = 0 in Qm}~

Remark 3.1 We observe here that if v := (v¢, vy) € Vy, then v is not necessarily divergence-free,
which motivates the introduction of the convective forms O{% and Off.

On the other hand, our election of finite element spaces and the definition of the bilinear form B
allow us to prove that there exist hg > 0 and 8 > 0, independent of h, such that for any h, < hg,

there holds: B
sup BRG] S 5y g Vi@e) e Q. (3.6)

vem,\{oy  Ivlm
Its proof can be found in [20, Lemma 9], which is based on the proof of [26, Lemma 4.3].

Let us observe now that the forms ary¢, ap ., and Ay, are elliptic with the same constants of the
continuous case (see (Z14) and (2220)), that is,

ar £ (vi,vi) > 2p0t[|[vil[i g @ m(Vins Vin) > Ok [ViolGivi0,,  and  Ar(y,9) > ar ¢,
(3.7)
for all vi € Hy, 1, (Q), for all vy, € V1, and for all ¢ € Uy, o, respectively. In particular, using the
ellipticity of ap¢ and ap,, one can deduce that the form Ap(-,-) + O&(wy;-,-), is elliptic on Vy, for
suitable w¢ € Hy, 1, (). More precisely, we have the following discrete version of Lemma EZ1l. For its
proof we refer the reader to [20, Lemma 10].

Lemma 3.1 Let w¢ € Hy, 1, (), be such that

200
[wi - mllos <
Ct2r C'S2ob,E

There holds
Ap(v,v) + Of(we;ve,vi) > ap ||V Vv e V.

We conclude this section by establishing some useful properties of O%, similar to the ones provided
in Lemma 272.
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Lemma 3.2 If w € Vy, is given, then the following identities hold

Of(w;0,4) = —Oh(w;h,0) V0,9 € Uy, (3.82)
O%(w; 0,9)] < Copllwlelléllo (10llos0: + 16lloco0n) V60,8 € Tpp, (3.8b)
O%(w; 0,9)] < Coz Iwllm l¥llie (160 + 16lloc00n) V0,9 € Uny, (3.8¢)

where 50% = CSob,04 (1 + @) and éo% = Cgob,gf (1 + ?)

Proof. Given w € Vj, we recall that divwy,, = 0 in Q. Then, integrating by parts one can easily
obtain (B=8d). In turn, using (B=Ra) and proceeding analogously to the proof of estimate (E19a), it is
easy to deduce (B:8H). Finally, by combining (B=8H) and (I22), we obtain (3=Xd). O

Observe that, similarly to the continuous case, by combining (8=8d) and the third estimate in (B27),
for a given w € Vy,, it is possible to obtain

Arp(ih, ) + Of(wip,¥) > arl[¢)fq Vo € Uy (3.9)

3.2.2 The discrete lifting

For the sake of the subsequent analysis, and analogously to the continuous case, given § > 0 now we
introduce the discrete extension operator Egy, : W3/ 44(T) — Uy, given by Espn = I3E;s, where Es is
the extension operator defined in (227) and I, is the Lagrange interpolation operator. Then, it is
clear from (B) that there holds

00 = Esn(0p)|r. (3.10)

In what follows we derive some useful estimates for the operator Esj that will allow us to prove
existence and stability of solution of problem (B2). To that end we first recall that the Lagrange
operator Ij, satisfies the following approximation property (see, eg. [ZI, Theorem 1.103]): Given
p>2,1€{0,1},0<m <1+ 1and T € Ty, there holds

T (Y) — Ylmpr < RF ™l pr Vb € WHEP(T). (3.11)

In addition, we recall the following inverse inequality (see [Z1, Lemma 1.138]):

1

“lyo(ioly
" N Ynllmig,T Yy € Yp, (3.12)

m
nllrpr < Chy

forany T € 7p,1>0,0<m <[ and p,q > 1.
Finally, for all v € W4(Q) C C%(Q), it is easy to see that

ITh () llo,00,r < 3l[¥ll0,00,7, VT € Th (3.13)

Lemma 3.3 The following estimates hold:

