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Abstract

In this paper we introduce and analyze a model of sedimentation based on a solid velocity formu-
lation. A particular feature of the governing equations is given by the fact that the velocity field
is non-divergence free. We introduce extra variables such as the pseudostress tensor relating the
velocity gradient with the pressure, thus leading to a mixed variational formulation consisting of
two systems of equations coupled through their source terms. A result of existence and uniqueness
of solutions is shown by means of a fixed-point strategy and the help of the Babuška-Brezzi theory
and Banach theorem. Additionally, we employ suitable finite dimensional subspaces to approxi-
mate both systems of equations via associated mixed finite element methods. The well-posedness
of the resulting coupled scheme is also treated via a fixed-point approach, and hence the discrete
version of the existence and uniqueness result is derived analogously to the continuous case. The
above is then combined with a finite volume method for the transport equation. Finally, several
numerical results illustrating the performance of the proposed model and the full numerical scheme,
and confirming the theoretical rates of convergence, are presented.
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1 Introduction

The phenomenon of sedimentation of suspended solid particles immersed in a fluid under the influence
of gravity is present in a wide range of engineering applications. This physical process is used in several
industries such as food, biomedical, brewing, paper manufacturing, petroleum, oil, mineral processing
and wastewater treatment industry. Most of the models of sedimentation are derived from the theory
of continuum mechanics and involve coupled systems of partial differential equations (PDEs). Such
models are typically obtained from the equations of conservation of mass and momentum for the solid
and fluid phase. If the viscous, gravity and solid-fluid interaction forces of both phases are taken
into account, the number of unknowns becomes considerable, where constitutive assumptions and a
reduction of the model equations and variables are desired. With the help of dimensional analysis many
models are reduced to a scalar transport-flow equation for the local concentration of solid particles
coupled with a Stokes-type system for the velocity-pressure pair.
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Inspired by the work done by Gustavsson and Opelstrup [45], we study a model for multidimen-
sional sedimentation based on the solid phase velocity field u, pressure p and volume fraction of the
solid particles ϕ. The model equations, obtained by combining the ideas of [45] and [23], are es-
sentially a variant of the model presented in [45], where the velocity field has the peculiarity of not
being divergence-free. The system is strongly coupled containing nonlinear terms, and therefore the
construction of numerical schemes for its approximation are involved and need an special treatment.
For an introduction to the theory of sedimentation based on the postulates of continuum mechanics
for mixtures of two superimposed continuous media we refer to [24, 35, 62]. One-dimensional PDE
models of sedimentation have been studied widely in the literature, from the development of numer-
ical approximations for batch and continuous settling to the study of steady state solutions, see e.g.
[18, 19, 20, 31, 32, 33, 36, 41]. The special case of quasi-one-dimensional models where the influence
of the domain geometry is reflected in coefficient terms of a one-dimensional conservation law have
been studied in [8, 15, 16, 17, 25].

Several mathematical models and numerical approximations of multidimensional sedimentation
have been reported in the literature. Bürger, Concha and Wendland [23] presented a complete deriva-
tion of a multidimensional model of sedimentation starting from the conservation equations (mass and
momentum) for the solid and fluid phases. After a dimensional analysis the model is reduced to a
Stokes type system coupled to a strongly degenerate convection-diffusion equation, consisting of three
unknowns and whose velocity field is the so called “volume average velocity of the mixture” denoted
by q. Borhan and Acrivos [14] introduce a two-dimensional model for the batch sedimentation in
inclined channels, with a single momentum equation for the mixture which varies in its definition de-
pending on the fluid-suspension interfase. In [49], the authors provide a detailed discussion about the
viscouss stress-tensors of the solid phase and mixture based in the rheological complexity of colloidal
suspensions. They also show numerical simulations of their approach in cilindrical coordinates for
the case of a “deep-cone” thickener. Rao et. al. [54] presented a two-phase model based on the so
called “mass-average velocity” (denoted by v) for the simulation of batch sedimentation and shear
between concentric rotating cylinders. The velocity field, does not satisfy the condition of divergence
free, and the continuity equation is no longer solenoidal since the density varies with the local volume
fraction. The batch model derived by Gustavsson and Oppelstrup in [45] is based on the solid phase
velocity field u and contemplates the possibility of a horizontal movement of the bottom of the vessel
by having Dirichlet boundary conditions on u. One of the main features of this model that differs
from typical q-based ones (see [23, 22]) is that like the model in [54], the divergence of the velocity
field is non-zero but varies with the pressure and local volume fraction. A finite differences scheme is
introduced in [45] to simulate the model equations.

A variety of advanced numerical schemes have been used to compute numerical approximations
for multidimensional models of sedimentation [21, 22, 46, 52, 54, 61]. In [46], the authors develop a
finite element numerical scheme for a q-based model coupled with the “κ-ϵ equations” for turbulent
flows. They also treat the time approximations with a fractional-step scheme in order to have second
order accuracy and preserve physical oscillations. Bürger et. al. [21], introduced a multiresultion
finite volume scheme for the two-dimensional batch-sedimentation model given in [23], and presented
numerical examples of the process in channels with inclined walls. In [22], the authors worked on
an advanced numerical method combining a stabilized finite element scheme with finite volumes in
staggered grids for the continuous sedimentation of the model [23]. Numerical simulations of the
continuous sedimentation applied to wastewater treatment plants are also included. Another paper
dedicated to the approximation of such models using a combined finite element-finite volume schemes
can be found in [52]. In [61], a CFD approach for a v-based model coupled to κ-ε equations is
considered. On the other hand, and regarding the coupled flow and transport problem driven by a
scalar non-linear reaction-diffusion equation interacting with the Stokes or Brinkman equations, which
models the transport of species within a viscous flow, we stress that diverse combinations of primal
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and mixed finite element methods have been developed in recent years for its numerical solution (see,
e.g., [3, 4, 5, 6, 11, 12, 27]). Mathematical modeling based on CFD simulations of two-dimensional
sedimentation can be found in [26, 29, 37, 47, 48]. Experiments of sedimentation in vessels with
inclined walls can be found in [56, 59], and studies on the Boycott effect produced in these vessels
were reported in [57, 58]. Sedimentation models coupled to a energy balance and a temperature
equation are studiend in [53, 55]. Applications of sedimentation models can be found in mineral
processing [30, 34, 38, 39], wastewater treatment [1, 40, 61], petroleum industry [50, 51], magma
chambers [13, 60] and oil-in-water emulsions [28].

According to the previous discussion, the first purpose of the paper is to analyze the existence
and uniqueness of weak solutions for the decoupled velocity-pressure system. Secondly, we seek to
propose reliable finite element methods for its numerical solution, and finally we aim to approximate
the transport equation by a conservative finite volume scheme. The paper is organized as follows. The
rest of this section collects some useful notations to be employed along the paper. Then, in Section 2 we
derive the model equations. Next, in Section 3 we introduce some auxiliary unknowns to derive a mixed
variational formulation for the aforementioned system, and employ a fixed-point strategy along with
the Babuška-Brezzi theory and Banach theorem to address its solvability. In Section 4, we consider
suitable finite dimensional subspaces to define the associated mixed finite element scheme, and adopt
the discrete analogue of the analysis from Section 3 to prove its well-posedness. A priori error estimates
and corresponding rates of convergence are also provided here. Then, in Section 5 we propose a finite
volume discretization for the transport equation and couple the resulting procedure with the velocity-
pressure mixed finite element formulation from Section 4. Finally, illustrative numerical results are
shown in Section 6 and concluding remarks are presented in Section 7.

1.1 Further notations

In this section we recall some standard notation used in the rest of the paper. For any vector field
w = (wi)i=1,d in Rd we let ∇w and div(w) be the gradient and divergence of w, respectively. In
addition, for any tensor τ = (τij)i,j=1,d we let div(τ ) be the divergence operator div acting along the
rows of τ , and τ t is the transposed matrix of τ . Besides, the trace of τ , the sum of the elements on
the main diagonal, is denoted by tr(τ ) and its deviator is defined by τ d := τ − 1

dtr(τ )I, where I is the
identity matrix of order d. Note that the deviator is defined such that tr(τ d) = 0. The inner product
between the two matrix functions τ , η is given by τ :η = tr(ηtτ ), and it follows from the definition
that τ d :η = τ d :ηd = τ :ηd. We consider domains Ω ⊂ Rd for d ∈ {2, 3} with polyhedral boundary
Γ := ∂Ω and outward unit normal vector n. In terms of notation, for any generic scalar functional
space M , we denote its vectorial extension by M and its matrix counterpart by M. Furthermore, we
employ the standard notation for the space of square-integrable measurable scalar functions L2(Ω),
along with its norm ∥·∥0;Ω, and the Sobolev spaces Hk(Ω) for an integer k. We also introduce the
spaces:

H(div; Ω) :=
{
w ∈ L2(Ω) : div(w) ∈ L2(Ω)

}
,

H(div; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L2(Ω)

}
,

with their norms ∥·∥div;Ω and ∥·∥div;Ω, respectively. The norm ∥·∥, with no subscripts, shall be used
for any element or operator when it does not cause confusion about the space to which it refers.

2 The model problem

In this section we present a concise derivation of a model of sedimentation based on the solid phase
velocity field. Starting from the equations of conservation of mass and momentum of each phase, the
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derivation of the model equations is mainly based on the ideas of [45] combined with some of the
constitutive assumptions made in [23].

