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Centro de Investigación en
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Abstract

We propose and analyze an augmented mixed formulation for the time-dependent Brinkman–
Forchheimer equations written in terms of vorticity, velocity and pressure. The weak formulation
is based on the introduction of suitable least squares terms arising from the incompressibility con-
dition and the constitutive equation relating the vorticity and velocity. We establish existence and
uniqueness of a solution to the weak formulation, and derive the corresponding stability bounds,
employing classical results on nonlinear monotone operators. We then propose a semidiscrete
continuous-in-time approximation based on stable Stokes elements for the velocity and pressure,
and continuous or discontinuous piecewise polynomial spaces for the vorticity. In addition, by means
of the backward Euler time discretization, we introduce a fully discrete finite element scheme. We
prove well-posedness and derive the stability bounds for both schemes, and establish the corre-
sponding error estimates. We provide several numerical results verifying the theoretical rates of
convergence and illustrating the performance and flexibility of the method for a range of domain
configurations and model parameters.
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1 Introduction

Fluid flows through porous media with high Reynolds numbers occur in many industrial applications,
such as environmental, chemical, and petroleum engineering. For instance, in groundwater remedi-
ation and oil and gas extraction, the flow may be fast near injection or production wells or if the
aquifer/reservoir is highly porous. Many of the investigations in porous media have focused on the
use of Darcy’s law. Nevertheless, this fundamental equation may be inaccurate for modeling fluid
flow through porous media with high Reynolds numbers or through media with high porosity. To
overcome this deficiency, it is possible to consider the Brinkman–Forchheimer equations (see for in-
stance [16], [29]), where terms are added to Darcy’s law in order to take into account high velocity
flow and high porosity.

Several numerical methods for the Brinkman–Forchheimer problem have been developed previ-
ously. In [26] the authors propose and study a perturbed compressible system that approximates
the Brinkman–Forchheimer equations. A numerical method for the perturbed system based on a
semi-implicit Euler scheme for time discretization and the lowest-order Raviart–Thomas element for
spatial discretization is developed. In [27] the authors propose and analyze a pressure-stabilization
method, where the incompressibility constraint is perturbed as div(u)− ε∆p = 0. Then, a first-order
time discretization and a finite element method based on piecewise continuous polynomials for the
spatial discretization are considered. Second order error estimates in time are also obtained. In [25]
the coupling of the unsteady Brinkman–Forchheimer model with a variable porosity Darcy model is
developed and applied for simulating wormhole propagation. A semi-analytic time stepping scheme is
employed to handle the variable porosity. An error analysis for the spatial and temporal discretization
errors is performed. In [15] a mixed formulation based on the pseudostress tensor and the velocity
field is presented. By employing classical results on nonlinear monotone operators and a suitable
regularization technique in Banach spaces, existence and uniqueness are proved. A finite element
method for space discretization based on the Raviart–Thomas spaces for the pseudostress tensor and
discontinuous piecewise polynomial elements for the velocity, combined with a backward Euler time
discretization, is proposed and sub-optimal error estimates are derived. More recently, a three-field
Banach spaces-based mixed variational formulation is analyzed in [14], where the velocity, velocity gra-
dient, and pseudostress tensor are the main unknowns of the system. Existence and uniqueness of a
solution to the weak formulation, as well as stability bounds are derived by employing classical results
on nonlinear monotone operators. A semidiscrete continuous-in-time mixed finite element approxima-
tion and a fully discrete scheme are introduced and sub-optimal rates of convergence improving the
ones obtained in [15] are established. A staggered DG method for a velocity–velocity gradient–pressure
formulation of the unsteady Brinkman–Forchheimer problem is developed in [34]. Well-posedness and
error analysis are presented for the semi-discrete and fully discrete schemes. The method is robust
with respect to the Brinkman parameter. In [17] the steady state Darcy–Brinkman–Forchheimer
problem with mixed boundary condition is studied. The authors prove existence of a unique solution
under small data conditions. Then, the convergence of a Taylor–Hood finite element approximation
using a finite element interpolation of the porosity is proved under similar smallness assumptions. In
addition, optimal error estimates are obtained. In turn, in [13], the steady Brinkman–Forchheimer
model is coupled with a double-diffusion equation. The velocity gradient, the pseudostress tensor, the
temperature and concentration gradients, and a pair of flux vectors are introduced as additional un-
knowns. Well-posedness for the resulting fully mixed continuous and discrete problems is established
in a Banach space setting, and error analysis is carried out.

On the other hand, there is another approach that is increasingly studied to solve fluid flow problems,
which incorporates the vorticity field as a new unknown in the system and results in different weak
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formulations, see [3–5,23,32]. This new strategy exhibits the advantage that the vorticity (which is a
sought quantity of practical interest in industrial applications) can be approximated directly with the
same accuracy as the velocity, see [23]. Vorticity plays a fundamental role in fluid flow problems as
well as in their mathematical analysis; in many cases it is advantageous to describe the flow dynamics
in terms of the evolution of the vorticity. In particular, for a vorticity–velocity–pressure formulation,
since no postprocessing of the velocity is needed to compute the additional field, boundary conditions
for external flows can be treated in a natural way, and non-inertial effects can be readily included by
simply modifying initial and boundary data [32]. Moreover, the formulation allows for smooth vorticity
approximations using continuous finite element spaces, in contrast to the discontinuous approximation
obtained by postprocessing the velocity.

The purpose of the present work is to develop and analyze a new vorticity-based mixed formulation of
the unsteady Brinkman–Forchheimer problem and study a suitable conforming numerical discretiza-
tion. To that end, unlike previous Brinkman–Forchheimer works and motivated by [4] and [3], we
introduce the vorticity as an additional unknown besides the fluid velocity and pressure. In the addi-
tion to the advantage of a direct, accurate, and smooth approximation of the vorticity, our approach
improves the suboptimal theoretical rates of convergence obtained in [15] and [14] for the pseudostress–
velocity and velocity–velocity gradient–pseudostress formulations, respectively. In particular, optimal
rates of convergence are obtained without any quasi-uniformity assumption on the mesh.

We remark that our formulation is based on the natural H1–L2 spaces for the velocity–pressure
pair, thus allowing for classical stable Stokes elements to be used. Since the three-field formulation
does not provide control of the velocity in the H1-norm, it is augmented with two terms to control
the curl and the divergence of the velocity. It is illustrated in the numerical section that these terms
improve the pressure robustness of the scheme, i.e., convergence of the velocity and vorticity that is
robust for small values of the viscosity, as well as its divergence-free property.

We establish existence and uniqueness of a solution to the continuous weak formulation by employ-
ing techniques from [31] and [13], combined with the classical monotone operator theory in a Hilbert
space setting. Stability for the weak solution is established by means of an energy estimate. We
further develop semidiscrete continuous-in-time and fully discrete finite element approximations. The
velocity and pressure are approximated by stable Stokes elements, whereas, continuous or discontin-
uous piecewise polynomial spaces are employed to approximate the vorticity. We make use of the
backward Euler method for the discretization in time. Adapting the tools employed for the analysis of
the continuous problem, we prove well-posedness of the discrete schemes and derive the corresponding
stability estimates. We further perform error analysis for the semidiscrete and fully discrete schemes,
establishing optimal rates of convergence in space and time.

Outline. We have organized the contents of this paper as follows. In the remainder of this section we
introduce some standard notation and needed functional spaces, and describe the model problem of
interest. In Section 2 we develop the velocity–vorticity–pressure variational formulation. In Section 3
we show that it is well posed using classical results on nonlinear monotone operators. Next, in Section
4 we present the semidiscrete continuous-in-time approximation, provide particular families of stable
finite elements, and obtain error estimates for the proposed methods. Section 5 is devoted to the
fully discrete approximation. Finally, the performance of the method is studied in Section 6 with
several numerical examples in 2D and 3D, verifying the aforementioned rates of convergence, as well
as illustrating its flexibility to handle spatially varying parameters in complex geometries.

Preliminary notations. Let Ω ⊂ Rd, d ∈ {2, 3}, denote a domain with Lipschitz boundary Γ. For
s ≥ 0 and p ∈ [1,+∞], we denote by Lp(Ω) and Ws,p(Ω) the usual Lebesgue and Sobolev spaces
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endowed with the norms ‖ · ‖Lp(Ω) and ‖ · ‖Ws,p(Ω), respectively. Note that W0,p(Ω) = Lp(Ω). If p = 2,
we write Hs(Ω) in place of Ws,2(Ω), and denote the corresponding norm by ‖ · ‖Hs(Ω). By H and H we
will denote the corresponding vectorial and tensorial counterparts of a generic scalar functional space
H. The L2(Ω) inner product for scalar, vector, or tensor valued functions is denoted by (·, ·)Ω. The
L2(Γ) inner product or duality pairing is denoted by 〈·, ·〉Γ. Moreover, given a separable Banach space
V endowed with the norm ‖ · ‖V, we let Lp(0, T ; V) be the space of classes of functions f : (0, T )→ V
that are Bochner measurable and such that ‖f‖Lp(0,T ;V) <∞, with

‖f‖pLp(0,T ;V) :=

∫ T

0
‖f(t)‖pV dt, ‖f‖L∞(0,T ;V) := ess sup

t∈[0,T ]
‖f(t)‖V.

In turn, for any vector field v := (vi)i=1,d, we set the gradient and divergence operators, as

∇v :=

(
∂ vi
∂ xj

)
i,j=1,d

and div(v) :=
d∑

j=1

∂ vj
∂ xj

.

In addition, in the sequel we will make use of the well-known Hölder inequality given by∫
Ω
|f g| ≤ ‖f‖Lp(Ω) ‖g‖Lq(Ω) ∀ f ∈ Lp(Ω), ∀ g ∈ Lq(Ω), with

1

p
+

1

q
= 1 ,

and the Young inequality, for a, b ≥ 0, 1/p + 1/q = 1, and δ > 0,

a b ≤ δp/2

p
ap +

1

q δq/2
bq . (1.1)

Finally, we recall that H1(Ω) is continuously embedded into Lp(Ω) for p ≥ 1 if d = 2 or p ∈ [1, 6] if
d = 3. More precisely, we have the following inequality

‖w‖Lp(Ω) ≤ ‖ip‖ ‖w‖H1(Ω) ∀w ∈ H1(Ω), (1.2)

with ‖ip‖ > 0 depending only on |Ω| and p (see [30, Theorem 1.3.4]).

The model problem. Our model of interest is given by the unsteady Brinkman–Forchheimer equa-
tions (see for instance [14–16,19,26]). More precisely, given the body force term f and a suitable initial
data u0, the aforementioned system of equations is given by

∂ u

∂ t
− ν∆u + αu + F |u|p−2u +∇p = f , div(u) = 0 in Ω× (0, T ],

u = 0 on Γ× (0, T ], u(0) = u0 in Ω, (p, 1)Ω = 0 in (0, T ],

(1.3)

where the unknowns are the velocity field u and the scalar pressure p. In addition, the constant ν > 0
is the Brinkman coefficient, α > 0 is the Darcy coefficient, F > 0 is the Forchheimer coefficient and
p ∈ [3, 4] is a given number.

2 The velocity-vorticity-pressure formulation

In this section we introduce a new velocity-vorticity-pressure formulation for (1.3). To that end, we
proceed as in [4] (see similar approaches in [3,5]) and introduce as a further unknown the vorticity ω,
which is defined by

ω := curl(u) =


∂ u2

∂ x1
− ∂ u1

∂ x2
, for d = 2 ,

∇× u , for d = 3 .
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Note that the curl of a two-dimensional vector field is a scalar, whereas for a three-dimensional one
it is a vector. In order to avoid a multiplicity of notation, we agree nevertheless to denote it like a
vector, provided there is no confusion. Then, employing the well-known identity [22, Section I.2.3]:

curl(curl(v)) = −∆v +∇(div(v)) (2.1)

in combination with the incompressibility condition div(u) = 0 in Ω× (0, T ], we find that (1.3) can be
rewritten, equivalently, as follows: Find (u,ω, p) in suitable spaces to be indicated below such that

∂ u

∂ t
+ αu + F |u|p−2u + ν curl(ω) +∇p = f , ω = curl(u), div(u) = 0 in Ω× (0, T ] ,

u = 0 on Γ× (0, T ], u(0) = u0 in Ω, (p, 1)Ω = 0 in (0, T ] .

(2.2)

Next, multiplying the first equation of (2.2) by a suitable test function v, we obtain

(∂t u,v)Ω + α (u,v)Ω + F (|u|p−2u,v)Ω + ν (curl(ω),v)Ω + (∇p,v)Ω = (f ,v)Ω , (2.3)

where we use the notation ∂t :=
∂

∂ t
. Notice that the third term in the left-hand side of (2.3) requires

u to live in a smaller space than L2(Ω). In fact, by applying Cauchy–Schwarz and Hölder’s inequalities
and then the continuous injection ip of H1(Ω) into Lp(Ω), with p ∈ [3, 4] (cf. (1.2)), we find that∣∣(|u|p−2u,v)Ω

∣∣ ≤ ‖u‖p−1
Lp(Ω) ‖v‖Lp(Ω) ≤ ‖ip‖p ‖u‖

p−1
H1(Ω)

‖v‖H1(Ω) ∀u,v ∈ H1(Ω) , (2.4)

which together with the Dirichlet boundary condition u = 0 on Γ (cf. (2.2)) suggest to look for the
unknown u in H1

0(Ω) and to restrict the set of corresponding test functions v to the same space. In
addition, employing Green’s formula [22, Theorem I.2.11], the fourth term in the left-hand side in
(2.3), can be rewritten as

(curl(ω),v)Ω = (ω, curl(v))Ω − 〈v × n,ω〉Γ = (ω, curl(v))Ω ∀v ∈ H1
0(Ω) . (2.5)

Note that in 2-D the boundary term in (2.5) need to be replaced by 〈v · t,ω〉Γ. Thus, replacing
back (2.5) into (2.3), integrating by parts the term (∇p,v)Ω, and incorporating the second and third
equations of (2.2) in a weak sense, we obtain the system

(∂t u,v)Ω + α (u,v)Ω + F (|u|p−2u,v)Ω + ν (ω, curl(v))Ω − (p,div(v))Ω = (f ,v)Ω ,

ν (ω,ψ)Ω − ν (ψ, curl(u))Ω = 0 ,

(q,div(u))Ω = 0 ,

(2.6)

for all (v,ψ, q) ∈ H1
0(Ω)× L2(Ω)× L2

0(Ω), where L2
0(Ω) :=

{
q ∈ L2(Ω) : (q, 1)Ω = 0

}
.

