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New Banach spaces-based fully-mixed finite element methods
for pseudostress-assisted diffusion problems

Gabriel N. Gatica, Cristian Inzunza,
Filander A. Sequeira

PREPRINT 2023-13

SERIE DE PRE-PUBLICACIONES





New Banach spaces-based fully-mixed finite element methods

for pseudostress-assisted diffusion problems ∗

Gabriel N. Gatica† Cristian Inzunza ‡ Filánder A. Sequeira §

Abstract

In this paper we propose and analyze Banach spaces-based fully-mixed approaches yielding new
finite element methods for numerically solving the coupled partial differential equations describing
the pseudostress-assisted diffusion of a solute into an elastic material. Two mixed formulations
employing the diffusive flux as an additional variable are introduced for the diffusion equation, and
the concentration gradient is considered as an auxiliary unknown of the second one of them. The
resulting coupled systems are rewritten as equivalent fixed point operator equations, so that the
respective unique solvabilities are proved by applying the classical Banach theorem along with the
Babuška-Brezzi theory. The nonlinear dependency on the elastic variables of the diffusion coefficient
and its source term, as well as the nonlinear dependency on the concentration of the elastic source
term, suggest, for appropriate continuous and discrete analyses, that the unknowns be sought in
suitable Lebesgue spaces. The associated Galerkin schemes are addressed similarly, and the Brouwer
theorem yields the existence of discrete solutions. A priori error estimates are derived for both
approaches, and rates of convergence for specific finite element subspaces satisfying the required
discrete inf-sup conditions, are established in 2D. Finally, several numerical examples illustrating
the performance of the two methods and confirming the theoretical findings, are reported.
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1 Introduction

In the recent paper [14] we employed a Banach spaces-based variational approach to derive a new
mixed-primal finite element method for the nearly incompressible case of the pseudostress-assisted
diffusion problem, which models the diffusion of a solute into an elastic material. More precisely, the
aforementioned phenomenon refers to diffusion processes in deformable solids occupying originally a
domain Ω of Rn, n P

␣

2, 3
(

, and arises in diverse applications, including diffusion of boron and arsenic
in silicon [19], voiding of aluminum conductor lines in integrated circuits [21], sorption in polymers [20],
damage to electrodes in lithium-ion batteries [2], and anisotropy of cardiac dynamics [6], among others.
The usual assumptions in most of them are, on one hand, that the solid satisfies an elastic regime, and
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on the other hand, that the diffusion obeys a Fickean law enriched with further contributions arising
from local effects by exerted stresses. This second hypothesis means that the respective diffusion
coefficient is a continuous function depending precisely on the stress, which acts then as a coupling
variable. Mathematically, the underlying model is usually described by the following system of partial
differential equations (cf. [14, eq. (2.1)]):

∇u “ pC´1pσq in Ω , ´divpσq “ fpϕq in Ω , u “ uD on Γ ,

rσ “ ϑpσq∇ϕ in Ω , ´divprσq “ gpuq in Ω , and ϕ “ 0 on Γ ,
(1.1)

where
pC´1pτ q :“

1

µ
τ d `

1

n
`

nλ` pn` 1qµ
˘ trpτ q I @ τ P Rnˆn . (1.2)

Here, σ is the non-symmetric pseudostress tensor, u is the displacement field, λ, µ ą 0 are the Lamé
constants (dilation and shear moduli), which characterize the properties of the material, and I is the
identity tensor of Rnˆn. In turn, ϕ represents the local concentration of species, rσ is the diffusive flux,
and ϑ : Rnˆn Ñ Rnˆn is a tensorial diffusivity function. In addition, f : R Ñ Rn is a vector field of
body loads (which depends on the species concentration), g : Rn Ñ R denotes an additional source
term depending on the solid displacement u, and uD is the Dirichlet datum for u, which belongs to
a suitable trace space to be identified later on.

The purpose of the present work is to continue contributing in the direction of [14] by introducing
and analyzing new fully-mixed finite element methods for the numerical solution of (1.1) - (1.2). In
this way, the main novelty with respect to [14] is the utilization of a mixed variational formulation
for the diffusion equation. As a consequence, and regarding the mixed approach for the elasticity
equation, we certainly make use of the corresponding results from [14] either by stating or referring to
them throughout the analysis. In some cases, and just for sake of completeness, the main aspects of
the respective proofs are explicitly recalled. Needless to say, we remark that a fully-mixed approach for
this model had basically been employed already in [13]. However, to be able to carry out the respective
analysis within a Hilbertian framework, it was necessary to incorporate there augmented terms, thus
increasing the complexity of the resulting discrete method. According to the above, and motivated
by recent works using Banach spaces-based formulations (see, e.g. [3], [14], [15] and [16]), which do
not need to resort to augmentation techniques, we proceed similarly to them and propose two mixed
variational formulations for the diffusion equation in terms of suitable Lebesgue and Sobolev-type
Banach spaces. For the first approach we perform integration by parts on the constitutive equation,
while for the second one the diffusion gradient is introduced as an auxiliary unknown.

The paper is organized as follows. The rest of this section collects first some preliminary notations,
definitions, and results to be utilized throughout the paper. In Section 2, we derive the two fully-
mixed variational formulations of the problem. Suitable integration by parts formulae jointly with the
Cauchy-Schwarz and Hölder inequalities are crucial for determining the right Lebesgue and related
spaces to which the unknowns and corresponding test functions are required to belong. In Section
3, fixed-point strategies are adopted to analyze the solvability of the continuous formulations. The
Babuška-Brezzi theory in Banach spaces is employed to study the corresponding uncoupled problems,
and then the classical Banach theorem is applied to conclude the existence of a unique solution of the
respective formulations. Analogue fixed-point approaches to those of Section 3 are utilized in Section
4 to study the well-posedness of the associated Galerkin scheme. In this way, and along with the
corresponding versions of the theoretical tools employed in Section 3, a straightforward application of
Brouwer’s theorem allows us to conclude the existence of discrete solution. A priori error estimates in
the form of Cea’s estimate are also derived here. Next, in Section 5 we restrict ourselves to the 2D case
and introduce specific finite element subspaces satisfying the theoretical hypotheses that were assumed
in Section 4. The fact that a required boundedness property for a particular projector involved is still
an open problem in 3D, stop us of extending the 2D analysis from Section 5 to that dimension. Finally,
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several numerical results illustrating the performance of the method and confirming the theoretical
rates of convergence provided in Section 5, are reported in Section 6

1.1 Preliminaries

Throughout the paper, Ω is a bounded Lipschitz-continuous domain of Rn, n P
␣

2, 3
(

, which is star
shaped with respect to a ball, and whose outward normal at Γ :“ BΩ is denoted by ν. Standard
notation will be adopted for Lebesgue spaces LtpΩq and Sobolev spaces Wl,tpΩq and Wl,t

0 pΩq, with
l ě 0 and t P r1,`8q, whose corresponding norms, either for the scalar and vectorial case, are denoted
by } ¨ }0,t;Ω and } ¨ }l,t;Ω, respectively. Note that W0,tpΩq “ LtpΩq, and if t “ 2 we write HlpΩq instead
of Wl,2pΩq, with the corresponding norm and seminorm denoted by } ¨ }l,Ω and | ¨ |l,Ω, respectively. In
addition, letting t, t1 P p1,`8q conjugate to each other, that is such that 1{t` 1{t1 “ 1, we denote by
W1{t1,tpΓq the trace space of W1,tpΩq, and let W´1{t1,t1pΓq be the dual of W1{t1,tpΓq endowed with the
norms } ¨ }´1{t1,t1;Γ and } ¨ }1{t1,t;Γ, respectively. On the other hand, given any generic scalar functional
space M, we let M and M be the corresponding vectorial and tensorial counterparts. In particular,
we set R :“ Rn and R :“ Rnˆn. Furthermore, } ¨ } is employed for the norm of any element or
operator whenever there is no confusion about the spaces to which they belong, and | ¨ | stands for
the Euclidean norm in R. Also, for any vector field v “ pviqi“1,n we set the gradient and divergence

operators, respectively, as ∇v :“

ˆ

Bvi
Bxj

˙

i,j“1,n

and divpvq :“
n
ÿ

j“1

Bvj
Bxj

. Additionally, for any tensor

fields τ “ pτijqi,j“1,n and ζ “ pζijqi,j“1,n, we let divpτ q be the divergence operator div acting along the
rows of τ , and define the transpose, the trace, the tensor inner product operators, and the deviatoric
tensor, respectively, as

τ t “ pτjiqi,j“1,n, trpτ q “

n
ÿ

i“1

τ ii, τ : ζ :“
n
ÿ

i,j“1

τijζij , and τ d :“ τ ´
1

n
trpτ qI .

On the other hand, for each t P r1,`8q we introduce the Banach spaces

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

, and (1.3)

Htpdivt; Ωq :“
!

τ P LtpΩq : divpτ q P LtpΩq

)

, (1.4)

which are endowed with the natural norms

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq , and (1.5)

}τ }t,divt;Ω :“ }τ }0,t;Ω ` }divpτ q}0,t;Ω @ τ P Htpdivt; Ωq . (1.6)

Then, we recall that, proceeding as in [11, eq. (1.43), Section 1.3.4] (see also [5, Section 4.1] and [8,

Section 3.1]), one can prove that for each t P

#

p1,`8q if n “ 2 ,

r6{5,`8q if n “ 3 ,
there holds

xτ ¨ ν, vy “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Hpdivt; Ωq ˆ H1pΩq , (1.7)

where x¨, ¨y denotes in (1.7) the duality pairing between H1{2pΓq and H´1{2pΓq. In addition, throughout
this work we suppose that ϑ is of class C1 and uniformly positive definite, meaning the latter that
there exists ϑ0 ą 0 such that

ϑpτ qw ¨ w ě ϑ0 |w|2 @w P R , @ τ P R . (1.8)
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We also require uniform boundedness and Lipschitz continuity of ϑ, that is that there exist positive
constants ϑ1, ϑ2, and Lϑ, such that

ϑ1 ď |ϑpτ q| ď ϑ2 and |ϑpτ q ´ ϑpζq| ď Lϑ |τ ´ ζ| @ τ , ζ P R . (1.9)

Moreover, thanks to (1.8), we have that the inverse of ϑ is uniformly positive definite as well, specifi-
cally, denoting from now on rϑpτ q :“ ϑpτ q´1, there exists rϑ0 ą 0 such that

rϑpτ qw ¨ w ě rϑ0 |w|2 @w P R , @ τ P R . (1.10)

We also require uniform boundedness and Lipschitz continuity of rϑ, that is that there exist positive
constants rϑ1, rϑ2, and L

rϑ
, such that

rϑ1 ď |rϑpτ q| ď rϑ2 and |rϑpτ q ´ rϑpζq| ď L
rϑ

|τ ´ ζ| @ τ , ζ P R . (1.11)

Similar hypotheses are assumed on the source functions f and g, which means that there exist positive
constants f1, f2, Lf , g1, g2 and Lg, such that

f1 ď |fpsq| ď f2 , |fpsq ´ fptq| ď Lf |s´ t| @ s, t P R , (1.12)

g1 ď |gpwq| ď g2 , and |gpvq ´ gpwq| ď Lg |v ´ w| @v,w P R . (1.13)

2 The fully-mixed formulations

In this section we introduce two Banach spaces-based fully-mixed formulations of (1.1)-(1.2), which
arise from a common formulation for elasticity (see Section 2.1 below) and two different approaches
for the diffusion equation (see Sections 2.2 and 2.3 below). The integration by parts formulae provided
by (1.7), along with the Cauchy-Schwarz and Hölder inequalities, play key roles in the derivation of
the Banach spaces where the respective unknowns will be sought.

2.1 The elasticity equation

As explained in [14, Section 3], given

r P

"

p2,`8q if n “ 2 ,
p2, 6s if n “ 3 ,

and s P

"

p1, 2q if n “ 2 ,
r6{5, 2q if n “ 3 ,

(2.1)

conjugate to each other, and given ϕ in a suitable space to be determined next, the Banach spaces-
based mixed formulation for the elasticity equation reads: Find pσ,uq P X2 ˆ M1 such that

apσ, τ q ` b1pτ ,uq “ Gpτ q @ τ P X1,

b2pσ,vq “ Fϕpvq @v P M2,
(2.2)

where

X2 :“ Hr
0pdivr; Ωq :“

!

τ P Hrpdivr; Ωq :

ż

Ω
trpτ q “ 0

)

, M1 :“ LrpΩq ,

X1 :“ Hs
0pdivs; Ωq :“

!

τ P Hspdivs; Ωq :

ż

Ω
trpτ q “ 0

)

, M2 :“ LspΩq ,

and the bilinear forms a : X2 ˆX1 Ñ R and bi : Xi ˆMi Ñ R, i P
␣

1, 2
(

, and the functionals G P X1
1

and Fϕ P M1
2, are defined, respectively, as

apζ, τ q :“
1

µ

ż

Ω
ζd : τ d `

1

n
`

nλ` pn` 1qµ
˘

ż

Ω
trpζq trpτ q @ pζ, τ q P X2 ˆ X1 ,
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bipτ ,vq :“

ż

Ω
v ¨ divpτ q @ pτ ,vq P Xi ˆ Mi ,

Gpτ q :“ xτν,uDyΓ, @ τ P X1 , (2.3)

and

Fϕpvq :“ ´

ż

Ω
fpϕq ¨ v @v P M2 . (2.4)

Furthermore, we have from [14, eq. (3.39)] that a, b1, b2, G and Fϕ are all bounded with respective
constants given by

}a} “
2

µ
, }b1} “ }b2} “ 1 , }G} “ Cr }uD}1{s,r;Γ , and }Fϕ} “ |Ω|1{rf2 ,

where Cr is a positive constant such that (cf. [14, eq. (3.9)])

}τ ν}´1{r,r;Γ ď Cr }τ }r,divr;Ω @ τ P Hrpdivr; Ωq .

