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Abstract

In this paper we extend the Banach spaces-based fully mixed approach recently developed for the
coupled Stokes and Poisson–Nernst–Planck equations, to cover the coupled Navier–Stokes and Poisson–
Nernst–Planck equations. In addition to the velocity and pressure of the fluid, the velocity gradient and
the Bernoulli-type stress tensor are added as further unknowns. Similarly, fully mixed formulations for
the Poisson and Nernst–Planck sub-problems are achieved by considering, alongside the electrostatic
potential and the concentration of ionized particles, the electric current field and total ionic fluxes
as new mixed variables. As a consequence, two saddle-point problems, one of them non-linear, and
both involving nonlinear source terms depending on the other unknowns, along with a perturbed
saddle-point problem that is in turn further perturbed by a bilinear form depending on the remaining
unknowns, constitute the resulting variational formulation of the whole coupled system. Fixed-point
strategies are then employed to prove, under smallness assumptions on the data, the well-posedness
of the continuous and associated Galerkin schemes, the latter for arbitrary finite element subspaces
under suitable stability assumptions. The main theoretical tools utilized include the Babuška–Brezzi
and Banach–Nečas–Babuška theories in Banach spaces, an abstract result for perturbed saddle-point
problems (also in Banach spaces), and the classical Banach and Brouwer fixed-point theorems. Strang-
type lemmas are then applied to establish a priori error estimates. Next, specific finite element subspaces
(defined by Raviart–Thomas elements of order k ě 0 and piecewise polynomials of degree ď k) are
shown to satisfy the required hypotheses, and this yields specific convergence rates. Finally, several
numerical results are reported, confirming the theoretical findings and illustrating the good performance
of the method.
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1 Introduction

Scope. In this paper we develop a Banach spaces-based formulation yielding a new mixed finite element
method for the coupled Navier–Stokes and Poisson–Nernst–Planck equations. This coupled PDE system
is a remarkable example of multiphysics models where electrically charged ions interact in a complex
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manner, and at different spatial scales, with the flow behaviour of incompressible viscous fluid. Fluid
mixtures of this type are essential in modeling fuel cells, ion channel behavior in cell membranes of
biological tissues, electrodialysis and similar mechanisms used in the process of water desalination, and
many other instances.

These models for single-phase electrohydrodynamic flows are composed by the coupled system of fluid
flow (for example, the Navier–Stokes equations), ion transport (the Nernst–Planck equations with advec-
tion) and electrostatics (here a generalized Poisson equation). Obtaining accurate and stable numerical
solutions for these complex systems is key to produce reliable simulations. While the computation with
high-order methods and other schemes has been studied thoroughly in the literature going back several
decades, the rigorous theoretical analysis of finite element and similar methods for the system under
consideration here, initiated in the classical work [25], where the authors establish convergence of a finite
element method using a projection method à la Chorin–Temam. Subsequently, a number of discretization
methods have been proposed and their numerical analysis (discrete solvability, stability, convergence) has
been conducted, including primal [22, 23, 24], primal-mixed (meaning in our context that the equations
of Poisson–Nernst–Planck are written in mixed form but the incompressible flow problem is in classical
velocity - pressure formulation) [19, 20], discontinuous Galerkin, and virtual elements [14].

One of our goals is to include conservativity of mass, momentum, energy, and charge in the formulation.
A way of doing this is to use fully mixed formulations, that is, solving also for other unknowns of interest
such as pseudostress, vorticity, fluxes, and so on. Using numerical methods based on fully mixed variational
formulations enjoys many advantages. However, in such a case, regularity issues may appear in treating the
convective and advective terms as well as in the other coupling mechanisms. Remedies exist, for example
augmentation (adding redundant Galerkin residual terms to endow the final formulation with the necessary
regularity to control nonlinearities in usual Hilbert spaces). While this approach allows us to treat the
convective and advective nonlinearities, it fails in maintaining the key feature of local conservativity (of
momentum and mass, for example). Relatively recent efforts have been done in designing an alternative
approach, where one looks at the fully mixed forms of the underlying problem without augmenting them.
In turn, one requires to work on a more general functional setting, for example on Banach spaces. This
is a classic idea going back to the work [3], which has got fresh attention due to the possibility of writing
more and more complex nonlinearly coupled multiphysics problems in mixed form. As a non-exhaustive
list of contributions taking advantage of the use of Banach frameworks for solving the aforementioned
kind of problems, we refer to [2, 4, 6, 7, 8, 10, 11, 17, 18, 21].

Using these arguments, in [13] the authors have recently introduced a Banach spaces-based mixed finite
element method for a slightly simpler model: the coupled Stokes and Poisson–Nernst–Planck equations.
Even if the underlying model difference is just the presence of the convective term, we note that the
structure of a fully mixed form for the Navier–Stokes equations requires a different setup – for example,
employing different mixed variables sought in different spaces than those used for Stokes flows in fully
mixed form. Moreover, the results in this paper extend further the analysis carried out in [13] by utilizing
a different fixed-point strategy.

Outline. The rest of the manuscript is organized as follows. Notations and basic definitions to be utilized
throughout the paper are collected in the remainder of this section. Section 2 states the strong form of
the coupled problem, in its usual primal form, and also defining the new mixed variables. The weak
formulation is defined in Section 3, and the the well-posedness analysis of the continuous weak problem
is developed in Section 4. The Galerkin method is defined in Section 5. There we also show its unique
solvability and provide a generic error estimate. Section 6 specifies finite element subspaces and states
the expected orders of convergence. Section 7 showcases a number of numerical examples which serve as
computational confirmation of the theoretical convergence rates computed in appropriate weighted norms,
and other tests that exemplify the use of the proposed family of fully mixed methods in the simulation of
ionized electrolyte flows.
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Preliminary definitions and notational conventions. Throughout the paper, Ω is a bounded
Lipschitz-continuous domain of Rn, n P

␣

2, 3
(

, with polygonal (resp. polyhedral) boundary Γ in R2

(resp. R3), and whose outward normal at Γ :“ BΩ is denoted by ν. Standard notation will be adopted

for Lebesgue spaces LtpΩq and Sobolev spaces Wl,tpΩq and Wl,t
0 pΩq, with l ě 0 and t P r1,`8q, whose

norms, either for the scalar and vectorial case, are denoted by } ¨ }0,t;Ω and } ¨ }l,t;Ω, respectively. Note
that W0,tpΩq “ LtpΩq, and if t “ 2 we write HlpΩq instead of Wl,2pΩq, with norm and seminorm denoted
by } ¨ }l,Ω and | ¨ |l,Ω, respectively. In addition, letting t, t1 P p1,`8q conjugate to each other, that is
such that 1{t ` 1{t1 “ 1, we denote by W1{t1,tpΓq the trace space of W1,tpΩq, and let W´1{t1,t1

pΓq be the
dual of W1{t1,tpΓq endowed with the norms } ¨ }´1{t1,t1;Γ and } ¨ }1{t1,t;Γ, respectively. On the other hand,
given any generic scalar functional space M, we let M and M be the corresponding vectorial and tensorial
counterparts, whereas } ¨ } will be employed for the norm of any element or operator whenever there is no
confusion about the spaces to which they belong. Furthermore, as usual, I stands for the identity tensor
in R :“ Rnˆn, and | ¨ | denotes the Euclidean norm in R :“ Rn. Also, for any vector field v “ pviqi“1,n

we set the gradient and divergence operators, respectively, as

∇v :“

ˆ

Bvi
Bxj

˙

i,j“1,n

, divpvq :“
n
ÿ

j“1

Bvj
Bxj

and v b w :“ pviwjqi,j“1,n .

Additionally, for any tensor fields τ “ pτijqi,j“1,n and ζ “ pζijqi,j“1,n, we let divpτ q be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product
operators, and the deviatoric tensor, respectively, as

τ t “ pτjiqi,j“1,n, trpτ q “

n
ÿ

i“1

τ ii, τ : ζ :“
n
ÿ

i,j“1

τijζij , and τ d :“ τ ´
1

n
trpτ qI .

On the other hand, given t P p1,`8q, we also introduce the Banach spaces

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

, (1.1a)

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

, (1.1b)

Htpdivt; Ωq :“
!

τ P LtpΩq : divpτ q P LtpΩq

)

, (1.1c)

which are endowed with the natural norms defined, respectively, by

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq , (1.2a)

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq , (1.2b)

}τ }t,divt;Ω :“ }τ }0,t;Ω ` }divpτ q}0,t;Ω @ τ P Htpdivt; Ωq . (1.2c)

Then, proceeding as in [16, eq. (1.43), Section 1.3.4] (see also [5, Section 4.1] and [10, Section 3.1]), it is
easy to show that for each t ě 2n

n`2 there holds

xτ ¨ ν, vy “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Hpdivt; Ωq ˆ H1pΩq , (1.3a)

xτ ν,vy “

ż

Ω

!

τ : ∇v ` v ¨ divpτ q

)

@ pτ ,vq P Hpdivt; Ωq ˆ H1pΩq , (1.3b)

where x¨, ¨y is the duality pairing between H´1{2pΓq and H1{2pΓq, as well as between H´1{2pΓq and H1{2pΓq.
Furthermore, given t, t1 P p1,`8q conjugate to each other, there also holds (cf. [15, Corollary B. 57])

xτ ¨ ν, vyΓ “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Htpdivt; Ωq ˆ W1,t1

pΩq , (1.4)

where x¨, ¨yΓ stands for the duality pairing between W´1{t,tpΓq and W1{t,t1

pΓq.
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2 The model problem

We consider the electrohydrostatic model describing the flow of a Newtonian and incompressible fluid
occupying the domain Ω, and whose mathematical representation is given by the coupled Navier–Stokes
and Poisson–Nernst–Planck equations. Its behavior is determined by the concentrations ξ1 and ξ2 of
ionized particles, and by the electric current field φ. More precisely, and regarding firstly the fluid, we
look for the velocity u and the pressure p such that pu, pq is solution to the Navier–Stokes equations

´µ∆u ` λ p∇uqu ` ∇p “ ´ pξ1 ´ ξ2q ε´1φ ` f in Ω ,

divpuq “ 0 in Ω , u “ g on Γ ,

ż

Ω
p “ 0 ,

(2.1)

where µ is the constant dynamic viscosity, λ is the fluid density, ε is the dielectric coefficient, also known
as the electric conductivity coefficient, f is a source term, g is the Dirichlet datum for u on Γ, and the null
mean value of p has been incorporated as a uniqueness condition for this unknown. Note that, due to the
incompressibility of the fluid (cf. second equation of (2.1)), g must satisfy the compatibility condition

ż

Γ
g ¨ ν “ 0 . (2.2)

Furthermore, φ, ξ1 and ξ2 solve the Poisson–Nernst–Planck equations, given by

φ “ ε∇χ in Ω , ´divpφq “ pξ1 ´ ξ2q ` f in Ω ,

χ “ g on Γ ,
(2.3)

where χ is the electrostatic potential, and for each i P
␣

1, 2
(

ξi ´ div
`

κip∇ξi ` qi ξi ε
´1φq ´ ξi u

˘

“ fi in Ω ,

ξi “ gi on Γ ,
(2.4)

where κ1 and κ2 are the diffusion coefficients, qi :“

"

1 if i “ 1
´1 if i “ 2

is the charge of each particle, f , f1,

and f2 are external forces, and g, g1 and g2 are Dirichlet data for χ, ξ1 and ξ2, respectively, on Γ. We
end the description of the model by remarking that ε, κ1, and κ2 are all assumed to be bounded above
and below, which means that there exist positive constants ε0, ε1, κ, and κ̄, such that

ε0 ď εpxq ď ε1 and κ ď κipxq ď κ̄ for almost all x P Ω , @ i P
␣

1, 2
(

. (2.5)

Since we are interested in employing a fully-mixed variational formulation for the coupled model (2.1) –
(2.4), we first adopt the approach from [11] (see also [10]) for the fluid and introduce the velocity gradient
and the Bernoulli-type stress tensor as further unknowns, that is

t :“ ∇u in Ω and σ :“ µ t ´
λ

2
pu b uq ´ p I in Ω . (2.6)

In this way, noting that divpu b uq “ p∇uqu “ tu, which follows from the fact that divpuq “ 0, we find
that the first equation of (2.1) can be rewritten as

´divpσq `
λ

2
tu “ ´ pξ1 ´ ξ2q ε´1φ ` f in Ω .

Next, taking matrix trace and the deviatoric part of the second equation of (2.6), we find that the latter
and the incompressibility condition, which becomes now trptq “ 0, are equivalent to the pair

σd “ µ t ´
λ

2
pu b uqd in Ω and p “ ´

1

n
tr
´

σ `
λ

2
pu b uq

¯

in Ω , (2.7)
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whence the pressure can be eliminated from the formulation and computed afterwards in terms of σ and
u as indicated in the second column of (2.7).