Now, for convenience of the subsequent analysis and motivated by the well-known identity

‖∇v‖2L2(Ω) = ‖curl(v)‖2L2(Ω) + ‖div(v)‖2L2(Ω) ∀v ∈ H1
0(Ω) , (2.7)

which follows from (2.1), we proceed to augment the system (2.6) through the incorporation of the
following residual term arising from the second and third equations in (2.2):

κ1 (curl(u)− ω, curl(v) +ψ)Ω = 0 , κ2 (div(u), div(v))Ω = 0 ∀ (v,ψ) ∈ H1
0(Ω)× L2(Ω) , (2.8)

where κ1 and κ2 are positive parameters to be specified later on.
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Remark 2.1 We note that the first term in (2.8) is chosen to be skew-symmetric. While the symmet-
ric version of the term also results in a monotone operator, it leads to complications in the stability
bound for ‖∂tu‖L2(0,T ;L2(Ω)) (cf. (3.34)).

Next, in order to write the above formulation in a more suitable way for the analysis to be developed
below, we now set

u := (u,ω) ∈ H1
0(Ω)× L2(Ω) ,

with corresponding norm given by

‖v‖ = ‖(v,ψ)‖ :=
(
‖v‖2H1(Ω) + ‖ψ‖2L2(Ω)

)1/2
∀v := (v,ψ) ∈ H1

0(Ω)× L2(Ω) .

Hence, the weak form associated with the Brinkman–Forchheimer equation (2.6)–(2.8) reads: Given
f : [0, T ]→ L2(Ω) and u0 ∈ H1

0(Ω), find (u, p) : [0, T ]→
(
H1

0(Ω)×L2(Ω)
)
×L2

0(Ω) such that u(0) = u0

and, for a.e. t ∈ (0, T ),

∂

∂ t
[E(u(t)),v] + [A(u(t)),v] + [B′(p(t)),v] = [F(t),v] ∀v ∈ H1

0(Ω)× L2(Ω) ,

− [B(u(t)), q] = 0 ∀ q ∈ L2
0(Ω) ,

(2.9)

where, the operators E ,A :
(
H1

0(Ω)×L2(Ω)
)
→
(
H1

0(Ω)×L2(Ω)
)′

, and B :
(
H1

0(Ω)×L2(Ω)
)
→ L2

0(Ω)′

are defined, respectively, as

[E(u),v] := (u,v)Ω , (2.10)

[A(u),v] := α (u,v)Ω + F (|u|p−2u,v)Ω + ν (ω,ψ)Ω + ν (ω, curl(v))Ω − ν (ψ, curl(u))Ω

+ κ1 (curl(u)− ω, curl(v) +ψ)Ω + κ2 (div(u),div(v))Ω , (2.11)

[B(v), q] := − (q,div(v))Ω , (2.12)

and F ∈ (H1
0(Ω)× L2(Ω))′ is the bounded linear functional given by

[F,v] := (f ,v)Ω . (2.13)

In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding operators. In
addition, we let B′ : L2

0(Ω)→
(
H1

0(Ω)×L2(Ω)
)′

be the adjoint of B, which satisfy [B′(q),v] = [B(v), q]
for all v = (v,ψ) ∈ H1

0(Ω)× L2(Ω) and q ∈ L2
0(Ω).

Note that the seminorm identity (2.7) is stated for the case of Dirichlet boundary conditions for
velocity everywhere on Γ. As indicated in [22, Section 3.2], the requirement can be relaxed to imposing
either u · n = 0 or u× n = 0 (where n denotes the outward unit normal on the boundary) whenever
Γ is of class C1,1 or if it is piecewise smooth without reentrant corners.

3 Well-posedness of the model

In this section we establish the solvability of (2.9). To that end we first collect some previous results
that will be used in the forthcoming analysis.
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3.1 Preliminary results

We begin by recalling the key result [31, Theorem IV.6.1(b)], which will be used to establish the
existence of a solution to (2.9). In what follows, Rg(A) denotes the range of A.

Theorem 3.1 Let the linear, symmetric and monotone operator N be given for the real vector space
E to its algebraic dual E∗, and let E′b be the Hilbert space which is the dual of E with the seminorm

|x|b =
(
N x(x)

)1/2
x ∈ E.

Let M⊂ E × E′b be a relation with domain D =
{
x ∈ E : M(x) 6= ∅

}
.

Assume M is monotone and Rg(N +M) = E′b. Then, for each f ∈ W1,1(0, T ;E′b) and for each
u0 ∈ D, there is a solution u of

∂

∂ t

(
N u(t)

)
+M

(
u(t)

)
3 f(t) a.e. 0 < t < T, (3.1)

with
N u ∈W1,∞(0, T ;E′b), u(t) ∈ D, for all 0 ≤ t ≤ T, and N u(0) = N u0.

In addition, in order to provide the range condition in Theorem 3.1 we will require the following
abstract result [13, Theorem 3.1], which in turn, is a modification of [12, Theorem 3.1].

Theorem 3.2 Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly
convex, and set X := X1 ×X2. Let A : X → X ′ be a nonlinear operator, B ∈ L(X,Y ′), and let V be
the kernel of B, that is,

V :=
{
v = (v1, v2) ∈ X : B(v) = 0

}
.

Assume that

(i) there exist constants LA > 0 and p1,p2 ≥ 2, such that

‖A(u)−A(v)‖X′ ≤ LA

2∑
i=1

{
‖ui − vi‖Xi +

(
‖ui‖Xi + ‖vi‖Xi

)pi−2 ‖ui − vi‖Xi

}
,

for all u = (u1, u2), v = (v1, v2) ∈ X.

(ii) the family of operators
{
A(· + z) : V → V ′ : z ∈ X

}
is uniformly strongly monotone, that is

there exists γ > 0, such that

[A(u+ z)−A(v + z), u− v] ≥ γ ‖u− v‖2X ,

for all z ∈ X, and for all u, v ∈ V , and

(iii) there exists β > 0 such that

sup
0 6=v∈X

[B(v), q]

‖v‖X
≥ β ‖q‖Y ∀ q ∈ Y .

Then, for each (F ,G) ∈ X ′ × Y ′ there exists a unique (u, p) ∈ X × Y such that

[A(u), v] + [B(v), p] = [F , v] ∀ v ∈ X ,

[B(u), q] = [G, q] ∀ q ∈ Y .
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Next, we establish the stability properties of the operators involved in (2.9). We begin by observing
that the operators E ,B and the functional F are linear. In turn, from (2.10), (2.12) and (2.13), and
employing Hölder and Cauchy–Schwarz inequalities, there hold∣∣[B(v), q]

∣∣ ≤ ‖v‖ ‖q‖L2(Ω) ∀ (v, q) ∈
(
H1

0(Ω)× L2(Ω)
)
× L2

0(Ω) , (3.2)∣∣[F,v]
∣∣ ≤ ‖f‖L2(Ω) ‖v‖L2(Ω) ≤ ‖f‖L2(Ω) ‖v‖ ∀v ∈ H1

0(Ω)× L2(Ω) , (3.3)

and ∣∣[E(u),v]
∣∣ ≤ ‖u‖ ‖v‖, [E(v),v] = ‖v‖2L2(Ω) ∀u,v ∈ H1

0(Ω)× L2(Ω) , (3.4)

which implies that B and F are bounded and continuous, and E is bounded, continuous, and monotone.
In addition, employing the Cauchy–Schwarz and Hölder inequalities, the continuous injection of H1(Ω)
into Lp(Ω), with p ∈ [3, 4], it is readily seen that, the nonlinear operator A (cf. (2.11)) is bounded,
that is ∣∣[A(u),v]

∣∣ ≤ CA

{
‖u‖H1(Ω) + ‖u‖p−1

H1(Ω)
+ ‖ω‖L2(Ω)

}
‖v‖ , (3.5)

with CA > 0 depending on α, F, ν, κ1, and κ2.

Finally, recalling the definition of the operators E ,A, and B (cf. (2.10), (2.11), (2.12)), we stress
that problem (2.9) can be written in the form of (3.1) with

E :=
(
H1

0(Ω)× L2(Ω)
)
× L2

0(Ω), u :=

(
u
p

)
, N :=

(
E 0
0 0

)
, M :=

(
A B′
−B 0

)
. (3.6)

Let E′2 be the Hilbert space that is the dual of H1
0(Ω) × L2(Ω) with the seminorm induced by the

operator E :=
(
I 0
0 0

)
(cf. (2.10)), which is ‖v‖E = (v,v)

1/2
Ω = ‖v‖L2(Ω) ∀v ∈ H1

0(Ω) × L2(Ω). Note

that E′2 = L2(Ω)× {0}. Then we define the spaces

E′b :=
(
L2(Ω)× {0}

)
× {0}, D :=

{
(u, p) ∈

(
H1

0(Ω)× L2(Ω)
)
× L2

0(Ω) : M(u, p) ∈ E′b
}
. (3.7)

In the next section we prove the hypotheses of Theorem 3.1 to establish the well-posedness of (2.9).

3.2 Range condition and initial data

We begin with the verification of the range condition in Theorem 3.1. Let us consider the resolvent
system associated with (2.9): Find (u, p) ∈

(
H1

0(Ω)× L2(Ω)
)
× L2

0(Ω) such that

[(E +A)(u),v] + [B′(p),v] = [F̂,v] ∀v ∈ H1
0(Ω)× L2(Ω) ,

[B(u), q] = 0 ∀ q ∈ L2
0(Ω) ,

(3.8)

where F̂ ∈ L2(Ω)×{0} ⊂ (H1
0(Ω))′×{0} is a functional given by F̂(v) := (f̂ ,v)Ω for some f̂ ∈ L2(Ω).

Next, a solution to (3.8) is established by employing Theorem 3.2. We begin by observing that, thanks
to the uniform convexity and separability of Lp(Ω) for p ∈ (1,+∞), the spaces H1

0(Ω),L2(Ω), and
L2

0(Ω) are uniformly convex and separable as well.

We continue our analysis by proving that the nonlinear operator E + A satisfies hypothesis (i) of
Theorem 3.2 with p1 = p ∈ [3, 4] and p2 = 2.
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Lemma 3.3 Let p ∈ [3, 4]. Then, there exists LBF > 0, depending on ν, F, and α, such that

‖(E +A)(u)− (E +A)(v)‖

≤ LBF

{
‖u− v‖H1(Ω) + ‖ω −ψ‖L2(Ω) +

(
‖u‖H1(Ω) + ‖v‖H1(Ω)

)p−2 ‖u− v‖H1(Ω)

}
,

(3.9)

for all u = (u,ω),v = (v,ψ) ∈ H1
0(Ω)× L2(Ω).

Proof. Let u = (u,ω),v = (v,ψ),w = (w,φ) ∈ H1
0(Ω)×L2(Ω). From the definition of the operators

E , A (cf. (2.10), (2.11)), and using the Cauchy–Schwarz and Hölder inequalities, we deduce that

[(E +A)(u)− (E +A)(v),w] ≤ F
∥∥|u|p−2u− |v|p−2v

∥∥
Lq(Ω)

‖w‖Lp(Ω)

+ 2
(
ν + max{1 + α, κ1, κ2}

) (
‖u− v‖H1(Ω) + ‖ω −ψ‖L2(Ω)

)
‖(w,φ)‖ .

(3.10)

In turn, using [6, Lemma 2.1, eq. (2.1a)], there exist a constant cp > 0 depending only on |Ω| and p,
such that ∥∥|u|p−2u− |v|p−2v

∥∥
Lq(Ω)

≤ cp

(
‖u‖Lp(Ω) + ‖v‖Lp(Ω)

)p−2 ‖u− v‖Lp(Ω) . (3.11)

Then, replacing back (3.11) into (3.10), and using the continuous injection ip of H1(Ω) into Lp(Ω) (cf.
(1.2)), we obtain

‖(E +A)(u)− (E +A)(v)‖ ≤ F ‖ip‖p cp

(
‖u‖H1(Ω) + ‖v‖H1(Ω)

)p−2 ‖u− v‖H1(Ω)

+ 2
(
ν + max{1 + α, κ1, κ2}

) (
‖u− v‖H1(Ω) + ‖ω −ψ‖L2(Ω)

)
,

which implies (3.9) with LBF = max
{

2
(
ν + max{1 + α, κ1, κ2}

)
, F ‖ip‖p cp

}
. �

Next, the following lemma shows that the operator E + A satisfies hypothesis (ii) of Theorem 3.2
with p1 = p ∈ [3, 4] and p2 = 2.

Lemma 3.4 Assume that κ1 ∈ (0, ν) and κ2 ∈ (0,+∞). Then, the family of operators
{

(E+A)(·+z) :

H1
0(Ω)×L2(Ω)→

(
H1

0(Ω)×L2(Ω)
)′

: z ∈ H1
0(Ω)×L2(Ω)

}
is uniformly strongly monotone, that is,

there exists γBF > 0, such that[
(E +A)(u + z)− (E +A)(v + z),u− v

]
≥ γBF ‖u− v‖2 ∀u,v ∈ H1

0(Ω)× L2(Ω) . (3.12)

Proof. Let u = (u,ω),v = (v,ψ), z = (z,φ) ∈ H1
0(Ω) × L2(Ω). Then, from the definition of the

operators E , A (cf. (2.10), (2.11)), we get

[(E +A)(u + z)− (E +A)(v + z),u− v]

= (1 + α) ‖u− v‖2L2(Ω) + F
(
|u + z|p−2(u + z)− |v + z|p−2(v + z),u− v

)
Ω

+ κ1 ‖curl(u− v)‖2L2(Ω) + κ2 ‖div(u− v)‖2L2(Ω) + (ν − κ1) ‖ω −ψ‖2L2(Ω) .

