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Abstract

We study the Nitsche-based finite element method for contact with Coulomb friction considering both
static and dynamic situations. We provide existence and/or uniqueness results for the discretized prob-
lems under appropriate assumptions on physical and numerical parameters. In the dynamic case, existence
and uniqueness of the space semi-discrete problem holds for every value of the friction coefficient and the
Nitsche parameter. In the static case, if the Nitsche parameter is large enough, existence is ensured for
any friction coefficient, and uniqueness can be obtained provided that the friction coefficient is below a
bound that depends on the mesh size. These results are complemented by a numerical study.
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1. Introduction

Many problems in structural engineering involve frictional contact, and are approximated numerically
using variational techniques, among them the Finite Element Method (FEM) [25, 26| 28| B6] 37, 54
59]. Friction is generally taken into account using Coulomb’s law, that is relevant for a broad range of
applications.

The goal of this work is to present some first theoretical results for Coulomb friction discretized with the
FEM and a Nitsche’s formulation of frictional contact conditions (Nitsche-FEM). We present the method
in the small strain framework, for the dynamic and the static settings. Our main results are, first, a
well-posedness theorem in the dynamic setting, which guarantees the existence and uniqueness of a semi-
discrete solution in space. Secondly, we obtain an existence result in the static setting, which ensures, if
the Nitsche parameter is large enough, that there is at least one discrete solution, irrespectively of the
values of the friction coefficient and of the mesh size. In this static setting, uniqueness of solutions is
recovered with very restrictive conditions on the friction coefficient and the numerical parameters, which
is something expected for this problem (see, e.g., [27, 33]). Finally, we derive also an energy estimate for
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the dynamic setting. These theoretical results are complemented by a numerical study. Particularly, this
is the first time, to the best of our knowledge, that numerical results are obtained with the Nitsche-FEM
for frictional elastodynamics. Part of the results presented here have been announced, without detailed
proofs, in conference proceedings [12] [14].

Let us put our work in perspective with the literature. Contact with Coulomb friction in elastostatics
remains a difficult problem, with still some open issues in its mathematical analysis, both for the con-
tinuous and the discrete problems. In the continuous case, there is indeed no complete characterization
of existence and uniqueness when the friction coefficient is varied (see, e.g., [23| [24] [45] for existence
results when the friction coefficient is small). Moreover it can be proved that uniqueness is lost in some
configurations and multiple solutions can be obtained, see, e.g., [5, [31]. The existence and uniqueness of
solutions to the discrete problem has been studied for instance in [32] and later on in |29, [39], for more
general formulations, especially a variable friction coefficient. Also, comparatively to the frictionless case
or to the Tresca friction case, more difficulties appear in the numerical analysis of the method: even
in situations when uniqueness can be ensured at the continuous level (see, e.g., [48]), the obtention of
optimal error estimates in H'-norm is still an open issue, see e.g., [27, [33]. Moreover special care has
to be taken in numerical solving when situations of non-uniqueness occur [32] [34] 41l 42]. In fact, it
is well known that the finite element problem admits a solution and that the solution is unique if the
friction coefficient is small enough, but the denomination small depends on the discretization parameter.
Moreover, the improvement of numerical methods to solve contact with Coulomb friction represents still
a very active research field (see for instance [3| 56] or also [7, 57, [58]).

For Coulomb friction in elastodynamics, results are even more scattered (see [24] for a review). A
pioneering work [43] addresses the problem of frictional contact with a normal compliance law, and
existence and uniqueness of a solution is established. Another work [47] carries out the numerical analysis
of a one dimensional contact problem with Coulomb friction. In [6], resp. [9], a well-posedness result is
proven for a single particle, resp. a collection of particles, undergoing contact with Coulomb friction. A
key assumption for the proof is the analyticity of the data. When the modified mass method of Khenous,
Laborde and Renard [35] is used for the space semi-discretization with FEM of contact with Coulomb
friction, well-posedness of the semi-discrete problem in space has been established in [40] and [22]. This
latter reference provides also a convergence result.

In the last years, a Nitsche-FEM has been designed to handle contact conditions in elasticity, first for the
frictionless contact problem of Signorini, in statics, and in the small strain framework [I3], [I7]. Nitsche’s
formulation [46] differs from standard penalization techniques which are generally non consistent. Besides,
no Lagrange multiplier is needed and no discrete inf-sup condition must be fulfilled contrarily to mixed
methods. A formulation for the Tresca friction problem has been made in [I0]. Notably, it has been
proven, without any assumption on the contact/friction set, the optimal convergence of the Nitsche-FEM
in the H(Q) norm, which is O(h'/?*¥) when the solution lies in H3/>*¥(Q),0 < v < 1/2. The numerical
analysis of this paper has been extended to the contact between two elastic bodies, with an unbiased
formulation [I8], and also for Hybrid High Order (HHO) discretization on polytope meshes [11].
Nitsche’s formulation has also been extended to solve contact with Coulomb friction. This method has
been first formulated, in the static case and in small strain, in [49]. This was accompanied by several
numerical tests, in two and three dimensions, to assess the performance of a generalized Newton algorithm.
Later on, an extension to contact in large deformations with Coulomb’s friction has been performed and
tested numerically in [44], for the quasi-static setting (see also [51]).

For contact in elastodynamics, a Nitsche-FEM has been devised and analyzed in [15, 16, [19], for frictionless
contact and in small deformations. In this situation, the Nitsche-FEM leads to a well-posed semi-
discrete problem in space, as for the penalty method and the modified mass method [35]. Several implicit
or explicit time-marching schemes have been proposed, analysed and tested numerically, still in the



frictionless case. The Nitsche-FEM has never been extended to Coulomb’s friction in dynamics, though
the method has been formulated in [12].

Let us introduce some useful notations. In what follows, bold letters like u, v, indicate vector or tensor
valued quantities, while the capital ones (e.g., V,K...) represent functional sets involving vector fields.
As usual, we denote by (H*(.))%, s € R,d = 1,2, 3 the Sobolev spaces in one, two or three space dimensions
(see [1]). The usual scalar product of (H*(D))¢ is denoted by (-,)s.p, and |- ||s,.p = (-, -)E_D denotes the
corresponding norm. We keep the same notation when d =1 or d > 1. The letter C' stands for a generic
constant, independent of the discretization parameters.

2. Setting

Coulomb friction in small strain elasticity is first presented in the dynamic case, then in the static case.

2.1. The dynamic problem

We consider an elastic body  in R? with d = 2,3. Small strain assumptions are made (as well as plane
strain when d = 2). The boundary 9 of Q is polygonal (d = 2) or polyhedral (d = 3). The outward
unit normal vector on 0f) is denoted n. We suppose that 92 consists in three nonoverlapping parts I'p,
I'y and the contact boundary I'c, with meas(I'p) > 0 and meas(I'c) > 0. The contact boundary is
supposed to be a straight line segment when d = 2 or a polygon when d = 3 to simplify. In the reference
configuration, the body is in frictional contact on I'c with a rigid foundation and we suppose that the
unknown contact zone during deformation is included into I'c. The body is clamped on I'p for the sake
of simplicity. It is subjected to volume forces f in {2 and to surface loads g on I'y.