We begin by assuming that the sedimentation process occurs on a fixed domain Ω ⊂ Rd for
d ∈ {2, 3}, away from sources. Let the volume fraction of solid particles ϕ := ϕ(x, t) be a function
of the position x ∈ Ω and time t ∈ (0, T ], where T ∈ R+ is the end time. The function ϕ is a scalar
quantity that takes values between zero and ϕmax, the maximum volume fraction. The equations for
the conservation of mass of both phases, solid and fluid, are given by

∂tϕ+ div(ϕu) = 0, (2.1)

∂t(1− ϕ) + div((1− ϕ)uf) = 0, (2.2)

where u := u(x, t) and uf := uf(x, t), both vector quantities, are the solid and fluid velocity fields,
respectively. For the conservation of momentum of each phase we consider the gravity, viscous and
interaction forces, and pressure gradients. Then, neglecting the material derivatives of each phase, the
momentum equations are determined by

−div(Ts) +∇ps = −ρsgϕk +m, (2.3)

−div(Tf) +∇pf = −ρfg (1− ϕ)k −m, (2.4)

where ps := ps(x, t) and pf := pf(x, t) are the pressures of the solid and fluid phase, respectively,
Ts and Tf are the solid and fluid viscous stress tensors, respectively, g is the acceleration of gravity
and k := (0, 1)t is the upward unit vector. The term m present in both equations is the solid-fluid
interaction force per unit volume, to be defined later. Adding the momentum equations (2.3) and
(2.4) we get the momentum equation of the mixture:

−div(Tmix) +∇(pf + ps) = −gρ(ϕ)k, (2.5)

where Tmix := Ts + Tf is the viscous stress tensor of the mixture and ρ := ρ(ϕ) = ρsϕ + ρf(1 − ϕ).
Now, in order to reduce the number of unknowns we define the excess pore pressure p, the hidrostatic
pressure ph and the effective solid stress function σe := σe(ϕ), which is a given function that satisfies

σ′
e(ϕ)

{
= 0, if ϕ ≤ ϕc,

≥ 0, if ϕc < ϕ ≤ ϕmax,

where ϕc ∈ (0, ϕmax] is the critical concentration, see [23]. Having these new variables, the pressures
of both phases are then given by

ps = ϕ(p+ ph) + σe and pf = (1− ϕ)(p+ ph).

Moreover, computing the gradient ∇ph = −ρfgk, we have

∇pf = (1− ϕ)∇p− (p+ ph)∇ϕ− ρfg(1− ϕ)k and (2.6)

∇(ps + pf) = ∇p+∇σe − ρfgk. (2.7)

The solid-fluid interaction force m after neglecting the material derivative of its dynamic part is
modeled by a function depending on the relative velocity vr := u− uf , ϕ, p and ph, that is

m := m(ϕ,∇ϕ,vr, p, ph) = −1− ϕ

D(ϕ)
vr + (p+ ph)∇ϕ, (2.8)

where D := D(ϕ) is the Darcy function, which depends on the drag related to the permeability
of the material. The solid-fluid interaction force (2.8) is the result of combining both approaches
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[45] (dynamic part) and [23] (hydrostatic part). Now, to obtain a constitutive relation for the relative
velocity vr, we follow the same idea as in [45]. Replacingm and (2.6) into equation (2.4) and neglecting
the tensor Tf (see [45] for further details), one arrives to the constitutive relation for vr:

vr = D(ϕ)∇p.

Defining the volume-average velocity by

q := ϕu+ (1− ϕ)uf ,

we obtain div(q) = 0, from which, replacing uf = u− vr = u−D(ϕ)∇p, it follows that

div(u− ξ(ϕ)∇p) = 0, (2.9)

where ξ(ϕ) := (1 − ϕ)D(ϕ). Finally, since Tf was neglected, we have that Tmix = Ts, and we assume
that Ts := Ts(ϕ,u) is given by

Ts := µ(ϕ)e(u), where e(u) := 1
2(∇u+∇ut),

and µ := µ(ϕ) is the viscosity function of the mixture which is assumed to be a positive bounded
function, i.e., there exist µmin, µmax ∈ R+, with µmin < µmax, such that

µmin ≤ µ(ϕ) ≤ µmax ∀ϕ ∈ [0, 1] . (2.10)

Having all the ingredients described here, the main system of equations is

∂tϕ+ div(ϕu) = 0 in Ω, (2.11a)

−div(µ(ϕ)e(u)) +∇p = g(ϕ) in Ω, (2.11b)

div (u− ξ(ϕ)∇p) = 0 in Ω, (2.11c)

where g(ϕ) := −ρdgϕk −∇σe(ϕ) and ρd = ρs − ρf . The first equation is the conservation of mass of
the solid phase (2.1), Equation (2.11b) is the momentum equation of the mixture (2.5) after replacing
the variables and constitutive relations described before, and the third equation corresponds to (2.9).
The unknowns of the system are the volume fraction of solid particles ϕ, the solid phase velocity u
and the excess pore pressure p. This PDE system is complemented with suitable initial and boundary
conditions.

3 The continuous formulation

In this section we derive a mixed variational formulation for the system (2.11b)–(2.11c) solved for the
pair u and p, for a given function ϕ ∈ L2(Ω), and then apply a fixed-point approach along with the
Babuška-Brezzi theory and Banach theorem to address its solvability.

3.1 Derivation of the mixed formulation

We begin by introducing some further spaces and related results to be employed in what follows. In
particular, we will make use of the decompositions:

L2(Ω) = L2
tr(Ω)⊕ P0(Ω)I and H(div; Ω) = Htr(div; Ω)⊕ P0(Ω)I, (3.1)
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where P0(Ω) is the set of constant polinomial functions over Ω,

L2
tr(Ω) :=

{
τ ∈ L2 : tr(τ ) = 0

}
, and

Htr(div; Ω) :=

{
τ ∈ H(div; Ω) :

∫

Ω
tr(τ ) = 0

}
.

Note that in light of the second decomposition in (3.1), any element τ ∈ H(div; Ω) can be uniquely
decomposed as τ = τ0 + cI, with τ ∈ Htr(div; Ω) and c ∈ R computed by

c =
1

d|Ω|

∫

Ω
tr(τ ), (3.2)

where |Ω| is the measure of the domain Ω. We also define the following spaces:

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫

Ω
q = 0

}
and

L2
skew(Ω) :=

{
τ ∈ L2(Ω) : τ = −τ t

}
.

Given a function ϕ ∈ L2(Ω), the decoupled model equations (2.11b)-(2.11c) is combined with no-slip
boundary conditions for u and Neumann boundary conditions for p, thus yielding

−div(µ(ϕ)e(u)) +∇p = g(ϕ) in Ω, (3.3a)

div(u− ξ(ϕ)∇p) = 0 in Ω, (3.3b)

u = 0, ∇p · n = 0 on Γ. (3.3c)

We are now going to treat (3.3a) and (3.3b) separately as PDE systems themselves, introducing extra
new variables, but coupled through their source terms. Starting from Equation (3.3a), we introduce
the pseudostress tensor σ̂ := µ(ϕ)e(u)− pI in Ω, which we seek to belong to H(div; Ω). Considering
the space decomposition (3.1), there exists σ ∈ Htr(div; Ω), such that σ̂ = σ + c0I, where c0 is
determined by (3.2), that is

c0 =
1

d|Ω|

∫
tr(σ̂).

Then, instead of searching for the pseudostress tensor we focus on the new variable σ = σ̂−c0I which,
according to (3.3a), satisfies

div(σ) = div(σ̂) = −g(ϕ). (3.4)

Next, we define two new variables

t :=
(
e(u)

)d
and the vorticity γ :=

1

2

(
∇u−∇ut

)
,

which are related as follows

t = ∇u− γ − 1

d
tr(e(u))I, and e(u) = ∇u− γ = t+

1

d
tr(e(u))I.

Note that tr(t) = tr(γ) = 0, whence t ∈ L2
tr(Ω). Then, equation (3.4) plus the relations between the

new variables t, γ and σ yield the following system of equations:

σ = µ(ϕ)

(
t+

1

d
tr(e(u))I

)
− p̃I in Ω, (3.5a)

t = ∇u− γ − 1

d
tr(e(u))I in Ω, (3.5b)

div(σ) = −g(ϕ) in Ω , (3.5c)

6



where p̃ := p + c0 is the new unknown pressure. The above system is complemented with an incom-
pressibility hypothesis, which serves as uniqueness condition for p̃, namely

∫

Ω
p̃ = 0. (3.6)

System (3.5) needs to be solved together with the respective boundary condition from (3.3c), that
is u = 0 on Γ, and condition (3.6). Note that the pressure p̃ can be computed in terms of the new
variables t and σ. In fact, taking trace on both sides of (3.5a), we get

tr(σ) = µ(ϕ)tr(e(u))− dp̃, (3.7)

which yields

p̃ =
1

d
tr
(
µ(ϕ)e(u)− σ

)
. (3.8)

Furthermore, combining the obtained expression for p̃ and (3.6) we obtain

∫

Ω
p̃ =

∫

Ω

1

d
tr
(
µ(ϕ)e(u)− σ

)
= 0,

which, along with the fact that σ ∈ Htr(div; Ω), implies

∫

Ω
µ(ϕ)tr(e(u)) = 0.

To derive the weak formulation of (3.5), we test (3.5a) with a tensor s ∈ L2
tr(Ω), which gives

∫

Ω
µ(ϕ)t : s−

∫

Ω
σd : s = 0 ∀s ∈ L2

tr(Ω). (3.9)

Observe that since s = sd, there holds σ : s = σ : sd = σd : s. On the other hand, equation (3.5b) can
be multiplied by a test function τ ∈ Htr(div; Ω) and integrated over Ω to obtain

∫

Ω
τ : t =

∫

Ω
τ :∇u−

∫

Ω
τ :γ −

∫

Ω

1

d
τ : tr(e(u))I

= −
∫

Ω
u · div(τ ) + ⟨τn,u⟩Γ −

∫

Ω
τ :γ −

∫

Ω

1

d
tr(τ )tr(e(u)),

where ⟨·, ·⟩Γ denotes the duality pairing between H−1/2(Γ) and H1/2(Γ). For the last term on the
right hand side of the above equation, we notice that from (3.8)

tr(e(u)) = (tr(σ) + dp̃)/(µ(ϕ)),

so that we get

∫

Ω

1

d
tr(τ )tr(e(u)) =

∫

Ω

tr(τ )tr(σ)

dµ(ϕ)
+

∫

Ω

p̃tr(τ )

µ(ϕ)
.