Having recalled the above from [14], we remark that in order to analyze the elasticity equation, we
need to be able to control the expression

ż

Ω
pfpψq ´ fpφqq ¨ v , (2.5)

where v P M2, and ψ and φ are generic functions belonging to the same space in which we will
seek the unknown ϕ. In this regard, employing the Lipschitz-continuity property of f (cf. (1.12)), a
straightforward application of the Hölder inequality yields

ˇ

ˇ

ˇ

ˇ

ż

Ω
pfpψq ´ fpφqq ¨ v

ˇ

ˇ

ˇ

ˇ

ď Lf }ψ ´ φ}0,r;Ω}v}0,s;Ω , (2.6)

from which we deduce that we must look for the unknown ϕ in LrpΩq.

2.2 A first approach for the diffusion equation

In what follows we derive a first mixed variational formulation for the diffusion equation

rϑpσq rσ “ ∇ϕ in Ω , ´divprσq “ gpuq in Ω , and ϕ “ 0 on Γ , (2.7)

where rϑpσq “ ϑpσq´1. To this end, we begin by considering ϕ P H1pΩq, which, thanks to the continuous
embedding of H1pΩq into LrpΩq, does not contradict what was discussed at the end of the previous
section. Then, applying (1.7) with s specified in (2.1) and rτ P Hpdivs; Ωq (cf. (1.3)), and using the
Dirichlet condition satisfied by ϕ, we get

ż

Ω

rτ ¨ ∇ϕ “ ´

ż

Ω
ϕ divprτ q ,

whence the corresponding testing of the first equation of (2.7) becomes

ż

Ω

rϑpσq rσ ¨ rτ `

ż

Ω
ϕ divprτ q “ 0 @ rτ P Hpdivs; Ωq . (2.8)

It is clear, thanks to (1.9) and Cauchy-Schwarz’s inequality, that the first term of (2.8) makes sense
for rσ P L2pΩq. In addition, formally testing the second equation of the second row of (1.1) against a
function ψ, yields

ż

Ω
ψ divprσq “ ´

ż

Ω
gpuqψ , (2.9)
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whose right hand side has a similar structure to (2.4). Hence, analogously to (2.5) and (2.6), and since
u P LrpΩq and r ą s, Hölder’s inequality allows us to conclude that it suffices to take ψ in LrpΩq. In
fact, thanks to the Lipschitz continuity property of g (cf. (1.13)), we get

ˇ

ˇ

ˇ

ˇ

ż

Ω
pgpuq ´ gpvqqψ

ˇ

ˇ

ˇ

ˇ

ď Lg }u ´ v}0,r;Ω }ψ}0,s;Ω ď |Ω|
r´s
rs Lg }u ´ v}0,r;Ω }ψ}0,r;Ω , (2.10)

from which we deduce that the left hand side of (2.9) is finite if divprσq P LspΩq, and hence we will
look for rσ in Hpdivs; Ωq (cf. (1.3)). According to the foregoing discussion, we now set the following
Banach spaces

Q :“ Hpdivs; Ωq and M :“ LrpΩq , (2.11)

so that, given pσ,uq P X2 ˆ M1, the mixed formulation for (2.7) reduces to: Find prσ, ϕq P Q ˆ M
such that

raσprσ, rτ q ` rbprτ , ϕq “ 0 @ rτ P Q ,

rbprσ, ψq “ rGupψq @ψ P M ,
(2.12)

where, the bilinear forms raσ : Q ˆ Q Ñ R, rb : Q ˆ M Ñ R, and the functional Gu P M, are defined,
respectively, as

raσprσ, rτ q :“

ż

Ω

rϑpσq rσ ¨ rτ @ rσ, rτ P Q , (2.13)

rbprτ , ψq “

ż

Ω
ψ divprτ q @ prτ , ψq P Q ˆ M , (2.14)

and
rGupψq :“ ´

ż

Ω
gpuqψ @ψ P M . (2.15)

Next, a direct application of Hölder’s inequality, and the bounds given by (1.11) and (1.13), allow to
conclude that the bilinear forms ra and rb, and the functional rGu, are all bounded with the corresponding
norms given by

}rτ }Q :“ }rτ }divs;Ω @ rτ P Q and }ψ}M :“ }ψ}0,r;Ω @ψ P M .

In fact, there exist positive constants, given by

}raσ} “ rϑ2 , }rb} “ 1 , and } rGu} “ g2 |Ω|1{s , (2.16)

such that
|raσprζ, rτ q| ď }raσ} }rζ}Q }rτ }Q @ rζ, rτ P Q ,

|rbprτ , ψq| ď }rb} }rτ }Q }ψ}M @ prτ , ψq P Q ˆ M ,

and
| rGupψq| ď } rGu} }ψ}M @ψ P M .

2.3 A second approach for the diffusion equation

As an alternative to the previous formulation for the diffusion equation, and in order to obtain a more
accurate approximation for the diffusion gradient, as well as to avoid inverting ϑ, we introduce the
unknown t :“ ∇ϕ in Ω. Thus, the second row of (1.1) becomes

t “ ∇ϕ in Ω , rσ “ ϑpσq t in Ω ,

divprσq “ gpuq in Ω , and ϕ “ 0 on Γ .
(2.17)
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Then, bearing in mind that ϕ must be sought in LrpΩq, and thanks to the continuous embedding of
H1pΩq into LrpΩq, we initially look for ϕ in H1pΩq. In this way, testing the first equation of (2.17)
against rτ P Hpdivs; Ωq, applying (1.7), with s specified in (2.1), and employing the Dirichlet boundary
condition for ϕ, we obtain

ż

Ω
t ¨ rτ `

ż

Ω
ϕ divprτ q “ 0 @ rτ P Hpdivs; Ωq ,

whence the first term makes sense for t P L2pΩq. In turn, testing the second equation of (2.17) against
s P L2pΩq, we formally get

ż

Ω
ϑpσq t ¨ s ´

ż

Ω

rσ ¨ s “ 0 @ s P L2pΩq , (2.18)

from which we notice, thanks to Cauchy-Schwarz’s inequality and (1.9), that the first term of (2.18)
is finite, whereas its second term makes sense is rσ is sought in L2pΩq. Now, testing the third equation
of (2.17) against a function φ, we have

ż

Ω
φdivprσq “

ż

Ω
gpuqφ , (2.19)

and, similarly to (2.10), we deduce from the right side of (2.19) that φ can be considered in LrpΩq.
Hence, in order for the left hand side of (2.19) to be well defined we need that divprσq P LspΩq, which
yields to look for rσ in Hpdivs; Ωq. Consequently, recalling from (2.11) the definition of M, we introduce
the following notation

ϕ⃗ :“ pϕ, tq, φ⃗ :“ pφ, sq P H :“ M ˆ L2pΩq .

Thus, given pσ,uq P X2 ˆ M1, we arrive at the following mixed formulation for (2.17): Find pϕ⃗, rσq P

H ˆ Q such that

aσpϕ⃗, φ⃗q ` bpφ⃗, rσq “ Gupφ⃗q @ φ⃗ P H ,

bpϕ⃗, rτ q “ 0 @ rτ P Q ,
(2.20)

where the bilinear forms aσ : H ˆ H Ñ R and b : H ˆ Q Ñ R are defined as

aσpϕ⃗, φ⃗q “

ż

Ω
ϑpσq t ¨ s @ ϕ⃗, φ⃗ P H , and (2.21)

bpφ⃗, rτ q “ ´

ż

Ω

rτ ¨ s ´

ż

Ω
φdivprτ q @ pφ⃗, rτ q P H ˆ Q , (2.22)

whereas the linear functional Gu : H Ñ R is given by

Gupφ⃗q “ ´

ż

Ω
gpuqφ @ φ⃗ P H . (2.23)

Next, it is easily seen that aσ, b and Gu are bounded. In fact, endowing H with the product norm

}φ⃗}H :“ }φ}0,r;Ω ` }s}0,Ω @ φ⃗ :“ pφ, sq P H ,

and applying (1.9), (1.13), and the Cauchy-Schwarz and Hölder inequalities, we find that there exist
positive constants, denoted and given by

}aσ} “ ϑ2 , }b} “ 1 , and }Gu} “ g2 |Ω|1{s , (2.24)

such that
|aσpϕ⃗, φ⃗q| ď }aσ} }ϕ⃗}H }φ⃗}H @ ϕ⃗, φ⃗ P H ,

|bpφ⃗, rτ q| ď }b} }φ⃗}H }rτ }Q @ pφ⃗, rτ q P H ˆ Q ,

and
|Gupφ⃗q| ď }Gu| }φ⃗}H @ φ⃗ P H .
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2.4 The coupled fully-mixed formulations

According to the analyses in Sections 2.1 and 2.2, our first fully-mixed formulation for (1.1)-(1.2)
reduces to gathering (2.2) and (2.12), that is: Find pσ,uq P X2 ˆ M1 and prσ, ϕq P Q ˆ M such that

apσ, τ q ` b1pτ ,uq “ Gpτ q @ τ P X1,

b2pσ,vq “ Fϕpvq @v P M2,

raσprσ, rτ q ` rbprτ , ϕq “ 0 @ rτ P Q ,

rbprσ, ψq “ rGupψq @ψ P M .

(2.25)

In turn, as a consequence of the discussions in Sections 2.1 and 2.3, the second fully-mixed for-
mulation for (1.1)-(1.2) is given by (2.2) jointly with (2.20), that is: Find pσ,uq P X2 ˆ M1 and
pϕ⃗, rσq P H ˆ Q such that

apσ, τ q ` b1pτ ,uq “ Gpτ q @ τ P X1,

b2pσ,vq “ Fϕpvq @v P M2,

aσpϕ⃗, φ⃗q ` bpφ⃗, rσq “ Gupφ⃗q @ φ⃗ P H ,

bpϕ⃗, rτ q “ 0 @ rτ P Q .

(2.26)

3 The continuous solvability analysis

In this section we proceed similarly as in [8] and [15] (see also [5], [17], and some of the references
therein), and adopt a fixed-point strategy to analyze the solvability of (2.25) and (2.26). To this end,
we use the Babuska-Brezzi theory in Banach spaces (cf. [4, Theorem 2.1, Corollary 2.1, Section 2.1]
for the general case, and [10, Theorem 2.34] for a particular one) to prove the well-posedness of the
uncoupled problems (2.2), (2.12), and (2.20).

3.1 Well-posedness of the elasticity equation

We begin by letting S : M Ñ X2 ˆ M1 be the operator defined by

Spφq “ pS1pφq,S2pφqq :“ pσ,uq @φ P M , (3.1)

where pσ,uq P X2 ˆ M1 is the unique solution (to be confirmed below) of the mixed formulation for
the elasticity equation (cf. (2.2)) with φ instead of ϕ, that is

apσ, τ q ` b1pτ , ruq “ Gpτ q @ τ P X1,

b2pσ,vq “ Fφpvq @v P M2 .
(3.2)

Then, assuming that the Lamé parameter λ is sufficiently large, namely λ ą M , where M is specified
in [14, Lemmas 3.4], we can establish that the operator S (cf. (3.1)) is well defined. Indeed, letting
α, β1, and β2 be the constants yielding the continuous inf-sup conditions for a, b1, and b2 (cf. [14,
Lemmas 3.4 and 3.5]), a simple application of [4, Theorem 2.1, Corollary 2.1, Section 2.1] leads to the
following result (cf. [14, Lemma 3.6]).

Lemma 3.1. For each φ P M there exists a unique pσ,uq P X2 ˆ M1 solution of (3.2), and hence
one can define Spφq “

`

S1pφq,S2pφq
˘

:“ pσ,uq P X2 ˆ M1. Moreover, there hold

}S1pφq}X2 “ }σ}X2 ď
Cr
α

}uD}1{s,r;Γ `
|Ω|1{r

β2

ˆ

1 `
2

αµ

˙

f2 , and

}S2pφq}M1 “ }u}M1 ď
Cr
β1

ˆ

1 `
2

αµ

˙

}uD}1{s,r;Γ `
2|Ω|1{r

µβ1β2

ˆ

1 `
2

αµ

˙

f2 .

(3.3)
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3.2 Well-posedness of the first approach for the diffusion equation

We now let rS : X2 ˆ M1 Ñ Q ˆ M be the operator defined by

rSpζ,wq “ prS1pζ,wq, rS2pζ,wqq :“ prσ, ϕq @ pζ,wq P X2 ˆ M1, (3.4)

where prσ, ϕq P Q ˆ M is the unique solution (to be confirmed below) of (2.12) with pζ,wq instead of
pσ,uq, that is

raζprσ, rτ q ` rbprτ , ϕq “ 0 @ rτ P Q ,

rbprσ, ψq “ Gwpψq @ψ P M .
(3.5)

Next, we let rK be the kernel of the bilinear form rb (cf. (2.14)), which reduces to

rK :“
!

rτ P Hpdivs; Ωq : divprτ q “ 0
)

.

Then, bearing in mind the uniform positiveness of rϑ (cf. (1.10)), the definition of raζ (cf. (2.13)), and
the norm of Hpdivs; Ωq (cf. (1.5)), we readily deduce that

raζprτ , rτ q ě rϑ0}rτ }2Q @ rτ P rK, @ ζ P X2 , (3.6)

which yields the continuous inf-sup condition for raζ (cf. [10, eq. (2.28), Theorem 2.34]) with constant

rα “ rϑ0. In addition, we know from [15, Lemma 2.9] that there exists a positive constant rβ such that

sup
rτPQ

rτ‰0

rbprτ , ψq

}rτ }Q
ě rβ}ψ}M @ψ P M , (3.7)

which establishes the continuous inf-sup condition for rb.

Hence, we are in position to state that the operator rS is well-defined.