We consider the unilateral contact problem with Coulomb friction in linear elastodynamics during a time
interval [0,T") where T' > 0 is the final time. We denote by Qp := (0,7") x  the time-space domain, and
similarly T'pr := (0,7) x I'p, Tn7 := (0,T) x 'y and T := (0,T) X T'¢. The problem then consists
in finding the displacement field u : [0, T") x 2 — R< verifying the equations and conditions f:

pu—dive(u) =f in Qp, (1)

are the equations of motion for the body where the notation % is used for the time-derivative of a
vector field x so that u is the velocity of the elastic body and 1 its acceleration. The notation o =
(0i5), 1 <4,5 < d, stands for the stress tensor field and div denotes the divergence operator of tensor
valued functions. The stress tensor is defined using the constitutive relation o(u) = A e(u) where
e(v)=(Vv+ VVT) /2 represents the linearized strain tensor field and A is the fourth order symmetric
elasticity tensor having the usual uniform ellipticity and boundedness properties. The density of the
elastic material denoted by p is supposed to be constant to simplify (this is not restrictive and the results
can be extended straightforwardly for a variable density). The prescribed displacements and density of
forces are expressed by the equations:

u=0 on I'pr,

(2)

oclun=g on Dyrp.

For any displacement field v and for any density of surface forces o(v)n defined on 92 we adopt the
following notation:
v=ov,n+vy and o(v)n=o,(v)n+oi(v),



where vy (resp. o¢(v)) are the tangential components of v (resp. o(v)n). The conditions describing
unilateral contact on I'cr are:

U, <0, o,(u) <0, op(u)u, =0 (3)
and those modelling Coulomb friction on I'cr can be written as follows

=0 = |o¢(u)| < —Fo,(u)

i (4)
||

where # > 0 stands for the friction coefficient (# = 0 corresponds to the frictionless case).

Finally we need to add the initial conditions

W #0 =  o¢(u) = Fo,(u)

U(O, ) = Uo, 11(0, ) =g in Qa (5)

where ug is the initial displacement and g is the initial velocity. Note additionally that the initial
displacement ug should satisfy the compatibility condition wug, < 0 on I'c.

Remark 2.1. A quasi-static problem can be obtained if the inertial terms are neglected in the equations
of motion. Then simply becomes

—dive(u) =1 in Qr, (6)
while the other equations (@7 remain unchanged and @ merely reduces to u(0,-) =ug in Q.
The (total) mechanical energy associated with the solution u to the dynamic contact problem 7 is:

1 . 1
E(t) := 5p||u(t)||8ﬂ + i/gla(u) ce(u) dQ), Vtel0,T].
Let us take t € [0,7]. Assuming enough regularity for the solution (see for instance [2I] for one-
dimensional frictionless contact), we get from , after multiplication by u(t), integration by parts,

with the boundary conditions on I'p7, I'y7 and taking into account the friction:

/Qﬁ(t)~1'1(t) dQ+/QO'(u(t)):s(1'1(t))de/

I'c

on(u(t))in () dT — / oy (u(t))ig(t) dr

T'c

HE()
= L(t)(u(t)).

Moreover, with the persistency condition o, (u(t))d, (t) = 0 (see, e.g., [4,[38,[30]) and the friction condition
o(u(t))ug(t) <0 we end up with:

d .
S E() < L) (a()). (7)

In particular, when L vanishes, we get energy dissipation : E(t2) < E(t1), for all 0 <ty <ty <T.



2.2. The static problem

It consists of considering the quasi-static model and to approximate u(t,z) using a time increment:
g (t,x) = (ug(t,x) — ug(t — At,z))/At. Supposing to simplify that uy(t — At, x) equals zero yields the
static friction model where becomes

u =0 = |o¢(u)| <—-Fo,(u)
U (8)

u #0 = Ut(u):ﬁon(u)m.

The static model consists then for a fixed ¢ to find a displacement field u : Q@ — R% satisfying , ,

@ and .

3. Nitsche finite element discretizations

In this section we derive Nitsche-FEM for the dynamic and static settings presented above.

3.1. Preliminaries

We make use of the notation [-]R_, that stands for the projection onto R~ (i.e., [as}R_ = L(z — |z]) for

x € R). Moreover, for any o € RT, we introduce the notation [-], for the orthogonal projection onto
#(0,a) C R4~1 where %(0, a) is the closed ball centered at the origin 0 and of radius .. This operation
can be defined analytically, for x € R4~! by:

x if |x] < a,
[x]o = a2 otherwise.
]|
It is easy to check that
[Xlo = [ylal < [x =y, (xla — [y}oz)Q < (X]a = [y]a)(x = ¥), (9)
for all x,y € R4, Let a, B € Ry, it holds, for all x € R4 1:
x]g — X]al < |8 —al. (10)

The derivation of a Nitsche-based method comes from the observation that the unilateral contact con-
ditions (3), the static (resp. dynamic) Coulomb friction conditions (resp. (4))) can be reformulated
with only one equation as seen hereafter.

Proposition 3.1. Let v be a positive function defined on I'c.
The unilateral contact conditions @ can be reformulated as follows:
on(u) = [on(u) —vyun] . (11)

R

Suppose that (3) holds. Then the static (resp. dynamic) Coulomb friction conditions (8) (resp. ({)) can
be reformulated as follows:

oi(u) = [oe(u) = yue) 5o, () = [06(0) =Y8e] 510, ) —yun) ) (12)
.
respectively

oi(u) = [o(u) — ’Yl.lt](f,ggn(u)) = [o¢(u) - ’Yl.lt](f,g[gn(u)fwn] ) (13)
.



Proof: To establish equality (11]) a direct proof can be found in [I3| Proposition 2.1] (see also, e.g.,
[2 49, 17]). The second identit is a direct adaption of the proof made for the Tresca friction case
in [I0, Proposition 2.4] with some additional changes in the notations. Note that the second equality of
follows straightforwardly from . To render the paper more self contained, we next prove that
the first equality in is equivalent to (8)).

e First we suppose that holds.

Consider the case uy = 0, we get |o¢(u)] < —Fo,(u). Due to the property of the projection it results
that o¢(u) = [o¢(W)] _ 75, (u))-

In the case ug # 0, we have [o¢(u)| = —Fon(u) so o¢(u) = [o¢(0)]_ 7, () In addition o (u) either
vanishes (obvious case) or —yuy = ao¢(u) with o > 0, hence

oi(u) = [Ut(u)](fygn(u)) =[(1+ a)at(u)](—gan(u)) = [o¢(u) — ryut](ffo'n(u))

which proves (|12]).

e Suppose now that the condition holds. Whatever the value of uy = 0 is, we deduce immediately
from that |o¢(u)| < —Fo,(u). Therefore we only have to consider the case ug # 0 in (8). From
oi(u) = [o¢(u) — Yut]_ 5, () We see that:

- if o¢(u) = 0 then necessarily o, (u) = 0 (since .# # 0), so holds,

- if o¢(u) # 0 then necessarily o, (u) < 0 and there exists 8 € (0,1) such that o¢(u) = S(o¢(u) — yuy),

SO
1-p

B
with the quantity (1 — 8)/8 > 0. Therefore becomes o¢(u) = [ﬁ_lat(u)}(ﬂggn(u»,
—Zop(u) and finally implies o¢(u) = Fop,(u)ug/|ug|. Hence (8) is proved.

The equivalence between and is handled as the previous one by changing uy with . O
We introduce the following Hilbert space:

—yug = oi(u), (14)

so |o¢(u)] =

VvV = {VE(Hl(Q))d:VZOOHFD}.

Suppose that ugp € V, with ug, < 0 ae. on I'c, and that 0y € (LQ(Q))d. Suppose also that

f € ¢°(0,77; (L2(Q))d) and g € €°([0,T]; (LQ(FN))d), which imply that they belong respectively to

(£2(Q7))" and (LA(Tw1))".

Let us define now the following forms:

a(u,v) := /Qa'(u) ce(v) dQ, L(t)(v) := /Qf(t) v dQ+ /FN g(t) - vdrl,

for any u and v in V, for all ¢t € [0,T).

