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Abstract

In this paper we introduce and analyze a Banach spaces-based approach yielding a fully-mixed
finite element method for numerically solving the stationary chemotaxis-Navier-Stokes problem.
This is a nonlinear coupled model representing the biological process given by the cell movement,
driven by either an internal or an external chemical signal, within an incompressible fluid. In
addition to the velocity and pressure of the fluid, the velocity gradient and the Bernouilli-type
stress tensor are introduced as further unknowns, which allows to eliminate the pressure from
the equations and compute it afterwards via a postprocessing formula. In turn, besides the cell
density and the chemical signal concentration, the pseudostress associated with the former and
the gradient of the latter are introduced as auxiliary unknowns as well. The resulting continuous
formulation, posed in suitable Banach spaces, consists of a coupled system of three saddle point-
type problems, each one of them perturbed with trilinear forms that depend on data and the
unknowns of the other two. The well-posedness of it is analyzed by means of a fixed-point strategy,
so that the classical Banach theorem, along with the Babuška-Brezzi theory in Banach spaces,
allow to conclude, under a smallness assumption on the data, the existence of a unique solution.
Adopting an analogue approach for the associated Galerkin scheme, and under suitable hypotheses
on arbitrary finite element subspaces employed, we apply the Brouwer and Banach theorems to show
existence and then uniqueness of the discrete solution. General a priori error estimates, including
those for the postprocessed pressure, are also derived. Next, a specific set of finite element subspaces
satisfying the required stability conditions is introduced, which, given an integer k ě 0, is defined
in terms of Raviart-Thomas spaces of order k and piecewise polynomials of degree ď k only. The
respective rates of convergence of the resulting Galerkin method are then provided. Finally, several
numerical experiments confirming the latter and illustrating the good performance of the method,
are reported.
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1 Introduction

Chemotaxis refers to the active and directed movement of cells triggered by a chemical stimulus in
their surrounding microenvironment. From the development of multicellular organisms, to blood vessel
formation, to immune system function, to cancer growth and metastasis, chemotaxis plays an essential
role in many different biological processes [31]. The study of this phenomenon has particularly allowed
valuable insights for basic research, drug discovery to decrease or inhibit certain infectious diseases
and has ignited much hope for new prognostic tools and therapeutic interventions in oncology [23, 32].
From the mathematical point of view, the well-known Keller-Segel system and their variations [1, 27]
are the simplest models for describing this phenomenon, which only relate the cell density and the
concentration of the chemical signal, neglecting any interplay with further components. However,
in many contexts, cell migration may influence the motion of a surrounding fluid through buoyant
forces due to differences in densities, and vice versa the fluid-driven transport of cells and signal
may substantially affect the overall behavior [13, 34]. In this regard, and for understanding the
chemotaxis systems interaction with liquid environments, several models have been studied (see, e.g.
[4, 26, 28, 33, 36, 37] and the references therein), which couple the Keller-Seguel equations to a
Navier-Stokes system. These works include models describing chemo-repulsion, chemo-attraction, the
presence of either a signal production mechanism or a singular sensitivity, double-chemotaxis, among
others. In particular, theoretical results on existence and uniqueness of solutions to the unsteady
chemotaxis–Navier-Stokes system when the chemical signal is consumed by the organisms, case we
focus in this work, are found in [25, 35, 36].

Regarding the numerical solvability, a wide variety of techniques have been constructed so far to
simulate the chemotaxis–fluid interaction [8, 12, 14, 29, 30]. These references include a combined fi-
nite volume-nonconforming finite element method [30], a high-resolution vorticity-based hybrid finite-
volume finite-difference discretization [8], a splitting-type Navier-Stokes solver for a realistic three-
dimensional setting [29] and an upwind finite element technique in two dimensions [12]. Other numer-
ical techniques for close models can be found in the references of the aforementioned works. In turn,
and up to our knowledge, [14] is the only work in which a finite element method for approximating
the solutions of the full chemotaxis–Navier–Stokes system is proposed and analyzed, including corre-
sponding optimal errors estimates. More precisely, an equivalent model in Hilbert spaces is proposed
in [14] by using a splitting technique based on the introduction of the chemical concentration gradient
as an extra unknown, allowing to control the strong regularity required by the model, which is one of
the main difficulties appearing throughout the respective numerical analysis.

On the other hand, it is well-known that when dealing with problems involving couplings and non-
linearities, the introduction of additional variables, that is the use of mixed methods, yields the
corresponding variational settings to be properly posed in terms of Banach spaces. This has become
particularly frequent in recent years for a wide family of models (see, e.g. [2, 6, 7, 10, 11, 20, 21]
and the references therein), whose resulting mixed formulations show mainly saddle-point, twofold
saddle-point, or perturbed saddle-point structures. One of the advantages of keeping this functional
framework, in addition to avoiding the incorporation of further redundant Galerkin-type penalty terms,
as it has been usual, for instance, for diverse augmented schemes, lies on the fact that the sought vari-
ables belong to the natural Banach spaces that are originated after carrying out the respective testing
and integration by parts procedures. Furthermore, the above not only allows to develop numerical
schemes that are conservative but also to compute additional physically relevant variables that might
be introduced into the formulation or by employing postprocessing formulae in terms of the discrete
solution. Nevertheless, no mixed methods with these features seem to be available in the literature so
far to solve the chemotaxis–Navier–Stokes model, which certainly constitutes a gap in the field.

According to the previous discussion, and in order, on one hand, to fill the aforementioned gap, and
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on the other hand, to continue extending the applicability of Banach spaces-based approaches to
study the continuous and discrete well-posedness of nonlinear coupled problems in fluid mechanics,
our present purpose is to introduce and analyze a continuous Banach framework yielding a fully-mixed
finite element method for the stationary Chemotaxis-Navier-Stokes model. The work is organized as
follows. The rest of this section first collects some preliminary notations, definitions, and results to be
utilized throughout the paper, and then describes the model of interest. In particular, the auxiliary
unknowns are introduced here. In Section 2 we derive the fully-mixed variational formulation of the
problem by splitting the analysis according to the there equations forming the coupled model. Suitable
integration by parts formulae jointly with the Cauchy-Schwarz and Hölder inequalities are crucial for
determining the right Lebesgue and related spaces to which the unknowns and corresponding test
functions are required to belong. In Section 3, a fixed-point strategy is adopted to analyze the
solvability of the continuous formulation. The Babuška-Brezzi theory in Banach spaces is employed
to study the corresponding uncoupled problems, and then the classical Banach theorem is applied to
conclude the existence of a unique solution. An analogue fixed-point approach to that of Section 3 is
utilized in Section 4 to study the well-posedness of the associated Galerkin scheme. Under suitable
stability conditions on the finite element subspaces employed, existence and uniqueness of solution
are proved by applying the Brouwer and Banach theorems along with the discrete Babuška-Brezzi
theory. Specific finite element subspaces satisfying those assumptions are then introduced in Section
5, and the rates of convergence of the resulting discrete scheme are also established there. Several
numerical examples confirming these theoretical findings and illustrating the good performance of the
method, are presented in Section 6. Finally, further properties of the Raviart-Thomas interpolator to
be employed in Section 5, are proved in Appendix A.

1.1 Preliminaries

Throughout the paper Ω is a bounded Lipschitz-continuous domain of Rn, n P t2, 3u, whose outward
unit normal at its boundary Γ is denoted n. Standard notation will be adopted for Lebesgue spaces
LtpΩq, with t P r1,`8q, and Sobolev spaces Wℓ,tpΩq and Wℓ,t

0 pΩq, with ℓ ě 0, whose corresponding
norms and seminorms, either for the scalar, vector, or tensorial version, are denoted by }¨}0,t;Ω, }¨}ℓ,t;Ω,
and | ¨ |ℓ,t;Ω, respectively. Note that W0,tpΩq “ LtpΩq, and that when t “ 2, we simply write HℓpΩq

instead of Wℓ,2pΩq, with its norm and seminorm denoted by } ¨ }ℓ,Ω and | ¨ |ℓ,Ω, respectively. Now,
letting t, t1 P p1,`8q conjugate to each other, that is such that 1{t ` 1{t1 “ 1, we let W1{t1,tpΓq and
W´1{t1,t1pΓq be the trace space of W1,tpΩq and its dual, respectively, and denote the duality pairing
between them by x¨, ¨y. In particular, when t “ t1 “ 2, we simply write H1{2pΓq and H´1{2pΓq instead
of W1{2,2pΓq and W´1{2,2pΓq, respectively. Also, given any generic scalar functional space M, we let
M and M be its vector and tensorial counterparts. Furthermore, for any vector fields v “ pviqi“1,n

and w “ pwiqi“1,n, we set the gradient, divergence, and tensor product operators, as

∇v :“

ˆ

Bvi
Bxj

˙

i,j“1,n

, divpvq :“
n
ÿ

j“1

Bvj
Bxj

, and v b w :“ pviwjqi,j“1,n .

In addition, for any tensor fields τ “ pτijqi,j“1,n and ζ “ pζijqi,j“1,n, we let divpτ q be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t :“ pτjiqi,j“1,n , trpτ q :“
n
ÿ

i“1

τii, τ : ζ :“
n
ÿ

i,j“1

τijζij ,

and τ d :“ τ ´
1

n
trpτ qI ,
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where I stands for the identity tensor of R :“ Rnˆn. On the other hand, for each t, j P r1,`8q such
that t ě j, we introduce the Banach spaces

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

, (1.1)

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

, (1.2)

and
Htpdivj ; Ωq :“

!

τ P LtpΩq : divpτ q P LjpΩq

)

, (1.3)

which are endowed with the natural norms

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq , (1.4)

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq , (1.5)

and
}τ }t,divj ;Ω :“ }τ }0,t;Ω ` }divpτ q}0,j;Ω @ τ P Htpdivj ; Ωq . (1.6)

Then, we recall that, proceeding as in [18, eq. (1.43), Section 1.3.4] (see also [6, Section 4.1] and [10,
Section 3.1]), one can prove that for each t ě 2n

n`2 there holds

xτ ¨ n, vy “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Hpdivt; Ωq ˆ H1pΩq , (1.7)

and analogously

xτ n,vy “

ż

Ω

!

τ : ∇v ` v ¨ divpτ q

)

@ pτ ,vq P Hpdivt; Ωq ˆ H1pΩq , (1.8)

where x¨, ¨y denotes in (1.7) (resp. (1.8)) the duality pairing between H1{2pΓq (resp. H1{2pΓq) and
H´1{2pΓq (resp. H´1{2pΓq). In turn, given t, t1 P p1,`8q conjugate to each other, there also holds (cf.
[16, Corollary B.57])

xτ ¨ n, vy “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Htpdivt; Ωq ˆ W1,t1pΩq , (1.9)

where x¨, ¨y stands for the duality pairing between W´1{t,tpΓq and W1{t,t1pΓq.

1.2 The model problem

The stationary chemotaxis-Navier-Stokes problem consists of finding the velocity vector field u and
the pressure scalar field p of an incompressible fluid occupying the region Ω, along with the additional
scalar fields given by the cell density η, and the chemical signal concentration φ, satisfying the following
system of coupled partial differential equations:

´ ν∆u ` λ p∇uqu ` ∇p ´ η∇f “ f in Ω ,

divpuq “ 0 in Ω ,
ż

Ω
p “ 0 ,

´ kη∆η ` µdiv
`

η∇φ
˘

` u ¨ ∇η “ fη in Ω ,

´ kφ∆φ ` γηφ ` u ¨ ∇φ “ fφ in Ω ,

u “ uD , η “ ηD and φ “ φD on Γ ,

(1.10)
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where f , f , fη, and fφ are given functions belonging to suitable spaces to be indicated later on, whereas
ν, λ, κη, κφ, µ, and γ are positive constants representing the fluid viscosity, the fluid density, the cell
diffusion constant, the chemical diffusion constant, the chemotactic coefficient, and the consumption
rate of the chemical signal, respectively. In turn, uD, ηD, and φD are corresponding Dirichlet data
belonging to suitable spaces as well to be specified throughout the analysis. Meanwhile, we observe
here that, due to the incompressibility of the fluid (cf. second equation of (1.10)), uD must satisfy
the compatibility condition

ż

Γ
uD ¨ n “ 0 . (1.11)

Next, in order to derive a fully-mixed formulation of (1.10) in Section 2, we first adopt the approach
from [11] (see also [10]) and introduce the velocity gradient and the Bernoulli-type stress tensor as
further unknowns, that is

t :“ ∇u in Ω and σ :“ ν t ´
λ

2
pu b uq ´ p I in Ω , (1.12)

so that the second equation of (1.12) is considered from now on as the constitutive law of the fluid.
Then, noting that divpu b uq “ p∇uqu “ tu, which follows from the fact that divpuq “ 0, we find
that the first equation of (1.10) can be rewritten as

´divpσq `
λ

2
tu ´ η∇f “ f in Ω .

