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New Banach spaces-based fully-mixed finite element methods
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Abstract

In this paper we propose and analyze Banach spaces-based fully-mixed approaches yielding new
finite element methods for numerically solving the coupled partial differential equations describing
the pseudostress-assisted diffusion of a solute into an elastic material. Two mixed formulations
employing the diffusive flux as an additional variable are introduced for the diffusion equation, and
the concentration gradient is considered as an auxiliary unknown of the second one of them. The
resulting coupled systems are rewritten as equivalent fixed point operator equations, so that the
respective unique solvabilities are proved by applying the classical Banach theorem along with the
Babuska-Brezzi theory. The nonlinear dependency on the elastic variables of the diffusion coefficient
and its source term, as well as the nonlinear dependency on the concentration of the elastic source
term, suggest, for appropriate continuous and discrete analyses, that the unknowns be sought in
suitable Lebesgue spaces. The associated Galerkin schemes are addressed similarly, and the Brouwer
theorem yields the existence of discrete solutions. A priori error estimates are derived for both
approaches, and rates of convergence for specific finite element subspaces satisfying the required
discrete inf-sup conditions, are established in 2D. Finally, several numerical examples illustrating
the performance of the two methods and confirming the theoretical findings, are reported.

Keywords: linear elasticity, pseudostress-assisted diffusion, fixed point, finite element methods

Mathematics subject classifications (2000): 65N30, 656N12, 76R05, 76D07, 65N15, 35Q79

1 Introduction

In the recent paper [14] we employed a Banach spaces-based variational approach to derive a new
mixed-primal finite element method for the nearly incompressible case of the pseudostress-assisted
diffusion problem, which models the diffusion of a solute into an elastic material. More precisely, the
aforementioned phenomenon refers to diffusion processes in deformable solids occupying originally a
domain €2 of R*, n € {2, 3}, and arises in diverse applications, including diffusion of boron and arsenic
in silicon [19], voiding of aluminum conductor lines in integrated circuits [21], sorption in polymers [20],
damage to electrodes in lithium-ion batteries [2], and anisotropy of cardiac dynamics [6], among others.
The usual assumptions in most of them are, on one hand, that the solid satisfies an elastic regime, and
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on the other hand, that the diffusion obeys a Fickean law enriched with further contributions arising
from local effects by exerted stresses. This second hypothesis means that the respective diffusion
coefficient is a continuous function depending precisely on the stress, which acts then as a coupling
variable. Mathematically, the underlying model is usually described by the following system of partial
differential equations (cf. [14, eq. (2.1)]):

Vuzé\*l(a) in Q, —div(e) = f(¢) in Q, w=wup on I,

1.1
o =90)Vy in Q, —div(e) =g(u) in Q, and ¢=0 on T, (L1)
where ! 1
Clir) ==~ 74 tr(r)I V7 eRV". 1.2
(7) ,u T n(nA+ (n+ 1)p) x(7) Te (1.2)

Here, o is the non-symmetric pseudostress tensor, u is the displacement field, A, u > 0 are the Lamé
constants (dilation and shear moduli), which characterize the properties of the material, and I is the
identity tensor of R™*™. In turn, ¢ represents the local concentration of species, & is the diffusive flux,
and ¥ : R"*™ — R™ " is a tensorial diffusivity function. In addition, f : R — R" is a vector field of
body loads (which depends on the species concentration), g : R™ — R denotes an additional source
term depending on the solid displacement u, and wp is the Dirichlet datum for w, which belongs to
a suitable trace space to be identified later on.

The purpose of the present work is to continue contributing in the direction of [14] by introducing
and analyzing new fully-mixed finite element methods for the numerical solution of (1.1) - (1.2). In
this way, the main novelty with respect to [14] is the utilization of a mixed variational formulation
for the diffusion equation. As a consequence, and regarding the mixed approach for the elasticity
equation, we certainly make use of the corresponding results from [14] either by stating or referring to
them throughout the analysis. In some cases, and just for sake of completeness, the main aspects of
the respective proofs are explicitly recalled. Needless to say, we remark that a fully-mixed approach for
this model had basically been employed already in [13]. However, to be able to carry out the respective
analysis within a Hilbertian framework, it was necessary to incorporate there augmented terms, thus
increasing the complexity of the resulting discrete method. According to the above, and motivated
by recent works using Banach spaces-based formulations (see, e.g. [3], [14], [15] and [16]), which do
not need to resort to augmentation techniques, we proceed similarly to them and propose two mixed
variational formulations for the diffusion equation in terms of suitable Lebesgue and Sobolev-type
Banach spaces. For the first approach we perform integration by parts on the constitutive equation,
while for the second one the diffusion gradient is introduced as an auxiliary unknown.

The paper is organized as follows. The rest of this section collects first some preliminary notations,
definitions, and results to be utilized throughout the paper. In Section 2, we derive the two fully-
mixed variational formulations of the problem. Suitable integration by parts formulae jointly with the
Cauchy-Schwarz and Holder inequalities are crucial for determining the right Lebesgue and related
spaces to which the unknowns and corresponding test functions are required to belong. In Section
3, fixed-point strategies are adopted to analyze the solvability of the continuous formulations. The
Babuska-Brezzi theory in Banach spaces is employed to study the corresponding uncoupled problems,
and then the classical Banach theorem is applied to conclude the existence of a unique solution of the
respective formulations. Analogue fixed-point approaches to those of Section 3 are utilized in Section
4 to study the well-posedness of the associated Galerkin scheme. In this way, and along with the
corresponding versions of the theoretical tools employed in Section 3, a straightforward application of
Brouwer’s theorem allows us to conclude the existence of discrete solution. A priori error estimates in
the form of Cea’s estimate are also derived here. Next, in Section 5 we restrict ourselves to the 2D case
and introduce specific finite element subspaces satisfying the theoretical hypotheses that were assumed
in Section 4. The fact that a required boundedness property for a particular projector involved is still
an open problem in 3D, stop us of extending the 2D analysis from Section 5 to that dimension. Finally,



several numerical results illustrating the performance of the method and confirming the theoretical
rates of convergence provided in Section 5, are reported in Section 6

1.1 Preliminaries

Throughout the paper, €2 is a bounded Lipschitz-continuous domain of R", n € {2, 3}, which is star
shaped with respect to a ball, and whose outward normal at I' := 02 is denoted by v. Standard
notation will be adopted for Lebesgue spaces L!(€2) and Sobolev spaces Wb () and Wé’t(Q), with
[ >0andte[l,+0), whose corresponding norms, either for the scalar and vectorial case, are denoted
by | o0 and | - |1.4.0, respectively. Note that WO(Q) = LY(€), and if t = 2 we write H!(2) instead
of Wh2(Q2), with the corresponding norm and seminorm denoted by | - [,.o and |- |;.o, respectively. In
addition, letting ¢, t' € (1, +00) conjugate to each other, that is such that 1/t + 1/t' = 1, we denote by
W) the trace space of WHE(Q), and let W—/¥*(T') be the dual of W/**/(T") endowed with the

norms | - ||y p;r and | - |[1/¢ 40, respectively. On the other hand, given any generic scalar functional
space M, we let M and M be the corresponding vectorial and tensorial counterparts. In particular,
we set R := R"™ and R := R™*". Furthermore, | - | is employed for the norm of any element or
operator whenever there is no confusion about the spaces to which they belong, and | - | stands for
the Euclidean norm in R. Also, for any vector field v = (v;)i—1,, we set the gradient and divergence
n
operators, respectively, as Vo := (g;]l> and div(v) := Z g;;y . Additionally, for any tensor
I/ qj=1n j=1""J

fields 7 = (7i5)ij=1,n and ¢ = (Gij)i j=1,n, We let div(7) be the divergence operator div acting along the
rows of 7, and define the transpose, the trace, the tensor inner product operators, and the deviatoric
tensor, respectively, as

n

= 1
Tt = (Tji)i’jzlm, tr(T) = Z Ty, T:C:= Z Tij(ija and 74:=71— Etr(T)]I.
i=1 ij=1
On the other hand, for each ¢ € [1,400) we introduce the Banach spaces
H(divy; Q) = {T eL2(Q): div(r)e Lt(Q)}, and (1.3)
H (divy; Q) = {T eLYQ): div(r) e Lt(Q)} : (1.4)
which are endowed with the natural norms
[T dgive.o == IITloa + [div(T)o.s0 V71 e H(divg; ), and (1.5)
ITedivee == [Tloge + [1div(T)]oso V71 e H(divy; Q). (1.6)

Then, we recall that, proceeding as in [11, eq. (1.43), Section 1.3.4] (see also [5, Section 4.1] and [8,

(1,+00) ifn=2,
Section 3.1]), one can prove that for each ¢ € there holds
[6/5,+0) ifn=3,

(T -v,v) = f

{T Vv + vdiv(r)} ¥ (r,v) € H(dive; Q) x HY(9), (1.7)
Q

where (-, -> denotes in (1.7) the duality pairing between H/2(I") and H~1/2(I"). In addition, throughout
this work we suppose that ¥ is of class C' and uniformly positive definite, meaning the latter that
there exists 9y > 0 such that

Ir)w-w = o |lw? YweR, VrTeR. (1.8)



We also require uniform boundedness and Lipschitz continuity of 1}, that is that there exist positive
constants 11, ¥9, and Ly, such that

Y1 < |9(7)] < Y92 and |Y9(r) —9Y()| < Ly|T—¢| VT,(eR. (1.9)

Moreover, thanks to (1.8), we have that the inverse of ¥} is uniformly positive definite as well, specifi-
cally, denoting from now on J(7) := 9¥(7) !, there exists 9y > 0 such that

Ir)w-w = Jg|lw? YweR, VreR. (1.10)

We also require uniform boundedness and Lipschitz continuity of 5, that is that there exist positive
constants 91, ¥2, and Ly, such that

Jy < ]15(7')\ < Yy and \5(7’)—5(@’)] < Lyt —¢| V71,0 eR. (1.11)

Similar hypotheses are assumed on the source functions f and g, which means that there exist positive
constants f1, f2, Lf, g1, g2 and Ly, such that

fo < f)l < fa, [f(s) = FO)] < Lyls—t] Vs, teR, (1.12)

g1 < |g(w)] < g2, and |g(v) —g(w)| < Ly|lv—w| Yv,weR. (1.13)

2 The fully-mixed formulations

In this section we introduce two Banach spaces-based fully-mixed formulations of (1.1)-(1.2), which
arise from a common formulation for elasticity (see Section 2.1 below) and two different approaches
for the diffusion equation (see Sections 2.2 and 2.3 below). The integration by parts formulae provided
by (1.7), along with the Cauchy-Schwarz and Holder inequalities, play key roles in the derivation of
the Banach spaces where the respective unknowns will be sought.

2.1 The elasticity equation

As explained in [14, Section 3|, given

. {(Z+w)ﬁn—2, (1,2) ifn=2, 2.1)

(2,6] ifn=3, amise{[wam ifn =3,

conjugate to each other, and given ¢ in a suitable space to be determined next, the Banach spaces-
based mixed formulation for the elasticity equation reads: Find (o, u) € X2 x M; such that

a(o,7)+bi(r,u) = G(1) VT1e Xy,

(2.2)
ba(o,v) = Fy(v) Vve My,

where

Xg := Hy(div,; Q) := {T e H"(div,; ) : f tr(r) = 0}, M, = L"(Q),
Q

X = Hj(divs; Q) := {T e H*(divs; Q) : J tr(7) = 0}, M, := L%(Q),
Q

and the bilinear forms a: X9 x X7 > Rand b; : X; xM; - R, i € {1, 2}, and the functionals G € X/
and Fy € MY, are defined, respectively, as

1
nA+ (n+1)p)

! d'Td T 7T T X
A= | et | @ vieneXoxxi,

4



bi(T,v) = J v-div(t) V(r,v)eX; x M;,
Q

G(t) := {(tv,up)r, V1reXy, (2.3)
and

Fy(v) = — fQ f(p) v VveMs;. (2.4)

Furthermore, we have from [14, eq. (3.39)] that a, by, by, G and Fy are all bounded with respective
constants given by
2
lall = PR [bi = b2 =1, |G| = Cruplyjspr, and [Fy| = Q" fo,

where C, is a positive constant such that (cf. [14, eq. (3.9)])

lrvl_iprr < CrllTlrdiv,e V7 e H'(div,; Q).