Let V! C V be a family of finite dimensional vector spaces (see [20]) indexed by h coming from a family
T" of triangulations of the domain Q (h = maxycs» hx where hx is the diameter of the triangle K).
The family of triangulations is supposed:

e regular, i.e., there exists 0 > 0 such that VK € T" hg/px < o where px denotes the radius of the
inscribed ball in K,

e conformal to the subdivision of the boundary into I'p, I'y and ', which means that a face of an
element K € 7" is not allowed to have simultaneous non-empty intersection with more than one
part of the subdivision,



e quasi-uniform, i.e., there exists ¢ > 0, such that, Vh > 0, VK € T", hx > ch.

To fix ideas, we choose a standard Lagrange finite element method of degree k with k =1 or k =2, i.e.:
vh = {vh € (6°(@)": V" € (P(K))", VK € T",v" =0 on rD}.

3.2. Nitsche discretizations
We provide the Nitsche-FEM formulations for the dynamic and static problems described in the previous
sections, following the same path as in [12]. We consider in what follows +, a positive piecewise constant
function on the contact interface I'c which satisfies

_

PYlKﬁFC - Ev (15)
for every K that has a non-empty intersection of dimension d—1 with I'¢, and where =y is a positive given
constant (the Nitsche parameter). Note that the value of v on element intersections has no influence.
Given 0 a fixed parameter, we introduce the discrete linear operators

A VAL L*(T¢)

n .
POy vh o fo,(vh) — ol

Pt . Vi (LA(Te)* !
0y vh s Go(vh) — vk
and

Qt . VhXVh —> L2(FC)

T (W) s oy (V) — vl

Define as well the bilinear form:

Ag,(u",v") := a(u",v") - / 0 o(u")n-o(v")ndr.
e VY

The Nitsche-FEM for the dynamic setting (1)-(5) reads:

Find u”" : [0, 7] — V" such that for t € [0, 7] :
. 1 n n
(pia" (£), v") + Agy (u (), v") +/ — [PY, (0" (1)), P, (v")dl
re Y
1 (16)
+/F S [Qz(uh(t)’l'lh(t))](ff[Pr;W(uh(t))]W) Py (vM)dl = L(t)(v"), Vv'eVh
(e}
uh(ov ) = u(}JL’ ﬁh<07 ) = ﬁga

where uf (resp. 1}) is an approximation in V" of the initial displacement ug (resp. the initial velocity

1), for instance the Lagrange interpolant or the L?(Q2) projection of ug (resp. 119). The notation (-, -)
stands for the L?(Q) inner product.

Remark 3.2. For the quasi-static problem, the Nitsche-FEM reads:

Find u" : [0, T) — V" such that fort € [0,T) :

Ags (0 (), V") + / % PR (u"(1))], P2 (v")dT
c (17)

1 .
+/r 5 [Qty(uh(t)’uh(t))](—f[P;{w(uh(t))]w) Py (VM) dr = L(t)(v"), vv" eV,
C

uh(oa )= ug




Finally, the Nitsche-FEM for the static setting , , @ and reads:

Find u” € V" such that:

Ags (u,vP) + / Lpr (ut) PR (vh)dr

o 7 ) 0,y (18)
1
-I-/ ~ [Pt _(u" Pt (v dD = L(vh), Vvl e v
re 7 [P, (u™)] (~#lPr ] ) 0+(v") ")

As usual for Nitsche’s method (see, e.g., [8, 52]), we introduce the following mesh- and parameter-
dependent scalar product in V"

1 1 1 1
(vhawh)’y = (Vhawh)l,ﬂ + (’szZaszwZ)O,Fc + (’szélﬂfyzwt}:l)OvFC'

1
We denote by || - ||y := (-,-)7 the associated norm.
We recall finally the discrete trace inequalities, proven in [I0, Lemma 3.2] (see also [53], Lemma 2.1, p.24]
for the scalar case):

Lemma 3.3. There exists C' > 0, independent of the parameter vo and of the mesh size h, such that:

1 — _1 —
I Eon (V) Ere <C% IV IR e I 2oV Ere < O tIV'IE o (19)

for all vl € Vh.

4. Existence and uniqueness results

The aim of this section is to provide existence and uniqueness results, first in the dynamic setting
(Problem ([I6)), and then in statics (Problem (18)).

4.1. The dynamic case

In contrast with the standard (mixed) finite element semi-discretization, Nitsche’s formulation leads to
a well-posed (Lipschitz) system of differential equations, as it will be shown below. In order to prove
well-posedness we reformulate as a system of (non-linear) second-order differential equations. To
this purpose, using Riesz’s representation theorem in (V" (., -)) we first introduce the mass operator
M" : Vh — V" which is defined for all v, w" € V" by

(thha wh)’Y = <pvhv Wh>'

Still using Riesz’s representation theorem, we define the (non-linear) operator B : (V?)2 — V" by
means of the formula

(B 9w, = An(vhw) s [P (0], P (W) dr

e 7V
1 .
+/ - [ny(vh>vh)](7]’[P‘l‘ﬂ(vh)] )P (wh) T,
e 7 ' R
for all vh, v" wh" € V. Finally, we denote by L"(¢) the vector in V" such that, for all ¢ € [0,7] and for

every w in V"
(L"(t), w"), = L(t)(w").



Remark that, due to the assumptions on f and g, L" is continuous from [0, T] onto (Vp, | - [)-
With the above notation, Problem reads:

Find u” : [0,7] — V" such that for t € [0, 7] :
M " (¢) + B" (u"(1), u" (1)) = L"(1), (20)
u”(0,-) = u}, u"(0,-) = al.

We then show that Problem (or equivalently Problem ) is well-posed.

Theorem 4.1. The operator B" is Lipschitz-continuous in the following sense: there exists a constant
C > 0, independent of h, 0,70 and F such that, for all (vi,v}), (vh vh) e (VI)2:

||Bh(v1,v1) Bh(V2»V2)Hv
SC(1+VJ§)(1+\9|% 2)(1+ 7)|vh - VE |y 4+ C(L+ [0y )V = V55 (21)

As a consequence, for every value of 6 € R and v9 > 0, Problem admits one unique solution
uh € €2([0,T), Vh).

Proof: Let us pick V{L,vg,\??,vg,wh € V" then:

|(Bh(V1,V1) Bh(v2,v§) Wh)v|
1

< oot bW+ [ 1, - ) 3,7<wh>dr\
C
1 t h -~ h t h - h t h
+ /Fc 5 ([Q'y(vl7vl)]—9[P‘fﬂ(v¥)]k_ - [Qy("z»Vz)]—y[P?ﬁ(vg)]R_)Pe,y(W ) dr’
— 1 n n n
< O8IV — vEllalw e + / S PT, (DL = PR, (v, [P ()] ar
C
1 .
[ R I sy o, — QYA e oy ]|P W) dr.
re 7 " R

as the estimate (19) yields ||4g, || < C(1 + [0]75").
With the inequality [[z], —[y] | < [z —y|, for all 7,y € R, and using the linearity of P}, we note
that:

1 n n
[ 2 PR L = PR (o, PR ) ar
(e}
1
< [ Db - vh g () ar
re 7
_l:n _1l:n
<y iPp, (vl - vh) EPE L (W o.xe
_1 1 _1
< (# (ol — o + fon (vl = vB)lore ) (It whllore + 18117~ Fon (") loxe )
_1 1 1
< (A0t = vhllore + € IvE = vllue) (I wkllo.re +Clolg * [w".0)
_1 _1
< O+ A+ Bl DIV = vE I w5 (22)

In the last lines, we used the Cauchy-Schwarz and triangular inequalities, the estimate and the
continuity of the trace operator from H'(Q) to L*(T'¢).