On the other hand, for the Nernst–Planck equations we introduce for each i P
␣

1, 2
(

the total fluxes

σi :“ κi p∇ξi ` qi ξi ε
´1φq ´ ξi u in Ω ,

so that the respective transport equation reads now ξi ´ divpσiq “ fi in Ω . Consequently, (2.1) –
(2.4) can then be rewritten in terms of t, σ, u, φ, χ, σi and ξi, i P

␣

1, 2
(

, as

t “ ∇u in Ω ,

σd “ µ t ´ λ
2 pu b uqd in Ω , divpσq ´ λ

2 tu “ pξ1 ´ ξ2q ε´1φ´ f in Ω ,

u “ g on Γ ,
ş

Ω tr
`

σ ` λ
2 pu b uq

˘

“ 0 ,

1
εφ “ ∇χ in Ω , ´divpφq “ pξ1 ´ ξ2q ` f in Ω ,

χ “ g on Γ ,

1
κi
σi “ ∇ξi ` qi ξi ε

´1φ ´ κ´1
i ξi u in Ω ,

ξi ´ divpσiq “ fi in Ω , ξi “ gi on Γ , i P
␣

1, 2
(

.

(2.8)

And we note that the uniqueness condition for p rewrites equivalently as the null mean value constraint
for tr

`

σ ` λ
2 pu b uq

˘

.

3 The fully-mixed formulation

In this section we derive a Banach spaces-based fully-mixed formulation of (2.8). We use the integra-
tion by parts formulae (1.3a) - (1.4) along with the Cauchy–Schwarz and Hölder inequalities. We split
the discussion into a preliminary discussion on functional spaces, and then present each sub-problem
separately.

3.1 Preliminaries

We begin by determining the right spaces where the unknowns must be sought by taking a closer look
at the terms λ

2 tu,
λ
2 pu b uq, pξ1 ´ ξ2q ε´1φ , qi ξi ε

´1φ and κ´1
i ξi u in the second and sixth rows of

(2.8). To be more precise, ignoring the bounded functions ε´1, and κ´1
i , as well as the constant qi, an

immediate application of the Cauchy–Schwarz and Hölder inequalities, yields

ˇ

ˇ

ˇ

ˇ

ż

Ω
pξ1 ´ ξ2qφ ¨ v

ˇ

ˇ

ˇ

ˇ

ď }ξ1 ´ ξ2}0,2ℓ;Ω }φ}0,2j;Ω }v}0,Ω , (3.1a)

ˇ

ˇ

ˇ

ˇ

ż

Ω
pu b uq : s

ˇ

ˇ

ˇ

ˇ

ď }u}0,4;Ω }u}0,4;Ω }s}0,Ω , (3.1b)

ˇ

ˇ

ˇ

ˇ

ż

Ω
tu ¨ v

ˇ

ˇ

ˇ

ˇ

ď }t}0,Ω }u}0,4;Ω }v}0,4;Ω , (3.1c)

ˇ

ˇ

ˇ

ˇ

ż

Ω
ξiφ ¨ τ i

ˇ

ˇ

ˇ

ˇ

ď }ξi}0,2ℓ;Ω }φ}0,2j;Ω }τ i}0,Ω , (3.1d)

ˇ

ˇ

ˇ

ˇ

ż

Ω
ξi u ¨ τ i

ˇ

ˇ

ˇ

ˇ

ď }ξi}0,2ℓ;Ω }u}0,2j;Ω }τ i}0,Ω , (3.1e)

where ℓ, j P p1,`8q are conjugate to each other; and v and τ i are test functions associated to u and σi,
respectively. In this way, denoting

ρ :“ 2ℓ , ϱ :“
2ℓ

2ℓ ´ 1
(conjugate of ρ) , r :“ 2j , and s :“

2j

2j ´ 1
(conjugate of r) , (3.2)
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it follows that the above expressions make sense for ξi P LρpΩq, φ P LrpΩq, u, v P L4pΩq, t, s P L2pΩq,
and τ i P L2pΩq. Since we need that u P L4pΩq, we impose that 2j ď 4. The specific choice of ℓ (and
hence of j, ρ, r and the respective conjugates ϱ and s) will be addressed later on. In the meantime we
consider generic values in (3.2). Moreover, since φ P LrpΩq, from the first equation in the fourth row of
(2.8), we deduce that χ should be initially sought in W1,rpΩq.

In turn, for reasons that will become clear below and owing to the continuous embedding from H1pΩq

in LtpΩq for t P p1,`8q in R2 (resp. t P p1, 6s in R3), the unknowns ξi and u are initially sought in H1pΩq

and H1pΩq, respectively, assuming that ρ P p2,`8q and r P p2, 4s in R2, and ρ P p2, 6s and r P p2, 4s in R3.
In terms of ℓ, the latter constraint becomes ℓ P r32 , 3s, which yields ρ P r3, 6s. Equivalently, j P r32 , 2s and
r P r3, 4s, though going through the respective intervals in the opposite direction to ℓ and ρ, respectively.

3.2 The Navier–Stokes equations

The analysis of the mixed formulation for the Navier–Stokes equations is inspired by the work done by
[6, Section 2.1]. As they do, we first assume that g P H1{2pΓq. Then, by a direct application of (1.3b)
with t ě 2n

n`2 and τ P Hpdivt; Ωq, we test the first equation of (2.8) obtaining

ż

Ω
τ : t `

ż

Ω
u ¨ divpτ q “ xτ ν,gyΓ @ τ P Hpdivt; Ωq . (3.3)

It is easy to notice that, thanks to Cauchy–Schwarz’s inequality and the free trace property of t, the first
term of (3.3) makes sense for t P L2

trpΩq, where

L2
trpΩq :“

!

s P L2pΩq : trpsq “ 0
)

.

In turn, knowing that divpτ q P LtpΩq, and using Hölder’s inequality, we deduce from the second term
of (3.3) that, we look for u P Lt1

pΩq, where t1 is the conjugate of t. On the other hand, testing the first
equation of the second row of (2.8) against tensors in L2pΩq, we get

´

ż

Ω
σ : s ` µ

ż

Ω
t : s ´

λ

2

ż

Ω
pu b uq : s “ 0 @ s P L2

trpΩq , (3.4)

from where, by the Cauchy–Schwarz and Hölder inequalities, we deduce that the third term makes sense
for u P L4pΩq setting t1 “ 4 and therefore t “ 4{3. Furthermore, aiming to use the same space of τ , then
we seek σ P Hpdiv4{3; Ωq as well. On the other hand, as we know that divpσq P L4{3pΩq, we test the
second equation of the second row of (2.8) against vector functions in L4pΩq, which yields

´

ż

Ω
divpσq ¨ v `

λ

2

ż

Ω
tu ¨ v “

ż

Ω
pξ2 ´ ξ1q ε´1φ ¨ v `

ż

Ω
f ¨ v @v P L4pΩq . (3.5)

Notice from the above deduction and the already established spaces for t, u and v, that the first, second
and fourth terms of (3.5) are well-defined, the latter if the datum f belongs to L4{3pΩq, which is henceforth
assumed. As for the third, which will depend on where to look ξ :“ pξ1 , ξ1q and φ, we will refer to it
later. We now consider the decomposition

Hpdiv4{3; Ωq “ H0pdiv4{3; Ωq ‘ R I , (3.6)

where

H0pdiv4{3; Ωq :“
!

τ P Hpdiv4{3; Ωq :

ż

Ω
trpτ q “ 0

)

, (3.7)

implying that σ can be uniquely decomposed (also using the second equation of the third row of (2.8)),
as σ “ σ0 ` c0I, where

σ0 P H0pdiv4{3; Ωq and c0 :“
1

n|Ω|

ż

Ω
trpσq “ ´

λ

2n |Ω|

ż

Ω
trpu b uq . (3.8)
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Thus, similarly to the case of the pressure, the constant c0 can be computed once the velocity is known,
and hence it only remains to obtain σ0. In this regard, we notice that (3.4) and (3.5) do not change if σ
is replaced by σ0. In turn, as t is sought in L2

trpΩq, and using the compatibility condition (2.2), we realize
that testing (3.3) against τ P Hpdiv4{3; Ωq is equivalent to doing it against τ P H0pdiv4{3; Ωq. Therefore,
taking into account the above discussion, and introducing the notations

u⃗ “ pu, tq , v⃗ “ pv, sq , w⃗ “ pw,ϑq P H :“ L4pΩq ˆ L2
trpΩq , and Q :“ H0pdiv4{3; Ωq ,

we redenote from now on σ0 as simply σ P Q. Then, from the expressions (3.3), (3.4) and (3.5), we state
the following mixed formulation for the Navier–Stokes equations: Find pu⃗,σq P H ˆ Q such that

apu⃗, v⃗q ` cpu; u⃗, v⃗q ` bpv⃗,σq “ Fξ,φpv⃗q @ v⃗ P H ,

bpu⃗, τ q “ Gpτ q @ τ P Q ,
(3.9)

where, given z P L4pΩq, the bilinear forms a : H ˆ H Ñ R, b : H ˆ Q Ñ R, and cpz; ¨, ¨q : H ˆ H Ñ R,
are defined as

apw⃗,vq :“ µ

ż

Ω
ϑ : s @ w⃗ , v⃗ P H ,

bpv⃗, τ q :“ ´

ż

Ω
τ : s ´

ż

Ω
v ¨ divpτ q @ pv⃗, τ q P H ˆ Q ,

and

cpz; w⃗, v⃗q :“
λ

2

"
ż

Ω
ϑ z ¨ v ´

ż

Ω
pw b zq : s

*

@ w⃗, v⃗ P H ,

whereas, given η :“ pη1, η2q and ϕ in the same spaces where ξ and φ will be sought respectively, the
linear functionals Fη,ϕ : H Ñ R and G : Q Ñ R are given by

Fη,ϕpv⃗q :“

ż

Ω
pη2 ´ η1q ε´1ϕ ¨ v `

ż

Ω
f ¨ v @ v⃗ P H , (3.10)

and
Gpτ q :“ ´ xτν, gyΓ @ v⃗ P Q . (3.11)

In turn, it is easy to see that a, b, cpz, ¨, ¨q, and G are bounded. In fact, using the norms

}v⃗}H :“ }v}0,4;Ω ` }s}0,Ω @ v⃗ :“ pv, sq P H , }τ }Q :“ }τ }div4{3;Ω @ τ P Q ,

applying the Cauchy–Schwarz and Hölder inequalities, and using (1.3b) along with the continuous injection
i4 : H

1pΩq Ñ L4pΩq, we find that there exist positive constants, denoted and given as

}a} :“ µ , }b} :“ 1 , }c} :“
λ

2
, }G} :“ p1 ` }i4}q }g}1{2,Γ ,

and }F} :“ max
␣

ε´1
0 |Ω|1{4, 1

(

,

such that

|apw⃗, v⃗q| ď }a} }w⃗}H }v⃗}H @ w⃗ , v⃗ P H ,

|bpv⃗, τ q| ď }b} }v⃗}H }τ }Q @ pv⃗, τ q P H ˆ Q ,

|cpz; w⃗, v⃗q| ď }c} }z}0,4;Ω }w}H }v⃗}H @ z P L4pΩq , @ , w⃗, v⃗ P H , and

|Gpτ q| ď }G} }τ }Q @ τ P Q .

(3.12)

and
|Fη,ϕpvq| ď }F}

!

}η1 ´ η2}0,ρ;Ω }ϕ}0,r;Ω ` }f}0,4{3;Ω

)

}v}0,4;Ω @v P L4pΩq .

Furthermore, simple algebraic calculations show that

cpz; v⃗, v⃗q “ 0 @ z P L4pΩq , @ v⃗ P H . (3.13)
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3.3 The electrostatic potential equations

The derivation of the mixed formulation for the electrostatic potential equations (fourth and fifth rows of
(2.8)) has been presented in [13, Section 3.3]. It reads: Find pφ, χq P X2 ˆ M1 such that

apφ,ψq ` b1pψ, χq “ Fpψq @ψ P X1 ,

b2pφ, λq “ Gξpλq @λ P M2 ,
(3.14)

where
X2 :“ Hrpdivr; Ωq , M1 :“ LrpΩq , X1 :“ Hspdivs; Ωq , M2 :“ LspΩq ,

and the bilinear forms a : X2 ˆ X1 Ñ R and bi : Xi ˆ Mi Ñ R, i P
␣

1, 2
(

, and the functional F : X1 Ñ R,
are defined, respectively, as

apϕ,ψq :“

ż

Ω

1

ε
ϕ ¨ψ @ pϕ,ψq P X2 ˆ X1 , (3.15)

bipψ, λq :“

ż

Ω
λdivpψq @ pψ, λq P Xi ˆ Mi , (3.16)

Fpψq :“ xψ ¨ ν, gyΓ @ψ P X1 , (3.17)

whereas, given η :“ pη1, η2q P LρpΩq, the functional Gη : M2 Ñ R is defined by

Gηpλq :“ ´

ż

Ω
λ pη1 ´ η2q ´

ż

Ω
f λ @λ P M2 . (3.18)

Note from (3.1a) - (3.1e) that η1 and η2 must belong to LρpΩq. Also, in order for the first term on the
right-hand side of (3.18) to make sense, we require that ρ ě r.