Having recalled the above from [14], we remark that in order to analyze the elasticity equation, we
need to be able to control the expression

LUW%%W»07 (2.5)

where v € My, and @ and ¢ are generic functions belonging to the same space in which we will
seek the unknown ¢. In this regard, employing the Lipschitz-continuity property of f (cf. (1.12)), a
straightforward application of the Holder inequality yields

|

< Lf“¢ - 90| 0,r;82 0,s;€2 » (26)

quwfw»v
Q

from which we deduce that we must look for the unknown ¢ in L" ().

2.2 A first approach for the diffusion equation
In what follows we derive a first mixed variational formulation for the diffusion equation
o) = Vo in Q, —div(s) = g(u) in Q, and ¢=0 on T, (2.7)

where J(a) = 9(o) L. To this end, we begin by considering ¢ € H(€2), which, thanks to the continuous
embedding of H!(Q) into L"(Q2), does not contradict what was discussed at the end of the previous
section. Then, applying (1.7) with s specified in (2.1) and 7 € H(divs; Q) (cf. (1.3)), and using the
Dirichlet condition satisfied by ¢, we get

L%.w - —ngﬁdiv(?-),

whence the corresponding testing of the first equation of (2.7) becomes
f Io)o -7 + J pdiv(F) = 0 VFeH(div,; Q). (2.8)
Q Q

It is clear, thanks to (1.9) and Cauchy-Schwarz’s inequality, that the first term of (2.8) makes sense
for & € L2(£2). In addition, formally testing the second equation of the second row of (1.1) against a
function v, yields

\me@)=—mew (2.9)



whose right hand side has a similar structure to (2.4). Hence, analogously to (2.5) and (2.6), and since
u € L"(Q) and r > s, Holder’s inequality allows us to conclude that it suffices to take ¢ in L"(€2). In
fact, thanks to the Lipschitz continuity property of g (cf. (1.13)), we get

T

o0 [¥lose < 927 Ly |u — vl

0.r0 ¥

01592 (2.10)

[ wtw —g<v>>w] < Lylu—v

from which we deduce that the left hand side of (2.9) is finite if div(a) € L*(f2), and hence we will
look for & in H(divg; Q) (cf. (1.3)). According to the foregoing discussion, we now set the following

Banach spaces
Q = H(divg;Q2) and M := L"(Q), (2.11)

so that, given (o,u) € Xg x M, the mixed formulation for (2.7) reduces to: Find (6,¢) € Q x M

such that N
’(\ia(a’v%) +b(;a¢) =0 VT eQ,

b(&, %) = Gu(¥) YyeM,

where, the bilinear forms ds : Q X Q — R, b: Q x M — R, and the functional G,, € M, are defined,
respectively, as

(2.12)

Ge (6, 7) = J Io)e-7 V&, 7eq, (2.13)
Q
B0 = L@Z)div(%) V(F,) € Q x M, (2.14)
and
Guw) = = | atwyw  vue. (2.15)

Next, a direct application of Hélder’s inequality, and the bounds given by (1.11) and (1.13), allow to
conclude that the bilinear forms @ and b, and the functional G,,, are all bounded with the corresponding
norms given by

H;HQ = H%Hdivs;ﬂ VT e Q and HQ/}HM = Hw

0,782 Vw e M.

In fact, there exist positive constants, given by

lao| = J2, B =1, and |Gu| = g21Q"*, (2.16)
such that R R N
Ge (¢, T)| < llao|[¢lqlTle V¢ TeQ,
(T, ) < o [Tl vl V(T,9) e Qx M,
and

Gu@)| < [Gul l¢ln Yo eM.

2.3 A second approach for the diffusion equation

As an alternative to the previous formulation for the diffusion equation, and in order to obtain a more
accurate approximation for the diffusion gradient, as well as to avoid inverting 1}, we introduce the
unknown ¢ := V¢ in Q. Thus, the second row of (1.1) becomes

t=V¢ in Q, o =19Y0)t in Q,
(2.17)
div(e) = g(u) in Q, and ¢ =0 on T.



Then, bearing in mind that ¢ must be sought in L"(£2), and thanks to the continuous embedding of
HY(Q) into L"(£2), we initially look for ¢ in H'(2). In this way, testing the first equation of (2.17)
against 7 € H(divg; ), applying (1.7), with s specified in (2.1), and employing the Dirichlet boundary
condition for ¢, we obtain

f t-F + J ¢div(T) = 0 V7T e H(divs; Q),
Q Q

whence the first term makes sense for ¢t € L?(Q2). In turn, testing the second equation of (2.17) against
s € L2(2), we formally get

Jﬁ(a)t-s—f&s:() VseL*Q), (2.18)
Q Q

from which we notice, thanks to Cauchy-Schwarz’s inequality and (1.9), that the first term of (2.18)
is finite, whereas its second term makes sense is & is sought in L2(2). Now, testing the third equation
of (2.17) against a function ¢, we have

| eai@) = | st (2.19)

Q

and, similarly to (2.10), we deduce from the right side of (2.19) that ¢ can be considered in L"(12).
Hence, in order for the left hand side of (2.19) to be well defined we need that div(e) € L*(€2), which
yields to look for & in H(divy; Q). Consequently, recalling from (2.11) the definition of M, we introduce
the following notation

¢ = (o,t), @:= (p,8) € H:=MxL}Q).

Thus, given (o, u) € Xa x M, we arrive at the following mixed formulation for (2.17): Find (gg, o) €
H x Q such that

a4 (6, @) + b(3,6) = Gul@) V@eH,
(¢, 9) (4;: ) u(P) V@ (2.20)
b(p,7) = 0 VTeqQ,
where the bilinear forms a, : Hx H— R and b : H x Q — R are defined as
4o (4, @) = J do)t-s Vo, FeH, and (2.21)
Q
W@ F) = —f Fos— f pdiv(¥) V(47 eHxQ, (2.22)
Q Q
whereas the linear functional G,, : H — R is given by
Gul@) = = | swye vgem. (223)

Next, it is easily seen that as, b and G,, are bounded. In fact, endowing H with the product norm

[Pl = lelore + lsloe VE:=(p.s)eH,

and applying (1.9), (1.13), and the Cauchy-Schwarz and Holder inequalities, we find that there exist
positive constants, denoted and given by

lao| = v2, b =1, and [Gu| = g21Q"*, (2.24)
such that . . .
ae (¢, &) < lasl |dllu|Fla Vo, FeH,
(@, 7)| < [0 |[FlulTle V(5 T)eHxQ,
and

Gu(@P)] < |Gul[#la VFeH.



2.4 The coupled fully-mixed formulations
According to the analyses in Sections 2.1 and 2.2, our first fully-mixed formulation for (1.1)-(1.2)
reduces to gathering (2.2) and (2.12), that is: Find (o, u) € X9 x M; and (0, ¢) € Q x M such that

a(o,7)+bi(r,u) = G(7) VTe Xy,

)
by(o,v) = Fy(v) Vv e My,
o ~ - (2.25)
ag(0,7T) + b(7,0) = 0 V7eqQ,
b(E,¥) = Gu(w) Ve,

In turn, as a consequence of the discussions in Sections 2.1 and 2.3, the second fully-mixed for-
mulation for (1.1)-(1.2) is given by (2.2) jointly with (2.20), that is: Find (o, u) € X2 x M; and
(¢,0) € H x Q such that

a(o, )+ bi(t,u) = G(7) V71e Xy,
ba(o,v) = Fy(v) Vve My,
- . B } (2.26)
ao (0, P) + b(F,0) = Gu(p) VgeH,
b, 7) = 0 VFeqQ.

3 The continuous solvability analysis

In this section we proceed similarly as in [8] and [15] (see also [5], [17], and some of the references
therein), and adopt a fixed-point strategy to analyze the solvability of (2.25) and (2.26). To this end,
we use the Babuska-Brezzi theory in Banach spaces (cf. [4, Theorem 2.1, Corollary 2.1, Section 2.1]
for the general case, and [10, Theorem 2.34] for a particular one) to prove the well-posedness of the
uncoupled problems (2.2), (2.12), and (2.20).

3.1 Well-posedness of the elasticity equation

We begin by letting S : M — Xs x M be the operator defined by
S(¢) = (S1(y),S2(y)) = (o,u)  VeeM, (3.1)

where (o, u) € Xo x M; is the unique solution (to be confirmed below) of the mixed formulation for
the elasticity equation (cf. (2.2)) with ¢ instead of ¢, that is

a(o,7) + bi(m,u) = G(7) VT1e Xy,
(3.2)

ba (o, v)

Then, assuming that the Lamé parameter ) is sufficiently large, namely A > M, where M is specified
in [14, Lemmas 3.4], we can establish that the operator S (cf. (3.1)) is well defined. Indeed, letting
a, 31, and B, be the constants yielding the continuous inf-sup conditions for a, by, and by (cf. [14,
Lemmas 3.4 and 3.5]), a simple application of [4, Theorem 2.1, Corollary 2.1, Section 2.1] leads to the
following result (cf. [14, Lemma 3.6]).

F¢(U) Yve MQ.

Lemma 3.1. For each p € M there exists a unique (o,u) € Xo x My solution of (3.2), and hence
one can define S(¢) = (S1(p), S2(p)) := (o, u) € Xg x My. Moreover, there hold

Cr Ql/'r 2
S10)Ixs = lolxs < < luplyjore + (1+) f2. and
“ P2 oH (3.3)
Se@y = Tult < & (14 2 Juplyonr + 2207 (14 2 4
2\P)IiMy = M S B, - Dll1/smI 116155 o 2.

8



3.2 Well-posedness of the first approach for the diffusion equation
We now let S : X9 x M1 — Q x M be the operator defined by

g(C?“’) = (gl(C7w)’§2(Caw)) = (&>¢) V(C,’lU) € Xo x My, (34)

where (o, ¢) € Q x M is the unique solution (to be confirmed below) of (2.12) with (¢, w) instead of
(o, u), that is
ac(o,T) + b(T,¢) = 0 VTeqQ,
@) = Guw(w) VYoeM.
Next, we let K be the kernel of the bilinear form b (cf. (2.14)), which reduces to

(3.5)

~

K = {% e H(divy;: Q) :  div(F) = o}.
Then, bearing in mind the uniform positiveness of ¥ (cf. (1.10)), the definition of ae (cf. (2.13)), and
the norm of H(divs; ) (cf. (1.5)), we readily deduce that

W(F7) = DlFly  VFeK, VieXs, (3.6)

which yields the continuous inf-sup condition for a¢ (cf. [10, eq. (2.28), Theorem 2.34]) with constant
& = Y. In addition, we know from [15, Lemma 2.9] that there exists a positive constant 3 such that

b7, ~
sup A0 S Bty wge, (3.7)
#eQ 1Tl
T#0

which establishes the continuous inf-sup condition for b.

Hence, we are in position to state that the operator S is well-defined.