IEsn(Ollose < Cuna 8" 2(hd™ + b+ 1) [¢lls/aar, (3.14a)
IBsn(O)le < Cuna 042+ 7Y [¢lls/aars (3.14D)
1Es1(Ollo,00,0 < 3IE(C)0,00,0255 (3.14c)

for all ¢ € W3/474(I‘), where C*hfm, éhft,g > 0 are constants indepedent of h and 9.
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Proof. Given ¢ € W3/44(I'), we first use estimate (BII) and recall that E; = G5B (cf. (2222)), to
obtain
IEsn(Ollose = [Ta(Es(C)) In(Es(¢)) — Es(Qllo,3,0 + 1Es(C)
< ch|Es(Q)]1,3.0 + [IEs(¢)]lo,3.0 (3.15)

< ch([[(VB)E(Qllo3,05 + [1BsVE(Q llo,3,05) + [[Es(C)llo,3,0-
Now, for the first term in the above inequality Holder’s inequality we have

1(VB5)E(C)5,3,04 =/Q VB PIEOP < N1VBs lo.a.0s IEQ)Plloaz0 = V515 12,0, IEQ

Then, we recall that 85 (cf. (2223)) satisfies |V 35| = 67! a.e in {x € Qs : § < dist(x,T') < 26} and
V Bs vanishes elsewhere, to obtain

1(VB5)E(Ollo.05 < 67112%] B llo4.0-
Similarly, using again Holder’s inequality and the fact that 85 < 1, we have

1B VEO8 5.2, < 1185 lo.aos IIVEQ P o0 < 196 HIVEQI 4.0,

which implies
185 VE(O 3.0 < 196V 2[E(Q)]14.0- (3.16)

In this way, combining (BH)—(B18), applying (Z29d) and employing (2224 and the fact that |Qs| ~ 4,
we readily obtain (BT4a).

To derive (BI4H) we first recall that 7,2 C Ty, make use the fact that Eg(¢) = 0 in Q\Qs and employ
estimate (BI2), to obtain

Esn(OF o= TE)Fo, = Y. MEs)Fr< D> hrl(Es(O)Far
TeT? TeT?
1/2

< D r ] IESQ)I a0,

TeT?
which combined with the fact that h2 ~ |T'| and estimate (B-I0) with p = 4, implies
Esn(Qle < Ol Y In(Es(O) a0, < CTY(ITL(Es(C)) —Es(¢) + [[Es(¢)

< C0YYES(Q)1a,0, + C20 Y Es(O)h,a0,s < 6YACIES(O)]|1,4,0,-

)

(3.17)
Then, using again that 85 < 1 in Qs, |VBs| = 671 a.e in {x € Qs : § < dist(x,I') < 26} and Vs
vanishes elsewhere, there holds

1E5(C) = IBsE(O 140, <1BsEO 04,05 + 18 VE(C)
< (2+07HIE()

which together with (814) and (2224), imply (BT4H).
Finally, for (BT4d) we first notice that, since 7,° C 7;, and E5(¢) = 0 in Q\Qs, then
1Es.2()llo,00.2 = ITa(Es(C)l0.00.05 = [T (BE(C))

Then, employing the second property of s in (E228) and using the fact that GsE(() is continuous,
from the identity above we readily obtain (B12d).

+ (VB E) llo.4.05

O
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3.2.3 Main result

Similarly to the continuous case, let us fix § > 0 (to be specified below in Theorem BZ3) and decompose
the discrete temperature 6y, as 0, = 60, 0+ 0y, 1, with 01 = E5,(0p,p) € ¥y, and 0,0 = 0, — 01 € Wi
and analogously to the analysis of the continuous problem we introduce the reduced version of problem
(82): Find (up,bn0) € Vi, x ¥, o such that
Ap(up,v) + Op(upg;upg,vi) — D(Oho,v) = D(0h1,V) Vv EVy,
At (On,0,9) + O (up; Ono + On1,0) = —Ar(fh1,0) Vi € Uy,

where Vj, is the discrete kernel of B defined in (B3).

Using the discrete inf-sup condition (8H) and analogously to the continuous case we readily obtain
that both problems (82) and (BI8) are equivalent.

(3.18)

Lemma 3.4 Assume that hy, < hg, with hg being the positive constant that allows us to derive the
inf-sup condition (BB). If (up, (ph, A\n),0n) € Hy X Qp X Wy is a solution of (BH), then uy € Vi, and
(up, Oh0) = (up, 0p — 6h.1) is a solution to (BI8). Conversely, if (up,0n0) € Vi, x U is a solution
of (BIR), then there exists (pn, An) € Qp, such that (an, (Ph, An),0n) = (Un, (Phs An), Ono + 0n1) is a
solution to (B2).