Lemma 3.2. For each pζ,wq P X2 ˆ M1 there exists a unique prσ, ϕq P Q ˆ M solution of (3.5), and
hence one can define rSpζ,wq :“ prσ, ϕq P Q ˆ M. Moreover, there hold

}rS1pζ,wq}Q “ }rσ}Q ď
1

rβ

´

1 `
rϑ2
rα

¯

|Ω|1{sg2 , and (3.8)

}rS2pζ,wq}M “ }ϕ}M ď
rϑ2
rβ2

´

1 `
rϑ2
rα

¯

|Ω|1{sg2 . (3.9)

Proof. Knowing from (3.6) and (3.7) that, given pζ,wq P X2 ˆ M1, raζ and rb satisfies the hypotheses
of [10, Theorem 2.34], and noting that Q :“ Hpdivs; Ωq and M :“ LrpΩq are reflexive Banach spaces,
the proof reduces to a straightforward application of the aforementioned theorem. In this way, the a
priori estimates (3.8) and (3.9) follow from [10, eq. (2.30), Theorem 2.34] and (2.16).

3.3 Well-posedness of the second approach for the diffusion equation

Similarly to the analysis of previous sections, we let S : X2 ˆ M1 Ñ H be the operator given by

Spζ,wq “ pS1pζ,wq, S2pζ,wqq :“ ϕ⃗ @ pζ,wq P X2 ˆ M1 , (3.10)

where pϕ⃗, rσq :“ ppϕ, tq, rσq P H ˆ Q is the unique solution (to be confirmed below) of problem (2.20)
with pζ,wq instead of pσ,uq, that is

aζpϕ⃗, φ⃗q ` bpφ⃗, rσq “ Gwpφ⃗q @ φ⃗ P H ,

bpϕ⃗, rτ q “ 0 @ rτ P Q .
(3.11)
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Here we apply [10, Theorem 2.34] to prove that problem (3.11) is well-posed (equivalently, that S is
well-defined). In this regard, it is important to stress that the structure of (3.11) is similar to the
one of [8, eq. (3.23)], and hence, several results and techniques from there will be employed in what
follows. Indeed, let V the kernel of the operator induced by b (cf. (2.22), which reduces to

V :“
!

φ⃗ “ pφ, sq P H :“ M ˆ L2pΩq : ∇φ “ s
)

. (3.12)

Now, we let cP be the positive constant yielding the Friedrichs-Poincaré inequality, which states that
|φ|21,Ω ě cP }φ}21,Ω for all φ P H1

0pΩq, and denote by ir the continuous injection of H1pΩq into LrpΩq. In
addition, we consider an arbitrary ζ P X2. Then, bearing in mind (1.8) and proceeding analogously
to the proof of [8, eq. (3.41), Lemma 3.2], we find that

aζpφ⃗, φ⃗q ě α}φ⃗}2H @ φ⃗ P V , (3.13)

with

α :“
ϑ0
2

mint1,
cP

}ir}
u ,

which proves the V -ellipticity of aζ . In turn, a slight modification of the proof of [8, Lemma 3.3]
allows us to prove the existence of a positive constant β such that

sup
φ⃗PH

φ⃗‰0

bpφ⃗, rτ q

}φ⃗}H
ě β}rτ }Q @ rτ P Q , (3.14)

whence the bilinear form b satisfies the continuous inf-sup condition required by [10, Theorem 2.34].

We are now in position to confirm that the operator S is well-defined.

Lemma 3.3. For each pζ,wq P X2 ˆM1 there exists a unique pϕ⃗, rσq P HˆQ solution of (3.11), and
hence one can define Spζ,wq :“ ϕ⃗ P H. Moreover, there holds

}Spζ,wq}H “ }ϕ⃗}H “ }ϕ}0,r;Ω ` }t}0,Ω ď
|Ω|1{s

α
g2 . (3.15)

Proof. Thanks to (2.24), (3.13) and (3.14), a straightforward application of [10, Theorem 2.34] yields
the existence of a unique solution pϕ⃗, rσq P H ˆ Q to (2.20). Moreover, the corresponding a priori
estimate given by the first inequality of [10, eq. (2.30)], along with the expression for }Gw} provided
by (2.24), lead to (3.15).

Regarding the a priori estimate for the component rσ of the unique solution of (2.20), which will be
used later on, we recall that the second inequality in [10, eq. (2.30)] and (2.24) implies

}rσ}Q ď
|Ω|1{s

β

ˆ

1 `
ϑ2
α

˙

g2 . (3.16)

3.4 Solvability of the first fully-mixed formulation

We begin by defining the compose operator Ξ : M Ñ M as

Ξpψq :“ rS2
`

Spψq
˘

@ψ P M . (3.17)

Then, knowing that the operators rS and S, and hence Ξ as well, are well-defined, we notice that
solving (2.25) is equivalent to seeking a fixed point of Ξ, that is: Find ψ P M such that

Ξpψq “ ψ . (3.18)
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Next, in order to address the solvability of (3.18) (equivalently of (2.25)), we verify the hypotheses of
the Banach fixed-point theorem. For this purpose, let us first introduce the ball

ĂW :“
!

ϕ P M : }ϕ}M ď rδ
)

, (3.19)

with

rδ :“
rϑ2
rβ2

´

1 `
rϑ2
rα

¯

|Ω|1{sg2 .

It follows from the definition of Ξ (cf. (3.17)) and the a priori estimate for rS2 (cf. (3.9)) that

ΞpĂW q Ď ĂW . (3.20)

Now, in order to establish the continuity of Ξ, we previously establish those of S and rS. Indeed,
resorting to a slight modification of [14, Lemma 3.9], we deduce the existence of a positive constant
CS, depending only on µ, α, β1, and β2, such that

}Spϕq ´ Spφq}X2ˆM1 ď CS Lf }ϕ´ φ}M @ϕ, φ P M , (3.21)

which proves the Lipschitz-continuity of S. Furthermore, for the same property of rS, the approach
from several previous works (see, e.g. [1], [9], [12], [13], and [15]) is adopted here, so that a regularity
assumption on the solution of the problem defining this operator is introduced. More precisely, from
now on we suppose that there exists ε ě n

r and a positive constant rCε, such that

pRA1q for each pζ,wq P X2 ˆ M1 there holds rSpζ,wq “ prσ, ϕq P pQ X HεpΩqq ˆ Wε,rpΩq, and

}rσ}ε,Ω ` }ϕ}ε,r;Ω ď rCε g2 . (3.22)

The aforementioned lower bound of ε is explained within the proof of Lemma 3.4 below, which provides
the Lipschitz-continuity of rS. In this regard, we recall now that for each ε ă n

2 there holds HεpΩq Ă

Lε
˚

pΩq, with continuous injection

iε : H
εpΩq ÝÑ Lε

˚

pΩq , where ε˚ “
2n

n´ 2ε
. (3.23)

Note that the indicated lower and upper bounds for the additional regularity ε, which turn out to
require that ε P rnr ,

n
2 q, are compatible if and only if r ą 2, which is coherent with the range stipulated

in (2.1). Thus, we have the following result.

Lemma 3.4. There exists a positive constant C
rS
, depending only on rα, rβ, |Ω|, r, ε, }iε} pcf. (3.23)q,

and rCε pcf. (3.22)q, such that

}rSpζ,wq ´ rSpτ ,vq}QˆM ď C
rS

␣

L
rϑ
g2 ` Lg

(

}pζ,wq ´ pτ ,vq}X2ˆM1 (3.24)

for all pζ,wq, pτ ,vq P X2 ˆ M1.

Proof. We begin by noticing that the a priori estimates (3.8) and (3.9) of problem (3.5), with a given
pζ,wq P X2 ˆ M1, are equivalent to stating that

}prζ, φq}QˆM ď C sup
prτ ,ψqPQˆM

prτ ,ψq‰0

raζprζ, rτ q `rbprτ , φq `rbprζ, ψq

}prτ , ψq}QˆM
@ prζ, φq P Q ˆ M , (3.25)

with a positive constant C that depends only on rϑ2, rα, and rβ, and hence independent of pζ,wq. Next,
given pζ,wq, pτ ,vq P X2 ˆ M1, we let

rSpζ,wq :“ prσ, ϕq and rSpτ ,vq :“ prζ, φq ,
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which, according to (3.4) and (3.5), means, respectively, that

raζprσ, rτ q ` rbprτ , ϕq “ 0 @ rτ P Q ,

rbprσ, ψq “ Gwpψq @ψ P M ,
(3.26)

and
raτ prζ, rτ q ` rbprτ , φq “ 0 @ rτ P Q ,

rbprζ, ψq “ Gvpψq @ψ P M .
(3.27)

Then, applying (3.25) to rSpζ,wq ´ rSpτ ,vq “ prσ ´ rζ, ϕ´ φq, and using (3.26) and (3.27), we get

}rSpζ,wq ´ rSpτ ,vq}QˆM ď C sup
prτ ,ψqPQˆM

prτ ,ψq‰0

raζprσ ´ rζ, rτ q `rbprτ , ϕ´ φq `rbprσ ´ rζ, ψq

}prτ , ψq}QˆM

ď C sup
prτ ,ψqPQˆM

prτ ,ψq‰0

raτ prζ, rτ q ´ raζprζ, rτ q ` pGw ´Gvqpψq

}prτ , ψq}QˆM
.

(3.28)

Thus, bearing in mind the definitions of raτ and raζ , and using the Lipschitz-continuity of rϑ (cf. (1.11))
along with the Cauchy-Schwarz and Hölder inequalities, we find that

|raτ prζ, rτ q ´ raζprζ, rτ q| ď L
rϑ

}pτ ´ ζq rζ}0,Ω }rτ }0,Ω ď L
rϑ

}τ ´ ζ}0,2q;Ω }rζ}0,2p,Ω }rτ }0,Ω , (3.29)

where p, q P p1,`8q are conjugate to each other. Now, choosing p such that 2p “ ε˚ (cf. (3.23)), we
get 2q “ n

ε , which, according to the range stipulated for ε, yields 2q ď r, and thus the norm of the

embedding of LrpΩq into L2qpΩq “ L
n
ε pΩq is given by Cr,ε :“ |Ω|

rε´n
rn . In this way, using additionally

the continuity of iε (cf. (3.23)) along with the regularity estimate (3.22), the inequality (3.29) becomes

|raτ prζ, rτ q ´ raζprζ, rτ q| ď L
rϑ
Cr,ε }τ ´ ζ}0,r;Ω }iε} }rζ}ε,Ω }rτ }0,Ω

ď L
rϑ
Cr,ε }iε} rCε g2 }τ ´ ζ}X2 }prτ , ψq}QˆM .

(3.30)

In turn, the Lipschitz-continuity of g (cf. (1.13)), the fact that s ă r (cf. (2.1)), and Hölder’s
inequality, yield

|pGw ´Gvqpψq| ď Lg }w ´ v}0,r;Ω }ψ}0,s;Ω ď Lg |Ω|
r´s
rs }w ´ v}0,r;Ω }ψ}0,r;Ω

ď Lg |Ω|
r´s
rs }w ´ v}M2 }prτ , ψq}QˆM .

(3.31)

Finally, replacing (3.30) and (3.31) back into (3.28), we arrive at (3.24), which ends the proof.

We are able to prove now the Lipschitz-continuity of Ξ in the closed ball ĂW of M :“ LrpΩq.

Lemma 3.5. There exists a positive constant CΞ, depending only on CS and C
rS
, such that

}Ξpϕq ´ Ξpφq}M ď CΞ Lf
␣

Lg ` L
rϑ
g2
(

}ϕ´ φ}M @ϕ, φ P M . (3.32)

Proof. It readily follows from the definition of Ξ (cf. (3.17)), and the estimates (3.21) and (3.24),
which yields CΞ :“ CSC

rS
.

Consequently, the main result of this subsection is stated as follows.
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Theorem 3.6. Assume the regularity assumption pRA1q (cf. (3.22)), and that the data Lf , Lg, Lθ,
and g2 are sufficiently small so that

CΞ Lf
␣

Lg ` L
rϑ
g2
(

ă 1 . (3.33)

Then, Ξ has a unique fixed point ϕ in ĂW . Equivalently, the coupled problem (2.25) has a unique

solution
`

pσ,uq, prσ, ϕq
˘

P
`

X2 ˆ M1

˘

ˆ
`

Q ˆ M
˘

, with ϕ P ĂW (cf. (3.19)). Moreover, there hold

}σ}X2 ď
Cr
α

}uD}1{s,r;Γ `
|Ω|1{r

β2

ˆ

1 `
2

αµ

˙

f2 ,

}u}M1 ď
Cr
β1

ˆ

1 `
2

αµ

˙

}uD}1{s,r;Γ `
2|Ω|1{r

µβ1β2

ˆ

1 `
2

αµ

˙

f2 , and

}rσ}Q ď
1

rβ2

´

1 `
rϑ2
rα

¯

|Ω|1{sg2 .

(3.34)

Proof. Thanks to (3.20), Lemma 3.5, and the assumption (3.33), the existence of a unique ϕ P ĂW
solution to (3.18) (equivalently, the existence of a unique

`

pσ,uq, prσ, ϕq
˘

P
`

X2 ˆ M1

˘

ˆ
`

Q ˆ M
˘

solution to (2.25)), follows from a straightforward application of the Banach fixed point Theorem. In
addition, noting that pσ,uq “ Spϕq and prσ, ϕq “ rSpσ,uq, the a priori estimates (3.3) and (3.8) yield
(3.34), which ends the proof.

3.5 Solvability of the second fully-mixed formulation

Similarly to Section 3.4, for the solvability analysis of (2.26) we define the operator Λ : M Ñ M as

Λpψq :“ S1
`

Spψq
˘

@ψ P M . (3.35)

Then, noticing that S and S, and hence Λ as well, are well-defined, we realize that solving (2.26) is
equivalent to finding a fixed point of Λ, that is: Find ψ P M such that

Λpψq “ ψ . (3.36)

In what follows we show that Λ verifies the hypotheses of the respective Banach Theorem. We begin
by defining the ball

W :“
!

