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Abstract. A triangular system of conservation laws with discontinuous flux
that models the one-dimensional flow of two disperse phases through a contin-
uous one is formulated. The triangularity arises from the distinction between
a primary and a secondary disperse phase, where the movement of the primary
disperse phase does not depend on the local volume fraction of the secondary
one. A particular application is the movement of aggregate bubbles and solid
particles in flotation columns under feed and discharge operations. This model
is formulated under the assumption of a variable cross-sectional area. A mono-
tone numerical scheme to approximate solutions to this model is presented. The
scheme is supported by three partial theoretical arguments. Firstly, it is proved
that it satisfies an invariant-region property, i.e., the approximate volume frac-
tions of the three phases, and their sum, stay between zero and one. Secondly,
under the assumption of flow in a column with constant cross-sectional area it
is shown that the scheme for the primary disperse phase converges to a suitably
defined entropy solution. Thirdly, under the additional assumption of absence
of flux discontinuities it is further demonstrated, by invoking arguments of
compensated compactness, that the scheme for the secondary disperse phase
converges to a weak solution of the corresponding conservation law. Numerical
examples along with estimations of numerical error and convergence rates are
presented for counter-current and co-current flows of the two disperse phases.

1. Introduction.
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1.1. Scope. It is the purpose of this work to introduce, and in part analyze, a
numerical scheme for a system of conservation laws with source terms of the type

@t

✓
A(z)

✓
�

 

◆◆
+ @z

✓
A(z)

✓
J(�, z, t)

F̃ (�, , z, t)

◆◆
=

KX

k=1

QF,k(t)

✓
�F,k(t)
 F,k(t)

◆
�(z � zF,k),

(1.1)

where t is time, z is spatial position, and � and  are the volume fractions of the
primary and secondary disperse phases, respectively. Both disperse phases move
within the continuous phase of the one-dimensional flow. We let A(z) denote a
variable cross-sectional area. The flux functions J and F̃ are discontinuous across
the positions z = zU < zF,1 < · · · < zF,K < zE, and due to constitutive assumptions
of the model, are nonlinear functions of � and  . The right-hand side of (1.1)
describes singular sources located at z = zF,k, k = 1, . . . ,K, and is composed of
given functions. It is assumed that QF,k(t) is the volumetric bulk flow of the mixture
(of the continuous and two disperse phases) injected at z = zF,k, and that �F,k(t)
and  F,k(t) are the volume fractions of the primary and secondary disperse phases
in the feed flow, respectively. The system (1.1) is posed on ⇧T := R⇥(0, T ) together
with initial conditions

�(z, 0) = �0(z) for all z 2 R, (1.2a)

 (z, 0) =  0(z) for all z 2 R, (1.2b)

where we assume that

0  �0(z)  1, 0   0(z)  1� �0(z) for all z 2 R (1.3)

along with

TV(�0) < 1, TV( 0) < 1. (1.4)

Likewise, we assume that

0  �F,k(t)  1, 0   F,k(t)  1� �F,k(t) for all k = 1, . . . ,K and t 2 [0, T ].
(1.5)

If ✓ denotes the volume fraction of the continuous phase, then we assume that

0  �, , ✓  1; �+  + ✓ = 1, (1.6)

which motivates assumptions (1.3) and (1.5). (Of course, satisfaction of (1.6) by
exact or numerical solutions of (1.1), (1.2) on ⇧T needs to be proved.)

A specific application that gives rise to the system (1.1) is a model of a flota-
tion column [8, 9], where � denotes the volume fraction of bubbles and  that of
solid particles (Figure 1). The bottom of the column has the coordinate zU (the
underflow) and the top zE (the e✏uent). The primary disperse phase of bubbles –
specifically, aggregate bubbles, to which hydrophobic valuable particles (minerals)
are attached – is assumed to flow through the suspension of solid particles and liq-
uid independently of the volume fraction of solids. The secondary disperse phase
consists of solid hydrophilic particles (ore) that move in the remaining space outside
the bubbles. If the solid particles of the secondary disperse phase have a density
larger than that of the fluid, the two disperse phases undergo counter-current, and
otherwise, co-current flow. The distinction between primary and secondary disperse
phase also becomes evident in the flux functions: the flux J of the primary disperse
phase depends on � only (besides z and t), while that of the secondary disperse
phase, F̃ , depends both on � and  . Thus, the system (1.1) is triangular; however,
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Figure 1. Schematic of a one-dimensional column with K = 3
inlets and K+1 = 4 zones, where QU is the downwards volumetric
outflow, QF,j is the volumetric flow at the inlet zF,j , for each j =
1, . . . ,K, and QE is the upwards volumetric outflow. Note that the
distances between the inlets/outlets are arbitrary and the cross-
sectional area A = A(z) may vary piecewise continuously (although
the figure shows a piecewise constant example).

it is generally non-strictly hyperbolic; see [9], where a counter-current model of the
form (1.1) is studied.

The main contribution of this work is an easily implemented explicit monotone
numerical scheme for (1.1). The scheme is supported by three partial theoretical
arguments. Firstly, it is proved that it satisfies an invariant-region property, i.e.,
the approximate volume fractions satisfy a discrete analogue of (1.6) at every point.
Secondly, under the assumption of a constant cross-sectional area, i.e.,

A ⌘ constant, A > 0, (1.7)

and time-independent feed and volume rates, it is shown that the scheme for the
primary disperse phase (the “�-scheme”) converges to a suitably defined entropy
solution. Thirdly, we additionally assume that there are no flux discontinuities, so
that the model reduces to the triangular system of conservation laws

@t�+ @zJ(�) = 0, (1.8a)

@t + @zF̃ (�, ) = 0, (z, t) 2 ⇧T , (1.8b)
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where J and F̃ are z- and t-independent versions of the fluxes arising in (1.1)
and (1.8) is equipped with the initial conditions (1.2), where assumptions (1.3)
remain in e↵ect. Under these additional assumptions, we may invoke arguments
of compensated compactness, that the scheme for the secondary disperse phase
(the “ -scheme”) converges to a weak solution of the corresponding conservation
law. Numerical experiments illustrate that the scheme for the full model (1.1)
approximates expected solution behaviour for counter-current and co-current flows
and that approximate numerical errors tend to zero as the mesh is refined.

1.2. Related work. The system (1.1) models the evolution of the primary un-
known � independently of the secondary unknown  . Various applications of such
triangular systems can be found in the literature. One such is the process of col-
umn flotation, which is a solid-liquid separation process used in mineral processing,
environmental and chemical engineering [10, 11, 26, 27, 41, 43]. The model (1.1) re-
stricted to three-phase counter-current flow in a flotation column was originally
proposed in [9]. The nonlinear constitutive assumptions for the model come from
the drift-flux theory (used to analyze the bubbly and froth regions [40,48,49]) and
the solids-flux theory (for particles in a liquid [23,24,37]). In [9], the construction of
steady-state solutions is detailed, where conservation laws with discontinuous flux
are a key ingredient with a specific entropy condition [2, 21, 28]. The most inter-
esting desired steady states are classified in that work and visualized in graphical
so-called operating charts that show how the control variables QU, QF := QF,1

(feed mixture of gas, solids and water) and QW := QF2 (feed washwater) should be
chosen to obtain a certain steady state.

Clearly, the mathematical and numerical di�culties associated with (1.1) are
twofold; namely, one has to deal with discontinuities of the fluxes with respect to z,
as well as with the definition of the governing model by a (triangular) system of
conservation laws (in contrast to otherwise similar, known scalar two-phase models
arising in flotation or sedimentation [8, 13, 21, 22]). The well-known di�culty of
conservation laws with discontinuous flux lies in the appropriate formulation of
admissibility conditions of jumps of the solution across discontinuities of the flux
such that the resulting concept of weak (discontinuous) solutions supplied with
an entropy condition would admit a uniqueness result. There exist many criteria
for selecting unique solutions (see, e.g., [1, 21]), each of which corresponds to a
particular physical reality and relies on specific assumptions on the fluxes adjacent
to a discontinuity. A unified treatment of this problem is advanced in [2]. While
there are numerous treatments of scalar conservation laws with discontinuous flux,
only a few analyses of systems with discontinuous flux are available (cf., e.g., [16,45]).
That said, its triangular nature makes the system (1.1) potentially easier to treat
than a full 2 ⇥ 2 system of conservation laws (where the flux of each component
would depend on both unknowns).

The triangular system with discontinuous flux studied in [9] was solved numer-
ically with a staggered-grid scheme that utilizes the triangular structure of (1.1).
Such a semi-Godunov scheme for general triangular hyperbolic systems is one of
the two suggested schemes by Karlsen et al. [31, 32], who proved convergence of
the numerical solutions under certain assumptions on the flux functions. We here
propose a simpler numerical scheme (on a single grid) that is easier to implement
and analyze. The analysis (of the scheme proposed under simplifying assumptions)
relies on the aligned version of the scheme introduced in [32] and in particular on
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the convergence analysis of an Engquist-Osher scheme for multi-dimensional trian-
gular system of conservation laws by Coclite et al. [17]. These analyses, and the
present treatment for the reduced model (1.8), rely on compactness techniques that
use discrete entropy inequalities and the compensated compactness framework.

Further applications and results on the analysis of triangular systems include two-
component chromatography, which describes the evolution of the concentration of
two solutes, see e.g. [3]. Furthermore, polymer flooding in oil recovery is modelled by
a 2⇥2 system (e.g. [30]), which can be converted to a triangular system in Lagrange
coordinates [47]. In [19, 39, 46], the authors study the delta shock wave formation
in solutions of triangular system of conservation laws from the so-called generalized
pressureless gas dynamics model. Bressan et al. [5] established the existence and
uniqueness of vanishing viscosity solutions for scalar conservation laws for a Cauchy
problem and their results can be applied to a triangular system under suitable
assumptions. The results of Karlsen et al. [31, 32] for general triangular systems
can be applied to models of three-phase flows in porous media, for example, in oil
recovery processes.

1.3. Outline of the paper. The remainder of this paper is organized as follows.
In Section 2, the model of [9] of gas-solid-liquid three-phase flow in a flotation
column from is written in a slightly more general form. Starting from the balance
equations of the three phases we outline the derivation of the algebraic forms of
the fluxes J(�, z, t) and F̃ (�, , z, t) arising in the governing PDE system (1.1).
In Section 3 the numerical method proposed for the approximation of solutions
to the initial value problem (1.1), (1.2) is detailed, where computational e↵ort is
essentially reduced to the interior of the vessel (cf. Figure 1). After outlining the
discretization of the model in Section 3.1, we specify the numerical fluxes and update
formulas for the primary and secondary disperse phases in Sections 3.2 and 3.3,
respectively. Both formulas are adapted to the particular algebraic form of the fluxes
J(�, z, t) and F̃ (�, , z, t) and involve upwind discretizations, a particular monotone
discretization for “concentration times velocity” fluxes from [6], and the Engquist-
Osher numerical flux [25]. We then prove in Section 3.4 that the numerical method
is monotone and that the numerical solutions satisfy a so-called invariant-region
property (Theorems 3.1 and 3.2), that is, a discrete analogue of (1.6), provided, of
course, that the initial data satisfy (1.3) and the time step and spatial meshwidth
satisfy a CFL condition. The proof of Theorem 3.2 concludes Section 3 dedicated
to the discussion of the schemes for the full problem (1.1), (1.2). Section 4 provides
further partial results of the convergence analysis of the numerical scheme based
on additional simplifying assumptions, namely those of a constant cross-sectional
area A and constant bulk and feed flows QU, QF,k, �F,k and  F,k (k = 1, . . . ,K).
We can then prove convergence of the “�-scheme” (the one that discretizes the �-
component of the governing PDE; Section 4.1) and L

1 Lipschitz continuity of the
“ -scheme” (Section 4.2). If in addition all z-dependent flux discontinuities are
removed, so that the governing PDE system is (1.8), we may apply compensated
compactness techniques to prove convergence of the  -scheme (Section 4.3). For
the simplified problems, the initial conditions (1.2) and assumptions (1.3) and (1.5)
are imposed, so Theorems 3.1 and 3.2 remain in e↵ect. While in that case the
convergence of the (monotone) �-scheme to an entropy solution of (1.8a) follows
by standard arguments (for monotone schemes), the principal result of Section 4.3
is convergence of the  -scheme to a weak solution of (1.8b) (Lemma 4.10 and
Theorem 4.2). Estimations of errors and convergence order of the numerical method
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can be found in Section 5.1. Some numerical examples are presented in Section 5,
starting with preliminaries (Section 5.1). First, in Section 5.3, we use a smooth
solution to estimate the order of convergence. Later on, we present two numerical
examples that illustrate the model predictions for counter-current (Section 5.4) and
co-current flows (Sections 5.5 and 5.6). Finally, some conclusions are drawn in
Section 6.