For the boundedness of a, bi, i P
␣

1, 2
(

, F, and Gη, we recall that the norm of X1 and X2 are defined
by (1.2c) with t “ s and t “ r, respectively, whereas those of M1 and M2 are given by } ¨ }0,r;Ω and
} ¨ }0,s;Ω, respectively. Then, employing again the Cauchy–Schwarz and Hölder inequalities, bounding ε´1

according to (2.5), and using that } ¨ }0,r;Ω ď |Ω|pρ´rq{ρr } ¨ }0,ρ;Ω, which follows from the fact that ρ ě r,
we find that there exist positive constants

}a} :“
1

ε0
, }b1} “ }b2} :“ 1 , and }G} :“ max

!

1, |Ω|pρ´rq{ρr
)

,

such that
|apϕ,ψq| ď }a} }ϕ}X2 }ψ}X1 @ pϕ,ψq P X2 ˆ X1 ,

|bipψ, λq| ď }bi} }ψ}Xi }λ}Mi @ pψ, λq P Xi ˆ M1 , @ i P
␣

1, 2
(

, and

|Gηpλq| ď }G}

!

}η1 ´ η2}0,ρ;Ω ` }f}0,r;Ω

)

}λ}0,s;Ω @λ P M2 .

(3.19)

Regarding the boundedness of F, we need to apply [15, Lemma A.36], which, along with the surjectivity
of the trace operator mapping W1,rpΩq onto W1{s,rpΓq, yields the existence of a fixed positive constant
Cr, such that for the given g P W1{s,rpΓq, there exists vg P W1,rpΩq satisfying vg|Γ “ g and

|Fpψq| ď }F} }ψ}X1 @ψ P X1 , with }F} :“ Cr }g}1{s,r;Γ .

3.4 The ionized particles concentration equations

The following mixed variational formulation for the ionized particles concentration equations has been
proposed in [13]: Find pσi, ξiq P Hi ˆ Qi such that

aipσi, τ iq ` cipτ i, ξiq ´ cφ,upτ i, ξiq “ Fipτ iq @ τ i P Hi ,

cipσi, ηiq ´ dipξi, ηiq “ Gipηiq @ ηi P Qi ,
(3.20)
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where
Hi :“ Hpdivϱ; Ωq , Qi :“ LρpΩq , (3.21)

and the bilinear forms ai : Hi ˆ Hi Ñ R, ci : Hi ˆ Qi Ñ R, and di : Qi ˆ Qi Ñ R, and the functionals
Fi : Hi Ñ R and Gi : Qi Ñ R, are defined, respectively, as

aipζi, τ iq :“

ż

Ω

1

κi
ζi ¨ τ i @ pζi, τ iq P Hi ˆ Hi , (3.22a)

cipτ i, ηiq :“

ż

Ω
ηi divpτ iq @ pτ i, ηiq P Hi ˆ Qi , (3.22b)

dipϑ, ηiq :“

ż

Ω
ϑi ηi @ pϑi, ηiq P Qi ˆ Qi , (3.22c)

Fipτ iq :“ xτ i ¨ ν, giy @ τ i P Hi , (3.22d)

Gipηiq :“ ´

ż

Ω
fi ηi @ ηi P Qi , (3.22e)

whereas, given pϕ,vq P X2 ˆ L4pΩq, the bilinear form cϕ,v : Hi ˆ Qi Ñ R is set as

cϕ,vpτ i, ηiq :“

ż

Ω

!

qi ηi ε
´1ϕ ´ κ´1

i ηi v
)

¨ τ i @ pτ i, ηiq P Hi ˆ Qi .

It is concluded that ai, ci, di, Fi, Gi and cϕ,v are all bounded with the norm defined by (1.2a) with
t “ ϱ for Hi, and certainly the norm } ¨ }0,ρ;Ω for Qi. Indeed, applying the Cauchy–Schwarz and Hölder
inequalities, bounding both ε´1 and κ´1 according to (2.5), noting that } ¨ }0,Ω ď |Ω|pρ´2q{2ρ} ¨ }0,ρ;Ω,
invoking the identity (1.3a) and the continuous injection iρ : H1pΩq Ñ LρpΩq, and utilizing (3.1d) and
(3.1e), we find that there exist positive constants

}ai} :“
1

κ
, }ci} :“ 1 , }di} :“ |Ω|pρ´2q{ρ , }Fi} :“ p1 ` }iρ}q }gi}1{2,Γ ,

}Gi} :“ }fi}0,ϱ;Ω , and }c} :“ max
␣

ε´1
0 , κ´1

(

,

such that

|aipζi, τ iq| ď }ai} }ζi}Hi }τ i}Hi @ pζi, τ iq P Hi ˆ Hi ,

|cipτ i, ηiq| ď }ci} }τ i}Hi }ηi}Qi @ pτ i, ηiq P Hi ˆ Qi ,

|dipϑi, ηiq| ď }di} }ϑ}Qi }ηi}Qi @ pϑ, ηiq P Qi ˆ Qi ,

|Fipτ iq| ď }Fi} }τ i}Hi @ τ i P Hi ,

|Gipηiq| ď }Gi} }ηi}Qi @ ηi P Qi and

|cϕ,vpτ i, ηiq| ď }c}
!

}ϕ}0,r;Ω ` }v}0,r;Ω

)

}ηi}0,ρ;Ω }τ i}0,Ω @ pτ i, ηiq P Hi ˆ Qi .

In the rest of the paper will be used indistinctly either }η}Q1ˆQ2 or }η}0,ρ;Ω, where

}η}0,ρ;Ω :“ }η1}0,ρ;Ω ` }η2}0,ρ;Ω @η :“ pη1, η2q P Q1 ˆ Q2 .

Summarizing, and putting together (3.9), (3.14), and (3.20), we find that, under the assumptions that
f P L4{3pΩq, g P H1{2pΓq, f P LrpΩq, g P W1{s,rpΓq, fi P LϱpΩq, gi P H1{2pΓq, and ρ ě r, the weak form of
(2.8) reduces to: Find pu⃗,σq P H ˆ Q, pφ, χq P X2 ˆ M1, and pσi, ξiq P Hi ˆ Qi, i P t1, 2u, such that

apu⃗, v⃗q ` cpu; u⃗, v⃗q ` bpv⃗,σq “ Fξ,φpv⃗q @ v⃗ P H ,

bpu⃗, τ q “ Gpτ q @ τ P Q ,

apφ,ψq ` b1pψ, χq “ Fpψq @ψ P X1 ,

b2pφ, λq “ Gξpλq @λ P M2 ,

aipσi, τ iq ` cipτ i, ξiq ´ cφ,upτ i, ξiq “ Fipτ iq @ τ i P Hi ,

cipσi, ηiq ´ dipξi, ηiq “ Gipηiq @ ηi P Qi .

(3.23)
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4 The continuous solvability analysis

In this section we proceed similarly to how it was done in [10] and [17] (see also [2, 5, 6, 13, 18], and some
of the references therein) and adopt a fixed-point strategy to analyze the solvability of (3.23)

4.1 The fixed-point approach

We begin by rewriting (3.23) as an equivalent fixed-point equation, for which we first introduce the
operator S : L4pΩq ˆ pQ1 ˆ Q2q ˆ X2 Ñ L4pΩq defined by

Spz,η,ϕq “ u @ pz,η,ϕq P L4pΩq ˆ pQ1 ˆ Q2q ˆ X2 ,

where pu⃗,σq “ ppu, tq,σq P H ˆ Q is the unique solution (conditions for its existence are to be derived
below) of the problem (3.9) (equivalently, the first and second rows of (3.23)) when cpu, ¨, ¨q and Fξ,φ are
replaced by cpz, ¨, ¨q and Fη,ϕ, respectively, that is

apu⃗, v⃗q ` cpz; u⃗, v⃗q ` bpv⃗,σq “ Fη,ϕpv⃗q @ v⃗ P H ,

bpu⃗, τ q “ Gpτ q @ τ P Q .
(4.1)

In turn, we also introduce the operator T̄ : Q1 ˆ Q2 Ñ X2 defined as

T̄pηq :“ φ @η P Q1 ˆ Q2 ,

where pφ, χq P X2 ˆ M1 is the unique solution (to be confirmed below) of problem (3.14) (equivalently,
the third and fourth rows of (3.23)) with η instead of ξ

apφ,ψq ` b1pψ, χq “ Fpψq @ψ P X1 ,

b2pφ, λq “ Gηpλq @λ P M2 .
(4.2)

Similarly, for each i P t1, 2u, we define the operator rTi : X2 ˆ L4pΩq Ñ Qi as

rTipϕ,vq :“ ξi @ pϕ,vq P X2 ˆ L4pΩq ,

where pσi, ξiq P Hi ˆ Qi is the unique solution (to be confirmed below) of problem (3.20) (equivalently,
the fifth and sixth rows of (3.23)) with pϕ,vq instead pφ,uq, that is

aipσi, τ iq ` cipτ i, ξiq ´ cϕ,vpτ i, ξiq “ Fipτ iq @ τ i P Hi ,

cipσi, ηiq ´ dipξi, ηiq “ Gipηiq @ ηi P Qi ,
(4.3)

so that we can define the operator rT : X2 ˆ L4pΩq Ñ pQ1 ˆ Q2q as

rTpϕ,vq :“
´

rT1pϕ,vq, rT2pϕ,vq

¯

“ pξ1, ξ2q “: ξ @ pϕ,vq P X2 ˆ L4pΩq . (4.4)

Finally, defining the operator T : X2 ˆ L4pΩq Ñ X2 ˆ L4pΩq as

Tpϕ, zq :“
´

T̄prTpϕ, zqq,S
`

z, rTpϕ, zq, T̄prTpϕ, zqq
˘

¯

, (4.5)

we observe that solving (3.23) is equivalent to seeking a fixed point of T, that is: Find pφ,uq P X2ˆL4pΩq

such that
Tpφ,uq “ pφ,uq .
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4.2 Well-posedness of the uncoupled problems

In this section we show that the problems (4.1), (4.2) and (4.3) are well-posed; and therefore the respective
operators S, T̄, and rTi are well-defined. To that end, we will employ Babuška–Brezzi theory in Banach
spaces for the general case (cf. [3, Theorem 2.1, Corollary 2.1, Section 2.1], and for a particular one
[15, Theorem 2.34]), as well as a recently established result for perturbed saddle point formulations in
Banach spaces (cf. [12, Theorem 3.4]) along with the Banach–Nečas–Babuška Theorem (also known as
the generalized Lax–Milgram Lemma) (cf. [15, Theorem 2.6]).

To prove that, given an arbitrary pz,η,ϕq P L4pΩq ˆ pQ1 ˆ Q2q ˆ X2, (4.1) is well-posed, equivalently
that S is well-defined, we cite the work done in [6, Section 3.2.1] and the references therein. It has to be
emphasized that α will denote the V´ellipticity constant of a, β is the constant of the inf-sup condition
of b and i4 denotes the continuous injection of H1pΩq into L4pΩq (for more details see [6, Section 3.2.1]).
In turn, they proved the following lemma.

Lemma 4.1. For each pz,η,ϕq P L4pΩqˆpQ1ˆQ2qˆX2 there exists a unique pu⃗,σq “ ppu, tq,σq P HˆQ
solution of (4.1), and hence one can define Spz,η,ϕq :“ u P L4pΩq. Moreover, there exists a positive
constant CS, depending only on |Ω|, }i4}, µ, λ, α and β, such that

}Spz,η,ϕq}0,4;Ω “ }u}0,4;Ω ď }u⃗}H ď CS

!

}η}0,ρ;Ω}ϕ}0,r;Ω ` }f}0,4{3;Ω ` p1 ` }z}0,4;Ωq}g}1{2,Γ

)

. (4.6)

Proof. The proof is analogous to that of [6, Lemma 3.1].

Furthermore, proceeding similarly to the derivation of (4.6) (see [6, Lemma 3.1]), we get

}σ}Q “ }σ}div4{3;Ω ď C̄Sp1 ` }z}0,4;Ωq

!

}η}0,ρ;Ω}ϕ}0,r;Ω ` }f}0,4{3;Ω ` p1 ` }z}0,4;Ωq}g}1{2,Γ

)

, (4.7)

where C̄S is a positive constant depending, as well, on |Ω|, i4, µ, λ, α, and β.