Notice that since (BIR) is a finite-dimensional problem, we can use the same strategy employed in
Section 234 to analyze problem (EZH). To that end, let us now define the compact and convex set

Xp={(w,0) € Vi, x Vp: Wl < Cu(llgtllo,0 + I8mllosou)llbnillia,  ¢le < Collbnillial,
(3.19)
with Cy and Cp defined in (240) and (244), respectively, and the operator J : X}, — V5, X ¥p, ¢
given by
In(w,¢) = (up, 0h0)  V(W,9) € Xp,

where (up,0p,0) is the solution of the linearized version of problem (BI8): Find (up,0n0) € Vi, X ¥p
such that

Ar(up,v) + Ok(weupg,vi) = D(¢,v) + D(0h1,V) VveVy,
Ar(0h0,%) + OB (W;0h0,0) = —Ar(0h1,¢) — Of(w;0h1,0) Vo € Uy,

Now we state the main result of this section.

Theorem 3.5 Let hg be the positive constant that allows to derive the inf-sup condition (BM), and
assume that h < min{hg,d}, with § > 0 be such that

CDaol ~ ].
~ (|lggtllo.0r + llgmllo,3.00)Cir1 8122 + 6) [0plla/aar < - (3.20)
apQT 4
Let 0,1 = Es1(0p) € V), be such that
Coy (letllo.or + llgmllo,3,00)10nl <2 (3.21)
o O gr1]0, 8m|0,3,0m h,1110,00,00 > 4’ .
and assume further that Op € W3/%*(T') satisfies
~ _ 2ua
Cu (llgtllo.0s + lgmllos.0.) Ciiti2 8742+ 671 100 ll3/a,00 < % (3.22)
tr ~Sob,X
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Then, there exists at least one (upn, (Pr, An),0n) € Hy x Qpn x Uy solution to (82). Moreover, there
exists C > 0, independent of h, such that

lanlle + [[(en An)llQ + 10nll1e < C (lgtlloor + lgmllosn + 100ls/aar) - (3.23)

Proof. First, let us observe that assumption h < min{hg, d} implies that estimate (B14d) with ( = 6p
becomes R
10h,1] 03.0 < Cir1 6/12(2+6) |0plls/aar-

Then, for a given (w,¢) = ((wg, W), ¢) € Xy, analogously to the proof of Lemma PZ9 we make use
of assumptions (B20), (B=20l), (B=22) and the aforementioned inequality to deduce that there exists a
unique (u, ) € Xy, such that Jy(w, ¢) = (u,0), thus 7, is well-defined and satisfies J5,(X) C Xj,.
In addition, using the same arguments employed in the proof of Lemma ETI0, we can deduce that 7}, is
continuous. According to the above, and analogously to the proof of Theorem 211, we employ Theorem
8 to obtain that there exists (up,60h0) € Xj, such that (BI8) holds, which together with Lemma
B4 implies that there exists (py, An) € Qp, such that (un, (pr, An),0n) = (n, (Ph, An), Ono + On1) is a
solution to (B™).

Finally, using the fact that (up,6h0) € X} and proceeding analogously to the proof of Corollary
270 we easily deduce that (up, (pn, An), 0r) satisfies (8223), which concludes the proof. O

03,0 = ||Esn(fp)

Remark 3.2 Observe that, owing to (8124d) and similarly to Remark 2, assumption (B=21) becomes

Qp T

I8tllo.0r + l1gmllo.3.00) [E(]0,00.05 <

Y

| =

and again one could take an small enough 6 in such a way |[E(0p)j0,00,05 = |0D|l0,00,r, and simply
assume that

30[)6'01 1
- Tr 0 < -,
o (llgtllo. o + lgmllo3,9.) 1€Dll0,co,r < 1

4 Error analysis

In this section we address the error analysis and provide the theoretical rate of convergence for the
Galerkin scheme (B™). We begin with some notations and preliminary results.