In turn, it is straightforward to prove, taking matrix trace and the deviatoric part of the aforementioned
constitutive equation, that the latter and the incompressibility condition, which can also be stated as
the identity trptq “ 0, are equivalent to

σd “ ν t ´
λ

2
pu b uqd in Ω and

p “ ´
1

n
tr
´

σ `
λ

2
pu b uq

¯

in Ω ,

(1.13)

and thus the pressure can be eliminated from the system and computed afterwards in terms of σ
and u as indicated in the foregoing equation. As a consequence, the third equation of (1.10), which
constitutes a uniqueness condition for p, is rewritten as

ż

Ω
tr
`

σ `
λ

2
pu b uq

˘

“ 0 .

On the other hand, for the cell density and chemical signal concentration equations, we proceed
similarly and define the auxiliary unknowns

rσ :“ ∇η ´ κ´1
η µ η∇φ ´ κ´1

η η u in Ω and p :“ ∇φ in Ω ,

and observe that the fourth and fifth equations of (1.10) become, respectively,

divprσq “ ´κ´1
η fη in Ω ,

and
divppq ´ κ´1

φ γ ηφ ´ κ´1
φ u ¨ p “ ´κ´1

φ fφ in Ω .

Note that rσ can be seen as the pseudostress associated with the cell density equation. Summarizing,
(1.10) can be equivalently reformulated as: Find u, t,σ, rσ, η,p and φ in proper spaces to be introduced
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below, such that

t “ ∇u in Ω ,

´σd ` ν t ´
λ

2
pu b uqd “ 0 in Ω ,

´divpσq `
λ

2
t u “ η∇f ` f in Ω ,

ż

Ω
tr
`

σ `
λ

2
pu b uq

˘

“ 0 ,

rσ ´ ∇η ` κ´1
η µ η p ` κ´1

η η u “ 0 in Ω ,

divprσq “ ´κ´1
η fη in Ω ,

p “ ∇φ in Ω ,

divppq ´ k´1
φ γ η φ ´ k´1

φ u ¨ p “ ´κ´1
φ fφ in Ω ,

u “ uD, η “ ηD and φ “ φD on Γ .

(1.14)

2 The fully-mixed formulation

In this section we derive a Banach spaces-based fully-mixed formulation of (1.14). The integration by
parts formulae provided by (1.7) - (1.9), along with the Cauchy-Schwarz and Hölder inequalities, play a
key role in this derivation. The corresponding analysis is split in the following three subsections, which
correspond to the Navier-Stokes equations (first to fourth rows of (1.14)), the cell density equations
(fifth and sixth rows of (1.14)), and the chemical signal concentration equations (seventh and eighth
rows of (1.14)), respectively.

2.1 The Navier-Stokes equations

We begin by seeking originally u P H1pΩq, which requires to assume that uD P H1{2pΓq. Then, a
straightforward application of (1.8) with t ě 2n

n`2 and τ P Hpdivt; Ωq, gives

ż

Ω
τ : ∇u “ ´

ż

Ω
u ¨ divpτ q ` xτ n,uDy ,

and hence the corresponding testing of the first equation of (1.14) becomes
ż

Ω
τ : t `

ż

Ω
u ¨ divpτ q “ xτn,uDyΓ @ τ P Hpdivt; Ωq . (2.1)

It is clear, thanks to Cauchy-Schwarz’s inequality, that the first term of (2.1) makes sense for t P L2pΩq,
so that according to its free trace property, we look for this unknown in the space

L2
trpΩq :“

!

s P L2pΩq : trpsq “ 0
)

. (2.2)

In addition, knowing that divpτ q P LtpΩq, and using Hölder’s inequality, we deduce from the second
term of (2.1) that, instead of H1pΩq, it would suffice to look for u in Lt

1

pΩq, where t1 is the conjugate
of t. Nevertheless, testing the second equation of (1.14) against tensors in L2

trpΩq, we formally get

´

ż

Ω
σ : s ` ν

ż

Ω
t : s ´

λ

2

ż

Ω
pu b uq : s “ 0 @ s P L2

trpΩq , (2.3)
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from which, employing the Cauchy-Schwarz and Hölder inequalities, we deduce that its third term
makes sense for u P L4pΩq, and hence from now we chose t1 “ 4, which yields t “ 4{3. Needless
to say, the first term in (2.3) is finite if σ P L2pΩq, and thus, aiming to use the same space for this
unknown and its test functions τ , we seek σ in Hpdiv4{3; Ωq as well. In this way, knowing now that

divpσq P L4{3pΩq, we test the third equation of (1.14) against the vector functions in L4pΩq, which
yields

´

ż

Ω
v ¨ divpσq `

λ

2

ż

Ω
tu ¨ v “

ż

Ω
η∇f ¨ v `

ż

Ω
f ¨ v @v P L4pΩq . (2.4)

Note here, thanks again to the aforementioned inequalities and the already established spaces for t,
u, and v, that the first, second, and fourth terms of (2.4) are well-defined, the latter if the datum f
belongs to L4{3pΩq, which is assumed from now on. Regarding the third one, which will depend on
where to look for η, and where to assume the datum f , we will refer to it in Section 2.2. We now
consider the decomposition

Hpdiv4{3; Ωq “ H0pdiv4{3; Ωq ‘ R I , (2.5)

where

H0pdiv4{3; Ωq :“
!

τ P Hpdiv4{3; Ωq :

ż

Ω
trpτ q “ 0

)

, (2.6)

and observe, in particular, that the unknown σ can be uniquely decomposed, according to (2.5) and
the mean value condition given by the fourth equation of (1.14), as σ “ σ0 ` c0I, where

σ0 P H0pdiv4{3; Ωq and c0 :“
1

n |Ω|

ż

Ω
trpσq “ ´

λ

2n |Ω|

ż

Ω
trpu b uq . (2.7)

In this way, similarly as for the pressure, the constant c0 can be computed once the velocity is known,
and hence it only remains to obtain σ0. In this regard, we notice that (2.3) and (2.4) remain unchanged
if σ is replaced by σ0. In addition, thanks to the fact that t is sought in L2

trpΩq, and using the
compatibility condition (1.11), we realize that testing (2.1) against τ P Hpdiv4{3; Ωq is equivalent to
doing it against τ P H0pdiv4{3; Ωq. Consequently, bearing in mind the foregoing discussion, introducing
the notations

u⃗ “ pu, tq , v⃗ “ pv, sq , w⃗ “ pw,ϑq P H :“ L4pΩq ˆ L2
trpΩq , and Q :“ H0pdiv4{3; Ωq ,

redenoting from now on σ0 as simply σ P Q, and suitably gathering (2.1), (2.3), and (2.4), we arrive
at the following mixed formulation for the Navier-Stokes equations: Find pu⃗,σq P H ˆ Q such that

apu⃗, v⃗q ` cpu; u⃗, v⃗q ` bpv⃗,σq “ Fηpv⃗q @ v⃗ P H ,

bpu⃗, τ q “ Gpτ q @ τ P Q ,
(2.8)

where, given z P L4pΩq, the bilinear forms a : HˆH Ñ R, b : HˆQ Ñ R, and cpz; ¨, ¨q : HˆH Ñ R,
are defined as

apw⃗, v⃗q :“ ν

ż

Ω
ϑ : s @ w⃗, v⃗ P H , (2.9)

bpv⃗, τ q :“ ´

ż

Ω
τ : s ´

ż

Ω
v ¨ divpτ q @ pv⃗, τ q P H ˆ Q , (2.10)

and

cpz; w⃗, v⃗q :“
λ

2

"
ż

Ω
ϑ z ¨ v ´

ż

Ω
pw b zq : s

*

@ w⃗, v⃗ P H , (2.11)

whereas, given χ in the same space where η will be sought, the linear functionals Fχ : H Ñ R and
G : Q Ñ R are given by

Fχpv⃗q :“

ż

Ω
χ∇f ¨ v `

ż

Ω
f ¨ v @ v⃗ P H , (2.12)
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and
Gpτ q :“ ´ xτn,uDyΓ @ τ P Q . (2.13)

Next, it is easily seen that a, b, cpz; ¨, ¨q, and G are bounded. In fact, endowing H and Q with the
norms

}v⃗}H :“ }v}0,4;Ω ` }s}0,Ω @ v⃗ :“ pv, sq P H , }τ }Q :“ }τ }div4{3;Ω @ τ P Q , (2.14)

applying the Cauchy-Schwarz and Hölder inequalities, and invoking (1.8) along with the continuous
injection i4 : H

1pΩq Ñ L4pΩq, we find that there exists positive constants, denoted and given as

}a} :“ ν , }b} :“ 1 , }c} :“
λ

2
, and }G} :“

`

1 ` }i4}
˘

}uD}1{2,Γ , (2.15)

such that
|apw⃗, v⃗q| ď }a} }w⃗}H }v⃗}H @ w⃗, v⃗ P H , (2.16)

|bpv⃗, τ q| ď }b} }v⃗}H }τ }Q @ pv⃗, τ q P H ˆ Q, , (2.17)

|cpz; w⃗, v⃗q| ď }c} }z}0,4;Ω }w⃗}H }v⃗}H @ z P L4pΩq , @ w⃗, v⃗ P H , (2.18)

and
|Gpτ q| ď }G} }τ }Q @ τ P Q . (2.19)

In addition, simple algebraic computations show that

cpz; v⃗, v⃗q “ 0 @ z P L4pΩq , @ v⃗ P H . (2.20)

Regarding Fχ (cf. (2.12)), and as already commented for its first term, we remark that its well-
definedness will be concluded below at the end of Section 2.2.

2.2 The cell density equations

Testing the fifth equation of (1.14) against functions rτ P L2pΩq, we formally obtain

ż

Ω

rσ ¨ rτ ´

ż

Ω
∇η ¨ rτ ` κ´1

η µ

ż

Ω
η p ¨ rτ ` κ´1

η

ż

Ω
η u ¨ rτ “ 0 , (2.21)

from which we observe that the first and second terms of (2.21) are finite if rσ P L2pΩq and η P H1
0pΩq,

respectively. In turn, using the Cauchy-Schwarz and Hölder inequalities, we find that for all l, j P

p1,`8q conjugate to each other, there hold

ˇ

ˇ

ˇ

ˇ

ż

Ω
η p ¨ rτ

ˇ

ˇ

ˇ

ˇ

ď }η}0,2l;Ω }p}0,2j;Ω }rτ }0,Ω (2.22)

and
ˇ

ˇ

ˇ

ˇ

ż

Ω
η u ¨ rτ

ˇ

ˇ

ˇ

ˇ

ď }η}0,2l;Ω }u}0,2j;Ω }rτ }0,Ω , (2.23)

from which we deduce that the third and fourth terms of (2.21) make sense for η P L2lpΩq, p P L2jpΩq,
and u P L2jpΩq. However, since we already know from Section 2.1 that u will be sought in L4pΩq, we
have to impose here that 2j ď 4. On the other hand, in order to be able to apply (1.7) to rτ and η,
so that we obtain

ż

Ω
∇η ¨ rτ “ ´

ż

Ω
η divprτ q ` xrτ ¨ n, ηDyΓ , (2.24)
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with rτ ¨ n P H´1{2pΓq and x¨, ¨y denoting the duality pairing between H´1{2pΓq and H1{2pΓq, it suffices
to assume that divprτ q P Lp2lq1

pΩq, where p2lq1 :“ 2l
2l´1 is the conjugate of 2l, the datum ηD belongs

to H1{2pΓq, and H1pΩq is continuously embedded in L2lpΩq. The later is guaranteed for 2l P r1,`8q

when n “ 2, which is always satisfied, and for 2l P r1, 6s when n “ 3 (cf. [16, Corollary B.43]).