2. Three-phase flow model. The density of each phase is assumed constant, so
the conservation of mass can be expressed by the balance equations (v�, v , and v✓

are the phase velocities)

@t

�
A(z)�

�
+ @z

�
A(z)�v�

�
=

KX

k=1

QF,k(t)�F,k(t)�(z � zF,k), (2.1)

@t

�
A(z) 

�
+ @z

�
A(z) v 

�
=

KX

k=1

QF,k(t) F,k(t)�(z � zF,k), (2.2)

@t

�
A(z)✓

�
+ @z

�
A(z)✓v✓

�
=

KX

k=1

QF,k(t)
�
1� �F,k(t)�  F,k(t)

�
�(z � zF,k), (2.3)

where the right-hand sides contain Dirac functions, the feed volume fractions �F,k
and  F,k of the disperse phases, and the corresponding volume fraction 1��F,k(t)�
 F,k(t) of the continuous phase, at the inlet located at z = zF,k, k = 1, . . . ,K.

We define the volume-average velocity, or bulk velocity, of the mixture by

q := �v� +  v + ✓v✓,

and replace (2.3) by the sum of (2.1)–(2.3), which is

@z

�
A(z)q

�
=

KX

k=1

QF,k(t)�(z � zF,k). (2.4)

Consequently, within the unit q varies with z due to the K inlet flows and the
variable cross-sectional area. We define Q(z, t) := A(z)q(z, t) and integrate (2.4)
from any point z0 < zU to obtain

Q(z, t) = Q(z0, t) +
KX

k=1

QF,k(t)H(z � zF,k),

where H(·) is the Heaviside function. If the volumetric underflow QU(t) is given,
then Q(z, t) = �QU(t) for z < zU, and

Q(z, t) = �QU(t) +
KX

k=1

QF,k(t)H(z � zF,k) = �QU(t) +
X

k:zF,k�z

QF,k(t).

This is the continuity equation of the mixture, which replaces (2.3). Next, (2.1)
and (2.2) are rewritten in terms of q and two constitutive functions. We refer to the
continuous phase and the secondary disperse phase as “secondary mixture”, and
define the volume fraction of the secondary disperse phase within the secondary
mixture as

' :=
 

 + ✓
=

 

1� �
(when � < 1),
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where 0  '  1 by (1.6). The volume-average velocity of the secondary mixture is

qs :=
 v + ✓v✓

 + ✓
= 'v +

1� ��  

1� �
v✓ = 'v + (1� ')v✓.

It is then assumed that within [zU, zE), the relative velocity v�s := v� � qs of the
primary disperse phase with respect to the secondary mixture is a given constitutive
function ṽ�s(�), while outside that interval, both phases move at the same velocity,
so their velocity di↵erence is zero. Thus, in terms of the characteristic function

�(z) := �[zU,zE)(z) :=

(
1 for z 2 [zU, zE),

0 for z /2 [zU, zE),

this assumption can be expressed as v�s = �(z)ṽ�s(�). Within [zU, zE), the relative
velocity of the secondary disperse phase with respect to the continuous phase v ✓ :=
v � v✓ is supposed to be a given function ṽ ✓ of ', that is, v ✓ = �(z)ṽ ✓(').

The definitions of all velocities imply the identities

�v� = �q + �(z)�(1� �)ṽ�s(�),

 v =  q + �(z) 
�
(1� ')ṽ ✓(')� �ṽ�s(�)

� (2.5)

for the (unweighted) fluxes �v� and  v arising in (2.1) and (2.2), respectively. It
is then useful to introduce the velocity and flux functions

W (�) := (1� �)ṽ�s(�), V (') := �(1� ')ṽ ✓('), (2.6)

j(�) := �W (�), f(') := 'V ('),

where � = ±1 is chosen depending on the application such that V ('), f(') � 0
(for standard convenience, e.g., when plotting their graphs); � = 1 for co-current
flows (upwards) and � = �1 for counter-current flows. The velocity and flux of
the secondary disperse phase with respect to z are therefore �V (') and �f('),
respectively. We assume that W 0

, V
0
 0 and V (1) = W (1) = 0, as well as that

f has one local maximum ! and one inflection point !̃, 0 < ! < !̃ < 1. (2.7)

Combining (2.5) and (2.6) one gets the expressions

�v� = �q + �(z)�W (�) =: J(�, z, t), (2.8)

 v = (1� �)'q + �(z)
�
(1� �)'�V (')� '�W (�)

�
=: F (',�, z, t)

for the total fluxes of (2.1) and (2.2). For � < 1, we define the final flux function

F̃ (�, , z, t) := F

✓
�,

 

1� �
,�, z, t

◆
=  q + �(z)

✓
 �V

✓
 

1� �

◆
�
 �W (�)

1� �

◆
,

(2.9)

whereas for � = 1, we set F̃ ( , 1, z, t) := 0 (since F (', 1, z, t) = 0 for all ' 2 [0, 1]).
Substituting (2.8) and (2.9) into (2.1) and (2.2), respectively, we obtain the final
governing PDE system (1.1).

Illustrations and numerical examples are based on the expressions

W (�) = vterm,p(1� �)np for 0  �  1, np > 1, (2.10)

V (') = vterm,s(1� ')ns for 0  '  1, ns > 1 (2.11)

(see [44]), where vterm,p and vterm,s are the terminal velocities of a single particle
of the primary and secondary disperse phases, respectively, in an unbounded fluid.
Figure 2 illustrates the nonlinearities of J(�, z, t) and F̃ (�, , z, t) in the di↵erent
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Figure 2. Illustration of the nonlinearities of the flux functions
J(�, z) and F̃ (�, , z) in the di↵erent zones of the column.

zones of the column. We set np = 3.2, vterm,p = 2.7 cm/s, ns = 2.5, and vterm,s =
0.5 cm/s along with � = �1. These values are used in Applications 1 and 2 in
Section 5.

3. Numerical method.

3.1. Discretization and CFL condition. The discretization of the model is
based on the triangularity of the system of conservation laws (1.1). The numer-
ical fluxes are based on the particular treatment of conservation laws arising in
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Figure 3. Discretization of � and  in the application to flotation,
where the height of the vessel is H = zE � zU, there are K inlets,
and the cross-sectional area A(z) has two values separated by a
discontinuity at z = zF,2; cf. the examples in Sections 5.4 and 5.5.

kinematic modelling with fluxes having an explicit “concentration times velocity”
structure [6] and obtain an approximate solution � of the first PDE of (1.1). Then �
is used as a given piecewise constant function in space and time in the second PDE
of (1.1), which is updated accordingly.

We define a computational domain [0, zend) (to be used for the error calculation;
see Section 5.1) consisting of N cells by covering the vessel with N � 2 cells and
placing one cell each below and above; see Figure 3. This setup, with a finite
spatial domain, is introduced for practical reasons and is the minimal spatial domain
that captures the interior of the tank and the concentrations in the underflow and
e✏uent zones. The formulation of the scheme and subsequent proof of invariant
region property are referred to this computational domain, but for the convergence
analysis the model is specified as the initial value problem (1.1), (1.2) with the
initial data posed on the real line. This distinction is merely a formal one since on
(�1, 0) and (zend,1) the model reduces to linear advection equations describing
that matter is transported away from the unit at constant velocity (if no changes
in A in these zones arise).

Given the column height H, we define �z := H/(N � 2) and the cell boundaries
zi := i�z, i = 0, 1, . . . , N . Furthermore, we define the cells (intervals) Ii�1/2 :=
[zi�1, zi) and Ii := [zi�1/2, zi+1/2). We place the column between zU := �z = z1

and zE := zU +H = (N � 1)�z = zN�1. Then the length of the interval of error
calculation is zend := H + 2�z = N�z. Each injection point zF,k is assumed to
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belong to one cell Ii�1/2 and we define the dimensionless function

�k,i�1/2 :=

Z

Ii�1/2

�zF,k(z) dz :=

(
1 if zF,k 2 Ii�1/2,

0 otherwise.
(3.1)

The cross-sectional area A = A(z) is allowed to have a finite number of discontinu-
ities and it is discretized by

Ai :=
1

�z

Z

Ii

A(z) dz, Ai+1/2 :=
1

�z

Z

Ii+1/2

A(z) dz.

We simulate NT time steps up to the final time T := NT�t, with the fixed time
step �t satisfying the Courant-Friedrichs-Lewy (CFL) condition

�t

✓
2kQk1,T

Amin
+ M

�
max {V (0), kV 0

k1} + kWk1 + kW
0
k1

�◆
 �z, (3.2)

where

M := max
i=1,2,...,N

⇢
Ai�1

Ai�1/2
,

Ai

Ai�1/2

�
, Amin := min

k=0,1/2,1,3/2,...,N
Ak,

kQk1,T := max
0tT

KX

k=1

QF,k(t), kW
0
k1 := max

0�1
|W

0(�)|.

Finally, we set tn := n�t for n = 0, 1, . . . , NT .
The time-dependent feed functions are discretized as

Q
n

F,k :=
1

�t

Z
t
n+1

tn

QF,k(t) dt, �
n

F,k :=
1

�t

Z
t
n+1

tn

�F,k(t) dt,

for k = 1, . . . ,K, and the same is made for  F,k.

3.2. Update of �. The first equation of (1.1) is discretized by combining upwind
discretizations of q� with the particular numerical scheme proposed in [6] for models
with a “concentration times velocity” flux, as is the case for the term �W (�).

The initial data are discretized by

�
0
i�1/2 :=

1

Ai�1/2�z

Z

Ii�1/2

�(z, 0)A(z) dz.

To advance from t
n to t

n+1 from given values �n
i�1/2, i = 1, . . . , N , we define the

numerical flux at z = zi by

J
n

i
:=

8
><

>:

�
n

1/2q
n�
0 for i = 0,

�
n

i�1/2q
n+
i

+ �
n

i+1/2q
n�
i

+ �i�
n

i�1/2W (�n
i+1/2) for i = 1, . . . , N � 1,

�
n

N�1/2q
n+
N

for i = N ,

(3.3)

where the notation

a
+ := max{a, 0}, a

� := min{a, 0}, �i := �(zi), and q
n+
i

:= (q(zi, t
n))+

is used. Since the bulk fluxes above and below the tank are directed away from it,

�
n

�1/2q
n+
0 = 0 and �

n

N+1/2q
n�
N

= 0 for any values of �n�1/2 and �n
N+1/2.
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To simplify the presentation, we use the middle line of (3.3) as the definition of J n

i

together with �
n

�1/2 := 0 and �
n

N+1/2 := 0. With the notation � := �t/�z and
Q

n+
i

:= Aiq
n+
i

etc., the conservation law on Ii�1/2 implies the update formula

�
n+1
i�1/2 = �

n

i�1/2 +
�

Ai�1/2

 
Ai�1J

n

i�1 �AiJ
n

i
+

KX

k=1

Q
n

F,k�
n

F,k�k,i�1/2

!