(3.13)

In turn, using [6, Lemma 2.1, eq. (2.1b)], there exist a constant Cp > 0 depending only on |Ω| and p,
such that(

|u + z|p−2(u + z)− |v + z|p−2(v + z),u− v
)

Ω
≥ Cp ‖u− v‖pLp(Ω) ∀u,v ∈ Lp(Ω) . (3.14)
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Hence, replacing back (3.14) into (3.13), and using the Cauchy–Schwarz and Young inequalities we
find that for all u = (u,ω),v = (v,ψ) ∈ H1

0(Ω)× L2(Ω), there holds

[(E +A)(u + z)− (E +A)(v + z),u− v]

≥ min
{

1 + α, κ1, κ2

}(
‖u− v‖2L2(Ω) + ‖curl(u− v)‖2L2(Ω) + ‖div(u− v)‖2L2(Ω)

)
+ FCp ‖u− v‖pLp(Ω) +

(
ν − κ1

)
‖ω −ψ‖2L2(Ω) .

(3.15)

Then, assuming the stipulated ranges on κ1 and κ2, we can define the positive constants

γ1 := min
{

1 + α, κ1, κ2

}
and γ2 := ν − κ1 , (3.16)

which together with the identity (2.7), and neglecting the Lp(Ω)-term in the right-hand side of (3.15),
yields

[(E +A)(u + z)− (E +A)(v + z),u− v] ≥ γ1 ‖u− v‖2H1(Ω) + γ2 ‖ω −ψ‖2L2(Ω) ,

which implies (3.12) with γBF := min
{
γ1, γ2

}
. �

Remark 3.1 We stress that the kernel of the operator B (cf. (2.12)) can be written as V := K×L2(Ω),
where

K =
{

v ∈ H1
0(Ω) : div(v) = 0 in Ω

}
. (3.17)

In turn, since the strong monotonicity bound (3.12) holds on H1
0(Ω) × L2(Ω), it is clear that it also

holds on V. Notice also that v ∈ K (cf. (3.17)) implies that the term κ2 (div(u), div(v))Ω is not longer
required in (2.11) to prove that the operator A is strongly monotone on V but in order to consider
classical conforming discrete spaces that are not divergence-free, we keep the κ2-term and state the
result on the whole space H1

0(Ω)× L2(Ω).

Remark 3.2 We also note that for computational purposes, and in order to maximize the strong
monotonicity constant γBF (cf. (3.16)), we can choose explicitly the parameter κ1 and κ2 by taking κ1

as the middle point of its feasible range and κ2 ≥ min{1 + α, κ1}. More precisely, we can simply take

κ1 =
ν

2
and κ2 ≥ min

{
1 + α,

ν

2

}
.

We end the verification of the hypotheses of Theorem 3.2, with the corresponding inf-sup condition
for the operator B (cf. (2.12)).

Lemma 3.5 There exists a constant β > 0 such that

sup
06=v∈H1

0(Ω)×L2(Ω)

[B(v), q]

‖v‖
≥ β ‖q‖L2(Ω) ∀ q ∈ L2

0(Ω) . (3.18)

Proof. First, we recall from [20, Corollary B.71] the inf-sup condition

sup
0 6=v∈H1

0(Ω)

∫
Ω
q div(v)

‖v‖H1(Ω)
≥ β ‖q‖L2(Ω) ∀ q ∈ L2

0(Ω) . (3.19)

Thus, (3.18) follows straightforwardly from (3.19) and the definition of the operator B (cf. (2.12)). �

The main result of this section is established now.
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Lemma 3.6 Assume κ1 and κ2 as in Lemma 3.4. Then, given F̂ = (f̂ ,0) ∈ L2(Ω)×{0}, there exists
a unique solution (u, p) ∈ (H1

0(Ω)× L2(Ω))× L2
0(Ω) of the resolvent system (3.8).

Proof. First, we recall from (3.2) and (3.3) that B and F̂ are linear and bounded. Then, as a
consequence of Lemmas 3.3, 3.4, and 3.5, and a straightforward application of Theorem 3.2 we conclude
the result. �

We end this section establishing a suitable initial condition result, which is necessary to apply
Theorem 3.1 to our context.

Lemma 3.7 Assume the initial condition u0 ∈ H∆, where

H∆ :=
{

v ∈ H1
0(Ω) : ∆v ∈ L2(Ω) and div(v) = 0 in Ω

}
. (3.20)

Then, there exists (ω0, p0) ∈ L2(Ω)× L2
0(Ω) such that u0 = (u0,ω0) and(

A B′
−B 0

)(
u0

p0

)
∈
(
L2(Ω)× {0}

)
× {0} . (3.21)

Proof. We proceed as in [15, Lemma 3.6]. In fact, we define ω0 := curl(u0) and choose p0 = 0 in Ω,
with u0 ∈ H∆ (cf. (3.20)). It follows that ω0 ∈ L2(Ω) and p0 ∈ L2

0(Ω). In addition, using (2.1), we
get

ν curl(ω0) = −ν∆u0 in Ω . (3.22)

Next, multiplying the identities (3.22), ν (ω0 − curl(u0)) = 0 and div(u0) = 0 in Ω by v ∈ H1
0(Ω),

ψ ∈ L2(Ω), and q ∈ L2
0(Ω), respectively, integrating by parts as in (2.5), considering the fact that

κ1 (curl(u0)− ω0) = 0 and κ2 div(u0) = 0 in Ω, and after minor algebraic manipulation, we deduce(
A B′
−B 0

)(
u0

p0

)
=

(
F0

0

)
, (3.23)

where, F0 = (f0,0) and

(f0,v)Ω := (−ν∆u0 + αu0 + F |u0|p−2u0,v)Ω ,

which together with the additional regularity of u0, and the continuous injection of H1(Ω) into
L2(p−1)(Ω), with 2(p− 1) ∈ [4, 6], cf. (1.2), implies that∣∣(f0,v)Ω

∣∣ ≤ {ν ‖∆u0‖L2(Ω) + α ‖u0‖L2(Ω) + F ‖u0‖p−1

L2(p−1)(Ω)

}
‖v‖L2(Ω)

≤ C
{
‖∆u0‖L2(Ω) + ‖u0‖L2(Ω) + ‖u0‖p−1

H1(Ω)

}
‖v‖L2(Ω) .

(3.24)

Thus, F0 ∈ L2(Ω)× {0} so then (3.21) holds, completing the proof. �

Remark 3.3 The assumption on the initial condition u0 in (3.20) is not necessary for all the results
that follow but we shall assume it from now on for simplicity. A similar assumption to u0 is also made
in [15, Lemma 3.6] (see also [14, Lemma 3.7] and [19, eq. (2.2)]). Note also that (u0, p0) satisfying
(3.21) is not unique.
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3.3 Main result

We now establish the well-posedness of problem (2.9).

Theorem 3.8 Assume κ1 and κ2 as in Lemma 3.4. Then, for each f ∈ W1,1(0, T ; L2(Ω)) and u0 ∈
H∆ (cf. (3.20)), there exists a unique (u, p) = ((u,ω), p) : [0, T ]→

(
H1

0(Ω)×L2(Ω)
)
×L2

0(Ω) solution
to (2.9), such that u ∈W1,∞(0, T ; L2(Ω)) and u(0) = u0. In addition, ω(0) = ω0 = curl(u0).

Proof. We recall that (2.9) fits the problem in Theorem 3.1 with the definitions (3.6) and (3.7). Note
that N is linear, symmetric and monotone since E is (cf. (3.4)). In addition, since A is strongly
monotone, it is not difficult to see thatM is monotone. On the other hand, from Lemma 3.6 we know
that for some (F̂,0) ∈ E′b with F̂ = (f̂ ,0), there is a (u, p) = ((u,ω), p) ∈

(
H1

0(Ω)× L2(Ω)
)
× L2

0(Ω),

such that (F̂,0) = (N +M)(u, p) which implies Rg(N +M) = E′b. Finally, considering u0 ∈ H∆ (cf.
(3.20)), from a straightforward application of Lemma 3.7 we are able to find (ω0, p0) ∈ L2(Ω)×L2

0(Ω)
such that (u0, p0) = ((u0,ω0), p0) ∈ D. Therefore, applying Theorem 3.1 to our context, we conclude
the existence of a solution (u, p) = ((u,ω), p) to (2.9), with u ∈W1,∞(0, T ; L2(Ω)) and u(0) = u0.

We next show that the solution of (2.9) is unique. To that end, let (ui, pi) = ((ui,ωi), pi), with
i ∈ {1, 2}, be two solutions corresponding to the same data. Then, taking (2.9) with (v, q) = (u1 −
u2, p1 − p2) ∈

(
H1

0(Ω)× L2(Ω)
)
× L2

0(Ω), subtracting the problems, we deduce that

1

2
∂t ‖u1 − u2‖2L2(Ω) + [A(u1)−A(u2),u1 − u2] = 0 ,

which together with the strong monotonicity bound of A (cf. (3.15)–(3.16)), yields

1

2
∂t ‖u1 − u2‖2L2(Ω) + γ̂1 ‖u1 − u2‖2H1(Ω) + γ2 ‖ω1 − ω2‖2L2(Ω) ≤ 0 , (3.25)

where γ̂1 := min
{
α, κ1, κ2

}
and γ2 is defined in (3.16). Integrating in time (3.25) from 0 to t ∈ (0, T ],

and using that u1(0) = u2(0), we obtain

‖u1(t)− u2(t)‖2L2(Ω) +

∫ t

0

(
‖u1 − u2‖2H1(Ω) + ‖ω1 − ω2‖2L2(Ω)

)
ds ≤ 0 . (3.26)

Therefore, it follows from (3.26) that u1(t) = u2(t) and ω1(t) = ω2(t) for all t ∈ (0, T ]. Next, from
the inf-sup condition of the operator B (cf. (3.18)) and the first equation of (2.9), we get

β ‖p1 − p2‖L2(Ω) ≤ sup
0 6=v∈H1

0(Ω)×L2(Ω)

−
(
[∂t E(u1 − u2),v] + [A(u1)−A(u2),v]

)
‖v‖

= 0 ,

which implies that p1(t) = p2(t) for all t ∈ (0, T ], and therefore (2.9) has a unique solution.

Finally, since Theorem 3.1 implies that M(u) ∈ L∞(0, T ;E′b), we can take t → 0 in all equations
without time derivatives in (2.9). Using that the initial data (u0, p0) = ((u0,ω0), p0) satisfies the same
equations at t = 0 (cf. (3.21)), and that u(0) = u0, we obtain

(ν − κ1) (ω(0)− ω0,ψ)Ω = 0 ∀ψ ∈ L2(Ω) . (3.27)

Thus, taking ψ = ω(0)− ω0 in (3.27) we deduce that ω(0) = ω0, completing the proof. �

We conclude this section with stability bounds for the solution of (2.9).
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Theorem 3.9 Let p ∈ [3, 4]. Suppose that the stabilization parameters κ1 and κ2 are taken as in
Lemma 3.4. Assume further that f ∈W1,1(0, T ; L2(Ω))∩L2(p−1)(0, T ; L2(Ω)) and u0 ∈ H∆ satisfying
(3.21). Then, there exist constants CBF,1, CBF,2 > 0 only depending on |Ω|, ν, α, F, and β, such that

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H1(Ω)) + ‖ω‖L2(0,T ;L2(Ω)) + ‖p‖L2(0,T ;L2(Ω))

≤ CBF,1

{
‖f‖p−1

L2(p−1)(0,T ;L2(Ω))
+ ‖f‖L2(0,T ;L2(Ω)) + ‖u0‖p/2

Lp(Ω) + ‖u0‖p−1
L2(Ω)

+ ‖u0‖H1(Ω)

}
,

(3.28)

and
‖u‖L∞(0,T ;H1(Ω)) ≤ CBF,2

{
‖f‖L2(0,T ;L2(Ω)) + ‖u0‖p/2

Lp(Ω) + ‖u0‖H1(Ω)

}
. (3.29)

Proof. We proceed as in [15, Theorem 3.3]. In fact, we begin choosing (v, q) = (u, p) in (2.9) to get

1

2
∂t (u,u)Ω + [A(u),u] = (f ,u)Ω .

Next, from the definition of the operator A (cf. (2.11)), employing similar arguments to (3.15) and
using Cauchy–Schwarz and Young’s inequalities, we obtain

1

2
∂t‖u‖2L2(Ω) +

α

2
‖u‖2L2(Ω) +F‖u‖pLp(Ω) + γ̃1‖u‖2H1(Ω) +γ2‖ω‖2L2(Ω) ≤

δ

2
‖f‖2L2(Ω) +

1

2 δ
‖u‖2L2(Ω) , (3.30)

where γ̃1 := min
{
α/2, κ1, κ2

}
and γ2 is defined in (3.16). Then, choosing δ = 1/α, yields

1

2
∂t ‖u‖2L2(Ω) + γ̃1 ‖u‖2H1(Ω) + γ2 ‖ω‖2L2(Ω) ≤

1

2α
‖f‖2L2(Ω) . (3.31)

Notice that, in order to simplify the stability bound, we have neglected the term ‖u‖pLp(Ω) in the left

hand side of (3.30). Integrating (3.31) from 0 to t ∈ (0, T ], we obtain

‖u(t)‖2L2(Ω) +

∫ t

0

(
‖u‖2H1(Ω) + ‖ω‖2L2(Ω)

)
ds ≤ C1

{∫ t

0
‖f‖2L2(Ω) ds+ ‖u(0)‖2L2(Ω)

}
, (3.32)

with C1 > 0 depending only on ν and α.