On the other hand, in order to utilize later on a result on the W1,2jpΩq-solvability of a Poisson
equation, which will be required to establish a continuous inf-sup condition, and according to the
result detailed in [19, Theorem 3.2] (see also [24, Theorems 1.1 and 1.3]), we need that 4{3 ď 2j ď 4
when n “ 2, and 3{2 ď 2j ď 3 when n “ 3. Note that these constraints are compatible with the
previous requirement that 2j ď 4. Now, since the respective lower bounds are already satisfied, we

just look at the upper ones, and readily observe that for n “ 2, 2j “
2l

l ´ 1
ď 4 if and only if 2l ě 4,

whereas for n “ 3, 2j “
2l

l ´ 1
ď 3 if and only if 2l ě 6. Thus, intersecting the above with the

previous restrictions on 2l, we find that when n “ 2 we require 4 ď 2l, and when n “ 3 the only
possible choice is 2l “ 6. Therefore, denoting

pr, sq :“ p2j, p2jq1q , and pρ, ϱq :“ p2l, p2lq1q ,

we conclude from the foregoing discussion that the feasible ranges for r, s, ρ, ϱ, j and l, are given by

$

&

%

r P p2, 4s and s P r4{3, 2q if n “ 2 ,

r “ 3 and s “ 3{2 if n “ 3 ,

$

&

%

ρ P r4,`8q and ϱ P p1, 4{3s if n “ 2 ,

ρ “ 6 and ϱ “ 6{5 if n “ 3 ,
(2.25)

and
$

&

%

j P p1, 2s and l P r2,`8q if n “ 2 ,

j “ 3{2 and l “ 3 if n “ 3 .
(2.26)

Needless to say, once j (or its conjugate l) is chosen according to the indicated range, then r and ρ,
and their respective conjugates s and ϱ, are fixed. For instance, taking for n “ 2, j “ l “ 2 yields
r “ ρ “ 4 and s “ ϱ “ 4{3.

Hence, in terms of these indexes, we look for η P LρpΩq and p P LrpΩq, whereas the test function
rτ P L2pΩq is such that divprτ q P LϱpΩq. In this way, replacing the resulting expression from (2.24) into
(2.21), and taking into account the definition (1.1), we arrive at

ż

Ω

rσ ¨ rτ `

ż

Ω
η divprτ q ` rcu,pprτ , ηq “ rFprτ q @ rτ P Hpdivϱ; Ωq ,

where, given z P L4pΩq and q P LrpΩq, rcz,q : Hpdivϱ; Ωq ˆ LρpΩq Ñ R is the bilinear form given by

rcz,qprτ , ξq :“ κ´1
η µ

ż

Ω
ξ q ¨ rτ ` κ´1

η

ż

Ω
ξ z ¨ rτ @ prτ , ξq P Hpdivϱ; Ωq ˆ LρpΩq , (2.27)

and rF : Hpdivϱ; Ωq Ñ R is the linear functional defined as

rFprτ q :“ xrτ ¨ n, ηDyΓ @ rτ P Hpdivϱ; Ωq . (2.28)

In turn, testing now the sixth equation of (1.14) against ξ P LρpΩq, which implicitly impose the
unknown rσ to live in Hpdivϱ; Ωq, and assuming that the datum fη belongs to LϱpΩq, we obtain

ż

Ω
ξ divprσq “ rGpξq @ ξ P LρpΩq ,
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where rG : LρpΩq Ñ R is the functional given by

rGpξq :“ ´κ´1
η

ż

Ω
fη ξ @ ξ P LρpΩq . (2.29)

In this way, given p P LrpΩq and u P L4pΩq, and denoting the spaces

H :“ Hpdivϱ; Ωq and Q :“ LρpΩq , (2.30)

the mixed formulation for the cell density equation reduces to: Find prσ, ηq P H ˆ Q such that

raprσ, rτ q ` rbprτ , ηq ` rcu,pprτ , ηq “ rFprτ q @ rτ P H ,

rbprσ, ξq “ rGpξq @ ξ P Q ,
(2.31)

where ra : H ˆ H Ñ R and rb : H ˆ Q Ñ R are the bilinear forms defined as

raprζ, rτ q :“

ż

Ω

rζ ¨ rτ @ rζ, rτ P H , (2.32)

and
rbprτ , ξq :“

ż

Ω
ξ divprτ q @ prτ , ξq P H ˆ Q . (2.33)

It is easily seen that ra, rb, rcz,q, rF, and rG are bounded with the corresponding norms given by
}rτ }H :“ }rτ }divϱ;Ω for all rτ P H, and }ξ}Q :“ }ξ}0,ρ;Ω for all ξ P Q. Indeed, applying the Hölder and
Cauchy-Schwarz inequalities, invoking the bounds provided by (2.22) and (2.23), along with the fact
that } ¨ }0,r;Ω ď |Ω|p4´rq{4r } ¨ }0,4;Ω for rcz,q, and proceeding similarly to G (cf. (2.15), (2.19)) for rF,
besides letting iρ : H

1pΩq Ñ LρpΩq be the respective continuous injection, we deduce the existence of
positive constants, denoted and given as

}ra} :“ 1 , }rb} :“ 1 , }rc} :“ κ´1
η max

␣

µ, |Ω|p4´rq{4r
(

,

}rF} :“
`

1 ` }iρ}
˘

}ηD}1{2,Γ , and }rG} :“ κ´1
η }fη}0,ϱ;Ω ,

(2.34)

such that
|raprζ, rτ q| ď }ra} }rζ}H }rτ }H @ rζ, rτ P H , (2.35)

|rbprτ , ξq| ď }rb} }rτ }H }ξ}Q @ prτ , ξq P H ˆ Q , (2.36)

|rcz,qprτ , ξq| ď }rc}
`

}z}0,4;O ` }q}0,r;Ω
˘

}rτ }H }ξ}Q @ prτ , ξq P H ˆ Q , (2.37)

|rFprτ q| ď }rF} }rτ }H @ rτ P H , (2.38)

and
|rGpξq| ď }rG} }ξ}Q @ ξ P Q . (2.39)

Finally, knowing that η will be sought in LρpΩq, we consider χ P LρpΩq, proceed similarly to the
derivation of (2.22) and (2.23), and use that } ¨ }0,Ω ď |Ω|1{4 } ¨ }0,4;Ω, to bound the first term defining
Fχ (cf. (2.12)) as

ˇ

ˇ

ˇ

ˇ

ż

Ω
χ∇f ¨ v

ˇ

ˇ

ˇ

ˇ

ď |Ω|1{4 }χ}0,ρ;Ω }∇f}0,r;Ω }v}0,4;Ω @v P L4pΩq , (2.40)

which requires to assume from now on that ∇f P LrpΩq. Then, bearing in mind the definition of Fχ
(cf. (2.12)) and the foregoing estimate, and setting the constant

}F} :“ max
␣

1, |Ω|1{4
(

, (2.41)

we readily conclude that

|Fχpv⃗q| ď }F}
`

}χ}0,ρ;Ω }∇f}0,r;Ω ` }f}0,4{3;Ω

˘

}v⃗}H @ v⃗ P H , (2.42)

thus confirming the announced well-definedness and boundedness of Fχ.
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2.3 The chemical signal concentration equations

Knowing already that p P LrpΩq, the seventh equation of (1.14) suggests to look originally for φ in
W1,rpΩq. In this way, testing that equation against q P Hspdivs; Ωq (cf. (1.3)), and then employing
(1.9) and the Dirichlet boundary condition for φ, we obtain

ż

Ω
p ¨ q `

ż

Ω
φdivpqq “ xq ¨ n, φDyΓ , (2.43)

which requires to assume that φD P W1{s,rpΓq. It follows from (2.43) that it suffices to seek the
concentration φ of the chemical signal in the space LrpΩq. In turn, testing the eighth equation of
(1.14) against an arbitrary function ϕ belonging to a space to be determined, we formally get

ż

Ω
ϕ divppq ´ κ´1

φ γ

ż

Ω
η φϕ ´ κ´1

φ

ż

Ω
u ¨ pϕ “ ´κ´1

φ

ż

Ω
fφ ϕ . (2.44)

Next, given the same l, j P p1,`8q conjugate to each other as before, and proceeding similarly to the
derivation of (2.22) and (2.23), we find that

ˇ

ˇ

ˇ

ˇ

ż

Ω
η φϕ

ˇ

ˇ

ˇ

ˇ

ď }η}0,2j;Ω }φ}0,2j;Ω }ϕ}0,l;Ω “ }η}0,r;Ω }φ}0,r;Ω }ϕ}0,l;Ω (2.45)

and
ˇ

ˇ

ˇ

ˇ

ż

Ω
u ¨ pϕ

ˇ

ˇ

ˇ

ˇ

ď }u}0,2j;Ω }p}0,2j;Ω }ϕ}0,l;Ω “ }u}0,r;Ω }p}0,r;Ω }ϕ}0,l;Ω , (2.46)

whence, recalling from (2.25) that r ď 4 ď ρ, we deduce that the second and third terms of (2.44)
make sense for η P LρpΩq, φ P LrpΩq, ϕ P LlpΩq, u P L4pΩq, and p P LrpΩq. In addition, in order for
the first and fourth terms to be well-defined, we need that both divppq and the datum fφ belong to
LjpΩq, which yields, in particular, to look for p in Hrpdivj ; Ωq (cf. (1.3)).

According to the foregoing discussion, we now set the Banach spaces

X2 :“ Hrpdivj ; Ωq , X1 :“ Hspdivs; Ωq , M1 :“ LrpΩq , and M2 :“ LlpΩq , (2.47)

so that, given u P L4pΩq and η P LρpΩq, the mixed formulation for the chemical signal concentration
equation reduces to: Find pp, φq P X2 ˆM1 such that

app,qq ` b1pq, φq “ Fpqq @q P X1 ,

b2pp, ϕq ´ cu,η
`

pp, φq, ϕ
˘

“ Gpϕq @ϕ P M2 ,
(2.48)

where, given z P L4pΩq and χ P LρpΩq, the bilinear forms a : X2 ˆ X1 Ñ R, bi : Xi ˆ Mi Ñ R,
i P

␣

1, 2
(

, and cz,χ :
`

X2 ˆM1

˘

ˆM2 Ñ R, are defined as

apr,qq :“

ż

Ω
r ¨ q @ pr,qq P X2 ˆM1 , (2.49)

bipq, ϕq :“

ż

Ω
ϕ divpqq @ pq, ϕq P Xi ˆMi , (2.50)

and

cz,χ
`

pr, ψq, ϕ
˘

:“ κ´1
φ

ż

Ω
z ¨ rϕ ` κ´1

φ γ

ż

Ω
χψ ϕ @

`

pr, ψq, ϕ
˘

P
`

X2 ˆM1

˘

ˆM2 , (2.51)

whereas the linear functionals F : X1 Ñ R and G :M2 Ñ R are given by

Fpqq :“ xq ¨ n, φDyΓ @q P X1 , (2.52)
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and

Gpϕq :“ ´κ´1
φ

ż

Ω
fφ ϕ @ϕ P M2 . (2.53)

Next, it is straightforward to see that the bilinear forms a, bi, i P
␣

1, 2
(

, and cz,χ, as well as
the functionals F and G, are all bounded. In fact, applying Hölder’s inequality, appealing to the
bounds given by (2.45) and (2.46), and making use of the fact that } ¨ }0,r;Ω ď |Ω|p4´rq{4r } ¨ }0,4;Ω and
} ¨ }0,r;Ω ď |Ω|pρ´rq{ρr } ¨ }0,ρ;Ω for cz,χ, we find that there exist positive constants, given by

}a} :“ 1 , }bi} :“ 1
`

i P
␣

1, 2
(˘

, }c} :“ κ´1
φ max

␣

|Ω|p4´rq{4r, γ |Ω|pρ´rq{ρr
(

,

and }G} “ κ´1
φ }fφ}0,j;Ω ,

(2.54)

such that
|apr,qq| ď }a} }r}X2 }q}M1 @ pr,qq P X2 ˆM1 , (2.55)

|bipq, ϕq| ď }bi} }q}Xi }ϕ}Mi @ pq, ϕq P Xi ˆMi , (2.56)

|cz,χ
`

pr, ψq, ϕ
˘

| ď }c}
`

}z}0,4;Ω ` }χ}0,ρ;Ω
˘

}pr, ψq}X2ˆM1 }ϕ}M2

@
`

pr, ψq, ϕ
˘

P
`

X2 ˆM1

˘

ˆM2 ,
(2.57)

and
|Gpϕq| ď }G} }ϕ}M2 @ϕ P M2 . (2.58)

In turn, for the boundedness F we first observe, thanks to [16, Lemma A.36] and the surjectivity of
the trace operator mapping W1,rpΩq onto W1{s,rpΓq, that there exists a fixed constant Cr ą 0 such
that for each φ P W1{s,rpΓq there exists v P W1,rpΩq satisfying v|Γ “ φ and

}v}1,r;Ω :“ }v}0,r;Ω ` }∇v}0,r;Ω ď Cr }φ}1{s,r;Γ .