=: Hi�1/2

�
�
n

i�3/2,�
n

i�1/2,�
n

i+1/2

�
, i = 1, . . . , N.

(3.4)

Then we define the piecewise constant approximate solution ��z on R⇥ [0, T ) by

�
�z(z, t) :=

X

i,n

�Ii�1/2
(z)�[tn,tn+1)(t)�

n

i�1/2, (3.5)

where �⌦ denotes the characteristic function of the set ⌦.

3.3. Update of  . We discretize the initial data by

 
0
i�1/2 :=

1

Ai�1/2�z

Z

Ii�1/2

 (z, 0)A(z) dz.

The well-known Engquist-Osher numerical flux [25] for a given continuous, piecewise
di↵erentiable flux function g and real values a and b on the left/right is given by

G(g; a, b) := g(0) +

Z
a

0
max

�
0, g0(s)

 
ds+

Z
b

0
min

�
0, g0(s)

 
ds. (3.6)

Then a consistent numerical flux corresponding to (2.9) is, for i = 0, . . . , N ,

F
n

i
:=  

n

i�1/2q
n+
i

+  
n

i+1/2q
n�
i

+ �i

✓
G

n

i

�
 
n

i�1/2, 
n

i+1/2

�
� �

n

i�1/2

 
n

i+1/2

1� �
n

i+1/2

W (�n
i+1/2)

◆
,

where we set  n

�1/2 := 0 and  n

N+1/2 := 0 with the same motivation as for � above
(these values are irrelevant). Here

G
n

i

�
 
n

i�1/2, 
n

i+1/2

�
:= G

�
�f

n

i
; n

i�1/2, 
n

i+1/2

�
(3.7)

is the Engquist-Osher numerical flux associated with the function

�f
n

i
( ) := � Ṽ

✓
 

 
n

max,i

◆
, Ṽ (u) :=

(
V (u) for u < 1,

0 for u � 1,
(3.8)

where (a ^ b := min{a, b}, a _ b := max{a, b})

 
n

max,i := (1� �
n

i�1/2) ^ (1� �
n

i+1/2) = 1� (�n
i�1/2 _ �

n

i+1/2).

The function  7! �f
n

i
( ) is unimodal. Let  ̂n

i
denote the maximum point of fn

i
.

For a given function Ṽ the values  ̂n

i
and  n

max,i are related by the following lemma.

Lemma 3.1. Assume that 0 < ! < !̃ < 1 are the unique local maximum and
inflection point, respectively, of f(') = 'V (') (cf. (2.7)). Then  ̂

n

i
= ! 

n

max,i for
all i and n and all possible values 0   

n

max,i  1. Moreover, the unique inflection
point  n

infl,i 2 ( ̂n

i
, 

n

max,i) of f
n

i
satisfies  n

infl,i = !̃ 
n

max,i for all i and n and all
possible values 0   

n

max,i  1. (See Figure 4.)
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Figure 4. Illustration of Lemma 3.1.

Proof. Assume that 0 <  
n

max,i  1. Since  ̂n

i
is the unique solution  ̂n

i
<  

n

max,i of

d

d 

✓
 Ṽ

✓
 

 
n

max,i

◆◆
= 0 , Ṽ

✓
 

 
n

max,i

◆
+

 

 
n

max,i

Ṽ
0
✓

 

 
n

max,i

◆
= 0,

it follows that ! is the unique solution in (0, 1) of Ṽ (!) + !Ṽ
0(!) = 0 (cf. (2.7)).

By a similar argument, !̃ is the unique solution of 2Ṽ 0(!̃) + !̃Ṽ
00(!̃) = 0.

The Engquist-Osher numerical flux (3.7) can now be computed as follows, where
we recall that fn

i
(0) = 0. For � = 1 we get

Z
 

n
i�1/2

0
max

�
0, (fn

i
)0(s)

 
ds =

(
f
n

i
( n

i�1/2) if  n

i�1/2   ̂
n

i
,

f
n

i
( ̂n

i
) if  n

i�1/2 >  ̂
n

i
,

Z
 

n
i+1/2

0
min

�
0, (fn

i
)0(s)

 
ds =

(
0 if  n

i+1/2   ̂
n

i
,

f
n

i
( n

i+1/2)� f
n

i
( ̂n

i
) if  n

i+1/2 >  ̂
n

i
,

(3.9)

hence

G(fn

i
; n

i�1/2, 
n

i+1/2)

=

8
>>>><

>>>>:

f
n

i
( n

i�1/2) if  n

i�1/2   ̂
n

i
and  n

i+1/2   ̂
n

i
,

f
n

i
( n

i�1/2) + f
n

i
( n

i+1/2)� f
n

i
( ̂n

i
) if  n

i�1/2   ̂
n

i
and  n

i+1/2 >  ̂
n

i
,

f
n

i
( ̂n

i
) if  n

i�1/2 >  ̂
n

i
and  n

i+1/2   ̂
n

i
,

f
n

i
( n

i+1/2) if  n

i�1/2 >  ̂
n

i
and  n

i+1/2 >  ̂
n

i
.

(3.10)
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By analogous reasoning we obtain for � = �1

G(�f
n

i
; n

i�1/2, 
n

i+1/2)

=

8
>>>><

>>>>:

�f
n

i
( n

i+1/2) if  n

i�1/2   ̂
n

i
and  n

i+1/2   ̂
n

i
,

�f
n

i
( ̂n

i
) if  n

i�1/2   ̂
n

i
and  n

i+1/2 >  ̂
n

i
,

f
n

i
( ̂n

i
)� f

n

i
( n

i�1/2)� f
n

i
( n

i+1/2) if  n

i�1/2 >  ̂
n

i
and  n

i+1/2   ̂
n

i
,

�f
n

i
( n

i�1/2) if  n

i�1/2 >  ̂
n

i
and  n

i+1/2 >  ̂
n

i
.

(3.11)

We define the di↵erence operators ��ai := ai � ai�1 and �+ai := ai+1 � ai. Then
the marching formula is (for i = 1, . . . , N)

 
n+1
i�1/2 =  

n

i�1/2 +
�

Ai�1/2

 
Ai�1F

n

i�1 �AiF
n

i
+

KX

k=1

Q
n

F,k 
n

F,k�k,i�1/2

!

=  
n

i�1/2 �
�

Ai�1/2

 
��

✓
 
n

i�1/2Q
n+
i

+  
n

i+1/2Q
n�
i

+ (A�)i

✓
G

n

i

�
 
n

i�1/2, 
n

i+1/2

�
� �

n

i�1/2

 
n

i+1/2

1� �
n

i+1/2

W (�n
i+1/2)

◆◆

�

KX

k=1

Q
n

F,k 
n

F,k�k,i�1/2

!
.

(3.12)

Then we define the piecewise constant approximate solution  �z on R⇥ [0, T ) by

 
�z(z, t) :=

X

i,n

�Ii�1/2
(z)�[tn,tn+1)(t) 

n

i�1/2. (3.13)

3.4. Monotonicity and invariant-region principle. We prove that the update
formulas (3.4) and (3.12) are monotone, a property which then is used to prove the
invariant-region property that the approximate solutions are positive and bounded.

Theorem 3.1. If the CFL condition (3.2) is satisfied, then the update formula for
� (3.4) is monotone and

0  �
n

i�1/2  1 for i = 1, . . . , N and n = 1, . . . , NT .

Proof. We recall the assumption (1.3). We first prove monotonicity of the three-
point scheme for � (3.4), i.e, that @�n+1

i�1/2/@�
n

k�1/2 � 0 for all i = 1, . . . , N and
k = i� 1, i, i+ 1. We have

@�
n+1
i�1/2

@�
n

i�3/2

=
�

Ai�1/2

⇣
Q

n+
i�1 + (A�)i�1W (�n

i�1/2)
⌘
� 0,

@�
n+1
i�1/2

@�
n

i+1/2

=
�

Ai�1/2

⇣
�Q

n�
i

� (A�)i�
n

i�1/2W
0(�n

i+1/2)
⌘
� 0,

@�
n+1
i�1/2

@�
n

i�1/2

= 1 +
�

Ai�1/2

⇣
Q

n�
i�1 + (A�)i�1�

n

i�3/2W
0(�n

i�1/2)

�Q
n+
i

� (A�)iW (�n
i+1/2)

⌘

� 1� �

✓
2kQk1,T

Amin
+M

�
kW

0
k1 + kWk1

�◆
� 0,
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where we have used the CFL condition (3.2).
We now prove that if 0  �

n

i�1/2  1 for all i, then 0  �
n+1
i�1/2  1 for all i.

Clearly, (1.3) implies that 0  �
0
i�1/2  1 for all i. Since the scheme (3.4) is mono-

tone, Hi�1/2 is non-decreasing in each argument. Since by assumption W (1) = 0,
we get the following estimation (where we use a

+ + a
� = a):

0 
�

Ai�1/2

KX

k=1

Q
n

F,k�
n

F,k�k,i�1/2 = Hi�1/2(0, 0, 0)  �
n+1
i�1/2

= Hi�1/2

�
�
n

i�3/2,�
n

i�1/2,�
n

i+1/2

�
 Hi�1/2(1, 1, 1)

= 1 +
�

Ai�1/2

 
�
Q

n

i�1 �Q
n

i

�
+

KX

k=1

Q
n

F,k�
n

F,k�k,i�1/2

!

 1 +
�

Ai�1/2

 
KX

k=1

�
�Q

n

F,k

�
�k,i�1/2 +

KX

k=1

Q
n

F,k�k,i�1/2

!
= 1.

Lemma 3.2. The function f
n

i
(cf. (3.8)) satisfies k(fn

i
)0k1  max{V (0), kV 0

k1}.

Proof. By (2.7), the function f(') = 'V (') has a single inflection point !̃ 2 (0, 1)
and by Lemma 3.1, f

n

i
has the inflection point !̃ n

max,i 2 (0, n

max,i). We have
(fn

i
)0(0) = V (0), (fn

i
)0(') = 0 for  n

max,i  '  1 and the lowest (and negative)
value of (fn

i
)0 is obtained at its only critical point !̃ n

max,i, for which

(fn

i
)0(!̃ n

max,i) = Ṽ (!̃) + !̃Ṽ
0(!̃) � �kV

0
k1 .

This concludes the proof.

Lemma 3.3. There holds G
n

i
(1� �

n

i�1/2, 1� �
n

i+1/2) = 0 for all i and n.

Proof. Assume that 0 <  
n

max,i = (1� �
n

i�1/2) ^ (1� �
n

i+1/2)  1. By Lemma 3.1,
 ̂
n

i
<  

n

max,i, hence (3.10), (3.11), and

Ṽ
�
(1� �

n

i�1/2)/ 
n

max,i

�
= Ṽ

�
(1� �

n

i+1/2)/ 
n

max,i

�
= 0

imply that

G
n

i

�
1� �

n

i�1/2, 1� �
n

i+1/2

�
=

(
f
n

i
(1� �

n

i+1/2) = 0 if � = 1,

�f
n

i
(1� �

n

i�1/2) = 0 if � = �1.

Theorem 3.2. Under the assumptions of Theorem 3.1, the update formula for  
(3.12) is monotone and along with (3.4) produces approximate solutions that satisfy

0   
n

i�1/2  1� �
n

i�1/2 for all i and n.