Then, using the boundary condition u = 0 on Γ, we arrive at the weak form of (3.5b):

−
∫

Ω
τ : t−

∫

Ω
u · div(τ )−

∫

Ω
γ : τ −

∫

Ω

tr(σ) tr(τ )

dµ(ϕ)
=

∫

Ω

p̃ tr(τ )

µ(ϕ)
∀τ ∈ Htr(div; Ω). (3.10)
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The third equation (3.5c) is simply tested against w ∈ L2(Ω), that is

−
∫

Ω
w · div(σ) =

∫

Ω
g(ϕ) ·w, ∀w ∈ L2(Ω). (3.11)

In addition, because of the antisymmetry of γ, this function is searched in L2
skew(Ω) and the symmetry

of σ is weakly enforced by
∫

Ω
σ :η = 0 ∀η ∈ L2

skew(Ω), (3.12)

Finally, gathering (3.12) and (3.11), we can write

−
∫

Ω
w · div(σ)−

∫

Ω
η :σ =

∫

Ω
g(ϕ) ·w ∀w ∈ L2(Ω), ∀η ∈ L2

skew(Ω). (3.13)

The equations (3.9), (3.10) and (3.13) constitute the mixed variational formulation of system (3.5),
and if we assume that p̃ is known, the unknowns of this system are t, σ, u and γ, which will be
searched by pairs on the spaces:

X := L2
tr(Ω)×Htr(div; Ω) and V := L2(Ω)× L2

skew(Ω).

In this way, given p̃ ∈ L2
0(Ω) and ϕ ∈ L2(Ω), the first problem to be solved is: Find ((t,σ), (u,γ)) ∈

X× V such that

aϕ(t, s) + b1(s,σ) = 0 ∀s ∈ L2
tr(Ω), (3.14a)

b1(t, τ )− cϕ(σ, τ ) + b2(τ , (u,γ)) = Fϕ,p̃(τ ) ∀τ ∈ Htr(div; Ω), (3.14b)

b2(σ, (w,η)) = Gϕ(w,η) ∀(w,η) ∈ V, (3.14c)

where the bilinear forms and functionals

aϕ : L2
tr(Ω)× L2

tr(Ω) → R, b1 : L2
tr(Ω)×Htr(div; Ω) → R,

cϕ : Htr(div; Ω)×Htr(div; Ω) → R, b2 : Htr(div; Ω)× V → R,
Fϕ,p̃ : Htr(div; Ω) → R, Gϕ : V → R,

are defined by

aϕ(t, s) :=

∫

Ω
µ(ϕ)t : s, b1(s,σ) := −

∫

Ω
s :σd, cϕ(σ, τ ) :=

∫

Ω

tr(σ) tr(τ )

dµ(ϕ)
,

b2(σ, (w,η)) := −
∫

Ω
w · div(σ)− η :σ, Fϕ,p̃(τ ) :=

∫

Ω

p̃ tr(τ )

µ(ϕ)
,

Gϕ(w,η) :=

∫

Ω
g(ϕ) ·w .

(3.15)

On the other hand, for the weak formulation of (3.3b) we proceed in a similar fashion as for (3.3a)
by defining an extra variable σ̃ := ξ(ϕ)∇p̃− u, with which we have the system of equations

σ̃ = ξ(ϕ)∇p̃− u in Ω, (3.16a)

div(σ̃) = 0, in Ω. (3.16b)

This system is complemented with the boundary condition σ̃ · n = (ξ(ϕ)∇p̃− u) · n = 0 on Γ which
follows from the second equation in (3.3c). Dividing (3.16a) by ξ(ϕ), multiplying by a test function
τ̃ ∈ H(div; Ω), and integrating we get

∫

Ω

1

ξ(ϕ)
σ̃ · τ̃ = −

∫

Ω
p̃ div(τ̃ ) + ⟨τ̃ · n, p̃⟩ −

∫

Ω

1

ξ(ϕ)
u · τ̃ .
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Because of the above boundary condition for σ̃, we impose τ̃ ·n = 0 on Γ so that the second term in
the right hand side vanishes, as well the space of test functions becomes

H0(div; Ω) =
{
τ̃ ∈ H(div; Ω) : τ̃ · n = 0 on Γ

}
,

and the vectorial spaces to search the unknowns are

M := H0(div; Ω), Q := L2
0(Ω).

Hence, given u ∈ L2(Ω) and ϕ ∈ L2(Ω), the second problem reduces to: Find (σ̃, p̃) ∈ M × Q such
that

ãϕ(σ̃, τ̃ ) + b̃(p̃, τ̃ ) = F̃ϕ,u(τ̃ ) ∀ τ̃ ∈ M, (3.17a)

b̃(q, σ̃) = 0 ∀ q ∈ Q, (3.17b)

where ãϕ : M×M → R, b̃ : Q×M → R and F̃ϕ,u : M → R are defined by

ãϕ(σ̃, τ̃ ) =

∫

Ω

1

ξ(ϕ)
σ̃ · τ̃ , b̃(p̃, τ̃ ) :=

∫

Ω
p̃ div(τ̃ ), F̃ϕ,u(τ̃ ) = −

∫

Ω

1

ξ(ϕ)
u · τ̃ .

3.2 The fixed-point estrategy

Observe that the system (3.14) needs a given pressure p̃ ∈ L2
0(Ω), which can be obtained from (3.17),

while the system (3.17) needs a given velocity u ∈ L2(Ω), which can be found by solving system
(3.14). This coupled nature between the two systems of equations suggests the fixed-point approach
to be explained next. In fact, we first let Sϕ : Q → L2(Ω) be the operator defined for each fixed
function ϕ ∈ L2(Ω) by

Sϕ(p̃) := u ∀p̃ ∈ Q, (3.18)

where ((t,σ), (u,γ)) ∈ X×V is the solution of (3.14) for the given p̃ ∈ Q and ϕ ∈ L2(Ω). In turn, we
let S̃ϕ : L2(Ω) → Q be the operator defined for each fixed function ϕ ∈ L2(Ω) by

S̃ϕ(u) := p̃ ∀u ∈ L2(Ω),

where (σ̃, p̃) ∈ M × Q is the solution of (3.17) for the given u ∈ L2(Ω) and ϕ ∈ L2(Ω). The well-
posedness of Sϕ and S̃ϕ, or equivalently the uniqueness of solutions of both systems (3.14) and (3.17),

respectively, is shown next in Section 3.3. Now, defining the operator Tϕ = S̃ϕ ◦ Sϕ : Q → Q, we
readily realize that solving the coupled problem (3.14)–(3.17) is equivalent to finding a fixed point of
Tϕ, that is: Find p̃ ∈ Q such that

Tϕ(p̃) = p̃. (3.19)

We end this section by remarking that the linearity of the operators Sϕ and S̃ϕ, which follows from

the corresponding properties of Fϕ,p̃ and F̃ϕ,u, guarantees that Tϕ is linear as well.

3.3 Solvability of the decoupled problems

In this section we analyze the existence and uniqueness of solutions for the systems (3.14) and (3.17),
respectively. We begin with (3.14) by letting Aϕ : L2

tr(Ω) → L2
tr(Ω)

′, B1 : L2
tr(Ω) → Htr(div; Ω)

′, B2 :
Htr(div; Ω) → V′, and Cϕ : Htr(div; Ω) → Htr(div; Ω)

′ be the operators induced by the bilinear forms
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aϕ, b1, b2 and cϕ, respectively, and denote by B∗
1 : Htr(div; Ω) → L2

tr(Ω)
′ and B∗

2 : V → Htr(div; Ω)
′

the corresponding “adjoints” of B1 and B2. Then, (3.14) can be rewritten, equivalently, as: Find
((t,σ), (u,γ)) ∈ X× V such that

[Aϕ(t), s] + [B∗
1(σ), s] = 0 ∀s ∈ L2

tr(Ω),

[B1(t), τ ]− [Cϕ(σ), τ ] + [B∗
2(u,γ), τ ] = [Fϕ,p̃, τ ] ∀τ ∈ Htr(div; Ω),

[B2(σ), (w,η)] = [Gϕ, (w,η)] ∀(w,η) ∈ V.
(3.20)

where [ · , · ] denotes the duality pairing induced by the operators and functionals used in each case.
Note that (3.20) has the same structure of [43, eq. (1.2)] with Aϕ linear, and hence in what follows
we apply the theory developed there to address its solvability. More precisely, we have the following
result.

Lemma 3.1. Given p̃ ∈ Q and ϕ ∈ L2(Ω), there exists a unique ((t,σ), (u,γ)) ∈ X × V solution
of (3.14), and hence one can define Sϕ(p̃) := u. Moreover, there exists a positive constant β > 0,
depending on d, µmin, and µmax, such that

∥Sϕ(p̃)∥0;Ω = ∥u∥0;Ω ≤ ∥((t,σ), (u,γ))∥X×V ≤ β
{
∥(µ(ϕ))−1p̃∥0;Ω + ∥g(ϕ)∥0;Ω

}
. (3.21)

Proof. It reduces to prove the hypotheses of the abstract result given by [43, Theorem 2.1]. To do so,
we begin by noticing from (2.10) that

∥Aϕ∥ ≤ µmax, ∥B1∥ ≤ 1, ∥Cϕ∥ ≤ 1

µmin
,

and since B2(τ ) := (div(τ ), 12(τ − τ t)), it follows that ∥B2∥ ≤ 1 and

kernel(B2) :=
{
τ ∈ Htr(div; Ω) : div(τ ) = 0, τ = τ t

}
.

Now we show the properties of the operators Aϕ, B1, Cϕ and B2 needed to apply [43, Theorem
2.1]. The boundedness and linearity of Aϕ certainly implies its Lipschitz continuity. Furthermore,
µ(ϕ) > µmin (cf. (2.10)) yields

aϕ(s, s) ≥ µmin ∥s∥20,Ω ∀ s ∈ L2
tr(Ω) ,

which says that aϕ is L2
tr(Ω)-elliptic, and hence Aϕ is clearly strongly monotone, that is

[Aϕ(s)−Aϕ(s̃), s− s̃] = aϕ(s− s̃, s− s̃) ≥ µmin ∥s− s̃∥20;Ω ∀ s, s̃ ∈ L2
tr(Ω) .