Besides, using a triangular inequality, together with properties @D and :

1 . .
[ @ o ot — QSR e, |IPh ()] ar
e 7V 7 e
1 . .
< / ;‘[ny(ViL,Vil)]fy[pyﬂwm]w*[Qi(vgvV?)Ly[p;w(vmw’\PZ,W(Wh)\dF
C
1 . .
QA e, QDo | 1P ()T
C
1
< [ 2 IRy - Qv e P (whlar
e 7
y n n
[ TP — PR (A, | [P (W) T
re 7
1 . . n
< [ QU vt =] = 7 [P (v = VB ) P, ()]
C

Then, we apply Cauchy-Schwarz inequality, use the discrete trace inequalities and get:

1 1 g 1
R R I R I [ MU P
C

R—

. _1 1
< (e —vho -+ 2Ut(ViL*VS)Ho,Fcerii’Y?(’UiL,n*Ug,n)
1 _1
—yE (v = V)llore ) Iy Ph, (Wllore
h_ -h h =3\ [l
< C(I9h = Vil + (UG )1+ P)IvE = vhlL ) L+ (Bl *) " -

Taking this bound into account, we now combine the above estimations to obtain:

|(Bh(V1,V1) Bh("2a"3) Wh)'y|

7l . .
< O+ D)+ 10k DA+ F)VE = VAL IW" ly + C(1+ Bl )IVE = Sl " .

It results that
IB"(vi,vi) = B"(v§,v5)|,
wp BV — B V) wh),
wheVh ||Wh||7

< O+ )+ 0l )X+ F) v = Vil + C(A+ 101y *)IIVY = V55

This proves the first assertion of the theorem.
Then we recast in the canonical form of a first-order system:

d <

S (1) = FU(1x" (1), x"(0) = b,



It holds for arbitrary ¢ € [0, T] and x?,xk € (V)2

[E" (8, %) = F (8, %3) 5, = [|(M") 71 (B (ug, 03) — B" (uy, af)[[3 + [lay — a3,

where || - ||,x~ denotes the product norm on (V*)2.
From and re-arranging the terms we get (for a more precise estimate of the subordinated matrix
norm term ||(M")~Y|,, see [15]):

1M~ (B" (ug, uh) — B (uf,af)[l, < [|(M") 7, [|B"(uf, uy) — B"(uf, )|,
< C(p, 70, 18], F)([[us =ty + [0 —al],).
< C(p7 Yo, h7 |9|7 y)HXéL - X’ll”“/X’Y'

Hence
||Fh(t7x§b) - Fh(tﬂX}QI)HVX’Y < C(p,’y(),h, |9|,ﬁ)||xg - X?H’YX"/‘

So the second assertion of the theorem results of the Lipschitz-continuity of F* and of the Cauchy-
Lipschitz (Picard-Lindel6f) theorem. O

Remark 4.2. Note that there is no condition on 7o for the space (semi-)discretization, which remains
well-posed even if vy is small. The same remark applies for the friction coefficient.

4.2. The static case

In this section we prove that the discrete problem admits solutions when ~y is large (here the denom-
ination “large” depends on ) and that the solution is unique under an additional smallness assumption
on Fyoh~ 1.

The proof of the unique solution uses the Banach-Picard fixed point theorem for contractive functions in
a metric space. Surprisingly the calculus in the existence theorem proved thanks to the Brouwer theorem
is slightly more complicated since we have to use distances instead of norm terms. The main result of
this section is stated below:

Theorem 4.3. For any value of 6 € R, Problem admits at least one solution when vy is large

enough. Moreover, if the quantity F2~yoh™"' is small enough, this solution is unique.

Proof: Let us first introduce the problem of (Tresca) friction with a fixed threshold g € L?(I'¢), which
admits a unique solution according to [10]:

Find u" € V" such that:
1
Ag (0", v —|—/ Z [P (u n_(vhydr
P(g) o ) rcv[ Ty Py (v")

+/ = [P (u")]y - P§ (v!)dl = L(v"),  Vv"e V"
re ' ’

Remark now that the solutions to Coulomb discrete problem are the fixed points of the application
¢" : VI — V" defined as follows: ¢"(w") is the solution to P(—.Z [P} (w")] _).

Step 1. To apply the Banach fixed point theorem in a metric space, we have to prove that the mapping
¢" is contractive on V”. Set for v and w” in V"

-1 n n
d(v", wh) = a(v" —wh vt = w2 4y E (PR (V)] = PR (W] ) o

11



It is easy to check that d(-,-) is a distance on V.
Let wi', wh € V" and denote by

up =" (wh),  ug = ol(wh

the respective solutions to P(—Z[PT (w})] _) and P(—Z [P}, (w})] ). To lighten the notations in the
proof, we write 1 (resp. x) instead of —Z [P} (w})] _ (resp. —Z[PT (wh)] ).

We can write for all v* € V

A (att v+ [

| el

~ P (b)), PR T+ [

L [Pt (uh)],, P (VM) dF = L(v"),  (25)
e 7

and

Ay (0l V) + / Pt (ul)],,P5.,(v")dl = L(v").  (26)

L
T'e W[PLV( 2))-PoA( )dF+/

1
re 7
So by taking v = uf —uf in and v = u} —ul in , and after summation of the two equalities,
we obtain:

1 n n n
Ags (ul — it — ) + / = (PR ()], — PR, ()], ) PR (uf — ) ar
C

1
[ 2 (P e — [P (wh)]) P () dr =0,
(e}
Then we obtain after splitting the term associated to friction:

1
Ags (ul — ultul — ) + / = (PR ()], — PR, ()], ) P (uf — ) ar
C

+)

T'c

o)
T'c

We now use the splitting Py (-) = P (-) + (0 — 1)o, () (and the same for the tangential counterpart):

(IPY ()], — [P (u})]o,) P, (u} — u3) dl

1
Y
% ([P ()], — [PE (ul)],) P (u? — ) dT = 0. (27)

(IP? ()], = [PT,(u3)],_) P, (u} — uj) dl

2=

Ay () — uf,uf —u3) +

e
+0-1) / (PR ()], — [P (b)), ) o (u? — ul) T
Lopt . Pt (uh -
+ / o (P, — [P o)) P o ) o
(6 -1) / % ([P ()], — [PY, (ul)],,) o (u? — ul) dT

=2 |~

1 t h t h t h h _
+/Fc ; ([Pl,v(UZ)}m - [Pl,’y(u2 )]1’2) PG,’Y(ul —uz)dl'=0. (28)

12



By using the second property in @ and the inequality (z + )2 < 2(2? + y?) we get

Sl ud) 0y R — whnlR e+ Iy (P (), — P ()] )R
< Aew(u’ffu’f},u?fuZHW%([P‘fv(u’f)] P )] )

(P (), — [P () B
< % L) — (PR (uh)], ) o (ul — ul) dT

=2 |

Te

H1-0) / (Pt W, — [P ()L, o )T
_/F '1y (P}, (03], — [PF,(u})]e,) Ph, (ul —uf) dT. (29)

With the notation 77 for the right part of the previous inequality, we deduce by using Cauchy-Schwarz
inequality:

o< =0l (P, )], — PR ()], Dlorelly 2on(ul = ud)or,
H1 = 0]y 2 ([PY, ()], — [P (u)]a)lore v 2 oe(uf —ud)lor.
Hiy 2 ([P (uh)]ay — [P (uh)]a,) “2Pf(uf —ud)lor. (30)
Applying Young’s inequality for £, 82 > 0 and together with the definitions of x1, x2, we obtain:
[1-013 ewl