Proof. Assumptions (1.3) and (1.5) imply that 0   
0
i�1/2  1� �

0
i�1/2 for all i and

 
n

F,k  1� �
n

F,k for all n. (3.14)

To prove that the scheme (3.12) is monotone, we write it as

 
n+1
i�1/2 = K

n

i�1/2

�
 
n

i�3/2, 
n

i�1/2, 
n

i+1/2

�
(3.15)

and show that this expression is non-decreasing in each of its arguments.
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Since 0  �
n

i�1/2  1 for a given n and all i, and appealing to the definition of
the Engquist-Osher flux (3.6), we have

@ 
n+1
i�1/2

@ 
n

i�3/2

=
�

Ai�1/2

✓
Q

n+
i�1 + (A�)i�1

@G
n

i�1

@ 
n

i�3/2

◆
� 0,

@ 
n+1
i�1/2

@ 
n

i+1/2

=
�

Ai�1/2

✓
�Q

n�
i

� (A�)i
@G

n

i

@ 
n

i+1/2

+ (A�)i
�
n

i�1/2

1� �
n

i+1/2

W (�n
i+1/2)

◆
� 0,

@ 
n+1
i�1/2

@ 
n

i�1/2

= 1 +
�

Ai�1/2

✓
Q

n�
i�1 �Q

n+
i

+ (A�)i�1

✓
@G

n

i�1

@ 
n

i�1/2

�

�
n

i�3/2W (�n
i�1/2)

1� �
n

i�1/2

◆
� (A�)i

@G
n

i

@ 
n

i�1/2

◆

� 1� �

✓
2kQk1,T

Amin
+M

✓
@G

n

i

@ 
n

i�1/2

�
@G

n

i�1

@ 
n

i�1/2

+
W (�n

i�1/2)

1� �
n

i�1/2

◆◆
.

By (3.6) and Lemma 3.2 we also obtain

@G
n

i

@ 
n

i�1/2

�
@G

n

i�1

@ 
n

i�1/2

= (fn

i
)0
�
 
n

i�1/2

�+
� (fn

i
)0
�
 
n

i�1/2

��
=
��(fn

i
)0
�
 
n

i�1/2

���

 k(fn

i
)0k1  max {V (0), kV 0

k1} ,

and for the remaining term, we use that W (1) = 0 and the mean-value theorem to
get, for some ⇠ 2 (�n

i�1/2, 1),

W (�n
i�1/2)

1� �
n

i�1/2

= �

W (1)�W (�n
i�1/2)

1� �
n

i�1/2

= �W
0(⇠)  kW

0
k1.

Hence, the CFL condition (3.2) implies

@ 
n+1
i�1/2

@ 
n

i�1/2

� 1� �

✓
2kQk1,T

Amin
+M

�
max {V (0), kV 0

k1}+ kW
0
k1

�◆
� 0.

The inequalities proved imply that Kn

i�1/2 is non-decreasing in each of its arguments.
Now we use that 0   

n

i�1/2  1� �
n

i�1/2 for all i and Lemma 3.3 to obtain

0 
�

Ai�1/2

KX

k=1

Q
n

F,k 
n

F,k�k,i�1/2 = Hi�1/2(0, 0, 0)   
n+1
i�1/2

= Hi�1/2( 
n

i�3/2, 
n

i�1/2, 
n

i+1/2)  Hi�1/2(1� �
n

i�3/2, 1� �
n

i�1/2, 1� �
n

i+1/2)

= 1� �
n

i�1/2 +
�

Ai�1/2

 
Ai�1F

n

i�1(1� �
n

i�3/2, 1� �
n

i�1/2)

�AiF
n

i
(1� �

n

i�1/2, 1� �
n

i+1/2) +
KX

k=1

Q
n

F,k 
n

F,k�k,i�1/2

!

= 1� �
n

i�1/2 +
�

Ai�1/2

 
(1� �

n

i�3/2)Q
n+
i�1 + (1� �

n

i�1/2)Q
n�
i�1

� (A�)i�1�
n

i�3/2W (�n
i�1/2)� (1� �

n

i�1/2)Q
n+
i

� (1� �
n

i+1/2)Q
n�
i
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+ (A�)i�
n

i�1/2W (�n
i+1/2) +

KX

k=1

Q
n

F,k 
n

F,k�k,i�1/2

!
.

Appealing to (3.14) and the update formula for � (3.4), we get

 
n+1
i�1/2  1� �

n+1
i�1/2 +

�

Ai�1/2

 
Q

n+
i�1 +Q

n�
i�1 �Q

n+
i

�Q
n�
i

+
KX

k=1

Q
n

F,k�k,i�1/2

!

= 1� �
n+1
i�1/2 +

�

Ai�1/2

(
Q

n

i�1 �Q
n

i
+

KX

k=1

Q
n

F,k�k,i�1/2

)
= 1� �

n+1
i�1/2.

The last equality holds since {. . . } = 0 irrespective of whether there is a source in
the cell; Qn

i�1 �Q
n

i
+Q

n

F,k = 0, or not; Qn

i�1 �Q
n

i
= 0.

4. Convergence analysis. For ease of the argument, let us focus on the case of
a constant interior cross-sectional area A, i.e., assume that (1.7) is in e↵ect. In
addition, we assume that Q

n

F,k, �
n

F,k, and  
n

F,k (k = 1, . . . ,K) are constant and
therefore do not depend on n. The same is assumed for the underflow volumetric
flow QU. Then (3.4) and (3.12) take the forms

�
n+1
i�1/2 = �

n

i�1/2 � ���
�
�
n

i�1/2q
+
i
+ �

n

i+1/2q
�
i
+ �i�

n

i�1/2W
�
�
n

i+1/2

��

+ �

KX

k=1

qF,k�F,k�k,i�1/2, (4.1)

 
n+1
i�1/2 =  

n

i�1/2 � ���

 
 
n

i�1/2q
+
i
+  

n

i+1/2q
�
i

+ �i

✓
G

n

i

�
 
n

i�1/2, 
n

i+1/2

�
� �

n

i�1/2

 
n

i+1/2W (�n
i+1/2)

1� �
n

i+1/2

◆!

+ �

KX

k=1

qF,k F,k�k,i�1/2, (4.2)

where qF,k := QF,k/A. To embed the treatment into available analyses of schemes
for conservation laws with discontinuous flux, we absorb the feed terms into the
numerical flux. That is, we define ik := i if �k,i�1/2 = 1 (see (3.1)). Then

qi =

8
><

>:

�qU if i  i1 � 1,

�qU + qF,1 + · · ·+ qF,l if il  i  il+1 � 1, l = 1, . . . ,K � 1,

�qU + qF,1 + · · ·+ qF,K for i � iK .

(4.3)

Furthermore, we define the feed flux

hF,i :=

8
><

>:

0 if i  i1 � 1,

qF,1�F,1 + · · ·+ qF,l�F,l if il  i  il+1 � 1, l = 1, . . . ,K � 1,

qF,1�F,1 + · · ·+ qF,K�F,K for i � iK ,

(4.4)

such that

hF,i � hF,i�1 =
KX

k=1

qF,k�F,k�k,i�1/2.
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Consequently, we may write the scheme as

�
n+1
i�1/2 = �

n

i�1/2 � ���
�
�
n

i+1/2q
�
i
+ �

n

i�1/2q
+
i
+ �i�

n

i�1/2W (�n
i+1/2) + hF,i

�
. (4.5)

For later use we define the piecewise constant functions

q(z) := qk and hF(z) := hF,k for zF,k < z < zF,k+1, k = 0, . . . ,K,

where zF,0 := �1, zF,K+1 := 1, and we define the function

h(z, v, u) := q
�(z)v + q

+(z)u+ �(z)uW (v) + hF(z) (4.6)

that allows us to write (4.5) as

�
n+1
i�1/2 = �

n

i�1/2 � ���h
�
zi,�

n

i+1/2,�
n

i�1/2

�
. (4.7)

4.1. Convergence of the �-scheme. The PDE for �, under the simplification
(1.7), is the conservation law

@t�+ @zJ(�, z) = 0, (z, t) 2 ⇧T (4.8)

with discontinuous flux

J(�, z) =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

q(z)��

KX

k=1

qF,k�F,k for z > zE,

q(z)��

KX

k=1

qF,k�F,k + j(�) for zF,K < z < zE,

q(z)��

lX

k=1

qF,k�F,k + j(�) for zF,l < z < zF,l+1,

l = 1, . . . ,K � 1,

�qU�+ j(�) for zU < z < zF,1,

�qU� for z < zU.

(4.9)

posed along with the initial condition (1.2a).
The choice of the appropriate solution concept for weak solutions, and the ways

we may relate the model to the available theory of conservation laws with discontin-
uous flux, requires verifying whether J(�, z) as given by (4.9) satisfies the so-called
“crossing condition” across each discontinuity

z 2 Z := {zU, zF,1, . . . , zF,K , zE}. (4.10)

Certain early well-posedness (existence, stability, and uniqueness) results for con-
servation laws with discontinuous flux (and related equations) rely on satisfaction
of this condition (cf., e.g., [34]), although later developments advance solution con-
cepts that do not rely on satisfaction of the crossing condition [4, 35, 38]. In the
present context this condition is satisfied for a particular discontinuity at z if the
adjacent fluxes to the right and the left, J(�, z+) and J(�, z�), satisfy

8�1,�2 2 [0, 1] : J(�1, z
+)� J(�1, z

�) < 0 < J(�2, z
+)� J(�2, z

�) ) �1 < �2,

(4.11)

which means either the graphs of J(·, z�) and J(·, z+) do not intersect, or if they
do, there is at most one flux crossing �� and the graph of J(·, z�) lies above that
of J(·, z+) to the left of ��. For J(�, z) as given by (4.9) this condition is clearly
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satisfied for z 2 {zE, zU} (considering that j(�) > 0 for 0 < � < 1 implies that
J(·, z�) and J(·, z+) do not intersect in this case), while

J(�, z+F,l)� J(�, z�F,l) = qF,l(�� �F,l) for l = 1, . . . ,K.

Thus, the crossing condition is satisfied also for z = zF,l, l = 1, . . . ,K, since either
�F,l = 0 and the adjacent fluxes do not intersect in (0, 1), or the intersection takes
place at �� = �F,l and (4.11) holds since qF,l > 0 for all l. The preceding consid-
eration is analogous to the one for the simpler clarifier-thickener model (equivalent
to K = 1 in the present notation) studied e.g. in [13,14]. With the present analysis
it is clear that the crossing condition is satisfied at each flux discontinuity z 2 Z.

Some of the available analyses refer to initial-value problems of the type

@tu+ @xF(u, x) = 0 for (x, t) 2 ⇧T ,

u(x, 0) = u0(x) for x 2 R,
where F(u, x) := H(�x)g(u) +H(x)f(u)

(4.12)

where f and g are Lipschitz continuous functions of u denoting the “right” and
“left” flux adjacent to a flux discontinuity across x = 0 andH denotes the Heavyside
function. The model problem (4.12) features, of course, only one flux discontinuity
(sitting at x = 0), while (4.9), (1.2a) includes several of them at separate spatial
locations. The study of (4.12) is, however, su�cient for the analysis of each single
flux discontinuity.

Here we start from the concept of entropy solutions of type V introduced by
Karlsen and Towers [35]. This concept does not appeal to the existence of traces of
the unknown with respect to the interfaces z 2 Z across which J(�, z) is discontin-
uous. To state its adaptation to the situation at hand, we define the sets

⇧(K+3/2)
T

:= (zE,1)⇥ (0, T ),

⇧(K+1/2)
T

:= (zF,K , zE)⇥ (0, T ),

⇧(k�1/2)
T

:= (zF,k�1, zF,k)⇥ (0, T ), k = 2, . . . ,K,

⇧(1/2)
T

:= (zU, zF,1)⇥ (0, T ),

⇧(�1/2)
T

:= (�1, zU)⇥ (0, T ).