Lemma 3.2. For each (¢, w) € Xo x M there exists a unique (7, ¢) € Q x M solution of (3.5), and
hence one can define S({,w) := (&, ¢) € Q x M. Moreover, there hold

~

Bi¢ wlle = 18la < 5 (1 + 3 )29, and (3.8)
~ _ 73/2 52 1/8
Ba¢wil = ol < 221+ 7)1l o0z, (3.9)

Proof. Knowing from (3.6) and (3.7) that, given (¢, w) € Xy x My, @¢ and b satisfies the hypotheses
of [10, Theorem 2.34], and noting that Q := H(divs; Q) and M := L"(§2) are reflexive Banach spaces,
the proof reduces to a straightforward application of the aforementioned theorem. In this way, the a
priori estimates (3.8) and (3.9) follow from [10, eq. (2.30), Theorem 2.34] and (2.16). O

3.3 Well-posedness of the second approach for the diffusion equation

Similarly to the analysis of previous sections, we let S : X9 x M; — H be the operator given by
S(¢.w) = (S1(¢,w). S2(Cw)) = ¢ V(¢ w) € Xo x My, (3.10)
where (¢,5) := ((¢,t),5) € H x Q is the unique solution (to be confirmed below) of problem (2.20)
with (¢, w) instead of (o, u), that is
ac(¢, ) + b(F,0) = Guw(g) VFeH,
0

3.11
VTeQ. (3.11)



Here we apply [10, Theorem 2.34] to prove that problem (3.11) is well-posed (equivalently, that S is
well-defined). In this regard, it is important to stress that the structure of (3.11) is similar to the
one of [8, eq. (3.23)], and hence, several results and techniques from there will be employed in what
follows. Indeed, let V' the kernel of the operator induced by b (cf. (2.22), which reduces to

Vo= {@: (p,8) eH:=Mx L}Q): Vo = s}. (3.12)

Now, we let c¢p be the positive constant yielding the Friedrichs-Poincaré inequality, which states that
|2 Q= > cplp|? o for all ¢ € H{(2), and denote by i, the continuous injection of H () into L"(Q2). In
addltlon we consider an arbitrary ¢ € Xg. Then, bearing in mind (1.8) and proceeding analogously
to the proof of [8, eq. (3.41), Lemma 3.2], we find that

ac(¢,¢) = ol VEeV, (3.13)

with

a = 19—m n{l,

o

which proves the V-ellipticity of a¢c. In turn, a slight modification of the proof of [8, Lemma 3.3]
allows us to prove the existence of a positive constant 8 such that

“u b(% )

zon [9lm
F#0

> BlFlq  VFeQ, (3.14)

whence the bilinear form b satisfies the continuous inf-sup condition required by [10, Theorem 2.34].

We are now in position to confirm that the operator S is well-defined.

Lemma 3.3. For each ({,w) € Xy x My there exists a unique (5, o) € H x Q solution of (3.11), and
hence one can define S({,w) := ¢ € H. Moreover, there holds

. 0 1/s
Sl = 16l = [olora + Itlos < " g, (315)

Proof. Thanks to (2.24), (3.13) and (3.14), a straightforward application of [10, Theorem 2.34] yields
the existence of a unique solution (q?, o) € H x Q to (2.20). Moreover, the corresponding a priori
estimate given by the first inequality of [10, eq. (2.30)], along with the expression for |G| provided
by (2.24), lead to (3.15). O

Regarding the a priori estimate for the component & of the unique solution of (2.20), which will be
used later on, we recall that the second inequality in [10, eq. (2.30)] and (2.24) implies

N 0 1/s 9
g < | |5 (1 + ;) g2 (3.16)

3.4 Solvability of the first fully-mixed formulation

We begin by defining the compose operator =: M — M as

~

(W) = S2(S(¥))  V¢e M. (3.17)

Then, knowing that the operators S and S, and hence = as well, are well-defined, we notice that
solving (2.25) is equivalent to seeking a fixed point of =, that is: Find 1) € M such that

(V) = 9. (3.18)

[1]

10



Next, in order to address the solvability of (3.18) (equivalently of (2.25)), we verify the hypotheses of
the Banach fixed-point theorem. For this purpose, let us first introduce the ball

W o= {gbeM: EIYERS 5}, (3.19)
with N N
5= §2<1 + &)\Qy g2

It follows from the definition of 2 (cf. (3.17)) and the a priori estimate for Sy (cf. (3.9)) that

~ ~

E(W) < W. (3.20)

Now, in order to establish the continuity of =, we previously establish those of S and S. Indeed,
resorting to a slight modification of [14, Lemma 3.9], we deduce the existence of a positive constant
Cs, depending only on u, o, 3;, and B35, such that

[S(¢) =S(@)Ixoxmy < CsLyllo =@l Vo, peM, (3.21)

which proves the Lipschitz-continuity of S. Furthermore, for the same property of §, the approach
from several previous works (see, e.g. [1], [9], [12], [13], and [15]) is adopted here, so that a regularity
assumption on the solution of the problem defining this operator is introduced. More precisely, from
now on we suppose that there exists ¢ > = and a positive constant 6’8, such that

(RA,) for each (¢, w) € Xy x M there holds S(¢, w) = (&,¢) € (Q n HZ(Q)) x W="(Q), and

~

e,r;2 < CE g2 . (322)

loleq + [0l

The aforementioned lower bound of ¢ is explained within the proof of Lemma 3.4 below, which provides
the Lipschitz-continuity of S. In this regard, we recall now that for each ¢ < § there holds H*(Q2) <

L*(Q), with continuous injection

2
ie  HY(Q) — L7°(Q),  where &* =~ _”26. (3.23)

Note that the indicated lower and upper bounds for the additional regularity e, which turn out to

require that ¢ € [%, §), are compatible if and only if » > 2, which is coherent with the range stipulated

n (2.1). Thus, we have the following result.

Lemma 3.4. There exists a positive constant Cy, depending only on &, B, |Q|, 7, €, |ic| (cf. (3.23)),
and C. (cf. (3.22)), such that

IS¢, w) = S(r,)laxm < Cg{Lyge + Ly} (¢, w) = (7,9)[xzxm, (3.24)
for all (¢, w), (T,v) € Xo x Mj.

Proof. We begin by noticing that the a priori estimates (3.8) and (3.9) of problem (3.5), with a given
(¢, w) € Xo x M, are equivalent to stating that

ac(C, %) + b(F, ) + (. )
1(7,¥)lgxm

1(E, 9)lgxm < € sup ¥ (¢, p) e Qx M, (3.25)

(7 ,l,b)EQ xM
(T)#0

with a positive constant C' that depends only on s, &, and 5 , and hence independent of (¢, w). Next,
given (¢, w), (17,v) € Xy x My, we let

~

S(¢,w) :=(&,¢) and S(1,v):=((, ),

11



which, according to (3.4) and (3.5), means, respectively, that

G (5,%) + b(F,9) = 0 V¥eQ,
~ (3.26)
and - ~
ar(¢,T) + b(T,p) = 0 VTeqQ,
. (3.27)
b(¢C, ) = Gu(¥) Vi eM.

Then, applying (3.25) to g({,w) — g(‘r,v) = (o — E,gb — ), and using (3.26) and (3.27), we get

Hg(Cl w) — §(T, v)|qxym < C sup ac(o —¢,7) + bN(T, b—)+bled—<C, )
(?QPE;QXOM H (Ta Q)D) HQXM
Fab)#

co oy BCF) ) ¢ (Cu = Gu))

(7,$)eQxM (7, 9) lQxm
(F1)#0

(3.28)

Thus, bearing in mind the definitions of @, and d¢, and using the Lipschitz-continuity of 9 (cf. (1.11))
along with the Cauchy-Schwarz and Holder inequalities, we find that

@ (6. 7) = (¢, 7)| < Lyl(r = )¢

0202 [Clo2p0 | Flog (3.29)

olTloa < Lyl =¢

where p, g € (1,+00) are conjugate to each other. Now, choosing p such that 2p = ¢* (cf. (3.23)), we
get 2¢ = 2, which, according to the range stipulated for ¢, yields 2¢ < 7, and thus the norm of the

embedding of L"(Q) into L4(2) = L= () is given by C,.. := || . In this way, using additionally
the continuity of 7. (cf. (3.23)) along with the regularity estimate (3.22), the inequality (3.29) becomes

|- (¢, 7) = a¢ (€ T)| < Ly Cre [T = Cllosa el [Cle. [Tlog

N (3.30)
< Ly Cre lic] Ce g2 |7 = Clx, [ (7, ¥) g -

In turn, the Lipschitz-continuity of g (cf. (1.13)), the fact that s < r (cf. (2.1)), and Holder’s
inequality, yield

r

o0 < Lg|Q 7 Jw —v

(G — Go) ()| < Ly |w — v

om0 ¥

IO,T;Q WHO,T;Q
(3.31)

r—

< Ly |9 [w — vl (75 9) [y -

Finally, replacing (3.30) and (3.31) back into (3.28), we arrive at (3.24), which ends the proof. O

We are able to prove now the Lipschitz-continuity of = in the closed ball W of M := L"(92).

Lemma 3.5. There exists a positive constant Cz, depending only on Cg and Cx, such that
IE(¢) —E(@)lm < C=Ly{Ly+ Lyga} o — ¢l Vo, peM. (3.32)

Proof. Tt readily follows from the definition of = (cf. (3.17)), and the estimates (3.21) and (3.24),
which yields Cz := Cg Cy. O

Consequently, the main result of this subsection is stated as follows.

12



Theorem 3.6. Assume the reqularity assumption (RAy1) (cf. (3.22)), and that the data Ly, Ly, Ly,
and go are sufficiently small so that

CELf {Lg‘i‘L{ggQ} < 1. (333)

Then, Z has a unique fixed point ¢ in w. Equivalently, the coupled problem (2.25) has a unique
solution ((o,u),(5,9)) € (X2 x My) x (Q x M), with ¢ € W (¢f. (3.19)). Moreover, there hold

C, |Q|V/r 2
HUHX2 < Er HuDul/s,r;F + /62 1+ ;M f27
C, 2
b, < 57 (14 2) Tunlyerr +

2|Q|1/r
13182

(1 + 2) fo, and (3.34)
ajp

~

~ 1 ¥
5la < = (1+ 2)ja .
B2 @
Proof. Thanks to (3.20), Lemma 3.5, and the assumption (3.33), the existence of a unique ¢ € W
solution to (3.18) (equivalently, the existence of a unique ((o,u), (5, ¢)) € (X2 x My) x (Q x M)
solution to (2.25)), follows from a straightforward application of the Banach fixed point Theorem. In

addition, noting that (o, u) = S(¢) and (&, ¢) = S(o, ), the a priori estimates (3.3) and (3.8) yield
(3.34), which ends the proof. O

3.5 Solvability of the second fully-mixed formulation

Similarly to Section 3.4, for the solvability analysis of (2.26) we define the operator A : M — M as
AW) =Sy (S(w)) Ve M. (3.35)

Then, noticing that S and S, and hence A as well, are well-defined, we realize that solving (2.26) is
equivalent to finding a fixed point of A, that is: Find ¢ € M such that

AW) = 0. (3.36)

In what follows we show that A verifies the hypotheses of the respective Banach Theorem. We begin
by defining the ball

W= {¢eM: l6lu < 5}, (3.37)
with
0 = 2 92
so that from the definition of A (cf. (3.35)) and the a priori estimate for S; (cf. (3.15)), we get
AW) = W. (3.38)

Next, in order to prove that A is Lipschitz-continuous, and similarly to (RA 1)), we need to introduce
a regularity hypothesis on the solution of the problem defining the operator S. More precisely, we

assume that there exists ¢ > 7 and a positive constant C such that

(RA3) for each (¢, w) € X2 x M there hold S(¢,w) := (¢,t) e W (Q) x H*(Q2), and
¢l

The Lipschitz-continuity of S is addressed next, whose corresponding proof requires again the lower
bound of ¢, and the embedding specified in (3.23). Therefore, following the same arguments from the
previous section, we conclude that the feasible range for r and s are given by (2.1). The announced
result is established as follows.

er T tlee < Coga. (3.39)
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Lemma 3.7. There exists a positive constant Cg, depending on «, |Q|, r, s, €, |ic| (c¢f. (3.23)), and
C: (cf. (3.39)) such that

IS(¢;w) = S(7,v)|n
(3.40)
< Cs{Ly+ Lo g} ¢, w) = (T 0)lxaxnty Y (C,w), () € Xo x M.