Let us assume that the hypotheses of Theorem PZT3 hold and let (u, (p, A),0) = (u, (p, A),00+61) €
H x Q x HY(Q) be a solution to (ER8), with §; = Es(fp) € W14(Q) and 6y € H{(Q). In addition,
we assume that the hypotheses of Theorem B3 and let (up, (pr, An), 0n) = (an, (Ph, An), Ono + 0n1) €
H), x Qp, x ¥y be a solution to (82), with 0,1 = E5(0p) € ¥y, and 659 € Vp 0. Then to simplify the
subsequent analysis, we write

€y = U — Uy, €y, = Uy — Upm, ep =D — P, ex=A— A, eg=0—06,. (4.1)
We decompose these errors as
€u = Oy, T Xups €um = Oupy, T Xupr =0t Xps €A =01 X\, € = 09+ X (4.2)
with
Ou = Ut —Vif, Qu, =Um—Vhm 0 =D ON=A—E 0p=0—1p,

_ ~ ~ ~ ~ (4.3)
Xu; = Vit — Uhf, Xup = Vhm — Uhm, Xp =qh —Phs XA =& — Any, Xo = Yn — bh,
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where Vi, = (Vit, Vim) € Vi, (Ghs Eh) € Qp, and Jh € Ul Here, U} is the set of functions in ¥y, that
coincide with 69 , (cf. (B10)) on I, that is

Uy = {, € Uy« Yyl = 0D 4}

Finally, we let
€u = (euf7eum)7 Oy = (QUf7 Qum) and Xu = (Xup Xum)'

Let us recall that, since the inf-sup condition (BM) holds, it is possible to prove that there exists
¢ > 0, independent of h, such that (see for instance [25, Theorem 2.6])

inf — < inf — . 4.4
Vhlgvhllu villa < Cv;thHu villa (4.4)

Now we provide some useful properties of the convective terms that will allow us to derive the
desired error estimates.

Lemma 4.1 Let u:= (ug,uy) € V and § € HY(Q). The following identities hold
Op(ugiug, ve) = Op(ugug,ve) and Oh(u;0,9) = Or(u;6,9), (4.5)

for all v € Hyr, (%) and for all 1 € Uy, respectively. In addition, for any u, € Hy and 0 € H(Q),
such that 0)q, € WY4(Qy,), there holds

O (ur; 6,9)| < Cos llunllin (10]l,0r + 110]10.0.) [0ll0 Ve € Wayp, (4.6)
where 50% s a positive constant independent of h.

Proof. Given u := (ug,uy,) € V and 0 € H'(Q), it is clear that divu, = 0 in §, for € {f,m}, which
readily implies (EH). On the other hand, given u;, € Hj, and employing the Hélder inequality (0),
we have that for all ¢» € ¥y, o, there holds

L.
0% (wn; 0,9) < [(wn g VO, V)| + [(Whm - VO, )| + 51(divun, 08)a,|

< luntlloar 101,00 [¥l0,a.0 + mllaiviom 101,400 1¥]0,4,0m

1, ..
+§Hdlvuh,meQfH@HOA,QfII”L/f 0,4, -

Then, applying the Sobolev inequality () to ||ufllo.4,0, |0l0,4,0¢, [1¥]l0,4.0 and ||¢]l0,4,0,., We easily
deduce (). O

The following preliminary estimate is an intermediate step to obtain the desired convergence result.

Lemma 4.2 Let us assume that the hypotheses of Theorem 213 hold and let (u, (p, A),0) = (u, (p, A),
0o + 61) € H x Q x HY(Q) be a solution to (ZR), with 6, = Es(fp) € WH(Q) and 0y € H{(Q). In
addition, we assume that the hypotheses of Theorem B4 and let (up, (ph, An),0n) = (Un, (P, An), Ono+
On1) € Hy x Qp x ¥y, be a solution to (B2), with 6,1 = Esp(0p) € Uy, and 00 € V0. Finally, let
Ye = llgtllor + |8mllos.0n and assume that 0)q,, € W4 (Q,) holds. There hold

ar |IxullH < Coyp [IXu 1,0 lutll1,00 + Cp g llxollie + L1, (4.7)
ar [xollne < Coz lIxulla (10]le; + 10]l0,00,00) + Lo, (4.8)
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and

BllOw: xa)lle < Caglleallm + Cogllewlacllutllie, + Cosllunloclleulror

(4.9)
+Cpgllesllie + II(ep, ox)llqQs

where L1 and Lo are defined later in (E1) and (BT2) which depend on the solutions u, uy and 6.

