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Abstract

This study is concerned with the elastoplastic torsion problem and its standard finite
element approximation using piecewise affine Lagrange finite elements. In the case of a
polytopal convex domain in dimension n = 1, 2, 3 we obtain an H1-error bound of order
h for the solution. For a nonconvex domain, we obtain also an error estimate.
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1. Introduction

Problems written with weak formulations involving variational inequalities represent
various nonlinear phenomena which occur in mechanics and physics [8, 16]. We focus
on the elastoplastic torsion problem, as presented in, e.g., [12] (see also [5, 13]). In the
aforementioned reference, a direct piecewise affine Lagrange finite element approximation
of the variational inequality is also presented, as well as a convergence result (Theorem 3.3),
and two error estimates in the H1-norm, in dimension one (Theorem 3.4) and in dimension
two (Theorem 3.5). The error estimate in one dimension is optimal (O(h)), whereas it

remained suboptimal in dimension two, as it is of order O(h
1
2
− 1

p ) for a source term in
Lp, p > 2. This bound has not been improved since then, up to our knowledge. Among
the few existing results are weak and strong convergence results [19], and error estimates
of O(h) for the L2-norm of the gradient of the solution and under suitable restrictive
assumptions, for mixed finite element approximations, using P1/P0 finite elements [10] or
Raviart-Thomas finite elements [6].

In this study we focus on a problem with a positive constant source term. In this
case the variational inequality can be reformulated as an “obstacle” problem where the
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constraint involves the distance to the boundary, so the obstacle is nonsmooth and the
usual techniques from the obstacle problem cannot be directly applied. We present a new
direct finite element approximation of the variational inequality, that makes use of piece-
wise affine, continuous, Lagrange finite elements, and in which the constraint involving the
distance function is imposed at each node. When the domain is convex, the discretization
is conforming and we prove error estimates in any dimension n = 1, 2, 3, with an optimal
error bound: O(h), for a regular enough continuous solution. In the case of a nonconvex
domain, an extra term appears due to the nonconformity, that is challenging to bound.
We manage to derive an error bound of O(h3/4) for a solution of Sobolev regularity Hα,
α ≥ 7/4.

As usual, we denote by Hs(.), s ∈ R, the Sobolev spaces. For an open subset D of
Rn, the usual norm of Hs(D) is denoted by ‖ · ‖s,D. The space H1

0 (D) is the subspace
of functions in H1(D) with vanishing trace on ∂D. The letter C stands for a generic
constant, independent of the discretization parameters.

2. The elastoplastic torsion problem

Let Ω ⊂ Rn, n ≥ 1, be an open bounded polytope, connected and with Lipschitz
boundary. We consider the variational inequality modelling the torsion of an infinitely
long elastoplastic cylinder of cross section Ω and plasticity yield r > 0. To simplify we
assume that r = 1. The problem is to find the stress potential u such that

u ∈ K1 : a(u, v − u) ≥ L(v − u), ∀ v ∈ K1, (1)

where a : H1
0 (Ω)×H1

0 (Ω)→ R is the bilinear form given by:

a(u, v) :=

∫
Ω
∇u · ∇v, ∀ u, v ∈ H1

0 (Ω),

and L(v) :=
∫

Ω fv, ∀ v ∈ H
1
0 (Ω), f ∈ L2(Ω). The notation K1 represents the nonempty

closed convex set of admissible stress potentials:

K1 :=
{
v ∈ H1

0 (Ω) : |∇v| ≤ 1 a.e. in Ω
}
,

where | · | denotes the euclidian norm in Rn. From Stampacchia’s theorem we deduce that
Problem (1) admits a unique solution (see also, e.g., [8, 12, 13, 16]).

Remark 2.1. We recall some regularity results for (1): if Ω ⊂ Rn is open, bounded
and convex, with Lipschitz boundary, and for f ∈ Lp(Ω) with n < p < +∞, then u ∈
W 2,p(Ω) ∩ C 1,α(Ω), where α = 1− n/p [4]. When the domain is non convex the W 2,p(Ω)
regularity can be obtained but the boundary needs to be more regular (C 1,1 more precisely,
see [11]) so reentrant corners of polytopes are not allowed. When reentrant corners of
polytopes are considered, the loss of W 2,p-regularity is only located near these corners [5].

Next we suppose that f = C is a constant function. In this case and according to [3]
(see also [15]) the problem (1) can be rewritten as follows: find the stress potential u such
that

u ∈ K : a(u, v − u) ≥ C
∫

Ω
(v − u), ∀ v ∈ K, (2)
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with
K :=

{
v ∈ H1

0 (Ω) : |v| ≤ d∂Ω a.e. in Ω
}
,

and d∂Ω denotes the (interior) distance function with respect to the boundary ∂Ω:

d∂Ω(x) := inf
y∈∂Ω

|x− y|, ∀ x ∈ Ω.