In order to prove that, given an arbitrary η P Q1 ˆ Q2, problem (4.2) is well-posed (and, equivalently,
that T̄ is well-defined), we take inspiration from the work done in [13, Section 4.2.2] and the references
therein. It should be noted that throughout the analysis performed in [13, Section 4.2.2] for the well-
definedness of T̄, suitable ranges were specified for the index of each space (cf. [13, Lemma 4.4]), in
particular for l and, consequently, for j, r, s, ρ, and ϱ. In our case, we have that 2j ď 4. Therefore, these
ranges do not change, and the appropriate ranges needed for the analysis will be as follows

#

l P r2,`8q , j P p1, 2s , ρ P r4,`8q , ϱ P p1, 4{3s , r P p2, 4s , s P r4{3, 2q if n “ 2 ,

l “ 3 , j “ 3{2 , ρ “ 6 , ϱ “ 6{5 , r “ 3 , s “ 3{2 if n “ 3 .

On the other hand, as a consequence of [13, Lemmas 4.3 and 4.4] and the boundedness stated in (3.19),
we are able to conclude that the operator T̄ is well-defined. More precisely, we denote by ᾱ and β̄i the
inf-sup constants for the bilinear forms a and bi, i P t1, 2u, respectively (cf. [13, Lemmas 4.3 and 4.4,
respectively]), and state the following result from [13, Theorem 4.5].

Theorem 4.2. For each η P Q1 ˆQ2 there exists a unique pφ, χq P X2 ˆM1 solution to (4.2), and hence
one can define T̄pηq :“ φ P X2. Moreover, there exists a positive constant CT̄, depending only on, ε0,
Cr, |Ω|, ᾱ, and β̄2, such that

}T̄pηq}X2 :“ }φ}X2 ď CT̄

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }η}0,ρ;Ω

)

. (4.8)

Employing [3, Corollary 2.1, Section 2.1, eq. (2.16)] we observe that the a priori bound for the χ
component of the unique solution to (4.2) reduces to

}χ}M1 ď
1

β̄1

ˆ

1 `
}a}

ᾱ

˙

}F}X1
1

`
}a}

β̄1β̄2

ˆ

1 `
}a}

ᾱ

˙

}Gη}M 1
2
. (4.9)
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As in (4.8), the same inequality is obtained for (4.9), but with a different constant, in particular depending
additionally on β̄1. Therefore, as before, we still denote the largest of them by CT̄, and simply say that
the right-hand side of (4.8) constitutes the a priori estimate for both φ and χ.

Finally, in order to prove that, given an arbitrary pϕ,vq P X2 ˆ L4pΩq, (4.3) is well-posed for each
i P t1, 2u, we observe first that the operator rT is defined in the same way as in [13, Section 4.2.3].

Therefore we introduce the bilinear forms A, Aϕ,v : pHi ˆ Qiq ˆ pHi ˆ Qiq Ñ R given by

A ppζi, ϑiq, pτ i, ηiqq :“ aipζi, τ iq ` cipτ i, ϑiq ` cipζi, ηiq ´ dipϑ, ηiq , (4.10a)

Aϕ,v ppζi, ϑiq, pτ i, ηiqq :“ A ppζi, ϑiq, pτ i, ηiqq ´ cϕ,vpτ i, ϑiq , (4.10b)

for all pζi, ϑiq, pτ i, ηiq P Hi ˆ Qi, so that (4.3) can be re-stated as: Find pσi, ξiq P Hi ˆ Qi such that

Aϕ,v ppσi, ξiq, pτ i, ηiqq “ Fipτ iq ` Gipηiq @ pτ i, ηiq P Hi ˆ Qi .

Thus, the proof reduces to first showing that the bilinear forms that are part of A satisfy the hypotheses of
[12, Theorem 3.4] and then combine the consequence of this result with the effect of the extra term given
by cϕ,vp¨, ¨q, to conclude that Aϕ,v satisfies a global inf-sup condition. Indeed, it is clear from (3.22a),
(3.22c) and the upper bound of κi (cf. (2.5)) that ai and di are symmetric and positive semi-definite,
which proves the assumption i) of [12, Theorem 3.4]. Next, taking into account the definitions of ci (cf.
(3.22b)) and the spaces Hi and Qi (cf. (3.21)), and using again that LρpΩq is isomorphic to its dual LϱpΩq,
we easily find that the null space Vi of the operator induced by ci becomes

Vi :“
!

τ i P Hi : divpτ iq “ 0
)

, (4.11)

and thus

aipτ i, τ iq ě
1

κ̄
}τ i}

2
0,Ω “

1

κ̄
}τ i}

2
divϱ;Ω @ τ i P Vi , (4.12)

from which the hypothesis ii) of [12, Theorem 3.4], i.e., the continuous inf-sup condition ai, is clearly
satisfied with constant rα :“ κ̄´1.

From what has been developed in [13, Section 4.2.3], we are in position to establish that, for each
i P t1, 2u, (4.3) is well-posed, which means, equivalently, that rTi is well-defined. Indeed, recalling that
rαA ą 0 is the inf-sup constant of A (for more details, see [13, eq. 4.33, Section 4.2.3]), we proceed to
state the following result [13, Theorem 4.6].

Theorem 4.3. For each i P t1, 2u, and for each pϕ,vq P X2 ˆ L4pΩq, such that there holds

}ϕ}0,r;Ω ` }v}0,r;Ω ď
rαA

2 }c}
, (4.13)

there exists a unique pϕi, ξiq P Hi ˆ Qi solution to (4.3), and hence one can define rTipϕ,vq :“ ξi P Qi.
Moreover, there exists a positive constant C

rT
, depending only on }iρ} and rαA, such that

}rTipϕ,vq}Qi “ }ξi}Qi ď }pσi, ξiq}HiˆQi ď C
rT

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

. (4.14)

We end this section by observing from the definition of rT (cf. (4.4)) and the priori estimates given by
(4.14) for each i P t1, 2u, that

}rTpϕ,vq}Q1ˆQ2 :“
2
ÿ

i“1

}rTipϕ,vq}Qi ď C
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

, (4.15)

for each pϕ,vq P X2 ˆ L4pΩq satisfying (4.13) .
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4.3 Solvability analysis of the fixed-point scheme

Knowing that the operators S, T̄, rT and thus also T are well defined, we now address the solvability
of the fixed-point equation (4.5) applying Banach’s Theorem. We first derive sufficient conditions under
which T maps the following closed ball (with radius to be specified later on) of X2 ˆ L4pΩq into itself

Wpδq :“
!

pϕ, zq P X2 ˆ L4pΩq : }pϕ, zq} :“ }ϕ}X2 ` }z}0,4;Ω ď δ
)

. (4.16)

Then, given pϕ, zq P Wpδq, we have from the definition of T (cf. (4.5)) and the a priori estimate for rT
(cf. (4.15)) that, under the assumption (cf. (4.13))

}ϕ}X2 ` }z}0,4,Ω ď
rαA

2 }c}
,

which suggests to define δ :“ rαA
2 }c}

, followed by an application of the a priori estimates for S (cf. (4.6)) T̄

(cf. (4.8)) and rT (cf. (4.15)), we deduce

}Tpϕ, zq}X2ˆL4pΩq ď CT

!´

1 ` Λgi,fi

¯´

}g}1{s,r;Γ ` }f}0,r;Ω ` Λgi,fi

¯

` }f}0,4{3;Ω ` }g}1{2,Γ

)

,

where CT is a positive constant depending only on CS, CT̄, CrT
, and p1 ` δq, and we also define

Λgi,fi :“
2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

.

Therefore, we have proved the following lemma.

Lemma 4.4. Assume that the data are sufficiently small so that

CT

!´

1 ` Λgi,fi

¯´

}g}1{s,r;Γ ` }f}0,r;Ω ` Λgi,fi

¯

` }f}0,4{3;Ω ` }g}1{2,Γ

)

ď δ . (4.17)

Then, TpWpδqq Ď Wpδq.

We now aim to prove that the operator T is Lipschitz-continuous, for which it suffices to show that S,
T̄, rTi (i “ t1, 2u) and rT satisfy suitable continuity properties. We begin by studying S.

Lemma 4.5. There exists a positive constant LS, depending on α, ε, |Ω| and }c}, such that

}Spz,η,ϕq ´ Spz0,η0,ϕ0q}H

ď LS

!

Fpz0,η0,ϕ0q }z ´ z0}0,4;Ω ` }ϕ0}0,r;Ω }η ´ η0}0,ρ;Ω ` }η}0,ρ;Ω }ϕ´ ϕ0}0,r;Ω

)

,
(4.18)

for all pz,η,ϕq, pz0,η0,ϕ0q P L4pΩq ˆ pQ1 ˆ Q2q ˆ X2, where

Fpz0,η0,ϕ0q :“ CS

!

}η0}0,ρ;Ω }ϕ0}0,r;Ω ` }f}0,4{3;Ω ` p1 ` }z0}0,4;Ωq }g}1{2,Γ

)

. (4.19)

Proof. Given pz,η,ϕq, pz0,η0,ϕ0q P L4pΩq ˆ pQ1 ˆ Q2q ˆ X2, we let Spz,η,ϕq :“ u P L4pΩq and
Spz0,η0,ϕ0q :“ u0 P L4pΩq, where η0 :“ pη0,1, η0,2q; and pu⃗,σq “ ppu, tq,σq P H ˆ Q and pu⃗0,σ0q “

ppu0, t0q,σ0q P H ˆ Q are the respective solutions to (4.1). It follows from the second equations of (4.1)
that u⃗´u⃗0 P V (where V denotes the kernel of the operator induced by the bilinear form b [6, cf. (3.11)]),
and then V-ellipticity of a ([6, cf. (3.12)]) gives

α }u⃗ ´ u⃗0}2H ď apu⃗ ´ u⃗0, u⃗ ´ u⃗0q . (4.20)
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In turn, applying the first equations of (4.1) to v⃗ “ u⃗ ´ u⃗0, we obtain

apu⃗, u⃗ ´ u⃗0q ` cpz; u⃗, u⃗ ´ u⃗0q “ Fη,ϕpu⃗ ´ u⃗0q , (4.21a)

apu⃗0, u⃗ ´ u⃗0q ` cpz0; u⃗0, u⃗ ´ u⃗0q “ Fη0,ϕ0
pu⃗ ´ u⃗0q , (4.21b)

so that, subtracting (4.21b) from (4.21a), and using, thanks to the bilinearity of cpz; ¨, ¨q and (3.13), that

cpz; u⃗, u⃗ ´ u⃗0q “ cpz; u⃗ ´ u⃗0, u⃗ ´ u⃗0q ` cpz; u⃗0, u⃗ ´ u⃗0q “ cpz; u⃗0, u⃗ ´ u⃗0q ,

we find
apu⃗ ´ u⃗0, u⃗ ´ u⃗0q “ pFη,ϕ ´ Fϑ,ψqpu⃗ ´ u⃗0q ` cpz0 ´ z; u⃗0, u⃗ ´ u⃗0q . (4.22)

In turn, it is clear from (3.10) that subtracting and adding ϕ0 to the factor ϕ in the first term, we get

`

Fη,ϕ ´ Fη0,ϕ0

˘

pu⃗ ´ u⃗0q “

ż

Ω
ε´1

!

`

η2 ´ η1
˘

ϕ´
`

η0,2 ´ η0,1
˘

ϕ0

)

¨ pu ´ u0q

“

ż

Ω
ε´1

!

`

η2 ´ η1
˘ `

ϕ´ ϕ0

˘

`
`

pη2 ´ η0,2q ´ pη1 ´ η0,1q
˘

ϕ0

)

¨ pu ´ u0q .

Then, bearing in mind the boundedness of ε by ε0 and by the fact that } ¨ }0,Ω ď |Ω|1{4} ¨ }0,4;Ω, we obtain

`

Fη,ϕ ´ Fη0,ϕ0

˘

pu⃗ ´ u⃗0q ď ε´1
0 |Ω|1{4

!

}η}0,ρ,Ω }ϕ´ ϕ0}0,r,Ω ` }η ´ η0}0,ρ,Ω }ϕ0}0,r,Ω

)

}u⃗ ´ u⃗0}H, (4.23)

while the boundedness property of c (cf. (3.12)) results in

cpz0 ´ z; u⃗0, u⃗ ´ u⃗0q ď }c} }z ´ z0}0,4;Ω }u⃗0}H}u⃗ ´ u⃗0}H . (4.24)

Finally, employing (4.23) and (4.24) in (4.22), by substituting the resulting estimate into (4.20), simpli-
fying by }u⃗´ u⃗0}H and bounding }u⃗0}H by the upper bound in (4.6), we arrive at the required inequality
(4.18) with LS :“ α´1max

␣

ε´1
0 |Ω|1{4, }c}

(

.

