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A POSTERIORI VIRTUAL ELEMENT METHOD FOR THE ACOUSTIC

VIBRATION PROBLEM

F. LEPE, D. MORA, G. RIVERA, AND I. VELÁSQUEZ

Abstract. In two dimensions, we propose and analyze an a posteriori error estimator for the

acoustic spectral problem based on the virtual element method in H(div; Ω). Introducing an auxiliary
unknown, we use the fact that the primal formulation of the acoustic problem is equivalent to a

mixed formulation, in order to prove a superconvergence result, necessary to despise high order

terms. Under the virtual element approach, we prove that our local indicator is reliable and globally
efficient in the L2-norm. We provide numerical results to assess the performance of the proposed

error estimator.

1. Introduction

One of the most important subjects in the development of numerical methods for partial differential
equations is the a posteriori error analysis, since it allows dealing with singular solutions that arise
due, for instance, geometrical features of the domain or some particular boundary conditions, among
others. In this sense, and in particular for eigenvalue problems arising from problems related to solid
and fluid mechanics and electromagnetism, just to mention some possible applications, the a posteriori
analysis has taken relevance in recent years. (see [2, 12, 14, 11, 21, 22, 33, 35, 38, 39] and the references
therein).

The virtual element method (VEM), introduced in [4], has shown remarkable results in different
problems, and particularly for solving eigenproblems, showing great accuracy and flexibility in the
approximation of eigenvalues and eigenfunctions. We mention [18, 19, 24, 25, 26, 27, 28, 31, 30, 32,
33, 34, 36] as recent works on this topic.

The acoustic vibration problem appears in important applications in engineering. In fact, it can
be used to design of structures and devices for noise reduction in aircraft or cars mainly related with
solid-structure interaction problems, among others important applications. In the last years, several
numerical methods have been developed in order to approximate the eigenpairs of the associated spec-
tral problem. In particular, a virtual element discretization has been proposed in [9]. It is well known
that one of the most important features of the virtual element method is the efficient computational
implementation and the flexibility on the geometries for meshes, where precisely adaptivity strategies
can be implemented in an easy way. In fact, the hanging nodes that appear in the refinement of some
element of the mesh, can be treated as new nodes since adjacent non matching element interfaces
are acceptable in the VEM. Recent research papers report interesting advantages of the VEM in the
a posteriori error analysis and adaptivity for source problems. We refer to [7, 16, 17, 37] and the
references therein, for instance, for a further discussion. On the other hand, a posteriori error analysis
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for eigenproblems by VEM have been recently introduced in [40, 33, 35], where primal formulations
in H1 have been considered.

The contribution of our work is the design and analysis of an a posteriori error estimator for the
acoustic spectral problem, by means of a VEM method. The VEM that we consider in our analysis is
the one introduced in [9] for the a priori error analysis of the acoustic eigenproblem. We stress that
the VEM method presented in [9] may be preferable to more standard finite elements even in the case
of triangular meshes in terms of dofs (cf. [9, Remark 3]). The formulation for the acoustic problem is
written only in terms of the displacement of the fluid, which leads to a bilinear form with divergence
terms, implying that the analysis for the a posteriori error indicator is not straightforward. This
difficulty produced by the H(div) formulations leads to analyze, in first place, an equivalent mixed
formulation which provides suitable results in order to control the so-called high order terms that
naturally appear. This analysis depending on an equivalent mixed formulation has been previously
considered in [13, 14] for the a posteriori analysis for the Maxwell’s eigenvalue problem, inspired by the
superconvergence results of [29] for mixed spectral formulations. We will follow the same techniques
for the present H(div) framework. However, due to the nature of the VEM, the local indicator that
we present contains an extra term depending on the virtual projector which needs to be analyzed
carefully.

The organization of our paper is the following: in section 2 we present the acoustic problem and
the mixed equivalent formulation for it. We recall some properties of the spectrum of the spectral
problem and regularity results. In section 3 we found the core of the analysis of our paper, where we
introduce the virtual element method for our spectral problem and technical results that will be needed
to establish a superconvegence result, with the aid of mixed formulations. Section 4 is dedicated to the
a posteriori error analysis, where we introduce our local and global indicators which, as is customary
in the posteriori error analysis, will be reliable and efficient. In section 5, we report numerical tests
where we assess the performance of our estimator. We end the article with some concluding remarks.

Throughout this work, Ω is a generic Lipschitz bounded domain of R2. For s ≥ 0, ‖·‖s,Ω stands

indistinctly for the norm of the Hilbertian Sobolev spaces Hs(Ω) or [Hs(Ω)]2 with the convention
H0(Ω) := L2(Ω). We also define the Hilbert space H(div; Ω) := {τ ∈ [L2(Ω)]2 : div τ ∈ L2(Ω)}, whose

norm is given by ‖τ‖2div,Ω := ‖τ‖20,Ω +‖div τ‖20,Ω. For s ≥ 0, we define the Hilbert space Hs(div; Ω) :=

{τ ∈ [Hs(Ω)]2 : div τ ∈ Hs(Ω)}, whose norm is given by ‖τ‖2Hs(div;Ω) := ‖τ‖2s,Ω +‖div τ‖2s,Ω. Finally,

we employ 0 to denote a generic null vector and the relation a . b indicates that a ≤ Cb, with a
positive constant C which is independent of a, b, and the size of the elements in the mesh. The value
of C might change at each occurrence. We remark that we will write the constant C only when is
needed.

2. The spectral problem

We consider the free vibration problem for an acoustic fluid within a bounded rigid cavity Ω ⊂ R2

with polygonal boundary Γ and outward unit normal vector n:

(1)


−ω2%w = −∇p in Ω,

p = −%c2 div w in Ω,

w · n = 0 on Γ,

where w is the fluid displacement, p is the pressure fluctuation, % the density, c the acoustic speed
and ω the vibration frequency. For simplicity on the forthcoming analysis, we consider % and c equal
to one.

Multiplying the first equation in (1) by a test function τ ∈ H0(div; Ω), where

H0(div; Ω) := {τ ∈ H(div; Ω) : τ · n = 0 on Γ} ,

integrating by parts, using the boundary condition and eliminating the pressure p, we arrive at the
following weak formulation
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Problem 2.1. Find (λ,w) ∈ R×H0(div; Ω), w 6= 0, such that∫
Ω

div w div τ = λ

∫
Ω

w · τ ∀ τ ∈ H0(div; Ω),

where λ := ω2. It is well known that the spectrum of Problem 2.1 consists in a sequence of eigenvalues
{0} ∪ {λk}k∈N, such that

i) λ = 0 is an infinite-multiplicity eigenvalue and its associated eigenspace is H0(div0; Ω) :=
{τ ∈ H0(div; Ω) : div τ = 0 in Ω};

ii) {λk}k∈N is a sequence of finite-multiplicity eigenvalues which satisfy λk →∞.