I1- 9|

T < I Eona —w) g + s OPE a], - — (PR ()], )R
LS Qat(U'f—ug)llﬁ,chr'l b (P ), — [P ()l e
gl E(Pn ), [P?ﬁ(wsb)]&,)no,rc+5ﬂ||w-fPe,w<u’f—u’s>|\3,pc. (31)

Applying the triangular inequality, and then the continuity of the trace from H(Q) into L?(I'¢) as well
as the assumption of quasi-uniformity of the mesh 7" yields:

_1 1 _1
I~ 2P§, (uf —ul)llo,re < 72 (uly —uge)|lore + 10]17 2o (uf —uz)|o, (32)
1
< Coygh 2 |} = ubl o+ 0]y 2oe(u} = uh)lore,
with Cy > 0.
Let us now combine the previous results:
1 1-— 0
5d2(11i17,7uh) ‘ |

(1- 15 ')n (P (s — [P (ul)]

11— 9|ﬁ1 1 |1—6]8, 9|52 .
( Iy Fou(ul — )2, + 127267 40) [y ol — ub)Er,

—lv “H([PE, ()], — [P (uB)], )5 ke

IN

_ 1 -1 n n
+272Cooh ™ Jut —uz i g + L ([Pl,w(w?)h@f = [PL,(w)], )3 e (33)

13



If 6 =1, then

1 _1
§d2(u}f,u}2’) + vz (PY (u))]e, — [PY (wh)]e) I 1o
_1 1
Iy~ 2 on(uf —ub)|3 rp + (1427 |y 2oy (ul —ub)|2 .

_ 1 -1 n n
+2.72Con0h ™ [ut —ug | + L ([PT,(wh)],— = [PT,(w3)], I,

IN

_ . . 1
< Oy +Z% " +1h™) HU?—U}%H?,Q*-ZCZZ(W?,WS)-

So ¢" is contractive if g Land .Z#240h~! are small enough.
Suppose now that 6 # 1. We choose in B1 = B2 =4|1 -0, so

*d2(ul,u2) *Ilv‘é([ Py )], = PR (ud)], )R .

+§||7_5([P§,7(U1)}z1 = [P, (u3)]a)II5
(201 =6)*+6) |y Zon(u} —u3)[§r. + (201 = 0)* + 0+ 27°0%) |y Zo(uf — ub) | r..

IN

272 Coroh ™l — bl + 7 (i, wh).
So
Sl ) < O (5" (201 - 07 40+ 25%6%) + F0h) b — w4 p(wh ).
If v ' and F2y,h ! are small enough such that e.g.,

C (" (201 0)* +0+2720%) + F2yh™") [Ju} — u||7 g < Edz( uy)
then ¢" is contractive and ([16) admits a unique solution according to the Banach-Picard fixed point
theorem.
Step 2. Now we consider Brouwer fixed point theorem to establish existence in a more general case
without conditions on the friction coefficient and on the mesh size.
e We first prove continuity of ¢". We consider again the last inequality in where the right part of the
inequality, denoted 77 as before, is bounded as in excepted for the last term of which remains
unchanged. Choosing 81 = f2 = |1 — 0|/2 yields

h h o h h 107 s h 10 1
Apy(uf —ug,uf —ug) < [y on(ul —up)[Fr + v P oe(ul —ud)lli

_1 —1
Hly 72 (P4 (u3)]ay — [PY (u3)]ao) lore 772 PE 4 (uf — u3)lore.

Bounding ||y~ 2 ([P% (ul)]a, -[Ps. (u2)]12)||0 r. using (10]) together with the definitions of x4, z2, bound-
ing ||7_%P'§7,y(u'f — u2)||0,pc as in , and applylng two Young inequalities with 83 > 0 and 84 > 0

14



gives:

7 (P ()], — [P (e o Iy 2P, (= ) o

1 n n -3
< Flr (P~ PR W), ) (Cﬂ& il — w0 + 10l Foeul — ub)or. )
02’}/ h1 1 1 n n
< pallut -~ o+ (5 + ) P (P L - P Ll

_1
+B4l0 |y 2o (uf —ud)|If .-

Putting together both previous estimates, choosing 83 and 4 small enough, using four times , the
definition of Ay, and the V-ellipticity of a gives the following estimate (here C'(6) and C(yo, h, #,0)
denote positive constants depending on 6 and vy, h, &, 0, respectively):

(C=COpHut —ublia < C(wh™t+1) Z2y 2 (P, (wh],. — [PE (W], IR e
< 0(707h3y70)||w? -

where the last bound is obtained by using [[z] = — [y]._| < [z —y|, estimate (19) and the continuity of

the trace operator (as in ) As a result ¢" is continuous when 7, ! is small enough.
e We next prove boundedness of ¢". Let w" € V", denote by u” := ¢h( h) and as before we lighten

the notations by writing « instead of —Z [P} (w")] _. Choosing v = u" in P(—Z [P} (w")] _) gives
Aw (ol ) [ 2P )] PR a2 [P LR (o) dr = L.
re 7 re 7
Then we obtain after splitting as in and :
1 n n 1 n
A () + [ 2P @R -1 [ 2 PR ()], () dr
re 7 re 7
1 1
df TPt LR a1 [ 2P Lot ar = L),
e 7 re 7

Using the property in @ with y = 0, Cauchy-Schwarz and Young inequalities as in , , we get
Agy (") + [y 72 [PT (M), B re + 12 [P ()]l e
—muv-éanwnam E o e, ), B

Iy~ 2o (w3 .. Iy 2 [P (0" [f pe < Lu),

If 6 # 1, we choose 8; = 2 = |1 — 0]|/2 and use three times (19) to conclude that if ;' is small enough

(here the denomination small depends on ) there is a positive constant C s.t. Ca(u®, u*) < L(u"), so
[[u”|1.q is bounded and the conclusion follows. The same conclusion holds for the simpler case § = 1. [

=018 9Iﬁ2 |1 —9|

5. An energy estimate

This section is devoted to derive an energy estimate which is the counterpart of the equation for
dynamic contact and in the semi-discretized case. Let us define the semi-discrete energy as follows:

(1) o= golla (1) + galu’ (1), u' (1),
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for t € [0,7], which is associated to the solution u”(¢) to Problem . Note that this is the direct
transposition of the mechanical energy E(¢) for the continuous system. Set also

B (1) = B'0) ~ § [Indonla )R v — PR (0 @) [ | = B () — 0 (1),

which corresponds to a modified energy in which a consistent term is added. This term denoted R"(t)
represents, roughly speaking, the nonfulfillment of the unilateral contact condition by u”. For # > 0 and
vo large enough, this energy remains always positive (see [I9, Proposition 8]). To lighten the notations
we write from now u” instead of u"(¢). We proceed as in [I9] and derive an energy estimate for the
semi-discrete energy E? (see [19, Remark 10]). We get the energy estimate below for the solution u” to
the semi-discrete problem :

Theorem 5.1. Suppose that the system associated to f is conservative, i.e., that L(t) = 0 for all
t € [0,T]. Then, the solution u” to satisfies the following identity:

d 1 c N c N
@E{ (t) —/F Q% (", 0] rppy a0t dT
C
1 n .
—(1-0) / = (PR = o), (8 ar
C

-0

[ (R W ey, )~ oelw!)) o) ar (34)

2

Proof: Let us suppose that L(t) = 0 for all ¢t € [0,7]. We take v? = u"(t) € V" as a test function in
. So we obtain:

TR hoahy — Qa uMe, (0" — Qa’ uMoy (0
Pl i)+ (i)~ [ S tar - [ S ooyt ar

+/Fc %[P’fﬁ(uh)]R—Pf}’W(ﬁh) dF+/

1 . .
L5 Q% (", 0] rppy ) Phy (") dT = 0. (35)
C

We transform the first two terms as:

pi, 0" + a(u”,0") = %Eh(t).