Proof. Given (¢, w), (1,v) € Xo x My, we let

S(¢,w) := gg and S(T,v) := J,

where ((E, ) = ((¢,t),0) € H x Q and (@Z, E) = ((¢,7), C) € H x Q are the respective solutions of
(3.11). It follows from the corresponding second equations of (3.11) that ¢ — ¢ € V (cf. (3.12)), and
thus the V-ellipticity of a¢ (cf. (2.21)) gives

alé— Pl < ac(d—1,6— ). (3.41)

In turn, applying the corresponding first equations of (3.11) to J = gg — 1/7, we obtain
ac(¢, 6 — ) = Guw(6—1), and (3.42)
ar(,6— ) = Gu(¢ — 1), (3.43)
so that employing (3.42), and then subtracting and adding a, (1, ¢ — ¢) (cf. (3.43)), (3.41) becomes
allp =Vl < (Gw—Go)(@—¢) + (ar —ac) (@, 6 — ). (3.44)

Next, proceeding as for (3.31), we easily get

(Guw = Go)(6—¥) < Ly | w —vln, [¢ — |- (3.45)

On the other hand, recalling that r and s are conjugate to each other with s < r (cf. (2.1)), and
employing the Lipschitz continuity of ¢ (cf. (1.9)) along with Hélder’s inequality, we find that

(ar —ag)(¥, ¢ — ) < Ly|T—¢ (3.46)

2 7,29

where p, ¢ € (1,+00) are conjugate to each other as well. Then, similarly to the proof of Lemma 3.4,
we choose p such that 2p = ¢* (cf. (3.23)), so that 2¢ = © < r, and hence

(ar —a0)(, ¢ = ) < Ly Cre lic| Cegz |7 = Closn [t = 7o - (3.47)
Thus, replacing the estimates (3.45) and (3.47) back into (3.44), we arrive at (3.40) with the constant
Cs := max {|Q| 7, Cy [ic| C:}. O

We are now in position to conclude the Lipschitz-continuity of A.

Lemma 3.8. There exists a positive constant Cy, depending only on Cg and Cg, such that

IA(@) — Alp)Im < OaLp{Lg+ Loga}lo—¢lu V¢, peM. (3.48)

Proof. Tt is a direct consequence of the definition of A (cf. (3.35)) and the continuity properties given
by (3.21) and Lemma 3.7. O

Finally, the well-posedness of (2.26) is established as follows.
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Theorem 3.9. Assume the regularity assumption (RA2) (cf. (3.39)), and that the data L¢, Ly, Ly,
and go are sufficiently small so that

Cr Lf {Lg + Ly gg} < 1. (3.49)

Then, A has a unique fized point ¢ € W. Equivalently, the coupled problem (2.26) has a unique solution
((a’,u), (¢, 5’)) € (X2 X Ml) X (H X Q), with ¢ = (¢,t) € H and ¢ € W (c¢f. (3.37)). Moreover,
there hold

C, Q[T 2
< — ; 1 - ’
lolx, < luplysrre + 3, "o f2
C, < 2 > 2|Q/r < 2 >
ullm, < —[(1+—) |up r + 1+— | fo,
|, 3, o |lwp|l1/smr 15,55 -~

U (3.50)

[¢la = ¢l + ltloe < —-—g2, and

N 0 1/s 9
o < 5 (14 2) o

Proof. Bearing in mind (3.38), Lemma 3.8, and the hypothesis (3.49), a direct application of the
Banach fixed point Theorem implies the existence of a unique ¢ € W solution to (3.36) (equivalently,
the existence of a unique solution ((a’,u), (qg, &)) € (X2 x Ml) X (H X Q) to (2.26)). In addition,
recalling that (o, u) = S(¢) and (¢,5) = S(&, w), the a priori estimates (3.3), (3.15), and (3.16) yield
(3.50) and conclude the proof. O

4 The Galerkin schemes

In this section we introduce and analyze the Galerkin schemes of the fully-mixed formulations (2.25)
and (2.26). In particular, for the solvability analyses of the discrete versions of the decoupled problems
studied in Sections 3.1, 3.2, and 3.3, we employ the corresponding analogues of [4, Theorem 2.1,
Corollary 2.1, Section 2.1] and [10, Theorem 2.34], which are given by [4, Corollary 2.2, eqs. (2.24),
(2.25)] and [10, Proposition 2.42], respectively.

4.1 Preliminaries

We begin by letting X 5, My p, Xy 5, and My j, be the finite element subspaces of X5, My, Xy, and
Mo, respectively, that are described in [14, Section 5.2, eq. (5.9)]. In addition, let Qp, My, and HY
be arbitrary finite element subspaces of Q, M, and L?(f2), respectively. Hereafter, h stands for both
the sub-index of each subspace and the size of a regular triangulation 7}, of Q made up of triangles K
(when n = 2) or tetrahedra K (when n = 3) of diameter hg, that is, h := max {hx : K € Tj, }. Then,
the Galerkin scheme associated with (2.25) reads: Find (o, us) € Xop x My, and (7, ¢) € Qp x My,
such that

a(on, Th) + bi(Th,up) = G(T3) Ve Xin,
ba(on,vn) = Fy,(vn) Vvp € May, (1)
oy (G Th) + 0(Fp,dp) = 0 VThLeQn, '

o

(Fhoton) = Guy(¥n) Y eMy,.
In turn, defining the product space Hy, := My, x Hfl and setting the notation

on = (bn,th), @n = (on,sn) € Hy,
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the Galerkin scheme associated with (2.26) reduces to: Find (o, us) € Xop x My, and (ggh,5h) €
H; x Qy such that

a(op, Th) + b1(Th,un) = G(Th) V7 e Xy,
) by(on,vn) = Fy,(vn)  Vope Map, 42)
A, (Ony Pn) + b(Pn,0n) = Gu,(Pn)  V@heHy,
b(on,Tr) = 0 VTheQp.

The aforementioned subspaces Xs 1, My p,, Xy 5, and My 3, along with specific examples of Qj,, My,
and H;‘:L satisfying the hypotheses to be assumed below in Sections 4.3 and 4.4, are described later on
in Section 5.1.

4.2 Discrete well-posedness of the elasticity equation
We let Sy, : My, — Xa 3, x My, be the discrete version of the operator S (cf. (3.1)), that is

Su(wn) = (S1n(wn),Sonlen)) = (on,uy) Y € My, (4.3)

where (o}, up) € Xgp, x My, is the unique solution (to be confirmed below) of the first two rows of
(4.1) (or (4.2)) with ¢y, instead of ¢y, namely
a(op, Th) + bi(Th,un) = G(Th) Vrye Xip,

(4.4)
ba(on,vn) = Fy(vn) Yoy e My,

Then, under the same assumption on the Lamé parameter A stipulated in Section 3.1, and letting
au, B4, and By 4 be the constants yielding the discrete inf-sup conditions for a, by, and by (cf. [14,
Lemmas 5.3 and 5.4]), a direct application of [4, Corollary 2.2, egs. (2.24), (2.25)] yields the following
result (cf. [14, Lemma 4.1)).

Lemma 4.1. For each ¢p € My, there exists a unique (op,up) € Xop x My, solution to (4.4), and
hence one can define Sp(pn) = (Slyh(goh), S2’h(cph)) = (op,up) € Xop, x My p,. Moreover, there hold

C, Q1T 2
S = < — T + 1+ , d
IS1,n(0n)x, = llonlx, o lwplli/srr By P~ fa, an

5

C, 2 2|1Q| /" 2
So.n(en) vy = [unllm, < (1 + > lupli/spr + 1+ o
‘ 1 ‘ ‘ 1 /61,d o ‘1/577",F Mﬁl,d 1627(1 o

We stress here that the lack of a required boundedness property for a projector involved in the
proof of the previous lemma, restricts the present discrete analysis to the 2D case. We refer to [14,
Section 5] for further details.

(4.5)

4.3 Discrete well-posedness of the first approach for the diffusion equation
We now let Sy, : Xon x My, — Qp x My, be the discrete version of S (cf. (3.4)), that is

Sh(Chywn) == (&Fn,én) ¥ (Cpywn) € Xop x My, (4.6)

where (o, o) € Qp x My, is the unique solution (to be confirmed below) of the third and fourth rows

of (4.1) with (¢, wy) instead of (o, up), namely
dc, (Gn Fn) + b(Fn,dn) = 0 VT €Qn,
~ ~ (4.7)
b(@h¥n) = Gu,(¥n) Vi eMy.
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In order to establish the well-posedness of (4.7), we first consider the discrete kernel of b, that is

Ko o= {FreQu: BELa) =0 YoneMy), (48)
and suppose that

(H.1) div(Qn) < M.

Then, bearing mind the definition of b (cf. (2.14)), and employing (H.1), we readily deduce from
(4.8) that

Ky = {7~'h €Qp: div(Ty) = 0},

which yields the discrete analogue of (3.6), and hence the I%h—ellipticity of d¢, with constant ag = 50.

Next, we also assume that

(H.2) there exists a positive constant Ed, independent of h, such that

b(Fh, ¥ ~
sup TRV o Bl Y e My
seqn IThlQ
;h#o

Thus, straightforward applications of [10, Theorem 2.42] and the abstract estimates from [10, eq.
(2.30)] imply the discrete analogue of Lemma 3.2, which is stated as follows.

Lemma 4.2. For each (¢, wp) € Xop X My, there exists a unique ('p,¢n) € Qp x My, solution

of (4.7), and hence one can define Sp(Cpown) = (S1.a(Chswn), Son(Chywn)) = (Fn, dn) € Qi x My,
Moreover, there hold

~

N . ) 3 S
[S1a(Chwn)lQ = lonlq < N—(l + TQ)IQW 0. and

Ba ad
3 Do Do (4.9)
[S2,n(Chswn) v = [dnlm < 53(1 + a—d)mp/sgz.

4.4 Discrete well-posedness of the second approach for the diffusion equation

Here we introduce the discrete operator Sy, : Xo, x My, — Hj, given by

Sh(Cpowp) == dn ¥ (Cpywn) € Xop x My, (4.10)

where (¢, &) := ((6n,tr), &) € Hy x Qp is the unique solution (to be confirmed below) of the third
and fourth rows of (4.2) with ({,, wy,) instead of (o, up, that is
ac, (G, Bn) + (B, &n) = Guy(Fn) V@ eHy,
B (4.11)
b(qﬁh,?'h) = 0 V%hEQh.

In order to prove that (4.11) is well-posed, we need to incorporate a couple of suitable hypotheses
on the discrete spaces. Indeed, we first assume that

(H.3) there exists a positive constant 4, independent of h, such that

b(Ghy Th ~ N
sup y = Bal|Trhlq  YThEQn.
speny,  |PnlE
Pr#0
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Next, we let V;, be the discrete kernel of the bilinear form b, that is
Vh = {gﬁhEHh: b(@'h,’?‘h)zo V%hEQh},
and suppose that

(H.4) there exists a positive constant Cy4, independent of h, such that

Isnloe = Callenlora — Y&h = (¢n, sn) € V.

In this way, bearing in mind the definition of a¢, (cf. (2.21)), and employing the positive definiteness
property of ¥ (cf. (1.8)) and (H.4), we deduce for each {;, € X5} that

Yo Yo -
|g,Q = ? Cg H(Ph yg,r;ﬂ + ? Hshug,r;ﬂ Voh = (QOh, Sh) € Vi, (412)

a¢, (Bn, Pr) = Yo sn

from which it readily follows the Vj-ellipticity of a¢, with constant ag := % min{C2, 1}.
Consequently, applying [10, Proposition 2.42], and making use of the a priori estimate provided by
[10, eq. (2.30)], we are lead to the discrete analogue of Lemma 3.3.