In particular, denoting by vD P W1,rpΩq a corresponding function for φD P W1{s,rpΓq, applying (1.9)
to pt, t1q “ ps, rq and pτ , vq “ pq, vDq, and then using Hölder’s inequality, we deduce that

|Fpqq| ď }F} }q}X1 @q P X1 , (2.59)

with the constant
}F} :“ Cr }φD}1{s,r;Γ . (2.60)

As a consequence of the analysis developed in Sections 2.1 and 2.2, and the present Section 2.3, and
under the assumption that the data belong to the indicated spaces, namely ∇f P LrpΩq, f P L4{3pΩq,
fη P LϱpΩq, fφ P LjpΩq, uD P H1{2pΓq, ηD P H1{2pΓq, and φD P W1{s,rpΓq, we conclude that the fully-
mixed formulation of the chemotaxis-Navier-Stokes problem (1.14) can be summarized by gathering
(2.8), (2.31) and (2.48), that is: Find pu⃗,σq P HˆQ, prσ, ηq P HˆQ, and pp, φq P X2 ˆM1, such that

apu⃗, v⃗q ` cpu; u⃗, v⃗q ` bpv⃗,σq “ Fηpv⃗q @ v⃗ P H ,

bpu⃗, τ q “ Gpτ q @ τ P Q ,

raprσ, rτ q ` rbprτ , ηq ` rcu,pprτ , ηq “ rFprτ q @ rτ P H ,

rbprσ, ξq “ rGpξq @ ξ P Q ,

app,qq ` b1pq, φq “ Fpqq @q P X1 ,

b2pp, ϕq ´ cu,η
`

pp, φq, ϕ
˘

“ Gpϕq @ϕ P M2 .

(2.61)
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3 The continuous solvability analysis

In this section we proceed similarly as in [10] and [20] (see also [2], [6], [21], and some of the references
therein) and adopt a fixed-point strategy to analyze the solvability of (2.61).

3.1 The fixed-point approach

We begin by rewriting (2.61) as an equivalent fixed point equation. To this end, we first let S :
L4pΩq ˆ Q Ñ L4pΩq be the operator defined by

Spz, χq :“ u @ pz, χq P L4pΩq ˆ Q , (3.1)

where pu⃗,σq “
`

pu, tq,σq P H ˆ Q is the unique solution (to be confirmed below) of problem (2.8)
(equivalently, the first and second rows of (2.61)) when cpu; ¨, ¨q and Fη are replaced by cpz; ¨, ¨q and
Fχ, respectively, that is

apu⃗, v⃗q ` cpz; u⃗, v⃗q ` bpv⃗,σq “ Fχpv⃗q @ v⃗ P H ,

bpu⃗, τ q “ Gpτ q @ τ P Q .
(3.2)

Similarly, we let rS : L4pΩq ˆX2 Ñ Q be the operator given by

rSpz, rq :“ η @ pz, rq P L4pΩq ˆX2 , (3.3)

where prσ, ηq P H ˆ Q is the unique solution (to be confirmed below) of problem (2.31) (equivalently,
the third and fourth rows of (2.61)) when rcu,p is replaced by rcz,r, that is

raprσ, rτ q ` rbprτ , ηq ` rcz,rprτ , ηq “ rFprτ q @ rτ P H ,

rbprσ, ξq “ rGpξq @ ξ P Q .
(3.4)

In turn, we let T : L4pΩq ˆ Q Ñ X2 be the operator given by

Tpz, χq :“ p @ pz, χq P L4pΩq ˆ Q , (3.5)

where pp, φq P X2 ˆM1 is the unique solution (to be confirmed below) of problem (2.48) (equivalently,
the fifth and sixth rows of (2.61)) when cu,η is replaced by cz,χ, that is

app,qq ` b1pq, φq “ Fpqq @q P X1 ,

b2pp, ϕq ´ cz,χ
`

pp, φq, ϕ
˘

“ Gpϕq @ϕ P M2 .
(3.6)

Thus, defining the operator Ξ : L4pΩq ˆX2 Ñ L4pΩq ˆX2 as

Ξpz, rq :“
´

S
`

z, rSpz, rq
˘

,T
`

z, rSpz, rq
˘

¯

@ pz, rq P L4pΩq ˆX2 , (3.7)

we realize that solving (2.61) is equivalent to seeking a fixed point of Ξ, that is: Find pu,pq P

L4pΩq ˆX2 such that
Ξpu,pq “ pu,pq . (3.8)

3.2 Well-posedness of the uncoupled problems

We now employ the Babuska-Brezzi theory in Banach spaces (cf. [3, Theorem 2.1, Corollary 2.1,
Section 2.1] for the general case, and [16, Theorem 2.34] for a particular one), and the Banach-Nečas-
Babuška Theorem (also known as the generalized Lax-Milgram Lemma) (cf. [16, Theorem 2.6]), to
establish the well-posedness of the problems (3.2), (3.4), and (3.6), defining the operators S, rS, and
T, respectively.
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3.2.1 Well-definedness of operator S

Here we apply [16, Theorem 2.34] to prove that problem (3.2) is well-posed (equivalently, that S
is well-defined). In this regard, it is important to stress that the structure of (3.2) is the same of
the problem stated in [10, eq. (3.23)], and hence, several results and techniques from there will be
employed in what follows. Indeed, given pz, χq P L4pΩq ˆ Q, we proceed as in [10, Section 3.3], and
introduce first the bilinear form Az : H ˆ H Ñ R defined by

Azpw⃗, v⃗q :“ apw⃗, v⃗q ` cpz; w⃗, v⃗q @ w⃗, v⃗ P H , (3.9)

so that problem (3.2) can be rewritten as: Find pu⃗,σq P H ˆ Q such that

Azpu⃗, v⃗q ` bpv⃗,σq “ Fχpv⃗q @ v⃗ P H ,

bpu⃗, τ q “ Gpτ q @ τ P Q .
(3.10)

Now, we let V be the kernel of the operator induced by the bilinear form b (cf. (2.10)), that is

V :“
!

v⃗ :“ pv, sq P H : bpv⃗, τ q “ 0 @ τ P Q
)

,

which, exactly as [10, eq. (3.34)], reduces to

V :“
!

v⃗ :“ pv, sq P H : ∇v “ s and v P H1
0pΩq

)

. (3.11)

Then, letting cP be the positive constant yielding the Friedrichs-Poincaré inequality, which states that
|v|21,Ω ě cP }v}21,Ω for all v P H1

0pΩq, denoting by i4 the continuous injection of H1pΩq into L4pΩq,
bearing in mind (3.9) and (2.20), and proceeding analogously to the proof of [10, eq. (3.41), Lemma
3.2], we find that

Azpv⃗, v⃗q “ apv⃗, v⃗q ě α }v⃗}2H @ v⃗ P V , (3.12)

with α :“ ν
2 min

␣

1, cP
}i4}2

(

, which gives the V-ellipticity of Az. Thus, it is easily seen, thanks to

(3.12), that Az satisfies the hypothesis specified in [16, Theorem 2.34, eq. (2.28)] with the constant
α defined above. In addition, it follows from (3.9), along with (2.15), (2.16), and (2.18), that there
holds

|Azpw⃗, v⃗q| ď }Az} }w⃗}H }v⃗}H @ w⃗, v⃗ P H , (3.13)

with the constant

}Az} :“ }a} ` }c} }z}0,4;Ω “ ν `
λ

2
}z} , (3.14)

which says that A is bounded.

In turn, using that for each t ě 2n
n`2 there exists a constant Ct ą 0, depending only on Ω, such that

Ct }τ }20,Ω ď }τ d}20,Ω ` }divpτ q}20,t;Ω @ τ P H0pdivt; Ωq , (3.15)

which follows from a slight modification of the proof of [18, Lemma 2.3], one can prove the continuous
inf-sup condition for the bilinear form b. More precisely, employing (3.15) with t “ 4{3, it is shown in
[10, Lemma 3.3, eq. (3.44)] that there exists a positive constant β, depending only on C4{3, such that

sup
v⃗PH
v⃗‰0

bpv⃗, τ⃗ q

}v⃗}H
ě β }τ }Q @ τ P Q , (3.16)

whence the bilinear form b satisfies the hypothesis indicated in [16, Theorem 2.34, eq. (2.29)].

We are now in position to confirm that the operator S is well-defined.
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Lemma 3.1. For each pz, χq P L4pΩq ˆQ there exists a unique pu⃗,σq :“
`

pu, tq,σ
˘

P HˆQ solution
of (3.10) (equivalently (3.2)), and hence one can define Spz, χq :“ u P L4pΩq. Moreover, there exists
a positive constant CS, depending only on |Ω|, }i4}, ν, λ, α, and β, such that

}Spz, χq}0,4;Ω “ }u}0,4;Ω ď }u⃗}H

ď CS

!

}χ}0,ρ;Ω }∇f}0,r;Ω ` }f}0,4{3;Ω `
`

1 ` }z}0,4;Ω
˘

}uD}1{2,Γ

)

.
(3.17)

Proof. Having previously established that Az and b satisfy [16, eqs. (2.28) and (2.29)], and knowing
thatAz, b, Fχ, andG are all bounded, a straightforward application of [16, Theorem 2.34] confirms the
existence of a unique pu⃗,σq :“

`

pu, tq,σ
˘

P H ˆ Q solution of (3.10). In addition, the corresponding
a priori estimate in [16, Theorem 2.34, eq. (2.30)] yields

}u⃗}H ď
1

α
}Fχ} `

1

β

ˆ

1 `
}Az}

α

˙

}G} . (3.18)

Then, noting from (2.41) and (2.42) that

}Fχ} ď max
␣

1, |Ω|1{4
( `

}χ}0,ρ;Ω }∇f}0,r;Ω ` }f}0,4{3;Ω

˘

, (3.19)

invoking the expressions for }G} and }Az} provided in (2.15) and (3.14), respectively, and performing
some minor algebraic manipulations, we readily derive from (3.18) the required inequality (3.17).

Regarding the a priori estimate for the component σ of the unique solution of (3.10), which will
be used later on, we recall that the second inequality in [16, Theorem 2.34, eq. (2.30)] gives

}σ}Q ď
1

β

ˆ

1 `
}Az}

α

˙

}Fχ} `
}Az}

β2

ˆ

1 `
}Az}

α

˙

}G} ,

which, proceeding similarly to the derivation of (3.17), yields

}σ}Q “ }σ}div4{3;Ω ď C̄S p1 ` }z}0,4;Ωq

!

}χ}0,ρ;Ω }∇f}0,r;Ω

` }f}0,4{3;Ω ` p1 ` }z}0,4;Ωq }uD}1{2,Γ

)

,
(3.20)

where C̄S is a positive constant depending as well on |Ω|, }i4}, ν, λ, α, and β.