On the other hand, we have

[Cϕ(τ ), τ ] =

∫

Ω

(tr(τ ))2

dµ(ϕ)
≥ 0 ∀τ ∈ H(div; Ω),

which shows that Cϕ is positive semi-definite in H(div; Ω) and in particular in kernel(B2). In addition,
the operator B1 satisfies the following inf-sup condition

sup
s∈L2

tr(Ω)
s ̸=0

[B1(s), τ ]

∥s∥0;Ω
≥ β1∥τ∥div;Ω, ∀τ ∈ kernel(B2) ,

which follows from the inequality ∥τ d∥0;Ω ≥ β0∥τ∥0;Ω = β0∥τ∥div;Ω for τ ∈ Htr(div; Ω) such that
div(τ ) = 0, see [42, Lemma 2.3]. Finally, to show the inf-sup condition of B2 we use the same proof
presented in [42]. More precisely, given (w,η) ∈ V, we consider the auxiliary boundary value problem:

div(e(z) + η) = w in Ω, z = 0 on Γ ,
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which has a unique solution z ∈ H1
0(Ω) that satisfies

|z|0;Ω ≤ C
{
∥w∥0;Ω + ∥η∥0;Ω

}

for a positive real constant C. Next, we define τ̂ := e(z) + η, so that div(τ̂ ) = w and thus τ̂ ∈
H(div; Ω). Then, if τ0 is the Htr(div; Ω)-component of τ̂ , we deduce that [B2(τ0), (w,η)] = ∥(w,η)∥2,
and

∥τ0∥2div;Ω ≤ ∥τ̂∥2div;Ω = ∥e(z)∥20;Ω + ∥w∥20;Ω + ∥η∥20;Ω ≤ (1 + 2C2)∥(w,η)∥2V.

Hence, for all (w,η) ∈ V we have

sup
τ∈Htr(div;Ω)

τ ̸=0

[B2(τ ), (w,η)]

∥τ∥div;Ω
≥ [B2(τ0), (w,η)]

∥τ0∥div;Ω
=

∥(w,η)∥2V
∥τ0∥div;Ω

≥ β2∥(w,η)∥V,

where β2 = 1/(1 + 2C2)1/2. Hence, having the system (3.20) satisfied the hypotheses of [43, Theorem
2.1], we conclude that (3.14), equivalently (3.18), has a unique solution ((t,σ), (u,γ)) ∈ X × V, and
there exists a positive constant β̄ that depends on the norm of Aϕ, Cϕ, Fϕ,p̃, β1 and β2, that is on β1,
β2, µmin, and µmax, such that

∥((t,σ), (u,γ))∥ ≤ β̄
{
∥Fϕ,p̃∥+ ∥Gϕ∥

}
.

Finally, using from the definitions of Fϕ,p̃ and Gϕ (cf. (3.15)) that

∥Fϕ,p̃∥ ≤
√
d ∥(µ(ϕ))−1 p̃∥0,Ω and ∥Gϕ∥ ≤ ∥g(ϕ)∥0;Ω , (3.22)

we arrive at (3.21) and finish the proof.

From now on for the second system (3.17), we assume that ϕmax < 1 and that there exist
ξmin, ξmax ∈ R+ such that for ϕ < ϕmax

ξmin ≤ ξ(ϕ) ≤ ξmax . (3.23)

The following lemma employs the classical Babuška-Brezzi theory to show the existence and uniqueness
of solutions for (3.17) in the space M×Q.

Lemma 3.2. Given u ∈ L2(Ω) and ϕ ∈ L2(Ω) such that ϕ < ϕmax in Ω, there exists a unique
(σ̃, p̃) ∈ M × Q solution of (3.17), and hence one can define S̃ϕ(u) := p̃. Moreover, there exists

β̃ > 0, depending on ξmin and ξmax, such that

∥S̃ϕ(u)∥ = ∥p̃∥ ≤ ∥(σ̃, p̃)∥M×Q ≤ β̃∥(ξ(ϕ))−1u∥0;Ω.

Proof. We begin by observing that both bilinear forms ãϕ and b̃, and F̃ϕ,u are bounded, namely:

|ãϕ(τ̃ , σ̃)| ≤ ∥(ξ(ϕ))−1 τ̃∥div;Ω∥σ̃∥div;Ω ∀ τ̃ , σ̃ ∈ M ,

|b̃(q, τ̃ )| ≤ ∥q∥0;Ω∥τ̃∥div;Ω ∀ (q, τ̃ ) ∈ Q×M , and

|F̃ϕ,u(τ̃ )| ≤ ∥(ξ(ϕ))−1 u∥0;Ω ∥τ̃∥div;Ω ∀ τ̃ ∈ M .

(3.24)

Next, we find that kernel(b̃) =
{
τ̃ ∈ M : div(τ̃ ) = 0

}
, so that, using (3.23), for each τ̃ ∈ kernel(b̃)

there holds

ãϕ(τ̃ , τ̃ ) ≥
1

ξmax
∥τ̃∥20;Ω =

1

ξmax
∥τ̃∥2div;Ω,
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which shows that ãϕ is elliptic in kernel(b̃). On the other hand, the bilinear form b̃ satisfies the
following inf-sup condition:

sup
τ̃∈M
τ̃ ̸=0

b̃(q, τ̃ )

∥τ̃∥div;Ω
≥ β3 ∥q∥0;Ω, ∀q ∈ Q,

with β3 > 0, see [42] for further details. Then, a straightforward application of [42, Theorem 2.3], and
the fact that ∥F̃ϕ,u∥M′ ≤ ∥(ξ(ϕ))−1u∥0;Ω (cf. (3.24)) conclude the proof.

Note that Lemmas 3.1 and 3.2 imply the well posedness of the operators Sϕ and S̃ϕ, respectively,
and therefore their composition, the operator Tϕ, is well defined.

3.4 Well posedness of the fixed point equation

The aim of this section is to apply the Banach fixed point theorem to show that (3.19) has a unique

solution. To this end, for a given r > 0, we define the ball Br :=
{
q ∈ Q : ∥q∥0;Ω ≤ r

}
. The next

lemma shows that the operator Tϕ maps Br into itself for a sufficiently small data.

Lemma 3.3. Given r > 0 and ϕ ∈ L2(Ω) such that ϕ < ϕmax on Ω, we assume

ββ̃

ξmin

{
r

µmin
+ ∥g(ϕ)∥0;Ω

}
≤ r, (3.25)

where β and β̃ are the constants determined by Lemmas 3.1 and 3.2, respectively. Then, the inclusion
Tϕ(Br) ⊆ Br holds.

Proof. Given p̃ ∈ Br, it follows from Lemma 3.1 that

∥Sϕ(p̃)∥0;Ω ≤ β
{
∥(µ(ϕ))−1p̃∥0;Ω + ∥g(ϕ)∥0;Ω

}
≤ β

{
r

µmin
+ ∥g(ϕ)∥0;Ω

}
,

which, along with Lemma 3.2, yields

∥Tϕ(p̃)∥ = ∥S̃ϕ(Sϕ(p̃))∥0;Ω ≤ β̃

ξmin
∥Sϕ(p̃)∥0;Ω ≤ β̃β

ξmin

{
r

µmin
+ ∥g(ϕ)∥0;Ω

}
.

The foregoing inequality and (3.25) imply ∥Tϕ(p̃)∥0;Ω ≤ r, thus completing the proof.

Continuing, we now show that both operators Sϕ and S̃ϕ are Lipschitz-continuous.

Lemma 3.4. Let ϕ ∈ L2(Ω) such that ϕ < ϕmax on Ω. Then, the following inequalities hold

∥Sϕ(p̃1)− Sϕ(p̃2)∥0;Ω ≤ β

µmin
∥p̃1 − p̃2∥0;Ω ∀ p̃1, p̃2 ∈ Q ,

∥S̃ϕ(u1)− S̃ϕ(u2)∥0;Ω ≤ β̃

ξmin
∥u1 − u2∥0;Ω ∀u1, u2 ∈ L2(Ω) .

Proof. To prove the first inequality, we make use of the linearity of Sϕ. Indeed, given p̃1, p̃2 ∈ L2
0(Ω),

Sϕ(p̃1)− Sϕ(p̃2) = Sϕ(p̃1 − p̃2) returns the solution of system (3.14) whose right hand side of (3.14b)
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is evaluated at p̃1 − p̃2, and the right hand side of (3.14c) is zero. Then, replacing Gϕ = 0 in Lemma
3.1, we get

∥Sϕ(p̃1)− Sϕ(p̃2)∥0;Ω ≤ β

µmin
∥p̃1 − p̃2∥0;Ω.

Analogously, using similar arguments but employing Lemma 3.2 instead, we find that

∥S̃ϕ(u1)− S̃ϕ(u2)∥0;Ω = ∥S̃ϕ(u1 − u2)∥0;Ω ≤ β̃

ξmin
∥u1 − u2∥0;Ω .

We are now in conditions to introduce the theorem that states the existence and uniqueness of
weak solutions of the coupled system (3.14)–(3.17), and hence the ones for (3.3).

Theorem 3.5. Let ϕ ∈ L2(Ω) such that ϕ < ϕmax in Ω, and let r > 0. In addition, let β, β̃ be the
constants determined by Lemmas 3.1 and 3.2, respectively, and assume that the data satisfies (3.25)
and

ββ̃

ξmin µmin
< 1 .

Then, the coupled system (3.14)-(3.17) has a unique solution ((t,σ), (u,γ)) ∈ X × V and (σ̃, p̃) ∈
M×Q, with p̃ ∈ Br, and there hold

∥((t,σ), (u,γ))∥X×Y ≤ β
{
∥(µ(ϕ))−1p̃∥0;Ω + ∥g(ϕ)∥0;Ω

}
,

∥(σ̃, p̃)∥M×Q ≤ β̃ ∥(ξ(ϕ))−1u∥0;Ω .