Lemma 4.3. For each ({j,, wy) € Xop, x My, there exists a unique ((Eh,&h) € Hy, x Qp, solution of
(4.11), and hence one can define Sp(Cp, wp) := ¢y € Hy. Moreover, there holds

1/s

IS8 (Chowi)lm = ol = | on] g2 - (4.13)

00 T [trloo <

We end this section by remarking that the discrete version of (3.16) becomes

N N Qs Vo
Brla = 1nlave < A7 (14 2 g,. (4.14)
Bd aq

4.5 Discrete solvability of the first fully-mixed formulation

In this section we adopt the discrete analogue of the fixed point strategy introduced in Section 3.4 to
analyze the solvability of (4.1). According to it, we define the operator Z; : M, — My, as

Zn(on) == San(Su(en)) Ve My, (4.15)

and observe, being §h and Sy, and hence =, as well, well-defined, that solving (4.1) is equivalent to
seeking a fixed point of =, that is: Find ¢p € Mj, such that

En(Pn) = on- (4.16)

Thus, in what follows we show that =; verifies the hypotheses of the Brouwer theorem. In fact,
introducing the ball

W, = {cbh eMipn:  |dnllomn < gd}, (4.17)

with

~

~

52 192 1
5 = = 1 + ~ Q /s s
d 5§< ad)| 7% g2

we realize, according to the definition of = (cf. (4.15)) and the second a priori estimate in (4.9), that

~

Eh(WN/h) c Wy. (4.18)
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Next, in order to derive the continuity of =, we first recall from [14, eq. (4.11)] that there exists a
positive constant Cs 4, independent of h, such that

ISh(on) — Shvn)|x.xM; < Csa Ly |on — @nlorn V én, on € My, . (4.19)

On the other hand, for the continuity of Sp, the reasoning of the proof of Lemma 3.4 is slightly
modified. Indeed, knowing that the regularity assumption (RA;) is certainly not applicable in the
present discrete context, we proceed to utilize a L2¢ — L?? — L2 argument to derive the discrete version
of (3.24), where p, ¢ € (1,+00), conjugate to each other, are chosen such that 2¢ = r. The above
is a feasible choice since, as stipulated in (2.1), there holds r > 2, which yields r* := 2p = 7"2%2 In
this way, given ({j,, wn) (Th,vn) € Xo x My p,, and denoting (o, ¢p) = gh(Ch,'wh) € Qp x My, and

(Chson) = Sh(Th, o) € Qi x My, the discrete analogue of (3.29) becomes
tir,, (s ) = Tig, (Co Fa)| < Ly (70 — €4l

< Lyllmn — ¢

0.2 [Trloe
(4.20)

0.2¢:2 1€k 0,2p.02 [ Thll0. -

The foregoing inequality, along with the discrete versions of (3.28) and (3.31), whose details we omit
here, imply the existence of a positive constant Cy ,;, depending only on aq, B4, and |©2|, and hence
independent of h, such that

ISh(Chswn) — Sh(Thsv) | Qxm
(4.21)

< Gy {Ly+ 15 181n(rn, on)

O,T*;Q} 1(Cown) — (Thyon) | @

for all (¢, wn), (Th,vn) € Xop x My . In this way, recalling the definition of =, (cf. (4.15)), and
employing the estimates (4.19) and (4.21), we conclude that

IZn(¢n) — Enlen) om0
(4.22)

< Czaly {Lg + L3 |S1,n(Sh(en)) |0,r*;Q} lon — enlloma YV én, on € My,

with the positive constant Cz 4 := Cgq Cg ;. While the estimate (4.22) implies that Z, is continuous,

we emphasize that the lack of control of the term ‘|§1’h(Sh(Q0h))||o7r*;Q stop us of concluding Lipschitz-
continuity and hence nor contractivity of this operator.

We are now in position to establish the following main result.
Theorem 4.4. The operator =5 has at least one fized point ¢y € I/IN/;L. Equivalently, the Galerkin

scheme (4.1) has at least one solution ((op,un), (Gh, dn)) € (Xopx Myp) x (Qn x M), with ¢p, € W
(¢f. (4.17)). Moreover, there hold

C QT 2
fonls < S5 fuplyjorr + i (1+> 5.

Ba.d Qq p
C, < 2 > 2|1Q|V/r ( 2 >
uplv, < — (14— |uplisrr + ———— 1+ ——) fo, and 4.23
H H 1 BLd adu H H]./S,T’,F ILLBLd ,627d ad/l/ ( )
N 1 0
Fnle < (1 + =) 190 g
Ba aqd

Proof. Thanks to (4.18), the continuity of =} (cf. (4.22)), and the equivalence between (4.1) and
(4.16), a straightforward application of Brouwer’s theorem (cf. [7, Theorem 9.9-2]) implies the first
conclusion of this theorem. Next, noting that (op,urn) = Sp(¢dn) and (o, dn) = §h(0'h,uh), the a
priori estimate (4.23) follows from (4.5) and (4.9). O
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4.6 A priori error analysis for the first fully-mixed formulation

In this section we establish the Céa estimate for the global error
[(o,u) = (on, un)|x, 5y + [(650) = (Fn, ¢n)lQxn,

where ((o,u),(5,9)) € (Xo x My) x (Qx M) and ((o, un), (G4, ¢n)) € (Xop x Myp) x (Qpn x My)
are the unique solutions of (2.25) and (4.1), respectively, with ¢ € W (cf. (3.19)) and ¢p, € W, (cf.
(4.17)). In what follows, given a subspace Zj, of a generic Banach space (Z, | - ||z), we set

dist(z, Zy) := Helg lz — zn|z Vze Z.
Zh h

Then, applying the Strang a priori error estimate provided by [4, Proposition 2.1, Corollary 2.3,
and Theorem 2.3| to the pair of associated continuous and discrete formulations given by the first and
second rows of (2.25) and (4.1), respectively, and proceeding as for the derivation of [14, Section 4.4,
eq. (4.20)], but without using the continuous injection of H*(2) into L"(£2) as done there, we deduce
that there exists a positive constant Csy, depending only on oy, B1as Baas lal, [b1], and |[bz||, and
hence independent of h, such that

I(,w) — (oh, wn)|x,xn, < Csr {dist(a, Xy ) + dist(w, My,) + Ly | ¢ — ¢h||M} . (4.24)

Similarly, applying the Strang a priori error estimate from [4, Proposition 2.1, Corollary 2.3, and The-
orem 2.3] to the pair of associated continuous and discrete formulations given by the third and fourth
rows of (2.25) and (4.1), respectively, we find that there exists a positive constant C'sp, depending

~

only on &4, B4, |de|, and HEH, and hence independent of h, as well, such that

[(a,0) — (Tn, n)lqxm

N - N (4.25)
< Oisy {dist(&, Qu) + dlist(6. M) + (@ — 0, )@ V], + |Gt — G gy }
Next, proceeding exactly as for the derivations of (3.30) and (3.31), we find that
|(te —5,) (5, )| q; < LgLygzllo —on|x,, (4.26)
where Eg = Ch¢ ||ic| Ce, and
|Gu = Guy vy, < Lg Q7 Jlu — unlwm, - (4.27)
In this way, replacing (4.26) and (4.27) back into (4.25), we conclude that
H(&v ¢) - (a-hn ¢h)HQ><M
~ 7 r—s (428>
< Cgr {dist(f}, Qp) + dist(¢, Mp) + Ly Ly g2 |0 — oplx, + Ly [Q] 7 [lu — UhllMl} :
Thus, adding (4.24) and (4.28), we arrive at
H(U7u) - (Uhvuh>HX2><M1 + H(&a ¢) — (o, (Zsh)HQXM
< Csr {dist(a, Xy ) + dist(u, My ) + dist(&, Q) + dist(¢, Mh)} (4.29)

+C(data) { (o, u) = (o, wn) I xpmas + 16 = dnlaa}

where C'g7 := max {@ST,CN‘ST}, and

r—s
s

C(data) := maX{CA’STLf, CN'STIN@ L3 g2, 6’5TL9 ||+ } (4.30)

We are now in a position to state the announced Céa estimate for our first approach.
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Theorem 4.5. Assume that the data satisfy (cf. (4.30))

C(data) < % (4.31)

Then, there exists a positive constant C', independent of h, such that
I(o,u) = (h, un)lxy <, + [[(6,0) — (Th, dn)llQxm

(4.32)
<cC {dist(a, Xy p) + dist(u, My,) + dist(&, Qn) + dist(, Mh)} .

Proof. Tt follows directly from (4.29) and (4.31). O

4.7 Discrete solvability of the second fully-mixed formulation

The discrete analogue of the fixed point approach employed in Section 3.5 is adopted here to establish
the solvability of (4.2). Thus, we now define the operator Ay, : My, — M, as

Ah(wh) = Sl,h (Sh(wh)) V(/}h € Mh; (433)

which is clearly well-defined since S;, and Sy, are, and hence, solving (4.2) is equivalent to finding a
fixed point of Ay, that is ¢;, € My, such that

An(¢n) = on. (4.34)

Similarly to the analysis in Section 4.5, in what follows we prove that Aj, verifies the hypotheses of
the Brouwer theorem. Indeed, defining

Wy, = {¢h eMp: |on

0,79 < (5d}, (435)

with
_ ‘Q|1/s

aq

6d 92,

it is straightforward to see, from the definition of Ay (cf. (4.33)) and the a priori estimate for Sy p, (cf.
(4.13)), that
Apy(Wy) < Wy (4.36)

Next, proceeding analogously to the proof of Lemma 3.7, but without using the regularity assumption
(RA3), which is not valid in the present discrete case, and letting Cg 4 := max{|Q\%, 1}, we are
able to show that

I1Sh(Chswn) — Su(Th,vn)|H
(4.37)
< Csgq {Lg + Ly |S2.n(Th, vh)”o,r*;sz} [(Chswh) = (Thy V)| x0xM,

for all (¢, wn), (Th,vn) € Xop x My p,. In this way, bearing in mind the definition of Ay, (cf. (4.33)),
and combining (4.37) with the Lipschitz-continuity of Sy, (cf. (4.19)), we obtain

IAR(Dn) — An(en)

< Laa Ly {Ly+ Lo |S2(Sn(en))

0,792
(4.38)

07?“*;9} lon — enlorn YV én, on € My,

with Ly g4 := Cs,qCs,q-

The main result of this section is then stated as follows.
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Theorem 4.6. The operator A, has at least one fixed point ¢, € My. Equivalently, the Galerkin
scheme (4.2) has at least one solution ((ah, up), (on, E'h)) € (X27h X Ml,h) X (Hh X Qh), with ¢p € W,
(cf. (4.35)). Moreover, there hold

C QT 2
fonls < £ fuplyjorr + i <1+) 5,

Ba.q oqg

C 2 21| L/T 9
Junlv < - <1 + ) HuDHl/SJ’;F + # <1 + > f2,

Bra aq 11514 Baa Qaf (4.39)

- 0 1/s .

lonle = l¢nlore + [trloe < | a’d g2, and
N N |V s
lonla = llonldaiv,:0 B o)

Proof. Thanks to (4.36), the continuity of A (cf. (4.38)), and the fact that (4.2) and (4.34) are
equivalent, the existence of solution follows from a direct application of the Brouwer theorem (cf. [7,
Theorem 9.9-2]). In turn, the a priori estimates (4.5), (4.13), and (4.14) yield (4.39), which finishes
the proof. O

4.8 A priori error analysis for the second fully-mixed formulation

In what follows we derive the Céa estimate for the global error
(o, u) = (on, un)|xsxm, + [(8,0) — (D, 0n)[HxQ

where ((o,u), (¢,8)) € (X2 x M1) x (Hx Q) and (a4, un), ($h,&4)) € (Xon x Mip) x (Hy x Qp)
are the unique solutions of (2.26) and (4.2), respectively, with ¢ € W (cf. (3.37)) and ¢y, € Wy, (cf.
(4.35)).

Since the first two rows of (2.25) and (4.1) coincide with those of (2.26) and (4.2), we realize that
the a priori estimate for | (o, w) — (o, up)||x,xM; is exactly the one given by (4.24). In turn, applying
the Strang estimate provided by [8, Lemma 6.1] (whose proof is a simple modification of that of [11,
Theorem 2.6]) to the pair of associated continuous and discrete formulations given by the last two
rows of (2.26) and (4.2), we deduce the existence of a positive constant Cs7, depending only on ag,
B4, ||lag|, and [[b]|, such that

[(6,5) = (¢n, 1) xq

B . ~ (4.40)
< Cor {dist(6,Hy) + dist(3, Qu) + (a0 — 10,)(8, )y, + 1Gu — Gy |-

Then, proceeding exactly as for the derivations of (3.47) and (3.45), we readily obtain

l(ae — ag),)(¢, )”th < LsLygz|lo —onlora,

where Lg := C, |ic| C:, and

r

—s
s |u —upfw

|G = Gy |1y, < Lg |9

In this way, replacing the foregoing estimates back into (4.40), and adding the resulting inequality to
(4.24), we arrive at

I(o,u) = (oh, wn)|xoxm, + [(6,8) — (61,54) |HxqQ
< Csr {dist(a, Xyp) + dist(w, My ) + dist(é, H) + dist(&, Qh)} (4.41)

+D(data) {||(a, w) — (on, un) [x, %y + ¢ — ¢>hHM} )
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where C'gr := max {CA’ST,C'ST}, and

D(data) = max {éST Lf, C_'ST Ls Ly go, CST Lg ‘Q| = } . (4.42)

Thus, we conclude the Céa estimate for our second approach.