Proof. Using the definition of the errors given in (B), employing (EZH) and subtracting (EZ=8) and
(B2), we readily obtain

AF(eu’V) + [Olﬁ‘(uf;ufavf) - O?‘(uh,f;uh,ﬁvf)] - D(697V) +B(V7 (Qpa Q)\)) = 07
Bleu,(q,€)) = 0, (4.10)
Ar(eg, ) + [Oh(w;0,9) — Of(up; 0, 9)] = 0,

for all v € Vi, (¢,€) € Qp and ¢ € Uy, o. Then, adding and subtracting suitable terms and employing
the decompositions (2) and (2=3), the first equation in (10) can be rewritten as

AR(Xu, V) + Op(Wnti Xy vE) = — O (X ur, ve) + D(xo,V) — Ar(Qy, v) — Op(h g 0y, Vi)
- O{:Z‘(Quf;Uf,Vf) + D(QQ,V) - B(Va (va Q)\))a

for all v € Vy,. In particular, for v = x,,, employing the ellipticity of the bilinear form Ap(-,-) +
Ol (ups;-, ), and the continuity of Ap, O%, and D (cf. (210), (8=3) and (2ZI2), respectively), we obtain
(B70) where

Ly = Cag lleulln + Cop (lungllio + lluellie) oy llor

(4.11)
+Cp g lleslle + Cgll(ep, oa)llq-

On the other hand, from the third equation of (2710), after a simple computations it can be obtained
the identity

Ar(xe,¥) + Oh(up;xo,v%) = — Ar(09,¥) — O (04;0,7)
_O'}IL‘(Xuvevdj) - O%(“h?@eﬂﬁ),

for all ¢ € Wy . Then, noticing that xg € ¥; o, we take 1) = xy in the latter identity, employ the
ellipticity of the bilinear form Ar(:,-) + O%(up;-,-) (cf. (89)), the continuity of Ay (cf. (2I)), and
estimates (B8) and (B3d), to obtain (E8) with

Ly := Caq llesllie + Cozllewllm (101110 + [1€]l0,000) + Cog lunllw (losllnor + lloolla0.) - (4.12)

Now, to estimate x, and x we observe that from the discrete inf-sup condition (BH), there holds

3 B
Bllxpxa)llq < sup Bv. (xp: x2))

veH,\{0} vl
< s POlwe)) (o BKV—(e0)) (4.13)
vemnfoy  IVlm veH,\ {0} [ v|ex
B(v, (ey, e
< ap BOEO) e,
vem,\{o}  |IVlH
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In turn, from the first equations of (E10), adding and subtracting suitable terms, we obtain

B(v, (ep,e))) = Ap(ew,v) + Ol(ug;ug, vi) — Of(up;uns,ve) — D(eq, V)

= AF(eu7V) + Ol];b‘(euf;ufvvf) + O?‘(uh,f;eufavf) - D(697V)7

for all v.€ Hj. Then, utilizing the last identity, from (E=T3) and the continuity of the forms involved,
we obtain

Bll(xp x2)llq < Caglleullm + Cogllew 1o llutllio; + Copllunglliolleu o
+Cpgllesllie + [l(2p, 0x)llq-

O

Theorem 4.3 Let us assume that the hypotheses of Lemma [-2 hold and let (u, (p, \),0) = ((ug, um),
(p, \), Oo+61) € HxQxHY(Q) be the unique solution of (Z8) and (n, (prs An),0n) = ((Unf, Unm), (Phs
An),Ono +0n1) € Hy x Qp X Uy, be a solution to (B2). Finally, let vg = ||gtllo.0f + ||8mllo3.0. and
assume further that

: (4.14)

N =

C1ygd*/%(1 +52)1/2”'9DH3/4,4,F + Covgl10]]0,00,0m <

with C1,Cy > 0, independent of h, §, g and Op. There exists C > 0, independent of the aforemen-
tioned datum, such that

lleullr + [[(ep,exn)llq + [leoll1,o < C inf [y — vhell1,0 + inf W — Vi,mldiviom
Vit €Hp 1y (Q Vh,m €EHp rp, (Qm

+ inf  |[p—anlloo+ inf ||A—=&, + inf (/|0 —¥nlli0 + 110 — ¥ull14.0m) ¢
QhELh,O(Q)” | fheAh(E)H /2,5 whe\vi(” 1,0 + | | )

(4.15)