Definition 4.1. A measurable function � = �(z, t) 2 L
1(⇧T ) is an entropy solu-

tion of type V of the initial-value problem (4.8), (1.2a) if it satisfies the following
conditions:

(i) The function � belongs to L
1(⇧T ); for a.e. (z, t) 2 ⇧T there holds �(z, t) 2

[0, 1].
(ii) The function � is a weak solution of (4.8), i.e., for all smooth test functions ⇣

with compact support in ⇧T ,ZZ

⇧T

�
�@t⇣ + J(�, z)@z⇣

�
dz dt = 0. (4.13)

(iii) For all l = 0, . . . ,K + 2, for any nonnegative smooth test function ⇣
(l) with

compact support in ⇧(l)
T

and all c 2 [0, 1] there holds
ZZ

⇧T

⇣
|�� c|@t⇣

(l) + sgn(�� c)
�
J(�, z)� J(c, z)

�
@z⇣

(l)
⌘
dz dt

+

Z

R
|�0 � c| ⇣

(l)(z, 0) dt � 0.

(4.14)
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(iv) The following Kružkov-type [36] entropy inequality holds for all nonnnegative
smooth test functions ⇣ with compact support in ⇧T and all constants c 2 R:

ZZ

⇧T

⇣
|�� c|@t⇣ + sgn(�� c)

�
J(�, z)� J(c, z)

�
@z⇣

⌘
dz dt

+

Z
T

0

X

z2Z

��J(c, z+)� J(c, z�)
�� ⇣(z, t) dt � 0.

(4.15)

Notice that the entropy inequality (4.15) does not imply the weak formulation
(4.13). The standard derivation of the weak formulation from the Kružkov entropy
inequality (cf., e.g., [29, Sect. 2.1]) cannot be applied here since some of the flux
di↵erences |J(c, z+) � J(c, z�)| are not compactly supported with respect to c,
see [13, Rem. 1.1].

Lemma 4.1. There exists a constant C1, depending on TV(�0), such that

�z

X

i2Z

���n+1
i�1/2 � �

n

i�1/2

��  �z

X

i2Z

���1
i�1/2 � �

0
i�1/2

��  C1�t.

Proof. Subtracting from (4.1) its version from the previous time step, we get

�
n+1
i�1/2 � �

n

i�1/2 =
�
�
n

i�3/2 � �
n�1
i�3/2

�
�B

n

i�1/2

+
�
�
n

i�1/2 � �
n�1
i�1/2

��
1� �B

n

i+1/2 + �C
n

i�1/2

 

+
�
�
n

i+1/2 � �
n�1
i+1/2

�
{��C

n

i+1/2},

where we define

B
n

i�1/2 := q
+
i�1 + �i�1W

�
�
n

i�1/2

�
,

C
n

i+1/2 :=

8
><

>:
q
�
i
+ �i�

n�1
i�1/2

W (�n
i+1/2)�W (�n�1

i+1/2)

�
n

i+1/2 � �
n�1
i+1/2

if �n
i+1/2 6= �

n�1
i+1/2,

0 otherwise.

Clearly B
n

i�1/2 � 0, Cn

i+1/2  0, and due to the CFL condition,

1� �B
n

i+1/2 + �C
n

i�1/2 � 0,

hence taking absolute values and summing over i 2 Z we get, by appealing to
standard arguments, that

�z

X

i2Z

���n+1
i�1/2 � �

n

i�1/2

��  �z

X

i2Z

���n
i�1/2 � �

n�1
i�1/2

��  �z

X

i2Z

���1
i�1/2 � �

0
i�1/2

��.

Furthermore, following the lines e.g. of the proof of [13, Lemma 3.2], we get that
there exists a constant C2 that is independent of (�t,�z) such that

X

i2Z

���1
i�1/2 � �

0
i�1/2

��  C2

�
TV(�0) + TV(q) + TV(�)

�
,

which completes the proof.

A straightforward calculation yields that we can write the scheme in the form
(�+ai := ai+1 � ai)

�
n+1
i�1/2 = �

n

i�1/2 + C
n

i
�+�

n

i�1/2 �D
n

i�1���
n

i�1/2 � ✓
n

i
,



20 R. BÜRGER, S. DIEHL, M.C. MARTÍ, AND Y. VÁSQUEZ

where we define

C
n

i
:=

8
><

>:
��q

�
i
� ��i�1�

n

i�3/2

��W (�n
i+1/2)

�+�
n

i�1/2

if �+�
n

i�1/2 6= 0,

��q
�
i

otherwise,

D
n

i�1 := �q
+
i
+ ��i�1W (�n

i+1/2),

✓
n

i
:= �

�
�
n

i�1/2��q
�
i
+ �

n

i�3/2��q
+
i
+ �

n

i�1/2W (�n
i+1/2)���i ���hF,i

�
.

The incremental coe�cients satisfy C
n

i
� 0 and D

n

i
� 0; furthermore, the CFL con-

dition ensures that Cn

i
+D

n

i
 1 (in all cases for all i and n). Notice that ✓n

i
= 0

with the possible exception for those indices i at which ��q
�
i

6= 0, ��q
+
i

6= 0, or
���i 6= 0. According to the definition of �i and that of qi, see (4.3), this may occur
at most at a finite number of indices. Precisely, we may assert that (see (4.10))

✓
n

i
= 0 if zi�1, zi 62 Z,

hence for all indices i with the exception of finitely many indices i such that |zj�⇣| 
�z for some ⇣ 2 Z, the scheme is given by the incremental form

�
n+1
i�1/2 = �

n

i�1/2 + C
n

i
�+�

n

i�1/2 �D
n

i�1���
n

i�1/2

with incremental coe�cients Cn

i
� 0, Dn

i
� 0, and C

n

i
+D

n

i
 1. This property, in

conjunction with Lemma 4.1, shows that we may apply [15, Lemma 5.3] (which is
essentially Lemma 4.2 of [6], where a proof can be found) to the situation at hand.
From [15, Lemma 5.3] we deduce the following lemma, where V

b

a
(g) denotes the

total variation of a function z 7! g(z) over the interval (a, b).

Lemma 4.2. For any interval [a, b] such that [a, b]\Z = ? and any t 2 [0, T ] there
exists a total variation bound of the form

V
b

a

�
�
�z(·, t)

�
 C(a, b),

where C(a, b) is independent of (�x,�t) and t for t 2 [0, T ].

Finally, we have shown in Theorem 3.1 that the scheme (3.4) is monotone. This
applies, in particular, to the reduced scheme (4.1) or equivalently, (4.5) or (4.7).
Thus, the scheme satisfies a discrete entropy inequality. The proof of the following
lemma is identical to that of [35, Lemma 5.2], and is therefore omitted.

Lemma 4.3. The scheme (4.7) satisfies the following entropy inequality for any
ci�3/2, ci�1/2, ci+1/2 2 [0, 1]:

���n+1
i�1/2 � ci�1/2

�� 
���n

i�1/2 � ci�1/2

��� ���H
n

i

� � sgn
�
�
n+1
i�1/2 � ci�1/2

�
��h

�
zi,�

n

i+1/2,�
n

i�1/2

�
,

where the numerical entropy flux H
n

i
is defined by

H
n

i
:= h

�
zi,�

n

i+1/2 _ ci+1/2,�
n

i�1/2 _ ci�1/2

�

� h
�
zi,�

n

i+1/2 ^ ci+1/2,�
n

i�1/2 ^ ci�1/2

�
.

We now may appeal to the results of [35] and argue as follows. Theorem 3.1
and Lemmas 4.1, 4.2 and 4.3 ensure convergence of the functions ��z to a weak
solution of (4.8), (1.2a) that satisfies items (i), (ii) and (iii) of Definition 4.1. It
also satisfies the entropy inquality (4.15) arising in part (iv) of that definition by
utilizing the discrete entropy inequality stated in Lemma 4.3. Thus, we have proved
the following theorem.
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Theorem 4.1. Suppose that assumptions (1.3) to (1.5) are in e↵ect and that ��z

is defined by (3.5), where the values �n
i�1/2 are defined by the scheme (4.5). Let

�t,�z ! 0 with � = �t/�z = const. such that the CFL condition (3.2) is satisfied.
Then ��z converges in L

1
loc(⇧T ) and a.e. in ⇧T to an entropy solution of type V of

the initial-value problem (4.8), (1.2a).

4.2. L
1 Lipschitz continuity in time of the  -scheme. Next, we deal with

the marching formula (4.2). To this end, we define a feed flux h̃F,i exactly as in
(4.4) but with �F,i replaced by  F,i for i = 1, . . . ,K. Furthermore, we recall that
ṽ�s(�) = W (�)/(1� �). Thus, the scheme can be written as

 
n+1
i�1/2 =  

n

i�1/2 � ���

⇣
h̃F,i +  

n

i�1/2q
+
i
+  

n

i+1/2q
�
i

+ �i

�
G

n

i

�
 
n

i�1/2, 
n

i+1/2

�
� �

n

i�1/2ṽ�s

�
�
n

i+1/2

�
 
n

i+1/2

�⌘
.

(4.16)

Lemma 4.4 (Crandall and Tartar [18]). Assume that (⌦, µ) is some measure space
and that D is a subset of L1(⌦) with the property that if u, v 2 D, then (u _ v) =
max{u, v} 2 D. Assume that T is a map T : D 3 u 7! T (u) 2 D such that

Z

⌦
T (u) dµ =

Z

⌦
u dµ for all u 2 D.

Then the following statements, valid for all u, v 2 D, are equivalent:

(i) If u  v, then T (u)  T (v).
(ii)

R
⌦((T (u)� T (v)) _ 0) dµ 

R
⌦((u� v) _ 0) dµ.

(iii)
R
⌦ |T (u)� T (v)| dµ 

R
⌦ |u� v| dµ.

Following, for instance, [17], we utilize Lemma 4.4 for the following mapping.
Assume that D ⇢ L

1(R) is the set of piecewise constant functions and that are
constant on the intervals Ii�1/2 for i 2 Z, and that with the marching formula
(3.15) we associate an operator Kn : D ! D such that if  �z(·, tn) is the piecewise
constant function defined by (3.13) for t = tn, we may write the scheme as

 
�z(·, tn+1) = K

n
�
 
�z(·, tn)

�
.

Clearly, the monotonicity of the scheme implies that if u, v 2 D, then

u  v ) K
n(u)  K

n(v).

Thus, Lemma 4.4 (i) holds. For u =  
�z(·, tn) and v =  

�z(·, tn�1), Lemma 4.4 (iii)
implies that

�z

X

i2Z

�� n+1
i�1/2 �  

n

i�1/2

�� =
Z

R

�� �z(z, tn+1)�  
�z(z, tn)

�� dz



Z

R

�� �z(z, tn)�  
�z(z, tn�1)

�� dz = �z

X

i2Z

�� n

i�1/2 �  
n�1
i�1/2

��

and therefore

�z

X

i2Z

�� n+1
i�1/2 �  

n

i�1/2

��  �z

X

i2Z

�� 1
i�1/2 �  

0
i�1/2

��.

However, we may assert that there exists a constant C3, which is independent of
(�t,�x), such that

X

i2Z

�� 1
i�1/2 �  

0
i�1/2

�� =
X

i2Z

������

✓
 
0
i�1/2q

+
i
+  

0
i+1/2q

�
i
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+ �i

✓
G

0
i

�
 
0
i�1/2, 

0
i+1/2

�
� �

n

i�1/2

 
0
i+1/2W (�0

i+1/2)

1� �
0
i+1/2

◆◆

� �

KX

k=1

QF,k

A
 
0
F,k�k,i�1/2

����  C3.