3.2.2 Well-definedness of operator rS

In this section we make use of [16, Theorems 2.34 and 2.6] to show that (3.4) is well-posed (equivalently,
that rS is well-defined). To this end, and similarly to Section 3.2.1, we notice that, given pz, rq P

L4pΩq ˆ X2, the structure of (3.4) is analogous to that of the problem specified in [20, eq. (2.33),
Section 2.3], so that some results and techniques from its corresponding analysis are employed below.
In particular, following the approach from [20, Section 2.4.3], we first apply [16, Theorem 2.34] to a
perturbation of (3.4), and then employ [16, Theorem 2.6] to conclude that the whole problem (3.4) is
well-posed. More precisely, we let rA : pH ˆ Qq ˆ pH ˆ Qq Ñ R be the bounded bilinear form arising
from (3.4) after adding the left hand sides of its equations, but without including rcz,r, that is

rApprζ, χq, prτ , ξqq :“ raprζ, rτ q ` rbprτ , χq ` rbprζ, ξq (3.21)

for all prζ, χq, prτ , ξq P H ˆ Q, and show next that rA satisfies a global continuous inf-sup condition.
Note that, being rA symmetric, the latter will be valid with respect to any of its components. We also
remark that the boundedness of rA follows from those of ra and rb (cf. (2.34), (2.35), and (2.36)).
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Since establishing the aforementioned property for rA is equivalent to proving that the bilinear forms
ra and rb satisfy the hypotheses of [16, Theorem 2.34], we proceed with the latter in what follows. We
begin by letting rV be the null space of the operator induced by the bilinear form rb, that is

rV :“
!

rτ P H : bprτ , ξq “ 0 @ ξ P Q
)

,

which, according to the definitions of rb (cf. (2.33)) and the spaces H and Q (cf. (2.30)), yields

rV :“
!

rτ P H : divprτ q “ 0
)

. (3.22)

Then, it is straightforward to see from the definitions of ra (cf. (2.32)) and the norm of H :“ Hpdivϱ; Ωq

(cf. (1.4)) that there holds
raprτ , rτ q “ }rτ 2}H @ rτ P rV , (3.23)

from which one easily deduces that ra satisfies the hypotheses given by [16, Theorem 2.34, eq. (2.28)]
with the constant rα “ 1.

Furthermore, since the continuous inf-sup condition for rb has already been established (see, e.g. [6,
Lemma 2.1], [20, Lemma 2.9], and also [21, Lemma 3.5] for a closely related result), we provide next
only the main details of its corresponding proof. In fact, given ξ P Q :“ LρpΩq, we note from (2.25)
that ρ ą 2, introduce ξϱ :“ |ξ|ρ´2 ξ, and observe that

ξϱ P LϱpΩq and

ż

Ω
ξ ξϱ “ }ξ}0,ρ;Ω }ξϱ}0,ϱ;Ω . (3.24)

Then, letting w P H1
0pΩq be the unique weak solution of ∆w “ ´ξϱ in Ω, w “ 0 on Γ, for

which there holds }w}1,Ω ď
}iρ}

cP
}ξϱ}0,ϱ;Ω, where cP is the constant yielding the Friedrichs-Poincaré

inequality, and iρ is the continuous injection of H1pΩq into LρpΩq, we define rζ :“ ´∇w P L2pΩq and

notice that divprζq “ ξϱ, so that rζ P H :“ Hpdivϱ; Ωq. In this way, bounding by below with rτ “ rζ,
and using the above identities and estimates, we arrive at

sup
rτPH
rτ “0

rbprτ , ξq

}rτ }H
ě rβ }ξ}Q , (3.25)

with rβ :“
`

1 `
}iρ}

cP

˘´1
.

Consequently, thanks to (3.23) and (3.25), the hypotheses of [16, Theorem 2.34] are satisfied, and
hence the a priori estimates given by [16, Theorem 2.34, eq. (2.30)] imply the existence of a positive
constant α

rS
, depending only on rα, rβ, and }ra}, such that

sup
prτ ,ξqPHˆQ

prτ ,ξq‰0

rApprζ, χq, prτ , ξqq

}prτ , ξq}HˆQ
ě α

rS
}prζ, χq}HˆQ @ prζ, χq P H ˆ Q . (3.26)

Next, we let rAz,r :
`

H ˆ Q
˘

ˆ
`

H ˆ Q
˘

Ñ R be the bounded bilinear form that results after adding
the full left hand sides of the equations of (3.4), that is

rAz,rpprζ, χq, prτ , ξqq :“ rApprζ, χq, prτ , ξqq ` rcz,rprτ , χq @ prζ, χq, prτ , ξq P H ˆ Q , (3.27)

whence problem (3.4) can be rewritten, equivalently, as: Find prσ, ηq P H ˆ Q such that

rAz,rpprσ, ηq, prτ , ξqq “ rFprτ q ` rGpξq @ prτ , ξq P H ˆ Q . (3.28)
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We remark that the boundedness of rA and rcz,r (cf. (2.37)) implies the same property for rAz,r. In
turn, it follows from (3.26), (3.27), and the boundedness of rcz,r (cf. (2.34) and (2.37)), that for each

prζ, χq P H ˆ Q there holds

sup
prτ ,ξqPHˆQ

prτ ,ξq‰0

rAz,rpprζ, χq, prτ , ξqq

}prτ , ξq}HˆQ
ě α

rS
}prζ, χq}HˆQ ´ }rc}

`

}z}0,4;O ` }r}0,r;Ω
˘

}χ}Q

ě

!

α
rS

´ }rc}
`

}z}0,4;Ω ` }r}0,r;Ω
˘

)

}prζ, χq}HˆQ ,

and thus, under the assumption that

}z}0,4;Ω ` }r}0,r;Ω ď
α
rS

2 }rc}
, (3.29)

we arrive at

sup
prτ ,ξqPHˆQ

prτ ,ξq‰0

rAz,rpprζ, χq, prτ , ξqq

}prτ , ξq}HˆQ
ě

α
rS

2
}prζ, χq}HˆQ @ prζ, χq P H ˆ Q . (3.30)

Analogously, noting that rA is symmetric, proceeding as before, and under the same assumption (3.29),
we obtain

sup
p rζ,χqPHˆQ

prζ,χq‰0

rAz,rpprζ, χq, prτ , ξqq

}prζ, χq}HˆQ

ě
α
rS

2
}prτ , ξq}HˆQ @ prτ , ξq P H ˆ Q . (3.31)

According to the foregoing analysis, the well-definedness of rS is established as follows.

Lemma 3.2. For each pz, rq P L4pΩq ˆ X2 satisfying (3.29) there exists a unique prσ, ηq P H ˆ Q
solution of (3.28) (equivalently (3.4)), and hence one can define rSpz, rq :“ η P Q. Moreover, there
exists a positive constant C

rS
, depending only on α

rS
, }iρ}, and κη, such that

}rSpz, rq}Q “ }η}0,ρ;Ω ď }prσ, ηq}HˆQ ď C
rS

!

}ηD}1{2,Γ ` }fη}0,ϱ;Ω

)

. (3.32)

Proof. Bearing in mind the boundedness of rAz,r, (3.30), and (3.31), a straightforward application of
[16, Theorem 2.6] yields the existence of a unique solution prσ, ηq P H ˆ Q to (3.28). In addition, the
corresponding a priori estimate (cf. [16, Theorem 2.6, eq. (2.5)]) gives

}prσ, ηq}HˆQ ď
2

α
rS

!

}rF} ` }rG}

)

,

which, along with the expressions for }rF} and }rG} provided in (2.34), lead to (3.32) with the constant
C
rS
:“ 2

α
rS
max

␣

1 ` }iρ}, κ´1
η

(

.

3.2.3 Well-definedness of operator T

Our goal now is to show that (3.6) is well-posed (equivalently, that T is well-defined), for which we will
make use of the most general Babuška-Brezzi theory in Banach spaces (cf. [3, Theorem 2.1, Corollary
2.1, Section 2.1]) and the Banach-Nečas-Babuška Theorem (cf. [16, Theorem 2.6]). To this end, and
as observed for Sections 3.2.1 and 3.2.2, we notice here that, given pz, χq P L4pΩq ˆ Q, the structure
of (3.6) is similar to a perturbation of the problem described by [20, eq. (2.32)], so that some of the
techniques employed there will be adapted for our analysis below. In particular, proceeding as in [20,
Section 2.4.2], we first employ [3, Theorem 2.1, Corollary 2.1, Section 2.1] to analyze part of (3.6),
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and then we apply [16, Theorem 2.6] to conclude the well-posedness of the whole problem. According
to this, we now let A :

`

X2 ˆM1

˘

ˆ
`

X1 ˆM2

˘

Ñ R be the bounded bilinear form arising from (3.6)
after adding the left hand sides of its equations, but without including cz,χ, that is

Appr, ψq, pq, ϕqq :“ apr,qq ` b1pq, ψq ` b2pr, ϕq

@ pr, ψq P
`

X2 ˆM1

˘

, @ pq, ϕq P
`

X1 ˆM2

˘

,
(3.33)

and aim to prove next that A satisfies global continuous inf-sup conditions with respect to both its
first and second component. Note that the boundedness of A follows from those of a, b1 and b2 (cf.
(2.55), (2.56)).

The verification of the aforementioned properties of A is equivalent to establishing that the bilinear
forms a, b1, and b2 verify the hypotheses of [3, Theorem 2.1, Section 2.1], which we address in what
follows. Firstly, for each i P t1, 2u we let Ki be the kernel of the bilinear form bi (cf. (2.50)), that is

Ki :“
!

q P Xi : bipq, ϕq “ 0 @ϕ P Mi

)

,

which, according to the definitions of X1, X2, M1, and M2 (cf. (2.47)), and bi (cf. (2.50)), gives

K1 “

!

q P Hspdivs; Ωq : divpqq “ 0 in Ω
)

(3.34)

and
K2 “

!

q P Hrpdivj ; Ωq : divpqq “ 0 in Ω
)

. (3.35)

The following lemma introduces a suitable linear operator mapping LtpΩq into itself for a range of
t containing the one specified for s in (2.25). This result will be utilized next to establish the inf-sup
conditions required by [3, Theorem 2.1] (equivalently, [3, eqs. (2.8) and (2.9)]) for our bilinear form a
(cf. (2.49)).

Lemma 3.3. Let Ω be a bounded Lipschitz-continuous domain of Rn, n P t2, 3u, and let t, t1 P p1,`8q

conjugate to each other with t (and hence t1) lying in

#

r4{3, 4s if n “ 2

r6{5, 3s if n “ 3
. Then, there exists a linear

and bounded operator Dt : L
tpΩq Ñ LtpΩq such that

divpDtpwqq “ 0 in Ω @w P LtpΩq . (3.36)

In addition, for each z P Lt
1

pΩq such that divpzq “ 0 in Ω, there holds
ż

Ω
z ¨Dtpwq “

ż

Ω
z ¨ w @w P LtpΩq . (3.37)

Proof. It is a slight modification of the proof of [20, Lemma 2.3]. Indeed, given w P LtpΩq, with t in
the range indicated, we know from the scalar version of [19, Theorem 3.2] (see also [24, Theorems 1.1
and 1.3]) that there exists a unique u P W1,tpΩq such that

divp∇u` wq “ 0 in Ω , u “ 0 on BΩ ,

and there exists a constant Ct ą 0 such that }u}1,t;Ω ď Ct }w}0,t;Ω. Then, defining Dtpwq :“ ∇u`w,
it is readily seen that Dt is linear and bounded, and satisfies (3.36). In turn, given z P Lt

1

pΩq such
that divpzq “ 0 in Ω, it is clear that z P Ht1pdivt1 ; Ωq, so that applying (1.9) to z and u, we obtain

ż

Ω
z ¨ ∇u “ ´

ż

Ω
udivpzq ` xz ¨ n, uy “ 0 ,

which yields (3.37) and finishes the proof.
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The following result, which makes use of Lemma 3.3, resembles [20, Lemma 2.6], which, in turn,
employs [20, Lemma 2.3]. Note that the difference between Lemma 3.3 and [20, Lemma 2.3] lies on
the boundary conditions involved.

Lemma 3.4. There exists a positive constant α such that

sup
qPK1
q‰0

apr,qq

}q}X1

ě α }r}X2 @ r P K2 , (3.38)

and
sup
rPK2

apr,qq ą 0 @q P K1, q ‰ 0 . (3.39)

Proof. Given r P K2 (cf. (3.35)), that is r P Hrpdivj ; Ωq such that divprq “ 0 in Ω, and recalling from
(2.25) that r ą 2, we set rs :“ |r|r´2 r, and observe, similarly to (3.24), that

rs P LspΩq and

ż

Ω
r ¨ rs “ }r}0,r;Ω }rs}0,s;Ω . (3.40)

Then, noting from (2.25) that s does belong to the range required by Lemma 3.3, an application of
this result to t “ s yields Dsprsq P K1, and hence, using (3.37), the identity given in (3.40), and the
boundedness of Ds, we find that

sup
qPK1
q “0

apr,qq

}q}X1

ě
apr, Dsprsqq

}Dsprsq}X1

“

ż

Ω
r ¨Dsprsq

}Dsprsq}0,s;Ω
“

ż

Ω
r ¨ rs

}Dsprsq}0,s;Ω
ě

1

}Ds}
}r}0,r;Ω ,

which proves (3.38) with α “
1

}Ds}
. In turn, we now take q P K1 (cf. (3.34)), q ‰ 0, define

qr :“

#

|q|s´2 q if q “ 0

0 if q “ 0
, and observe, similarly to (3.24) and (3.40), that

qr P LrpΩq and

ż

Ω
q ¨ qr “ }q}s0,s;Ω . (3.41)

In this way, noting from Lemma 3.3 that Drpqrq P K2 (cf. (3.35)), and using (3.37) and the identity
in (3.41), we obtain

sup
rPK2

apr,qq ě

ż

Ω
Drpqrq ¨ q “

ż

Ω
qr ¨ q “ }q}s0,s;Ω ą 0 ,

which shows (3.39) and finishes the proof of the lemma.