On the other hand, from the inf-sup condition of B (cf. (3.18)), the first equation of (2.9), the
stability bounds of F, E ,A (cf. (3.3), (3.4), (3.5)), and the continuous injection of H1(Ω) into Lp(Ω),
with p ∈ [3, 4], we deduce that

β ‖p‖L2(Ω) ≤ sup
0 6=v∈H1

0(Ω)×L2(Ω)

[F,v]− [∂t E(u),v]− [A(u),v]

‖v‖

≤ C̃2

(
‖f‖L2(Ω) + ‖u‖H1(Ω) + ‖u‖p−1

H1(Ω)
+ ‖ω‖L2(Ω) + ‖∂t u‖L2(Ω)

)
,

with C̃2 > 0 depending on |Ω|, ‖ip‖, ν, F, and α. Then, integrating from 0 to t ∈ (0, T ] and using
similar arguments to (3.32) (cf. [14, eqs. (3.32)–(3.33)]), we obtain∫ t

0
‖p‖2L2(Ω) ds

≤ C2

{∫ t

0

(
‖f‖2(p−1)

L2(Ω)
+ ‖f‖2L2(Ω)

)
ds+ ‖u(0)‖2(p−1)

L2(Ω)
+ ‖u(0)‖2L2(Ω) +

∫ t

0
‖∂t u‖2L2(Ω) ds

}
,

(3.33)
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with C2 > 0 depending on |Ω|, ‖ip‖, ν, F, α, and β. Next, in order to bound the last term in (3.33),
we differentiate in time the equations of (2.9) related to ψ and q, choose (v, q) = ((∂t u,ω), p), and
employ Cauchy–Schwarz and Young’s inequalities, to find that

1

2
∂t

(
α ‖u‖2L2(Ω) +

2 F

p
‖u‖pLp(Ω) + κ2 ‖div(u)‖2L2(Ω) + ν ‖ω‖2L2(Ω)

)
+ ‖∂t u‖2L2(Ω)

+κ1(curl(u)− ω, ∂t curl(u))Ω + κ1(∂t(curl(u)− ω),ω)Ω ≤
1

2
‖f‖2L2(Ω) +

1

2
‖∂t u‖2L2(Ω) ,

(3.34)

where, using the linearity of the time derivative, it follows that

κ1(curl(u)−ω, ∂tcurl(u))Ω+κ1(∂t(curl(u)−ω),ω)Ω =
1

2
∂t

(
κ1‖curl(u)‖2L2(Ω)−κ1‖ω‖2L2(Ω)

)
. (3.35)

Thus, replacing back (3.35) into (3.34), integrating from 0 to t ∈ (0, T ], using (2.7), the Cauchy–
Schwarz and Young’s inequalities, and some algebraic manipulations, we get

γ̂1 ‖u(t)‖2H1(Ω) +
2 F

p
‖u(t)‖pLp(Ω) + γ2 ‖ω(t)‖2L2(Ω) +

∫ t

0
‖∂t u‖2L2(Ω) ds

≤ C3

{∫ t

0
‖f‖2L2(Ω) ds+ ‖u(0)‖pLp(Ω) + ‖u(0)‖2H1(Ω) + ‖ω(0)‖2L2(Ω)

}
,

(3.36)

with γ̂1, γ2 defined in (3.25), and C3 > 0 depending on ν, F, and α. Note that according to the
stipulated range on κ1, the term γ2 ‖ω(t)‖2L2(Ω) is positive. Then, combining (3.36) with (3.33), yields

∫ t

0
‖p‖2L2(Ω) ds ≤ C4

{∫ t

0

(
‖f‖2(p−1)

L2(Ω)
+ ‖f‖2L2(Ω)

)
ds

+ ‖u(0)‖pLp(Ω) + ‖u(0)‖2(p−1)
L2(Ω)

+ ‖u(0)‖2H1(Ω) + ‖ω(0)‖2L2(Ω)

}
,

(3.37)

which, combined with (3.32) and the fact that (u(0),ω(0)) = (u0,ω0) and ω0 = curl(u0) in Ω (cf.
Lemma 3.7), implies (3.28). In addition, the first term in the left-hand side of (3.36) and some
algebraic computations yields (3.29) concluding the proof. �

Remark 3.4 We note that (3.29) can be expanded to include a bound on ‖u‖H1(0,T ;L2(Ω)) ,
‖ω‖L∞(0,T ;L2(Ω)), and ‖p‖L∞(0,T ;L2(Ω)), using (3.36) and (3.37). We state it in this simpler form,
since the bound on ‖u‖L∞(0,T ;H1(Ω)) will be employed in the next section to deal with the nonlinear
term associated to the operator A (cf. (2.11)), which is necessary to obtain the error estimate.

4 Semidiscrete continuous-in-time approximation

In this section we introduce and analyze the semidiscrete continuous-in-time approximation of (2.9).
We analyze its solvability by employing the strategy developed in Section 3. Finally, we derive the
error estimates and obtain the corresponding rates of convergence.
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4.1 Existence and uniqueness of a solution

Let Th be a shape-regular triangulation of Ω consisting of triangles K (when d = 2) or tetrahedra K
(when d = 3) of diameter hK , and define the mesh-size h := max

{
hK : K ∈ Th

}
. Let (Hu

h ,H
p
h) be a

pair of stable Stokes elements satisfying the discrete inf-sup condition: there exists a constant β̃ > 0,
independent of h, such that

sup
0 6=vh∈Hu

h

∫
Ω
qh div(vh)

‖vh‖H1(Ω)
≥ β̃ ‖qh‖L2(Ω) ∀ qh ∈ Hp

h . (4.1)

We refer the reader to [8] and [9] for examples of stable Stokes elements. To simplify the presentation,
we focus on Taylor–Hood [33] finite elements for velocity and pressure, and continuous piecewise
polynomials spaces for vorticity. Given an integer l ≥ 0 and a subset S of Rd, we denote by Pl(S) the
space of polynomials of total degree at most l defined on S. For any k ≥ 1, we consider:

Hu
h :=

{
vh ∈ [C(Ω)]d : vh|K ∈ [Pk+1(K)]d ∀K ∈ Th

}
∩H1

0(Ω) ,

Hp
h :=

{
qh ∈ C(Ω) : qh|K ∈ Pk(K) ∀K ∈ Th

}
∩ L2

0(Ω) , (4.2)

Hω
h :=

{
ωh ∈ [C(Ω)]d(d−1)/2 : ωh|K ∈ [Pk(K)]d(d−1)/2 ∀K ∈ Th

}
.

It is well known that the pair (Hu
h ,H

p
h) in (4.2) satisfies (4.1) [7]. We observe that similarly to [3, 5],

we can also consider discontinuous piecewise polynomials spaces for the vorticity, that is,

Hω
h :=

{
ωh ∈ [L2(Ω)]d(d−1)/2 : ωh|K ∈ [Pk(K)]d(d−1)/2 ∀K ∈ Th

}
.

In addition to the Taylor–Hood elements for the velocity and pessure, in the numerical experiments
in Section 6 we also consider the classical MINI-element [8, Sections 8.4.2, 8.6 and 8.7] and Crouzeix–
Raviart elements with tangential jump penalization (see [18] for the discrete inf-sup condition for the
lowest-order case and, e.g., the recent paper [11] for cubic order).

Now, defining uh := (uh,ωh),vh := (vh,ψh) ∈ Hu
h × Hω

h , the semidiscrete continuous-in-time
problem associated with (2.9) reads: Find (uh, ph) : [0, T ] →

(
Hu

h × Hω
h

)
× Hp

h such that, for a.e.
t ∈ (0, T ),

∂

∂ t
[E(uh),vh] + [A(uh),vh] + [B(vh), ph] = [F,vh] ∀vh ∈ Hu

h ×Hω
h ,

−[B(uh), qh] = 0 ∀ qh ∈ Hp
h.

(4.3)

As initial condition we take (uh,0, ph,0) = ((uh,0,ωh,0), ph,0) to be a suitable approximations of (u0, p0),
the solution of (3.23), that is, we chose (uh,0, ph,0) solving

[A(uh,0),vh] + [B(vh), ph,0] = [F0,vh] ∀vh ∈ Hu
h ×Hω

h ,

−[B(uh,0), qh] = 0 ∀ qh ∈ Hp
h,

(4.4)

with F0 ∈ L2(Ω)×{0} being the right-hand side of (3.23). This choice is necessary to guarantee that
the discrete initial data is compatible in the sense of Lemma 3.7, which is needed for the application
of Theorem 3.1. Notice that the well-posedness of problem (4.4) follows from similar arguments to the
proof of Lemma 3.6. In addition, taking (vh, qh) = (uh,0, ph,0) in (4.4), we deduce from the definition
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of the operator A (cf. (2.11)), the identity (2.7), and the continuity bound of F0 (cf. (3.24)) that,
there exists a constant C0 > 0, depending only on |Ω|, ‖ip‖, ν, α, and F, and hence independent of h,
such that

‖uh,0‖pLp(Ω) + ‖uh,0‖2H1(Ω) + ‖ωh,0‖2L2(Ω) ≤ C0

{
‖u0‖2(p−1)

H1(Ω)
+ ‖∆u0‖2L2(Ω) + ‖u0‖2L2(Ω)

}
. (4.5)

In this way, the well-posedness of (4.3) follows analogously to its continuous counterpart provided in
Theorem 3.8. More precisely, we first address the discrete counterparts of Lemmas 3.3 and 3.4, whose
proofs, being almost verbatim of the continuous ones, are omitted.

Lemma 4.1 Let p ∈ [3, 4]. Assume κ1 and κ2 as in Lemma 3.4. Then, the family of operators{
(E +A)(·+ zh) : Hu

h ×Hω
h → (Hu

h ×Hω
h )′ : zh ∈ Hu

h ×Hω
h

}
is uniformly strongly monotone with

the same constant γBF > 0 from (3.12), that is, there holds[
(E +A)(uh + zh)− (E +A)(vh + zh),uh − vh

]
≥ γBF ‖uh − vh‖2 ,

for each zh = (zh,φh) ∈ Hu
h ×Hω

h , and for all uh = (uh,ωh),vh = (vh,ψh) ∈ Hu
h ×Hω

h . In addition,
the operator E + A : (Hu

h ×Hω
h ) → (Hu

h ×Hω
h )′ is continuous in the sense of (3.9), with the same

constant LBF.

We continue with the discrete inf-sup condition of B.

Lemma 4.2 There exists a constant β̃ > 0, such that

sup
0 6=vh∈Hu

h×H
ω
h

[B(vh), qh]

‖vh‖
≥ β̃ ‖qh‖L2(Ω) ∀ qh ∈ Hp

h . (4.6)

Proof. The statement follows directly from (4.1). �

We are now in a position to establish the semi-discrete continuous in time analogue of Theorems
3.8 and 3.9.

Theorem 4.3 Let p ∈ [3, 4]. Assume κ1 and κ2 as in Lemma 3.4. Then, for each compatible initial
data (uh,0, ph,0) := ((uh,0,ωh,0), ph,0) satisfying (4.4) and f ∈W1,1(0, T ; L2(Ω)), there exists a unique
(uh, ph) = ((uh,ωh), ph) : [0, T ]→ (Hu

h ×Hω
h )×Hp

h solution to (4.3), satisfying uh ∈W1,∞(0, T ; Hu
h)

and (uh(0),ωh(0)) = (uh,0,ωh,0). Moreover, assuming that u0 ∈ H∆ satisfies (3.21) and that f ∈
L2(p−1)(0, T ; L2(Ω)), there exist constants ĈBF,1, ĈBF,2 > 0 depending only on |Ω|, ‖ip‖, ν, α, F, and β̃,
such that

‖uh‖L∞(0,T ;L2(Ω)) + ‖uh‖L2(0,T ;H1(Ω)) + ‖ωh‖L2(0,T ;L2(Ω)) + ‖ph‖L2(0,T ;L2(Ω))

≤ ĈBF,1

{
‖f‖p−1

L2(p−1)(0,T ;L2(Ω))
+ ‖f‖L2(0,T ;L2(Ω))

+ ‖u0‖(p−1)2

H1(Ω)
+ ‖u0‖p−1

H1(Ω)
+ ‖∆u0‖p−1

L2(Ω)
+ ‖∆u0‖L2(Ω) + ‖u0‖L2(Ω)

}
,

(4.7)

and

‖uh‖L∞(0,T ;H1(Ω)) ≤ ĈBF,2

{
‖f‖L2(0,T ;L2(Ω)) + ‖u0‖p−1

H1(Ω)
+ ‖∆u0‖L2(Ω) + ‖u0‖L2(Ω)

}
. (4.8)

Proof. According to Lemma 4.1, the discrete inf-sup condition for B provided by (4.6) (cf. Lemma
4.2), and considering that (uh,0, ph,0) satisfies (4.4), the proof of existence and uniqueness of solution
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of (4.3) with uh ∈W1,∞(0, T ; Hu
h) and uh(0) = uh,0, follows similarly to the proof of Theorem 3.8 by

applying Theorem 3.1. Moreover, from the discrete version of (3.27), we deduce that ωh(0) = ωh,0.

On the other hand, mimicking the steps followed in the proof of Theorem 3.9, we obtain the discrete
versions of (3.32)–(3.37). Then, using the fact that (uh(0),ωh(0)) = (uh,0,ωh,0) and estimate (4.5),
we derive (4.7) and (4.8), thus completing the proof. �

4.2 Error analysis

Now we derive suitable error estimates for the semidiscrete scheme (4.3). To that end, we first introduce
the discrete kernel of B, that is, Vh := Kh ×Hω

h , where

Kh =
{

vh ∈ Hu
h : (qh,div(vh))Ω = 0 ∀ qh ∈ Hp

h

}
, (4.9)

and recall that the discrete inf-sup condition of B (cf. (4.6)), and a classical result on mixed methods
(see, for instance [21, eq. (2.89) in Theorem 2.6]) ensure the existence of a constant C > 0, independent
of h, such that:

inf
vh∈Vh

‖u− vh‖ ≤ C inf
vh∈Hu

h×H
ω
h

‖u− vh‖ . (4.10)

Next, in order to obtain the theoretical rates of convergence for the discrete scheme (4.3), we recall
the approximation properties of the finite element subspaces Hu

h ,H
ω
h , and Hp

h (cf. (4.2)), that can be
found in [8], [9], and [20]. Assume that u ∈ H1+s(Ω),ω ∈ [Hs(Ω)]d(d−1)/2, and p ∈ Hs(Ω), for some
s ∈ (1/2, k + 1]. Then there exists C > 0, independent of h, such that

inf
vh∈Hu

h

‖u− vh‖H1(Ω) ≤ C hs ‖u‖H1+s(Ω) , (4.11)

inf
ψh∈Hω

h

‖ω −ψh‖L2(Ω) ≤ C hs ‖ω‖Hs(Ω) , (4.12)

inf
qh∈Hp

h

‖p− qh‖L2(Ω) ≤ C hs ‖p‖Hs(Ω) . (4.13)

Owing to (4.10) and (4.11)–(4.13), it follows that, under an extra regularity assumption on the exact
solution, there exist positive constants C(u), C(∂t u), C(p), and C(∂t p), depending on u,ω and p,
respectively, such that

inf
vh∈Vh

‖u− vh‖ ≤ C(u)hs , inf
vh∈Vh

‖∂t u− vh‖ ≤ C(∂t u)hs ,

inf
qh∈Hp

h

‖p− qh‖Q ≤ C(p)hs , and inf
qh∈Hp

h

‖∂t p− qh‖Q ≤ C(∂t p)h
s .