To perform an a posteriori error analysis for spectral problems, we need the so called supercon-
vergence result, in order to neglect high order terms as has been proved in [29] and already applied
in, for instance, the Maxwell’s eigenvalue problem [13, 14]. In order to obtain this superconvergence
result, we begin by introducing an equivalent mixed formulation for Problem 2.1. For λ 6= 0 let us
introduce the unknown

(2) u := −div w

λ
∈ L2(Ω).

To remain consistent with the notations, we will denote by (·, ·)0,Ω the L2(Ω) inner-product.

With the aid of (2) we write the following mixed eigenproblem:

Problem 2.2. Find (λ,w, u) ∈ R×H0(div; Ω)× L2(Ω), with (w, u) 6= 0, such that
∫

Ω

w · τ +

∫
Ω

udiv τ = 0 ∀ τ ∈ H0(div; Ω),∫
Ω

v div w = −λ
∫

Ω

uv ∀ v ∈ L2(Ω).

It is easy to check that the spectral Problem 2.1 and 2.2 are equivalent, except for λ = 0 on the
following sense:

• If (λ,w) is a solution of Problem 2.1, with λ 6= 0, then (λ,w,−div w/λ) is solution of Problem
2.2.
• If (λ,w, u) is a solution of Problem 2.2, then (λ,w) is solution of Problem 2.1 and u is defined

as in (2).

We introduce the bounded and symmetric bilinear forms a : H0(div; Ω) × H0(div; Ω) → R and
b : H0(div; Ω)× L2(Ω)→ R, defined by

a(w, τ ) :=

∫
Ω

w · τ , w, τ ∈ H0(div; Ω), b(τ , v) :=

∫
Ω

v div τ , τ ∈ H0(div; Ω), v ∈ L2(Ω),

which allows us to we rewrite Problem 2.2 as follows:

Problem 2.3. Find (λ,w, u) ∈ R×H0(div; Ω)× L2(Ω), (w, u) 6= (0, 0), such that{
a(w, τ ) + b(τ , u) = 0 ∀τ ∈ H0(div; Ω),

b(w, v) = −λ(u, v)0,Ω ∀v ∈ L2(Ω).

Remark 2.1. It is easy to check that if (λ,w,u) is a solution of Problem 2.3, then

w = ∇u and div w = −λu.

Let K be the kernel of bilinear form b(·, ·) defined by:

K := {τ ∈ H0(div; Ω) : div τ = 0 in Ω}.

It is well-known that bilinear form a(·, ·) is elliptic in K and that b(·, ·) satisfies the following inf-sup
condition (see [10])

(3) sup
06=τ∈H0(div;Ω)

b(τ , v)

‖τ‖div,Ω
≥ β‖v‖0,Ω ∀v ∈ L2(Ω),
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where β is a positive constant.

Remark 2.2. The eigenvalues of Problem 2.3 are positive. Indeed, taking τ = w and v = u in
Problem 2.3 and subtracting the resulting forms, we obtain

λ =
a(w,w)

‖u‖20,Ω
≥ 0.

In addition, λ = 0 implies (w, u) = (0, 0).

Let us introduce the following source problem: For a given g ∈ L2(Ω), the pair (w̃, ũ) ∈ H0(div; Ω)×
L2(Ω) is the solution of the following well posed problem

a(w̃, τ ) + b(τ , ũ) = 0 ∀ τ ∈ H0(div; Ω),(4)

b(w̃, v) = −(g, v)0,Ω ∀ v ∈ L2(Ω).(5)

According to [1], the regularity for the solution of system (4)–(5), (the associated source problem
to Problem 2.3) is the following: there exists a constant r̃ > 1/2 depending on Ω such that the
solution ũ ∈ H1+r̃(Ω), where r̃ is at least 1 if Ω is convex and r̃ is at least π/ω− ε, for any ε > 0 for a
non-convex domain, with ω < 2π being the largest reentrant angle of Ω. Hence we have the following
well known additional regularity result for the source problem (4)–(5).

(6) ‖w̃‖r̃,Ω + ‖ũ‖1+r̃,Ω . ‖g‖0,Ω.

Also, the eigenvalues are well characterized for this problem as is stated in the following result (see
[3] for instance).

Lemma 2.1. The eigenvalues of Problem 2.2 consist in a sequence of positive eigenvalues {λn : n ∈
N}, such that λn → ∞ as n → ∞. In addition, the following additional regularity result holds true
for eigenfunctions

‖w‖r,Ω + ‖ div w‖1+r,Ω + ‖u‖1+r,Ω . ‖u‖0,Ω,
with r > 1/2 and the hidden constant depending on the eigenvalue.

3. The virtual element discretization

We begin this section recalling the mesh construction and the assumptions considered to intro-
duce the discrete virtual element space. Then, we will introduce a virtual element discretization of
Problem 2.1 and provide a spectral characterization of the resulting discrete eigenvalue problem.

Let {Th}h be a sequence of decompositions of Ω into polygons K. Let hK denote the diameter of
the element K and h := max

K∈Ω
hK. For the analysis, the following standard assumptions on the meshes

are considered (see [5, 15]): there exists a positive real number CT such that, for every K ∈ Th and
for every h.

A1: the ratio between the shortest edge and the diameter hK of K is larger than CT ,
A2: K ∈ Th is star-shaped with respect to every point of a ball of radius CT hK.

For any subset S ⊆ R2 and nonnegative integer k, we indicate by Pk(S) the space of polynomials
of degree up to k defined on S. To keep the notation simpler, we denote by n a general normal unit
vector, its precise definition will be clear from the context. We consider now a polygon K and define
the following local finite dimensional space for k ≥ 0 (see [15, 5]):

HK
h := {τh ∈ H(div; K) ∩H(rot; K) : (τh · n) ∈ Pk(`)∀` ∈ ∂K, div τh ∈ Pk(K), rot τh = 0 on K} ,

We define the following degrees of freedom for functions τh in HK
h :∫

`

(τh · n) q ds ∀q ∈ Pk(`) ∀ edge ` ∈ ∂K,(7) ∫
K

τh · ∇q ∀q ∈ Pk(K)/P0(K),(8)
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which are unisolvent (see [9, Proposition 1]).

For every decomposition Th of Ω into polygons K, we define

Hh :=
{
τh ∈ H0(div; Ω) : τh|K ∈ HK

h

}
.

In agreement with the local choice we choose the following degrees of freedom:∫
`

(τh · n) q ds ∀q ∈ Pk(`) for all internal edges ` ∈ Th,∫
K

τh · ∇q ∀q ∈ Pk(K)/P0(K) in each element K ∈ Th.