The next result establishes the continuity of T̄, whose proof can be found in [13, Lemma 4.9].

Lemma 4.6. There exists a positive constant LT̄, depending only on |Ω|, ᾱ, β̄2, and }a}, such that

}T̄pηq ´ T̄pη0q}X2 ď LT̄ }η ´ η0}0,ρ;Ω @η, η0 P Q1 ˆ Q2 . (4.25)

In turn, the continuity of rT is provided in [13, Lemma 4.10].

Lemma 4.7. There exists a positive constant L
rT
, depending only on ε0, κ, rαA, and C

rT
, such that

}rTpϕ,vq ´ rTpϕ0,v0q}Q1ˆQ2 ď L
rT

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ,Ω

)

}pϕ,vq ´ pϕ0,v0q}X2ˆL4pΩq (4.26)

for all pϕ,vq, pϕ0,v0q P X2 ˆ L4pΩq satisfying (4.13).

Having proved Lemmas 4.5, 4.6, and 4.7, we now aim to derive the continuity of the fixed-point operator
T. Given pϕ, zq, pϕ0, z0q P Wpδq (cf. (4.16)), from the definition of T (cf. (4.5)) we have that

}Tpϕ, zq ´ Tpϕ0, z0q}X2ˆL4pΩq “ }T̄
`

rTpϕ, zq
˘

´ T̄
`

rTpϕ0, z0q
˘

}X2

` }S
`

z, rTpϕ, zq, T̄prTpϕ, zqq
˘

´ S
`

z0, rTpϕ0, z0q, T̄prTpϕ0, z0qq
˘

}0,4;Ω .
(4.27)

Then, applying the continuity of T̄ (cf. Lemma 4.6, (4.25)) and rT (cf. Lemma 4.7, (4.26)), we get

}T̄
`

rTpϕ, zq
˘

´ T̄
`

rTpϕ0, z0q
˘

}X2 ď L0

2
ÿ

i“1

␣

}gi}1{2,Γ ` }fi}0,ϱ;Ω
(

}pϕ, zq ´ pϕ0, z0q}X2ˆL4pΩq , (4.28)
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where L0 is a positive constant depending only on LT̄ and L
rT
. On the other hand, to bound the second

term of (4.27), we apply the continuity of S (cf. Lemma 4.5, (4.18)), in particular, setting η “ rTpϕ, zq,
η0 “ rTpϕ0, z0q, ϕ “ T̄prTpϕ, zqq, and ϕ0 “ T̄prTpϕ0, z0qq in (4.18), followed by the continuity of T̄ (cf.
Lemma 4.6, (4.25)) and rT (cf. Lemma 4.7, (4.26)), we deduce

}S
`

z, rTpϕ, zq, T̄prTpϕ, zqq
˘

´ S
`

z0, rTpϕ0, z0q, T̄prTpϕ0, z0qq
˘

}0,4;Ω

ď C1

!

FT }z ´ z0}0,4;Ω ` Λgi,fi

´

}g}1{s,r;Γ ` }f}0,r;Ω ` Λgi,fi

¯

}pϕ, zq ´ pϕ0, z0q}

)

,
(4.29)

where C1 is a positive constant depending only on CT̄, CrT
, LS, LT̄, and L

rT
, and also where

FT :“ Fpz0, rTpϕ0, z0q, T̄prTpϕ0, z0qqq .

In turn, applying the a priori estimates of T̄, rT (cf. (4.8),(4.15)), and using that }z0}0,4;Ω ď δ, we get

FT “ Fpz0, rTpϕ0, z0q, T̄prTpϕ0, z0qqq

ď

!

}rTpϕ0, z0q}0,ρ;Ω }T̄prTpϕ0, z0qq}0,r;Ω ` }f}0,4{3;Ω ` p1 ` }z0}0,4;Ωq }g}1{2,Γ

)

ď CF

!

Λgi,fi

´

}g}1{s,r;Γ ` }f}0,r;Ω ` Λgi,fi

¯

` }f}0,4{3;Ω ` }g}1{2,Γ

)

,

(4.30)

where CF ą 0 is a constant depending only on CT̄, CrT
, and δ. Then, replacing the estimate of (4.30)

into (4.29), we deduce the existence of a positive constant C2, depending only on C1 and CF , such that

}S
`

z, rTpϕ, zq, T̄prTpϕ, zqq
˘

´ S
`

z0, rTpϕ0, z0q, T̄prTpϕ0, z0qq
˘

}0,4;Ω

ď C2

!

Λgi,fi

´

}g}1{s,r;Γ ` }f}0,r;Ω ` Λgi,fi

¯

` }f}0,4{3;Ω ` }g}1{2,Γ

)

}pϕ, zq ´ pϕ0, z0q} .
(4.31)

Finally, from what has been deduced in (4.28) and (4.31), by a straightforward application into (4.27),
we arrive at

}Tpϕ, zq ´ Tpϕ0, z0q}X2ˆL4pΩq

ď LT

!

Λgi,fi

´

}g}1{s,r;Γ ` }f}0,r;Ω ` Λgi,fi ` 1
¯

` }f}0,4{3;Ω ` }g}1{2,Γ

)

}pϕ, zq ´ pϕ0, z0q} ,
(4.32)

where LT is a positive constant depending only on CT̄, CrT
, LS, LT̄, LrT

, and δ. Consequently, we are in
a position to establish the main result of this section.

Theorem 4.8. In addition to the hypothesis (4.17) of Lemma 4.4, assume that

LT

!

Λgi,fi

´

}g}1{s,r;Γ ` }f}0,r;Ω ` Λgi,fi ` 1
¯

` }f}0,4{3;Ω ` }g}1{2,Γ

)

ă 1 . (4.33)

Then, the operator T has a unique fixed point pφ,uq P Wpδq. Equivalently, the coupled problem (3.23) has
a unique solution pu⃗,σq P HˆQ, pφ, χq P X2 ˆM1, and pσi, ξiq P Hi ˆQi, i P t1, 2u, with pφ,uq P Wpδq.
Moreover, there hold the following a priori estimates

}pu⃗,σq}HˆQ ď Cu⃗,σ

!

}ξ}0,ρ;Ω }φ}0,r;Ω ` }f}0,4{3;Ω ` }g}1{2,Γ

)

,

}pφ, χq}X2ˆM1 ď CT̄

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }ξ}0,ρ;Ω

)

, and

}pσi, ξiq}HiˆQi ď C
rT

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

i P t1, 2u ,

(4.34)

where Cu⃗,σ is a positive constant depending only on CS and δ.

Proof. We first recall that the assumptions of Lemma 4.4 guarantee that T maps Wpδq into itself. Then,
bearing in mind the Lipschitz-continuity of T : Wpδq Ñ Wpδq (cf. (4.32)) and the assumption (4.33), a
straightforward application of the classical Banach Theorem yields the existence of a unique fixed point
pφ,uq P Wpδq of this operator, and hence a unique solution of (3.23). Finally, recalling that }u}0,4;Ω ď δ,
it is easy to see that the a priori estimates provided by (4.6) (cf. Lemma 4.1), (4.8) (cf. Theorem 4.2),
and (4.14) (cf. Theorem 4.3) yield (4.34) and finish the proof.
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5 The Galerkin scheme

In this section we introduce the Galerkin scheme of the fully mixed variational formulation (3.23), analyze
its solvability by applying a discrete version of the fixed-point approach adopted in Section 4.1, and
subsequently derive its a priori error estimate.

5.1 Preliminaries

We first let Hu
h , Ht

h, Hσh , Xi,h, Mi,h, Hi,h, and Qi,h, i P t1, 2u, be a arbitrary finite element subspaces of
the spaces L4pΩq, L2

trpΩq, Hpdiv4{3; Ωq, Xi, Mi, Hi, and Qi, i P t1, 2u, respectively. Hereafter, h denotes
both the sub-index of each subspace and the size of a regular triangulation Th of Ω̄ made up of triangles K
(when n “ 2) or tetrahedra K (when n “ 3) of diameter hK , so that h :“ max

␣

hK : K P Th
(

. The
explicit finite element subspaces satisfying the stability assumptions that will be introduced throughout
the following analysis will be defined later in Section 6. Then, defining the spaces

Hh :“ Hu
h ˆ Ht

h , Qh :“ Hσh X H0pdiv4{3, ; Ωq ,

and denoting u⃗h :“ puh, thq , v⃗h :“ pvh, shq P Hh, the Galerkin scheme associated with (3.23) reads:
Find pu⃗h,σhq P Hh ˆ Qh, pφh, χhq P X2,h ˆ M1,h, and pσi,h, ξi,hq P Hi,h ˆ Qi,h, i P t1, 2u, such that

apu⃗h, v⃗hq ` cpuh; u⃗h, v⃗hq ` bpv⃗h,σhq “ Fξh,φh
pv⃗hq @ v⃗h P Hh ,

bpu⃗h, τ hq “ Gpτ hq @ τ h P Qh ,

apφh,ψhq ` b1pψh, χhq “ Fpψhq @ψh P X1,h ,

b2pφh, λhq “ Gξhpλhq @λh P M2,h ,

aipσi,h, τ i,hq ` cipτ i,h, ξi,hq ´ cφh,uh
pτ i,h, ξi,hq “ Fipτ i,hq @ τ i,h P Hi,h ,

cipσi,h, ηi,hq ´ dipξi,h, ηi,hq “ Gipηi,hq @ ηi,h P Qi,h .

(5.1)

Next, we adopt the discrete version of the strategy used in Section 4.1 to analyze the solvability of (5.1).
Accordingly, we introduce the operator Sh : Hu

h ˆ pQ1,h ˆ Q2,hq ˆ X2,h Ñ Hu
h defined by

Shpzh,ηh,ϕhq “ uh @ pzh,ηh,ϕhq P Hu
h ˆ pQ1,h ˆ Q2,hq ˆ X2,h

where pu⃗h,σhq “ ppuh, thq,σhq P Hh ˆ Qh is the unique solution (to be derived below under what
conditions it does exists) of the first and second rows of (5.1) when cpuh, ¨, ¨q and Fξh,φh

are replaced by
cpzh, ¨, ¨q and Fηh,ϕh

, respectively, that is

apu⃗h, v⃗hq ` cpzh; u⃗h,vhq ` bpv⃗h,σhq “ Fηh,ϕh
pv⃗hq @ v⃗h P Hh ,

bpu⃗h, τ hq “ Gpτ hq @ τ h P Qh .
(5.2)

In turn, we also introduce the operator T̄h : Q1,h ˆ Q2,h Ñ X2,h defined as

T̄hpηhq :“ φh @ηh P Q1 ˆ Q2 ,

where pφh, χhq P X2,h ˆ M1,h is the unique solution (to be confirmed below) of the third and fourth rows
of (5.1) with ηh instead of ξh

apφh,ψhq ` b1pψh, χhq “ Fpψhq @ψh P X1,h ,

b2pφh, λhq “ Gηh
pλhq @λh P M2,h .

(5.3)

Similarly, for each i P t1, 2u, we define the operator rTi,h : X2,h ˆ Hu
h Ñ Qi,h as

rTi,hpϕh,vhq :“ ξi,h @ pϕh,vhq P X2,h ˆ Hu
h ,
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where pσi,h, ξi,hq P Hi,h ˆ Qi,h is the unique solution (to be confirmed below) of the fifth and sixth rows
of (5.1) with pϕh,vhq instead pφh,uhq, that is

aipσi,h, τ i,hq ` cipτ i,h, ξi,hq ´ cϕh,vh
pτ i,h, ξi,hq “ Fipτ i,hq @ τ i,h P Hi,h ,

cipσi,h, ηi,hq ´ dipξi,h, ηi,hq “ Gipηi,hq @ ηi,h P Qi,h ,
(5.4)

so that we can define the operator rTh : X2,h ˆ Hu
h Ñ pQ1,h ˆ Q2,hq as

rThpϕh,vhq :“
´

rT1,hpϕh,vhq, rT2,hpϕh,vhq

¯

“ pξ1,h, ξ2,hq “: ξh @ pϕh,vhq P X2,h ˆ Hu
h . (5.5)

Finally, we define the discrete analogue of T (cf. (4.5)), that is Th : X2,h ˆ Hu
h Ñ X2,h ˆ Hu

h as

Thpϕh, zhq :“
´

T̄hprThpϕ, zqq,Sh

`

z, rThpϕ, zq, T̄hprThpϕ, zqq
˘

¯

@ pzh,ηhq P Hu
h ˆ pQ1,h ˆ Q2,hq .

And solving (5.1) is equivalent to seeking a fixed point of Th: Find pφh,uhq P X2,h ˆ Hu
h such that

Thpφh,uhq “ pφh,uhq . (5.6)

5.2 Discrete solvability analysis

In this section we proceed analogously to Section 4.2 and 4.3 and establish the well-posedness of the
discrete system (5.1) by studying the solvability of the equivalent fixed-point equation (5.6). In this
regard, we emphasize in advance that, the respective analysis being very similar to that developed in
previous sections, we limit ourselves here to collecting the main results and providing selected details of
their proofs.