(4.14)

In turn, in order to simplify the subsequent analysis, we write eu = (eu, eω) = (u − uh,ω − ωh),
and ep = p − ph. Next, given arbitrary v̂h := (v̂h, ω̂h) : [0, T ] → Vh (cf. (4.9)) and q̂h : [0, T ] → Hp

h,
as usual, we shall then decompose the errors into

eu = δu + ηu = (δu, δω) + (ηu,ηω) , ep = δp + ηp , (4.15)

with
δu = u− v̂h , δω = ω − ψ̂h , δp = p− q̂h ,

ηu = v̂h − uh , ηω = ψ̂h − ωh , ηp = q̂h − ph .
(4.16)
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In addition, we stress for later use that ∂t vh : [0, T ] → Vh for each vh(t) ∈ Vh (cf. (4.9)). In fact,
given (vh, qh) : [0, T ]→ Vh ×Hp

h, after simple algebraic computations, we obtain

[B(∂t vh), qh] = ∂t
(
[B(vh), qh]

)
− [B(vh), ∂t qh] = 0 , (4.17)

where, the latter is obtained by observing that ∂t qh(t) ∈ Hp
h.

In this way, by subtracting the discrete and continuous problems (2.9) and (4.3), respectively, we
obtain the following system:

∂

∂ t
[E(eu),vh] + [A(u)−A(uh),vh] + [B(vh), ep] = 0 ∀vh ∈ Hu

h ×Hω
h ,

[B(eu), qh] = 0 ∀ qh ∈ Hp
h .

(4.18)

We now establish the main result of this section, namely, the theoretical rate of convergence of the
discrete scheme (4.3). Notice that, optimal rates of convergences are obtained for all the unknowns.

Theorem 4.4 Let p ∈ [3, 4]. Assume κ1 and κ2 as in Lemma 3.4. Let ((u,ω), p) : [0, T ] →(
H1

0(Ω)× L2(Ω)
)
× L2

0(Ω) with u ∈W1,∞(0, T ; L2(Ω)) and ((uh,ωh), ph) : [0, T ]→
(
Hu

h ×Hω
h

)
× Hp

h

with uh ∈ W1,∞(0, T ; Hu
h), be the unique solutions of the continuous and semidiscrete problems

(2.9) and (4.3), respectively. Assume further that there exists s ∈ (1/2, k + 1], such that u ∈
H1+s(Ω), ω ∈ [Hs(Ω)]d(d−1)/2, and p ∈ Hs(Ω). Then, there exists C(u, p) > 0 depending only on
C(u), C(∂t u), C(p), C(∂t p), |Ω|, ‖ip‖, ν, α, F, β̃, and data, such that

‖eu‖L∞(0,T ;L2(Ω)) + ‖eu‖L2(0,T ;H1(Ω))

+ ‖eω‖L2(0,T ;L2(Ω)) + ‖ep‖L2(0,T ;L2(Ω)) ≤ C(u, p)
(
hs + hs (p−1)

)
. (4.19)

Proof. First, adding and subtracting suitable terms in the first equation of (4.18), with vh = ηu =
(ηu,ηω) : [0, T ] → Vh (cf. (4.9)), proceeding as in (3.15) and using the fact that ηu(t) ∈ Vh, thus
[B(ηu),ηp] = 0, we deduce that

1

2
∂t ‖ηu‖2L2(Ω) + α ‖ηu‖2L2(Ω) + FCp ‖ηu‖

p
Lp(Ω) + κ1 ‖curl(ηu)‖2L2(Ω)

+κ2 ‖div(ηu)‖2L2(Ω) + (ν − κ1)‖ηω‖2L2(Ω)

≤ −(∂tδu,ηu)Ω − α(δu,ηu)Ω − F(|u|p−2u− |v̂h|p−2v̂h,ηu)Ω − ν(δω,ηω + curl(ηu))Ω

+ ν(ηω, curl(δu))Ω − κ1(curl(δu)− δω, curl(ηu) + ηω)Ω + (δp − κ2div(δu), div(ηu))Ω .

(4.20)

Next, assuming κ1 and κ2 as in Lemma 3.4, using the identity (2.7), the Cauchy–Schwarz, Hölder and
Young’s inequalities (cf. (1.1)), some algebraic computations, and neglecting the term ‖ηu‖

p
Lp(Ω) in

(4.20) to obtain a simplified error estimate, we get

1

2
∂t ‖ηu‖2L2(Ω) + γBF

(
‖ηu‖2H1(Ω) + ‖ηω‖2L2(Ω)

)
≤ C1

(
‖∂t δu‖2L2(Ω) + ‖δu‖2 (p−1)

H1(Ω)
+
(
1 + ‖u‖2 (p−2)

H1(Ω)

)
‖δu‖2H1(Ω) + ‖δω‖2L2(Ω) + ‖δp‖2L2(Ω)

)
+
γBF
2

(
‖ηu‖2H1(Ω) + ‖ηω‖2L2(Ω)

)
,
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where γBF := min
{
α, κ1, κ2, ν − κ1

}
and C1 is a positive constant depending on |Ω|, ‖ip‖, ν, α, F, κ1,

and κ2, which yields

∂t ‖ηu‖2L2(Ω) + γBF

(
‖ηu‖2H1(Ω) + ‖ηω‖2L2(Ω)

)
≤ 2C1

(
‖∂tδu‖2L2(Ω) + ‖δu‖2(p−1)

H1(Ω)
+
(
1 + ‖u‖2(p−2)

H1(Ω)

)
‖δu‖2H1(Ω) + ‖δω‖2L2(Ω) + ‖δp‖2L2(Ω)

)
.

(4.21)

Integrating (4.21) from 0 to t ∈ (0, T ], recalling that ‖u‖L∞(0,T ;H1(Ω)) is bounded by data (cf. (3.29)),
we find that

‖ηu(t)‖2L2(Ω) +

∫ t

0

(
‖ηu‖2H1(Ω) + ‖ηω‖2L2(Ω)

)
ds

≤ C2

{∫ t

0

(
‖∂t δu‖2L2(Ω) + ‖δu‖2(p−1)

H1(Ω)
+ ‖δu‖2 + ‖δp‖2L2(Ω)

)
ds+ ‖ηu(0)‖2L2(Ω)

}
,

(4.22)

with C2 > 0 depending only on |Ω|, ‖ip‖, ν, α, F, κ1, κ2, and data.

Next, in order to bound the last term in (4.22), we subtract the continuous and discrete initial
condition problems (3.23) and (4.4), to obtain the error system:

[A(u0)−A(uh,0),vh] + [B(vh), p0 − ph,0] = 0 ∀vh ∈ Hu
h ×Hω

h ,

− [B(u0 − uh,0), qh] = 0 ∀ qh ∈ Hp
h .

Then, proceeding as in (4.21), recalling from Theorems 3.8 and 4.3 that (u(0),ω(0)) = (u0,ω0) and
(uh(0),ωh(0)) = (uh,0,ωh,0), respectively, we get

‖ηu(0)‖2H1(Ω) + ‖ηω(0)‖2L2(Ω) ≤ Ĉ0

(
‖δu0‖

2 (p−1)
H1(Ω)

+ ‖δu0
‖2 + ‖δp0‖2L2(Ω)

)
, (4.23)

where, similarly to (4.16), we denote δu0
= (δu0 , δω0) = (u0− v̂h(0),ω0−ψ̂h(0)) and δp0 = p0− q̂h(0),

with arbitrary (v̂h(0), ψ̂h(0)) ∈ Vh and q̂h(0) ∈ Hp
h, and Ĉ0 is a positive constant depending only on

|Ω|, ‖ip‖, ν, α, F, κ1, and κ2. Thus, combining (4.22) and (4.23), and using the error decomposition
(4.15), there holds

‖eu(t)‖2L2(Ω) +

∫ t

0

(
‖eu‖2H1(Ω) + ‖eω‖2L2(Ω)

)
ds ≤ C Ψ(u, p) , (4.24)

where

Ψ(u, p) := ‖δu(t)‖2 +

∫ t

0

(
‖∂t δu‖2 + ‖δu‖2 (p−1) + ‖δu‖2 + ‖δp‖2L2(Ω)

)
ds

+ ‖δu0
‖2 (p−1) + ‖δu0

‖2 + ‖δp0‖2L2(Ω) .

On the other hand, to estimate ‖ep‖L2(0,T ;L2(Ω)), we observe that from the discrete inf-sup condition
of B (cf. (4.6)), the first equation of (4.18), and the continuity bounds of E ,A,B (cf. (3.4) (3.9), (3.2)),
there holds

β̃ ‖ηp‖L2(Ω) ≤ sup
0 6=vh∈Hu

h×H
ω
h

−
(
[∂t E(eu),vh] + [A(u)−A(uh),vh] + [B(vh), δp]

)
‖vh‖

≤ C3

(
‖∂teu‖L2(Ω) + ‖eu‖H1(Ω) +

(
‖u‖H1(Ω) + ‖uh‖H1(Ω)

)p−2‖eu‖H1(Ω) + ‖eω‖L2(Ω) + ‖δp‖L2(Ω)

)
,
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with C3 > 0 depending only on |Ω|, ‖ip‖, ν, α, F, κ1, and κ2. Then, taking square in the above inequality,
integrating from 0 to t ∈ (0, T ], recalling that both ‖u‖L∞(0,T ;H1(Ω)) and ‖uh‖L∞(0,T ;H1(Ω)) are bounded
by data (cf. (3.29), (4.8)), and employing (4.24), we deduce that∫ t

0
‖ηp‖2L2(Ω) ds ≤ C4

{
Ψ(u, p) +

∫ t

0
‖∂t ηu‖2L2(Ω) ds

}
, (4.25)

with C4 > 0 depending on |Ω|, ‖ip‖, ν, α, F, β̃, κ1, κ2, and data. Next, in order to bound the last term
in (4.25), we differentiate in time the equation of (4.18) related to ψh, choose vh = (∂t ηu,ηω), and
use the identity (3.35), to find that

‖∂t ηu‖2L2(Ω) +
1

2
∂t

(
α ‖ηu‖2L2(Ω) + κ1 ‖curl(ηu)‖2L2(Ω) + κ2 ‖div(ηu)‖2L2(Ω) + (ν − κ1) ‖ηω‖2L2(Ω)

)
= −(∂t δu, ∂t ηu)Ω − α (δu, ∂t ηu)Ω − F (|u|p−2u− |uh|p−2uh, ∂t ηu)Ω − ν(∂t δω,ηω)Ω

− ν(δω, curl(∂t ηu))Ω + ν(ηω, curl(∂tδu))Ω − κ1(curl(δu)− δω, curl(∂tηu)− ∂tηω)Ω (4.26)

− κ1∂t(curl(δu)− δω,ηω)Ω − κ2(div(δu),div(∂tηu))Ω + (δp,div(∂tηu))Ω .

Notice that (ηp,div(∂tηu))Ω = 0 since (ηu(t),0) ∈ Vh (cf. (4.9) and (4.17)). Then, using the identities

(δω, curl(∂tηu))Ω = ∂t (δω, curl(ηu))Ω − (∂tδω, curl(ηu))Ω ,

(curl(δu)− δω, curl(∂tηu)− ∂tηω)Ω = ∂t (curl(δu)− δω, curl(ηu)− ηω)Ω

− (curl(∂tδu)− ∂tδω, curl(ηu)− ηω)Ω , (4.27)

(div(δu),div(∂tηu))Ω = ∂t (div(δu), div(ηu))Ω − (div(∂tδu), div(ηu))Ω ,

(δp,div(∂tηu))Ω = ∂t (δp,div(ηu))Ω − (∂tδp,div(ηu))Ω .