In order to construct the discrete scheme, we need some preliminary definitions. For each element
K ∈ Th, we define the space

Ĥ
K

h := ∇(Pk+1(K)) ⊂ HK
h .

Next, we define the orthogonal projector ΠK
h : [L2(K)]2 −→ Ĥ

K

h by

(9)

∫
K

ΠK
h τ · ûh =

∫
K

τ · ûh ∀ûh ∈ Ĥ
K

h ,

and we point out that ΠK
h τh is explicitly computable for every τh ∈ HK

h using only its degrees of

freedom (7)–(8). In fact, it is easy to check that, for all τh ∈ HK
h and for all q ∈ Pk+1(K),∫

K

ΠK
h τh · ∇q =

∫
K

τh · ∇q = −
∫

K

q div τh +

∫
∂K

(τh · n) q ds.

On the other hand, let SK(·, ·) be any symmetric positive definite (and computable) bilinear form
that satisfies

(10) c0

∫
K

τh · τh ≤ SK(τh, τh) ≤ c1
∫

K

τh · τh ∀ τh ∈ HK
h ,

for some positive constants c0 and c1 depending only on the shape regularity constant CT from mesh
assumptions A1 and A2. Then, we define on each K the following bilinear form:

aK
h (uh, τh) :=

∫
K

ΠK
h uh ·ΠK

h τh + SK
(
uh −ΠK

h uh, τh −ΠK
h τh

)
uh, τh ∈ HK

h ,

and, in a natural way,

ah(uh, τh) :=
∑

K∈Th

aK
h (uh, τh), uh, τh ∈ Hh.

The following properties of the bilinear form aK
h (·, ·) are easily derived (by repeating, in our case, the

arguments from [15, Proposition 4.1]).

• Consistency :

aK
h (ûh, τh) =

∫
K

ûh · τh ∀ûh ∈ Ĥ
K

h ∀τh ∈ HK
h , ∀K ∈ Th.

• Stability : There exist two positive constants α∗ and α∗, independent of K, such that:

α∗

∫
K

τh · τh ≤ aK
h (τh, τh) ≤ α∗

∫
K

τh · τh ∀ τh ∈ HK
h , ∀K ∈ Th.

Now, we are in position to write the virtual element discretization of Problem 2.1.

Problem 3.1. Find (λh,wh) ∈ R×Hh, wh 6= 0 such that

(div wh,div τh)0,Ω = λhah(wh, τh) ∀ τh ∈ Hh.

We have the following spectral characterization of the discrete eigenvalue Problem 3.1 (see [9]).
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Remark 3.1. There exist Mh := dim(Hh) eigenvalues of Problem 3.1 repeated according to their

respective multiplicities, which are {0} ∪ {λhk}Nh

k=1, where:

i) the eigenspace associated with λh = 0 is Kh := {vh ∈ Hh : div vh = 0};
ii) λhk > 0, k = 1, . . . , Nh := Mh − dim(Kh), are non-defective eigenvalues repeated according

to their respective multiplicities.

Now, we introduce the virtual element discretization of Problem 2.3.

Problem 3.2. Find (λh,wh, uh) ∈ R×Hh ×Qh, (wh, uh) 6= (0, 0), such that{
ah(wh, τh) + b(τh, uh) = 0 ∀ τh ∈ Hh,

b(wh, vh) = −λh(uh, vh)0,Ω ∀ vh ∈ Qh,

where Qh :=
{
q ∈ L2(Ω) : q|K ∈ Pk(K) ∀K ∈ Th

}
, k ≥ 0.

We also introduce the L2(Ω)-orthogonal projection

Pk : L2(Ω)→ Qh,

and the following approximation result (see [5]): if 0 ≤ s ≤ k + 1, it holds

(11) ‖v − Pkv‖0,Ω . hs‖v‖s,Ω ∀v ∈ Hs(Ω).

The next two technical results establish the approximation properties for τ I and their proofs can
be found in [9, Appendix].

Lemma 3.1. Let τ ∈ H0(div; Ω) be such that τ ∈ [Ht(Ω)]2 with t > 1/2. There exists τ I ∈ Hh that
satisfies:

div τ I = Pk(div τ ) in Ω.

Consequently, for all K ∈ Th
‖ div τ I‖0,K ≤ ‖div τ‖0,K,

and, if div τ |K ∈ Hδ(K) with δ ≥ 0, then

‖ div τ − div τ I‖0,K . hmin{δ,k+1}
K |div τ |δ,K.

Lemma 3.2. Let τ ∈ H0(div; Ω) be such that τ ∈ [Ht(Ω)]2 with t > 1/2. Then, there exists τ I ∈ Hh

such that, if 1 ≤ t ≤ k + 1, there holds

‖τ − τ I‖0,K . htK|τ |t,K,

where the hidden constant is independent of h. Moreover, if 1/2 < t ≤ 1, then

‖τ − τ I‖0,K . htK|τ |t,K + hK‖ div τ‖0,K.

Let Πh be defined in [L2(Ω)]2 by (Πhτ )|K := ΠK
h τ for all K ∈ Th, where ΠK

h is the operator
defined in (9), and that satisfies the following result proved in [9, Lemma 8].

Lemma 3.3. For every q ∈ H1+t(Ω) with 1/2 < t ≤ k + 1, there holds

‖∇q −Πh(∇q)‖0,Ω . h
t‖∇q‖t,Ω.

As a consequence of the previous result we have the following estimate.

Lemma 3.4. For all r > 1
2 as in Lemma 2.1, the following error estimate holds

‖w −Πhw‖0,Ω . hmin{r,k+1}.

Proof. The proof follows directly from Remark 2.1, Lemma 2.1 and Lemma 3.3. �

The following results gives us the error estimates between the eigenfunctions and eigenvalues of
Problems 3.2 and 2.3.
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Theorem 3.1. For all r > 1
2 as in Lemma 2.1, the following error estimates hold

‖w −wh‖div,Ω + ‖u− uh‖0,Ω . h
min{r,k+1},

|λ− λh| . h2 min{r,k+1},
(12)

where the hidden constants are independent of h.

Proof. The proof follows by repeating the arguments in [27, Theorems 4.2, 4.3 and 4.4]. �

For the a posteriori error analysis that will be developed in Section 4, we will need the following
auxiliary results, which have been adapted from [13, 14].

In what follows, let (λ,w, u) be a solution of Problem 2.3, where we assume that λ is a simple
eigenvalue. Let (w, u) be an associated eigenfunction which we normalize by taking ‖u‖0,Ω = 1. Then,
for each mesh Th, there exists a solution (λh,wh, uh) of Problem 3.2 such that λh converges to λ, as
h goes to zero, ‖uh‖0,Ω = 1, and Theorem 3.1 holds true.