We stress here that, belonging the index r as well (cf. (2.25)) to the range required by Lemma 3.3,
we can proceed analogously to the proof of Lemma 3.4 to conclude that the inequalities (3.38) and
(3.39) remain valid if the roles of X2 and X1 (and hence of K2 and K1) are exchanged. More precisely,
we have the following result.

Lemma 3.5. There exists a positive constant α such that

sup
rPK2
r‰0

apr,qq

}r}X2

ě α }q}X1 @q P K1 , (3.42)

and
sup
qPK1

apr,qq ą 0 @ r P K2, r ‰ 0 . (3.43)
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The continuous inf-sup conditions for the bilinear forms bi, i P t1, 2u, which resemble, though with
relevant differences, the results given by [20, Lemma 2.7], are established in the following lemma.

Lemma 3.6. For each i P t1, 2u there exists a positive constant βi such that

sup
qPXi
q‰0

bipq, ϕq

}q}Xi
ě βi }ϕ}Mi @ϕ P Mi . (3.44)

Proof. For the case i “ 1, in which Xi “ Hspdivs; Ωq and Mi “ LrpΩq, with r and s conjugate to
each other (cf. (2.25)), the present proof proceeds similarly to that of [20, Lemma 2.7], except for
the fact that the boundary conditions of the auxiliary problems utilized are homogeneous Dirichlet
and Neumann, respectively. We omit further details and refer to [20, Lemma 2.7]. On the other
hand, for the case i “ 2, in which Xi “ Hrpdivj ; Ωq and Mi “ LlpΩq, with j and l conjugate to each
other (cf. (2.26)), we first let O be a bounded convex polygonal domain containing Ω̄. Then, given
ϕ P M2 “ LlpΩq, we recall from (2.26) that l ě 2, set ϕj :“ |ϕ|l´2 ϕ, and observe, as before, that

ϕj P LjpΩq and

ż

Ω
ϕϕj “ }ϕ}0,l;Ω }ϕj}0,j;Ω . (3.45)

Next, we define g :“

#

ϕj in Ω ,

0 in OzΩ̄ .
, which clearly belongs to LjpOq, and deduce, applying [17,

Corollary 1] to j P p1, 2s (cf. (2.26)), that there exists a unique z P W1,j
0 pOq X W2,jpOq such that

∆z “ g in O , z “ 0 on BO ,

and
}z}2,j;O ď Cj }g}0,j;O “ Cj }ϕj}0,j;Ω ,

with a positive constant Cj depending only on j and O. Thus, letting q̄ :“ ∇z|Ω P W1,jpΩq, it follows
that divpq̄q “ ϕj in Ω, whereas using the continuous embedding ij,r from W1,jpΩq into LrpΩq, which
is valid (cf. [16, Corollary B.43]) for the ranges of r and j specified in (2.25) and (2.26), respectively,
we get

}q̄}0,r;Ω ď }ij,r} }q̄}1,j;Ω ď }ij,r} }z}2,j;O ď }ij,r}Cj }ϕj}0,j;Ω .

In this way, we conclude that q̄ P X2 :“ Hrpdivj ; Ωq, and that

}q̄}X2 “ }q̄}0,r;Ω ` }divpq̄q}0,j;Ω ď
`

1 ` }ij,r}Cj
˘

}ϕj}0,j;Ω ,

whence, using the identity in (3.45) as well, we find that

sup
qPX2
q‰0

b2pq, ϕq

}q}X2

ě
b2pq̄, ϕq

}q̄}X2

ě
1

`

1 ` }ij,r}Cj
˘

ż

Ω
ϕϕj

}ϕj}0,j;Ω
“

1
`

1 ` }ij,r}Cj
˘ }ϕ}0,l;Ω ,

which proves (3.44) with β2 “
`

1 ` }ij,r}Cj
˘´1

.

According to Lemmas 3.4 and 3.6 (equivalently, Lemmas 3.5 and 3.6), the required hypotheses of
[3, Theorem 2.1, Section 2.1] are satisfied, and hence the a priori estimates provided by [3, Corollary
2.1, Section 2.1] imply the existence of a positive constant αT, depending only on α, β1, β2, and }a},
such that

sup
pq,ϕqPX1ˆM2

pq,ϕq‰0

Appr, ψq, pq, ϕqq

}pq, ϕq}X1ˆM2

ě αT }pr, ψq}X2ˆM1 @ pr, ψq P X2 ˆM1 , (3.46)
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and

sup
pr,ψqPX2ˆM1

pr,ψq‰0

Appr, ψq, pq, ϕqq

}pr, ψq}X2ˆM1

ě αT }pq, ϕq}X1ˆM2 @ pq, ϕq P X1 ˆM2 . (3.47)

Now, we let Az,χ : pX2 ˆM1q ˆ pX1 ˆM2q Ñ R be the bounded bilinear form arising from (3.6) after
adding the full left hand sides of its equations, that is

Az,χppr, ψq, pq, ϕqq :“ Appr, ψq, pq, ϕqq ´ cz,χ
`

pr, ψq, ϕ
˘

@ pr, ψq P
`

X2 ˆM1

˘

, @ pq, ϕq P
`

X1 ˆM2

˘

,
(3.48)

and realize that (3.6) can be rewritten, equivalently, as: Find pp, φq P X2 ˆM1 such that

Az,χppp, φq, pq, ϕqq “ Fpqq ` Gpϕq @ pq, ϕq P X1 ˆM2 . (3.49)

Note that the boundedness of A and cz,χ (cf. (2.57)) guarantees that Az,χ is bounded as well. Thus,
bearing in mind (3.48), and employing (3.46) and (2.57), we find that for each pr, ψq P X2 ˆM1 there
holds

sup
pq,ϕqPX1ˆM2

pq,ϕq‰0

Az,χppr, ψq, pq, ϕqq

}pq, ϕq}X1ˆM2

ě

!

αT ´ }c}
`

}z}0,4;Ω ` }χ}0,ρ;Ω
˘

)

}pr, ψq}X2ˆM1 , (3.50)

and then, under the assumption that

}z}0,4;Ω ` }χ}0,ρ;Ω ď
αT

2 }c}
, (3.51)

we arrive at

sup
pq,ϕqPX1ˆM2

pq,ϕq‰0

Az,χppr, ψq, pq, ϕqq

}pq, ϕq}X1ˆM2

ě
αT

2
}pr, ψq}X2ˆM1 @ pr, ψq P X2 ˆM1 . (3.52)

Similarly, but employing now (3.47) instead of (3.46), and under the same assumption (3.51), we
obtain

sup
pr,ψqPX2ˆM1

pr,ψq‰0

Az,χppr, ψq, pq, ϕqq

}pr, ψq}X2ˆM1

ě
αT

2
}pq, ϕq}X1ˆM2 @ pq, ϕq P X1 ˆM2 . (3.53)

We are now in position to establish the well-definedness of T.

Lemma 3.7. For each pz, χq P L4pΩq ˆ Q satisfying (3.51), there exists a unique pp, φq P X2 ˆ M1

solution of (3.49) (equivalently (3.6)), and hence one can define Tpz, χq :“ p P X2. Moreover, there
exists a positive constant CT, depending only on αT, Cr, and κφ, such that

}Tpz, χq}X2 “ }p}X2 ď }pp, φq}X2ˆM1 ď CT

!

}φD}1{s,r;Γ ` }fφ}0,j;Ω

)

. (3.54)

Proof. Thanks to the boundedness of Az,χ, and the global inf-sup conditions (3.52) and (3.53), a
direct application of [16, Theorem 2.6] provides the existence of a unique solution pp, φq P X2 ˆ M1

to (3.49). Moreover, the corresponding a priori estimate (cf. [16, Theorem 2.6, eq. (2.5)]) yields

}pp, φq}X2ˆM1 ď
2

αT

!

}F} ` }G}

)

,

which, together with the expressions for }F} and }G} given in (2.60) and (2.54), imply (3.54) with
CT :“ 2

αT
max

␣

Cr, κ
´1
φ

(

.
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3.3 Solvability analysis of the fixed-point equation

Knowing that the operators S, rS, T and hence Ξ as well, are well defined, in this section we address the
solvability of the fixed point equation (3.7). To this end, in what follows we aim to verify the hypotheses
of the respective Banach Theorem. We begin the analysis by establishing sufficient conditions under
which Ξ maps a closed ball of L4pΩq ˆX2 into itself. Indeed, given a radius δ to be explicitly defined
later on, we first set

Wδ :“
!

pz, rq P L4pΩq ˆX2 : }pz, rq} :“ }z}0,4;Ω ` }r}X2 ď δ
)

. (3.55)

Then, given pz, rq P Wδ, we have from the a priori estimate for S (cf. (3.17) in Lemma 3.1) that

}S
`

z, rSpz, rq
˘

}0,4;Ω

ď CS

!

}rSpz, rq}0,ρ;Ω }∇f}0,r;Ω ` }f}0,4{3;Ω `
`

1 ` }z}0,4;Ω
˘

}uD}1{2,Γ

)

,
(3.56)

from which, using the corresponding estimate for rS (cf. (3.32), Lemma 3.2), and assuming (cf. (3.29))

}z}0,4;O ` }r}0,r;Ω ď
α
rS

2 }rc}
, (3.57)

we get

}S
`

z, rSpz, rq
˘

}0,4;Ω ď CS

!

C
rS

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

}∇f}0,r;Ω

` }f}0,4{3;Ω `
`

1 ` }z}0,4;Ω
˘

}uD}1{2,Γ

)

.
(3.58)

Furthermore, supposing now that (cf. (3.51))

}z}0,4;O ` }rSpz, rq}Q ď
αT

2 }c}
, (3.59)

the a priori estimate for T (cf. (3.54) in Lemma 3.7) gives

}T
`

z, rSpz, rq
˘

}X2 ď CT

!

}φD}1{s,r;Γ ` }fφ}0,j;Ω

)

. (3.60)

Regarding (3.57), we observe that it is satisfied if we consider δ such that δ ď
α
rS

2 }rc} . In turn, noting

that certainly }z}0,4;Ω ď δ, and according to the estimate for }rSpz, rq}Q (cf. (3.32)), we deduce that
a sufficient condition for (3.59) is given by the assumptions

δ ď
αT

4 }c}
and C

rS

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

ď
αT

4 }c}
. (3.61)

In this way, defining

δ :“ min
! α

rS

2 }rc}
,
αT

4 }c}

)

, (3.62)

(3.57) and (3.59) are satisfied, whence (3.58) and (3.60) are valid, and thus, assuming the second
inequality in (3.61), and recalling that }Ξpz, rq} :“ }S

`

z, rSpz, rq
˘

}0,4;Ω ` }T
`

z, rSpz, rq
˘

}X2 , we obtain

}Ξpz, rq} ď Cpδq

!

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

}∇f}0,r;Ω ` }f}0,4{3;Ω

` }uD}1{2,Γ ` }φD}1{s,r;Γ ` }fφ}0,j;Ω

)

,
(3.63)

where Cpδq is a positive constant depending explicitly on CS, C
rS
, p1 ` δq, and CT.

We have then proved the following result.
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Lemma 3.8. Assume that the data are sufficiently small so that

C
rS

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

ď
αT

4 }c}
, (3.64)

and
Cpδq

!

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

}∇f}0,r;Ω ` }f}0,4{3;Ω

` }uD}1{2,Γ ` }φD}1{s,r;Γ ` }fφ}0,j;Ω

)

ď δ .
(3.65)

Then, ΞpWδq Ď Wδ.