Accordingly, we first prove that the discrete operators Sh, T̄h, and rTi,h, i P t1, 2u, and hence rTh and
Th, are all well-defined, which reduces, equivalently, to showing that problems (5.2), (5.3), and (5.4) are
well-posed. For this purpose, we now apply the discrete version of [3, Theorem 2.1, Corollary 2.1, Section
2.1], [15, Theorem 2.34], and [13, Theorem 3.4], which are given by [3, Corollary 2.2, Section 2.2], [15,
Proposition 2.42], and [13, Theorem 3.5], respectively. More specifically, following a similar approach
from, e.g. [6, Section 4.2] and [13, Section 5.2], our analysis is based on suitable hypotheses that must be
satisfied by the finite element subspaces used in (5.1), which are divided according to the requirements of
the associated decoupled problems. Explicit examples of discrete spaces verifying these hypotheses will
be specified later in Section 6.

According to the above, and to address first the well-definedness of Sh, we assume that

(H.1) there exists a positive constant βd, independent of h, such that

sup
v⃗hPHh
v⃗h “0

bpv⃗h, τ hq

}v⃗h}H
ě βd }τ h}Q @ τ h P Qh .

In addition, we let Vh be the discrete kernel of the bilinear form b, that is

Vh :“
␣

v⃗h P Hh : bpv⃗h, τ hq “ 0 @ τ h P Qh

(

,

and suppose

(H.2) there exists a positive constant Cd, independent of h, such that

}sh}0,Ω ě Cd }vh}0,4;Ω @ v⃗h :“ pvh, shq P Vh .

Then, given zh P Hu
h , it follows from the bilinear form introduced in [6, eq. (3.9)], Azh : Hh ˆ Hh Ñ R,

defined by
Azhpw⃗h, v⃗hq :“ apw⃗h, v⃗hq ` cpzh;wh,vhq @ w⃗h , v⃗h P H ,

17



and a (cf. (3.15)), the identity (3.13), and the assumption (H.2), that

Azhpv⃗h, v⃗hq “ apv⃗h, v⃗hq “ µ}sh}20,Ω ě
µ

2
C2
d }vh}20,4;Ω `

µ

2
}sh}20,Ω @ v⃗h :“ pvh, shq P Vh ,

which proves the Vh-ellipticity of Azh with constant αd :“
µ

2
mintCd, 1u. Thus, the discrete analogue

of Lemma 4.1 is as follows

Lemma 5.1. For each pzh,ηh,ϕhq P Hu
h ˆ pQ1,h ˆ Q2,hq ˆ X2,h, there exists a unique pu⃗h,σhq :“

ppuh, thq,σhq P Hh ˆ Qh solution (5.2), and hence one can define Shpzh,ηh,ϕhq :“ uh P Hu
h . Moreover,

there exists a positive constant CS,d, depending only on |Ω|, }i4}, µ, αd, and βd, such that

}Shpzh,ηh,ϕhq}0,4;Ω ď }uh}0,4;Ω ď }u⃗h}H

ď CS,d

!

}ηh}0,ρ;Ω }ϕ}0,r;Ω ` }f}0,4{3;Ω ` p1 ` }zh}0,4;Ωq}g}1{2,Γ

)

.

Proof. The proof is analogous to that of [6, Lemma 4.1].

Note here that the discrete analogue of (4.7) reads

}σh}Q “ }σh}div4{3;Ω ď C̄S,d p1 ` }zh}0,4;Ωq

!

}ηh}0,ρ;Ω}ϕh}0,r;Ω ` }f}4{3;Ω ` p1 ` }zh}0,4;Ωq}g}1{2,Γ

)

,

where C̄S,d is a positive constant depending as well on |Ω|, }i4}, µ, λ, αd, and βd.

In turn, for the well-definedness of T̄h, we need to introduce the discrete kernels of b1 and b2, namely

K1,h :“
!

ψh P X1,h : b1pψh, λhq “ 0 @λh P M1,h

)

,

K2,h :“
!

ψh P X2,h : b2pψh, λhq “ 0 @λh P M2,h

)

,

respectively, and adopt the following assumptions:

(H.3) there exists a positive constant ᾱd, independent of h, such that

sup
ψhPK1,h

ψh “0

apϕh,ψhq

}ψh}X1

ě ᾱd }ϕ}X2 @ϕh P K2,h , and

sup
ϕhPK2,h

apϕh,ψhq ą 0 @ψh P K1,h , ψh “ 0 .

(H.4) for each i P t1, 2u there exists a positive constant β̄i,d independent of h, such that

sup
ψhPXi,h

ψh “0

bipψh, λhq

}ψh}Xi

ě β̄i,d }λh}Mi @λh P Mi,h .

As a consequence of (H.3) and (H.4) we provide next the discrete version of Theorem 4.2.

Theorem 5.2. For each ηh P Q1,h ˆ Q2,h there exists a unique pφh, χhq P X2,h ˆ M1,h solution to (5.3),
and hence one can define T̄hpηhq :“ φh P X2,h. Moreover, there exists a positive constant CT̄,d, depending
only on, ε0, Cr, |Ω|, ᾱd, and β̄2,d such that

}T̄hpηhq}X2 :“ }φh}X2 ď CT̄,d

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }ηh}0,ρ;Ω

)

. (5.7)

Proof. See the proof of [13, Theorem 5.2].
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Analogous to what was explained for the continuous operator T̄, here we can also assume that, except
for a constant CT̄,d depending additionally on β̄1,d, the a priori estimate for χh, which is now deduced
from [3, Corollary 2.2, eq. (2.25)], is also given by the right-hand side of (5.7).

It remains to prove the well-definedness of rTh :“ prT1,h, rT2,hq, for which we first note that, being ai
and ci symmetric and positive semi-definite in the whole spaces Hi and Qi, they certainly maintain their
properties in Hi,h and Qi,h, respectively, so that the assumption i) of [12, Theorem 3.5] is clearly satisfied.
Next, given i P t1, 2u, we let Vi,h be the discrete kernel of ci, that is

Vi,h :“
!

τ i,h P Hi,h : cipτ i,h, ηi,hq “ 0 @ ηi,h P Qi,h

)

, (5.8)

and consider the hypotheses

(H.5) for each i P t1, 2u there holds divpHi,hq Ď Qi,h, and

(H.6) there exists a positive constant rβd ą 0, independent of h, such that

sup
τ i,hPHi,h

τ i,h “0

cipτ i,h, ηi,hq

}τ i,h}Hi

ě rβd }ηi,h}Qi @ ηi,h P Qi,h .

It follows from (5.8), the definition of ci (cf. (3.22b)), and (H.5) that

Vi,h :“
!

τ i,h : divpτ i,hq “ 0
)

,

from which it is easy to notice that Vi,h is contained in the continuous kernel Vi (cf. (4.11)) of ci, giving
rise to the discrete analogue of (4.12), that is

aipτ i,h, τ i,hq ě
1

κ̄
}τ i,h}2divϱ;Ω @τ i,h P Vi,h (5.9)

Thus, it follows from (5.9) that ai satisfies the hypothesis ii) of [12, Theorem 3.5] with the constant
rαd :“ κ̄´1, whereas (H.6) itself constitutes assumption iii). Consequently, a direct application of [12,
Theorem 3.5] implies the global discrete inf-sup condition for A (cf. (4.10a)) with a positive constant
rαA,d depending only on }ai}, }ci}, rαd, and rβd, and thus the same property is shared by Aϕh,vh

for each
pϕh,vhq P X2,h ˆ Hu

h , satisfying the discrete version of (4.13), that is

}ϕh}0,r;Ω ` }vh}0,r;Ω ď
rαA,d

2 }c}
. (5.10)

We are now in position of establishing the well-definedness of rTi,h for each i P t1, 2u, for which we cite
the following lemma from [13, Theorem 5.3].

Theorem 5.3. Given i P t1, 2u and pϕh,vhq P X2,h ˆ Hu
h such that (5.10) holds, there exists a unique

pσi,h, ξi,hq P Hi,h ˆQi,h solution to (5.4), and hence one can define rTi,hpϕh,vhq :“ rξi,h P Qi,h. Moreover,
there exists a positive constant C

rT,d
, depending only on }iρ} and rαA,d, such that

}rTi,hpϕh,vhq}Qi “ }ξi,h}Qi ď }pσi,h, ξi,hq}HiˆQi ď C
rT,d

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

. (5.11)

Analogously to the continuous case, it follows from the definition of rTh (cf. (5.5)) and the a priori
estimates given by (5.11) for each i P t1, 2u, that

}rThpϕh,vhq}Q1ˆQ2 :“
2
ÿ

i“1

}rTi,hpϕj ,vhq}Qi ď C
rT,d

2
ÿ

i“1

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

19



for each pϕh,vhq P X2,h ˆ Hu
h satisfying (5.10).

Having established that the discrete operators Sh, T̄h, rTh, and hence Th (under the constraint imposed
by (5.10)), are well defined, we now proceed as in Section 4.3 to address the solvability of the fixed-point
equation (5.6). Then, letting δd be an arbitrary radius, we define

Wpδdq :“
!

pϕh, zhq P X2,h ˆ Hu
h : }pϕh, zhq} :“ }ϕ}X2 ` }z}0,4;Ω ď δd

)

.

Reasoning analogously to the derivation of Lemma 4.4 (cf. beginning of Section 4.3), we define δd :“
rαA,d

2 }c}
,

and deduce that Th maps Wpδdq into itself under the discrete version of (4.17), i.e.

CT,d

!´

1 ` Λgi,fi

¯´

}g}1{s,r;Γ ` }f}0,r;Ω ` Λgi,fi

¯

` }f}0,4{3;Ω ` }g}1{2,Γ

)

ď δd , (5.12)

where CT,d is a positive constant depending only on CS, CT̄, CrT
, and p1 ` δdq.

On the other hand, employing arguments analogous to those used in the proofs of Lemmas 4.1, 4.2, and
4.3, we can prove the continuity properties of Sh, T̄h, and rTh, that is the discrete version of (4.18), (4.25),
and (4.26), which are exactly as the latter, but with constants denoted LS,d, LT̄,d, and L

rT,d
. Therefore,

following a procedure analogous to the one that gave rise to (4.32), we deduce that, there exists a positive
constant LT,d which is obtained similarly to LT, but instead of depending on CS, CT̄, LS, LT̄, LrT

, and δ
it depends on CS,d, CT̄,d, LS,d, LT̄,d, LrT,d

, and δd such that

}Tpϕh, zhq ´ Tpϕ0, z0q}X2ˆL4pΩq ď LT,d

!

Λgi,fi

´

}g}1{s,r;Γ ` }f}0,r;Ω ` Λgi,fi ` 1
¯

` }f}0,4{3;Ω ` }g}1{2,Γ

)

}pϕh, zhq ´ pϕh,0, zh,0q} ,
(5.13)

for all pϕh, zhq, pϕh,0, zh,0q P Wpδdq.

Consequently, we can now establish the main result of this section.

Theorem 5.4. Assume that the data are sufficiently small so that (5.12) holds. Then, the operator Th has
a fixed point pφh,uhq P Wpδdq. Equivalently, the coupled problem (5.1) has a solution pu⃗h,σhq P HhˆQh,
pφh, χhq P X2,h ˆ M1,h, and pσi,h, ξi,hq P Hi,h ˆ Qi,h, i P t1, 2u, with pφh,uhq P Wpδdq. Moreover, there
hold the following a priori estimates

}pu⃗h,σhq}HˆQ ď Cu⃗,σ,d

!

}ξh}0,ρ;Ω }φh}0,r;Ω ` }f}0,4{3;Ω ` }g}1{2,Γ

)

,

}pφh, χhq}X2ˆM1 ď CT̄,d

!

}g}1{s,r;Γ ` }f}0,r;Ω ` }ξh}0,ρ;Ω

)

, and

}pσi,h, ξi,hq}HiˆQi ď C
rT,d

!

}gi}1{2,Γ ` }fi}0,ϱ;Ω

)

i P t1, 2u ,

(5.14)

where Cu⃗,σ,d is a positive constant depending only on CS,d and δd. In addition, under the extra assumption

LT,d

!

Λgi,fi

´

}g}1{s,r;Γ ` }f}0,r;Ω ` Λgi,fi ` 1
¯

` }f}0,4{3;Ω ` }g}1{2,Γ

)

ă 1 . (5.15)

the aforementioned solutions of (5.6) and (5.1) are unique.