Let us introduce the following well posed source problem with data (λ, u): Find (ŵh, ûh) ∈ Hh ×
Qh, such that

(13)

{
ah(ŵh, τh) + b(τh, ûh) = 0 ∀ τh ∈ Hh,

b(ŵh, vh) = −λ(u, vh)0,Ω ∀ vh ∈ Qh.

With this mixed problem at hand, we will prove the following technical lemmas with the goal of
derive a superconvergence result for our VEM. To make matters precise, the forthcoming analysis is
inspired by [14], where the authors have generalized the results previously obtained by [10, 20, 23].
We begin proving a higher-order approximation between ûh and Pku.

Lemma 3.5. Let (λ,w, u) be a solution of Problem 2.3 and (ŵh, ûh) be a solution of the mixed
formulation (13). Then, there holds

‖ûh − Pku‖0,Ω . hr̃ (‖w − ŵh‖div,Ω + ‖w −Πhw‖0,Ω) ,

where r̃ ∈ ( 1
2 , 1] and the hidden constant is independent of h.

Proof. Let (w̃, ũ) ∈ H0(div; Ω) × L2(Ω) be the unique solution of the following well posed mixed
problem

(14)

{
a(w̃, τ ) + b(τ , ũ) = 0 ∀ τ ∈ H0(div; Ω),

b(w̃, v) = −(ûh − Pku, v)0,Ω ∀ v ∈ L2(Ω).

Notice that (14) is exactly problem (4)–(5) with datum ûh − Pku. Hence, since this problem is well
posed, we have the following regularity result, consequence of (6)

(15) ‖w̃‖r̃,Ω + ‖ũ‖1+r̃,Ω . ‖ûh − Pku‖0,Ω.

Observe that, thanks to the definition of Pk, the first equation of Problem 2.3, and the first equation
of (13), we have

(16) ‖ûh − Pku‖20,Ω = −b(w̃, ûh − Pku) = −b(w̃I , ûh − Pku) = −b(w̃I , ûh − u)

= −b(w̃I , ûh) + b(w̃I , u) = ah(ŵh, w̃I)− a(w, w̃I).

In the last two terms of (16), we add and subtract Πhw in order to obtain

ah(ŵh, w̃I)− a(w, w̃I) = ah(ŵh −Πhw, w̃I) + a(Πhw − ŵh, w̃I)︸ ︷︷ ︸
AI

+a(ŵh −w, w̃I)

= AI + a(ŵh −w, w̃I − w̃)︸ ︷︷ ︸
AII

+a(ŵh −w, w̃)

= AI +AII − b(ŵh −w, ũ)

= AI +AII − b(ŵh −w, ũ− Pkũ)− b(ŵh −w, Pkũ),
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where we have used the first equation of system (14). Moreover, testing the second equation in
Problem 2.3 and (13) with Pkũ ∈ Qh, we have b(ŵh −w, Pkũ) = 0, and hence

‖ûh − Pku‖20,Ω = AI +AII − b(ŵh −w, ũ− Pkũ).

Our next task is to estimate each terms on the right hand side of the identity above. We begin
with AI.

AI = ah(ŵh −Πhw, w̃I −Πhw̃) + a(ŵh −Πhw,Πw̃ − w̃I)

. ‖ŵh −Πhw‖0,Ω‖w̃I −Πw̃‖0,Ω

.
(
‖ŵh −w‖0,Ω + ‖w −Πhw‖0,Ω

)(
‖w̃I − w̃‖0,Ω + ‖w̃ −Πhw̃‖0,Ω

)
. hr̃

(
‖ŵh −w‖0,Ω + ‖w −Πhw‖0,Ω

)
‖ûh − Pku‖0,Ω,(17)

where we have applied Lemmas 3.1 and 3.3 and (15). Now, for AII we have

(18) AII = a(ŵh −w, w̃I − w̃) . hr̃‖w − ŵh‖0,Ω‖ûh − Pku‖0,Ω,
and finally, invoking (15), we obtain

(19) b(ŵh −w, ũ− Pkũ) . hr̃‖ div(ŵh −w)‖0,Ω‖ûh − Pku‖0,Ω.
Collecting (17), (18) and (19), we have

‖ûh − Pku‖0,Ω . hr̃ (‖w − ŵh‖div,Ω + ‖w −Πhw‖0,Ω) ,

concluding the proof. �

The following auxiliar result shows that the term ‖w − ŵh‖div,Ω is bounded.

Lemma 3.6. Let (λ,w, u) be a solution of Problem 2.3 and (ŵh, ûh) be a solution of (13). Then,
there holds

‖w − ŵh‖div,Ω . h
r,

with r > 1/2 as in Lemma 2.1 and the hidden constant is independent of h.

Proof. Let (λh,wh, uh) be solution of Problem 3.2. Now, subtracting (13) from Problem 3.2 we obtain{
ah(wh − ŵh, τh) + b(τh, uh − ûh) = 0 ∀ τh ∈ Hh,

b(wh − ŵh, vh) = (λu− λhuh, vh)0,Ω ∀ vh ∈ Qh.

First, using the inf-sup condition for bilinear form b(·, ·) (cf. (3)) we have

‖uh − ûh‖0,Ω ≤ ‖wh − ŵh‖0,Ω.
Thus,

‖wh − ŵh‖0,Ω . ‖λhuh − λu‖0,Ω.
Moreover from the second equation, we get

‖ div(wh − ŵh)‖0,Ω ≤ ‖λhuh − λu‖0,Ω.
On the other hand, from the triangle inequality and the above estimates, we obtain

‖w − ŵh‖div,Ω ≤ ‖w −wh‖div,Ω + ‖wh − ŵh‖div,Ω

. ‖w −wh‖div,Ω + ‖λhuh − λu‖0,Ω

. ‖w −wh‖div,Ω + |λh − λ|‖uh‖0,Ω + |λ|‖uh − u‖0,Ω,

where using (12) we conclude the proof. �

We have the following essential identity to conclude the superconvergence result presented in
Lemma 3.7.

(20) − λh(ûh, uh) = −λh(uh, ûh) = b(wh, ûh)

= −ah(ŵh,wh) = −ah(wh, ŵh) = b(ŵh, uh) = −λ(u, uh).
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Lemma 3.7. Let (λ,w, u) and (λh,wh, uh) be solutions of Problems 2.3 and 3.2, respectively, with
‖u‖0,Ω = ‖uh‖0,Ω = 1. Then, there holds

‖Pku− uh‖0,Ω . h2r̃,

where r̃ ∈ ( 1
2 , 1] and the hidden constant are independent of h.