Now we split the two boundary terms associated with contact using the identity
£, (") = b0, (0") —yujy = PY (@) + (0 — D)o, ("),

as well as the identity 6 = 1+ (0 — 1). We obtain:

o h - h 1 n h n /-h
_/I‘C ;Un(u )Un(u )dF—F/FC ; [Plﬁ(u )}R—PQ,Y(U )dF
= - lU u)o, (0" — 9_10 ut)e,, (1"
= [ et [T o i
1 n uh _pn l-lh o 1 n uh o l-lh
+/Fc T (e PR () 0 (0 1) / PR (e () .
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Let us make use of the following formula, for ¢ : R — R

S LB = [0()]a (D),
and re-arrange the terms:
pliil, ") + a(uh, i) — /F %on(uh)on(ﬁh)df—k /F %[P;lﬁ(uh)]kpgg(uh) dr
= LB+~ 1)/FO = (PR () — o (u®) o ) T

There remains to deal with the two boundary terms associated with friction. These friction terms can be
rewritten differently as

0 . 1 . .
_/ — O't(uh)o't(uh’) dl’ + / — [Qg(uh, uh)](f}'[P? (uh)]. )Pgw(uh) dr’
re” re 7 7 R

1

0 . . . )
= Doy [ QW ey (B < ) dr
T'e Y I'c Y ’ R

1 . .
=0 (@Y ey, el (i) dE
re? ’ R

—/ QY (u", ﬁh)](—]—'[P’{‘ﬁ(uh)]R_ yug dr.
Te

We combine the two above equations with to obtain and this concludes the proof of the theorem.
O

Remark 5.2. In we recover Theorem 12 in [19] when the friction coefficient F is equal to zero. This
implies notably energy conservation in the frictionless case and for symmetric Nitsche. For nonsymmetric
variants (0 # 1) fluctuations may come from the non fulfillment of the contact conditions. The same
happens for friction conditions when 6 # 0. The integral term

—/F Q% (u”, l.lh)](f}'[P?ﬂ(uh)]Rf yuy di
C

is the discrete counterpart of the friction dissipation term in . Its nonnegativity is not obvious, but
numerical results below seem to indicate it plays a dissipation role.

6. Numerical experiments

We achieve the numerical implementation with the open source finite element library GetFEM++ [50].
We study, in two dimensions, the impact of a disc on a rigid support in the dynamic setting. The physical
parameters are the following: the diameter of the disc is D = 40, the Lamé coefficients are A = 30 and
= 30, the material density is p = 1, the volume load in the vertical direction is set to || f|| = 0.05 (gravity,
oriented towards the support). On the upper part of the boundary we apply a homogeneous Neumann
condition g = 0 and the lower part of the boundary is the contact with Coulomb’s friction region. We have
chosen an initial vertical displacement (up = 1) and no initial velocity (g = 0). There is an initial gap
between the disc and the support. For space semi-discretization, Lagrange isoparametric finite elements
of order £ = 2 have been used. The mesh size is h = 4. Integrals of the non-linear term on I'cp are
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computed with standard quadrature formulas of order 4. The Nitsche parameters are = 1,y = 1000.
We limit ourselves to the symmetric variant § = 1 that has attractive properties of energy conservation
in the dynamic, frictionless, setting [I5], 16l [[9]. We first present the results obtained by combination
of Nitsche-FEM and Verlet scheme which is a second order, explicit, consistent scheme. We denote by
7 > 0 the time step. We consider a uniform discretization of the time interval [0,T] : (9, ..., "), with
t" =n1,n =0,..,N. Let a € [0,1], we use the notation x""+ = (1 — a)x"" + ax"*! and we denote
by uP™, a"" " the discretized displacement, velocity and acceleration at time step t". The time
discretization of the space semi-discrete problem , with the velocity-Verlet scheme, reads:

Find u"*! ahntt ghntl ¢ VP ogsuch that -

Mhﬁh’n+1 + Bh(uh,n—‘rl’ l:lh7n+1) — :Lh,n—‘rl7
2

. T ..
uh,nJrl _ uh,n + Tuh,n + ?uhm’

. . 1
uh,n—i—l _ uh,n h,n+3

+ T

with initial conditions u? = uft, 0*° = u?, "0 = if, and the notation L""+1 = L (¢"*1), the initial
value i being obtained through M"ii"? = L"9 — B”(uf, ). The value of the time-step has been fixed
to 7 = 0.01. A snapshot of the evolution of the disc during the first bounce can be seen Figure [I The
Von Mises stress as well as the deformed configuration are depicted.

We compare our results with the penalty method, combined with the velocity-Verlet scheme:

Find u"*! antt ghntl ¢ VP such that -

Mhﬁh,n+1 + B;L(uh,n+l’ _l'lh,n+1) — Lh,n+1’

2
. T ..
uh,n—i—l _ uh,n + Tuh,n + ?uh,n7

. . .. 1
uh,n—i—l _ uh,n + 7_uh,n-‘,-2

with the non linear operator Bl : (V)2 — V" defined by

B, = otk [l atdr s [ R, wl
I'c I'c TRt
Note that we still use the notation « for the penalty parameter.
For each method and two different friction coefficients (% = 0.1 and # = 0.7), we depict, for the
lowest point on I'¢, the normal and tangential displacement, and the normal and tangential stress. The
comparison between the penalty method and the Nitsche method can be seen Figures[2]and [3]for a friction
coefficient equal to 0.1, and in Figures [4 and [5] for a friction coefficient equal to 0.7, for a total duration
T = 150, which allows five impacts. It can be seen that, as expected, the non penetration condition is
better respected with the Nitsche method. Moreover we can see that the approximation of the stress is
polluted by spurious oscillations on the friction zone which are more important for the last two rebounds
in the case of the penalty method.
We also depict the discrete energies, defined, for Nitsche’s method as follows V¢ € [0, T:
1

n 1 - n 1 n n -1 n -1 n n
EM(t) = ol (1) o + Fa(a (0,0 (1) = 5 (I 2o (@) e = I3 PY, ), ) -

This is a fully discrete counterpart of E¥(t) introduced in Section For the penalty method, the discrete
energy is:

n 1 " n 1 n n 1
By (t) = Splla" " (@) o + Sa(u" (#),u™ (t))+*/ 7 [up)?, dr.
2 2 2 Jr., R
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Figure 1: Impact of a disc, with Coulomb’s friction (F = 0.7) and symmetric Nitsche-FEM (0 = 1) with Verlet’s scheme.
Deformed configuration and Von Mises stress at t=0, 8, 12, 15, 20, 23.

Figures[6] [7] depict the evolution of discrete energies. They allow to assess the effect of dissipation caused
by friction, which depends on the magnitude of the friction coefficient. The evolution of the discrete

energy is comparable for the two methods.

19



Nermal displacement at lowest point

Tangential displacement at lowest point
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Figure 2: Nitsche’s method with Verlet scheme for 7 = 0.01,~9 = 1000, .% = 0.1.
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Figure 3: Penalty method with Verlet scheme for 7 = 0.01,~y9 = 1000,.% = 0.1.
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Figure 4:
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Nitsche’s method with Verlet scheme for 7 = 0.01,v9 = 1000, .# = 0.7.
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Figure 5: Penalty method with Verlet scheme for 7 = 0.01,v9 = 1000,.% = 0.7.