Proof. Let us first recall that from (E233), (2236) and (22298) with ( = 6p, the following estimates hold

lugll,0r < CuvgClite,2 63/2(1 4 62)2(10p|l3/a.4,r

(4.16)
161110 < (Co + 1)Clige,2 6~%/2(1 + 62)/2||6p]|3 /4,41
Then, combining (277), (28), and (E-I0), we obtain
Icallir < (Crogd™/2(1+ 2B lls/aar + CovlBllososs, ) Ixcalle
+apap'Cprgle + agp'Ly,
with R ~ R
C1 = a5 Cinz (CopCu + 07" CCos (Co + 1)) and Gy = ag'az! CpCog,
which together with (B14), implies that
Ixulliz < 205 ar' CpygLa(ey, 00) + 205 Ly (4.17)
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Now, to estimate L; and Ly we recall that (up,0h0) € X, (cf. (B19)) which yields |[up¢ll1,0, <
luplla < Cuvgllfh 11,0, which combined with (B14H), implies

e < lunlla < CuvgClina 842+ 071 10pl3/a.4r- (4.18)

Then, from the latter, the definition of L1 and Lo, we get

Ly < er(eullm + lleollia + ll(ep en)llQ) (4.19)
Ly < ca(lleolla + lleolla0n + [leullw) (4.20)

with ¢1, ¢a being positive constants independent of h. In this way, using (E17), (E19), (E=20) and
the fact that WH4(Qy,) is continuously embedded in H!(€y,), which implies |ogll1.0 < c(||oall1.0; +
llooll1,4,0m ), We readily obtain

Ixullm < e (leullm + lleolliar + lloalla0m) + call(ep 0x)lla (4.21)

with c3, ¢4 > 0, independent of h.

Now, to estimate ||xg||1,0 we simply substitute (221) in (=8) and employ (E-I4), the second estimate
in (A08) and (E=20), to obtain

Ixellne < ¢s (leullm + lleollios + lloollna0m + ll(ep n)llQ) (4.22)

with ¢5 > 0, independent of h.

According to the above, from (E2), (E21)), (E22), the triangle inequality, the fact that v, =
(Vht, Vam) € Vi, (@, &n) € Qp, and ¢y, € ‘IIE are arbitrary and (£4), we obtain

leullr + [legllio < 06{ inf lur — vagllio + inf W — Vil divim

vh,t€Hp rp (Qf Vh,m€Hp 1y (Qm
14,00) }
with ¢g > 0, independent of h.

Finally, and similarly to the above, from (E9), the first inequality in (E18), (EI8), (E=23) and the
triangle inequality, we deduce that there exists ¢; > 0, independent of h, such that

(4.23)

+ inf - o+ inf A — + inf 0 — Q + |0 —
qhetho(Q)Hp anllo, gheAh(z)” Enllijox %E\PE(H Yl + (10 — ¥nl

e,, e <c inf U — v + inf Uy, — V -
[(ep,ex)llq < 7{Vh‘feHh’Ff(Qf)H £ = Vhllo Vh‘meHh’Fm(Qm)H m — Vhm||div;o,

+ inf p—qnlloo+ inf A =& + inf 0 — iy,
qn€LA,0(2) | o En€AR(E) | : ”1/2’2 YhEV), (” v

Lo + 110 — Ynlliaon) }

which together with (B223) implies (E-15) and concludes the proof. O

We conclude this section by deriving the theoretical rate of convergence for the Galerkin scheme
(82). To that end we recall that the discrete spaces satisfy the following approximation properties
(see [[@, [T, 21, 25]):

(AP}) For each v¢ € H?(Q¢) N H%\f(Qf), there exists vy, ¢ € Hj 1, (€), such that

[ve = viello < Chllvell2,0-
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(AP}™) For each vy, € H'(Qy) N Hr, (div; Q), with divvy, € H'(Qy), there exists vj, €
Hj, 1, (), such that

[Vin = Vhmldivion, <
(APY) For each ¢ € H'(2) N L3(Q), there exists gj, € Ly, o(£2) such that
lg = anlloo < Chllglo.
(AP7) For each ¢ € W3/22(%), there exists &, € Ap(XZ) such that
1€ = &nllije,s < ChE]l3/2:2,5-
(APY) For each ¢ € H3(Q), with ¢|r = 0p and ¥|q,, € W>*(Qy), there exists ¢, € ¥}, such that

1Y = ¥nllLe; < Ch{lYllz.0 + [¥ll24.00} -

Using this approximation properties we obtain the following result.