Proof. Let (ŵh, ûh) be the solution of (13). From the triangle inequality we have

(21) ‖Pku− uh‖0,Ω ≤ ‖Pku− ûh‖0,Ω + ‖ûh − uh‖0,Ω.
Now, adapting the arguments of [14, Lemma 11] and using (20), we derive the following estimate

‖ûh − uh‖20,Ω . ‖ûh − Pku‖20,Ω +
[
‖w −wh‖2div,Ω + ‖u− uh‖20,Ω + ‖w −Πhw‖20,Ω

]2
.

Finally, from (21), the above estimate, together with Lemmas 3.4, 3.5, 3.6, and Theorem 3.1, we
conclude the proof. �

4. A posteriori error analysis

In this section, we develop an a posteriori error estimator for the acoustic eigenvalue problem (1).
The a posteriori error estimator that we will propose is of residual type and our goal is to prove that
is reliable and efficient.

Let us introduce some notations and definitions. For any polygon K ∈ Th we denote by EK the set
of edges of K and

E :=
⋃

K∈Th

EK.

We decompose E as E := EΩ ∪ EΓ, where EΓ := {` ∈ E : ` ⊂ Γ} and EΩ := E \ EΓ. On the

other hand, given ξ ∈ L2(Ω)2, for each K ∈ Th and ` ∈ EΩ, we denote by
r
ξ · t

z
the tangential jump

of ξ across `, that is
r
ξ · t

z
:= (ξ|K − ξ|K′)|` · t, where K and K′ are elements of Th having ` as

a common edge. Due the regularity assumptions on the mesh, for each polygon K ∈ Th there is a
sub-triangulation T K

h obtained by joining each vertex of K with the midpoint of the ball with respect
to which K is star-shaped. We define

T̂h :=
⋃

K∈Th

T K
h .

For each polygon K, we define the following computable and local terms

(22) R2
K := h2

K

∥∥∥rot ΠK
hwh

∥∥∥2

0,K
, θ2

K := SK(wh −ΠK
hwh,wh −ΠK

hwh), J ` :=
r
ΠK
hwh · t

z
,

which allows us to define the local error indicator

(23) ηK := R2
K + θ2

K +
∑
`∈EK

hK ‖J `‖20,` ,

and hence, the global error estimator

(24) η :=

{∑
K∈Th

η2
K

}1/2

.

In what follows we will prove that (24) is reliable and locally efficient. With this aim, we begin by
decomposing the error w −wh, using the classical Helmholtz decomposition as follows:

w −wh = ∇ψ + curlβ,

with ψ ∈ H̃1(Ω) := {v ∈ H1(Ω) : (v, 1)0,Ω = 0} and β ∈ H1
0(Ω). Moreover, the following regularity

result holds

(25) ‖ψ‖1,Ω + ‖ curlβ‖0,Ω . ‖w −wh‖0,Ω.
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With this decomposition at hand, we split the L2(Ω)-norm of the error w −wh into two terms,

(26) ‖w −wh‖20,Ω = (w −wh,∇ψ)0,Ω + (w −wh, curlβ)0,Ω.

To conclude the reliability, we begin by proving the following results

Lemma 4.1. There holds

(w −wh,∇ψ)0,Ω . h
2r̃‖w −wh‖0,Ω,

where r̃ ∈ ( 1
2 , 1] and the hidden constant are independent of h.

Proof. An integration by parts reveals that

(w −wh,∇ψ)0,Ω = −(div(w −wh), ψ)0,Ω + ((w −wh) · n, ψ)0,Γ.

Using that (w − wh) · n = 0 on Γ, the fact that div w = −λu, div wh = −λhuh, and adding and
subtracting λh(u− Pku, ψ)0,Ω, we obtain

(w −wh,∇ψ)0,Ω = ((λ− λh)u, ψ)0,Ω︸ ︷︷ ︸
I

+λh(u− Pku, ψ)0,Ω︸ ︷︷ ︸
II

+λh(Pku− uh, ψ)0,Ω︸ ︷︷ ︸
III

.

For the term I, we use (12), the fact that ‖u‖0,Ω = 1 and (25) in order to obtain

(λ− λh)(u, ψ)0,Ω . h
2 min{r,k+1}‖ψ‖0,Ω . h2 min{r,k+1}‖w −wh‖0,Ω,

with r > 1
2 as in Lemma 2.1. Applying the approximation properties (11) and (25) on II, we obtain

(u− Pku, ψ)0,Ω = (u− Pku, ψ − Pkψ)0,Ω . h‖u− Pku‖0,Ω|ψ|1,Ω . h2‖w −wh‖0,Ω.
Finally, for III, we use Lemma 3.7 and the bound for ‖ψ‖0,Ω to write

λh(Pku− uh, ψ)0,Ω . h
2r̃‖w −wh‖0,Ω.

Now combining the above estimates we conclude the proof. �

Given k ∈ N ∪ {0}, let us consider the following virtual discrete subspace of H1(Ω)

Vh :=
{
ζ ∈ H1(Ω) : ∆ζ ∈ Pk−1(K) ∀K ∈ Th, ζ ∈ C(∂K) : ζ|` ∈ Pk+1(`), ∀ edge ` ⊂ ∂K

}
.

Then, there exists ζI ∈ Vh that satisfies (see the proof of [35, Lemma 3.4])

‖ζ − ζI‖0,` . h1/2
` ‖ζ‖1,K and ‖ζ − ζI‖0,K . hK‖ζ‖1,K ∀ζ ∈ H1(K).

With this result at hand, now we prove the following result.

Lemma 4.2. There holds

(w −wh, curlβ)0,Ω . η‖ curlβ‖0,Ω,
where the hidden constant is independent of h and the discrete solution.

Proof. Since curlβ ∈ H0(div0; Ω), we have that (w, curlβ)0,Ω = 0. Thus,

(27) (w −wh, curlβ)0,Ω = (wh, curlβ)0,Ω = (wh −Πhwh, curlβ)0,Ω + (Πhwh, curlβ)0,Ω.

For the first term term on the right-hand side of the above equality we have

(wh −Πhwh, curlβ)0,Ω . η‖ curlβ‖0,Ω.(28)

Next, we introduce βI as the virtual interpolant of β, and using that curlβh ∈ H0(div0; Ω), we
have

(ΠK
hwh, curlβ)0,Ω = (ΠK

hwh, curl(β − βI))0,Ω =
∑

K∈Th

∫
K

ΠK
hwh · curl(β − βI).

Now, by using integration by parts, we obtain

(ΠK
hwh, curlβ)0,Ω =

∑
K∈Th

(∫
K

rot ΠK
hwh(β − βI) +

∫
∂K

(ΠK
hwh · t)(β − βI)

)
.
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Hence, applying Cauchy-Schwarz inequality and property of approximation of βI in the estimate
above yields to

(29) (ΠK
hwh, curlβ)0,Ω .