Discrete energy evolution

Discrete energy evolution
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Figure 6: Discrete energy evolution for Nitsche’s method. Left: .# = 0.1, Right: .# = 0.7.
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Figure 7: Discrete energy evolution for penalty method. Left: .# = 0.1, Right: .% = 0.7.

21



Acknowledgements

We are thankful to the two anonymous referees for their comments that allowed to improve the manuscript.
For funding, F. Chouly thanks Région Bourgogne Franche—Comté (Convention Région 2015C-4991), the
Centre National de la Recherche Scientifique (Convention 232789 DEFI InFIniTI 2017), the Agence Maths
Entreprises (AMIES) (Projet Exploratoire PEPS2 MethASim), the I-Site BFC project NAANoD as well
as the EIPHI Graduate School (contract ANR-17-EURE-0002).

References

[1]

2]

[10]

[11]

[12]

[13]

R.A. Adams, Sobolev spaces, volume 65 of Pure and Applied Mathematics, Academic Press, New
York-London, 1975.

P. Alart, A. Curnier, A generalized Newton method for contact problems with friction, J Mec. Theor.
Appl. 7 (1988) 67-82.

P. Areias, A. Pinto da Costa, T. Rabczuk, J. César de S4, A simple and robust Coulomb frictional
algorithm based on 3 additional degrees-of-freedom and smoothing, Finite Elem. Anal. Des. 167
(2019) 103321, 14.

F. Armero, E. Pet6cz, Formulation and analysis of conserving algorithms for frictionless dynamic
contact/impact problems, Comput. Methods Appl. Mech. Engrg. 158 (1998) 269-300.

P. Ballard, Steady sliding frictional contact problems in linear elasticity, J. Elasticity 110 (2013)
33-61.

P. Ballard, S. Basseville, Existence and uniqueness for dynamical unilateral contact with Coulomb
friction: a model problem, M2AN Math. Model. Numer. Anal. 39 (2005) 59-77.

L. Banz, E.P. Stephan, On hp-adaptive BEM for frictional contact problems in linear elasticity,
Comput. Math. Appl. 69 (2015) 559-581.

R. Becker, P. Hansbo, R. Stenberg, A finite element method for domain decomposition with non-
matching grids, M2AN Math. Model. Numer. Anal. 37 (2003) 209-225.

A. Charles, P. Ballard, Existence and uniqueness of solutions to dynamical unilateral contact prob-
lems with Coulomb friction: the case of a collection of points, ESAIM Math. Model. Numer. Anal.
48 (2014) 1-25.

F. Chouly, An adaptation of Nitsche’s method to the Tresca friction problem, J. Math. Anal. Appl.
411 (2014) 329-339.

F. Chouly, A. Ern, N. Pignet, A hybrid high-order discretization combined with Nitsche’s method for
contact and Tresca friction in small strain elasticity, STAM J. Sci. Comput. 42 (2020) A2300-A2324.

F. Chouly, M. Fabre, P. Hild, R. Mlika, J. Pousin, Y. Renard, An overview of recent results on
Nitsche’s method for contact problems, in: Geometrically unfitted finite element methods and ap-
plications, volume 121 of Lect. Notes Comput. Sci. Eng., Springer, Cham, 2017, pp. 93-141.

F. Chouly, P. Hild, A Nitsche-based method for unilateral contact problems: numerical analysis,
SIAM J. Numer. Anal. 51 (2013) 1295-1307.

22



[14]

[23]

[24]

[25]

F. Chouly, P. Hild, V. Lleras, Y. Renard, Nitsche-based finite element method for contact with
Coulomb friction, in: Numerical mathematics and advanced applications—ENUMATH 2017, volume
126 of Lect. Notes Comput. Sci. Eng., Springer, Cham, 2019, pp. 839-847.

F. Chouly, P. Hild, Y. Renard, A Nitsche finite element method for dynamic contact: 1. Space semi-
discretization and time-marching schemes, ESAIM Math. Model. Numer. Anal. 49 (2015) 481-502.

F. Chouly, P. Hild, Y. Renard, A Nitsche finite element method for dynamic contact: 2. Stability of
the schemes and numerical experiments, ESAIM Math. Model. Numer. Anal. 49 (2015) 503-528.

F. Chouly, P. Hild, Y. Renard, Symmetric and non-symmetric variants of Nitsche’s method for
contact problems in elasticity: theory and numerical experiments, Math. Comp. 84 (2015) 1089—
1112.

F. Chouly, R. Mlika, Y. Renard, An unbiased Nitsche’s approximation of the frictional contact
between two elastic structures, Numer. Math. 139 (2018) 593-631.

F. Chouly, Y. Renard, Explicit Verlet time-integration for a Nitsche-based approximation of elasto-
dynamic contact problems, Adv. Model. and Simul. in Eng. Sci. 5 (2018) 1-38.

P.G. Ciarlet, The finite element method for elliptic problems, volume II of Handbook of Numerical
Analysis (eds. P.G. Ciarlet and J.L. Lions), North-Holland Publishing Co., Amsterdam, 1991.

F. Dabaghi, A. Petrov, J. Pousin, Y. Renard, Convergence of mass redistribution method for the
one-dimensional wave equation with a unilateral constraint at the boundary, M2AN Math. Model.
Numer. Anal. 48 (2014) 1147-1169.

D. Doyen, A. Ern, Analysis of the modified mass method for the dynamic Signorini problem with
Coulomb friction, STAM J. Numer. Anal. 49 (2011) 2039-2056.

C. Eck, , J. Jarusek, Existence results for the static contact problem with Coulomb friction, Math.
Models Meth. Appl. Sci. 8 (1998) 445-468.

C. Eck, J. Jarusek, M. Krbec, Unilateral contact problems, volume 270 of Pure and Applied Math-
ematics (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2005. Variational methods and
existence theorems.

R. Glowinski, P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear
mechanics, volume 9 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied
Mathematics (STAM), Philadelphia, PA, 1989.

W. Han, M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, volume 30 of
AMS/IP Studies in Advanced Mathematics, American Mathematical Society, Providence, RI, 2002.

J. Haslinger, Approximation of the Signorini problem with friction, obeying the Coulomb law, Math.
Methods Appl. Sci. 5 (1983) 422-437.

J. Haslinger, I. Hlavacek, J. Necas, Numerical methods for unilateral problems in solid mechanics,
volume IV of Handbook of Numerical Analysis (eds. P.G. Ciarlet and J.L. Lions), North-Holland
Publishing Co., Amsterdam, 1996.

J. Haslinger, V. Janovsky, T. Ligursky, Qualitative analysis of solutions to discrete static contact
problems with Coulomb friction, Comput. Methods Appl. Mech. Engrg. 205/208 (2012) 149-161.

23



[30]

[31]

[32]

[33]

[34]

[35]

[36]

P. Hauret, P. Le Tallec, Energy-controlling time integration methods for nonlinear elastodynamics
and low-velocity impact, Comput. Methods Appl. Mech. Engrg. 195 (2006) 4890-4916.

P. Hild, Non unique slipping in the Coulomb friction model in two dimensional linear elasticity, Q.
JI. Mech. Appl. Math. 57 (2004) 225-235.

P. Hild, Y. Renard, Local uniqueness and continuation of solutions for the discrete Coulomb friction
problem in elastostatics, Quart. Appl. Math. 63 (2005) 553-573.

P. Hild, Y. Renard, An error estimate for the Signorini problem with Coulomb friction approximated
by finite elements, STAM J. Numer. Anal. 45 (2007) 2012-2031.

V. Janovsky, T. Ligursky, Computing non unique solutions of the Coulomb friction problem, Math.
Comput. Simulation 82 (2012) 2047-2061.