In turn, using the Cauchy–Schwarz and Hölder inequalities, in combination with the continuous injec-
tion of H1(Ω) into L2(p−1)(Ω), with 2(p− 1) ∈ [4, 6], cf. (1.2), we deduce that there exists a constant
C5 > 0, independent of h, such that

(|u|p−2u− |uh|p−2uh, ∂t ηu)Ω ≤ C̃5

(
‖u‖L2(p−1)(Ω) + ‖uh‖L2(p−1)(Ω)

)p−2‖eu‖L2(p−1)(Ω)‖∂t ηu‖L2(Ω)

≤ C5

(
‖u‖H1(Ω) + ‖uh‖H1(Ω)

)p−2‖eu‖H1(Ω)‖∂t ηu‖L2(Ω) . (4.28)

Thus, integrating (4.26) from 0 to t ∈ (0, T ], using the identities (2.7) and (4.27), the estimate (4.28),
the Cauchy–Schwarz, Hölder and Young’s inequalities, and some algebraic computations, we find that

γBF

(
‖ηu(t)‖2H1(Ω) + ‖ηω(t)‖2L2(Ω)

)
+

∫ t

0
‖∂t ηu‖2L2(Ω) ds

≤ C6

(∫ t

0

(
‖∂t δu‖2 + ‖∂tδp‖2L2(Ω) + ‖δu‖2L2(Ω) +

(
‖u‖H1(Ω) + ‖uh‖H1(Ω)

)2(p−2)‖eu‖2H1(Ω)

)
ds

+ ‖δu(t)‖2 + ‖δp(t)‖2L2(Ω) + ‖δu0
‖2 + ‖δp0‖2L2(Ω) +

∫ t

0
‖ηu‖2 ds+ ‖ηu(0)‖2

)
+
γBF
2

(
‖ηu(t)‖2H1(Ω) + ‖ηω(t)‖2L2(Ω)

)
+

1

2

∫ t

0
‖∂t ηu‖2L2(Ω) ds .
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Then, recalling that ‖u‖L∞(0,T ;H1(Ω)) and ‖uh‖L∞(0,T ;H1(Ω)) are bounded by data (cf. (3.29) and (4.8)),
employing estimates (4.22) and (4.23), and some algebraic manipulations, we deduce that

‖ηu(t)‖2H1(Ω) + ‖ηω(t)‖2L2(Ω) +

∫ t

0
‖∂t ηu‖2L2(Ω) ds

≤ C7

(∫ t

0

(
‖∂t δu‖2 + ‖∂tδp‖2L2(Ω) + ‖δu‖2(p−1)

H1(Ω)
+ ‖δu‖2 + ‖δp‖2L2(Ω)

)
ds

+ ‖δu(t)‖2 + ‖δp(t)‖2L2(Ω) + ‖δu0‖
2 (p−1)
H1(Ω)

+ ‖δu0
‖2 + ‖δp0‖2L2(Ω)

)
.

(4.29)

with C7 > 0 depending on |Ω|, ‖ip‖, ν, α, F, β̃, and data. Thus, combining (4.25) with (4.29), and using
the error decomposition (4.15), yields∫ t

0
‖ep‖2L2(Ω) ds ≤ C8

{
Ψ(u, p) + ‖δp(t)‖2L2(Ω) +

∫ t

0
‖∂t δp‖2L2(Ω) ds

}
. (4.30)

Finally, using the fact that v̂h : [0, T ]→ Vh and q̂h : [0, T ]→ Hp
h are arbitrary, taking infimum in (4.24)

and (4.30) over the corresponding discrete subspaces Vh and Hp
h, and applying the approximation

properties (4.14), we derive (4.19) and conclude the proof. �

5 Fully discrete approximation

In this section we introduce and analyze a fully discrete approximation of (2.9) (cf. (4.3)). To that
end, for the time discretization we employ the backward Euler method. Let ∆t be the time step,
T = N∆t, and let tn = n∆t, n = 0, ..., N . More precisely, we let dtu

n = (∆t)−1(un−un−1) be the first
order (backward) discrete time derivative, where un := u(tn). Then the fully discrete method reads:
given fn ∈ L2(Ω) and (u0

h, p
0
h) = ((uh,0,ωh,0), ph,0) satisfying (4.4) find (un

h, p
n
h) := ((un

h,ω
n
h), pnh) ∈

(Hu
h ×Hω

h )×Hp
h, n = 1, ..., N , such that

dt[E(un
h),vh] + [A(un

h),vh] + [B(vh), pnh] = [Fn,vh] ∀vh ∈ Hu
h ×Hω

h ,

−[B(un
h), qh] = 0 ∀ qh ∈ Hp

h ,
(5.1)

where [Fn,vh] := (fn,vh)Ω.

In what follows, given a separable Banach space V endowed with the norm ‖ · ‖V, we make use of
the following discrete in time norms

‖u‖p`p(0,T ;V) := ∆t

N∑
n=1

‖un‖pV and ‖u‖`∞(0,T ;V) := max
0≤n≤N

‖un‖V . (5.2)

Next, we state the main results for method (5.1).

Theorem 5.1 Let p ∈ [3, 4]. Assume κ1 and κ2 as in Lemma 3.4. Then, for each (u0
h, p

0
h) :=

((uh,0,ωh,0), ph,0) satisfying (4.4) and fn ∈ L2(Ω), n = 1, ..., N , there exist a unique solution (un
h, p

n
h) :=

((un
h,ω

n
h), pnh) ∈ (Hu

h ×Hω
h )×Hp

h to (5.1). Moreover, under a suitable extra regularity assumption on
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the data, there exist constants C̃BF,1, C̃BF,2 > 0 depending only |Ω|, ‖ip‖, ν, α, F and β̃ such that

‖uh‖`∞(0,T ;L2(Ω)) + ∆t‖dtuh‖`2(0,T ;L2(Ω)) + ‖uh‖`2(0,T ;H1(Ω))

+ ‖ωh‖`2(0,T ;L2(Ω)) + ‖ph‖`2(0,T ;L2(Ω)) ≤ C̃BF,1

{
‖f‖p−1

L2(p−1)(0,T ;L2(Ω))
+ ‖f‖L2(0,T ;L2(Ω))

+ ‖u0‖(p−1)2

H1(Ω)
+ ‖u0‖p−1

H1(Ω)
+ ‖∆u0‖p−1

L2(Ω)
+ ‖∆u0‖L2(Ω) + ‖u0‖L2(Ω)

}
,

(5.3)

and

‖uh‖`∞(0,T ;H1(Ω)) ≤ C̃BF,2

{
‖f‖L2(0,T ;L2(Ω)) + ‖u0‖p−1

H1(Ω)
+ ‖∆u0‖L2(Ω) + ‖u0‖L2(Ω)

}
. (5.4)

Proof. First, we note that at each time step the well-posedness of the fully discrete problem (5.1),
with n = 1, ..., N , follows from similar arguments to the proof of Lemma 3.6.

On the other hand, the derivation of (5.3) and (5.4) can be obtained similarly as in the proof of
Theorem 3.9. In fact, we choose (vh, qh) = (un

h, p
n
h) in (5.1), use the identity

(dt un
h,u

n
h)Ω =

1

2
dt ‖un

h‖2L2(Ω) +
1

2
∆t ‖dtun

h‖2L2(Ω) , (5.5)

the definition of the operator A (cf. (2.11)), the identity (2.7), and the Cauchy–Schwarz and Young’s
inequalities (cf. (1.1)), to obtain

1

2
dt‖un

h‖2L2(Ω) +
1

2
∆t ‖dtun

h‖2L2(Ω) +
α

2
‖un

h‖2L2(Ω) + F‖un
h‖

p
Lp(Ω)

+ γ̃1 ‖un
h‖2H1(Ω) + γ2 ‖ωn

h‖2L2(Ω) ≤
δ

2
‖fn‖2L2(Ω) +

1

2 δ
‖un

h‖2L2(Ω) ,

(5.6)

where γ̃1 := min
{
α/2, κ1, κ2

}
and γ2 defined in (3.16). Then, choosing δ =

1

α
, we obtain

dt ‖un
h‖2L2(Ω) + ∆t ‖dtun

h‖2L2(Ω) + 2 γ̃1 ‖un
h‖2H1(Ω) + 2 γ2 ‖ωn

h‖2L2(Ω) ≤
1

α
‖fn‖2L2(Ω) . (5.7)

Notice that, in order to simplify the stability bound, we have neglected the term ‖un
h‖

p
Lp(Ω) in the

left-hand side of (5.6). Thus summing up over the time index n = 1, ...,m, with m = 1, . . . , N , in
(5.7) and multiplying by ∆t, we get

‖um
h ‖2L2(Ω) + (∆t)2

m∑
n=1

‖dtun
h‖2L2(Ω) + ∆t

m∑
n=1

(
‖un

h‖2H1(Ω) + ‖ωn
h‖2L2(Ω)

)
≤ C1

{
∆t

m∑
n=1

‖fn‖2L2(Ω) + ‖u0
h‖2L2(Ω)

}
,

(5.8)

with C1 depending only on ν, α, κ1, and κ2.

On the other hand, from the discrete inf-sup condition of B (cf. (4.6)) and the first equation of
(5.1), we deduce that

‖pnh‖L2(Ω) ≤ C2

{
‖fn‖L2(Ω) + ‖un

h‖H1(Ω) + ‖un
h‖

p−1
H1(Ω)

+ ‖ωn
h‖L2(Ω) + ‖dtun

h‖L2(Ω)

}
, (5.9)

with C2 > 0 depending on |Ω|, ‖ip‖, ν, α, F, and β̃. In turn, using Young’s inequality (cf. (1.1)), we
readily obtain

‖un−1
h ‖2L2(Ω) ‖u

n
h‖

2 (p−2)
L2(Ω)

≤ 1

p− 1
‖un−1

h ‖2 (p−1)
L2(Ω)

+
p− 2

p− 1
‖un

h‖
2 (p−1)
L2(Ω)

,
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which, together with (5.7), the fact that H1(Ω) is continuously embedded into L2(Ω), the Young
inequality (cf. (1.1)), and simple algebraic computations, imply

dt ‖un
h‖

2 (p−1)
L2(Ω)

+ ‖un
h‖

2 (p−1)
H1(Ω)

≤ (p− 1)‖un
h‖

2 (p−2)
L2(Ω)

dt ‖un
h‖2L2(Ω) + ‖un

h‖
2 (p−2)
H1(Ω)

‖un
h‖2H1(Ω)

≤ C̃3 ‖fn‖2L2(Ω) ‖u
n
h‖

2 (p−2)
H1(Ω)

≤ Ĉ3 ‖fn‖2 (p−1)
L2(Ω)

+
1

2
‖un

h‖
2 (p−1)
H1(Ω)

,

which, similarly to (5.8), yields

‖um
h ‖

2 (p−1)
L2(Ω)

+ ∆t

m∑
n=1

‖un
h‖

2 (p−1)
H1(Ω)

≤ C3

{
∆t

m∑
n=1

‖fn‖2 (p−1)
L2(Ω)

+ ‖u0
h‖

2 (p−1)
L2(Ω)

}
, (5.10)

with C3 > 0 depending on |Ω|, ‖ip‖, ν, and α. Then, taking square in (5.9), using (5.8) and (5.10), we
deduce the analogous estimate of (3.33), that is

∆t
m∑

n=1

‖pnh‖2L2(Ω) ≤ C4

{
∆t

m∑
n=1

(
‖fn‖2(p−1)

L2(Ω)
+ ‖fn‖2L2(Ω)

)
+ ‖u0

h‖
2 (p−1)
L2(Ω)

+ ‖u0
h‖2L2(Ω) + ∆t

m∑
n=1

‖dtun
h‖2L2(Ω)

}
, with m = 1, . . . , N ,

(5.11)

with C4 > 0 depending on |Ω|, ‖ip‖, ν, α, F, and β̃. Next, in order to bound the last term in (5.11), we
choose (vh, qh) = ((dt un

h,ω
n
h), pnh) in (5.1), apply some algebraic manipulation, use the identity (5.5)

and the Cauchy–Schwarz and Young’s inequalities, to obtain the discrete version of (3.34):

‖dtun
h‖2L2(Ω) +

1

2
dt

(
α ‖un

h‖2L2(Ω) + κ2 ‖div(un
h)‖2L2(Ω) + ν ‖ωn

h‖2L2(Ω)

)
+ F (|un

h|p−2un
h, dtu

n
h)Ω

+
1

2
∆t
(
α ‖dtun

h‖2L2(Ω) + κ2 ‖div(dtu
n
h)‖2L2(Ω) + ν ‖dtωn

h‖2L2(Ω)

)
(5.12)

+ κ1(curl(un
h)− ωn

h, dtcurl(un
h))Ω + κ1(dt(curl(un

h)− ωn
h),ωn

h)Ω ≤
1

2
‖fn‖2L2(Ω) +

1

2
‖dtun

h‖2L2(Ω) ,

where, using again (5.5), analogously to (3.35), we can obtain the identity

κ1(curl(un
h)− ωn

h, dtcurl(un
h))Ω + κ1(dt(curl(un

h)− ωn
h),ωn

h)Ω

=
κ1

2
dt

(
‖curl(un

h)‖2L2(Ω) − ‖ω
n
h‖2L2(Ω)

)
+
κ1

2
∆ t
(
‖curl(dtu

n
h)‖2L2(Ω) − ‖dtω

n
h‖2L2(Ω)

)
.

(5.13)

In turn, employing Hölder and Young’s inequalities, we are able to deduce (cf. [14, eq. (5.13)]):

(|un
h|p−2un

h, dtu
n
h)Ω ≥

(∆t)−1

p

(
‖un

h‖
p
Lp(Ω) − ‖u

n−1
h ‖pLp(Ω)

)
=

1

p
dt ‖un

h‖
p
Lp(Ω) . (5.14)

Thus, combining (5.12) with (5.13) and (5.14), summing up over the time index n = 1, ...,m, with
m = 1, . . . , N and multiplying by ∆t, we get

γ̂1 ‖um
h ‖2H1(Ω) +

2F

p
‖um

h ‖
p
Lp(Ω) + γ2 ‖ωm

h ‖2L2(Ω) + ∆t
m∑

n=1

‖dtun
h‖2L2(Ω)

≤ C5

{
∆t

m∑
n=1

‖fn‖2L2(Ω) + ‖u0
h‖

p
Lp(Ω) + ‖u0

h‖2H1(Ω) + ‖ω0
h‖2L2(Ω)

}
,

(5.15)
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with γ̂1 := min
{
α, κ1, κ2

}
, γ2 defined in (3.16), and C5 depending on ν, α, and F. Then, combining

(5.11) and (5.15) yields

∆t

m∑
n=1

‖pnh‖2L2(Ω) ≤ C6

{
∆t

m∑
n=1

(
‖fn‖2(p−1)

L2(Ω)
+ ‖fn‖2L2(Ω)

)
+ ‖u0

h‖
p
Lp(Ω) + ‖u0

h‖
2(p−1)
L2(Ω)

+ ‖u0
h‖2H1(Ω) + ‖ω0

h‖2L2(Ω)

}
, with m = 1, . . . , N

(5.16)

with C6 > 0 depending on |Ω|, ‖ip‖, ν, α, F, β̃, and p, which combined with (5.8), the fact that
(u0

h,ω
0
h) = (uh,0,ωh,0) and the estimate (4.5), implies (5.3). In addition, (5.15) and (4.5) yields

(5.4), which concludes the proof. �

Now, we proceed with establishing rates of convergence for the fully discrete scheme (5.1). To that
end, we subtract the fully discrete problem (5.1) from the continuous counterparts (2.9) at each time
step n = 1, . . . , N , to obtain the following error system:

dt [E(enu),vh] + [A(un)−A(un
h),vh] + [B(vh), enp ] = (rn(u),vh)Ω ,

[B(enu), qh] = 0 ,
(5.17)

for all vh ∈ Hu
h ×Hω

h and qh ∈ Hp
h, where rn denotes the difference between the time derivative and

its discrete analog, that is
rn(u) = dt un − ∂t u(tn).