∑
K∈Th

ηK‖β‖1,ωK
≤ Cη‖ curlβ‖0,Ω.

Now, combining (27), (28) and (29) we conclude the proof.

�

We now provide an upper bound for our error estimator.

Lemma 4.3. The following error estimate holds

‖w −wh‖0,Ω . η + h2r̃,

where the hidden constants are independent of h and the discrete solution.

Proof. The proof is a consequence of (26), Lemmas 4.1 and 4.2, together to (25). �

Thanks to the previous lemmas, we have the following result

Lemma 4.4. The following error estimate holds

‖w −Πhwh‖0,Ω . η + h2r̃,

where the hidden constant is independent of h.

Proof. From the triangle inequality, together to (10), for the stability of the Πh-projector and Lemma
4.3, we have

‖w −Πhwh‖0,Ω ≤ ‖w −wh‖0,Ω + ‖wh −Πhwh‖0,Ω
. η + h2r̃.

Hence, we conclude the proof. �

Now we are in position to establish the reliability of our estimator.

Corollary 4.1. [Reliability] The following error estimate hold

‖w −wh‖0,Ω + ‖w −Πhwh‖0,Ω . η + h2r̃.

where the hidden constants are independent of h.

Remark 4.1. From Corollary 4.1, we note that O(h2r̃) can be considered a “higher order term”
when lowest order VEM (k = 0) is used. When k ≥ 1, the term can be considered a “higher order
term” when the eigenfunction is singular. This usualy happens when the eigenproblem is solved in
non-convex polygonal domains.

4.1. Efficiency. Now our aim is to prove that the local indicator ηK defined in (23) provides a lower
bound of the error w−wh in a vicinity of any polygon K. To do this task, we procede as is customary
for the efficiency analysis, using suitable bubble functions for the polygons and their edges.

The bubble functions that we will consider are based in [16]. Let ψK ∈ H1
0(Ω) be an interior bubble

function defined in a polygon K. These bubble functions can be constructed piecewise as the sum of
the cubic bubble functions for each triangle of the sub-triangulation T K

h that attain the value 1 at the
barycenter of each triangle. Also, the edge bubble function ψ` ∈ ∂K is a piecewise quadratic function

attaining the value of 1 at the barycenter of ` and vanishing on the triangles K ∈ T̂h that do not
contain ` on its boundary.

The following technical results for the bubble functions are a key point to prove the efficiency
bound.
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Lemma 4.5. For any K ∈ Th, let ψK be the corresponding interior bubble function. Then, there hold

‖p‖20,K .
∫

K

ψKp
2 . ‖p‖20,K ∀p ∈ Pk(K);

‖p‖0,K . ‖ψKp‖0,K + hK‖∇(ψKp)‖0,K . ‖p‖0,K ∀p ∈ Pk(K);

where the hidden constants are independent of hK

Lemma 4.6. For any K ∈ Th and ` ∈ EK, let ψ` be the corresponding edge bubble function. Then,
there holds

‖p‖20,` .
∫
`

ψ`p
2 . ‖p‖20,` ∀p ∈ Pk(`).

Moreover, for all p ∈ Pk(`), there exists an extension of p ∈ Pk(K), which we denote simply by p, such
that

h
−1/2
K ‖ψ`p‖0,K + h

1/2
K ‖∇(ψ`p)‖0,K . ‖p‖0,`,

where the hidden constants are independent of hK.

Now we are in position to establish the main result of this section.

Theorem 4.1. For any K ∈ Th, there holds

ηK . ‖wh −w‖0,ω`
+ ‖w −ΠK

hwh‖0,ω`
,

where ω` denotes the union of two polygons sharing an edge with K, and the hidden constant is
independent of h and the discrete solution.

Proof. The aim is to estimate each term of the local indicator (23). The proof is divided in three
steps:

• Step 1: We begin by estimating R2
K in (22). Invoking the properties of the bubble function

ψK, Cauchy-Schwarz inequality, and Lemma 4.5, we have

R2
K .

∫
K

ψK rot(ΠK
hwh) rot(ΠK

hwh) =

∫
K

ψK rot(ΠK
hwh) rot(ΠK

hwh −wh)

= −
∫

K

(ΠK
hwh −wh) curl(ψK rot(ΠK

hwh)) . ‖ΠK
hwh −wh‖0,Kh−1

K ‖rot(Πhwh)‖0,K ,

which implies that

(30) RK = hK‖ rot(ΠK
hwh)‖0,K . ‖w −wh‖0,K + ‖w −ΠK

hwh‖0,K.

• Step 2: Now we estimate Jh. Following the proof of [17, Lemma 5.16], we obtain

‖J `‖20,` . ‖ψ`J `‖20,` =

∫
`

(ψ`J `) · J ` =

∫
ω`

(w −ΠK
hwh) · curl(ψ`J `) +

∫
ω`

ψ`J ` rot ΠK
hwh.

Hence, from Cauchy-Schwarz inequality, the bubble function properties and (30), we have

‖J `‖20,` . |ψ`J `|1,ω`
‖w −ΠK

hwh‖0,ω`
+ ‖ψ`J `‖0,ω`

‖ rot ΠK
hwh‖0,ω`

,

. h−1/2
K

(
‖wh −w‖0,ω`

+ ‖w −ΠK
hwh‖0,ω`

)
‖J `‖0,`.

Hence, we conclude that

(31) h
1/2
K ‖J `‖0,` . ‖wh −w‖0,ω`

+ ‖w −ΠK
hwh‖0,ω`

.

• Step 3: The final step is to control the term θK. To do this task, we use the stability property
(10), add and subtract w with the purpose of applying triangular inequality as follows

(32) θK ≤ c1‖wh −ΠK
hwh‖0,K . ‖wh −w‖0,K + ‖ΠK

hwh −w‖0,K.

Hence, the proof is complete by gathering (30), (31) and (32). �
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As a direct consequence of lemma above, we have the following result that allows us to conclude
the efficiency of the local and global error estimators for the acoustic problem, and hence, for its
equivalent mixed problem.

Corollary 4.2. [Efficiency] There holds

η . ‖w −wh‖0,Ω + ‖w −Πhwh‖0,Ω,

where the hidden constants are independent of h.

5. Numerical results

In this section, we report numerical tests in order to assess the behavior of the a posteriori estimator
defined in (24). With this aim, we have implemented in a MATLAB code a lowest order VEM scheme
on arbitrary polygonal meshes.