Proof. From the assumption (3.25), Lemma 3.3 ensures that Tϕ(Br) ⊆ Br. Then, making use of
Lemma 3.4 and the linearity of Tϕ, for each p̃1, p̃2 ∈ Q we have

∥Tϕ(p̃1)−Tϕ(p̃2)∥0;Ω = ∥Tϕ(p̃1 − p̃2)∥0;Ω = ∥S̃ϕ(Sϕ(p̃1 − p̃2))∥0;Ω ≤ ββ̃

ξmin µmin
∥p̃1 − p̃2∥0;Ω ,

and since µmin ξmin > β̃β, we get that Tϕ is a contraction. The uniqueness of solution for the equation
Tϕ(p̃) = p̃, or equivalently of the coupled system (3.14)-(3.17) with p̃ ∈ Br, is a result of the application
of the Banach fixed-point theorem. The a prori estimates follow from Lemmas 3.1 and 3.2.

4 Discrete formulation

In this section we introduce the Galerkin scheme associated with the coupled system given by (3.14)
and (3.17), and proceed analogously to the analysis developed in Section 3 to derive its well-posedness.

4.1 Preliminaries and setting of the scheme

We begin by letting {Th}h>0 be a regular family of triangulations of Ω made up of triangles K (when
d = 2) or tetrahedra K (when d = 3) of diameter hK , where h stands for both a sub-index of each

triangulation Th, as well as for the largest diameter, that is h := max
{
hK : K ∈ Th

}
. Next, given

an integer ℓ ≥ 0 and a subset Λ of Rd, we denote by Pℓ(Λ) the space of polynomials of total degree
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less than or equal to ℓ defined on Λ, Pℓ(Λ) := [Pℓ(Λ)]
d and Pℓ(Λ) := [Pℓ(Λ)]

d×d. We also define P̄ℓ

the set of polynomials of degree equal to ℓ. Then, denoting by x a generic vector of Rd, the local
Raviart–Thomas space of order ℓ is defined for each K ∈ Th by

RTℓ(K) := Pℓ(K) ⊕ P̄ℓ(K)x .

In turn, the local bubble space is defined by

Bℓ(K) =

{
curl(bKPℓ(K)) if d = 2,

curl(bKPℓ(K)) if d = 3,

where bK is the bubble function on K, which is defined as the product of its d + 1 barycentric

coordinates, curl(u) =
(
∂u
∂y ,−∂u

∂x

)
for d = 2 and u : K → R, and curl(u) = ∇ × u for d = 3 and

u : K → R3. Furthermore, we set the global spaces:

Pℓ(Ω) :=
{
wh ∈ L2(Ω) : wh|K ∈ Pℓ(K), ∀K ∈ Th

}
,

RTℓ(Ω) :=
{
wh ∈ H(div; Ω) : wh|K ∈ RTℓ(K), ∀K ∈ Th

}
,

Bℓ(Ω) :=
{
wh ∈ H(div; Ω) : wh|K ∈ Bℓ(K), ∀K ∈ Th

}
,

and their corresponding tensor versions

Pℓ(Ω) :=
{
τh ∈ L2(Ω) : τh|K ∈ Pℓ(K), ∀K ∈ Th

}
,

RTℓ(Ω) :=
{
τh ∈ H(div; Ω) : τh,i ∈ RTℓ(Ω), ∀ i = {1, . . . , d}

}
,

Bℓ(Ω) :=
{
τh ∈ H(div; Ω) : τh,i ∈ Bℓ(Ω), ∀ i = {1, . . . , d}

}
,

where τh,i stands for the i-th row of the matrix τh. In what follows, we let Ht
h, Mh, H

u
h , and Hγ

h

be finite dimensional subspaces of L2
tr(Ω), H(div; Ω), L2(Ω), and L2

skew(Ω), respectively, and we let
Hσ

h := Htr(div; Ω) ∩Mh be the finite element subspace for the pseudostress.

Suitable subspaces to approximate (3.14) are the PEERS finite elements introduced by Arnold
et. al. [9] for elasticity problems, which, letting Mh = RTℓ(Ω)⊕ Bℓ(Ω), are defined as

Ht
h := L2

tr(Ω) ∩ Pℓ+d(Ω), Hσ
h := Htr(div; Ω) ∩Mh, Hu

h := Pℓ(Ω),

Hγ
h := C(Ω̄) ∩ L2

skew(Ω) ∩ Pℓ+1(Ω).
(4.1)

Hence the discrete subspaces for X× V is Xh := Ht
h ×Mσ

h and Vh := Hu
h ×Hγ

h . We observe that Mh

contains the multiples of I, and in consequence we can equivalently define Hσ
h by

Hσ
h =

{
τh −

(
1

d|Ω|

∫

Ω
tr(τh)

)
I : τh ∈ Mh

}
.

Moreover, in light of the fact that div(Mh) ⊆ Hu
h , the discrete kernel of the operator B2 reduces to

V0,h :=

{
τh ∈ Hσ

h :

∫

Ω
τh :ηh = 0 ∀ηh ∈ Hγ

h , div(τh) = 0

}
.

The subspaces for the approximation of the second system of equations are chosen by

Mh := H0(div; Ω) ∩RTℓ(Ω), Qh := L2
0(Ω) ∩ Pℓ(Ω). (4.2)
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Hence, given p̃h ∈ Qh and ϕ ∈ L2(Ω), the discrete formulation of (3.14) reads: Find ((th,σh), (uh,γh))
∈ Xh × Vh such that

aϕ(th, sh) + b1(sh,σh) = 0 ∀sh ∈ Ht
h, (4.3a)

b1(th, τh)− cϕ(σh, τh) + b2(τh, (uh,γh)) = Fϕ,p̃h(τh) ∀τh ∈ Hσ
h , (4.3b)

b2(σh, (wh,ηh)) = Gϕ(wh,ηh) ∀(wh,ηh) ∈ Vh. (4.3c)

In turn, given uh ∈ Hu
h and ϕ ∈ L2(Ω), the discrete formulation of system (3.17) is given by: Find

(σ̃h, p̃h) ∈ Mh ×Qh such that

ãϕ(σ̃h, τ̃h) + b̃(p̃h, τ̃h) = F̃ϕ,uh
(τ̃h) ∀ τ̃h ∈ Mh, (4.4a)

b̃(qh, σ̃h) = 0 ∀ qh ∈ Qh. (4.4b)

To state the discrete version of (3.19) we first define the discrete counterparts of the operators Sϕ,

S̃ϕ, and Tϕ, for which we consider here that ϕ ∈ L2(Ω) is a given function. Let Sϕ,h : Qh → Hu
h be

the operator defined by

Sϕ,h(p̃h) := uh ∀ p̃h ∈ Qh,

where ((th,σh), (uh,γh)) ∈ Xh×Vh is the unique solution of (4.3) for the given p̃h ∈ Qh and ϕ ∈ L2(Ω).
Similarly, we let S̃ϕ,h : Hu

h → Qh be the operator defined by

S̃ϕ,h(uh) := p̃h ∀uh ∈ Hu
h ,

where (σ̃h, p̃h) ∈ Mh ×Qh is the unique solution of (4.4) for the given uh ∈ Hu
h and ϕ ∈ L2(Ω). The

well-posedness of Sϕ,h and S̃ϕ,h, which is equivalent to proving the uniqueness of solutions of (4.3) and

(4.4), respectively, is shown in Section 4.2. Finally, we define the operator Tϕ,h := S̃ϕ,h◦Sϕ,h : Q → Q,
and realize that the coupled problem (4.3)–(4.4) is equivalent to finding a fixed point of Tϕ,h, that is
p̃h ∈ Q such that

Tϕ,h(p̃h) = p̃h. (4.5)

Analogously as in the continuous case, Sϕ,h, S̃ϕ,h, and Tϕ,h are linear operators.

4.2 Solvability of the discrete problem

The solvability analyses of the discrete problems (4.3) and (4.4), and of the fixed point equation (4.5),
are carried out using analogous arguments to those used for the continuous case. In particular, the
next two results are the discrete versions of Lemmas 3.1 and 3.2, respectively.

Lemma 4.1. Given p̃h ∈ Qh and ϕ ∈ L2(Ω), there exists a unique ((th,σh), (uh,γh)) ∈ Xh × Vh

solution of (4.3), and hence one can define Sϕ,h(p̃h) := uh. Moreover, there exists a positive constant
β > 0, depending on d, µmin, and µmax, and thus independent of h, such that

∥Sϕ,h(p̃h)∥0;Ω = ∥uh∥0;Ω ≤ ∥((th,σh), (uh,γh))∥X×Y ≤ β
{
∥(µ(ϕ))−1p̃h∥0;Ω + ∥g(ϕ)∥0;Ω

}
.

Proof. The Lipschitz continuity and strong monotonicity of Aϕ was shown in the proof of Lemma
3.1. On the other hand, since [Cϕ(τh), τh] ≥ 0 for all τh ∈ Mσ

h , Cϕ is clearly positive semi-definite
in Vh,0, the discrete kernel of B2. In addition, given τh ∈ V0,h, we have that div(τh) = 0 and
∥τ d

h ∥0;Ω ≥ β0 ∥τh∥div;Ω [42, Lemma 2.3], and since τ d
h ∈ Ht

h, we find that

sup
sh∈Ht

h
s̸=0

[B1(sh), τh]

∥sh∥0;Ω
≥ [B1(−τ d

h ), τh]

∥τ d
h ∥0;Ω

= ∥τ d
h ∥0;Ω ≥ β0 ∥τh∥div;Ω ,
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which shows that the operator B1 satisfies the discrete inf-sup condition. In turn, the same condition
for B2 has been shown in previous works, e.g. [44]. Consequently, having the scheme satisfied the
hypotheses of [43, Theorem 3.4], the proof is concluded.

Lemma 4.2. Given uh ∈ Hu
h and ϕ ∈ L2(Ω) such that ϕ < ϕmax on Ω, there exists a unique

(σ̃h, p̃h) ∈ Mh × Qh solution of (3.17), and hence one can define S̃ϕ,h(uh) := p̃h. Moreover, there

exists β̃ > 0, depending on ξmin and ξmax, and thus independent of h, such that

∥S̃ϕ,h(uh)∥ = ∥p̃h∥ ≤ ∥(σ̃h, p̃h)∥M×Q ≤ β̃∥(ξ(ϕ))−1uh∥0;Ω.