In addition, we recall from [10, Lemma 4] that for sufficiently smooth u, there holds

∆ t
N∑

n=1

‖rn(u)‖2L2(Ω) ≤ C(∂tt u) (∆ t)2, with C(∂tt u) := C ‖∂tt u‖2L2(0,T ;L2(Ω)). (5.18)

Then, the proof of the theoretical rate of convergence of the fully discrete scheme (5.1) follows the
structure of the proof of Theorem 4.4, using discrete-in-time arguments as in the proof of Theorem 5.1
and the estimate (5.18) (see [14, Theorem 5.4] for a similar approach).

Theorem 5.2 Let the assumptions of Theorem 4.4 hold, with p ∈ [3, 4] and s ∈ (1/2, k + 1].
Then, for the solution of the fully discrete problem (5.1) there exists Ĉ(u, p) > 0 depending only
on C(u), C(∂t u), C(∂tt u), C(p), C(∂t p), |Ω|, ‖ip‖, ν, α, F, β̃,p, and data, such that

‖eu‖`∞(0,T ;L2(Ω)) + ∆ t ‖dt eu‖`2(0,T ;L2(Ω)) + ‖eu‖`2(0,T ;H1(Ω))

+ ‖eω‖`2(0,T ;L2(Ω)) + ‖ep‖`2(0,T ;L2(Ω)) ≤ Ĉ(u, p)
(
hs + hs (p−1) + ∆ t

)
. (5.19)

Remark 5.1 For the fully discrete scheme (5.1) we have considered the backward Euler method only
for the sake of simplicity. The analysis developed in Section 5 can be adapted to other time discretiza-
tions, such as BDF schemes or the Crank-Nicholson method.

6 Numerical results

In this section we present some examples illustrating the performance of the augmented mixed for-
mulation. The numerical methods have been implemented using open source finite element libraries
(FEniCS [1] and FreeFem++ [24]).

24



Figure 6.1: Example 1. Samples of numerical solutions for the accuracy test up to T = 0.05, using the
base-line parameters α = 100, ν = 0.01, F = 10, and p = 3.5 and a Taylor–Hood–Lagrange method.

Example 1: verification of spatial convergence

The analysis of convergence established in the previous sections is illustrated numerically using a
classical manufactured solution approach. Convergence rates under mesh refinement are computed
with respect to the closed-form velocity and pressure

u =

(
t cos(πx) sin(πy)
−t sin(πx) cos(πy)

)
, p = t sin(πx) sin(πy), (6.1)

and ω = curl(u), defined on the unit square Ω = (0, 1)2, up to a time T = 0.05 and using a
fixed time step ∆t = 0.01 (sufficiently small not to interfere with the accuracy verification of the
spatial discretization). Non-homogeneous Dirichlet boundary conditions for velocity as well as the
forcing term f are imposed according to the exact manufactured solutions, and the average of the
approximate pressure is constrained to match that of the exact pressure (the constraint being imposed
through a real Lagrange multiplier). As the Dirichlet boundary conditions depend on time, this needs
to be taken into consideration when implementing the initialization of inner Newton–Raphson iterates
for each time step.

After backward Euler discretization, the nonlinear algebraic system encountered at each time iter-
ation is solved with a Newton–Raphson algorithm with an absolute incremental tolerance of 10−9 (on
the `2−norm of the finite element incremental vector), and each linear solve of the tangent system is
done with the unsymmetric multi-frontal direct solver MUMPS [2]. The finite element family used for
these numerical tests is Taylor–Hood–Lagrange (i.e., the three finite dimensional subspaces in (4.2)
with k = 1).

Table 6.1 illustrates the numerical convergence of the proposed method for this case, which uses
the following model parameters values α = 100, ν = 0.01, F = 10, and p = 3.5. We display velocity
errors in the H1(Ω)−norm, vorticity in the L2(Ω)−norm and pressure in the L2(Ω)−norm, computed
at the final time

eu := ‖u− uh‖H1(Ω), eω := ‖ω − ωh‖L2(Ω), ep := ‖p− ph‖L2(Ω), (6.2)

together with experimental rates of convergence

rate :=
log(e(·)/e

′
(·))

log(h/h′)
,
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DoF h eu rate eω rate ep rate avg it

69 0.71 3.67e-02 * 3.70e-02 * 9.12e-03 * 3.00
213 0.35 9.97e-03 1.88 8.98e-03 2.04 1.66e-03 2.46 3.00
741 0.18 3.36e-03 1.57 2.08e-03 2.11 3.42e-04 2.28 3.00

2757 0.09 1.12e-03 1.59 5.09e-04 2.03 8.12e-05 2.08 3.00
10629 0.04 2.71e-04 2.05 1.26e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 5.20e-05 2.38 3.16e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 1.05e-05 2.30 7.89e-06 2.00 1.26e-06 2.00 3.00

Table 6.1: Example 1. Error history with respect to mesh refinement, computed at T = 0.05 using
the base-line parameters α = 100, ν = 0.01, F = 10, and p = 3.5 and with a Taylor–Hood–Lagrange
method.

where h and h′ denote two consecutive mesh sizes with errors e(·) and e′(·), respectively. We also

tabulate the average of Newton–Raphson iterates (avg it) needed through all time steps on each
refinement level. Approximate solutions for this case are plotted in Figure 6.1.

Next we perform similar tests but now varying the Forchheimer exponent p and the Forchheimer
number F (Table 6.2). In Table 6.2(top) very slight differences (with respect to the error history
reported in Table 6.1) in absolute individual errors are observed for coarser meshes, but after the first
two mesh refinements the convergences are identical for all cases, showing the optimal O(hk+1) rate
as predicted by the theory. In Table 6.2(bottom) the iteration count increases due to the strength of
the nonlinearity (for F = 10000) but the convergence rates remain optimal.

The next set of runs focuses on varying the Darcy number α and the viscosity ν (see Table 6.3).
Optimal convergence rates are observed independently of the chosen Darcy number (see top table).
Regarding the variation in viscosity, Table 6.3(bottom) indicates an optimal convergence for vorticity
and pressure, whereas for velocity a clear sub-optimal convergence is attained for the case of smaller
viscosities.

To close this example, we note that for the cases discussed above (ν = 10−3, 10−4, 10−5) it is
possible to recover the optimal convergence by either setting a larger augmentation constant κ1, or by
modifying the velocity norm to

e∗u := ‖u− uh‖L2(Ω) + ν‖∇u−∇uh‖L2(Ω).

While the first remedy (putting κ1 = 0.5, for example) does not align with Remark 3.2, the method
seems to converge properly. This behavior is reported in Table 6.4. All other examples will take the
stabilization constants as in Remark 3.2 and the usual norms from (6.2).

As usual for grad-div type stabilizations, the divergence-free property of the approximate solutions
is modulated by the parameter κ2. This is exemplified in Table 6.5 where the effect of increasing κ2

is tested. We denote by P0(div(uh)) the L2-projection of div(uh) into the space of piecewise constant
functions. As the mesh is refined, the `∞ norm of the coefficient vector associated with P0(div(uh))
decreases down to 5.03e-11.
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DoF h eu rate eω rate ep rate avg it

p = 3

69 0.71 3.67e-02 * 3.70e-02 * 9.17e-03 * 3.00
213 0.35 9.97e-03 1.88 8.98e-03 2.04 1.66e-03 2.47 3.00
741 0.18 3.36e-03 1.57 2.08e-03 2.11 3.42e-04 2.28 3.00

2757 0.09 1.12e-03 1.59 5.09e-04 2.03 8.12e-05 2.08 3.00
10629 0.04 2.71e-04 2.05 1.26e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 5.20e-05 2.38 3.16e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 1.05e-05 2.30 7.89e-06 2.00 1.26e-06 2.00 3.00

p = 4

69 0.71 3.67e-02 * 3.70e-02 * 9.17e-03 * 3.00
213 0.35 9.97e-03 1.88 8.98e-03 2.04 1.66e-03 2.47 3.00
741 0.18 3.36e-03 1.57 2.08e-03 2.11 3.42e-04 2.28 3.00

2757 0.09 1.12e-03 1.59 5.09e-04 2.03 8.12e-05 2.08 3.00
10629 0.04 2.71e-04 2.05 1.26e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 5.20e-05 2.38 3.16e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 1.05e-05 2.30 7.89e-06 2.00 1.26e-06 2.00 3.00

DoF h eu rate eω rate ep rate avg it

F = 10−4

69 0.71 3.67e-02 * 3.70e-02 * 9.11e-03 * 2.00
213 0.35 9.97e-03 1.88 8.98e-03 2.04 1.66e-03 2.46 2.60
741 0.18 3.37e-03 1.57 2.08e-03 2.11 3.42e-04 2.28 2.80

2757 0.09 1.12e-03 1.59 5.09e-04 2.03 8.12e-05 2.08 3.00
10629 0.04 2.71e-04 2.05 1.26e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 5.20e-05 2.38 3.16e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 1.05e-05 2.30 7.89e-06 2.00 1.26e-06 2.00 3.00

F = 104

69 0.71 3.68e-02 * 3.70e-02 * 2.64e-02 * 4.00
213 0.35 9.54e-03 1.95 8.98e-03 2.04 2.31e-03 3.52 4.20
741 0.18 2.76e-03 1.79 2.08e-03 2.11 3.63e-04 2.67 4.00

2757 0.09 8.57e-04 1.69 5.09e-04 2.03 8.16e-05 2.15 4.00
10629 0.04 2.31e-04 1.89 1.26e-04 2.01 2.01e-05 2.02 4.20
41733 0.02 4.98e-05 2.21 3.16e-05 2.00 5.02e-06 2.00 4.60

165381 0.01 1.05e-05 2.25 7.89e-06 2.00 1.26e-06 2.00 4.60

Table 6.2: Example 1. Error history with respect to mesh refinement, computed at T = 0.05 using
the base-line parameters α = 100, ν = 0.01, and varying p with F = 10 fixed (top) and varying F with
p = 3.5 fixed (bottom).

Example 2: verification of spatial convergence in 3D

We also test the implementation and the accuracy of the method in 3D. This constitutes Example 2,
where we consider the exact solutions

u =

 t sin(πx) cos(πy) cos(πz)
−2t cos(πx) sin(πy) cos(πz)
t cos(πx) cos(πy) sin(πz)

 , p = t sin(πx) sin(πy) sin(πz),
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DoF h eu rate eω rate ep rate avg it

α = 10−4

69 0.71 3.73e-02 * 3.70e-02 * 4.98e-03 * 3.00
213 0.35 1.52e-02 1.29 9.07e-03 2.03 1.53e-03 1.71 3.00
741 0.18 7.27e-03 1.07 2.09e-03 2.12 3.35e-04 2.19 3.00

2757 0.09 1.94e-03 1.91 5.09e-04 2.04 8.10e-05 2.05 3.00
10629 0.04 3.29e-04 2.56 1.26e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 5.40e-05 2.61 3.16e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 1.06e-05 2.35 7.89e-06 2.00 1.26e-06 2.00 3.00

α = 104

69 0.71 3.67e-02 * 3.70e-02 * 6.46e-01 * 3.00
213 0.35 9.36e-03 1.97 8.98e-03 2.04 5.09e-02 3.67 3.00
741 0.18 2.39e-03 1.97 2.08e-03 2.11 4.57e-03 3.48 3.00

2757 0.09 5.98e-04 2.00 5.09e-04 2.03 3.37e-04 3.76 3.00
10629 0.04 1.50e-04 2.00 1.26e-04 2.01 2.93e-05 3.53 3.00
41733 0.02 3.76e-05 1.99 3.16e-05 2.00 5.20e-06 2.49 3.00

165381 0.01 9.48e-06 1.99 7.89e-06 2.00 1.26e-06 2.05 3.00

DoF h eu rate eω rate ep rate avg it

ν = 10−5

69 0.71 3.67e-02 * 3.70e-02 * 9.13e-03 * 3.00
213 0.35 1.00e-02 1.87 8.98e-03 2.04 1.67e-03 2.45 3.00
741 0.18 3.64e-03 1.46 2.09e-03 2.11 3.44e-04 2.27 3.00

2757 0.09 1.69e-03 1.11 5.09e-04 2.03 8.13e-05 2.08 3.00
10629 0.04 8.41e-04 1.00 1.26e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 4.21e-04 1.00 3.16e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 2.05e-04 1.04 7.89e-06 2.00 1.26e-06 2.00 3.00

ν = 10−4

69 0.71 3.67e-02 * 3.70e-02 * 9.13e-03 * 3.00
213 0.35 1.00e-02 1.87 8.98e-03 2.04 1.67e-03 2.45 3.00
741 0.18 3.64e-03 1.46 2.09e-03 2.11 3.44e-04 2.27 3.00

2757 0.09 1.68e-03 1.12 5.09e-04 2.03 8.13e-05 2.08 3.00
10629 0.04 8.21e-04 1.03 1.26e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 3.82e-04 1.10 3.16e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 1.48e-04 1.37 7.89e-06 2.00 1.26e-06 2.00 3.00

ν = 10−3

69 0.71 3.67e-02 * 3.70e-02 * 9.13e-03 * 3.00
213 0.35 1.00e-02 1.88 8.98e-03 2.04 1.66e-03 2.45 3.00
741 0.18 3.61e-03 1.47 2.09e-03 2.11 3.44e-04 2.27 3.00