We have used the mesh refinement algorithm described in [7], which consists in splitting each
element of the mesh into n quadrilaterals (n being the number of edges of the polygon) by connecting
the barycenter of the element with the midpoint of each edge, which will be named as Adaptive
VEM. Notice that although this process is initiated with a mesh of triangles, the successively created
meshes will contain other kind of convex polygons, as it can be seen in Figure 1. Both schemes are
based on the strategy of refining those elements K ∈ Th that satisfy

ηK ≥ 0.5 max
K′∈Th

{ηK′}.

5.1. Test 1: L-shaped domain. We will consider the non-convex domain Ω := (0, 1) × (0, 1) \
[1/2, 1]× [1/2, 1].

It is clear that the first eigenfunction of the acoustic problem in this domain is not smooth enough,
due the presence of a geometrical singularity at

(
1
2 ,

1
2

)
. This leads to a lack of regularity due to the

reentrant angle ω = π/3. Therefore, according to [9], using quasi-uniform meshes, the convergence
rate for the eigenvalues should be |λ − λh| = O(h4/3) ≈ O(N−2/3), where N denotes the number of
degrees of freedom. Then, the proposed a posteriori estimator (24) must be capable to recover the
optimal order |λ− λh| = O(N−1), when the adaptive refinement is performed near to the singularity
point.

For the numerical tests, we have computed the smallest eigenvalue and its corresponding eigen-
function using the MATLAB command eigs.

Figures 1 to 2 show the adaptively refined meshes obtained with VEM procedures and different
initial meshes. Figure 1 is initiated with a mesh of triangles, while Figure 2 is initiated with a
non-structured hexagonal meshes made of convex hexagons.

Figure 1. Test 1. Adaptively refined meshes obtained with VEM scheme at refine-
ment steps 0, 1 and 8 (Adaptive VEM).
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Figure 2. Test 1. Adaptively refined meshes obtained with VEM scheme at refine-
ment steps 0, 1 and 8 (Adaptive VEM).

Figures 1 and 2 show that our estimator identifies the singularity point of the domain, leading to a
refinement on the region of the re-entrant angle. This refinement allows to achieve the optimal order
of convergence for the eigenvalue.

In order to compute the errors |λ1−λh1|, and since an exact eigenvalue is not known, we have used
an approximation based on a least-squares fitting of the computed values obtained with extremely
refined meshes. Thus, we have obtained the value λ1 = 5.9017, which has at least four accurate
significant digits.

We report in Table 1 the lowest eigenvalue λh1 on uniformly refined meshes, adaptively refined
meshes with VEM schemes and in the last column we report adaptively refined meshes with VEM
schemes and initial non-structured hexagonal meshes. Each table includes the estimated convergence
rate.

Table 1. Test 1. Computed lowest eigenvalue λh1 computed with different schemes.
Uniform VEM Adaptive VEM Adaptive VEMH
N λh1 N λh1 N λh1

245 5.6831 245 5.6831 829 5.8283
940 5.8231 266 5.7356 872 5.8495
3680 5.8732 288 5.7554 945 5.8605
14560 5.8914 381 5.7805 1131 5.8688
57920 5.8982 889 5.8440 2010 5.8833
231040 5.9008 1206 5.8620 3296 5.8895

1731 5.8713 4932 5.8928
3639 5.8876 7287 5.8955
5206 5.8924 12003 5.8982
7653 5.8949 19349 5.8998
14545 5.8985 30751 5.9007
22982 5.9000 50421 5.9014
33844 5.9006
61641 5.9015

Order O
(
N−0.79

)
Order O

(
N−1.08

)
Order O

(
N−1.14

)
λ1 5.9017 λ1 5.9017 λ1 5.9017

In Figure 3 we present error curves where we observe that the two refinement schemes lead to a
correct convergence rate. It can be seen from Table 1 and Figure 3, that the uniform refinement leads
to a convergence rate close to that predicted by the theory, while the adaptive VEM schemes allow
us to recover the optimal order of convergence O

(
N−1

)
.
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Figure 3. Test 1. Error curves of |λ1−λh1| for uniformly refined meshes (“Uniform
VEM”), adaptively refined meshes with VEM (“Adaptive VEM”) and adaptively
refined meshes with VEM and initial mesh of hexagons (“Adaptive VEMH”).

We report in Table 2, the error |λ1 − λh1| and the estimators η at each step of the adaptive VEM

scheme. We include in the table the terms θ2 :=
∑

K∈Th

θ2
K, which appears from the inconsistency of

the VEM, and Jh :=
∑

K∈Th

(∑
`∈EK

hK‖J `‖20,`

)
, which arise from the edge residuals. We also report in

the table the effectivity indexes |λ1 − λh1|/η2.

Table 2. Components of the error estimator and effectivity indexes on the adaptively
refined meshes with VEM.

N λh1 |λ1 − λh1| θ2 J2
h η2 |λ1 − λh1|

η2

245 5.6831 2.1869e-01 9.4718e-03 1.3226e-01 1.4174e-01 1.5429
266 5.7356 1.6614e-01 1.2881e-02 8.5612e-02 9.8493e-02 1.6868
288 5.7554 1.4637e-01 1.2791e-02 7.5101e-02 8.7892e-02 1.6653
381 5.7805 1.2119e-01 1.2944e-02 5.6072e-02 6.9016e-02 1.7560
889 5.8440 5.7776e-02 9.4599e-03 1.5576e-02 2.5036e-02 2.3077
1206 5.8620 3.9753e-02 6.8149e-03 1.0962e-02 1.7777e-02 2.2362
1731 5.8713 3.0451e-02 5.1742e-03 8.1822e-03 1.3356e-02 2.2799
3639 5.8876 1.4166e-02 2.7744e-03 3.2286e-03 6.0030e-03 2.3598
5206 5.8924 9.3787e-03 1.8562e-03 2.3210e-03 4.1771e-03 2.2453
7653 5.8949 6.8767e-03 1.3746e-03 1.6477e-03 3.0223e-03 2.2753
14545 5.8985 3.1983e-03 7.4205e-04 9.1237e-04 1.6544e-03 1.9332
22982 5.9000 1.7633e-03 4.6344e-04 5.9698e-04 1.0604e-03 1.6628
33844 5.9006 1.1283e-03 3.3863e-04 4.2666e-04 7.6529e-04 1.4743

From Table 2 we observe that the effectivity indexes are bounded and far from zero. Also, the
inconsistency and edge residual terms are, roughly speaking, of the same order. This results are
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similar to those obtained in [35]. We end this test presenting in Figure 4 the displacement field and
the pressure fluctuation of the fluid on the L-shaped domain, associated to the first eigenfunction.

Figure 4. Test 1. Eigenfunctions of the acoustic problem corresponding to the first
lowest eigenvalue: displacement field wh1 (left), pressure fluctuation ph1 (right).