Theorem 4.7. Assume that the data satisfy (cf. (4.42))

1
D(data) < 7 (4.43)

Then, there exists a positive constant C, independent of h, such that

l(o,w) = (oh, un)[xoxm, + [(6,8) = (Eh,Fn)|Exq
(4.44)
< c{dist( \Xop) + dist(u, My ) + dist(é, Hy) + dist(& ,Qh)}

Proof. 1t is a straightforward consequence of (4.41) and (4.43). O

5 Specific finite element subspaces

We now define specific finite element subspaces satisfying the stability conditions required by the
respective discrete analyses developed in Section 4, and provide the rates of convergence of the resulting
Galerkin schemes.

5.1 Preliminaries

Bearing in mind the mesh notations introduced at the beginning of Section 4.1, and given an integer
k> 0 and K € Ty, we let Pi(K) be the space of polynomials defined on K of degree < k, and
denote its vector version by Py (K). In addition, we let f’k(K ) be the space of polynomials defined
on K of degree = k. Furthermore, we let RT;(K) = P(K) @ Py(K)x be the local Raviart-Thomas
space defined on K of order k, where = stands for a generic vector in R2, and denote by RTy(K)
its corresponding tensor counterpart. In turn, we let Px(73), Pr(Tr), RTk(7r), and RTy(7,) be the
corresponding global versions of Py (K), Pr(K), RT;(K), and RTy(K), respectively, that is

Pi(Th) :

{Une L@ ik ePu(K) VEeTi},
Pk(ﬁ) = {’UhGL2(Q)2 'Uh|K EPk(K) VKE'EL}7

RT(T;) := {74 e H(div;Q):  #p|x € RT(K) VKeTh},

and
RT;(T5) := {ThEH div;Q): 7l € RTH(K) VKeTh}.

We stress here that for each t € [1,+c0] there hold Py(T;,) < L{(Q), Pr(Tn) < LYR), RTL(T,) <
H(div¢; Q), and RTy(75,) < HY(divy; Q), inclusions that are implicitly utilized in what follows.

As announced in Section 4.1, we first recall from [14, Section 5.2, eq. (5.9)] that the finite element
subspaces of Xy, My, X1, and My, are given, respectively, by

X27h = HS(diVT,Q) N RTk(ﬁL)a Ml,h = Pk(n)v (5 1)
X1 = Hi(divy; Q) N RT4(73), and Msy = Py(Th), '
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whereas those of Q, M, and L?(Q), are defined as
Qn = RT4(Th), My = Pi(Th), and Hj = Py(Th). (5.2)

We stress here that Qp,, My, and HY verify the assumptions (H.1) - (H.4). In fact, it is readily
seen that div(Qp) € My, which confirms (H.1), whereas (H.2) is proved in [15, Lemma 4.5]. In turn,
the assumptions (H.3) and (H.4) are shown in [3, Lemma 4.2].

5.2 The rates of convergence

The rates of convergence of the Galerkin schemes (4.1) and (4.2), with the specific finite element
subspaces introduced in Section 5.1, are provided next. To this end, we require the approximation
properties of Xo 1, My s, Qpn, My, and HY, which are collected as follows (cf. [15, Section 4.5]):

(APY) there exists a positive constant C, independent of h, such that for each [ € [1, %k + 1], and for
each 7 € Wi (Q) with div(T) € WHT(Q), there holds
|l,r;Q} .

(AP}) there exists a positive constant C', independent of h, such that for each ! € [0,k + 1], and for
each v € WHT(Q), there holds

Lo + [|div(T)

dist(7,Xop) i= _if 7= Thlan,0 < Ch {7

T}LEXZ,}L

dist(v,My ) := inf [v— vy

o < Ch
ot 00 < |v]

1,r;) -
(AP‘,?) there exists a positive constant C, independent of h, such that for each [ € [1,k + 1], and for
each ¥ € H/(Q) with div(F) € Wh*(Q), there holds

dist(F, Qu) i= _inf |7 = Falavon < A {[Fla + [div(F)iso} -
h

‘ThEXQ

(APi) there exists a positive constant C, independent of h, such that for each I € [0,k + 1], and for
each 1 € Wi (Q), there holds

dist(v, Mp,) := inf v —pfome < Ch' ¥
PrEMp,

lLrma -

(AP?) there exists a positive constant C, independent of h, such that for each I € [0,k + 1], and for
each s € H!(Q2), there holds

dist(s, HE) := inf ||s —splon < Ch'|s|iq-
ShEHZ

Thus, the following two theorems establish the rates of convergence of (4.1) and (4.2).

Theorem 5.1. Let ((o,u),(5,¢)) € (X2 x My) x (Q x M) be the unique solution of (2.25), with
peW (¢f. (3.19)), and let ((oh, un), (Gh, dn)) € (Xop x Mip) x (Qp x My) be a solution of (4.1),
with ¢, € W) (cf. (4.17)), whose existences are guaranteed by Theorems 3.6 and 4.4, respectively.
Assume that (4.31) (¢f. Theorem 4.5) holds, and that there exists | € [1,k + 1] such that o € W- (),
div(o) e WH(Q), u e Wh(Q), & € H(Q), div(e) e Wh4(Q), and ¢ € WHT(Q). Then, there exists a
positive constant C, independent of h, such that

[(o,u) = (o un)|xoxmy + (65 0) = (Gh, Pn)|gxm

< C’hl{Ha|

LrQ + ||div(a)

Lo + [div(o)

1,r;Q =+ H& 1,502 + H¢ l,r;Q} .

L T Hu
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Proof. Tt follows from the Céa estimate (4.32) and the approximation properties (APY) - (APfL)). O

Theorem 5.2. Let ((o,u), ((E,E')) € (X3 x My) x (H x Q) be the unique solution of (2.26), with

peW (cf. (3.37)), and let ((a’h,uh), (&h,a'h)) € (Xg,h X MLh) X (Hh X Qh) be a solution of (4.2),
with ¢p € Wy (cf. (4.35)), whose ezistences are guaranteed by Theorems 3.9 and 4.6, respectively.
Assume that (4.43) (cf. Theorem 4.7) holds, and that there exists | € [1,k + 1] such that o € Wb (),
div(e) e Wi(Q), u e W (Q), ¢ € Wh"(Q), t € H/(Q), & € H/(Q), and div() € WH*(Q). Then
there exists a positive constant C, independent of h, such that

(o, w) = (on un) |xoxna, + 1(6,8) = (6n,&n) lrxq

< Chl{ua

l,s;Q} .

Proof. Tt follows from the Céa estimate (4.44) and the approximation properties (APY) - (AP%). O

10 + |div(e)

1m0 + [div(e)|

i + |l + [9lime + [the + |6

6 Numerical results

In this section we present three examples illustrating the performance of the fully-mixed finite schemes
(4.1) and (4.2) with the finite element subspaces defined in Section 5.1 for k£ € {0, 1}, and confirming
the rates of convergence provided by Theorems 5.1 and 5.2 on uniform refinements of the respective
domains. The resulting nonlinear algebraic systems are solved employing the Picard iterative process
suggested by the respective discrete fixed-point strategy (cf. Sections 4.5 and 4.6), whose computa-
tional implementation was done making use of a FreeFem++ code [18]. We take as initial guess the
trivial solution, and, denoting by DOF the total number of degrees of freedom (or unknowns) of each
approach, the iterations are stopped when the relative error between two consecutive vectors con-
taining the full solutions of the aforementioned systems, namely coeff™ and coeff™*!, is sufficiently
small, that is,

lcoeff™ 1 — coeff™|

|coeff™ |
where || - || stands for the usual Euclidean norm in RP%, and tol is a given tolerance. In this regard, we

remark in advance that for each one of the examples to be reported below, 3 iterations are required
to achieve tol = le — 6.

We now recall that the original Cauchy stress tensor p of our model can be computed in terms of
o according to the formula derived from [14, egs. (2.9) and (2.10)] and [14, eq. (3.14)], namely

A+ 2u nA + 2u
= o ¢ - — v |1 1
pi=oto <n)\ +(n+1)p H(o) n|Q| LuD V) ’ (6:1)
which naturally suggests to approximate this tensor by (cf. [14, eq. (6.1)])
A+ 2p nA+2u
= A (A et " S Mt V1. 2
Ph Th t Th (n)\ +(n+1)p H(on) n|Q| LuD V) (6.2)

It follows from (6.1) and (6.2) that there exists a constant C' > 0, independent of h and A, such that

lo = prlora < Clo—anfora,

whence the rate of convergence for p;, is at least the same of oy,

Some additional notation is introduced next. We begin by defining the individual errors:

o, ep) = |p—pp
ore, and e(t) := [t—t,

e(O') = HU — Ohlrdive;Q s e(u) = Hu - uh|

e(d) = [0 = Fnlaivia,  el@) = [¢— dnl

0,r;92 5

0,05
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where r and s, taken from (2.1), will be specified in the examples below. In turn, for each x €
{0', u,p,o, o0, t} we let r(x) be its experimental rate of convergence, which is defined as

(%) := log (e(+)/&(+))/log(h/h),

where e and € denote two consecutive errors with mesh sizes h and h, respectively.

The examples to be considered in this section are described next. In each case we let E and v be
the Young modulus and Poisson ratio, respectively, of the isotropic linear elastic solid occupying the
region €, so that the corresponding Lamé parameters are given by

K Ev
poi= 10 and A = AT 0= (6.3)

In addition, the mean value of tr(ej) over 2 is fixed via a real Lagrange multiplier, which reduces to
adding one row and one column to the matrix system that solves (4.4) for o, and wy.

Example 1: Convergence in a 2D domain

We begin by corroborating the rates of convergence against a smooth exact solution in the two-
dimensional domain Q = (0,1)2. To this end, we adequately manufacture the data so that the
solution of (1.1)-(1.2) is given by

201 _ )2
0.05 cos(mz1) sin(mwx2) + xl(l”\@)
u(x) := 3 5 and  ¢(z) := (1 — 21)*x1 (1 — wa)a3,
3 (1 — x2)

—0.05 sin(m x1) cos(mx2) + )

for all @ := (z1,22)* € , whereas the body load, the diffusive source, and the tensorial diffusivity, are
given, respectively, by

_ 1 eon(9) o o
f(¢) ._H)(—Sin(d)))’ g(u) -—2+T‘u|2, 19(0') .—]I—FTOO'Z.

We note here that the second and fifth equation of (1.1), actually include additional explicit source
terms that are added to f(¢) and g(u), respectively. However, yielding only slight modifications of
the functionals G, Fp, Gu and Gy (cf. (2.3), (2.4), (2.15) and (2.23), respectively), this fact does
not compromise the continuous and discrete analyses. Thus, in Tables 6.1 and 6.2 we summarize the
convergence of (4.1) and (4.2), respectively, considering the Young’s modulus E' = 1 and the Poisson’s
ratio v = 0.4999, which, according to (6.3), yield A = 1666.44 and p = 0.3334. The results confirm
that the optimal rates of convergence O(h**1) predicted by Theorems 5.1 and 5.2 are attained for
ke {O, 1}. Some components and magnitudes of the discrete solutions of the first approach (4.1) are
displayed in Figure 6.1.