Proof. Since div(Mh) ⊆ Qh, the proof of this lemma is straightforward and analogous to that of
Lemma 3.1.

As in the continuous case, given r > 0, we define the ball Br,h :=
{
qh ∈ Qh : ∥qh∥0;Ω ≤ r

}
. The

analogous versions of Lemmas 3.3 and 3.4 are provided next.

Lemma 4.3. Given r > 0 and ϕ ∈ L2(Ω) such that ϕ < ϕmax on Ω, we assume that the data, β, and
β̃ satisfy (3.25), where β and β̃ are the constants determined by Lemmas 4.1 and 4.2, respectively.
Then, the inclusion Tϕ,h(Br,h) ⊆ Br,h holds.

Proof. Given p̃h ∈ Br,h, it follows from Lemma 4.1 that

∥Sϕ,h(p̃h)∥0;Ω ≤ β
{
∥(µ(ϕ))−1p̃h∥0;Ω + ∥g(ϕ)∥0;Ω

}
≤ β

{
r

µmin
+ ∥g(ϕ)∥0;Ω

}
,

which along with Lemma 4.2 yields

∥S̃ϕ,h(Sϕ,h(p̃h))∥0;Ω ≤ β̃

ξmin
∥Sϕ,h(p̃h)∥0;Ω ≤ ββ̃

ξmin

{
r

µmin
+ ∥g(ϕ)∥0;Ω

}
.

The above inequality and (3.25) imply ∥Tϕ,h(p̃h)∥0;Ω ≤ r, which ends the proof.

Lemma 4.4. Let ϕ ∈ L2(Ω) such that ϕ < ϕmax in Ω. Then, the following inequalities hold

∥Sϕ,h(p̃1)− Sϕ,h(p̃2)∥0;Ω ≤ β

µmin
∥p̃1 − p̃2∥0;Ω ∀p̃1, p̃2 ∈ Qh,

∥S̃ϕ,h(u1)− S̃ϕ,h(u2)∥0;Ω ≤ β̃

ξmin
∥u1 − u2∥0;Ω ∀u1,u2 ∈ Hu

h .

Proof. To prove the first inequality, we make use of the linearity of Sϕ,h. Indeed, given p̃1, p̃2 ∈ Qh,
Sϕ,h(p̃1)−Sϕ,h(p̃2) = Sϕ,h(p̃1− p̃2) returns the solution of system (4.3) whose right hand side of (4.3b)
is evaluated in p̃1 − p̃2 and the right hand side of (4.3c) is zero. Then, replacing Gϕ = 0 in Lemma
4.1, we have

∥Sϕ,h(p̃1)− Sϕ,h(p̃2)∥0;Ω ≤ β

µmin
∥p̃1 − p̃2∥0;Ω .

Analogously, using now Lemma 4.2, we obtain for each u1, u2 ∈ Hu
h

∥S̃ϕ,h(u1)− S̃ϕ,h(u2)∥0;Ω = ∥S̃ϕ,h(u1 − u2)∥0;Ω ≤ β̃

ξmin
∥u1 − u2∥0;Ω.
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We end this section by establishing the existence and uniqueness of solutions of the discrete coupled
problem (4.3)–(4.4) through the fixed point equation (4.5).

Theorem 4.5. Let ϕ ∈ L2(Ω) such that ϕ < ϕmax on Ω, and let r > 0. In addition, let β, β̃ be the
constants determined by Lemmas 4.1 and 4.2, respectively, and assume that the data satisfy (3.25) and

ββ̃

µmin ξmin
< 1 .

Then, the coupled system (4.3)-(4.4) has a unique solution ((th,σh), (uh,γh)) ∈ Xh×Vh and (σ̃h, p̃h) ∈
Mh ×Qh, with p̃h ∈ Br,h, and there holds

∥((th,σh), (uh,γh))∥X×Y ≤ β
{
∥(µ(ϕ))−1p̃h∥0;Ω + ∥g(ϕ)∥0;Ω

}
,

∥(σ̃h, p̃h)∥M×Q ≤ β̃ ∥(ξ(ϕ))−1uh∥0;Ω .

Proof. From the assumption (3.25), Lemma 4.3 ensures that Tϕ,h(Br,h) ⊆ Br,h. Then, making use of
Lemma 4.4 and the linearity of Tϕ,h, for each p̃1, p̃2 ∈ Qh we have

∥Tϕ,h(p̃1)−Tϕ,h(p̃2)∥0;Ω = ∥S̃ϕ,h(Sϕ,h(p̃1 − p̃2))∥0;Ω ≤ β̃β

µmin ξmin
∥p̃1 − p̃2∥0;Ω ,

and since µmin ξmin > β̃β, we get that Tϕ,h is a contraction. The uniqueness of solution of the
equation Tϕ,h(p̃h) = p̃h, or equivalently of the coupled system (4.3)-(4.4), with p̃h ∈ Br,h, is a result
of the application of the Banach fixed-point theorem. The a priori estimates are then consequence of
Lemmas 4.1 and 4.2.

4.3 A priori error analysis

Let Aϕ :
(
X×V

)
×
(
X×V

)
→ R and Ãϕ :

(
M×Q

)
×
(
M×Q

)
→ R be the bilinear forms arising from

adding the left hand sides of (3.14) and (3.17), respectively. Then, introducing the generic notations

(s⃗, w⃗) := ((s, τ ), (w,η)) ∈ X× V , (s⃗h, w⃗h) := ((sh, τh), (wh,ηh)) ∈ Xh × Vh ,

the pairs of continuous and discrete schemes (3.14)–(4.3) and (3.17)–(4.4) can be rewritten as

Find (⃗t, u⃗) := ((t,σ), (u,γ)) ∈ X× V such that

Aϕ((⃗t, u⃗), (s⃗, w⃗)) = Fϕ,p̃(τ ) +Gϕ(w,η) ∀ (s⃗, w⃗) ∈ X× V ,

Find (⃗th, u⃗h) := ((th,σh), (uh,γh)) ∈ Xh × Vh such that

Aϕ((⃗th, u⃗h), (s⃗h, w⃗h)) = Fϕ,p̃h(τh) +Gϕ(wh,ηh) ∀ (s⃗h, w⃗h) ∈ Xh × Vh ,

(4.6)

and
Find (σ̃, p̃) ∈ M×Q such that

Ãϕ((σ̃, p̃), (τ̃ , q)) = F̃ϕ,u(τ̃ ) ∀ (τ̃ , q) ∈ M×Q ,

Find (σ̃h, p̃h) ∈ Mh ×Qh such that

Ãϕ((σ̃h, p̃h), (τ̃h, qh)) = F̃ϕ,uh
(τ̃h) ∀ (τ̃h, qh) ∈ Mh ×Qh ,

(4.7)

respectively. Thus, as a consequence of Lemmas 4.1 and 4.2, we deduce the existence of positive
constants αAϕ

and α
Ãϕ

, independent of h, with which Aϕ and Ãϕ satisfy global discrete inf-sup
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conditions, namely

sup
(s⃗h,w⃗h)∈Xh×Vh

(s⃗h,w⃗h )̸=(0,0)

Aϕ((r⃗h, v⃗h), (s⃗h, w⃗h))

∥(s⃗h, w⃗h)∥
≥ αAϕ

∥(r⃗h, v⃗h)∥ ∀ (r⃗h, v⃗h) ∈ Xh × Vh , (4.8)

and

sup
(τ̃h,qh)∈Mh×Q

(τ̃h,qh )̸=(0,0)

Ãϕ((ζ̃h, φh), (τ̃h, qh))

∥(τ̃h, qh)∥
≥ α

Ãϕ
∥(ζ̃h, φh)∥ ∀ (ζ̃h, φh) ∈ Mh ×Qh . (4.9)

Hereafter, given a subspace Xh of a generic normed space
(
X, ∥ · ∥X

)
, we set for each x ∈ X

dist(x,Xh) := inf
xh∈Xh

∥x− xh∥X .

The following lemma states the Céa estimate for our coupled problem.

Lemma 4.6. Let ϕ ∈ L2(Ω) such that ϕ < ϕmax in Ω, and assume that the data satisfies
√
d

µmin αAϕ

+
1

ξmin αÃϕ

≤ 1

2
. (4.10)

Then, there exist positive constants C1, C2 ,depending on ∥Aϕ∥, αAϕ
, and ∥Ãϕ∥, αÃϕ

, respectively,

and thus independent of h, such that

∥((⃗t, u⃗), (σ̃, p̃))− ((⃗th, u⃗h), (σ̃h, p̃h))∥

≤ C1 dist
(
(⃗t, u⃗),Xh × Vh

)
+ C2 dist

(
(σ̃, p̃),Mh ×Qh

)
.

(4.11)

Proof. It proceeds similarly as in [44]. In fact, bearing in mind (4.8) and (4.9), straightforward
applications of the classical Strang estimate to the pairs (4.6) and (4.7) yield

∥(⃗t, u⃗)− (⃗th, u⃗h)∥X×V ≤
(
1 +

∥Aϕ∥
αAϕ

)
dist

(
(⃗t, u⃗),Xh × Vh

)
+

1

αAϕ

∥Fϕ,p̃ − Fϕ,p̃h∥ , (4.12)

and

∥(σ̃, p̃)− (σ̃h, p̃h)∥M×Q ≤
(
1 +

∥Ãϕ∥
α
Ãϕ

)
dist ((σ̃, p̃),Mh ×Qh) +

1

α
Ãϕ

∥F̃ϕ,u − F̃ϕ,uh
∥ , (4.13)

respectively. In turn, it follows from (3.22) and (2.10) that

∥Fϕ,p̃ − Fϕ,p̃h∥ = ∥Fϕ,p̃−p̃h∥ ≤
√
d ∥(µ(ϕ))−1

(
p̃− p̃h)∥0,Ω ≤

√
d

µmin
∥p̃− p̃h∥0,Ω , (4.14)

whereas the bound for ∥F̃ϕ,u∥ (cf. (3.24)) and (3.23) give

∥F̃ϕ,u − F̃ϕ,uh
∥ = ∥F̃ϕ,u−uh

∥ ≤ 1

ξmin
∥u− uh∥0,Ω . (4.15)

In this way, employing (4.14) and (4.15) back into (4.12) and (4.13), respectively, and then adding the
resulting inequalities, and using (4.10), we obtain (4.11) with

C1 := 2

(
1 +

∥Aϕ∥
αAϕ

)
and C2 := 2

(
1 +

∥Ãϕ∥
α
Ãϕ

)
.
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We can now state the rates of convergence of the Galerkin scheme (4.3)–(4.4) with the finite element
subspaces (4.1) and (4.2).