5.2. Test 2: H-shaped domain. The aim of this test is to assess the performance of the adaptive
scheme when solving a problem with a singular solution. In this test Ω consists of an H-shaped domain
that represents the union of two pools. More precisely, the geometry of this domain is given by

Ω :=
{

(0, 3/2)× (0, 3)
}
\
{
{[1/2, 1]× [0, 5/4]} ∪ {[1/2, 1]× [15/8, 3]}

}
.

According to the definition of this domain, four singularities are present, leading once again to a lack
of regularity for the eigenfunctions of our acoustic problem. Hence, the proposed estimator η defined
in (24) must be capable of identify these singularities of the geometry and perform and adaptive
refinement, with different polygonal meshes, in order to recover optimal order of convergence.

Figures 5 to 7 show the adaptively refined meshes obtained with VEM procedures and different
initial meshes. In Figure 5 we start with a mesh of triangles and squares, while in Figure 6 we begin
with a trapezoidal mesh consisting of partitions of the domain into M ×M congruent trapezoids.
Finally in Figure 7 we start with a Voronoi mesh.

Figure 5. Adaptively refined meshes obtained with VEM scheme at refinement steps
0, 1 and 8 (Adaptive VEM S-T).
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Figure 6. Adaptively refined meshes obtained with VEM scheme at refinement steps
0, 1 and 8 (Adaptive VEM B).

Figure 7. Adaptively refined meshes obtained with VEM scheme at refinement steps
0, 1 and 8 (Adaptive VEM V).

Similarly to Test 1, the computations of the errors |λ2 − λh2|, have been obtained with a least
squares fitting of the calculated values obtained with extremely refined meshes. Thus, we have obtained
the value λ2 = 1.2040, which has at least four exact significant digits.

In Table 3 we report the second lowest eigenvalue λh2 on uniformly refined meshes, adaptively
refined meshes with different type of initial meshes. Each table includes the estimated convergence
rate.
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Table 3. Computed lowest eigenvalue λh2 computed with different initial meshes.
Uniform VEM Adaptive VEM S-T Adaptive VEM B Adaptive VEM V
N λh2 N λh2 N λh2 N λh2

916 1.1831 756 1.1821 1368 1.1925 1925 1.1959
3560 1.1960 832 1.1893 1442 1.1957 2027 1.1981
14032 1.2009 1068 1.1959 1594 1.1979 2152 1.1992
55712 1.2028 1830 1.1992 1848 1.1991 2593 1.2003
222016 1.2035 3304 1.2020 2928 1.2006 3588 1.2013

4992 1.2027 5564 1.2024 6903 1.2028
8130 1.2031 8093 1.2028 9480 1.2031
16320 1.2036 12045 1.2030 12846 1.2032
23706 1.2037 21613 1.2036 15214 1.2033

Order O
(
N−0.70

)
Order O

(
N−1.19

)
Order O

(
N−1.09

)
Order O

(
N−1.11

)
λ2 1.2040 λ2 1.2040 λ2 1.2040 λ2 1.2040

In Figure 8 we present error curves where we observe that the three refinement schemes lead to a
correct convergence rate. It can be seen from Table 3 and Figure 8, that the uniform refinement leads
to a convergence rate close to that predicted by the theory, while the adaptive VEM schemes allow
us to recover the optimal order of convergence O

(
N−1

)
.
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Figure 8. Error curves of |λ2 − λh2| for uniformly refined meshes and adaptively
refined meshes VEM with different initial meshes.

In Figure 9 we present plots of the computed eigenfunctions wh2 (displacement field) and ph2

(pressure fluctuation) corresponding to the second eigenvalue.
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Figure 9. Test 2. Eigenfunctions of the acoustic problem corresponding to the
second lowest eigenvalue: displacement field wh2 (left), pressure fluctuation ph2

(right).

5.3. Test 3: Circular domain with obstacles. As a third test, we have considered a configuration
closer to a real application: four square tubes immersed in a fluid occupying a circular cavity. Clearly
in this test there are two relevant geometrical issues: in one hand, we have a non polygonal domain
for which we are making an approximation by means of polygonal meshes, and the four rigid squares
that lie in the interior of the circle. These tubes lead to non smooth eigenfunctions when the solutions
for the acoustic problem are approximated, due the singularities of the corner on each square.

To make matters precise, let us define the circular domain by ΩC := {(x, y) ∈ R2 : x2 + y2 < 1}
and the squares ΩI := [1/5, 3/5]× [1/5, 3/5], ΩII := [−3/5,−1/5]× [1/5, 3/5], ΩIII := [−3/5,−1/5]×
[−3/5,−1/5] and ΩIV := [1/5, 3/5] × [−3/5,−1/5]. Hence, the computational domain is Ω := ΩC \
{ΩI ∪ ΩII ∪ ΩIII ∪ ΩIV}.

In the sequel, we consider the fourth eigenfunction. In Figure 10 we present an adaptive refinement
of our estimator when Voronoi meshes are considered. On the left hand side we present the initial
mesh and, after 1 and 8 iterations of our numerical method, we observe that the estimator η identifies
the singularities on the geometry that cause the poor regularity of the eigenfunction, and starts the
refinement around these corners in order to recover the optimal order of convergence.

Figure 10. Adaptively refined meshes obtained with VEM scheme at refinement
steps 0, 1 and 8 (Adaptive VEM V).

Figure 11 shows a logarithmic plot of the errors between the calculated approximations of the
fourth smallest positive eigenvalue and the “exact” one, versus the number of degrees of freedom N of
the meshes. As in the previous two tests, the exact value of the fourth eigenvalue is obtained by using
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a least squares fit. The figure shows the results obtained with ”uniform” meshes and with adaptively
refined meshes and shows how the optimal order of convergence is recovered. Finally, Figure 12 shows
the eigenfunctions of the acoustic problem corresponding to the fourth lowest eigenvalue.

10
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5

10
-3

10
-2

10
-1

Figure 11. Error curves of |λ4 − λh4| for uniformly refined meshes and adaptively
refined meshes VEM.

Figure 12. Test 3. Eigenfunctions of the acoustic problem corresponding to the
second lowest eigenvalue: displacement field wh4 (left), pressure fluctuation ph4

(right).

6. Conclusions

In this work, we have derived and analyzed an a posteriori error estimate for the acoustic vibration
problem by means of mixed virtual element discretization. The theoretical analysis developed in this
work was strongly supported by superconvergence results for mixed spectral formulations. Several
numerical tests that substantiate the theoretical results were presented, confirming that the proposed
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estimator is capable of recover the optimal order of convergence, as theory predicts. Moreover, we
stress that the present analysis can be extended to the tridimensional case by using the VEM spaces
introduced in [6] and the recent results for interpolation estimates derived in [8].
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A degenerating convection-diffusion system modelling froth flotation with drainage
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