ϕ P M : }ϕ}M ď δ
)

, (3.37)

with

δ :“
|Ω|1{s

α
g2 ,

so that from the definition of Λ (cf. (3.35)) and the a priori estimate for S1 (cf. (3.15)), we get

ΛpW q Ď W . (3.38)

Next, in order to prove that Λ is Lipschitz-continuous, and similarly to pRA1q), we need to introduce
a regularity hypothesis on the solution of the problem defining the operator S. More precisely, we
assume that there exists ε ě n

r and a positive constant Cε such that

pRA2q for each pζ,wq P X2 ˆ M1 there hold Spζ,wq :“ pϕ, tq P Wε,rpΩq ˆ HεpΩq, and

}ϕ}ε,r;Ω ` }t}ε,Ω ď Cε g2 . (3.39)

The Lipschitz-continuity of S is addressed next, whose corresponding proof requires again the lower
bound of ε, and the embedding specified in (3.23). Therefore, following the same arguments from the
previous section, we conclude that the feasible range for r and s are given by (2.1). The announced
result is established as follows.
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Lemma 3.7. There exists a positive constant CS, depending on α, |Ω|, r, s, ε, }iε} pcf. (3.23)q, and
Cε (cf. (3.39)) such that

}Spζ,wq ´ Spτ ,vq}H

ď CS

!

Lg ` Lϑ g2

)

}pζ,wq ´ pτ ,vq}X2ˆM1 @ pζ,wq, pτ ,vq P X2 ˆ M1 .
(3.40)

Proof. Given pζ,wq, pτ ,vq P X2 ˆ M1, we let

Spζ,wq :“ ϕ⃗ and Spτ ,vq :“ ψ⃗ ,

where pϕ⃗, rσq :“ ppϕ, tq, rσq P H ˆ Q and pψ⃗, rζq :“ ppψ, rq, rζq P H ˆ Q are the respective solutions of
(3.11). It follows from the corresponding second equations of (3.11) that ϕ⃗ ´ ψ⃗ P V (cf. (3.12)), and
thus the V -ellipticity of aζ (cf. (2.21)) gives

α }ϕ⃗´ ψ⃗}2H ď aζpϕ⃗´ ψ⃗, ϕ⃗´ ψ⃗q . (3.41)

In turn, applying the corresponding first equations of (3.11) to φ⃗ “ ϕ⃗´ ψ⃗, we obtain

aζpϕ⃗, ϕ⃗´ ψ⃗q “ Gwpϕ⃗´ ψ⃗q , and (3.42)

aτ pψ⃗, ϕ⃗´ ψ⃗q “ Gvpϕ⃗´ ψ⃗q , (3.43)

so that employing (3.42), and then subtracting and adding aτ pψ⃗, ϕ⃗´ ψ⃗q (cf. (3.43)), (3.41) becomes

α }ϕ⃗´ ψ⃗}2H ď pGw ´Gvqpϕ⃗´ ψ⃗q ` paτ ´ aζqpψ⃗, ϕ⃗´ ψ⃗q . (3.44)

Next, proceeding as for (3.31), we easily get

pGw ´Gvqpϕ⃗´ ψ⃗q ď Lg |Ω|
r´s
rs }w ´ v}M1 }ϕ´ ψ}M . (3.45)

On the other hand, recalling that r and s are conjugate to each other with s ă r (cf. (2.1)), and
employing the Lipschitz continuity of ϑ (cf. (1.9)) along with Hölder’s inequality, we find that

paτ ´ aζqpψ⃗, ϕ⃗´ ψ⃗q ď Lϑ }τ ´ ζ}0,2q;Ω }r}0,2p;Ω }t ´ r}0,Ω , (3.46)

where p, q P p1,`8q are conjugate to each other as well. Then, similarly to the proof of Lemma 3.4,
we choose p such that 2p “ ε˚ (cf. (3.23)), so that 2q “ n

ε ď r, and hence

paτ ´ aζqpψ⃗, ϕ⃗´ ψ⃗q ď LϑCr,ε }iε}Cε g2 }τ ´ ζ}0,r;Ω }t ´ r}0,Ω . (3.47)

Thus, replacing the estimates (3.45) and (3.47) back into (3.44), we arrive at (3.40) with the constant

CS :“ max
␣

|Ω|
r´s
rs , Cr,ε }iε}Cε

(

.

We are now in position to conclude the Lipschitz-continuity of Λ.

Lemma 3.8. There exists a positive constant CΛ, depending only on CS and CS, such that

}Λpϕq ´ Λpφq}M ď CΛ Lf
␣

Lg ` Lϑ g2
(

}ϕ´ φ}M @ϕ, φ P M . (3.48)

Proof. It is a direct consequence of the definition of Λ (cf. (3.35)) and the continuity properties given
by (3.21) and Lemma 3.7.

Finally, the well-posedness of (2.26) is established as follows.
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Theorem 3.9. Assume the regularity assumption pRA2q (cf. (3.39)), and that the data Lf , Lg, Lϑ,
and g2 are sufficiently small so that

CT Lf
␣

Lg ` Lϑ g2
(

ă 1 . (3.49)

Then, Λ has a unique fixed point ϕ P W . Equivalently, the coupled problem (2.26) has a unique solution
`

pσ,uq, pϕ⃗, rσq
˘

P
`

X2 ˆ M1

˘

ˆ
`

H ˆ Q
˘

, with ϕ⃗ :“ pϕ, tq P H and ϕ P W (cf. (3.37)). Moreover,
there hold

}σ}X2 ď
Cr
α

}uD}1{s,r;Γ `
|Ω|1{r

β2

ˆ

1 `
2

αµ

˙

f2 ,

}u}M1 ď
Cr
β1

ˆ

1 `
2

αµ

˙

}uD}1{s,r;Γ `
2|Ω|1{r

µβ1β2

ˆ

1 `
2

αµ

˙

f2 ,

}ϕ⃗}H “ }ϕ}M ` }t}0,Ω ď
|Ω|1{s

α
g2 , and

}rσ}Q ď
|Ω|1{s

β

ˆ

1 `
ϑ2
α

˙

g2 .

(3.50)

Proof. Bearing in mind (3.38), Lemma 3.8, and the hypothesis (3.49), a direct application of the
Banach fixed point Theorem implies the existence of a unique ϕ P W solution to (3.36) (equivalently,
the existence of a unique solution

`

pσ,uq, pϕ⃗, rσq
˘

P
`

X2 ˆ M1

˘

ˆ
`

H ˆ Q
˘

to (2.26)). In addition,

recalling that pσ,uq “ Spϕq and pϕ⃗, rσq “ Spσ,uq, the a priori estimates (3.3), (3.15), and (3.16) yield
(3.50) and conclude the proof.

4 The Galerkin schemes

In this section we introduce and analyze the Galerkin schemes of the fully-mixed formulations (2.25)
and (2.26). In particular, for the solvability analyses of the discrete versions of the decoupled problems
studied in Sections 3.1, 3.2, and 3.3, we employ the corresponding analogues of [4, Theorem 2.1,
Corollary 2.1, Section 2.1] and [10, Theorem 2.34], which are given by [4, Corollary 2.2, eqs. (2.24),
(2.25)] and [10, Proposition 2.42], respectively.

4.1 Preliminaries

We begin by letting X2,h, M1,h, X1,h, and M2,h be the finite element subspaces of X2, M1, X1, and
M2, respectively, that are described in [14, Section 5.2, eq. (5.9)]. In addition, let Qh, Mh, and Ht

h

be arbitrary finite element subspaces of Q, M, and L2pΩq, respectively. Hereafter, h stands for both
the sub-index of each subspace and the size of a regular triangulation Th of Ω̄ made up of triangles K
(when n “ 2) or tetrahedra K (when n “ 3) of diameter hK , that is, h :“ max

␣

hK : K P Th
(

. Then,
the Galerkin scheme associated with (2.25) reads: Find pσh,uhq P X2,h ˆM1,h and prσ, ϕq P Qh ˆMh

such that
apσh, τ hq ` b1pτ h,uhq “ Gpτ hq @ τ h P X1,h,

b2pσh,vhq “ Fϕhpvhq @vh P M2,h,

raσhprσh, rτ hq ` rbprτ h, ϕhq “ 0 @ rτ h P Qh ,

rbprσh, ψhq “ rGuhpψhq @ψh P Mh .

(4.1)

In turn, defining the product space Hh :“ Mh ˆ Ht
h and setting the notation

ϕ⃗h :“ pϕh, thq , φ⃗h :“ pφh, shq P Hh ,
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the Galerkin scheme associated with (2.26) reduces to: Find pσh,uhq P X2,h ˆ M1,h and pϕ⃗h, rσhq P

Hh ˆ Qh such that

apσh, τ hq ` b1pτ h,uhq “ Gpτ hq @ τ h P X1,h,

b2pσh,vhq “ Fϕhpvhq @vh P M2,h,

aσhpϕ⃗h, φ⃗hq ` bpφ⃗h, rσhq “ Guhpφ⃗hq @ φ⃗h P Hh ,

bpϕ⃗h, rτ hq “ 0 @ rτ h P Qh .

(4.2)

The aforementioned subspaces X2,h, M1,h, X1,h, and M2,h, along with specific examples of Qh, Mh,
and Ht

h satisfying the hypotheses to be assumed below in Sections 4.3 and 4.4, are described later on
in Section 5.1.

4.2 Discrete well-posedness of the elasticity equation

We let Sh : Mh Ñ X2,h ˆ M1,h be the discrete version of the operator S (cf. (3.1)), that is

Shpφhq “ pS1,hpφhq,S2,hpφhqq :“ pσh,uhq @φh P Mh , (4.3)

where pσh,uhq P X2,h ˆ M1,h is the unique solution (to be confirmed below) of the first two rows of
(4.1) (or (4.2)) with φh instead of ϕh, namely

apσh, τ hq ` b1pτ h,uhq “ Gpτ hq @ τ h P X1,h ,

b2pσh,vhq “ Fφhpvhq @vh P M2,h .
(4.4)

Then, under the same assumption on the Lamé parameter λ stipulated in Section 3.1, and letting
αd, β1,d, and β2,d be the constants yielding the discrete inf-sup conditions for a, b1, and b2 (cf. [14,
Lemmas 5.3 and 5.4]), a direct application of [4, Corollary 2.2, eqs. (2.24), (2.25)] yields the following
result (cf. [14, Lemma 4.1]).

Lemma 4.1. For each φh P Mh there exists a unique pσh,uhq P X2,h ˆ M1,h solution to (4.4), and
hence one can define Shpφhq “

`

S1,hpφhq,S2,hpφhq
˘

:“ pσh,uhq P X2,hˆM1,h. Moreover, there hold

}S1,hpφhq}X2 “ }σh}X2 ď
Cr
αd

}uD}1{s,r;Γ `
|Ω|1{r

β2,d

ˆ

1 `
2

αd µ

˙

f2 , and

}S2,hpφhq}M1 “ }uh}M1 ď
Cr
β1,d

ˆ

1 `
2

αd µ

˙

}uD}1{s,r;Γ `
2|Ω|1{r

µβ1,d β2,d

ˆ

1 `
2

αd µ

˙

f2 .

(4.5)

We stress here that the lack of a required boundedness property for a projector involved in the
proof of the previous lemma, restricts the present discrete analysis to the 2D case. We refer to [14,
Section 5] for further details.

4.3 Discrete well-posedness of the first approach for the diffusion equation

We now let rSh : X2,h ˆ M1,h Ñ Qh ˆ Mh be the discrete version of rS (cf. (3.4)), that is

rShpζh,whq :“ prσh, ϕhq @ pζh,whq P X2,h ˆ M1,h , (4.6)

where prσh, ϕhq P Qh ˆMh is the unique solution (to be confirmed below) of the third and fourth rows
of (4.1) with pζh,whq instead of pσh,uhq, namely

raζhprσh, rτ hq ` rbprτ h, ϕhq “ 0 @ rτ h P Qh ,

rbprσh, ψhq “ rGwh
pψhq @ψh P Mh .

(4.7)
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In order to establish the well-posedness of (4.7), we first consider the discrete kernel of rb, that is

rKh :“
!

rτ h P Qh : rbprτ h, ϕhq “ 0 @ϕh P Mh

)

, (4.8)

and suppose that

(H.1) divpQhq Ď Mh.

Then, bearing mind the definition of rb (cf. (2.14)), and employing (H.1), we readily deduce from
(4.8) that

rKh :“
!

rτ h P Qh : divprτ hq “ 0
)

,

which yields the discrete analogue of (3.6), and hence the rKh-ellipticity of raζh with constant rαd “ rϑ0.

Next, we also assume that

(H.2) there exists a positive constant rβd, independent of h, such that

sup
rτhPQh
rτh‰0

rbprτ h, ψhq

}rτ h}Q
ě rβd }ψh}M @ψh P Mh .

Thus, straightforward applications of [10, Theorem 2.42] and the abstract estimates from [10, eq.
(2.30)] imply the discrete analogue of Lemma 3.2, which is stated as follows.

Lemma 4.2. For each pζh,whq P X2,h ˆ M1,h, there exists a unique prσh, ϕhq P Qh ˆ Mh solution

of (4.7), and hence one can define rShpζh,whq “
`

rS1,hpζh,whq, rS2,hpζh,whq
˘

:“ prσh, ϕhq P Qh ˆ Mh.
Moreover, there hold

}rS1,hpζh,whq}Q “ }rσh}Q ď
1

rβd

´

1 `
rϑ2
rαd

¯

|Ω|1{sg2 , and

}rS2,hpζh,whq}M “ }ϕh}M ď
rϑ2
rβ2d

´

1 `
rϑ2
rαd

¯

|Ω|1{sg2 .