H.B. Khenous, P. Laborde, Y. Renard, Mass redistribution method for finite element contact prob-
lems in elastodynamics, Eur. J. Mech. A Solids 27 (2008) 918-932.

N. Kikuchi, J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite
element methods, volume 8 of SIAM Studies in Applied Mathematics, Society for Industrial and
Applied Mathematics (STAM), Philadelphia, PA, 1988.

T.A. Laursen, Computational contact and impact mechanics, Springer-Verlag, Berlin, 2002.

T.A. Laursen, V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact
problems, Internat. J. Numer. Methods Engrg. 40 (1997) 863-886.

T. Ligursky, Theoretical analysis of discrete contact problems with Coulomb friction, Appl. Math.
57 (2012) 263-295.

T. Ligursky, Y. Renard, A well-posed semi-discretization of elastodynamic contact problems with
friction, Quart. J. Mech. Appl. Math. 64 (2011) 215-238.

T. Ligursky, Y. Renard, Bifurcations in piecewise-smooth steady-state problems: abstract study and
application to plane contact problems with friction, Comput. Mech. 56 (2015) 39-62.

T.s. Ligursky, Y. Renard, A continuation problem for computing solutions of discretised evolution
problems with application to plane quasi-static contact problems with friction, Comput. Methods
Appl. Mech. Engrg. 280 (2014) 222-262.

J.A.C. Martins, J.T. Oden, Existence and uniqueness results for dynamic contact problems with
nonlinear normal and friction interface laws, Nonlinear Anal. 11 (1987) 407-428.

R. Mlika, Y. Renard, F. Chouly, An unbiased Nitsche’s formulation of large deformation frictional
contact and self-contact, Comput. Methods Appl. Mech. Engrg. 325 (2017) 265-288.

J. Necas, J. Jarusek, J. Haslinger, On the solution of the variational inequality to the Signorini
problem with small friction, Boll. Un. Mat. Ital. B (5) 17 (1980) 796-811.

J. Nitsche, Uber ein Variationsprinzip zur Losung von Dirichlet-Problemen bei Verwendung von
Teilrdumen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen
Seminar der Universitdt Hamburg 36 (1971) 9-15.

24



[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

Y. Renard, Numerical analysis of a one-dimensional elastodynamic model of dry friction and unilat-
eral contact, Comput. Methods Appl. Mech. Engrg. 190 (2001) 2031-2050.

Y. Renard, A uniqueness criterion for the Signorini problem with Coulomb friction, STAM J. Math.
Anal. 38 (2006) 452-467.

Y. Renard, Generalized Newton’s methods for the approximation and resolution of frictional contact
problems in elasticity, Comput. Methods Appl. Mech. Engrg. 256 (2012) 38-55.

Y. Renard, K. Poulios, GetFEM: Automated FE modeling of multiphysics problems based on a
generic weak form language, 2020. Hal-02532422.

A. Seitz, W.A. Wall, A. Popp, Nitsche’s method for finite deformation thermomechanical contact
problems, Comput. Mech. 63 (2019) 1091-1110.

R. Stenberg, On some techniques for approximating boundary conditions in the finite element
method, J. Comput. Appl. Math. 63 (1995) 139-148.

V. Thomée, Galerkin finite element methods for parabolic problems, volume 25 of Springer Series
in Computational Mathematics, Springer-Verlag, Berlin, 1997.

B.I. Wohlmuth, Variationally consistent discretization schemes and numerical algorithms for contact
problems, Acta Numer. 20 (2011) 569-734.

P. Wriggers, Computational Contact Mechanics, Wiley, 2002.

J. Wu, S. Zhang, Boundary element and augmented lagrangian methods for contact problem with
Coulomb friction, Math. Problems. Eng. (2020). Article ID 7490736.

S. Zhang, X. Li, R. Ran, Self-adaptive projection and boundary element methods for contact prob-
lems with Tresca friction, Commun. Nonlinear Sci. Numer. Simul. 68 (2019) 72-85.

S. Zhang, R. Ran, Comparison of two projection methods for the solution of frictional contact
problems, Bound. Value Probl. (2019) Paper No. 70, 14.

25



Centro de Investigacidn en Ingenieria Matematica (CI'MA)

2022-11

2022-12

2022-13

2022-14

2022-15

2022-16

2022-17

2022-18

2022-19

2022-20

2022-21

2022-22

PRE-PUBLICACIONES 2022

SERGIO CAUCAO, GABRIEL N. GATICA, RICARDO OYARZUA, PAULO ZUNIGA: A
posteriori error analysis of a mixed finite element method for the coupled Brinkman—
Forchheimer and double-diffusion equations

SERGIO CAUCAO, GABRIEL N. GATICA, JUAN P. ORTEGA: A posteriori error anal-
ysis of a Banach spaces-based fully mized FEM for double-diffusive convection in a
fluid-saturated porous medium

RAIMUND BURGER, JULIO CAREAGA, STEFAN DIEHL, ROMEL PINEDA: A model of
reactive settling of activated sludge: comparison with experimental data

GABRIEL N. GATICA, N1COLAS NUNEZ, RICARDO RUIZ-BAIER: New non-augmented
mized finite element methods for the Navier-Stokes-Brinkman equations using Banach
spaces

DIBYENDU ADAK, DAVID MORA, ALBERTH SILGADO: A Morley-type virtual element
approzimation for a wind-driven ocean circulation model on polygonal meshes
SERGIO CAUCAO, ELIGIO COLMENARES, GABRIEL N. GATICA, CRISTIAN INZUNZA:
A Banach spaces-based fully-mized finite element method for the stationary chemotazis-
Navier-Stokes problem

FELIPE LEPE, DAVID MORA, GONZALO RIVERA, IVAN VELASQUEZ: A posteriori
virtual element method for the acoustic vibration problem

Franz CHOULY: A review on some discrete variational techniques for the approzima-
tion of essential boundary conditions

VERONICA ANAYA, RUBEN CARABALLO, SERGIO CAucAo, Luis F. GAricaA, RiI-
CARDO RUIZ-BAIER, IVAN YOTOV: A wvorticity-based mixed formulation for the un-
steady Brinkman-Forchheimer equations

OLGA BARRERA, STEPHANE P. A. BORDAS, RAPHAEL BULLE, FRANZ CHOULY,
JACK S. HALE: An a posteriori error estimator for the spectral fractional power of the
Laplacian

STEPHANE P. A. BORDAS, RAPHAEL BULLE, FRANzZ CHOULY, JACK S. HALE,
ALEXEI LOZINSKI: Hierarchical a posteriori error estimation of Bank—Weiser type in
the Fenics project

FrANz CHOULY, PATRICK HILD, VANESSA LLERAS, YVES RENARD: Nitsche method
for contact with Coulomb friction: existence results for the static and dynamic finite
element formulations

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: DIRECTOR, CENTRO DE
INVESTIGACION EN INGENIERIA MATEMATICA, UNIVERSIDAD DE CONCEPCION, CASILLA
160-C, CONCEPCION, CHILE, TEL.: 41-2661324, o bien, visitar la pdgina web del centro:
http://www.ci2ma.udec.cl



CENTRO DE INVESTIGACION EN
INGENIERfA MATEMATICA (CI2MA)
Universidad de Concepcién

Casilla 160-C, Concepcién, Chile
Tel.: 56-41-2661324 /2661554 /2661316
http://www.ci2ma.udec.cl




	Introduction
	Setting
	The dynamic problem
	The static problem

	Nitsche finite element discretizations
	Preliminaries
	Nitsche discretizations

	Existence and uniqueness results
	The dynamic case
	The static case

	An energy estimate
	Numerical experiments