2757 0.09 1.59e-03 1.18 5.09e-04 2.03 8.13e-05 2.08 3.00
10629 0.04 6.66e-04 1.26 1.26e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 2.06e-04 1.69 3.16e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 4.12e-05 2.32 7.89e-06 2.00 1.26e-06 2.00 3.00

Table 6.3: Example 1. Error history with respect to mesh refinement at T = 0.05, computed using
the base-line parameters p = 3.5, F = 10, and varying α with ν = 0.01 fixed (top) and varying ν with
α = 100 fixed (bottom). A sub-optimal convergence in the velocity is observed for small viscosity.
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DoF h eu rate eω rate ep rate avg it

ν = 10−5

69 0.71 3.48e-02 * 3.71e-02 * 4.82e-03 * 3.00
213 0.35 9.67e-03 1.85 8.99e-03 2.04 1.51e-03 1.68 3.00
741 0.18 2.43e-03 1.99 2.09e-03 2.11 3.36e-04 2.17 3.00

2757 0.09 6.01e-04 2.01 5.10e-04 2.03 8.11e-05 2.05 3.00
10629 0.04 1.50e-04 2.00 1.27e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 3.76e-05 2.00 3.18e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 9.44e-06 1.99 8.01e-06 1.99 1.26e-06 2.00 3.00
ν = 10−4

69 0.71 3.48e-02 * 3.71e-02 * 4.82e-03 * 3.00
213 0.35 9.67e-03 1.85 8.99e-03 2.04 1.51e-03 1.68 3.00
741 0.18 2.43e-03 1.99 2.09e-03 2.11 3.36e-04 2.17 3.00

2757 0.09 6.01e-04 2.01 5.10e-04 2.03 8.11e-05 2.05 3.00
10629 0.04 1.50e-04 2.00 1.27e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 3.75e-05 2.00 3.18e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 9.42e-06 1.99 7.99e-06 1.99 1.26e-06 2.00 3.00
ν = 10−3

69 0.71 3.48e-02 * 3.71e-02 * 4.82e-03 * 3.00
213 0.35 9.67e-03 1.85 8.99e-03 2.04 1.51e-03 1.68 3.00
741 0.18 2.43e-03 1.99 2.09e-03 2.11 3.36e-04 2.17 3.00

2757 0.09 6.01e-04 2.01 5.10e-04 2.03 8.11e-05 2.05 3.00
10629 0.04 1.50e-04 2.00 1.27e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 3.75e-05 2.00 3.17e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 9.36e-06 2.00 7.92e-06 2.00 1.26e-06 2.00 3.00

DoF h e∗u rate eω rate ep rate avg it

ν = 10−5

69 0.71 1.87e-03 * 3.70e-02 * 9.13e-03 * 3.00
213 0.35 2.74e-04 2.77 8.98e-03 2.04 1.67e-03 2.45 3.00
741 0.18 5.51e-05 2.32 2.09e-03 2.11 3.44e-04 2.27 3.00

2757 0.09 1.30e-05 2.09 5.09e-04 2.03 8.13e-05 2.08 3.00
10629 0.04 3.23e-06 2.01 1.26e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 8.06e-07 2.00 3.16e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 1.96e-07 2.04 7.89e-06 2.00 1.26e-06 2.00 3.00
ν = 10−4

69 0.71 1.87e-03 * 3.70e-02 * 9.13e-03 * 3.00
213 0.35 2.74e-04 2.77 8.98e-03 2.04 1.67e-03 2.45 3.00
741 0.18 5.51e-05 2.32 2.09e-03 2.11 3.44e-04 2.27 3.00

2757 0.09 1.29e-05 2.09 5.09e-04 2.03 8.13e-05 2.08 3.00
10629 0.04 3.16e-06 2.03 1.26e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 7.38e-07 2.10 3.16e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 1.45e-07 2.35 7.89e-06 2.00 1.26e-06 2.00 3.00
ν = 10−3

69 0.71 1.87e-03 * 3.70e-02 * 9.13e-03 * 3.00
213 0.35 2.74e-04 2.77 8.98e-03 2.04 1.66e-03 2.45 3.00
741 0.18 5.47e-05 2.33 2.09e-03 2.11 3.44e-04 2.27 3.00

2757 0.09 1.24e-05 2.14 5.09e-04 2.03 8.13e-05 2.08 3.00
10629 0.04 2.68e-06 2.21 1.26e-04 2.01 2.01e-05 2.01 3.00
41733 0.02 4.54e-07 2.56 3.16e-05 2.00 5.02e-06 2.00 3.00

165381 0.01 7.80e-08 2.57 7.89e-06 2.00 1.26e-06 2.00 3.00

Table 6.4: Example 1. Error history with respect to mesh refinement at T = 0.05, computed using
the base-line parameters p = 3.5, F = 10, α = 100, varying ν and using κ1 = 0.5 (top), and κ1 = ν/2
with a different velocity norm (bottom).
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DoF h ‖P0(div(uh))‖`∞
κ2 = 0.005 κ2 = 1 κ2 = 100 κ2 = 50000

69 0.71 2.81e-03 3.47e-03 8.30e-04 2.00e-06
213 0.35 3.43e-03 8.91e-04 1.14e-04 2.64e-07
741 0.18 2.28e-03 1.40e-04 1.10e-05 2.44e-08

2757 0.09 1.13e-03 1.91e-05 1.57e-06 3.55e-09
10629 0.04 4.66e-04 2.50e-06 3.23e-07 8.50e-10
41733 0.02 1.34e-04 3.20e-07 8.44e-08 1.27e-10

165381 0.01 3.82e-05 9.01e-08 7.39e-09 5.03e-11

Table 6.5: Example 1. Decay of div(uh) (projected into the space of piecewise constants) with respect
to mesh refinement at T = 0.05, computed using the base-line parameters p = 3.5, F = 10, α = 100,
ν = 0.01, using κ1 = ν/2 and increasing κ2.

DoF h eu rate eω rate ep rate avg it

Taylor–Hood–Lagrange

484 0.87 4.81e-01 – 4.22e-01 – 7.81e-02 – 3.00
2688 0.43 1.32e-01 1.86 1.26e-01 1.74 1.30e-02 2.58 3.00

17656 0.22 3.98e-02 1.73 2.93e-02 2.11 2.45e-03 2.41 3.00
127464 0.11 1.19e-02 1.74 7.12e-03 2.04 5.39e-04 2.19 3.00
967624 0.05 2.85e-03 2.06 1.76e-03 2.01 1.32e-04 2.02 2.67

MINI Element–Lagrange

334 0.87 2.56e+00 – 5.32e-01 – 7.79e-02 – 2.67
2028 0.43 1.45e+00 0.82 1.67e-01 1.68 2.23e-02 1.52 3.00

14320 0.22 4.93e-01 1.56 4.94e-02 1.75 1.41e-02 1.19 3.00
108120 0.11 1.96e-01 1.33 1.66e-02 1.57 5.92e-03 1.25 3.00
841384 0.05 9.15e-02 1.10 5.60e-03 1.57 1.76e-03 1.61 3.67

Crouzeix–Raviart–Lagrange

490 0.87 7.64e-01 – 6.46e-01 – 7.52e-02 – 3.00
3352 0.43 4.05e-01 0.92 2.14e-01 1.59 3.07e-02 0.77 3.00

24844 0.22 2.15e-01 0.91 6.06e-02 1.82 1.74e-02 0.94 3.00
191380 0.11 1.04e-01 0.99 1.94e-02 1.64 8.94e-03 0.95 3.00

1502500 0.05 5.03e-01 0.99 7.43e-03 1.47 4.50e-03 0.96 3.67

Table 6.6: Example 2. Error history with respect to mesh refinement in 3D, computed up to the final
time T = 0.03 using the parameters α = 100, ν = 0.01, F = 10, and p = 4 and with three different
discretizations.

and ω = curl(u), defined on the unit cube Ω = (0, 1)3, and now up to a time T = 0.03 and using
a fixed time step ∆t = 0.01. We also use different discretizations. For this case we have used the
parameters α = 100, ν = 0.01, F = 10, p = 4 and tabulate the results in Table 6.6, which indicate an
optimal convergence.
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∆t Eu rate Eω rate Ep rate avg it

0.5 2.82e-02 – 2.80e-02 – 2.80e-02 – 3.00
0.25 1.35e-02 1.06 1.34e-02 1.06 1.35e-02 1.05 3.00
0.125 6.62e-03 1.03 6.57e-03 1.03 6.63e-03 1.03 3.00
0.0625 3.28e-03 1.02 3.25e-03 1.02 3.28e-03 1.02 3.00
0.0312 1.63e-03 1.01 1.62e-03 1.01 1.63e-03 1.01 3.00
0.0156 8.15e-04 1.00 8.05e-04 1.00 8.20e-04 0.99 3.00

Table 6.7: Example 3. Error history with respect to time step refinement, computed up to the final
time T = 1 using the parameters α = 1, ν = 0.1, F = 1, and p = 4.

Example 3: verification of temporal convergence

To close the verification of convergence, we conduct a test to illustrate the convergence in time. The
time interval is subdivided, and instead of (6.1) we consider the following manufactured solutions

u =

(
sin(t)xy

− sin(t)(1
2y

2 + x)

)
, p = exp(−t)(x4 − y4),

and ω = curl(u). A fixed structured mesh of 40 elements per side is used to discretize the unit square,
and the parameters are α = 1, ν = 0.1, F = 1, and p = 4. The time interval (0,1) is discretized into
successively refined segments and the convergence history is displayed in Table 6.7. There we show
the errors in the `2(0, T ;V ) norm (cf. (5.2)), denoted as

Eu :=

( N∑
n=1

∆t‖u− un
h‖2H1(Ω)

)1/2

, Eω :=

( N∑
n=1

∆t‖ω − ωn
h‖2L2(Ω)

)1/2

, Ep :=

( N∑
n=1

∆t‖p− pnh‖2L2(Ω)

)1/2

,

and the corresponding rates of convergence are

r :=
log(E(·)/E

′
(·))

log(∆t/[∆t]′)
,

where ∆t and [∆t]′ denote two consecutive time steps with errors E(·) and E′(·), respectively. The
expected linear convergence is observed for all fields. For this case it suffices to take κ2 = κ1 = 0.05
to achieve optimal convergence.

Example 4: flow in fractured porous media

Next we focus on two problems of application relevance, where closed-form solutions are not available.
We consider as computational domain a regularization of the upper-right quarter of the well-known five
spot geometry (see, e.g., [28]), that is, Ω = (0, 1)2 \ (B0.05(0, 0)∪B0.05(1, 1)), where Br(x

c) denotes the
ball of radius r centered at a given point xc = (xc, yc). We generate a simple network of relatively large
fractures and generate a relatively coarse unstructured mesh made of 16954 triangles. The bottom
left circle arc is an inlet section (or injection well) Γin on which we impose a constantly increasing
inflow velocity uin = tx

4|x| . On the walls we set no-slip velocity, and on the outlet Γout (the producer

well, located at the top-right circle arc) we prescribe a zero traction condition (using a pseudo-stress,
as the formulation does not easily allow for exact stress reconstruction).

For this example the external force is zero, the Forchheimer exponent is p = 3.2, the viscosity is
ν = 0.0001, the final time is T = 3 and the fixed time step is ∆t = 0.2. In order to illustrate the
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Figure 6.2: Example 4. Samples at t = 3, of numerical solutions for the quarter five-spot filtration
problem with embedded fractures. Velocity magnitude (left) velocity line integral convolution (centre
left), vorticity (centre right) and pressure (right) for fractures much less permeable than rock (top
row) and fractures much more permeable than rock (bottom).

ability of the model to capture the Stokes and Darcy regimes, the Forchheimer and Darcy coefficients
are taken heterogeneous in the following manner: On the bulk domain we use a normal random field
η(x) between -0.1 and 0.1, and take case A

α(x) =

{
αmax(0.9 + η(x)) in the rock,

αmin in the fractures,
F(x) =

{
Fmax(0.9 + η(x)) in the rock,

Fmin in the fractures,

and case B as

α(x) =

{
αmin(0.9 + η(x)) in the rock,

αmax in the fractures,
F(x) =

{
Fmin(0.9 + η(x)) in the rock,

Fmax in the fractures.

That is, case A has fractures that are much less permeable than the rest of the domain while case
B follows the opposite arrangement. Here we have considered the constants Fmax = 5000, Fmin =
1, αmin = 0.1, αmax = 500. In Figure 6.2 we show line convolution integrals of velocity, pressure, and
vorticity profiles at the final time for both permeability distributions. A steep pressure gradient is
observed near the injection wells in both cases. We also see from the different velocity and vorticity
patterns in case B, that the flow avoids the region with lowest permeability. Both cases required
almos the same average number of Newton–Raphson iterations (3.73.vs 3.86) to reach the prescribed
tolerance of 10−7.
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Figure 6.3: Example 5. Samples of velocity streamlines (left), vorticity streamlines (center) and
pressure distribution (right) at T = 1 for the lid-driven cavity test with discontinuous Darcy and
Forchheimer coefficients.

Example 5: lid-driven heterogeneous cubic cavity

Finally, we conduct a simulation of the 3D lid-driven cavity flow within an inhomogeneous unit cube
Ω = (0, 1)3. On the top lid z = 1 we set the tangential velocity u = (1, 0, 0) whereas the remainder
of the boundary has no-slip conditions. The fluid inside the cavity is initially at rest. With this
configuration, high pressure gradients are expected to develop near the discontinuity of the Dirichlet
data. We use a tetrahedral mesh of 82944 elements, a time step of ∆t = 0.05 and run the test
until T = 1. The velocity-pressure pair is approximated with the MINI element. The body force
is f = 0 and the model parameters are ν = 0.015, p = 4, α = {1 if x ≤ 0.5, or 100 otherwise}, and
F = {100 if x ≤ 0.5, or 1 otherwise}. The numerical results are represented in Figure 6.3 showing
velocity and vorticity streamlines. A large-scale recirculation influenced by the transfer of momentum
from the top surface to the rest of the fluid is observed, but the usually expected symmetric flow
structure is disrupted by the discontinuity of the Darcy and Forchheimer numbers across the mid-
plane x = 0.5.
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