(4.9)

4.4 Discrete well-posedness of the second approach for the diffusion equation

Here we introduce the discrete operator Sh : X2,h ˆ M1,h Ñ Hh given by

Shpζh,whq :“ ϕ⃗h @ pζh,whq P X2,h ˆ M1,h , (4.10)

where pϕ⃗h, rσhq :“ ppϕh, thq, rσhq P Hh ˆQh is the unique solution (to be confirmed below) of the third
and fourth rows of (4.2) with pζh,whq instead of pσh,uh, that is

aζhpϕ⃗h, φ⃗hq ` bpφ⃗h, rσhq “ Gwh
pφ⃗hq @ φ⃗h P Hh ,

bpϕ⃗h, rτ hq “ 0 @ rτ h P Qh .
(4.11)

In order to prove that (4.11) is well-posed, we need to incorporate a couple of suitable hypotheses
on the discrete spaces. Indeed, we first assume that

(H.3) there exists a positive constant βd, independent of h, such that

sup
φ⃗hPHh
φ⃗h‰0

bpφ⃗h, rτ hq

}φ⃗h}H
ě βd }rτ h}Q @ rτ h P Qh .
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Next, we let Vh be the discrete kernel of the bilinear form b, that is

Vh :“
!

φ⃗h P Hh : bpφ⃗h, rτ hq “ 0 @ rτ h P Qh

)

,

and suppose that

(H.4) there exists a positive constant Cd, independent of h, such that

}sh}0,Ω ě Cd }φh}0,r,Ω @ φ⃗h :“ pφh, shq P Vh .

In this way, bearing in mind the definition of aζh (cf. (2.21)), and employing the positive definiteness
property of ϑ (cf. (1.8)) and (H.4), we deduce for each ζh P X2,h that

aζhpφ⃗h, φ⃗hq ě ϑ0 }sh}20,Ω ě
ϑ0
2
C2
d }φh}20,r;Ω `

ϑ0
2

}sh}20,r;Ω @ φ⃗h :“ pφh, shq P Vh , (4.12)

from which it readily follows the Vh-ellipticity of aζh with constant αd :“
ϑ0
2 mintC2

d , 1u.

Consequently, applying [10, Proposition 2.42], and making use of the a priori estimate provided by
[10, eq. (2.30)], we are lead to the discrete analogue of Lemma 3.3.

Lemma 4.3. For each pζh,whq P X2,h ˆ M1,h there exists a unique pϕ⃗h, rσhq P Hh ˆ Qh solution of

(4.11), and hence one can define Shpζh,whq :“ ϕ⃗h P Hh. Moreover, there holds

}Shpζh,whq}H “ }ϕ⃗h}H “ }ϕh}0,r;Ω ` }th}0,Ω ď
|Ω|1{s

αd
g2 . (4.13)

We end this section by remarking that the discrete version of (3.16) becomes

}rσh}Q “ }rσh}divs;Ω ď
|Ω|1{s

βd

ˆ

1 `
ϑ2
αd

˙

g2 . (4.14)

4.5 Discrete solvability of the first fully-mixed formulation

In this section we adopt the discrete analogue of the fixed point strategy introduced in Section 3.4 to
analyze the solvability of (4.1). According to it, we define the operator Ξh : Mh Ñ Mh as

Ξhpφhq :“ rS2,h
`

Shpφhq
˘

@φh P Mh , (4.15)

and observe, being rSh and Sh, and hence Ξh as well, well-defined, that solving (4.1) is equivalent to
seeking a fixed point of Ξh, that is: Find ϕh P Mh such that

Ξhpϕhq “ ϕh . (4.16)

Thus, in what follows we show that Ξh verifies the hypotheses of the Brouwer theorem. In fact,
introducing the ball

ĂWh :“
!

ϕh P M1,h : }ϕh}0,r;Ω ď rδd

)

, (4.17)

with

rδd :“
rϑ2
rβ2d

´

1 `
rϑ2
rαd

¯

|Ω|1{sg2 ,

we realize, according to the definition of Ξh (cf. (4.15)) and the second a priori estimate in (4.9), that

Ξh
`

ĂWh

˘

Ď ĂWh . (4.18)
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Next, in order to derive the continuity of Ξh, we first recall from [14, eq. (4.11)] that there exists a
positive constant CS,d, independent of h, such that

}Shpϕhq ´ Shpφhq}X2ˆM1 ď CS,d Lf }ϕh ´ φh}0,r;Ω @ϕh, φh P Mh . (4.19)

On the other hand, for the continuity of rSh the reasoning of the proof of Lemma 3.4 is slightly
modified. Indeed, knowing that the regularity assumption pRA1q is certainly not applicable in the
present discrete context, we proceed to utilize a L2q ´L2p´L2 argument to derive the discrete version
of (3.24), where p, q P p1,`8q, conjugate to each other, are chosen such that 2q “ r. The above
is a feasible choice since, as stipulated in (2.1), there holds r ą 2, which yields r˚ :“ 2p “ 2r

r´2 . In

this way, given pζh,whq pτ h,vhq P X2,h ˆ M1,h, and denoting prσh, ϕhq “ rShpζh,whq P Qh ˆ Mh and

prζh, φhq “ rShpτ h,vhq P Qh ˆ Mh, the discrete analogue of (3.29) becomes

|raτhprζh, rτ hq ´ raζhprζh, rτ hq| ď L
rϑ

}pτ h ´ ζhqrζh}0,Ω }rτ h}0,Ω

ď L
rϑ

}τ h ´ ζh}0,2q;Ω }rζh}0,2p,Ω }rτ h}0,Ω .
(4.20)

The foregoing inequality, along with the discrete versions of (3.28) and (3.31), whose details we omit
here, imply the existence of a positive constant C

rS,d
, depending only on rαd, rβd, and |Ω|, and hence

independent of h, such that

}rShpζh,whq ´ rShpτ h,vhq}QˆM

ď C
rS,d

!

Lg ` L
rϑ

}rS1,hpτ h,vhq}0,r˚;Ω

)

}pζh,whq ´ pτ h,vhq}QˆM

(4.21)

for all pζh,whq, pτ h,vhq P X2,h ˆ M1,h. In this way, recalling the definition of Ξh (cf. (4.15)), and
employing the estimates (4.19) and (4.21), we conclude that

}Ξhpϕhq ´ Ξhpφhq}0,r;Ω

ď CΞ,d Lf

!

Lg ` L
rϑ

}rS1,hpShpφhqq}0,r˚;Ω

)

}ϕh ´ φh}0,r;Ω @ϕh, φh P Mh ,
(4.22)

with the positive constant CΞ,d :“ CS,dCrS,d
. While the estimate (4.22) implies that Ξh is continuous,

we emphasize that the lack of control of the term }rS1,hpShpφhqq}0,r˚;Ω stop us of concluding Lipschitz-
continuity and hence nor contractivity of this operator.

We are now in position to establish the following main result.

Theorem 4.4. The operator Ξh has at least one fixed point ϕh P ĂWh. Equivalently, the Galerkin
scheme (4.1) has at least one solution

`

pσh,uhq, prσh, ϕhq
˘

P
`

X2,hˆM1,h

˘

ˆ
`

QhˆMh

˘

, with ϕh P ĂWh

(cf. (4.17)). Moreover, there hold

}σh}X2 ď
Cr
αd

}uD}1{s,r;Γ `
|Ω|1{r

β2,d

ˆ

1 `
2

αd µ

˙

f2 ,

}uh}M1 ď
Cr
β1,d

ˆ

1 `
2

αd µ

˙

}uD}1{s,r;Γ `
2|Ω|1{r

µβ1,d β2,d

ˆ

1 `
2

αd µ

˙

f2 , and

}rσh}Q ď
1

rβd

´

1 `
rϑ2
rαd

¯

|Ω|1{sg2 .

(4.23)

Proof. Thanks to (4.18), the continuity of Ξh (cf. (4.22)), and the equivalence between (4.1) and
(4.16), a straightforward application of Brouwer’s theorem (cf. [7, Theorem 9.9-2]) implies the first
conclusion of this theorem. Next, noting that pσh,uhq “ Shpϕhq and prσh, ϕhq “ rShpσh,uhq, the a
priori estimate (4.23) follows from (4.5) and (4.9).
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4.6 A priori error analysis for the first fully-mixed formulation

In this section we establish the Céa estimate for the global error

}pσ,uq ´ pσh,uhq}X2ˆM1 ` }prσ, ϕq ´ prσh, ϕhq}QˆM ,

where
`

pσ,uq, prσ, ϕq
˘

P
`

X2 ˆM1

˘

ˆ
`

QˆM
˘

and
`

pσh,uhq, prσh, ϕhq
˘

P
`

X2,h ˆM1,h

˘

ˆ
`

Qh ˆMh

˘

are the unique solutions of (2.25) and (4.1), respectively, with ϕ P ĂW (cf. (3.19)) and ϕh P ĂWh (cf.
(4.17)). In what follows, given a subspace Zh of a generic Banach space pZ, } ¨ }Zq, we set

distpz, Zhq :“ inf
zhPZh

}z ´ zh}Z @ z P Z .

Then, applying the Strang a priori error estimate provided by [4, Proposition 2.1, Corollary 2.3,
and Theorem 2.3] to the pair of associated continuous and discrete formulations given by the first and
second rows of (2.25) and (4.1), respectively, and proceeding as for the derivation of [14, Section 4.4,
eq. (4.20)], but without using the continuous injection of H1pΩq into LrpΩq as done there, we deduce
that there exists a positive constant pCST , depending only on αd, β1,d, β2,d, }a}, }b1}, and }b2}, and
hence independent of h, such that

}pσ,uq ´ pσh,uhq}X2ˆM1 ď pCST

!

distpσ,X2,hq ` distpu,M1,hq ` Lf }ϕ´ ϕh}M

)

. (4.24)

Similarly, applying the Strang a priori error estimate from [4, Proposition 2.1, Corollary 2.3, and The-
orem 2.3] to the pair of associated continuous and discrete formulations given by the third and fourth
rows of (2.25) and (4.1), respectively, we find that there exists a positive constant rCST , depending
only on rαd, rβd, }raσ}, and }rb}, and hence independent of h, as well, such that

}prσ, ϕq ´ prσh, ϕhq}QˆM

ď rCST

!

distprσ,Qhq ` distpϕ,Mhq ` }praσ ´ raσhqprσ, ¨q}Q1
h

` } rGu ´ rGuh}M1
h

)

.
(4.25)

Next, proceeding exactly as for the derivations of (3.30) and (3.31), we find that

}praσ ´ raσhqprσ, ¨q}Q1
h

ď rL
rS
L

rϑ
g2 }σ ´ σh}X2 , (4.26)

where rL
rS
:“ Cr,ε }iε}Cε, and

}Gu ´Guh}M1
h

ď Lg |Ω|
r´s
rs }u ´ uh}M1 . (4.27)

In this way, replacing (4.26) and (4.27) back into (4.25), we conclude that

}prσ, ϕq ´ prσh, ϕhq}QˆM

ď rCST

!

distprσ,Qhq ` distpϕ,Mhq ` rL
rS
L

rϑ
g2 }σ ´ σh}X2 ` Lg |Ω|

r´s
rs }u ´ uh}M1

)

.
(4.28)

Thus, adding (4.24) and (4.28), we arrive at

}pσ,uq ´ pσh,uhq}X2ˆM1 ` }prσ, ϕq ´ prσh, ϕhq}QˆM

ď CST

!

distpσ,X2,hq ` distpu,M1,hq ` distprσ,Qhq ` distpϕ,Mhq

)

` Cpdataq

!

}pσ,uq ´ pσh,uhq}X2ˆM1 ` }ϕ´ ϕh}M

)

,

(4.29)

where CST :“ max
␣

pCST , rCST
(

, and

Cpdataq :“ max
!

pCST Lf , rCST rL
rS
L

rϑ
g2, rCST Lg |Ω|

r´s
rs

)

. (4.30)

We are now in a position to state the announced Céa estimate for our first approach.
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Theorem 4.5. Assume that the data satisfy (cf. (4.30))

Cpdataq ď
1

2
. (4.31)

Then, there exists a positive constant C, independent of h, such that

}pσ,uq ´ pσh,uhq}X2ˆM1 ` }prσ, ϕq ´ prσh, ϕhq}QˆM

ď C
!

distpσ,X2,hq ` distpu,M1,hq ` distprσ,Qhq ` distpϕ,Mhq

)

.
(4.32)

Proof. It follows directly from (4.29) and (4.31).

4.7 Discrete solvability of the second fully-mixed formulation

The discrete analogue of the fixed point approach employed in Section 3.5 is adopted here to establish
the solvability of (4.2). Thus, we now define the operator Λh : Mh Ñ Mh as

Λhpψhq :“ S1,h
`

Shpψhq
˘

@ψh P Mh , (4.33)

which is clearly well-defined since Sh and Sh are, and hence, solving (4.2) is equivalent to finding a
fixed point of Λh, that is ϕh P Mh such that

Λhpϕhq “ ϕh . (4.34)

Similarly to the analysis in Section 4.5, in what follows we prove that Λh verifies the hypotheses of
the Brouwer theorem. Indeed, defining

Wh :“
!

ϕh P Mh : }ϕh}0,r;Ω ď δd

)

, (4.35)

with

δd :“
|Ω|1{s

αd
g2 ,

it is straightforward to see, from the definition of Λh (cf. (4.33)) and the a priori estimate for S1,h (cf.
(4.13)), that

ΛhpWhq Ď Wh . (4.36)

Next, proceeding analogously to the proof of Lemma 3.7, but without using the regularity assumption

pRA2q, which is not valid in the present discrete case, and letting CS,d :“ max
␣

|Ω|
r´s
rs , 1

(

, we are
able to show that

}Shpζh,whq ´ Shpτ h,vhq}H

ď CS,d

!