Proof. As indicated above, the fact that Th maps Wpδdq into itself is consequence of (5.12). Then, the
continuity of Th (cf. (5.13)) and Brouwer’s theorem (cf. [9, Theorem 9.9-2]) imply the existence of solution
of (5.6). In turn, under the additional hypotheses (5.15), Banach’s fixed-point Theorem guarantees the
uniqueness of the solution. Additionally, bearing in mind that }uh}0,4;Ω ď δd, in either case, (4.6), (4.8),
(4.14) yield the a priori estimates (5.14) and conclude the proof.
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5.3 A priori error analysis

In this section we consider arbitrary finite element subspaces that satisfy the assumptions specified in
Section 5.2, and establish the Céa estimate for the Galerkin error

}pu⃗,σq ´ pu⃗h,σhq}HˆQ ` }pφ, χq ´ pφh, χhq}X2ˆM1 `

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi ,

where
`

pu⃗,σq, pφ, χq, pσi, ξiq
˘

P
`

H ˆ Q
˘

ˆ
`

X2 ˆ M1

˘

ˆ
`

Hi ˆ Qi

˘

, i P
␣

1, 2
(

, is the unique solution of
(3.23), and

`

pu⃗h,σhq, pφh, χhq, pσi,h, ξi,hq
˘

P
`

Hh ˆ Qh

˘

ˆ
`

X2,h ˆ M1,h

˘

ˆ
`

Hi,h ˆ Qi,h

˘

, i P
␣

1, 2
(

, is a
solution of (5.1). We proceed as in previous related work (see, e.g. [6]) by applying suitable Strang-type
estimates to the pairs of associated continuous and discrete schemes arising from (3.23) and (5.1) after
splitting them according to the three decoupled equations. Throughout the remainder of this section,
given a subspace Zh of an arbitrary Banach space

`

Z, } ¨ }Z
˘

, we set

dist
`

z, Zh

˘

:“ inf
zhPZh

}z ´ zh}Z @ z P Z .

We begin the analysis by considering the first two rows of (3.23) and (5.1), so that, employing the
estimates provided by [6, eq. (4.27), Section 4.3], we deduce the existence of a positive constant pC1,
depending only on αd, βd, }a}, }b}, }c}, δ, and δd, such that

}pu⃗,σq ´ pu⃗h,σhq}HˆQ ď pC1

!

dist
`

u⃗,Hh

˘

` dist
`

σ,Qh

˘

` }Fξ,φ ´ Fξh,φh
}H1

h
` }cpu; u⃗, ¨q ´ cpuh; u⃗, ¨q}H1

h

)

.
(5.16)

Thus, proceeding as in (4.23) and using the boundedness of c (cf. (3.12)), we easily obtain

}Fξ,φ ´ Fξh,φh
}H1

h
ď ε´1

0 |Ω|1{4
!

}ξ}0,ρ,Ω }φ´φh}0,r,Ω ` }ξ ´ ξh}0,ρ,Ω }φh}0,r,Ω

)

,

and
}cpu; u⃗, ¨q ´ cpuh; u⃗, ¨q}H1

h
ď }c} }u ´ uh}0,4;Ω }u⃗}H ,

which, replaced back into (5.16), yields

}pu⃗,σq ´ pu⃗h,σhq}HˆQ ď pC1

!

dist
`

u⃗,Hh

˘

` dist
`

σ,Qh

˘

)

` pC2

!

}ξ}0,ρ,Ω }φ ´ φh}0,r,Ω ` }ξ ´ ξh}0,ρ,Ω }φh}0,r,Ω ` }u ´ uh}0,4;Ω }u⃗}H

)

.
(5.17)

where pC2 :“ pC1max
␣

ε´1
0 |Ω|1{4, }c}

(

.

Now, using the estimates obtained in [13, eq. (5.40), Section 5.3] for the third and fourth rows of
(3.23) and (5.1), we find that

}pφ, χq ´ pφh, χhq}X2ˆM1 ď c
sT

!

distpφ,X2,hq ` distpχ,M1,hq ` }ξ ´ ξh}0,ρ;Ω

)

, (5.18)

with c
sT :“ sc max

␣

1, |Ω|pρ´rq{ρr
(

.

On the other hand, using the estimates obtained in [13, eq. (5.42), Section 5.3] for the fifth and sixth
rows of (3.23) and (3.23), we get

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi ď c
rT

!

2
ÿ

i“1

`

distpσi,Hi,hq ` distpξi,Qi,hq
˘

`
`

}φ}0,r;Ω ` }u}0,r;Ω
˘

}ξ ´ ξh}0,ρ;Ω ` }ξh}0,ρ;Ω
`

}φ´φh}0,r;Ω ` }u ´ uh}0,r;Ω
˘

)

,

(5.19)
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with c
rT
:“ rc max

␣

1, }c}
(

.

For the remainder of the analysis we introduce the partial error

E :“ }pu⃗,σq ´ pu⃗h,σhq}HˆQ `

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi ,

and appropriately combining estimates (5.17), (5.18), and (5.19). In particular, using the right-hand side of
(5.18) to bound }φ´φh}0,r;Ω in (5.17) and (5.19), by adding up the resulting inequalities, performing some
algebraic manipulations, and then using the a priori bounds for }φ}0,r;Ω, }φh}0,r;Ω, }ξ}0,ρ;Ω, }ξh}0,ρ;Ω, and
}u}0,4;Ω provided by Theorems 4.8 and 5.4, we deduce the existence of a positive constant Ce, depending

on pC1, pC2, csT, crT, δ, δd, CS , CsT, CrT
, C

sT,d, and C
rT,d

, and hence independent of h, such that

E ď Ce

!

dist
`

pu⃗,σq,Hh ˆ Qh

˘

` dist
`

pφ, χq,X2,h ˆ M1,h

˘

`

2
ÿ

i“1

dist
`

pσi, ξiq,Hi,h ˆ Qi,h

˘

)

` Ce

!

}g}1{2,Γ ` }f}0,4{3,Ω ` }g}1{s,r;Γ ` }f}0,r;Ω `

2
ÿ

i“1

`

}gi}1{2,Γ ` }fi}0,ϱ,Ω
˘

)

E .

(5.20)

Consequently, we are in a position to establish the Céa estimate.

Theorem 5.5. In addition to the hypotheses of Theorems 4.8 and 5.4, assume that

Ce

!

}g}1{2,Γ ` }f}0,4{3,Ω ` }g}1{s,r;Γ ` }f}0,r;Ω `

2
ÿ

i“1

`

}gi}1{2,Γ ` }fi}0,ϱ,Ω
˘

)

ď
1

2
. (5.21)

Then, there exists a positive constant C, independent of h, such that

}pu⃗,σq ´ pu⃗h,σhq}HˆQ ` }pφ, χq ´ pφh, χhq}X2ˆM1 `

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

ď C
!

dist
`

pσ,uq,Hh ˆ Qh

˘

` dist
`

pφ, χq,X2,h ˆ M1,h

˘

`

2
ÿ

i“1

dist
`

pσi, ξiq,Hi,h ˆ Qi,h

˘

)

.

(5.22)

Proof. Under the assumption (5.21), the a priori estimate for E follows from (5.20), which together with
(5.18), yields (5.22) and ends the proof.

We end this section with the a priori estimate for }p ´ ph}0,Ω where ph is the discrete pressure suggested
by the postprocessing formula given by the second identity in (2.7), which, according to (3.8), becomes

ph “ ´
1

n
tr
´

σh ` ch I `
λ

2
puh b uhq

¯

, with ch :“ ´
λ

2n |Ω|

ż

Ω
trpuh b uhq . (5.23)

Then, applying the Cauchy–Schwarz inequality, performing some algebraic manipulations, and employing
the a priori bounds for }u}0,4;Ω and }uh}0,4;Ω, we deduce the existence of a positive constant C, depending
on data, but independent of h, such that

}p ´ ph}0,Ω ď C
!

}σ ´ σh}0,Ω ` }u ´ uh}0,4;Ω

)

.

6 Specific finite element subspaces

We now define finite element subspaces satisfying the hypotheses (H.1) - (H.6) from Section 5.2, and
provide the rates of convergences for the Galerkin scheme (5.1).
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6.1 Preliminaries

In the following we use the notation introduced at the beginning of Section 5.1. Thus, given an integer
k ě 0, for each K P Th we let PkpKq and PkpKq be the spaces of polynomials of degree ď k defined
on K and its vector version, respectively. Similarly, letting x be a generic vector in Rn, RTkpKq :“
PpKq ` PkpKqx and RTkpKq stand for the local Raviart–Thomas space of order k defined on K and its
associated tensor counterpart. Additionally, we let PkpThq, PkpThq, PkpThq, RTkpThq and RTkpThq be the
global versions of PkpKq, PkpKq, PkpKq, RTkpKq and RTkpKq, respectively, that is

PkpThq :“
!

vh P L2pΩq : vh|K P PkpKq @K P Th
)

,

PkpThq :“
!

vh P L2pΩq : vh|K P PkpKq @K P Th
)

,

PkpThq :“
!

sh P L2pΩq : sh|K P PkpKq @K P Th
)

,

RTkpThq :“
!

qh P Hpdiv; Ωq : qh|K P RTkpKq @K P Th
)

,

RTkpThq :“
!

τ h P Hpdiv; Ωq : τ h|K P RTkpKq @K P Th
)

,

We notice here that for each t P p1,`8q there hold the inclusions PkpThq Ď LtpΩq, PkpThq Ď LtpΩq,
Pk Ď LtpΩq, RTkpΩq Ď Hpdivt; Ωq, RTkpΩq Ď Htpdivt; Ωq, and RTkpThq Ď Hpdivt; Ωq, which are
employed below to introduce our specific finite element subspaces. Indeed, we now set

Hu
h :“ PkpThq , Ht

h :“ L2
trpΩq X PkpThq , Hh :“ Hu

h ˆ Ht
h , Hσh :“ RTkpThq ,

Qh :“ Hσh X H0pdiv4{3; Ωq , Hi,h :“ RTkpThq , Qi,h :“ PkpThq

X2,h :“ RTkpThq , M1,h :“ PkpThq , X1,h :“ RTkpThq , and M2,h :“ PkpThq .

(6.1)

6.2 Verification of the hypotheses (H.1) - (H.6)

We begin by observing that the hypotheses (H.1) and (H.2) are exactly the same as [6, (H.1) and
(H.2)], particularly is proved in [6, Lemma 5.1]. In turn, we emphasize that (H.3) corresponds exactly
to [6, (H.5)], and hence we omit most details and refer to [6, Section 5.2, Lemma 5.2]. Finally, it is clear
from (6.1) that (H.5) is trivially satisfied, whereas (H.6) was proved precisely by [17, Lemma 4.5].

6.3 The rates of convergence

Here we present the rates of convergence of the Galerkin scheme (5.1) with the specific finite element
subspaces introduced in Section 6.1, for which the respective approximation properties were previously
collected. In fact, it follows easily from [15, Proposition 1.135] and its vector and tensorial versions, along
with interpolation estimates of Sobolev spaces, that those of Hu

h , Ht
h, Qi,h, and M1,h are given as follows

pAPu
hq there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for each

v P Wl,4pΩq, there holds

distpv,Hu
hq :“ inf

vhPHu
h

}v ´ vh}0,4;Ω ď C hl }v}l,4;Ω ,

`

APt
h

˘

there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for each
s P HlpΩq X L2

trpΩq, there holds

distps,Ht
hq :“ inf

shPHt
h

}s ´ sh}0,Ω ď C hl }s}l,Ω .
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´

APξi
h

¯

there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for

each ηi P Wl,ρpΩq, there holds

distpηi,Qi,hq :“ inf
ηi,hPQi,h

}ηi ´ ηi,h}0,ρ;Ω ď C hl }ηi}l,ρ;Ω ,

`

APχ
h

˘

there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for each
λ P Wl,rpΩq, there holds

distpλ,M1,hq :“ inf
λhPM1,h

}λ ´ λh}0,r;Ω ď C hl }λ}l,r;Ω .

Furthermore, from [17, eq. (4.6), Section 4.1] and its tensor version, which, as the foregoing ones,
are derived classically by using the Deny–Lions Lemma and the corresponding scaling estimates (cf. [15,
Lemmas B.67 and 1.101]), we state below the approximation properties of Qh and Hi,h

pAPσh q there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s, and for each
τ P HlpΩq X H0pdiv4{3; Ωq with divpτ q P Wl,4{3pΩq, there holds

distpτ ,Qhq :“ inf
τhPQh

}τ ´ τ h}div4{3;Ω ď C hl
!

}τ }l,Ω ` }divpτ q}l,4{3;Ω

)

,

`

APσi
h

˘

there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s, and for
each τ i P HlpΩq with divpτ iq P Wl,ϱpΩq, there holds

distpτ i,Hi,hq :“ inf
τ i,hPHi,h

}τ i ´ τ i,h}divϱ;Ω ď C hl
!

}τ i}l,Ω ` }divpτ iq}l,ϱ;Ω

)

.