Since (1.4) is a su�cient condition for this bound on the initial discrete divergence
to hold, we get

�z

X

i2Z

�� n+1
i�1/2 �  

n

i�1/2

��  �zC3 =
�t

�
C3.

Consequently, we have proved the following lemma.

Lemma 4.5. There exists a constant C4 that is independent of (�t,�z) such that

�z

X

i2Z

�� n+1
i�1/2 �  

n

i�1/2

��  C4�t.

4.3. Compensated compactness. To write down the scheme in the simplest set-
ting possible, we consider the model and numerical scheme under the assumptions
before, and additionally assume a constant bulk velocity q, that the feed terms (giv-
ing rise to the singular source) are zero, and set the parameter � = 1. Thus, the
model reduces to the triangular system of conservation laws (1.8) with the initial
conditions (1.2), where we recall that assumptions (1.3) are in e↵ect.

Definition 4.2. The pair (�, ) is called a weak solution of the initial value problem
(1.8), (1.2) if

(i) The functions � and  belong to L
1(⇧T ).

(ii) The functions � and  satisfy (1.8), (1.2) in the sense of distributions on ⇧T ,
that is, for each smooth test function ⇣ with compact support in ⇧T , the fol-
lowing identities hold:

ZZ

⇧T

�
�@t⇣ + J(�)@z⇣

�
dz dt+

Z

R
�0(z) dz = 0, (4.17)

ZZ

⇧T

�
 @t⇣ + F̃ (�, )@z⇣

�
dz dt+

Z

R
 0(z) dz = 0. (4.18)

(iii) The function � is an entropy solution of the single conservation law (1.8a),
that is, for each smooth and nonnegative test function ⇣ with compact support
in ⇧T , the following inequality holds for all c 2 R:

ZZ

⇧T

�
|�� c|@t⇣ + sgn(�� c)

�
J(�)� J(k)

�
@z⇣

�
dz dt

+

Z

R

���0(z)� c
�� dz � 0.

(4.19)

Assume now that ⌘ = ⌘( ) is a smooth convex entropy function and Q = Q(�, )
is the corresponding compatible entropy flux compatible with (1.8b), i.e.,

@ Q(�, ) = ⌘
0( )@ F̃ (�, ). (4.20)

In what follows, we refer to (⌘, Q) as an entropy pair for (1.8b). In particular we
denote by (⌘0, Q0) the Kružkov entropy pair [36], that is

⌘0( ) = | � c|, Q0(�, ) = sgn( � c)
�
F̃ (�, )� F̃ (�, c)

�
, (4.21)
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where c 2 R is a constant.
The convergence proof is based on the following lemma, slightly adapted from [17,

Lemma 2.2], which in turn is an adaptation of [42, Theorem 5].

Lemma 4.6. Let � be the unique entropy solution of the initial-value problem
(1.8a), (1.2a), and assume that { 

⌫
}⌫>0 is a family of functions defined on ⇧T .

If { ⌫} is bounded in L
1(⇧T ) and {@t⌘0( ⌫) + @zQ0(�, ⌫)}⌫>0 lies in a compact

set of H�1
loc (⇧T ) for all constants c, then there exists a sequence {⌫n}n2N such that

⌫n ! 0 as n ! 1 and a function  2 L
1(⇧T ) such that

 
⌫n !  a.e. and in L

p

loc(⇧T ), 1  p < 1.

Consistently with (4.6), (4.7) we assume that the scheme employed to approxi-
mate entropy solutions of (1.8a) is

�
n+1
i�1/2 = �

n

i�1/2 � ���h
�
�
n

i+1/2,�
n

i�1/2

�
, h(v, u) := q

�
v + q

+
u+ uW (v).

Clearly, under a suitable CFL condition, the scheme converges to the unique entropy
solution of (1.8a), (1.2a). Our goal is to establish convergence of the corresponding
scheme for  . We here write the scheme as

 
n+1
i�1/2 =  

n

i�1/2 � ���F
�
�
n

i�1/2,�
n

i+1/2, 
n

i�1/2, 
n

i+1/2

�

⌘  
n

i�1/2 � ���F(�n

i
, n

i
),

(4.22)

where we define the four-argument numerical flux

F(a, b, u, v) := q
+
u+ q

�
v +

�
G(a, b, u, v)� aṽ�s(b)v

�
, (4.23)

denote pairs of neighboring �- and  -values by

�n

i
:=

�
�
n

i�1/2,�
n

i+1/2

�
and  n

i
:=

�
 
n

i�1/2, 
n

i+1/2

�
,

and replace the arguments “�n
i�1/2,�

n

i+1/2” by �n

i
(analogously for  ). In (4.23) a

and b play the roles of �n
i�1/2 and �n

i+1/2, and u and v those of  n

i�1/2 and  n

i+1/2,
respectively, and we define G(a, b, u, v) as follows (cf. (3.7), (3.8)). Let

f(a, b, ) :=  Ṽ

✓
 

1� (a _ b)

◆
,

then G(a, b, ·, ·) is the Engquist-Osher numerical flux [25] associated with f(a, b, ·).
The compensated compactness approach strongly depends on entropy inequalities

satisfied by the scheme (4.22). To prepare for the derivation of suitable uniform
estimates, we multiply the scheme (4.22) by ⌘0( n+1

i�1/2), where ⌘ is a smooth convex
entropy function, and utilize the Taylor expansion
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,

where ⇠n+1/2
i�1/2 is an intermediate value between  n

i�1/2 and  n+1
i�1/2. This yields
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(4.24)
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We now define the functions f̂ and f̌ as the partial derivatives

f̂(a, b, u) := @uF(a, b, u, v) = q
+ + @uG(a, b, u, v) � 0,

f̌(a, b, v) := @vF(a, b, u, v) = q
� +

�
@vG(a, b, u, v)� aṽ�s(b)  0.

The dependence of @uF(a, b, u, v) and @vF(a, b, u, v) on u and v only, respectively,
is crucial for the subsequent analysis. We define the functions

F̂(a, b, u) :=

Z
u

0
f̂(a, b, s) ds, F̌(a, b, v) :=

Z
v

0
f̌(a, b, s) ds

and note that

F(a, b, u, v) = F̂(a, b, u) + F̌(a, b, v). (4.25)

Next, we define

Q̂(a, b, ) :=

Z
 

0
⌘
0(u)f̂(a, b, u) du, Q̌(a, b, ) :=

Z
 

0
⌘
0(v)f̌(a, b, v) dv,

Q(a, b, 1, 2) := Q̂(a, b, 1) + Q̌(a, b, 2).
(4.26)

The function Q is a consistent numerical entropy flux for the scheme (4.22) for the
entropy function ⌘ since

Q(a, a, , ) =
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0
⌘
0(u)

�
f̂(a, a, u) + f̌(a, a, u)

�
du

=
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0
⌘
0(u)@uF(a, a, u, u) du =

Z
 

0
⌘
0(u)F̃ (a, u) du = Q(a, ).

Furthermore, integration by parts yields
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�
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⌘
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du, (4.27)

Q̌(a, b, )� Q̌(a, b,  ̃)
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du (4.28)
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F̌(a, b, u)� F̌(a, b, )
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du. (4.29)

Now, denoting by ��

� and � 

� di↵erence operators that act on both �- and  -
arguments only, respectively (leaving the two others unchanged), we observe that

��F(�n

i
, n

i
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i
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i
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i�1). (4.30)

In light of (4.27) and (4.29),
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where the notation for evaluations and di↵erences for Q is the same as for F and
⇥n

i�1/2 := ⇥̂n

i�1 + ⇥̌n

i
, where
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Since F̂ is increasing and F̌ is decreasing in the respective third argument, there
holds ⇥̂n

i�1, ⇥̌
n

i
� 0 and therefore ⇥n

i�1/2 � 0. Furthermore, we notice that

⌘
0�
 
n

i�1/2

�
��

+F(�n

i�1, 
n

i�1) = ��

+

�
⌘
0�
 
n

i�1/2

�
F(�n

i�1, 
n

i�1)
�
. (4.32)

From (4.30) we obtain by taking into account (4.31) and (4.32)
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Consequently, (4.24) can be written as
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(4.33)

Multiplying (4.33) by �z and summing over (n, i) 2 I1, where

Ik := {(n, i) | n = 0, . . . , NT � k, i 2 Z},
we get
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which implies the inequality
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The last term on the right-hand side is uniformly bounded since ��z has bounded
variation. Now let us choose ⌘(v) = v

2 and take into account (cf. [33]) that there
exists a constant CF such that
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Noticing that Lemma 4.5, applied to the present scheme, implies the bound on the
discrete divergence of the numerical flux
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we obtain from (4.33)
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Inequality (4.35) implies the following estimate.

Lemma 4.7. There exists a constant C7 that is independent of (�z,�t) such that
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Proof. The estimate for the “time variation” of  �z, (4.36), follows immediately
from (4.35) if we consider that its right-hand side is uniformly bounded.

Before proceeding, we prove the following lemma that is crucial for the subsequent
analysis. For ease of notation we define the di↵erence operators �(3)

± and �(4)
± that

only act on the third or fourth argument of a function, respectively.
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Proof. We note that

��Q(�n

i
, n

i
) = � 

�Q(�n

i
, n

i
) +��

+Q(�n

i�1, 
n

i�1). (4.38)

We first discuss

� 

�Q(�n

i
, n

i
) = �(3)

� Q̂
�
�n

i
, 

n

i�1/2

�
+�(3)

� Q̌
�
�n

i
, 

n

i+1/2

�
.

From (4.27) we get
���(3)

� Q̂
�
�n

i
, 

n

i�1/2

���

=

�����⌘
0�
 
n

i�1/2

�
�(3)

� F(�n

i
, n

i
)�

Z
 

n
i�1/2

 
n
i�3/2

⌘
00(u)

⇣
F̂
�
�n

i
, u
�
� F̂

�
�n

i
, 

n

i�1/2

�⌘
du

�����


��⌘0
�
 
n

i�1/2

������(3)
� F(�n

i
, n

i
)
��+

�����

Z
 

n
i�1/2

 
n
i�3/2

⌘
00(u) du

�����
���(3)

� F(�n

i
, n

i
)
��

 3k⌘0kL1(0,1)

���(3)
� F(�n

i
, n

i
)
��

and analogously
���(3)

� Q̌
�
�n

i
, 

n

i+1/2

���  3k⌘0kL1(0,1)

���(4)
� F(�n

i
, n

i
)
��,

hence
��� 

�Q(�n

i
, n

i
)
��  3k⌘0kL1(0,1)

����(3)
� +�(4)

�
�
F(�n

i
, n

i
)
��. (4.39)

On the other hand, we take into account that

��

+Q(�n

i�1, 
n

i�1) = ��

+Q̂
�
�n

i�1, 
n

i�3/2

�
+��

+Q̌
�
�n

i�1, 
n

i�1/2

�
.

Now

��

+Q̂
�
�n

i�1, 
n

i�3/2

�
=

Z
 

n
i�3/2

0
⌘
0(u)

�
f̂
�
�n

i
, u
�
� f̂

�
�n

i�1, u
��

du

=
h
⌘
0(u)

�
F̂
�
�n

i
, u
�
� F̂

�
�n

i�1, u
��iu= n

i�3/2

u=0

�

Z
 

n
i�3/2

0
⌘
00(u)

�
F̂(�n

i
, u)� F̂

�
�n

i�1, u)
�
du

(4.40)

and analogously
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and by analogous reasoning for Q̌,
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To estimate the right-hand side of (4.41), we recall that
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we conclude that
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On the other hand, in the present case
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Lemma 3.1 (a) implies that
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The same estimate holds for  ̂n
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������

n

i�1/2

��+
���+�

n

i�1/2

���.