Lg ` Lϑ }S2,hpτ h,vhq}0,r˚;Ω

)

}pζh,whq ´ pτ h,vhq}X2ˆM1

(4.37)

for all pζh,whq, pτ h,vhq P X2,h ˆM1,h. In this way, bearing in mind the definition of Λh (cf. (4.33)),
and combining (4.37) with the Lipschitz-continuity of Sh (cf. (4.19)), we obtain

}Λhpϕhq ´ Λhpφhq}0,r;Ω

ď LΛ,d Lf

!

Lg ` Lϑ }S2,hpShpφhqq}0,r˚;Ω

)

}ϕh ´ φh}0,r;Ω @ϕh, φh P Mh ,
(4.38)

with LΛ,d :“ CS,dCS,d.

The main result of this section is then stated as follows.

21



Theorem 4.6. The operator Λh has at least one fixed point ϕh P Mh. Equivalently, the Galerkin
scheme (4.2) has at least one solution

`

pσh,uhq, pϕ⃗h, rσhq
˘

P
`

X2,hˆM1,h

˘

ˆ
`

HhˆQh

˘

, with ϕh P Wh

(cf. (4.35)). Moreover, there hold

}σh}X2 ď
Cr
αd

}uD}1{s,r;Γ `
|Ω|1{r

β2,d

ˆ

1 `
2

αd µ

˙

f2 ,

}uh}M1 ď
Cr
β1,d

ˆ

1 `
2

αd µ

˙

}uD}1{s,r;Γ `
2|Ω|1{r

µβ1,d β2,d

ˆ

1 `
2

αd µ

˙

f2 ,

}ϕ⃗h}H “ }ϕh}0,r;Ω ` }th}0,Ω ď
|Ω|1{s

αd
g2 , and

}rσh}Q “ }rσh}divr;Ω ď
|Ω|1{s

βd

ˆ

1 `
ϑ2
αd

˙

g2 .

(4.39)

Proof. Thanks to (4.36), the continuity of Λh (cf. (4.38)), and the fact that (4.2) and (4.34) are
equivalent, the existence of solution follows from a direct application of the Brouwer theorem (cf. [7,
Theorem 9.9-2]). In turn, the a priori estimates (4.5), (4.13), and (4.14) yield (4.39), which finishes
the proof.

4.8 A priori error analysis for the second fully-mixed formulation

In what follows we derive the Céa estimate for the global error

}pσ,uq ´ pσh,uhq}X2ˆM1 ` }pϕ⃗, rσq ´ pϕ⃗h, rσhq}HˆQ ,

where
`

pσ,uq, pϕ⃗, rσq
˘

P
`

X2 ˆM1

˘

ˆ
`

HˆQ
˘

and
`

pσh,uhq, pϕ⃗h, rσhq
˘

P
`

X2,h ˆM1,h

˘

ˆ
`

Hh ˆQh

˘

are the unique solutions of (2.26) and (4.2), respectively, with ϕ P W (cf. (3.37)) and ϕh P Wh (cf.
(4.35)).

Since the first two rows of (2.25) and (4.1) coincide with those of (2.26) and (4.2), we realize that
the a priori estimate for }pσ,uq´pσh,uhq}X2ˆM1 is exactly the one given by (4.24). In turn, applying
the Strang estimate provided by [8, Lemma 6.1] (whose proof is a simple modification of that of [11,
Theorem 2.6]) to the pair of associated continuous and discrete formulations given by the last two
rows of (2.26) and (4.2), we deduce the existence of a positive constant sCST , depending only on αd,
βd, }aσ}, and }b}, such that

}pϕ⃗, rσq ´ pϕ⃗h, rσhq}HˆQ

ď sCST

!

distpϕ⃗,Hhq ` distprσ,Qhq ` }paσ ´ aσhqpϕ⃗, ¨q}H1
h

` }Gu ´Guh}H1
h

)

.
(4.40)

Then, proceeding exactly as for the derivations of (3.47) and (3.45), we readily obtain

}paσ ´ aσhqpϕ⃗, ¨q}H1
h

ď LS Lϑ g2 }σ ´ σh}0,r;Ω ,

where LS :“ Cr,ε }iε}Cε, and

}Gu ´Guh}H1
h

ď Lg |Ω|
r´s
rs }u ´ uh}M1 .

In this way, replacing the foregoing estimates back into (4.40), and adding the resulting inequality to
(4.24), we arrive at

}pσ,uq ´ pσh,uhq}X2ˆM1 ` }pϕ⃗, rσq ´ pϕ⃗h, rσhq}HˆQ

ď CST

!

distpσ,X2,hq ` distpu,M1,hq ` distpϕ⃗,Hhq ` distprσ,Qhq

)

`Dpdataq

!

}pσ,uq ´ pσh,uhq}X2ˆM1 ` }ϕ´ ϕh}M

)

,

(4.41)
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where CST :“ max
␣

pCST , sCST
(

, and

Dpdataq :“ max
!

pCST Lf , sCST LS Lθ g2, sCST Lg |Ω|
r´s
rs

)

. (4.42)

Thus, we conclude the Céa estimate for our second approach.

Theorem 4.7. Assume that the data satisfy (cf. (4.42))

Dpdataq ď
1

2
. (4.43)

Then, there exists a positive constant C, independent of h, such that

}pσ,uq ´ pσh,uhq}X2ˆM1 ` }pϕ⃗, rσq ´ pϕ⃗h, rσhq}HˆQ

ď C
!

distpσ,X2,hq ` distpu,M1,hq ` distpϕ⃗,Hhq ` distprσ,Qhq

)

.
(4.44)

Proof. It is a straightforward consequence of (4.41) and (4.43).

5 Specific finite element subspaces

We now define specific finite element subspaces satisfying the stability conditions required by the
respective discrete analyses developed in Section 4, and provide the rates of convergence of the resulting
Galerkin schemes.

5.1 Preliminaries

Bearing in mind the mesh notations introduced at the beginning of Section 4.1, and given an integer
k ě 0 and K P Th, we let PkpKq be the space of polynomials defined on K of degree ď k, and
denote its vector version by PkpKq. In addition, we let rPkpKq be the space of polynomials defined
on K of degree “ k. Furthermore, we let RTkpKq “ PkpKq ‘ rPkpKqx be the local Raviart-Thomas
space defined on K of order k, where x stands for a generic vector in R2, and denote by RTkpKq

its corresponding tensor counterpart. In turn, we let PkpThq, PkpThq, RTkpThq, and RTkpThq be the
corresponding global versions of PkpKq, PkpKq, RTkpKq, and RTkpKq, respectively, that is

PkpThq :“
!

ψh P L2pΩq : ψh|K P PkpKq @K P Th
)

,

PkpThq :“
!

vh P L2pΩq : vh|K P PkpKq @K P Th
)

,

RTkpThq :“
!

rτ h P Hpdiv; Ωq : rτ h|K P RTkpKq @K P Th
)

,

and
RTkpThq :“

!

τ h P Hpdiv; Ωq : τ h|K P RTkpKq @K P Th
)

.

We stress here that for each t P r1,`8s there hold PkpThq Ď LtpΩq, PkpThq Ď LtpΩq, RTkpThq Ď

Hpdivt; Ωq, and RTkpThq Ď Htpdivt; Ωq, inclusions that are implicitly utilized in what follows.

As announced in Section 4.1, we first recall from [14, Section 5.2, eq. (5.9)] that the finite element
subspaces of X2, M1, X1, and M2, are given, respectively, by

X2,h :“ Hr
0pdivr; Ωq X RTkpThq , M1,h :“ PkpThq ,

X1,h :“ Hs
0pdivs; Ωq X RTkpThq , and M2,h :“ PkpThq ,

(5.1)
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whereas those of Q, M, and L2pΩq, are defined as

Qh :“ RTkpThq , Mh :“ PkpThq , and Ht
h :“ PkpThq . (5.2)

We stress here that Qh, Mh, and Ht
h verify the assumptions (H.1) - (H.4). In fact, it is readily

seen that divpQhq Ď Mh, which confirms (H.1), whereas (H.2) is proved in [15, Lemma 4.5]. In turn,
the assumptions (H.3) and (H.4) are shown in [3, Lemma 4.2].

5.2 The rates of convergence

The rates of convergence of the Galerkin schemes (4.1) and (4.2), with the specific finite element
subspaces introduced in Section 5.1, are provided next. To this end, we require the approximation
properties of X2,h, M1,h, Qh, Mh, and Ht

h, which are collected as follows (cf. [15, Section 4.5]):

(APσ
h ) there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s, and for

each τ P Wl,rpΩq with divpτ q P Wl,rpΩq, there holds

distpτ ,X2,hq :“ inf
τhPX2,h

}τ ´ τ h}r,divr;Ω ď C hl
!

}τ }l,r;Ω ` }divpτ q}l,r;Ω

)

.

(APu
h ) there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for

each v P Wl,rpΩq, there holds

distpv,M1,hq :“ inf
vhPM1,h

}v ´ vh}0,r;Ω ď C hl }v}l,r;Ω .

(APrσ
h ) there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s, and for

each rτ P HlpΩq with divprτ q P Wl,spΩq, there holds

distprτ ,Qhq :“ inf
rτhPX2,h

}rτ ´ rτ h}divs;Ω ď C hl
!

}rτ }l,Ω ` }divprτ q}l,s;Ω

)

.

(APϕ
h) there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for

each ψ P Wl,rpΩq, there holds

distpψ,Mhq :“ inf
ψhPMh

}ψ ´ ψh}0,r;Ω ď C hl }ψ}l,r;Ω .

(APt
h) there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for

each s P HlpΩq, there holds

distps,Ht
hq :“ inf

shPHt
h

}s ´ sh}0,Ω ď C hl }s}l,Ω .

Thus, the following two theorems establish the rates of convergence of (4.1) and (4.2).

Theorem 5.1. Let
`

pσ,uq, prσ, ϕq
˘

P
`

X2 ˆ M1

˘

ˆ
`

Q ˆ M
˘

be the unique solution of (2.25), with

ϕ P ĂW pcf. (3.19)q, and let
`

pσh,uhq, prσh, ϕhq
˘

P
`

X2,h ˆ M1,h

˘

ˆ
`

Qh ˆ Mh

˘

be a solution of (4.1),

with ϕh P ĂWh pcf. (4.17)q, whose existences are guaranteed by Theorems 3.6 and 4.4, respectively.
Assume that (4.31) pcf. Theorem 4.5q holds, and that there exists l P r1, k` 1s such that σ P Wl,rpΩq,
divpσq P Wl,rpΩq, u P Wl,rpΩq, rσ P HlpΩq, divprσq P Wl,spΩq, and ϕ P Wl,rpΩq. Then, there exists a
positive constant C, independent of h, such that

}pσ,uq ´ pσh,uhq}X2ˆM1 ` }prσ, ϕq ´ prσh, ϕhq}QˆM

ď C hl
!

}σ}l,r;Ω ` }divpσq}l,r;Ω ` }u}l,r;Ω ` }rσ}l,Ω ` }divprσq}l,s;Ω ` }ϕ}l,r;Ω

)

.

24



Proof. It follows from the Céa estimate (4.32) and the approximation properties (APσ
h ) - (APϕ

h).

Theorem 5.2. Let
`

pσ,uq, pϕ⃗, rσq
˘

P
`

X2 ˆ M1

˘

ˆ
`

H ˆ Q
˘

be the unique solution of (2.26), with

ϕ P W pcf. (3.37)q, and let
`

pσh,uhq, pϕ⃗h, rσhq
˘

P
`

X2,h ˆ M1,h

˘

ˆ
`

Hh ˆ Qh

˘

be a solution of (4.2),
with ϕh P Wh pcf. (4.35)q, whose existences are guaranteed by Theorems 3.9 and 4.6, respectively.
Assume that (4.43) pcf. Theorem 4.7q holds, and that there exists l P r1, k` 1s such that σ P Wl,rpΩq,
divpσq P Wl,rpΩq, u P Wl,rpΩq, ϕ P Wl,rpΩq, t P HlpΩq, rσ P HlpΩq, and divprσq P Wl,spΩq. Then
there exists a positive constant C, independent of h, such that

}pσ,uq ´ pσh,uhq}X2ˆM1 ` }pϕ⃗, rσq ´ pϕ⃗h, rσhq}HˆQ

ď C hl
!

}σ}l,r;Ω ` }divpσq}l,r;Ω ` }u}l,r;Ω ` }ϕ}l,r;Ω ` }t}l,Ω ` }rσ}l,Ω ` }divprσq}l,s;Ω

)

.

Proof. It follows from the Céa estimate (4.44) and the approximation properties (APσ
h ) - (APt

h).

6 Numerical results

In this section we present three examples illustrating the performance of the fully-mixed finite schemes
(4.1) and (4.2) with the finite element subspaces defined in Section 5.1 for k P t0, 1u, and confirming
the rates of convergence provided by Theorems 5.1 and 5.2 on uniform refinements of the respective
domains. The resulting nonlinear algebraic systems are solved employing the Picard iterative process
suggested by the respective discrete fixed-point strategy (cf. Sections 4.5 and 4.6), whose computa-
tional implementation was done making use of a FreeFem++ code [18]. We take as initial guess the
trivial solution, and, denoting by DOF the total number of degrees of freedom (or unknowns) of each
approach, the iterations are stopped when the relative error between two consecutive vectors con-
taining the full solutions of the aforementioned systems, namely coeffm and coeffm`1, is sufficiently
small, that is,

}coeffm`1 ´ coeffm}

}coeffm`1}
ď tol ,

where } ¨ } stands for the usual Euclidean norm in RDOF, and tol is a given tolerance. In this regard, we
remark in advance that for each one of the examples to be reported below, 3 iterations are required
to achieve tol “ 1e ´ 6.