Example 2: Convergence in a non-convex 2D domain

We consider the L-shaped domain = (-1, 1)2\[0,1]?, and suitable perturbations of the definitions of

the functionals G, Fy, Gy, and Gy, so that the exact solution of (1.1) - (1.2) reduces to the non-smooth
one defined as:

x|*/3 sin
u(x) = ( _||J:|2/3 Coifé) > and ¢(x) := exp(x1 + x2)sin(mzy) sin(7xs) ,
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F] h | DOF [ e(0) (o) | e(w) r(w) | e(p) t(p) | (@ (@) | e(é) x(9)
0.0471 13680 4.12e-2 —— 1.44e-3 —— 1.83e-2 —— 1.03e-2 —— 5.26e-4 ——
0.0393 19656 3.43e-2 1.01 1.20e-3 1.03 | 1.57e-2 0.99 | 8.65e-3 1.00 | 4.38e-4 1.00
0 | 0.0337 26712 2.93e-2 1.01 1.02e-3 1.02 1.34e-2 0.99 | 7.40e-3 1.00 | 3.76e-4 1.00
0.0295 34848 2.57e-2 1.01 | 8.93e-4 1.02 | 1.18e-2 0.99 | 6.48e-3 1.00 | 3.29e-4 1.00
0.0262 44064 2.29e-2 1.01 7.92e-4 1.01 1.05e-2 1.00 | 5.76e-3 1.00 | 2.92e-4 1.00
0.0471 43560 5.33e-4 —— 2.83e-b —— 2.63e-4 —— 2.53e-4 —— 1.53e-5 ——
0.0393 62640 3.70e-4 2.00 | 1.96e-5 2.00 | 1.83e-4 1.99 | 1.76e-4 2.00 | 1.06e-5 2.00
1 | 0.0337 85176 2.72e-4 2.00 1.44e-5 2.00 1.35e-4 1.99 | 1.29e-4 2.00 | 7.82e-6 2.00
0.0295 | 111168 | 2.08e-4 2.00 | 1.10e-5 2.00 | 1.03e-4 1.99 | 9.89e-5 2.00 | 5.99¢-6 2.00
0.0262 | 140616 | 1.65e-4 2.00 | 8.71le-6 2.00 | 8.16e-5 1.99 | 7.82e-5 2.00 | 4.73e-6 2.00

0.0471 | 13680 | 5.14e-2 —— | 1.59e-3 —— | 2.3le-2 —— | 9.96e-3 —— | 6.47e-4 ——
0.0393 | 19656 | 4.27e-2 1.01 | 1.32e-3 1.03 | 1.93e-2 0.99 | 8.29e-3 1.00 | 5.40e-4 1.00
0 | 0.0337 | 26712 | 3.66e-2 1.01 | 1.12e-3 1.02 | 1.66e-2 0.99 | 7.11e-3 1.00 | 4.63-4 1.00
0.0295 | 34848 | 3.20e-2 1.01 | 9.82e-4 1.02 | 1.45e-2 0.99 | 6.22e-3 1.00 | 4.05e-4 1.00
0.0262 | 44064 | 2.84e-2 1.01 | 8.72e-4 1.01 | 1.29e-2 1.00 | 5.53e-3 1.00 | 3.60e-4 1.00
0.0471 | 43560 | 6.15e-4 —— | 3.08¢-5 —— | 3.10e-4 —— | 2.45e-4 —— | 1.92e-5 ——
0.0393 | 62640 | 4.27e-4 2.00 | 2.14e-5 2.00 | 2.15e-4 1.99 | 1.70e-4 2.00 | 1.33e-5 2.00
11 0.0337 | 85176 | 3.14e-4 2.00 | 1.57e-5 2.00 | 1.58e-4 2.00 | 1.25e-4 2.00 | 9.79e-6 2.00
0.0295 | 111168 | 2.40e-4 2.00 | 1.20e-5 2.00 | 1.21e-4 2.00 | 9.68e-5 2.00 | 7.50e-6 2.00
0.0262 | 140616 | 1.90e-4 2.00 | 9.50e-6 2.00 | 9.59e-5 2.00 | 7.57e-5 2.00 | 5.93e-6 2.00

Table 6.1: Example 1: History of convergence for the Galerkin scheme (4.1) with » = 3 (upper half),
and r = 4 (lower half).

F[ _h | DOF | elo) (o) | e(w) x(uw) | e(p) (p) | (@) =(&) [ (@) (@ | e x()
0.0471 17280 4.12e-1 —— 1.44e-3 —— 1.88e-2 —— 1.04e-2 —— 5.25e-4 —— 3.24-03 ——
0.0393 24840 3.43e-2 1.01 1.20e-3 1.03 1.57e-2 0.98 | 8.63e-3 1.00 | 4.38¢e-4 1.00 | 2.70e-3 1.03
0 | 0.0337 33768 2.93e-2 1.01 1.02e-3 1.02 | 1.34e-2 0.99 | 7.40e-3 1.00 | 3.76e-4 1.00 | 2.31e-3 1.02
0.0295 44064 2.57e-2 1.01 8.93e-4 1.02 1.18e-2 0.99 | 6.48e-3 1.00 | 3.29e-4 1.00 | 2.02e-3 1.02
0.0262 55728 2.28e-2 1.01 7.92¢e-4 1.01 1.05e-2 1.00 | 5.76e-3 1.00 | 2.92e-4 1.00 | 1.18e-3 1.01
0.0471 54360 5.33e-4 —— 2.82e-5 —— 2.63e-4 —— 2.53e-4 —— 1.53e-5 —— 7.69e-5 2.00
0.0393 78192 3.70e-4 2.00 1.96e-5 2.00 1.83e-4 1.99 | 1.76e-4 2.00 1.06e-5 2.00 | 5.34e-5 2.00
1 | 0.0337 | 106344 | 2.72e-4 2.00 | 1.44e-5 2.00 | 1.35e-4 1.99 | 1.29e-4 2.00 | 7.82e-6 2.00 | 3.93e-5 2.00
0.0295 | 138816 | 2.08e-4 2.00 | 1.10e-5 2.00 | 1.03e-4 1.99 | 9.89e-5 2.00 | 5.99¢-6 2.00 | 3.01le-5 2.00
0.0262 | 175608 | 1.65e-4 2.00 | 8.71le-6 2.00 | 8.16e-5 1.99 | 7.82e-5 2.00 | 4.73e-6 2.00 | 2.48e-5 2.00

0.0471 | 17280 | 5.14e-2 —— | 1.59e-3 —— | 2.31le-2 —— | 9.95e-3 —— | 6.47e-4 —— | 3.24-03 1.03
0.0393 | 24840 | 4.27e-2 1.01 | 1.32e-3 1.03 | 1.93e-2 0.99 | 8.29¢-3 1.00 | 5.39e-4 1.00 | 2.70e-3 1.02
0 | 0.0337 | 33768 | 3.66e-2 1.01 | 1.12e-3 1.02 | 1.66e-2 0.99 | 7.11e-3 1.00 | 4.63e-4 1.00 | 2.31e-3 1.02
0.0295 | 44064 | 3.20e-2 1.01 | 9.82e-4 1.01 | 1.45e-2 0.99 | 6.22e-3 1.00 | 4.05e-4 1.00 | 2.02e-3 1.01
0.0262 | 55728 | 2.84e-2 1.01 | 8.72e-4 1.01 | 1.29e-2 1.00 | 5.53e-3 1.00 | 3.60e-4 1.00 | 1.18e-3 1.01
0.0471 | 54360 | 6.15e-3 —— | 3.08e-5 —— | 3.10e-4 —— | 2.45e-4 —— | 1.92e-5 —— | 7.69e-5 2.00
0.0393 | 78192 | 4.27e-4 2.00 | 2.14e-5 2.00 | 2.15e-4 1.99 | 1.70e-4 2.00 | 1.33e-5 2.00 | 5.34e-5 2.00
1| 0.0337 | 106344 | 3.14e-4 2.00 | 1.57e-5 2.00 | 1.58e-4 2.00 | 1.25e-4 2.00 | 9.79e-6 2.00 | 3.93e-5 2.00
0.0295 | 138816 | 2.40e-4 2.00 | 1.20e-5 2.00 | 1.21e-4 2.00 | 9.58e-5 2.00 | 7.50e-6 2.00 | 3.0le-5 2.00
0.0262 | 175608 | 1.90e-4 2.00 | 9.50e-6 2.00 | 9.59e-5 2.00 | 7.57e-5 2.00 | 5.93e-6 2.00 | 2.48e-5 2.00

Table 6.2: Example 1: History of convergence for the Galerkin scheme (4.2) with » = 3 (upper half),
and r = 4 (lower half).

where 6 = arctan (%) for all ® = (z1,22)* € Q. In turn, the tensorial diffusivity is considered the

same from the previous example, whereas the body load and the diffusive source are given, respectively,
by
1

Flg) =] | 40 and  g(u) == —|u|.
501 -9)
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Figure 6.1: Example 1: Some components and magnitudes of the solution of the first approach (4.1)
with k£ =1, A = 1666.44, and p = 0.3334.

In this case, we take F = 100 and v = 0.4999, which yields p = 33.33 and A\ = 166644.44. Here we
can see in Tables 6.3 and 6.4 that it was not possible to reach the convergence order k£ + 1 indicated
by Theorems 5.1 and 5.2. In particular, we notice that, for both formulations (cf. (4.1) and (4.2)),
negative convergence orders are obtained for o, while for u, p, and &, suboptimal ones are attained.
Furthermore, as it was observed in [14, Section 6], we remark that the convergence ratios depend
not only on k but also on r and its conjugate s, which could be related to the W= regularity of
the solution, most likely with a non-integer ! depending on r. We refer to [15, Lemma B.1] for a
similar situation holding with a regularity result for the Poisson problem with homogeneous Neumann
boundary conditions and source term in a Lebesgue space. In order to recover the optimal rates of
convergence, one could apply an adaptive strategy based on a posteriori error estimates, subject that
we plan to address in a forthcoming work.

Example 3: Convergence in a 3D domain

In this example we confirm the rates of convergence in the three dimensional domain 2 = (0,1)3 with
the indexes r = 3 and s = 3/2 (cf. (2.1)). As in Example 1, we consider 1 = 0.3334 and A = 1666.44,
and suitably manufacture the data so that the exact solution is given by

sin(mx1) cos(mxy) cos(mxs)

u(x) ;== | —2cos(mx1)sin(mwxs) cos(mrs) and  ¢(x) = zyxdes(zy — 1) (zo — 1) (23 — 1),
cos(mzy) cos(mxe) sin(mxs)
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F[ h | DOF | e(0) (o) | e(w) x(w) | e(p) xp)| (@) x(3)] (@) (&)
0.0471 40860 9.56e+2 —— 1.85e-2 —— 7.48e+0 —— 2.62e+1 —— 3.20e-2 ——
0.0404 55545 1.06e+3 -0.66 | 1.59e-2 0.99 | 7.10e+0 0.34 | 2.31e+1 0.82 | 2.72e-2 1.05
0 | 0.0354 72480 1.16e+3 -0.66 | 1.39¢-2 0.99 | 6.79¢e+0 0.33 | 2.07e+1 0.81 2.37e-2 1.04
0.0314 91665 1.25e+3 -0.66 | 1.23e-2 0.99 | 6.53e+0 0.33 | 1.88e+1 0.80 | 2.10e-2 1.03
0.0283 | 113100 | 1.34e+3 -0.66 | 1.11e-2 0.99 | 6.30e+0 0.33 | 1.73e+1 0.80 | 1.88e-2 1.03
0.0471 | 130320 | 4.73e+2 —— 4.92e-4 —— 4.78e+0 —— 9.10e4+0 —— 6.78¢-4 ——
0.0404 | 177240 | 5.24e+2 -0.66 | 4.00e-4 1.33 | 4.54e+0 0.33 | 8.15e+0 0.71 | 4.99e-4 1.99
1 | 0.0354 | 231360 | 5.73e+2 -0.66 | 3.35e-4 1.33 | 4.34e+0 0.33 | 7.42¢+0 0.71 3.83e-4 1.99
0.0314 | 292680 | 6.19¢+2 -0.66 | 2.87e-4 1.33 | 4.18e+0 0.33 | 6.83e+0 0.70 | 3.03e-4 1.99
0.0283 | 361200 | 6.64e+2 -0.66 | 2.49e-4 1.33 | 4.03e+0 0.33 | 6.34e+0 0.70 | 2.46e-4 1.98