MODELS WITH TRIANGULAR HYPERBOLIC SYSTEM 29

Combining all possible cases we deduce that
��D̂n

i�1/2

�� 
�
kṼ
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Next, we deal with (4.42), recalling that (see (4.23))
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If v >  
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Suppose now that
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Since we know that v =  
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�
v/ 

n

max,i�1

���

 v
2
kṼ
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The remainder of the estimate is based on (4.43). Since ! < 1, we conclude
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In combination with (4.47) we obtain in this case
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Next, suppose that instead of (4.48) or (4.49) there holds
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Collecting all estimates for Ďn

i�1/2, we see that
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Furthermore, we obtain
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Combining the estimates (4.46), (4.51) and (4.52), we obtain from (4.41) and (4.42)
the bounds
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with constants C10 and C11. Combining the last inequality with (4.38) and (4.39)
we arrive at the desired estimate (4.37).
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Multiplying this inequality by �t�z and taking into account (4.35) and the uniform
bound on TV(�n) we have proved the following lemma.

Lemma 4.9. There exists a constant C = C(T ) that is independent of �t or �z

such that the following estimate holds:

�t�z
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In part following the proofs of Lemmas 5.5 and 5.9 in [32] and Lemma 3.4 in [17]
we now prove the H

�1
loc compactness result.
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Lemma 4.10. Assume that  �z is generated by the scheme (4.22), and that � is
the unique entropy solution of (1.8a), (1.2a) on ⇧T . Furthermore, we denote by
(⌘0, Q0) the Kružkov entropy pair (4.21), and the distribution
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Proof. Following [17], we work with smooth entropies instead of ⌘0, so we denote
by ⌘�z a smooth convex approximation to ⌘0, so that ⌘�z(0) = 0 and |⌘�z|  1,
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(4.54)

We define the cell average
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Replacing the integral in the first term of the right-hand side of (4.54) by �z⇣
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produces the following error, where we follow the derivation of (3.27) in [17]:
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(see (4.36)). By similar arguments we obtain the bound
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Consequently, and further following [17], we have shown that
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Thus, hµ�z
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and therefore A 2 Mloc(⇧T ). Appealing to the divergence bound of the numerical
flux (4.34) and taking into account the BV bound on �

�z it also follows that
|hB + C, ⇣i|  CT k⇣kL1(⇧T ), and therefore B + C 2 Mloc(⇧T ).

Finally, to deal with hD, ⇣i we consider first " > 0 and let Q", Q
±
"

and Q"

denote the entropy and numerical entropy fluxes calculated from (4.20) and (4.26),
respectively, where ⌘ = ⌘". Since Q" is consistent with Q",

Q"(�,�, 1, 2)�Q"(�, 2)
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(cf. (4.28)). By using the monotonicity of F̌ with respect to its  -argument we get
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"
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so in the limit "! 0,
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��. (4.57)

Noticing that
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we get from (4.56)
������z�t

X

I1

D
n

i�1/2⇣
n

i�1/2

�����



������z�t

X

I1

1

�z
��

�
Q
�
�
n

i+1/2,�
n

i+1/2, 
n

i

�
�Q0(�

n

i+1/2, 
n

i+1/2

��
⇣
n

i�1/2

�����

+

������z�t

X

I1

1

�z
��

�
Q
�
�n

i
, n

i

�
�Q

�
�
n

i+1/2,�
n

i+1/2, 
n

i

��
⇣
n

i�1/2

����� =: |S1|+ |S2|.



MODELS WITH TRIANGULAR HYPERBOLIC SYSTEM 35

By a summation by parts and applying (4.57) we get
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We now write
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From (4.53), and considering �n
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Consequently, from (4.58) we deduce that
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From (4.35) we infer that there exists a constant CT such that
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we conclude that there exists a constant CtN such that
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Next, we deal with S2. Applying again a summation by parts, we get
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The definition of Q (see (4.26)) yields
��Q
�
�n

i
, n

i

�
�Q

�
�
n

i+1/2,�
n

i+1/2, 
n

i

���


��Q̂(�n

i
, 

n

i�1/2)� Q̂(�n
i+1/2,�

n

i+1/2, 
n

i�1/2)
��

+
��Q̌(�n

i
, 

n

i+1/2)� Q̌(�n
i+1/2,�

n

i+1/2, 
n

i�1/2)
��.
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By a computation similar to (4.40) we get
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and we deduce that S2 can be bounded in a similar way as S1. In particular,
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and we conclude that also
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Since ��z
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is compact in H
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loc (⇧T ). Now, by Lemma 4.6 there exists a subsequence { 
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(which we do not relabel) and a function  2 L
1(⇧T ) such that
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loc(⇧T ) for any p 2 [1,1). (4.60)

Theorem 4.2. Assume that the maps � and  are the limit functions of ��z and
of  �z as �z ! 0 (the latter one being defined by (4.60)). Then (�, ) is a weak
solution of the initial-value problem (1.8), (1.2) in the sense of Definition 4.2.

Proof. The proof follows that of [17, Lemma 3.5]. We only need to verify that  is
a weak solution of (1.8b), that is, that (4.18) holds. To this end, we choose a test
function ⇣ 2 C

1
0 (⇧T ), recall the definition (4.55) of cell averages ⇣n

i�1/2, multiply
the  -scheme (4.22) by �z⇣
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i�1/2, sum over i and n, and apply a summation by
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J2 := �z�t
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By exactly following the estimates of terms I0 and I1 in the proof of [17, Lemma 3.5]
and appealing to the bounded convergence theorem we may prove that
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The treatment of J2 di↵ers from that of the term I2 in [17, Lemma 3.5] since here
the numerical flux depends on four arguments (not three, as in [17]). We here get
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The term J2,1 can be estimated by choosing a constant M such that ⇣(z, t) = 0 for
|z| > M and noting that
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Furthermore, in light of (4.25) the di↵erence arising in J2,2 can be written as
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Utilizing the estimate (4.53) with �
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stant C12 such that
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To estimate J2,3, we utilize (4.35). Then
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(4.64)

From (4.62), (4.63) and (4.64) and appealing to the strong convergence of ��z

and  �z we deduce that

lim
�z!0

J2 =

ZZ

⇧T

F̃ (�, )@z⇣ dz dt. (4.65)

The limits (4.61) and (4.65) imply that the limit  is a weak solution.

5. Numerical results.

5.1. Computation of numerical error. To simplify error estimations we utilize
a grid with the property that the boundaries of the tank agree with the boundaries
of a cell (see Figure 3). Since an exact solution is frequently di�cult to obtain,
we use an approximate reference solution obtained with a large number Nref cells
against which the error of other simulated solutions with N < Nref is measured.
The error is estimated on a fixed interval [0, zend) slightly larger than the column of
height H so that the outflow volume fractions are included. We define the coarsest
grid of N0 cells with �z0 := H/(N0 � 2) and place the column between zU := �z0

and zE := zU +H = (N0 � 1)�z0. This corresponds to Figure 3 with N = N0. We
define the length of the interval of error estimation as zend := H + 2�z0 = N0�z0.

To estimate the convergence order, we simulate with Nk = 2kN0 cells, k =
0, . . . , kref � 1, where the integer kref defines the number of cells Nref := Nkref :=
2krefN0 of the reference solution. Then we define �zk := zend/Nk, �z

r := �zkref :=
zend/Nkref = �z0/2kref and the factor of refinement from Nk cells to Nref as mk :=
�zk/�z

r = Nkref/Nk = 2kref�k. We note that zNk := Nk�zk = zend for all k.
We will now measure the error between the piecewise constant numerical solution

obtained by N = Nk cells (we skip the index k for a moment) and the reference
solution obtained with Nref cells on the grid refined by a factor m = �z/�z

r. The
refined grid satisfies z

r
0 := z0 = 0 and we have zi = i�z = im�z

r =: zr
im

. The
corresponding numerical solutions on the refined grids are denoted by (skipping the
time index n) �r

i+1/2,  
r
i+1/2, etc., where A

r
i+1/2 are defined by means of �z

r. The
numbering of the refined cells is defined such that the first cell for � above z

r
0 = 0

contains the value �r1/2. Then zend = Nm�z
r. This means that the cells within

[0, zend) contain the values �r1/2, . . . ,�
r
Nm�1/2, and analogously for  ; see Figure 5.

Note that the location of the spatial discontinuities zU and zE will coincide with a
cell boundary for any mesh considered in the refinement process while the locations
of the inlets zF,1, etc. will be chosen in such a way that each of them lies inside a
cell for the finest grid; hence, they do this for all the coarser meshes. In this way,
the numerical fluxes at cell boundaries are well defined.

We compute the estimated error at a time point t = T and define

����z(·, T )
�� :=

Z
zend

0
A(z)

����z(z, T )
�� dz.
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Figure 5. The cell division for error calculations with a refined
grid on the left and the coarsest grid on the right.

The L1-di↵erence between two numerical solutions computed on grids with cell sizes
�z and �z

r is calculated as follows for �:

E
�(�z,�z

r
, T ) :=
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The approximate relative error for � in the interval [0, zend) is then defined as

e
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We define e
 

N
(t) analogously and hence, the total relative error can be defined as

e
tot
Nk

(T ) := e
�

Nk
(T ) + e
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(T )

and the observed convergence order between two discretizations Nk�1 and Nk as

⌥k(T ) := �

log(etot
Nk�1

(T )/etot
Nk

(T ))

log(Nk�1/Nk)
, k = 1, . . . , kref � 1.

For smooth solutions and a constant A (see (1.7)), we also use an alternative
way [7] of calculating approximate errors and convergence orders in which a reference
solution is not needed. One can use cubic interpolation to compute the quantities
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Figure 6. Smooth initial data for the example in Section 5.3.
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i+1/2 from a grid with Nk+1 = 2Nk cells, k = 0, . . . , k̂, with k̂ an integer, taking
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The alternative approximate relative L
1-error for � can then be calculated as
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We can define  ̃Nk

i+1/2 and ê
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(T ) analogously along with the alternative total ap-

proximate L
1-error and convergence order

ê
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(T ) := ê
�

Nk
(T ) + ê

 

Nk
(T ),

⌥̂k(T ) := log2(ê
tot
Nk

(T )/êtot
Nk+1

(T )) for k = 0, . . . , k̂.

5.2. Preliminaries for numerical tests. For the first example, in Section 5.3,
we use a smooth solution away from spatial discontinuities, to estimate the order
of convergence of the numerical scheme. For this example, we use N0 = 500,
Nk = 2kN0 for k = 0, 1, . . . , 5 and kref = 8; hence, N5 = 16 000 and Nref = 128 000.

In Sections 5.4 and 5.5, we exemplify counter- and co-current flows of the primary
and secondary disperse phases, respectively. For these two examples, we use N0 =
100, and kref = 7. We set three inlets zF,1, zF,2 and zF,3 dividing the tank into
four equal parts each with the height H/4, where H = 1m is used. These three
inlets are defined so that they lie inside a cell for any mesh size considered. A fixed
quantity of the is introduced through inlet zF,1, a fixed quantity of the secondary
disperse phase through inlet zF,2 and some wash water through inlet zF,3.

Tables 1 and 2 show the estimated errors and convergence orders for the three
scenarios studied. In the calculations of the alternative approximate error ê

tot
Nk

(T )
and convergence order ⌥̂k(T ) in Table 1, we use k̂ = 6.