We now recall that the original Cauchy stress tensor ρ of our model can be computed in terms of
σ according to the formula derived from [14, eqs. (2.9) and (2.10)] and [14, eq. (3.14)], namely

ρ :“ σ ` σt ´

ˆ

λ` 2µ

nλ` pn` 1qµ
trpσq ´

nλ` 2µ

n|Ω|

ż

Γ
uD ¨ ν

˙

I , (6.1)

which naturally suggests to approximate this tensor by (cf. [14, eq. (6.1)])

ρh :“ σh ` σt
h ´

ˆ

λ` 2µ

nλ` pn` 1qµ
trpσhq ´

nλ` 2µ

n|Ω|

ż

Γ
uD ¨ ν

˙

I . (6.2)

It follows from (6.1) and (6.2) that there exists a constant C ą 0, independent of h and λ, such that

}ρ ´ ρh}0,r;Ω ď C }σ ´ σh}0,r;Ω ,

whence the rate of convergence for ρh is at least the same of σh.

Some additional notation is introduced next. We begin by defining the individual errors:

epσq :“ }σ ´ σh}r,divr;Ω , epuq :“ }u ´ uh}0,r;Ω , epρq :“ }ρ ´ ρh}0,r;Ω ,

eprσq :“ }rσ ´ rσh}divs;Ω , epϕq :“ }ϕ´ ϕh}0,r;Ω , and eptq :“ }t ´ th}0,Ω ,
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where r and s, taken from (2.1), will be specified in the examples below. In turn, for each ‹ P
␣

σ,u,ρ, rσ, ϕ, t
(

we let rp‹q be its experimental rate of convergence, which is defined as

rp‹q :“ log
`

ep‹q{pep‹q
˘

{ logph{phq ,

where e and pe denote two consecutive errors with mesh sizes h and ph, respectively.

The examples to be considered in this section are described next. In each case we let E and ν be
the Young modulus and Poisson ratio, respectively, of the isotropic linear elastic solid occupying the
region Ω, so that the corresponding Lamé parameters are given by

µ :“
E

2p1 ` νq
and λ :“

Eν

p1 ` νqp1 ´ 2νq
. (6.3)

In addition, the mean value of trpσhq over Ω is fixed via a real Lagrange multiplier, which reduces to
adding one row and one column to the matrix system that solves (4.4) for σh and uh.

Example 1: Convergence in a 2D domain

We begin by corroborating the rates of convergence against a smooth exact solution in the two-
dimensional domain Ω “ p0, 1q2. To this end, we adequately manufacture the data so that the
solution of (1.1)-(1.2) is given by

upxq :“

¨

˚

˚

˝

0.05 cospπ x1q sinpπ x2q `
x21p1 ´ x2q2

2λ

´0.05 sinpπ x1q cospπ x2q `
x31p1 ´ x2q3

2λ

˛

‹

‹

‚

and ϕpxq :“ p1 ´ x1q2x1p1 ´ x2qx22 ,

for all x :“ px1, x2qt P Ω, whereas the body load, the diffusive source, and the tensorial diffusivity, are
given, respectively, by

fpϕq :“
1

10

ˆ

cospϕq

´ sinpϕq

˙

, gpuq :“ 2 `
1

1 ` |u|2
, ϑpσq :“ I `

1

10
σ2 .

We note here that the second and fifth equation of (1.1), actually include additional explicit source
terms that are added to fpϕq and gpuq, respectively. However, yielding only slight modifications of
the functionals G, Fϕ, rGu and Gu (cf. (2.3), (2.4), (2.15) and (2.23), respectively), this fact does
not compromise the continuous and discrete analyses. Thus, in Tables 6.1 and 6.2 we summarize the
convergence of (4.1) and (4.2), respectively, considering the Young’s modulus E “ 1 and the Poisson’s
ratio ν “ 0.4999, which, according to (6.3), yield λ “ 1666.44 and µ “ 0.3334. The results confirm
that the optimal rates of convergence Ophk`1q predicted by Theorems 5.1 and 5.2 are attained for
k P

␣

0, 1
(

. Some components and magnitudes of the discrete solutions of the first approach (4.1) are
displayed in Figure 6.1.

Example 2: Convergence in a non-convex 2D domain

We consider the L-shaped domain Ω “ p´1, 1q2zr0, 1s2, and suitable perturbations of the definitions of
the functionals G, Fϕ, rGu, and Gu, so that the exact solution of (1.1) - (1.2) reduces to the non-smooth
one defined as:

upxq :“

ˆ

|x|2{3 sinpθq

´|x|2{3 cospθq

˙

and ϕpxq :“ exppx1 ` x2q sinpπx1q sinpπx2q ,
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k h DOF epσq rpσq epuq rpuq epρq rpρq eprσq rprσq epϕq rpϕq

0.0471 13680 4.12e-2 ´´ 1.44e-3 ´´ 1.83e-2 ´´ 1.03e-2 ´´ 5.26e-4 ´´

0.0393 19656 3.43e-2 1.01 1.20e-3 1.03 1.57e-2 0.99 8.65e-3 1.00 4.38e-4 1.00
0 0.0337 26712 2.93e-2 1.01 1.02e-3 1.02 1.34e-2 0.99 7.40e-3 1.00 3.76e-4 1.00

0.0295 34848 2.57e-2 1.01 8.93e-4 1.02 1.18e-2 0.99 6.48e-3 1.00 3.29e-4 1.00
0.0262 44064 2.29e-2 1.01 7.92e-4 1.01 1.05e-2 1.00 5.76e-3 1.00 2.92e-4 1.00

0.0471 43560 5.33e-4 ´´ 2.83e-5 ´´ 2.63e-4 ´´ 2.53e-4 ´´ 1.53e-5 ´´

0.0393 62640 3.70e-4 2.00 1.96e-5 2.00 1.83e-4 1.99 1.76e-4 2.00 1.06e-5 2.00
1 0.0337 85176 2.72e-4 2.00 1.44e-5 2.00 1.35e-4 1.99 1.29e-4 2.00 7.82e-6 2.00

0.0295 111168 2.08e-4 2.00 1.10e-5 2.00 1.03e-4 1.99 9.89e-5 2.00 5.99e-6 2.00
0.0262 140616 1.65e-4 2.00 8.71e-6 2.00 8.16e-5 1.99 7.82e-5 2.00 4.73e-6 2.00

0.0471 13680 5.14e-2 ´´ 1.59e-3 ´´ 2.31e-2 ´´ 9.96e-3 ´´ 6.47e-4 ´´

0.0393 19656 4.27e-2 1.01 1.32e-3 1.03 1.93e-2 0.99 8.29e-3 1.00 5.40e-4 1.00
0 0.0337 26712 3.66e-2 1.01 1.12e-3 1.02 1.66e-2 0.99 7.11e-3 1.00 4.63-4 1.00

0.0295 34848 3.20e-2 1.01 9.82e-4 1.02 1.45e-2 0.99 6.22e-3 1.00 4.05e-4 1.00
0.0262 44064 2.84e-2 1.01 8.72e-4 1.01 1.29e-2 1.00 5.53e-3 1.00 3.60e-4 1.00

0.0471 43560 6.15e-4 ´´ 3.08e-5 ´´ 3.10e-4 ´´ 2.45e-4 ´´ 1.92e-5 ´´

0.0393 62640 4.27e-4 2.00 2.14e-5 2.00 2.15e-4 1.99 1.70e-4 2.00 1.33e-5 2.00
1 0.0337 85176 3.14e-4 2.00 1.57e-5 2.00 1.58e-4 2.00 1.25e-4 2.00 9.79e-6 2.00

0.0295 111168 2.40e-4 2.00 1.20e-5 2.00 1.21e-4 2.00 9.68e-5 2.00 7.50e-6 2.00
0.0262 140616 1.90e-4 2.00 9.50e-6 2.00 9.59e-5 2.00 7.57e-5 2.00 5.93e-6 2.00

Table 6.1: Example 1: History of convergence for the Galerkin scheme (4.1) with r “ 3 (upper half),
and r “ 4 (lower half).

k h DOF epσq rpσq epuq rpuq epρq rpρq eprσq rprσq epϕq rpϕq eptq rptq

0.0471 17280 4.12e-1 ´´ 1.44e-3 ´´ 1.88e-2 ´´ 1.04e-2 ´´ 5.25e-4 ´´ 3.24-03 ´´

0.0393 24840 3.43e-2 1.01 1.20e-3 1.03 1.57e-2 0.98 8.63e-3 1.00 4.38e-4 1.00 2.70e-3 1.03
0 0.0337 33768 2.93e-2 1.01 1.02e-3 1.02 1.34e-2 0.99 7.40e-3 1.00 3.76e-4 1.00 2.31e-3 1.02

0.0295 44064 2.57e-2 1.01 8.93e-4 1.02 1.18e-2 0.99 6.48e-3 1.00 3.29e-4 1.00 2.02e-3 1.02
0.0262 55728 2.28e-2 1.01 7.92e-4 1.01 1.05e-2 1.00 5.76e-3 1.00 2.92e-4 1.00 1.18e-3 1.01

0.0471 54360 5.33e-4 ´´ 2.82e-5 ´´ 2.63e-4 ´´ 2.53e-4 ´´ 1.53e-5 ´´ 7.69e-5 2.00
0.0393 78192 3.70e-4 2.00 1.96e-5 2.00 1.83e-4 1.99 1.76e-4 2.00 1.06e-5 2.00 5.34e-5 2.00

1 0.0337 106344 2.72e-4 2.00 1.44e-5 2.00 1.35e-4 1.99 1.29e-4 2.00 7.82e-6 2.00 3.93e-5 2.00
0.0295 138816 2.08e-4 2.00 1.10e-5 2.00 1.03e-4 1.99 9.89e-5 2.00 5.99e-6 2.00 3.01e-5 2.00
0.0262 175608 1.65e-4 2.00 8.71e-6 2.00 8.16e-5 1.99 7.82e-5 2.00 4.73e-6 2.00 2.48e-5 2.00

0.0471 17280 5.14e-2 ´´ 1.59e-3 ´´ 2.31e-2 ´´ 9.95e-3 ´´ 6.47e-4 ´´ 3.24-03 1.03
0.0393 24840 4.27e-2 1.01 1.32e-3 1.03 1.93e-2 0.99 8.29e-3 1.00 5.39e-4 1.00 2.70e-3 1.02

0 0.0337 33768 3.66e-2 1.01 1.12e-3 1.02 1.66e-2 0.99 7.11e-3 1.00 4.63e-4 1.00 2.31e-3 1.02
0.0295 44064 3.20e-2 1.01 9.82e-4 1.01 1.45e-2 0.99 6.22e-3 1.00 4.05e-4 1.00 2.02e-3 1.01
0.0262 55728 2.84e-2 1.01 8.72e-4 1.01 1.29e-2 1.00 5.53e-3 1.00 3.60e-4 1.00 1.18e-3 1.01

0.0471 54360 6.15e-3 ´´ 3.08e-5 ´´ 3.10e-4 ´´ 2.45e-4 ´´ 1.92e-5 ´´ 7.69e-5 2.00
0.0393 78192 4.27e-4 2.00 2.14e-5 2.00 2.15e-4 1.99 1.70e-4 2.00 1.33e-5 2.00 5.34e-5 2.00

1 0.0337 106344 3.14e-4 2.00 1.57e-5 2.00 1.58e-4 2.00 1.25e-4 2.00 9.79e-6 2.00 3.93e-5 2.00
0.0295 138816 2.40e-4 2.00 1.20e-5 2.00 1.21e-4 2.00 9.58e-5 2.00 7.50e-6 2.00 3.01e-5 2.00
0.0262 175608 1.90e-4 2.00 9.50e-6 2.00 9.59e-5 2.00 7.57e-5 2.00 5.93e-6 2.00 2.48e-5 2.00

Table 6.2: Example 1: History of convergence for the Galerkin scheme (4.2) with r “ 3 (upper half),
and r “ 4 (lower half).

where θ “ arctan
´

x2
x1

¯

for all x “ px1, x2qt P Ω. In turn, the tensorial diffusivity is considered the

same from the previous example, whereas the body load and the diffusive source are given, respectively,
by

fpϕq :“

¨

˚

˝

1

40
ϕ

1

40
ϕp1 ´ ϕq

˛

‹

‚

and gpuq :“ ´|u| .
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Figure 6.1: Example 1: Some components and magnitudes of the solution of the first approach (4.1)
with k “ 1, λ “ 1666.44, and µ “ 0.3334.

In this case, we take E “ 100 and ν “ 0.4999, which yields µ “ 33.33 and λ “ 166644.44. Here we
can see in Tables 6.3 and 6.4 that it was not possible to reach the convergence order k ` 1 indicated
by Theorems 5.1 and 5.2. In particular, we notice that, for both formulations (cf. (4.1) and (4.2)),
negative convergence orders are obtained for σ, while for u, ρ, and rσ, suboptimal ones are attained.
Furthermore, as it was observed in [14, Section 6], we remark that the convergence ratios depend
not only on k but also on r and its conjugate s, which could be related to the Wl,r- regularity of
the solution, most likely with a non-integer l depending on r. We refer to [15, Lemma B.1] for a
similar situation holding with a regularity result for the Poisson problem with homogeneous Neumann
boundary conditions and source term in a Lebesgue space. In order to recover the optimal rates of
convergence, one could apply an adaptive strategy based on a posteriori error estimates, subject that
we plan to address in a forthcoming work.