We now aim to show that the operator Ξ is Lipschitz-continuous, for which, according to its
definition (cf. (3.7)), it suffices to show that S, rS and T satisfy suitable continuity properties. We
begin with the corresponding result for S.

Lemma 3.9. There exists a positive constant LS, depending on α, |Ω|, and }c}, such that

}Spz, χq ´ Spz0, χ0q}H

ď LS

!

}∇f}0,r;Ω }χ ´ χ0}0,ρ;Ω ` Fpz0, χ0q }z ´ z0}0,4;Ω

) (3.66)

for all pz, χq, pz0, χ0q P L4pΩq ˆ Q, where

Fpz0, χ0q :“ CS

!

}χ0}0,ρ;Ω }∇f}0,r;Ω ` }f}0,4{3;Ω `
`

1 ` }z0}0,4;Ω
˘

}uD}1{2,Γ

)

. (3.67)

Proof. Given pz, χq, pz0, χ0q P L4pΩq ˆ Q, we let Spz, χq :“ u P L4pΩq and Spz0, χ0q :“ u0 P L4pΩq,
where pu⃗,σq “

`

pu, tq,σ
˘

P H ˆ Q and pu⃗0,σ0q “
`

pu0, t0q,σ0

˘

P H ˆ Q are the respective solutions
of (3.2). It follows from the corresponding second equations of (3.2) that u⃗´ u⃗0 P V (cf. (3.11)), and
then the V´ellipticity of a (cf. (3.12)) gives

α }u⃗ ´ u⃗0}2H ď apu⃗ ´ u⃗0, u⃗ ´ u⃗0q . (3.68)

In turn, applying the corresponding first equations of (3.2) to v⃗ “ u⃗ ´ u⃗0, we obtain

apu⃗, u⃗ ´ u⃗0q ` cpz; u⃗, u⃗ ´ u⃗0q “ Fχpu⃗ ´ u⃗0q , (3.69)

and
apu⃗0, u⃗ ´ u⃗0q ` cpz0; u⃗0, u⃗ ´ u⃗0q “ Fχ0pu⃗ ´ u⃗0q , (3.70)

so that, subtracting (3.70) from (3.69), and using, thanks to the bilinearity of cpz; ¨, ¨q and (2.20), that

cpz; u⃗, u⃗ ´ u⃗0q “ cpz; u⃗ ´ u⃗0, u⃗ ´ u⃗0q ` cpz; u⃗0, u⃗ ´ u⃗0q “ cpz; u⃗0, u⃗ ´ u⃗0q ,

we find
apu⃗ ´ u⃗0, u⃗ ´ u⃗0q “

`

Fχ ´ Fχ0

˘

pu⃗ ´ u⃗0q ` cpz0 ´ z; u⃗0, u⃗ ´ u⃗0q . (3.71)

Next, utilizing (2.40), we get

`

Fχ ´ Fχ0

˘

pu⃗ ´ u⃗0q “

ż

Ω
pχ´ χ0q∇f ¨ pu ´ u0q

ď |Ω|1{4 }χ´ χ0}0,ρ;Ω }∇f}0,r;Ω }u⃗ ´ u⃗0}H ,

(3.72)

whereas the boundedness property of c (cf. (2.18)) yields

cpz0 ´ z; u⃗0, u⃗ ´ u⃗0q ď }c} }z ´ z0}0,4;Ω }u⃗0}H }u⃗ ´ u⃗0}H . (3.73)

Finally, employing (3.72) and (3.73) in (3.71), replacing the resulting estimate back into (3.68), sim-
plifying by }u⃗ ´ u⃗0}H, and bounding }u⃗0}H by the corresponding upper bound in (3.17), we arrive at
the required inequality (3.66) with LS :“ α´1 max

␣

|Ω|1{4, }c}
(

.
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The continuity of rS is addressed next. More precisely, we have the following result.

Lemma 3.10. There exists a positive constant L
rS
, depending only on }rc}, α

rS
, and C

rS
, such that

}rSpz, rq ´ rSpz0, r0q}Q

ď L
rS

!

}ηD}1{2,Γ ` }fη}0,ϱ;Ω

)

}pz, rq ´ pz0, r0q}

(3.74)

for all pz, rq, pz0, r0q P L4pΩq ˆX2 satisfying (3.29).

Proof. Given pz, rq, pz0, r0q P L4pΩq ˆ X2, we let rSpz, rq :“ η P Q and rSpz0, r0q :“ η0 P Q, where
prσ, ηq P H ˆ Q and prσ0, η0q P H ˆ Q are the respective solutions of (3.4), equivalently (3.28), that is

rAz,r

`

prσ, ηq, prτ , ξq
˘

“ rFprτ q ` rGpξq @ prτ , ξq P H ˆ Q , (3.75)

and
rAz0,r0

`

prσ0, η0q, prτ , ξq
˘

“ rFprτ q ` rGpξq @ prτ , ξq P H ˆ Q . (3.76)

It follows from the foregoing identities and the definitions of rAz,r (cf. (3.27)) and rcz,q (cf. (2.27)) that

rAz,r

`

prσ, ηq ´ prσ0, η0q, prτ , ξq
˘

“ rAz,r

`

prσ, ηq, prτ , ξq
˘

´ rAz,r

`

prσ0, η0q, prτ , ξq
˘

“ rAz0,r0

`

prσ0, η0q, prτ , ξq
˘

´ rAz,r

`

prσ0, η0q, prτ , ξq
˘

“ rcz0´z,r0´rprτ , η0q ,
(3.77)

and hence, applying the global inf-sup condition (3.30) to prσ, ηq ´ prσ0, η0q, and employing (3.77) and
the boundedness of rcz,r (cf. (2.37)), we find that

}prσ, ηq ´ prσ0, η0q}HˆQ ď
2

α
rS

sup
prτ ,ξqPHˆQ

prτ ,ξq‰0

rcz0´z,r0´rprτ , η0q

}prτ , ξq}HˆQ

ď
2 }rc}

α
rS

}η0}Q

!

}z ´ z}0,4;Ω ` }r ´ r0}0,r;Ω

)

,

which, together with the a priori estimate (3.32) for }η0}Q, yields (3.74) with L
rS
:“ 2 }rc}α´1

rS
C
rS
.

It remains to establish the continuity of T, which is the purpose of the following lemma.

Lemma 3.11. There exists a positive constant LT, depending only on }c}, αT, and CT, such that

}Tpz, χq ´ Tpz0, χ0q}X2

ď LT

!

}φD}1{s,r;Γ ` }fφ}0,j;Ω

)

}pz, χq ´ pz0, χ0q}

(3.78)

for all pz, χq, pz0, χ0q P L4pΩq ˆ Q satisfying (3.51).

Proof. Given pz, χq, pz0, χ0q P L4pΩqˆQ as indicated, we proceed similarly to the proof of Lemma 3.10
and let Tpz, χq :“ p P X2 and Tpz0, χ0q :“ p0 P X2, where pp, φq P X2 ˆM1 and pp0, φ0q P X2 ˆM1

are the respective solutions of (3.6), equivalently (3.49), that is

Az,χ

`

pp, φq, pq, ϕq
˘

“ Fpqq ` Gpϕq @ pq, ϕq P X1 ˆM2 , (3.79)

and
Az0,χ0

`

pp0, φ0q, pq, ϕq
˘

“ Fpqq ` Gpϕq @ pq, ϕq P X1 ˆM2 . (3.80)
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Next, proceeding analogously to the derivation of (3.77), we deduce from the identities (3.79) and
(3.80), along with the definitions of Az,χ (cf. (3.48)) and cz,χ (cf. (2.51)) that

Az,χ

`

pp, φq ´ pp0, φ0q, pq, ϕq
˘

“ cz´z0,χ´χ0

`

pp0, φ0q, ϕ
˘

, (3.81)

and thus, applying the global inf-sup condition (3.52) to pp, φq ´ pp0, φ0q, and making use of (3.81)
and the boundedness of cz,χ (cf. (2.57)), we get

}pp, φq ´ pp0, φ0q}X2ˆM1 ď
2

αT
sup

pq,ϕqPX1ˆM2
pq,ϕq‰0

cz´z0,χ´χ0

`

pp0, φ0q, ϕ
˘

}pq, ϕq}X1ˆM2

ď
2 }c}

αT
}pp0, φ0q}X2ˆM1

!

}z ´ z0}0,4;Ω ` }χ´ χ0}0,ρ;Ω

)

,

which, together with the a priori estimate (3.54) for }pp0, φ0q}X2ˆM1 , yields (3.78) with LT :“
2 }c}α´1

T CT.

Having proved Lemmas 3.9, 3.10 and 3.11, we now aim to establish the continuity property of the
fixed point operator Ξ in the closed ball Wδ (cf. (3.55)). Indeed, given pz, rq, pz0, r0q P Wδ, we first
observe from the definition of Ξ (cf. (3.7)) that

}Ξpz, rq ´ Ξpz0, r0q} “ }S
`

z, rSpz, rq
˘

´ S
`

z0, rSpz0, r0q
˘

}0,4;Ω

` }T
`

z, rSpz, rq
˘

´ T
`

z0, rSpz0, r0q
˘

}X2 .
(3.82)

Then, employing the continuity properties of S (cf. Lemma 3.9, (3.66)) and rS (cf. Lemma 3.10,
(3.74)), we find that

}S
`

z, rSpz, rq
˘

´ S
`

z0, rSpz0, r0q
˘

}0,4;Ω

ď LS

!

}∇f}0,r;Ω }rSpz, rq ´ rSpz0, r0q}0,ρ;Ω ` F
`

z0, rSpz0, r0q
˘

}z ´ z0}0,4;Ω

)

ď LS

!

L
rS

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

}∇f}0,r;Ω ` F
`

z0, rSpz0, r0q
˘

)

}pz, rq ´ pz0, r0q}

(3.83)

whereas (3.67) and the a priori estimate of rS (cf. (3.32)) gives

F
`

z0, rSpz0, r0q
˘

ď CS

!

}rSpz0, r0q}0,ρ;Ω }∇f}0,r;Ω ` }f}0,4{3;Ω `
`

1 ` }z0}0,4;Ω
˘

}uD}1{2,Γ

)

ď CS

!

C
rS

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

}∇f}0,r;Ω ` }f}0,4{3;Ω `
`

1 ` }z0}0,4;Ω
˘

}uD}1{2,Γ

)

.

(3.84)

In this way, replacing the bound from (3.84) into (3.83), and using that }z0}0,4;Ω ď δ, we deduce the
existence of a positive constant LΞ,S, depending only on LS, L

rS
, CS, C

rS
, and δ, such that

}S
`

z, rSpz, rq
˘

´ S
`

z0, rSpz0, r0q
˘

}0,4;Ω ď LΞ,S

!

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

}∇f}0,r;Ω

` }f}0,4{3;Ω ` }uD}1{2,Γ

)

}pz, rq ´ pz0, r0q} .
(3.85)

In turn, proceeding similarly as before, but applying now the continuity properties of T (cf. Lemma
3.11, (3.78)) and rS (cf. Lemma 3.10, (3.74)), we arrive at

}T
`

z, rSpz, rq
˘

´ T
`

z0, rSpz0, r0q
˘

}X2

ď LΞ,T

`

1 ` }ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

!

}φD}1{s,r;Γ ` }fφ}0,j;Ω

)

}pz, rq ´ pz0, r0q} ,
(3.86)
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where LΞ,T is a positive constant depending only on LT and L
rS
.

Defining LΞ :“ max
␣

LΞ,S, LΞ,T

(

, we summarize the above discussion in the following result.

Lemma 3.12. Assume (3.64), that is

C
rS

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

ď
αT

4 }c}
.

Then, there holds

}Ξpz, rq ´ Ξpz0, r0q} ď LΞ

!

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘`

}∇f}0,r;Ω ` }φD}1{s,r;Γ ` }fφ}0,j;Ω
˘

` }f}0,4{3;Ω ` }uD}1{2,Γ ` }φD}1{s,r;Γ ` }fφ}0,j;Ω

)

}pz, rq ´ pz0, r0q} ,
(3.87)

for all pz, rq, pz0, r0q P Wδ.