Theorem 4.4 Assume the same hypotheses in Theorem -3 hold, let (u, (p,\),0) = ((ug, un), (p, A),
Op+61) € Hx QxHY(Q) be the unique solution of (Z8) and (un, (pn, A\n),0n) = ((uh £y Whm ), (ph, )\h),
Ono +0n1) € Hy x Qp x Uy, be a solution to (B2). Assume further that uy € H?(Q), uy, € HY(Qn),
divuy, € H' (), p € HY(Q), A € HY2(D), 0|q, € H2(Q), and 0|q,, € W>*(Qu). Then, there exists
Crate > 0, independent of h and the continuous and discrete solutions, such that

leuller + li(epsex)liq + lleollie < Crateh {llullzor + umllr0n + divum|lio. + lplie
Mz 225 + 10120 + 1012400} -

Proof. The result is a direct consequence of Theorem B3 and the approximation properties (AP},
(AP}™), (APY), (AP)) and (AP)). s

5 Numerical results

In this section we present some numerical results illustrating the performance of our finite element
scheme (B22) on a set of quasi-uniform triangulations of the corresponding domains and considering
the finite element spaces introduced in Section B. Our implementation is based on a FreeFem++ code
[83], in conjunction with the direct linear solver UMFPACK [[9]. In order to solve the nonlinear
problem, we propose the Newton-type strategy: Starting with the initial guess u’ = (uf, %) € Hy

and 0° € Wy, for n > 1, find u” € Hy, (p™, \") € Qp,, and 6" € ¥y, such that 0| = 9 b and

Ap(u®,v) + Of(uf s uf, vi) + Op(ufiup™", vy)
= B(v, (p, A7) = D(O",v) = Ob(up~hupt vy),
B, (¢,€) = 0,
Arp(07, ) + Ol(w=1507, ) + Oh(um; 071, 4) = Of(u";6m1,9),

for all v = (v¢,v) € Hy, (¢,€) € Qp, and ¢ € Wy,
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The iterations are terminated once the relative error of the entire coefficient vectors between two
consecutive iterates is sufficiently small, that is

|coeff™ 1 — coeff”|

< tol
Hcoeﬁ'”Hle -

where || - ||;2 stands for the usual euclidean norm in R, with dof denoting the total number of degrees
of freedom defining the finite element subspaces Hy,(€2¢), Hp(Q2m), La(2), Ap(X), and ¥y, and tolis a
fixed tolerance. For each example shown below we simply take u® = 0 and #° = 0 as initial guess and
tol=le — 6.

Now, we introduce some additional notations. We denote by hy := max{he : ¢ € ¥9p}. As in
Section B, the individual errors for each variable are denoted by ey, eu,, €\, €, and eg and let
ep, = €pla,, €o, = €glq,, for x € {f,m}. In addition, we define the experimental rates of convergence
Tups Tums Ipes Tpms TAs To, and g, as

r L log(euf/eilf) r L log(eum/e{lm) T L log(epf/e;?f) T ‘_ log(epm/e;m)
O log(he/hy) T Tt log(hm/Ry) TP log(he/hy) T P log(hu/Rl,)
_ log(ex/e)) I log(eq, /ep,) S log(eq,, /€p,)

A loglhs /) T Tog(he/hy) T T log(huw /Rl

where h, and A, (x € {f,m,X}) denote two consecutive mesh sizes with their respective errors e, €’
(or e, €).

Example 1: Manufactured Exact Solution

In our first example we illustrate the accuracy of our method considering a manufactured exact solution
defined on Q = Qe UX UQy,, with Q¢ :=(—1/2,1/2) x (0,1/2) and Q, := (—1/2,1/2) x (=1/2,0). We
consider the following parameters =1, g¢ = (0, —1)%, g = (0, 1)}, ag =1, kg =1, k= 1, K =1,
and k = I and the terms on the right-hand side are adjusted so that the exact solution is given by the

functions
o 16y cos(mx)?(y? — 1/4) :
ug(z,y) = (877 cos(rz) sin(rz)(y? — 1/4)2) O

- —2y cos(mx)? ;
um(.:U’y) — (_27_(_ COS(']T:L') Sln(ﬂ_m)(y2 — 1/4) m Qm7
p(e,0) = exp)sins) im0
Ou(z,y) = exp(—zy) in €,
with x € {f,m}. We notice that u¢|y, = unl|s, btls = Oulx, and ks VOt|s = Ky VOu|s. We notice

also that these functions do not satisfy the interface conditions (EZ3), thus the difference must be
incorporated as a functional at the right-hand side of the resulting system.

In Table BT we summarize the history of convergence for a sequence of quasi-uniform triangulations.
We observe there that the rate of convergence O(h) predicted by Theorem B is attained in all the
cases.