Example 3: Convergence in a 3D domain

In this example we confirm the rates of convergence in the three dimensional domain Ω “ p0, 1q3 with
the indexes r “ 3 and s “ 3{2 (cf. (2.1)). As in Example 1, we consider µ “ 0.3334 and λ “ 1666.44,
and suitably manufacture the data so that the exact solution is given by

upxq :“

¨

˝

sinpπx1q cospπx2q cospπx3q

´2 cospπx1q sinpπx2q cospπx3q

cospπx1q cospπx2q sinpπx3q

˛

‚ and ϕpxq :“ x1x
2
2x3px1 ´ 1q2px2 ´ 1qpx3 ´ 1q2 ,
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k h DOF epσq rpσq epuq rpuq epρq rpρq eprσq rprσq epϕq rpϕq

0.0471 40860 9.56e+2 ´´ 1.85e-2 ´´ 7.48e+0 ´´ 2.62e+1 ´´ 3.20e-2 ´´

0.0404 55545 1.06e+3 -0.66 1.59e-2 0.99 7.10e+0 0.34 2.31e+1 0.82 2.72e-2 1.05
0 0.0354 72480 1.16e+3 -0.66 1.39e-2 0.99 6.79e+0 0.33 2.07e+1 0.81 2.37e-2 1.04

0.0314 91665 1.25e+3 -0.66 1.23e-2 0.99 6.53e+0 0.33 1.88e+1 0.80 2.10e-2 1.03
0.0283 113100 1.34e+3 -0.66 1.11e-2 0.99 6.30e+0 0.33 1.73e+1 0.80 1.88e-2 1.03

0.0471 130320 4.73e+2 ´´ 4.92e-4 ´´ 4.78e+0 ´´ 9.10e+0 ´´ 6.78e-4 ´´

0.0404 177240 5.24e+2 -0.66 4.00e-4 1.33 4.54e+0 0.33 8.15e+0 0.71 4.99e-4 1.99
1 0.0354 231360 5.73e+2 -0.66 3.35e-4 1.33 4.34e+0 0.33 7.42e+0 0.71 3.83e-4 1.99

0.0314 292680 6.19e+2 -0.66 2.87e-4 1.33 4.18e+0 0.33 6.83e+0 0.70 3.03e-4 1.99
0.0283 361200 6.64e+2 -0.66 2.49e-4 1.33 4.03e+0 0.33 6.34e+0 0.70 2.46e-4 1.98

0.0471 40860 1.92e+3 ´´ 1.88e-2 ´´ 1.28e+1 ´´ 2.35e+1 ´´ 3.48e-2 ´´

0.0404 55545 2.18e+3 -0.83 1.61e-2 0.99 1.25e+1 0.17 2.04e+1 0.91 2.96e-2 1.03
0 0.0354 72480 2.44e+3 -0.83 1.41e-2 0.99 1.22e+1 0.17 1.81e+1 0.90 2.58e-2 1.03

0.0314 91665 2.69e+3 -0.83 1.26e-2 0.99 1.20e+1 0.17 1.63e+1 0.90 2.29e-2 1.02
0.0283 113100 2.91e+3 -0.83 1.13e-2 0.99 1.18e+1 0.17 1.48e+1 0.90 2.06e-2 1.02

0.0471 130320 8.76e+2 ´´ 8.02e-4 ´´ 9.04e+0 ´´ 5.88e+0 ´´ 7.17e-4 ´´

0.0404 177240 9.95e+2 -0.83 6.70e-4 1.17 8.81e+0 0.17 5.12e+0 0.90 5.27e-4 2.00
1 0.0354 231360 1.11e+3 -0.83 5.74e-4 1.17 8.62e+0 0.17 4.55e+0 0.89 4.04e-4 2.00

0.0314 292680 1.23e+3 -0.83 5.00e-4 1.17 8.45e+0 0.17 4.10e+0 0.89 3.19e-4 1.99
0.0283 361200 1.34e+3 -0.83 4.42e-4 1.17 8.30e+0 0.17 3.74e+0 0.88 2.59e-4 1.99

Table 6.3: Example 2: History of convergence for the Galerkin scheme (4.1) with r “ 3 (first half),
and r “ 4 (second half).

k h DOF epσq rpσq epuq rpuq epρq rpρq eprσq rprσq epϕq rpϕq eptq rptq

0.0471 51660 9.56e+2 ´´ 1.85e-2 ´´ 7.48e+0 ´´ 2.55e+1 ´´ 3.19e-2 ´´ 2.11e-1 ´´

0.0404 70245 1.06e+3 -0.66 1.59e-2 1.00 7.10e+0 0.34 2.25e+1 0.80 2.72e-2 1.04 1.80e-1 1.02
0 0.0354 91680 1.16e+3 -0.66 1.39e-2 1.00 6.79e+0 0.33 2.02e+1 0.80 2.37e-2 1.04 1.58e-1 1.02

0.0314 115965 1.25e+3 -0.66 1.24e-2 1.00 6.53e+0 0.33 1.85e+1 0.79 2.10e-2 1.03 1.40e-1 1.01
0.0283 143100 1.34e+3 -0.66 1.11e-2 1.00 6.30e+0 0.33 1.70e+1 0.79 1.88e-2 1.02 1.26e-1 1.01

0.0471 162720 4.73e+2 ´´ 4.92e-4 ´´ 4.78e+0 ´´ 8.92e+0 ´´ 6.74e-04 ´´ 6.98e-3 ´´

0.0404 221340 5.24e+2 -0.66 4.01e-4 1.33 4.54e+0 0.33 8.01e+0 0.70 4.96e-04 1.99 5.24e-3 1.86
1 0.0354 288960 5.73e+2 -0.66 3.35e-4 1.33 4.34e+0 0.33 7.30e+0 0.70 3.80e-04 1.99 4.09e-3 1.86

0.0314 365580 6.19e+2 -0.66 2.87e-4 1.33 4.18e+0 0.33 6.73e+0 0.69 3.01e-04 1.99 3.28e-3 1.87
0.0283 451200 6.64e+2 -0.66 2.49e-4 1.33 4.03e+0 0.33 6.25e+0 0.69 2.44e-04 1.99 2.69e-3 1.87

0.0471 51660 1.92e+3 ´´ 1.88e-2 ´´ 1.28e+1 ´´ 2.28e+1 ´´ 3.47e-2 ´´ 2.11e-1 ´´

0.0404 70245 2.18e+3 -0.83 1.61e-2 0.99 1.25e+1 0.17 1.99e+1 0.89 2.96e-2 1.04 1.80e-1 1.02
0.0354 91680 2.44e+3 -0.83 1.41e-2 0.99 1.22e+1 0.17 1.77e+1 0.89 2.58e-2 1.04 1.58e-1 1.02

0 0.0314 115965 2.69e+3 -0.83 1.26e-2 0.99 1.20e+1 0.17 1.59e+1 0.89 2.29e-2 1.03 1.40e-1 1.01
0.0283 143100 2.94e+3 -0.83 1.13e-2 0.99 1.18e+1 0.17 1.45e+1 0.89 2.06e-2 1.02 1.26e-1 1.01

0.0471 162720 8.76e+2 ´´ 8.02e-4 ´´ 9.04e+0 ´´ 5.70e+0 ´´ 7.14e-04 ´´ 6.98e-3 ´´

0.0404 221340 9.95e+2 -0.83 6.70e-4 1.17 8.81e+0 0.17 4.98e+0 0.88 5.25e-04 2.00 5.24e-3 1.86
1 0.0354 288960 1.11e+3 -0.83 5.74e-4 1.17 8.62e+0 0.17 4.43e+0 0.88 4.02e-04 2.00 4.09e-3 1.86

0.0314 365580 1.23e+3 -0.83 5.00e-4 1.17 8.45e+0 0.17 4.00e+0 0.87 3.18e-04 1.99 3.28e-3 1.87
0.0283 451200 1.34e+3 -0.83 4.42e-4 1.17 8.30e+0 0.17 3.65e+0 0.87 2.58e-04 1.99 2.69e-3 1.87

Table 6.4: Example 2: History of convergence for the Galerkin scheme (4.2) with r “ 3 (first half),
and r “ 4 (second half).

for all x :“ px1, x2, x3qt P Ω, whereas the body load, the diffusive source, and the tensorial diffusivity,
are given, respectively, by

fpϕq :“
1

10

¨

˝

cospϕq

´ sinpϕq

cospϕq

˛

‚ , gpuq :“ u1 ` u2 ` u3 , ϑpσq :“
1

2

ˆ

1 `
1

p1 ` |σ|2q1{2

˙

I .

The convergence histories for quasi-uniform refinements using k “ 0 are reported in Tables 6.5 and
6.6. Again, the mixed finite element methods converge optimally, that is with order Ophq in this case,
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k h DOF epσq rpσq epuq rpuq epρq rpρq eprσq rprσq epϕq rpϕq

0.4330 4992 3.11e+2 ´´ 2.69e-1 ´´ 6.51e+1 ´´ 7.35e-3 ´´ 4.00e-4 ´´

0.3464 9600 2.51e+2 0.95 2.18e-1 0.95 5.26e+1 0.96 5.58e-3 1.23 3.30e-4 0.87
0.2887 16416 2.11e+2 0.97 1.83e-1 0.97 4.40e+1 0.97 4.50e-3 1.18 2.79e-4 0.92

0 0.2474 25872 1.81e+2 0.98 1.57e-1 0.98 3.79e+1 0.98 3.78e-3 1.13 2.41e-4 0.95
0.2165 38400 1.59e+2 0.98 1.38e-1 0.98 3.32e+1 0.99 3.25e-3 1.13 2.12e-4 0.96
0.1925 54432 1.41e+2 0.99 1.23e-1 0.99 2.96e+1 0.99 2.87e-3 1.07 1.89e-4 0.97
0.1732 74400 1.27e+2 0.99 1.11e-1 0.99 2.66e+1 0.99 2.55e-3 1.12 1.70e-4 0.98

Table 6.5: Example 3: History of convergence for the Galerkin scheme (4.1) with r “ 3 and s “ 3{2.

k h DOF epσq rpσq epuq rpuq epρq rpρq eprσq rprσq epϕq rpϕq eptq rptq

0.4330 6144 3.11e+2 ´´ 2.69e-1 ´´ 6.52e+1 ´´ 7.35e-3 ´´ 3.89e-4 ´´ 2.60e-3 ´´

0.3464 11850 2.51e+2 0.95 2.18e-1 0.95 5.26e+1 0.96 5.58e-3 1.23 3.23e-4 0.83 2.14e-3 0.89
0.2887 20304 2.11e+2 0.97 1.83e-1 0.97 4.40e+1 0.97 4.50e-3 1.18 2.75e-4 0.89 1.81e-3 0.92

0 0.2474 32046 1.81e+2 0.98 1.57e-1 0.98 3.79e+1 0.98 3.78e-3 1.13 2.38e-4 0.93 1.56e-3 0.95
0.2165 47616 1.59e+2 0.98 1.38e-1 0.98 3.32e+1 0.99 3.25e-3 1.13 2.10e-4 0.95 1.38e-3 0.96
0.1925 67554 1.41e+2 0.99 1.23e-1 0.99 2.96e+1 0.99 2.87e-3 1.07 1.87e-4 0.96 1.23e-3 0.97
0.1732 92400 1.27e+2 0.99 1.11e-1 0.99 2.66e+1 0.99 2.55e-3 1.12 1.69e-4 0.97 1.11e-3 0.98

Table 6.6: Example 3: History of convergence for the Galerkin scheme (4.2) with r “ 3 and s “ 3{2.

as it was proved by Theorems 5.1 and 5.2. This fact suggests that perhaps only technical difficulties
stop us from extending the analysis to the 3D framework. Finally, some components and magnitudes
of the solution of the second approach (4.2) are displayed in Figure 6.2.

Concluding remarks

In this paper we have continued advancing in the direction of [14] by introducing and analyzing two new
Banach spaces-based fully-mixed finite element methods for the numerical solution of pseudostress-
assisted diffusion problems. As compared with the mixed-primal method from [14], the main advan-
tages of the schemes proposed here, which actually arise from the use of two different mixed approaches
for the diffusion equation, are given by the fact that some additional variables of physical interest,
such as the diffusive flux and the concentration gradient, are approximated directly. In this way, and
differently from what one would do to obtain approximations of those variables starting from the nu-
merical solutions provided by the method from [14], no numerical differentiation, with the consequent
loss of accuracy, is employed in the present case. Regarding a comparison between the two fully-mixed
finite element methods developed here, we first notice from the respective theoretical results, which
are confirmed by the reported numerical results, that, under assumed regularities of the exact solution,
they provide the same rates of convergence. However, we also observe from the tables that in order
to attain a given accuracy, the second method requires a bit higher number of degrees of freedom,
which is explained by the fact that the latter incorporates one more unknown than the first one. A
minor aspect, though not that relevant, is that the tensorial diffusivity function does not need to be
inverted in the second approach. Therefore, both methods are fully comparable, and deciding which
one to employ for practical computations will depend on whether, besides the diffusive flux, the user
is interested or not in obtaining also direct approximations of the concentration gradient.
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[17] G.N. Gatica, R. Oyarzúa, R. Ruiz-Baier and Y.D. Sobral, Banach spaces-based analysis
of a fully-mixed finite element method for the steady-state model of fluidized beds. Comput. Math.
Appl. 84 (2021), 244–276.

[18] F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012), 251-–265.

[19] M.L. Manda, R. Shepard, B. Fair and H.Z. Massoud, Stress-assisted diffusion of boron
and arsenic in silicon. Mat. Res. Soc. Symp. Proc. 36 (1985), 71–76.

[20] S. Roy, K. Vengadassalam, Y. Wang, S. Park and K.M. Liechti, Characterization and
modeling of strain assisted diffusion in an epoxy adhesive layer. Int. J. Solids Struct. 43 (2006),
27–52.

[21] F.G. Yost, D.E. Amos and A.D. Roming Jr., Stress-driven diffusive voiding of aluminum
conductor lines. Proc. Int. Rel. Phys. Symp. (1989), 193–201.

32



Centro de Investigación en Ingenieŕıa Matemática (CI
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