Theorem 4.7. Given ϕ ∈ L2(Ω) such that ϕ < ϕmax on Ω, let (⃗t, u⃗) ∈ X×V and (σ̃, p̃) ∈ M×Q be
the unique solution of the coupled system (3.14)–(3.17) from Lemma 3.5 and let (⃗th, u⃗h) ∈ Xh × Vh,
(σ̃h, p̃h) ∈ Mh ×Qh be the unique solution of its discrete counterpart from Lemma 3.5. Assume that
the data satisfies the inequality (4.10). Given an integer ℓ ≥ 0, assume that there exists κ ∈ (0, ℓ+ 1]
such that t ∈ Hκ(Ω) ∩ L2

tr, σ ∈ Hκ(Ω) ∩ Htr(div; Ω), div(σ) ∈ Hκ(Ω), u ∈ Hκ(Ω) ∩ L2(Ω), γ ∈
Hκ(Ω)∩L2

skew(Ω), σ̃ ∈ Hκ(Ω)∩M, div(σ̃) ∈ Hκ(Ω) and p̃ ∈ Hκ(Ω)∩Q. Then, there exists a positive
constant C, independent of h, such that

∥((⃗t, u⃗), (σ̃, p̃))− ((⃗th, u⃗h), (σ̃h, p̃h))∥ ≤ C hκ
{
∥t∥κ,Ω + ∥σ∥κ,Ω + ∥div(σ)∥κ,Ω

+ ∥u∥κ,Ω + ∥γ∥κ,Ω + ∥σ̃∥κ,Ω + ∥div(σ̃)∥κ,Ω + ∥p̃∥κ,Ω
}
.

Proof. The proof follows from (4.11) and the approximation properties of the finite element subspaces
Ht

h, Hσ
h , H

u
h , H

γ
h , Mh and Qh.

5 Fully coupled scheme

In this section we address the approximation of the transport equation (2.11a) for the volume fraction
of solid particles ϕ, and the coupling to the systems (4.3) and (4.4). Since (2.11a) is of the hyperbolic
type, we propose a vertex centered finite volume scheme based on an upwind numerical flux for its
approximation. In what follows, we let Nh be the set of nodes of the triangulation Th (primal mesh).
We introduce the so-called dual mesh T ⋆

h which consists of the non-overlapping control volumes K⋆
j

surrounding the node sj ∈ Nh. The control volumes on the dual mesh T ∗
h are built by connecting the

barycenters bK of each triangle K ∈ Th with the middle point of each edge of K, see Figure 5.1. Note
that each node in the primal mesh is related to one control volume in the dual mesh. We denote by
Eh(K⋆) the set of inner edges of K⋆ ∈ T ⋆

h , so that e ∈ Eh(K⋆) if e ⊂ ∂K⋆ and there exists K ∈ Th
such that e is the piece of segment connecting bK and the middle point of an edge of K (see the blue
dash-dotted segments in Figure 5.1). In turn, we define the space of piecewise constant functions over
the dual mesh

Sh :=
{
φ ∈ L2(Ω) : φ|K⋆ ∈ P0(K

⋆), ∀K⋆ ∈ T ⋆
h

}
.

To introduce the finite volume method, we consider the integral form of equation (2.11a) over each
control volume in the dual mesh T ⋆

h , this is

∫

K⋆

∂tϕ = −
∫

∂K⋆

ϕu · n, ∀K⋆ ∈ T ⋆
h . (5.1)

Then, the sought unknown is approximated by ϕh(t) ∈ Sh, i.e., for each t ∈ (0, T ], ϕ is a piecewise
constant function on T ⋆

h . Furthermore, given a time step ∆t > 0 and n ∈ N, we make use of the
superscript n to denote the evaluation of each function at the time tn = n∆t, e.g., ϕn

h = ϕh(t
n),

un
h = uh(t

n), and the analogous notation is used for other functions. Next, approximating the time
derivative in (5.1) by forward Euler and the numerical flux by an upwind approach we obtain

∫

K⋆

ϕn+1
h,K⋆ − ϕn

h,K⋆

∆t
= −

∑

e∈Eh(K⋆)

∫

e
Upw(un

h · ne;ϕ
n
h,K⋆ , ϕn

h,K⋆
e
), ∀K⋆ ∈ T ⋆

h , (5.2)
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h,K⋆j
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Th T ⋆h

Figure 5.1: Schematic of the primal mesh Th (black triangles) and dual mesh T ⋆
h defined by the control

volumes K⋆
j delimited by the blue dash-dotted lines and boundary Γ. The boundary of K⋆

j is given
by the union of the edges ei with i = 1, . . . , 10.

where ϕn
h,K⋆ = ϕn

h|K⋆ , ne is the normal of the edge e ∈ Eh(K⋆), K⋆
e ∈ T ⋆

h denotes the adjacent control

volume such that e ⊆ K̄⋆ ∩ K̄⋆
e and K⋆ ̸= K⋆

e , and the upwind operator is defined by

Upw(a; b, c) := max{a, 0}b+min{a, 0}c, a, b, c ∈ R.

The velocity function un
h is determined by solving (4.4)–(4.3) (the fixed point equation (4.5)) at the

time tn with ϕ given by the piecewise constant function that for each K ∈ Th is computed by

ϕ(x) =
1

|K|

∫

K
ϕn
h, x ∈ K.

Note the difference between ϕn
h and ϕ, the first one is in Sh (dual mesh) while the second one is in

P0(Ω) (primal mesh). For the case of a piecewise linear (or constant) approximation un
h, the integral

over the edge in (5.2) can be computed with the Gauss quadrature rule to obtain

ϕn+1
h,K⋆ = ϕn

h,K⋆ − ∆t

|K⋆|
∑

e∈Eh(K⋆)

|e|Upw(un
h(x̄e) · ne;ϕ

n
h,K⋆ , ϕn

h,K⋆
e
), ∀K⋆ ∈ T ⋆

h , (5.3)

where |e| and |K⋆| are the measures of the edge e and control volume K⋆, respectively, and x̄e is the
middle point of e. The discrete approximation of (5.3) needs to be solved for a sufficiently small time
step ∆t.

6 Numerical examples

For the numerical examples presented in this section, the mixed finite element formulation (4.3)–(4.4)
and the discrete equation (4.5) have been implemented using the open source finite element library
FEniCS [2], whereas the discrete transport equation (5.3) is implemented in python by own made
routines. All the examples of this section are made in 2D. However, the model, numerical scheme and
analysis are also valid in 3D. For the first example, the approximation of the fixed-point equation (4.5)
is executed until the iterative process reaches the stopping criterion

|coeff (m+1) − coeff (m)|
|coeff (m+1)|

< tol,
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dof1 h e(t) r(t) e(σ) r(σ) e(u) r(u)

421 0.5 0.4130 - 1.8442 - 0.0694 -

1657 0.25 0.2074 0.9940 0.9491 0.9583 0.0344 1.0106

6577 0.125 0.1016 1.0292 0.4743 1.0009 0.0170 1.0173

26209 0.0625 0.0501 1.0205 0.2361 1.0064 0.0085 1.0042

104641 0.0312 0.0248 1.0112 0.1176 1.0049 0.0042 1.0008

dof2 Iter e(γ) r(γ) e(σ̃) r(σ̃) e(p̃) r(p̃)

45 6 0.3603 - 2.2614 - 0.2574 -

169 6 0.1841 0.9687 1.2430 0.8634 0.1303 0.9818

657 6 0.0733 1.3278 0.6287 0.9834 0.0654 0.9952

2593 6 0.0275 1.4146 0.3152 0.9961 0.0327 0.9988

10305 6 0.0100 1.4567 0.1577 0.9990 0.0164 0.9997

Table 6.1: Example 1. Error history for the mixed finite element approximations of the systems (4.3)
and (4.4), respectively, computed with ℓ = 0. The degrees of freedom of the spaces Xh×Vh (dof1) and
Mh ×Qh (dof2), meshsizes and fixed-point iterations (Iter) are informed on each mesh refinement.

where coeff (m) is the vector of coefficients of p̃h at the iteration m ∈ N, | · | is the euclidean norm of
Rdim(Qh), and tol is a positive number. For the rest of the examples, equation (4.5) is solved by the
Newton-Raphson algorithm with null initial guess, with absolute and relative tolerance of 10−10, and
the solution of tangent systems resulting from the linearization is carried out with the multifrontal
massively parallel sparse direct solver MUMPS [7]. In addition, the integral condition (3.6) is added to
the system (4.4) by means of a Lagrange multiplier. The following constitutive functions have been
used for the numerical examples:

µ(ϕ) = µ0(1− ϕ/ϕm)
−2.5, µ0 = 100 [kg/(m s)], ϕm = 1.2,

ξ(ϕ) = ξ0(1− ϕ)exp(−4.5ϕ), ξ0 = 1/360 [m2/(Pa s)].

Note that the Darcy function used is the decreasing function D(ϕ) = ξ0exp(−4.5ϕ), where D(0) = ξ0.
Other parameters are g = 9.81 [m/s2], ρf = 950 [kg/m3], ρs = 1000 [kg/m3], and ϕmax = 0.95. For all
examples, we have set σe ≡ 0 and time step used in all the examples is ∆t = 0.02 s.