Finally, that of X2,h, which we recall from [17, Section 4.5 pAPu
hq], becomes

`

APφh
˘

there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s, and for
each ϕ P Wl,rpΩq with divpϕq P Wl,rpΩq, there holds

distpϕ,X2q :“ inf
ϕPX2,h

}ϕ ´ ϕh}r,divr;Ω ď C hl
!

}ϕ}l,r;Ω ` }divpϕq}l,r;Ω

)

.

The rates of convergence of (5.1) are now provided by the following theorem.

Theorem 6.1. Let
`

pu⃗,σq, pφ, ξq, pσi, ξiq
˘

P pH ˆ Qq ˆ pX2 ˆ M1q ˆ pHi ˆ Qiq, i P t1, 2u be the
unique solution of (3.23) with pφ,uq P Wpδq, and let

`

pu⃗h,σhq, pφh, ξhq, pσi,h, ξi,hq
˘

P pHh ˆ Qhq ˆ

pX2,h ˆ M1,hq ˆ pHi,h ˆ Qi,hq, i P t1, 2u be a solution of (5.1) with pφh,uhq P Wpδdq, which is guaranteed
by Theorems 4.8 and 5.4, respectively. In turn, let p and ph be given by (2.7) and (5.23), respectively.
Assume the hypotheses of Theorem 5.5, and that there exists l P r1, k ` 1s such that u P Wl,4pΩq,
t P HlpΩq X L2

trpΩq, σ P HlpΩq X H0pdiv4{3; Ωq, divpσq P Wl,4{3pΩq, φ P Wl,rpΩq, divpφq P Wl,rpΩq,

χ P Wl,rpΩq, σi P HlpΩq, divpσiq P Wl,ϱpΩq, and ξi P Wl,ϱpΩq, i P t1, 2u. Then, there exists a positive
constant C, independent of h, such that

}pu⃗,σq ´ pu⃗h,σhq}HˆQ ` }p ´ ph}0,Ω ` }pφ, χq ´ pφh, χhq}X2ˆM1 `

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi

ď C hl
!

}u}l,4;Ω ` }t}l,Ω ` }σ}l,Ω ` }divpσq}l,4{3;Ω ` }φ}l,r;Ω ` }divpφq}l,r;Ω

` }ξ}l,r;Ω `

2
ÿ

i“1

`

}σi}l,Ω ` }divpσiq}l,ϱ;Ω ` }ξi}l,ρ;Ω
˘

)

.

Proof. It follows straightforwardly from Theorem 5.5, (5.23), and the above approximation properties.
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Figure 7.1: Convergence test in 2D and 3D. Error history associated with the fully mixed method for
k “ 0 and in 2D (left), for k “ 1 and in 2D (middle), and for k “ 0 and 3D (right). Primary variables
(top) and mixed variables (bottom).

7 Numerical results

The computational tests in this section have been realized using the finite element library FEniCS [1].
The nonlinear algebraic systems are solved with Newton’s method with a residual tolerance of 10´6. The
linear systems are solved with the direct method MUMPS. The zero-mean condition for the trace of the
pseudostress is enforced using a real Lagrange multiplier.

7.1 Verification of convergence

We choose the arbitrary model parameters µ “ ε “ 0.1, λ “ 0.5, κ1 “ 0.01, κ2 “ 0.2, and, letting
x :“ px, yq (resp. x :“ px, y, zq) be a generic vector of R2 (resp. R3), define the following manufactured
exact solutions to (2.8) in 2D and 3D, respectively

On Ω “ p0, 1q2:

$

’

&

’

%

upxq “

˜

cospπxq sinpπyq

´ sinpπxq cospπyq

¸

, ppxq “ x4 ´ y4,

ξ1pxq “ expp´xyq, ξ2pxq “ cos2pxyq, χpxq “ sinpxq cospyq,

On Ω “ p0, 1q3:

$

’

’

’

’

&

’

’

’

’

%

upxq “

¨

˚

˝

sinpπxq cospπyq cospπzq

´2 cospπxq sinpπyq cospπzq

cospπxq cospπyq sinpπzq

˛

‹

‚

, ppxq “ x4 ´ 1
2py4 ` z4q,

ξ1pxq “ expp´xy ` zq, ξ2pxq “ cos2pxyzq, χpxq “ sinpxq cospyq sinpzq,
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Figure 7.2: Convergence test in 2D and 3D. Approximate velocity, velocity gradient, pseudostress, electric
field, electrostatic potential, flux of cations, concentration of cations, flux of anions, concentration of
anions, computed with the second-order method.

and mixed variables

t “ ∇u, σ “ µ∇u ´ pI, φ “ ε∇χ, σi “ κip∇ξi ` qiξiε
´1φq ´ ξiu .

With these smooth fields we construct forcing/source terms and non-homogeneous Dirichlet boundary
conditions f ,g, fi, gi. For the 3D case we take the Banach exponents r “ 3, s “ 3{2, ρ “ 6, ϱ “ 6{5, while
for the 2D computations we use r “ ρ “ 4, s “ ϱ “ 4{3. The problem is numerically solved on a sequence
of nmax

k successively refined regular meshes. Errors in the norms from Theorem 6.1 are separated in the
contribution from each unknown. The error history is portrayed in Figure 7.1, where in the 2D case we
also run the convergence tests for the second-order scheme (using k “ 1). It is noted that, irrespective of
the spatial dimension or the polynomial degree, the method converges optimally. Furthermore, Figure 7.2
shows approximate solutions for primary and mixed variables, all fields sufficiently well captured.

We also study the conservation features of the method, for which we now let Pk
h : L1pΩq Ñ PkpThq be
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DoF h e r momh poth tra1,h tra2,h it

k “ 0
145 0.707 7.20e+00 * 7.11e-13 1.18e-16 2.80e-16 1.23e-16 5
537 0.354 4.48e+00 0.69 1.05e-10 5.53e-16 1.02e-15 1.76e-16 4

2’065 0.177 2.13e+00 1.07 3.33e-10 2.65e-15 2.18e-15 3.05e-16 4
8’097 0.088 9.69e-01 1.14 7.30e-12 4.90e-15 6.78e-15 7.53e-16 4

32’065 0.044 4.60e-01 1.08 2.44e-12 1.24e-14 2.21e-14 1.49e-15 4
127’617 0.022 2.24e-01 1.04 3.93e-12 1.27e-13 1.02e-13 2.80e-14 4

k “ 1
433 0.707 5.42e+00 * 1.12e-07 4.43e-15 3.28e-15 9.77e-16 5

1’649 0.354 9.17e-01 2.56 5.17e-12 6.73e-15 1.50e-14 1.51e-15 4
6’433 0.177 1.78e-01 2.37 2.58e-12 1.81e-14 2.57e-14 2.33e-15 4

25’409 0.088 3.70e-02 2.26 2.90e-12 3.51e-14 5.34e-14 4.12e-15 4
100’997 0.044 8.28e-03 2.16 2.80e-12 8.73e-14 1.45e-13 1.03e-14 4
402’689 0.022 1.97e-03 2.07 2.54e-12 1.98e-13 2.82e-13 2.34e-14 4

Table 7.1: Convergence test in 2D. Total error, experimental rates of convergence, ℓ8-norm of the pro-
jected residual of the momentum, potential, and ionic transport equations, and Newton iteration count.
Computations with the two lowest-order polynomial degrees.

the projector defined, for each v P L1pΩq, as the unique element Pk
hpvq P PkpThq such that

ż

Ω
Pk
hpvq qh “

ż

Ω
v qh @ qh P PkpThq , (7.1)

and let Pk
h : L1pΩq Ñ PkpThq be its corresponding vector version. Then, the following numbers

momh :“
›

›Pk
hrdivpσhq ´ pξ1,h ´ ξ2,hq ε´1φh ` f s

›

›

ℓ8 ,

poth :“ }Pk
h rdivpφhq ` pξ1,h ´ ξ2,hq ` f s}ℓ8 , trai,h :“ }Pk

h rξi,h ´ divpσi,hq ´ fis}ℓ8 ,

are computed at each refinement level and tabulated in Table 7.1 together with the total error

e :“ }pu⃗,σq ´ pu⃗h,σhq}HˆQ ` }p ´ ph}0,Ω ` }pφ, χq ´ pφh, χhq}X2ˆM1 `

2
ÿ

i“1

}pσi, ξiq ´ pσi,h, ξi,hq}HiˆQi ,

and its experimental convergence rate r “ logpe{peqrlogph{phqs´1 , where e and pe denote errors produced
on two consecutive meshes of sizes h and ph, respectively. We report on the 2D case only (in 3D we
obtain analogous results). The expected optimal convergence of the total error, and the announced local
conservativity are confirmed. We also see that after the first mesh refinement the number of Newton
iterations required for convergence is four.

7.2 Ion spreading in a charged enclosure

In order to further validate our numerical methods, inspired by the tests in [23, Section 5.2] we simulate
the phenomenon of electrodiffusion of ions in a charged reservoir. We follow the parametrization used
there, but we consider only constant coefficients (the referenced paper focuses on concentration-dependent
density, viscosity, and diffusivity). Another simplification with respect to [23] is that we only take the
canonical momentum λu (that is, without mass diffusion or migration due to the ionic species).

The mixing/spreading process is intrinsically time-dependent and so we include in the formulation the
following modified versions of the fully-discrete momentum and ion conservation equations

1

∆t

ż

Ω
um`1
h ¨ vh ` apu⃗m`1

h , v⃗hq ` cpum`1
h ; u⃗m`1

h , v⃗hq ` bpv⃗h,σhq “
1

∆t

ż

Ω
um
h ¨ vh ` Fξh,φh

pv⃗hq ,

cipσ
m`1
i,h , ηi,hq ´ di

ˆ

1

∆t
ξm`1
i,h , ηi,h

˙

“ Gipηi,hq ´ di

ˆ

1

∆t
ξmi,h, ηi,h

˙

,
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The domain is Ω “ p0, 1qˆp0, 2q, which we discretize into a structured
mesh of 10’000 triangles. The boundary conditions are as follows: for
the fluid flow we impose no-slip u “ 0 everywhere on the boundary.
For the chemical species we assume that the normal trace of the
total fluxes is zero everywhere on the boundary σi ¨ ν “ 0 (that is,
the boundary is considered impenetrable for the ionic quantities),
which is imposed essentially in the space Hi,h. For the electrostatic
sub-system we consider two separate sub-boundaries: on the top
segment (y “ 2) we prescribe a given potential χ0 (representing a
ground condition, imposed naturally), on the vertical walls of the
reservoir we set zero normal trace of the electric field φ ¨ ν “ 0,
and the bottom segment is regarded as a positively charged surface
φ ¨ ν “ sE (the two last conditions are imposed essentially).

Figure 7.3: Ion spreading in a charged enclosure. Set up of the
geometry, boundary conditions for the electrostatic equations, and
initial distribution of positively and negatively charged ion particles.

T
--

for all v⃗h P Hh, and for all ηi,h P Qi,h, respectively, where the superscripts m,m`1 denote approximations
at time instants tm, tm`1 using backward Euler’s method. For this we take a constant time step ∆t “ 0.01
and conduct the simulations until the final time t “ 2.5. The initial velocity is zero and the initial
concentrations of positively and negatively charged particles are as follows

ξi,0pxq “
ξ̂0

2πR2
exp

"

´
px ´ 1

2 `
qi
8 q2 ` py ´ 1 `

qi
2 q2

2R2

*

,

respectively (see also the sketch in Figure 7.3). The model parameters are as follows

λ “ 1, ϵ “ 0.5, µ “ 0.08, κ1 “ κ2 “ 0.01, sE “ 1, χ0 “ 0, ξ̂0 “ 3, R “
1

4
.

The numerical solutions are displayed in Figure 7.4, where we plot snapshots at five time instants of the
net charge (computed as the difference between positively and negatively charged ion species) and the
line integral convolution (similar to streamlines) of the fluid velocity. Exactly as in [23, Figure 6], in our
case we observe that the flow patterns that occur thanks to the interaction of difference of potential and
charges (different on the top and bottom boundaries) permit spreading into the reservoir, and the net
charge figures show the expected decay due to dissipation.
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


	Introduction
	The model problem
	The fully-mixed formulation
	Preliminaries
	The Navier–Stokes equations
	The electrostatic potential equations
	The ionized particles concentration equations

	The continuous solvability analysis
	The fixed-point approach
	Well-posedness of the uncoupled problems
	Solvability analysis of the fixed-point scheme

	The Galerkin scheme
	Preliminaries
	Discrete solvability analysis
	A priori error analysis

	Specific finite element subspaces
	Preliminaries
	Verification of the hypotheses (H.1) - (H.6)
	The rates of convergence

	Numerical results
	Verification of convergence
	Ion spreading in a charged enclosure