5.3. Simulation of a smooth solution. We consider a vessel with a constant
cross-sectional area of A(z) = 83.65 cm2, and we set all inlet and outlet volumetric
flows to zero, i.e, QF,1 = QF,2 = QF,3 = QU = QE = 0 cm3

/s. For the velocity
functions W and V , given by (2.10) and (2.11), respectively, we use the parameters



MODELS WITH TRIANGULAR HYPERBOLIC SYSTEM 41

Figure 7. Simulation of a smooth solution (Section 5.3). First
row: Time evolution of the volume fractions of the primary disperse
phase � (left) and the secondary disperse phase  (right) from
t = 0 s to t = 9 s. Second row: Approximate solutions at time
t = 9 s computed with N = 500 (left) and N = 8000 (right).

np = 2.2, vterm,p = 1.5 cm/s, ns = 2.2 and vterm,s = 1.5 cm/s, and consider � = �1
(counter-current flow). The initial data is a sinusoidal function for both phases with
support in the interval (zU, zE); see Figure 6. We simulate a short time, until t = 9 s,
before the first discontinuity appears; see the first row in Figure 7 where N = 1000
is used. In the second row, we compare two approximate solutions obtained with
a coarse mesh with N = 500 and a finer one with N = 8000. Table 1 shows the
estimated errors and convergence orders. Both ⌥k(T ) and ⌥̂Nk(T ) assume values
close to one as Nk increases, as expected, confirming that the scheme is first-order
accurate for smooth solution.

5.4. Illustration of the crossing condition. We illustrate that the “crossing
condition” is satisfied as mentioned in Section 4.1. For this we use the constant
A ⌘ 83.65 cm2 and simulate a tank that initially contains only water, i.e., �(z, 0) =
 (z, 0) = 0 for all z. At t = 0 we start pumping aggregates, solids, fluid and wash
water with �F,1 = 0.9,  F,1 = 0, �F,2 = 0.2,  F,2 = 0.4, �F,3 = 0.1 and  F,3 = 0.
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Table 1. Simulation of a smooth solution (Section 5.3). Total
estimated relative L

1-error e
tot
Nk

(T ), alternative relative L
1-error

ê
tot
Nk

(T ), estimated convergence order ⌥k(T ), and its alternative
counterpart ⌥̂k(T ), calculated with Nref = 128 000 and T = 9 s.

Nk e
tot
Nk

(T ) ⌥k(T ) ê
tot
Nk

(T ) ⌥̂k(T )

500 3.7212⇥ 10�2
� 1.3041⇥ 10�3 0.9513

1000 1.8985⇥ 10�2 0.9709 6.7443⇥ 10�4 0.9657
2000 9.5710⇥ 10�3 0.9881 3.4533⇥ 10�4 0.9781
4000 4.7582⇥ 10�3 1.0083 1.7531⇥ 10�4 0.9870
8000 2.3174⇥ 10�3 1.0379 8.8448⇥ 10�5 0.9927
16000 1.0867⇥ 10�3 1.0926 4.4447⇥ 10�5

�

Figure 8. Illustration of the crossing condition (Section 5.4). The
crossing condition is satisfied at each of the five spatial discontinu-
ities.

We choose the volumetric flows (QU, QF,1, QF,2, QF,3) = (15, 20, 25, 15) cm3
/s, so

that the volumetric flows in the tank are positive in all zones but not in zone 1.
Three inlets zF,1, zF,2 and zF,3 divide the tank into four zones of equal height.
Figure 8 shows the graphs of the flux functions on both sides of each discontinuity
in z, for this case three inlets (zF,1, zF,2, zF,3) and two outlets (zU, zE). We see that
the fluxes J(�, z±) (defined in (4.9)) intersect when �F,1 = 0.9, �F,2 = 0.2 and
�F,3 = 0.1, and do not intersect in (0, 1) at neither zU nor zE. Figure 9 shows the
simulation results during 200 s.

5.5. Application 2: Counter-current fluxes. We consider now a complete tank
with � = �1; hence, the primary disperse phase will move upwards and the sec-
ondary disperse phase downwards with respect to the volume average velocity q of
the mixture. A straightforward interpretation of this scenario is the flotation pro-
cess used in the mineral industry to recover valuable minerals from crushed ore; see
the model in [8,9]. In that model, the primary disperse phase consists of aggregates,
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Figure 9. Simulation of the example in Section 5.4 during T = 200 s.

which are air bubbles fully loaded with hydrophobic minerals, and the secondary
disperse phase is the tailings, consisting of hydrophilic particles suspended in the
fluid that do not attach to air bubbles. We consider three inlets zF,1, zF,2 and zF,3,
dividing the tank into four regions with equal height. At zF,1, only gas is fed, at zF,3
only wash water, while at zF,2 a slurry of solids and water is fed into the column.

The cross-sectional area is discontinuous (cf. Figure 3) due to a centered pipe
from the top down to zF,2 that introduces material into the tank. It is given by

A(z) =

(
72.25 cm2 for z � zF,2,

83.65 cm2 for z < zF,2.

These values correspond to the reflux flotation cell studied in [20].
We consider that the column is initially filled only with fluid, hence �(z, 0) =

 (z, 0) = 0 for all z, when we start pumping aggregates and solids with concentra-
tions �F,1 = 1.0,  F,1 = 0, �F,2 = 0,  F,2 = 0.4, �F,3 = 0 and  F,3 = 0, along with
fluid and/or wash water. We choose (QU, QF,1, QF,2, QF,3) = (5, 15, 25, 10) cm3

/s,
so that the mixture flows in zones 2 and 3 are positive, i.e., directed upwards:
QF,1 �QU = 10 cm3

/s in zone 2 and QF,2 +QF,1 �QU = 35 cm3
/s in zone 3.

Figure 10 shows the time evolution of the volume fractions of � and  . It can be
seen that the aggregates rise fast to the top, while the solids are travelling both up
and down the vessel, leaving through the e✏uent and the underflow.

At time t = 350 s, we change the volumetric flow from QF,2 = 25 cm3
/s to

QF,2 = 7 cm3
/s. After this change, the solids settle and we obtain a steady state.

We mention that this is not a desired steady state in the mining industry (the
capacity of the device is not fully used); see [9] for more examples. Table 2 (a)
shows the estimated errors and convergence orders for this simulation. As in the
smooth example in Section 5.3, the convergence orders tend to one as Nk increases.

5.6. Application 2: Co-current fluxes. For the last example, we consider � = 1,
i.e., both the primary and secondary disperse phases have a density smaller than
that of the fluid and therefore move upwards relative to the mixture. This scenario
could be a flotation process with two buoyant phases di↵ering in density and possibly
also in size. We consider here the same flotation column as in Application 1 and
choose np = 3.2, vterm,p = 2.5 cm/s, ns = 2.5, and vterm,s = 1.5 cm/s so that we
have two buoyant phases with di↵erent (upwards-directed) velocities relative to the
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Figure 10. Application 1: Counter-current flows. Time evolution
of the volume fraction profiles of the primary disperse phase �

(left) and secondary disperse phase  (right) from time t = 0 s to
t = 1800 s seen from two di↵erent angles (first and second rows).

mixture. As in the previous example, only the primary disperse phase is fed into
the tank at zF,1 and only the secondary at zF,2. The column is initially filled with
only fluid at time t = 0 s, hence �(z, 0) =  (z, 0) = 0 for all z, when we start
pumping both phases with the following volume fractions: �F,1 = 1.0,  F,1 = 0.0,
�F,2 = 0.0,  F,2 = 0.6, �F,3 = 0 and  F,3 = 0. We choose the volumetric flows
(QU, QF,1, QF,2, QF,3) = (15, 30, 20, 10) cm3

/s, so that the volumetric flows in the
tank are positive in all zones with the exception of zone 1.

Figure 11 shows the time evolution of the volume fractions of both phases. It
can be seen that, for times t < 350 s, the primary disperse phase leaves the tank
through both the underflow and e✏uent outlets, while the secondary disperse phase
quickly rises to the top part of the tank and leaves it just through the e✏uent
outlet. At t = 350 s, we change the volumetric flow of the inlet zF,1 from QF,1 = 30
to QF,1 = 20 cm3

/s, maintaining the other volumetric flows. As a consequence we
can see that the primary disperse phase � rises and leaves zone 1, exiting the tank
only through the e✏uent while the secondary disperse phase maintains the same
behaviour as before and is present only above the feed level zF,2. Table 2 (b) shows
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Table 2. Approximate total relative L1-errors etot
Nk

(T ) and conver-
gence orders ⌥k(T ) calculated between consecutive values of Nk,
with Nref = 12 800 (a) for Application 1 (counter-current flow) at
simulated time T = 350 s, (b) for Application 2 (co-current flow)
at simulated time T = 500 s.

(a) (b)

Nk e
tot
Nk

(T ) ⌥k(T )

100 4.2032⇥ 10�1
�

200 2.5992⇥ 10�1 0.6934
400 1.5820⇥ 10�1 0.7163
800 9.4139⇥ 10�2 0.7489
1600 5.3953⇥ 10�2 0.8031
3200 2.8018⇥ 10�2 0.9453

Nk e
tot
Nk

(T ) ⌥k(T )

100 2.7733⇥ 10�1
�

200 1.7102⇥ 10�1 0.6974
400 1.0504⇥ 10�1 0.7032
800 6.2422⇥ 10�2 0.7508
1600 3.4649⇥ 10�2 0.8492
3200 1.6926⇥ 10�2 1.0336

the estimated errors and convergence orders for this simulation, which have the
same behaviour as the ones in the numerical examples in Sections 5.3 and 5.4.

6. Conclusions. The present study outlines a numerical method for a triangular
system of two PDEs, whose flux functions have several spatial discontinuities due
to in- and outflows of a one-dimensional tank with possibly varying cross-sectional
area. The triangular structure is utilized in the following way in the numerical
scheme. The numerical update formula corresponding to the first scalar equation
contains, for the nonlinear term, a numerical flux where the the volume fraction in
the left cell is multiplied with the velocity computed in the right cell; see [6]. The
update formula for the second equation uses the Engquist-Osher numerical flux
for the term modelling the nonlinear relative flux of the secondary disperse phase,
chosen in a particular way since this flux also depends on the primary disperse
phase volume fraction. The other terms of the second update formula are also
chosen in such a way that the entire scheme is proved to be monotone under the
CFL condition (3.2). We prove that the numerically obtained volume fractions
satisfy the invariant-region property that they stay between zero and one, as is
physically expected.

The numerical scheme is applied to simulate the hydrodynamic movement of
simultaneously rising aggregates (air bubbles with attached hydrophobic particles)
and settling hydrophilic particles in the fluid under in- and outflows of a flotation
column. As a demonstration of the capabilities of the numerical method, three
di↵erent settings are simulated. The convergence order of the numerical method
is estimated. As expected, in regions where the solution is smooth, the order is
one. The first-order scheme proposed in this paper could be improved to achieve
second-order accuracy, for instance, by techniques of variable extrapolation [6, 14].

In [9], the authors proposed a staggered scheme to compute numerical solutions
for a flotation column, following the approach of Karlsen et al. [31,32]. Although the
staggered scheme worked for a single inlet for a mixture of aggregates and solids, we
have, in the case of several feed inlets, found it di�cult to get consistent numerical
solutions with respect to di↵erent mesh sizes.

We are currently [12] extending the model and numerical scheme to the explicit
description of drainage of liquid from the foam forming at the top of a flotation
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Figure 11. Application 2: Co-current flow. Time evolution of
the volume fraction profiles of primary disperse phase � (left) and
secondary disperse phase  (right) from time t = 0 s to t = 1500 s
seen from two di↵erent angles (first and second rows).

column. This phenomenon gives rise to a model similar to (1.1) but with an addi-
tional degenerating di↵usion term. The numerical solution of the resulting system
of non-linear convection-di↵usion equations calls for semi-implicit discretizations to
alleviate the severe restrictions in the CFL condition due to the di↵usion term.
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