Example 1. Accuracy verification

We test the order of accuracy of the numerical scheme used to approximate the decoupled system
(4.3)–(4.4) in the unit square Ω = (0, 1)2 for a given smooth volume fraction ϕ < ϕmax. For this
purpose, we set µ0 = 1 and ξ0 = 1, and consider

ϕ(x) = 1− 0.9 exp(x1x2(x1 − 1)(x2 − 1)) ∀x ∈ Ω.

Furthermore, we use the manufactured exact solution:

u(x) =

(
sin(πx1)x2(x2 − 1)
−x1(x1 − 1) sin(πx2)

)
,

p̃(x) = cos(πx1) + cos(πx2),
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for which the right hand sides of (4.3c) and (4.4b) have to be modified by adding the terms

f1(wh,ηh) :=

∫

Ω

(
−div(µ(ϕ)e(u)) +∇p̃− g(ϕ)

)
·wh ∀ (wh,ηh) ∈ Vh,

f2(qh) := −
∫

Ω
div(u− ξ(ϕ)∇p)qh ∀ qh ∈ Qh,

respectively. The errors between each component of the numerical solution th, σh, uh, γh, σ̃h, p̃h,
computed with a meshsize h, and the exact manufactured solution, are given by

e(t) := ∥t− th∥0;Ω, e(σ) := ∥σ − σh∥div;Ω, e(u) := ∥u− uh∥0;Ω,
e(γ) := ∥γ − γh∥0;Ω, e(σ̃) := ∥σ̃ − σ̃h∥div;Ω, e(p̃) := ∥p̃− p̃h∥0;Ω.

Then, the rates of convergence between two numerical errors e and e′ made with two consecutive
meshsizes h and h′, respectively, are

r(t) :=
log(e(t)/e′(t))

log(h/h′)
, r(σ) :=

log(e(σ)/e′(σ))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
,

r(γ) :=
log(e(γ)/e′(γ))

log(h/h′)
, r(σ̃) :=

log(e(σ̃)/e′(σ̃))

log(h/h′)
, r(p̃) :=

log(e(p̃)/e′(p̃))

log(h/h′)
.

The degrees of freedom for the system (4.3) and (4.4), denoted by dof1 and dof2, respectively, and
the errors and rates of convergence produced by successive mesh refinements, are reported in Table
6.1 (for ℓ = 0) and 6.2 (for ℓ = 1). The number of iterations made by the fixed-point algorithm with
a tolerance of tol = 10−6 was 6 for all the examples, for ℓ = 0 and ℓ = 1. From Table 6.1, we observe
that for all variables the error decreases as the mesh size is smaller and the rates of convergence tend
to 1, with the exception of γ whose rate of convergence is greater than 1. For the case of polynomial
degrees ℓ = 1 in Table 6.2, the errors behave as expected with rates of convergence approaching 2 as
Theorem 4.7 states. Hence, both examples show that for ℓ = 0 and ℓ = 1 the errors produced with the
scheme (4.3) and (4.4), and the fixed-point strategy, are of order O(hℓ+1), the optimum established in
Theorem 4.7. Additionally, in Figure 6.2 we show the numerical solution of the six unknowns produced
in the accurcy test.

Examples 2 and 3

For the second and third example we simulate the transient case, the two-dimensional batch sedi-
mentation of flocculated particles in a channel with inclined walls. The domain considered in both
simulations is a truncated cone of hight 2 meters and 6 meters wide, and represents the vertical
cross-section of a channel. In Example 2 we start the simulation with an initial concentration

ϕ0(x) =

{
0.1 if x2 < 1.5m,

0 if x2 ≥ 1.5m,

where below the level x2 = 1.5 meters the concentration is homogeneous and above it there is only
clear water. For the Example 3 we consider an initial condition whose concentration of solid particles
is located above the line 3x2 − 2x1 = 3, at the left top corner of the domain

ϕ0(x) =

{
0.1 if x2 ≥ 2

3(x1 + 3),

0 otherwise.

In Figure 6.3, left column, we show the simulation of Example 2 at four time points t = 4, 6, 8 and 10
seconds. We observe that as soon as the time evolves, the sedimentation process takes place, and the
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dof1 h e(t) r(t) e(σ) r(σ) e(u) r(u)

889 0.5 0.0538 - 0.2887 - 0.0134 -

3505 0.25 0.0136 1.9824 0.0744 1.957 0.0034 1.9879

13921 0.125 0.0035 1.9538 0.0188 1.9826 0.0008 1.9989

55489 0.0625 0.0009 1.9738 0.0047 1.9907 0.0002 2.0003

221569 0.0312 0.0002 1.9874 0.0012 1.9953 0.0001 2.0002

dof2 Iter e(γ) r(γ) e(σ̃) r(σ̃) e(p̃) r(p̃)

137 6 0.0438 - 0.5606 - 0.0391 -

529 6 0.0122 1.8458 0.1345 2.059 0.0099 1.9797

2081 6 0.0035 1.7882 0.0338 1.9918 0.0025 1.9946

8257 6 0.001 1.8826 0.0085 1.9978 0.0006 1.9986

32897 6 0.0002 1.9415 0.0021 1.9995 0.0002 1.9997

Table 6.2: Example 1. Error history for the mixed finite element approximations of the systems (4.3)
and (4.4), respectively, computed with ℓ = 1. The degrees of freedom of the spaces Xh×Vh (dof1) and
Mh ×Qh (dof2), meshsizes and fixed-point iterations (Iter) are informed on each mesh refinement.

suspended solid particles move downward concentrating at the bottom of the channel, as expected. In
accordance with the no-slip boundary condition, the solid-fluid interface moves faster at the middle
of the channel and the concentration of solid particles increases towards the side walls and bottom.
Furthermore, on each time iteration, the conservation of mass is fulfilled. In addition, in the second
column of Figure 6.3, we show the simulation of Example 3 at the time points t = 5, 15, 20 and 35
seconds. We observe the downward falling of the solid particles which tend to concentrate at the
boundaries and move towards the bottom. A layer of concentrated particles is clearly divided from
a region of low concentration that shows the path that particles have followed in the sedimentation
process. The movement of the solid particles is not only vertical but also moves to the right due
accumulation of particles at the left side wall. In this simulation the conservation of mass is also
satisfied.

Examples 4 and 5

In the fourth and fifth example, we perform the batch sedimentation on an inclined channel of rectan-
gular cross-section with an angle of inclination of 30◦ degrees with respect to the vertical. The length
and width of the rectangular domain are 10 and 2 meters, respectively. In Example 4 the initial
condition chosen is

ϕ0(x) =

{
0.1 if x2 ≤ 8,

0 if x2 > 8,

and for Example 5 we consider an initial concentration varying with the width of the rectangle given
by

ϕ0(x) =

{
0.025 + 0.0433x1 − 0.025x2 if x2 ≤ 8,

0 if x2 > 8.

In Figure 6.3, first row, we show the simulation of Example 4 at the time points t = 6, 9 and 12
seconds. We observe that the solid particles tend to settle towards the down side wall (right wall) and
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Figure 6.2: Example 1: Magnitud plots of the tensorial and vector components of the numerical
solution of the coupled system (4.3)–(4.4) and plot of p̃ for h = 0.03125.

bottom as expected. However, at the top side wall (left wall) near the line x2 = 8 the solid particles
do not separate from the clear water immediately, but begin to settle at a slower pace, which can
be explained as a consequence of the no-slip boundary condition. Example 5 is shown in the bottom
row of Figure 6.3, for the time points t = 6, 15 and 20 seconds. In this case the initial concentration
is zero at the left side wall and increases continuously up to 0.1 at the right side wall. As in the
previous example the concentration increases towards the right side and bottom wall but due to the
initial concentration, the particles tend to separate from the left side wall. Already at t = 20 s, the
solid-liquid is located near the left side wall and only a small amount of particles at the middle of the
domain remain to settle. In both examples, the conservation of mass is fulfilled.

7 Discussion

We have introduced a model for multidimensional sedimentation based on the solid phase velocity
which can be seen as a simplified version of [45]. From the model consisting of three unknowns
and equations, we have studied the solutions of the decoupled velocity-pressure equations by using
mixed finite element approaches. The uniqueness of the decoupled system is shown depending on the
assumption that the function ξ is bounded and away from zero. Despite of the fact that the analysis
of existence and uniqueness of solutions relies on this condition, the case when ξ(ϕ) = 0 reduces to
the classical Stokes system which has been widely analyzed in the literature [42]. One of the main
advantages of having a mixed formulation is that extra variables, such as the pseudostress and vorticity
tensors, can be recovered as a component of the solution of the problem. Such variables may have
practical interest in the study of, for instance, the viscosity of mixtures [49]. Although the finite
element subspaces for system (4.3) are based on PEERS finite elements [9], other suitable election
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Figure 6.3: Examples 2 (left column) and 3 (right column): Batch sedimentation in a vessel with
inclined walls at four different time points. Both examples were computed with the same mesh with
h = 0.0803.

could be the Arnold-Falk-Winther subspaces [10], which are also stable.

A finite-volume method making use of an upwind flux approximation over a dual mesh is proposed
to get conservation of mass for the solids volume fraction when coupling to the mixed finite element
scheme for the velocity, pressure and additional variables. From the numerical examples we conclude
that the coupled numerical scheme performs well, it is estable under the sufficiently small time step
and gives physically relevant numerical solutions (cf., e.g., [14, 21]). Despite of the simple geometries
considered in the five examples, the scheme can be implemented for domains with more involved
geometries and even in three-dimensions. Another advantage of our model, as compared with, for
example, the classical q-model [23], is that the transport equation is linear in ϕ and a simple upwind
scheme is sufficient to obtain physically relevant approximate solutions.

The model equations, analysis and numerical scheme can be extended to include, for example, a
more general viscous stress tensor (eventually non-linear in u), a non-zero boundary condition for the
velocity field or to consider constitutive functions µ and ξ being able to assume zero values. Further
studies can be done to compare the model presented here with related systems, and also with problems
such as the one in [23].
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Figure 6.4: Examples 4 (top row) and 5 (bottom row): Sedimentation in inclined channel at four
different time points. Both examples were computed with the same mesh with h = 0.1569.
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