Note that (2) still admits a unique solution from Stampacchia’s theorem. To lighten the
discussion we can suppose without loss of generality that C > 0, so problem (2) can be
rewritten as follows: find the stress potential u such that

u ∈ K : a(u, v − u) ≥ C
∫

Ω
(v − u), ∀ v ∈ K, (3)

with
K :=

{
v ∈ H1

0 (Ω) : 0 ≤ v ≤ d∂Ω a.e. in Ω
}
.

Again (3) admits a unique solution from Stampacchia’s theorem.

Remark 2.2. We explain why we can consider without loss of generality that C > 0. We
see that (2) can be rewritten: find the stress potential u such that

u ∈ K : a(−u,−v − (−u)) ≥ −C
∫

Ω
(−v − (−u)), ∀ v ∈ K. (4)

Since K = −K and denoting by u(C) the solution of (2) with source term C, we deduce
from (4) that u(−C) = −u(C).

We justify below equivalence between Problem (2) and Problem (3), when C > 0:

Proposition 2.1. When C > 0, Problem (2) and Problem (3) share the same unique
solution u ∈ K.

Proof. We consider both problems (2) and (3) as minimization problems over their
respective sets. Since K ⊂ K, these problems are equivalent if the minimizer of a(·, ·)/2−
L(·) over K lies in fact in K. Let u ∈ K be the solution to (2), and write u = u+−u−, with
u+ = max(0, u) and u− = −min(0, u) the positive and negative parts of u, respectively,
that both belong to H1

0 (Ω) [20, Lemma 1.1]. We choose v = u+ ∈ K in (2) and get:

−‖∇u−‖20,Ω ≥ C
∫

Ω
u−.

Since C > 0, we deduce that u− = 0 a.e. in Ω, this means that in fact u lies in K and is
also the unique solution to Problem (3). �

Now we consider problem (3) which can be seen as a kind of double obstacle problem.

Remark 2.3. In the case where f = C is a positive constant, note that we could write the
same variational inequality as in (1),(2) and (3) but with the convex set

K̃ :=
{
v ∈ H1

0 (Ω) : v ≤ d∂Ω a.e. in Ω
}
.

So the torsion problem can be simply seen as an obstacle problem but with a nonsmooth
obstacle which is the distance function (roughly speaking the distance function does not lie
in H2(Ω)). This implies that the classical finite element error analysis for the obstacle
problem can not be directly applied in the forthcoming analysis.
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3. Finite element discretization

Let Th be a family of simplicial meshes of the domain Ω (h := maxT∈Th hT where hT
is the diameter of T ). The family of meshes is supposed regular and quasi-uniform. Let
Vh be a family of Lagrange finite element spaces of degree one indexed by h, and defined
precisely as:

Vh := {vh ∈ C (Ω) ∩H1
0 (Ω) : vh|T ∈ P1(T ), ∀ T ∈ Th}.

Let Nh be the set of the nodes of the mesh and set

Kh := {vh ∈ Vh : 0 ≤ vh(a) ≤ d∂Ω(a), ∀a ∈ Nh}.

The discrete problem is as follows (recall that C > 0):

uh ∈ Kh : a(uh, vh − uh) ≥ C
∫

Ω
(vh − uh) ∀ vh ∈ Kh, (5)

and it admits a unique solution.

Remark 3.1. If Ω contains a reentrant corner (take for instance a L-shaped domain
when n = 2), it is easy to check that generally Kh 6⊂ K. Indeed take Ω = (−1, 1)2 \ [0, 1)2,
for n = 2, and choose a mesh Th of Ω that contains an edge E between nodes a1 =
(−0.3−α,−0.3+α) and a2 = (−0.3+α,−0.3−α) with α small enough (so that (0, 0) is their
closest boundary point). Take vh ∈ Kh such that vh(a1) = vh(a2) = d∂Ω(a1) = d∂Ω(a2).
Then, by linear interpolation on E, there holds vh(−0.3,−0.3) = d∂Ω(a1) = d∂Ω(a2) >
d∂Ω((−0.3,−0.3)) and we deduce that vh /∈ K. Note however that, when Ω is a convex set
in Rn there holds Kh ⊂ K, since the hypograph of d∂Ω is convex [14, Chapter B, Section
1.3].

4. A priori error estimate

Our main result is:

Theorem 4.1. Let Ω ⊂ Rn, 1 ≤ n ≤ 3, be an open bounded polytope, connected and with
Lipschitz boundary.

1. Let Ω be convex, u ∈ K ∩H2(Ω) and uh ∈ Kh be the solutions to problems (3) and
(5), respectively. There holds

‖u− uh‖1,Ω ≤ Ch‖u‖2,Ω. (6)

2. Let Ω be nonconvex, u ∈ K ∩ Hα(Ω) (max(1, n/2) < α ≤ 2), ∆u ∈ L2(Ω) and
uh ∈ Kh be the solutions to problems (3) and (5), respectively. There holds

‖u− uh‖1,Ω ≤ Chmin(3/4,α−1)‖u‖α,Ω. (7)

Remark 4.1. 1. In the one dimensional case, since Ω is connected, it is necessarily
convex, so we recover the well known optimal result of order O(h) (see, e.g., [13]).