Example 2: Nondimensional problem

In our second example we are interested in studying the phenomenon on a square cavity with dif-
ferentially heated walls. To that end, we let Q = Qf UX U Qy,, with Q¢ := (0,1) x (0,3/4) and
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| dof || hr | eu
216 0.3207 || 0.5592 - 0.2104 - 0.0813 -
834 0.1804 || 0.3492 | 0.8189 || 0.1133 | 1.0767 || 0.0390 | 1.2762
3026 0.1013 || 0.1844 | 1.1057 || 0.0565 | 1.2039 || 0.0199 | 1.1657
11738 || 0.0503 || 0.0855 | 1.0989 || 0.0292 | 0.9398 || 0.0099 | 0.9945
45622 || 0.0247 || 0.0424 | 0.9875 || 0.0145 | 0.9926 || 0.0050 | 0.9674
180930 || 0.0123 || 0.0208 | 1.0226 || 0.0070 | 1.0338 || 0.0025 | 0.9818
725890 || 0.0065 || 0.0103 | 1.1014 || 0.0035 | 1.1007 || 0.0012 | 1.1210

| dof || Pm | ewn | ruu || epn | T || e | vo. |
216 0.3663 || 0.1752 - 0.0330 - 0.0953 -
834 0.1804 || 0.0748 | 1.2018 || 0.0137 | 1.2349 || 0.0377 | 1.3073
3026 0.0951 || 0.0398 | 0.9856 || 0.0072 | 1.0013 || 0.0200 | 0.9917
11738 || 0.0488 || 0.0198 | 1.0416 || 0.0035 | 1.0802 || 0.0098 | 1.0692
45622 || 0.0247 || 0.0099 | 1.0091 || 0.0017 | 0.9984 || 0.0050 | 0.9764
180930 || 0.0143 || 0.0050 | 1.2604 || 0.0008 | 1.2650 || 0.0025 | 1.2636
725890 || 0.0064 || 0.0024 | 0.8754 || 0.0004 | 0.8686 | 0.0012 | 0.8831

H dof H hx, H ey T) H iteration H
216 0.2500 || 0.0470 - 5
834 0.1250 || 0.0308 | 0.6107
3026 0.0625 || 0.0114 | 1.4330
11738 || 0.0312 || 0.0051 | 1.1391
45622 || 0.0156 || 0.0026 | 0.9634
180930 || 0.0078 || 0.0013 | 1.0307
725890 || 0.0039 || 0.0006 | 1.0442

v Ot Ot Ot Ot Ot

Table 5.1: EXAMPLE 1: Degree of Freedom, mesh sizes, errors, rates of convergence and number of
iterations for the coupled problem.

Q= (0,1) x (3/4,1), and similarly to [36, Section 2.4] we consider the problem with dimensionless
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8.1e-13 1 2.2e+00 0.0e+00 200 4.7e+02 0.0e+00 05 9.7e-01

[ - =

Figure 5.1: EXAMPLE 2: Velocity vector field (left), pressure (center) and temperature (right).

numbers

or=2e(uf) — prI in Q,

—divos + (us-V)ur — Raggefy =0 in  Qy,
divug =0 in Qy,

—Af; + Pryug-V6O =0 in €,

uy + DaVpn — Rangmbnm =0 in Qp,
divu, =0 in Qg

—A#b, + Prpuy, - Vo, =0 in Q,

Vb -n=V0O,-n on

by
orn + —o (u-t)t= —pyn on 3,

@
vDa
0= 91) on F,

where Pr, and Ra, represent the Prandtl and Rayleigh numbers in the domain Q, for x € {f,m}
and Da represents the Darcy number. Here, we fix the Prandtl, Rayleigh and Darcy numbers as
Pry = 0.5, Pry, = 0.5, Ray = 2000, Ra,, = 2000, and Da = 1, and consider ay = 1. For the boundary
condition, we choose 6p(z,y) = 0.5(1 — cos(27x))(1 — y) on I' and observe that fp = 0 on the left,
bottom and right walls whereas on the top wall §p has a sinusoidal profile with a peak of temperature
Op = 1 at x = 0.5. In Figure B we display the approximate solutions obtained with dof = 45726.
In Figure 51 we show the velocity vector field (left), the pressure (center) and temperature (right).
There, it is possible to see the expected physical behavior from [I8], that is, convection currents form
inside the cavity in a symmetric configuration. However, in our case, the interface plays a role in
the phenomenon, and as reported in [46], we observe that the velocity field has an expected velocity
decrease when it crosses the interface from the free fluid region to the porous medium.
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