0.0471 | 40860 | 1.92e+3 —— | 1.88e-2 —— | 1.28e+1 —— | 2.35e+1 —— | 3.48e-2 ——
0.0404 | 55545 | 2.18e+3 -0.83 | 1.61e-2 0.99 | 1.25e+1 0.17 | 2.04e+1 0.91 | 2.96e-2 1.03
0 | 0.0354 | 72480 | 2.44e+3 -0.83 | 1.41e-2 0.99 | 1.22e+1 0.17 | 1.81e+1 0.90 | 2.58e-2 1.03
0.0314 | 91665 | 2.69e+3 -0.83 | 1.26e-2 0.99 | 1.20e+1 0.17 | 1.63e+1 0.90 | 2.29e-2 1.02
0.0283 | 113100 | 2.91e+3 -0.83 | 1.13e-2 0.99 | 1.18e+1 0.17 | 1.48e+1 0.90 | 2.06e-2 1.02
0.0471 | 130320 | 8.76e+2 —— | 8.02¢e-4 —— | 9.04e+0 —— | 5.88e+0 —— | 7.17e-4 ——
0.0404 | 177240 | 9.95e+2 -0.83 | 6.70e-4 1.17 | 8.81e+0 0.17 | 5.12e4+0 0.90 | 5.27e-4 2.00
1| 0.0354 | 231360 | 1.11e+3 -0.83 | 5.74e-4 1.17 | 8.62e+0 0.17 | 4.55e+0 0.89 | 4.04e-4 2.00
0.0314 | 292680 | 1.23e+3 -0.83 | 5.00e-4 1.17 | 8.45e+0 0.17 | 4.10e+0 0.89 | 3.19e-4 1.99
0.0283 | 361200 | 1.34e+3 -0.83 | 4.42e-4 1.17 | 8.30e+0 0.17 | 3.74e+0 0.88 | 2.59e-4 1.99

Table 6.3: Example 2: History of convergence for the Galerkin scheme (4.1) with r = 3 (first half),
and 7 = 4 (second half).

F] h | DOF | e(0) x(@) | e(w) x(w) | elp) x(p) | e(@) ()] e(6) r(9)] e (@)
0.0471 51660 9.56e+2 —— 1.85e-2 —— 7.48e+0 —— 2.55e+1 —— 3.19e-2 —— 2.11e-1 ——
0.0404 70245 1.06e+3 -0.66 | 1.59e-2 1.00 | 7.10e+0 0.34 | 2.25e+1 0.80 2.72e-2 1.04 | 1.80e-1 1.02
0 | 0.0354 91680 1.16e+3 -0.66 | 1.39e-2 1.00 | 6.79e+0 0.33 | 2.02e+1 0.80 2.37e-2 1.04 | 1.58e-1 1.02
0.0314 | 115965 | 1.25e+3 -0.66 | 1.24e-2 1.00 | 6.53e+0 0.33 | 1.85e+1 0.79 2.10e-2 1.03 | 1.40e-1 1.01
0.0283 | 143100 | 1.34e+3 -0.66 | 1.11e-2 1.00 | 6.30e+0 0.33 | 1.70e+1 0.79 1.88e-2 1.02 | 1.26e-1 1.01
0.0471 | 162720 | 4.73e+2 —— 4.92e-4 —— 4.78e+0 —— 8.92e4+0 —— 6.74e-04 —— 6.98¢-3 ——
0.0404 | 221340 | 5.24e+2 -0.66 | 4.0le-4 1.33 | 4.54e+0 0.33 | 8.0le+0 0.70 | 4.96e-04 1.99 | 5.24e-3 1.86
1 | 0.0354 | 288960 | 5.73e+2 -0.66 | 3.35e-4 1.33 | 4.34e+0 0.33 | 7.30e+0 0.70 | 3.80e-04 1.99 | 4.09¢-3 1.86
0.0314 | 365580 | 6.19e+2 -0.66 | 2.87e-4 1.33 | 4.18e+0 0.33 | 6.73e+0 0.69 | 3.01le-04 1.99 | 3.28e-3 1.87
0.0283 | 451200 | 6.64e+2 -0.66 | 2.49¢-4 1.33 | 4.03e+0 0.33 | 6.25e+0 0.69 | 2.44e-04 1.99 | 2.69e-3 1.87

0.0471 | 51660 | 1.92e+3 —— | 1.88e-2 —— | 1.28e4+1 —— | 2.28e+1 —— 3.47e-2 —— | 2.11e-1 ——
0.0404 | 70245 | 2.18e+3-0.83 | 1.61e-2 0.99 | 1.25e+1 0.17 | 1.99e+1 0.89 | 2.96e-2 1.04 | 1.80e-1 1.02
0.0354 | 91680 | 2.44e+3-0.83 | 1.41e-2 0.99 | 1.22e+1 0.17 | 1.77e+1 0.89 | 2.58e-2 1.04 | 1.58e-1 1.02
0 | 0.0314 | 115965 | 2.69e+3 -0.83 | 1.26e-2 0.99 | 1.20e+1 0.17 | 1.59e+1 0.89 | 2.29e-2 1.03 | 1.40e-1 1.01
0.0283 | 143100 | 2.94e+3-0.83 | 1.13e-2 0.99 | 1.18e+1 0.17 | 1.45e+1 0.89 | 2.06e-2 1.02 | 1.26e-1 1.01
0.0471 | 162720 | 8.76e+2 —— | 8.02¢-4 —— | 9.04e+0 —— | 5.70e4+0 —— | 7.14e-04 —— | 6.98e-3 ——
0.0404 | 221340 | 9.95e+2 -0.83 | 6.70e-4 1.17 | 8.81e+0 0.17 | 4.98e+0 0.88 | 5.25e-04 2.00 | 5.24e-3 1.86
1 ] 0.0354 | 288960 | 1.11e+3 -0.83 | 5.74e-4 1.17 | 8.62e+0 0.17 | 4.43e+0 0.88 | 4.02e-04 2.00 | 4.09e-3 1.86
0.0314 | 365580 | 1.23e+3 -0.83 | 5.00e-4 1.17 | 8.45e+0 0.17 | 4.00e+0 0.87 | 3.18e-04 1.99 | 3.28e-3 1.87
0.0283 | 451200 | 1.34e+3-0.83 | 4.42e-4 1.17 | 8.30e+0 0.17 | 3.65e+0 0.87 | 2.58e-04 1.99 | 2.69e-3 1.87

Table 6.4: Example 2: History of convergence for the Galerkin scheme (4.2) with r» = 3 (first half),
and r = 4 (second half).

for all x := (w1, 22, 23)* € , whereas the body load, the diffusive source, and the tensorial diffusivity,
are given, respectively, by

cos ()
1 . L !
F(#):= 15 Zils?fib L) =+ up +ug, 19(0)::2<1+(1+|0\2)1/2>L

The convergence histories for quasi-uniform refinements using £ = 0 are reported in Tables 6.5 and
6.6. Again, the mixed finite element methods converge optimally, that is with order O(h) in this case,
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F[ h | D0F | elo) x(o) | e(w) r(w) | e(p) x(p) | e(6) t(3) | e(é) x(d)
0.4330 4992 3.1le+2 —— 2.69e-1 —— 6.51le+1 —— 7.35e-3 —— 4.00e-4 ——
0.3464 9600 2.51e+2 0.95 | 2.18e-1 0.95 | 5.26e+1 0.96 | 5.58e-3 1.23 | 3.30e-4 0.87
0.2887 | 16416 | 2.11e+2 0.97 | 1.83e-1 0.97 | 4.40e+1 0.97 | 4.50e-3 1.18 | 2.79e-4 0.92

0 | 0.2474 | 25872 | 1.81e+2 0.98 | 1.57e-1 0.98 | 3.79e+1 0.98 | 3.78e-3 1.13 | 2.41e-4 0.95
0.2165 | 38400 | 1.59e+2 0.98 | 1.38e-1 0.98 | 3.32e+1 0.99 | 3.25e-3 1.13 | 2.12e-4 0.96
0.1925 | 54432 | 1.41e+2 0.99 1.23e-1 0.99 | 2.96e+1 0.99 | 2.87e-3 1.07 1.89e-4 0.97
0.1732 | 74400 | 1.27e+2 0.99 | 1.11e-1 0.99 | 2.66e+1 0.99 | 2.55e-3 1.12 | 1.70e-4 0.98

Table 6.5: Example 3: History of convergence for the Galerkin scheme (4.1) with » = 3 and s = 3/2.

F] h [ D0F [ el0) x(0) | e(w) (@) | e(p) x(p) | e(6) r(3) | e(6) x(6) | e®) ()
0.4330 6144 3.1le+2 —— 2.69e-1 —— 6.52e+1 —— 7.35e-3 —— 3.89¢-4 —— 2.60e-3 ——
0.3464 | 11850 | 2.51e+2 0.95 | 2.18e-1 0.95 | 5.26e+1 0.96 | 5.58e-3 1.23 | 3.23e-4 0.83 | 2.14e-3 0.89
0.2887 | 20304 | 2.11e+2 0.97 | 1.83e-1 0.97 | 4.40e+1 0.97 | 4.50e-3 1.18 | 2.75e-4 0.89 | 1.81e-3 0.92

0 | 0.2474 | 32046 | 1.81e+2 0.98 1.57e-1 0.98 | 3.79¢+1 0.98 | 3.78e-3 1.13 | 2.38e-4 0.93 | 1.56e-3 0.95
0.2165 | 47616 | 1.59e+2 0.98 | 1.38e-1 0.98 | 3.32e+1 0.99 | 3.25e-3 1.13 | 2.10e-4 0.95 | 1.38e-3 0.96
0.1925 | 67554 | 1.41e+2 0.99 | 1.23e-1 0.99 | 2.96e+1 0.99 | 2.87e-3 1.07 | 1.87e-4 0.96 | 1.23e-3 0.97
0.1732 | 92400 | 1.27e+2 0.99 1.11e-1 0.99 | 2.66e+1 0.99 | 2.55e-3 1.12 1.69e-4 0.97 | 1.11e-3 0.98

Table 6.6: Example 3: History of convergence for the Galerkin scheme (4.2) with r = 3 and s = 3/2.

as it was proved by Theorems 5.1 and 5.2. This fact suggests that perhaps only technical difficulties
stop us from extending the analysis to the 3D framework. Finally, some components and magnitudes
of the solution of the second approach (4.2) are displayed in Figure 6.2.

Concluding remarks

In this paper we have continued advancing in the direction of [14] by introducing and analyzing two new
Banach spaces-based fully-mixed finite element methods for the numerical solution of pseudostress-
assisted diffusion problems. As compared with the mixed-primal method from [14], the main advan-
tages of the schemes proposed here, which actually arise from the use of two different mixed approaches
for the diffusion equation, are given by the fact that some additional variables of physical interest,
such as the diffusive flux and the concentration gradient, are approximated directly. In this way, and
differently from what one would do to obtain approximations of those variables starting from the nu-
merical solutions provided by the method from [14], no numerical differentiation, with the consequent
loss of accuracy, is employed in the present case. Regarding a comparison between the two fully-mixed
finite element methods developed here, we first notice from the respective theoretical results, which
are confirmed by the reported numerical results, that, under assumed regularities of the exact solution,
they provide the same rates of convergence. However, we also observe from the tables that in order
to attain a given accuracy, the second method requires a bit higher number of degrees of freedom,
which is explained by the fact that the latter incorporates one more unknown than the first one. A
minor aspect, though not that relevant, is that the tensorial diffusivity function does not need to be
inverted in the second approach. Therefore, both methods are fully comparable, and deciding which
one to employ for practical computations will depend on whether, besides the diffusive flux, the user
is interested or not in obtaining also direct approximations of the concentration gradient.
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