2. In the convex case, the solution is known to be in W 2,p(Ω) for any 1 < p <∞ [4].
3. In the nonconvex case we have to add the assumption ∆u ∈ L2(Ω) which is neces-

sary to write Falk’s lemma in its standard form. Otherwise this would lead to additional
technicalities (and changes for the convergence rate of course) which are beyond the scope
of this paper. Note that reference [5] investigates some regularity properties of the solution
to the torsion problem near reentrant corners.
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Proof: From standard Falk’s Lemma (see, e.g., [13]), since ∆u ∈ L2(Ω) and since
Ihu ∈ Kh, where Ih is the Lagrange interpolation operator mapping onto Vh, we get

‖u− uh‖21,Ω ≤ C
[

inf
vh∈Kh

(‖u− vh‖21,Ω + ‖u− vh‖0,Ω) + inf
v∈K
‖v − uh‖0,Ω

]
≤ C

[
‖u− Ihu‖21,Ω + ‖u− Ihu‖0,Ω + inf

v∈K
‖v − uh‖0,Ω

]
, (8)

where the constant C depends on ‖∆u‖L2(Ω).
1. In the first case (i.e., Ω is convex and u ∈ K ∩H2(Ω)) the first two terms in (8) are

bounded by Ch2 and the second infimum disappears according to Remark 3.1. So bound
(6) holds.

2. Let Ω be nonconvex, u ∈ K ∩Hα(Ω) with max(1, n/2) < α ≤ 2 and ∆u ∈ L2(Ω).
From standard approximation bounds, the first two terms in (8) are bounded by Ch2(α−1).
To bound the infimum on K, we set v := min(uh, d∂Ω). Clearly v ∈ H1(Ω). Indeed for Ω a
bounded polytope there holds d∂Ω ∈ H1(Ω), and the minimum of two functions in H1(Ω)
remains in H1(Ω) [20, Lemma 1.1]. Moreover we have v = 0 on ∂Ω and 0 ≤ v ≤ d∂Ω,
which guarantees that v ∈ K.

Now set Sh := {x ∈ Ω, d∂Ω(x) < uh(x)}. This set is generally nonempty since Kh 6⊂ K.
If x /∈ Sh, then v(x) = uh(x) by definition. So

‖v − uh‖20,Ω =

∫
Ω

(v − uh)2 =

∫
Sh

(d∂Ω − uh)2.

Since uh ∈ Kh we have uh(a) ≤ d∂Ω(a) = Ihd∂Ω(a), ∀a ∈ Nh. So Ihd∂Ω − uh ≥ 0 in Ω.
Let x ∈ Sh, then we bound:

0 < |(uh − d∂Ω)(x)| = (uh − d∂Ω)(x)

= (uh − Ihd∂Ω)(x) + (Ihd∂Ω − d∂Ω)(x)

≤ (Ihd∂Ω − d∂Ω)(x).

Therefore

‖v − uh‖20,Ω =

∫
Sh

(d∂Ω − uh)2 ≤
∫
Sh

(Ihd∂Ω − d∂Ω)2 ≤ ‖d∂Ω − Ihd∂Ω‖20,Ω.

We now consider two different regions of Ω. First, the medial axis which is, for a polytope,
the set of its points which have more than one closest point on the boundary (see, e.g.,
[17, Fig. 4] for an example in two dimensions). On the medial axis, the distance function
to the boundary is generally not regular [2, Section 2.3]. The medial axis for a polytope in
Rn is composed of a finite number of n−1 dimensional sets (possibly not straight or planar
if the polytope is nonconvex) of finite measure in Rn−1 (see, e.g., [1, 7, 18]). Since the
mesh is regular and quasi-uniform, there are at most C/hn−1 simplices TM intersecting
the medial axis. We consider such a simplex TM , and using the interpolation estimate
‖d∂Ω − Ihd∂Ω‖L∞(TM ) ≤ ChT ‖∇d∂Ω‖L∞(TM ) [9, Theorem 1.103], we bound as follows:

‖d∂Ω − Ihd∂Ω‖20,TM ≤ h
n
T ‖d∂Ω − Ihd∂Ω‖2L∞(TM ) ≤ Ch

n+2
TM

.
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Since there are at most C/hn−1 simplices TM concerned by the above estimate, we get
‖d∂Ω−Ihd∂Ω‖20,ΩM

≤ Ch3 where ΩM stands for the set of simplices intersecting the medial
axis.

Consider now the elements TR which do not intersect the medial axis. In this case
the distance function is C1,1 (see, e.g., [2, 5, 18]), so its gradient is Lipschitz and almost
everywhere differentiable. Then we can bound

‖d∂Ω − Ihd∂Ω‖0,TR ≤ Ch
2
TR
|d∂Ω|H2(TR).

By summation, we get ‖d∂Ω − Ihd∂Ω‖20,Ω\ΩM
≤ Ch4. As a result we obtain

inf
v∈K
‖v − uh‖0,Ω ≤ Ch3/2

and the final bound
‖u− uh‖1,Ω ≤ Chmin(3/4,α−1)

follows. �
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discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965) 189–258.

7



Centro de Investigación en Ingenieŕıa Matemática (CI
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