Proof. We first stress that (3.64) is assumed here to ensure that both
`

z, rSpz, rq
˘

and
`

z0, rSpz0, r0q
˘

verify the hypothesis (3.51), which is required by the definition of T and its continuity property. Then,
it is readily seen that (3.87) follows directly from (3.82), (3.85), and (3.86)

The main result of this section is hence stated as follows.

Theorem 3.13. Assume that the data are sufficiently small so that (3.64) and (3.65) hold. In addi-
tion, suppose that

LΞ

!

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘`

}∇f}0,r;Ω ` }φD}1{s,r;Γ ` }fφ}0,j;Ω
˘

` }f}0,4{3;Ω ` }uD}1{2,Γ ` }φD}1{s,r;Γ ` }fφ}0,j;Ω

)

ă 1 .
(3.88)

Then, the operator Ξ has a unique fixed point pu,pq P Wδ. Equivalently, the coupled problem (2.61)
has a unique solution pu⃗,σq P H ˆ Q, prσ, ηq P H ˆ Q, and pp, φq P X2 ˆ M1, with pu,pq P Wδ.
Moreover, there hold the following a priori estimates

}pu⃗,σq}HˆQ ď Cu⃗,σ

!

}∇f}0,r;Ω
`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

` }f}0,4{3;Ω ` }uD}1{2,Γ

)

,

}prσ, ηq}HˆQ ď C
rS

!

}ηD}1{2,Γ ` }fη}0,ϱ;Ω

)

,

}pp, φq}X2ˆM1 ď CT

!

}φD}1{s,r;Γ ` }fφ}0,j;Ω

)

,

where Cu⃗,σ is a positive constant depending only on CS, C̄S, C
rS
, and δ.

Proof. We begin by recalling from Lemma 3.8 that (3.64) and (3.65) guarantee that Ξ maps Wδ

into itself. Hence in virtue of the equivalence between (2.61) and (3.8), and bearing in mind the
Lipschitz-continuity of Ξ (cf. Lemma 3.12) and the hypothesis (3.88), a straightforward application
of the Banach fixed point Theorem implies the existence of a unique solution pu,pq P Wδ of (2.61).
In addition, the a priori estimates follow straightforwardly from (3.17), (3.20), (3.32) and (3.54), and
bounding }u}0,4;Ω by δ.

4 The Galerkin scheme

In this section we introduce the Galerkin scheme of the fully-mixed formulation (2.61), analyse its
solvability by employing a discrete version of the fixed point strategy introduced in Section 3.1, and
develop the corresponding a priori error analysis.
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4.1 Preliminaries

We begin by considering arbitrary finite element subspaces Hu
h , Ht

h, Hσ
h , Hh, Qh, X2,h, M1,h, X1,h and

M2,h of the spaces L4pΩq, L2
trpΩq, Hpdiv4{3; Ωq, H, Q, X2, M1, X1, and M2, respectively. Hereafter,

h stands for both the sub-index of each foregoing subspace and the size of a regular triangulation Th
of Ω̄ made up of triangles K (when n “ 2) or tetrahedra K (when n “ 3) of diameter hK , that is
h :“ max

␣

hK : K P Th
(

. Specific finite element subspaces satisfying the stability conditions to be
introduced along the analysis will be provided later on in Section 5. Then, defining the spaces

Hh :“ Hu
h ˆ Ht

h , Qh :“ Hσ
h X H0pdiv4{3; Ωq ,

and setting the notations
u⃗h :“ puh, thq , v⃗h :“ pvh, shq P Hh ,

the Galerkin scheme associated with (2.61) reads: Find pu⃗h,σhq P Hh ˆ Qh, prσh, ηhq P Hh ˆ Qh, and
pph, φhq P X2,h ˆM1,h, such that

apu⃗h, v⃗hq ` cpuh; u⃗h, v⃗hq ` bpv⃗h,σhq “ Fηhpv⃗hq @ v⃗h P Hh ,

bpu⃗h, τhq “ Gpτhq @ τh P Qh ,

raprσh, rτhq ` rbprτh, ηhq ` rcuh,phprτh, ηhq “ rFprτhq @ rτh P Hh ,

rbprσh, ξhq “ rGpξhq @ ξh P Qh ,

apph,qhq ` b1pqh, φhq “ Fpqhq @qh P X1,h ,

b2pph, ϕhq ´ cuh,ηh
`

pph, φhq, ϕh
˘

“ Gpϕhq @ϕh P M2,h .

(4.1)

Throughout the rest of this section, we adopt the discrete analogue of the fixed point strategy
introduced in Section 3.1 to analyse the solvability of (4.1). According to it, we now let Sh : Hu

hˆQh Ñ

Hu
h be the operator defined by

Shpzh, χhq :“ uh @ pzh, χhq P Hu
h ˆ Qh , (4.2)

where pu⃗h,σhq “
`

puh, thq,σhq P Hh ˆ Qh is the unique solution (to be confirmed) of the first and
second rows of (4.1) when cpuh; ¨, ¨q and Fηh are replaced by cpzh; ¨, ¨q and Fχh , respectively, that is

apu⃗h, v⃗hq ` cpzh; u⃗h, v⃗hq ` bpv⃗h,σhq “ Fχhpv⃗hq @ v⃗h P Hh ,

bpu⃗h, τhq “ Gpτhq @ τh P Qh .
(4.3)

In turn, we let rSh : Hu
h ˆX2,h Ñ Qh be the operator given by

rShpzh, rhq :“ ηh @ pzh, rhq P Hu
h ˆX2,h , (4.4)

where prσh, ηhq P HhˆQh is the unique solution (to be confirmed) of the third and fourth rows of (4.1)
when rcuh,ph is replaced by rczh,rh , that is

raprσh, rτhq ` rbprτh, ηhq ` rczh,rhprτh, ηhq “ rFprτhq @ rτh P Hh ,

rbprσh, ξhq “ rGpξhq @ ξh P Qh .
(4.5)

Similarly, we let Th : Hu
h ˆ Qh Ñ X2,h be the operator given by

Thpzh, χhq :“ ph @ pzh, χhq P Hu
h ˆ Qh , (4.6)
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where pph, φhq P X2,h ˆ M1,h is the unique solution (to be confirmed) of the fifth and sixth rows of
(4.1) when cuh,ηh is replaced by czh,χh , that is

apph,qhq ` b1pqh, φhq “ Fpqhq @qh P X1,h ,

b2pph, ϕhq ´ czh,χh
`

pph, φhq, ϕh
˘

“ Gpϕhq @ϕh P M2,h .
(4.7)

Finally, we define Ξh : Hu
h ˆX2,h Ñ Hu

h ˆX2,h as

Ξhpzh, rhq :“
´

Sh
`

zh, rShpzh, rhq
˘

,Th

`

zh, rShpzh, rhq
˘

¯

@ pzh, rhq P Hu
h ˆX2,h , (4.8)

and notice that solving (4.1) is equivalent to seeking a fixed point of Ξh, that is: Find puh,phq P

Hu
h ˆX2,h such that

Ξhpuh,phq “ puh,phq . (4.9)

4.2 Discrete solvability analysis

Similarly to the approach from Section 3, here we establish the well-posedness of the discrete system
(4.1) by studying the equivalent fixed-point equation (4.9). More precisely, being the respective
analyses fully analogous to those developed in Sections 3.2 and 3.3, in what follows we basically
collect the corresponding results and, eventually, discuss some details of the respective proofs.

We begin by stating next that the discrete operators Sh, rSh, and Th are well-defined, equivalently,
that the problems (4.3), (4.5), and (4.7) are well-posed. Certainly, instead of [3, Theorem 2.1, Corollary
2.1, Section 2.1], [16, Theorem 2.34], and [16, Theorem 2.6], we now resort to the respective discrete
versions given by [3, Corollary 2.2, Section 2.2], [16, Proposition 2.42], and [16, Theorem 2.22]. To this
end, we need to introduce general hypotheses on the finite element subspaces to be utilized in (4.1),
and later on in Section 5 we will introduce specific examples of the latter satisfying them. According
to the above, and in order to address first the well-definedness of S, we assume that

(H.1) there exists a positive constant βd, independent of h, such that

sup
v⃗hPHh
v⃗h‰0

bpv⃗h, τhq

}v⃗h}H
ě βd }τh}Q @ τh P Qh .

In addition, we let Vh be the discrete kernel of the bilinear form b, that is

Vh :“
!

v⃗h P Hh : bpv⃗h, τhq “ 0 @ τh P Qh

)

, (4.10)

and suppose that

(H.2) there exists a positive constant Cd, independent of h, such that

}sh}0,Ω ě Cd }vh}0,4;Ω @ v⃗h :“ pvh, shq P Vh .

Then, given zh P Hu
h , it readily follows from the definitions of Azh (cf. (3.9)) and a (cf. (2.9)), the

identity (2.20), and the assumption (H.2), that

Azhpv⃗h, v⃗hq “ apv⃗h, v⃗hq “ ν }sh}20,Ω ě
ν

2
C2
d }vh}20,4;Ω `

ν

2
}sh}20,Ω @ v⃗h :“ pvh, shq P Vh , (4.11)

which proves the Vh-ellipticity of Azh with constant αd :“ ν
2 min

␣

C2
d , 1

(

. Thus, the discrete analogue
of Lemma 3.1 reads as follows.
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Lemma 4.1. For each pzh, χhq P Hu
h ˆQh there exists a unique pu⃗h,σhq :“

`

puh, thq,σh
˘

P HhˆQh

solution of (4.3), and hence one can define Shpzh, χhq :“ uh P Hu
h . Moreover, there exists a positive

constant CS,d, depending only on |Ω|, }i4}, ν, λ, αd, and βd, such that

}Shpzh, χhq}0,4;Ω “ }uh}0,4;Ω ď }u⃗h}H

ď CS,d

!

}χh}0,ρ;Ω }∇f}0,r;Ω ` }f}0,4{3;Ω `
`

1 ` }zh}0,4;Ω
˘

}uD}1{2,Γ

)

.
(4.12)

Proof. Having the discrete inf-sup condition for b (cf. (H.1)) and the Vh-ellipticity of Azh for each
zh P Hu

h (cf. (4.11)), the existence of a unique solution to (4.3) is a straightforward application of [16,
Proposition 2.42], whereas the a priori estimate (4.12) follows from [16, eq. (2.30)].

We remark here that the discrete analogue of (3.20) reads

}σh}Q “ }σh}div4{3;Ω ď C̄S,d p1 ` }zh}0,4;Ωq

!

}χh}0,ρ;Ω }∇f}0,r;Ω

` }f}0,4{3;Ω ` p1 ` }zh}0,4;Ωq }uD}1{2,Γ

)

,
(4.13)

where C̄S,d is a positive constant depending as well on |Ω|, }i4}, ν, λ, αd, and βd.

In turn, for the well-definedness of rSh, we now look at the discrete kernel of rb, that is

rVh :“
!

rτh P Hh : rbprτh, ξhq “ 0 @ ξh P Qh

)

, (4.14)

and suppose that

(H.3) there holds div
`

Hh
˘

Ď Qh,

(H.4) there exists a positive constant rβd, independent of h, such that

sup
rτhPHh
rτh‰0

rbprτh, ξhq

}rτh}H
ě rβd }ξh}Q @ ξh P Qh .

Bearing in mind the definition of rb (cf. (2.33)), and employing (H.3), we deduce from (4.14) that

rVh “

!

rτh P Hh : divprτhq “ 0
)

,

which yields the discrete analogue of (3.23), and hence the rVh-ellipticity of ra (cf. (2.32)) with constant
rαd “ 1. This fact together with (H.4) guarantee, thanks to [16, Proposition 2.42], the discrete global
inf-sup condition for rA (cf. (3.21)) with a positive constant α

rS,d
depending only on rαd, rβd, and }ra},

and thus the same property is transferred to rAzh,rh (cf. (3.27)) for each pzh, rhq P Hu
h ˆX2,h satisfying

the discrete version of (3.29), that is

}zh}0,4;Ω ` }rh}0,r;Ω ď
α
rS,d

2 }rc}
. (4.15)

In this way, the well-definedness of rSh is established by the following lemma.
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Lemma 4.2. For each pzh, rhq P Hu
h ˆX2,h verifying (4.15), there exists a unique prσh, ηhq P Hh ˆQh

solution of (4.5), and hence one can define rShpzh, rhq :“ ηh P Qh. Moreover, there exists a positive
constant C

rS,d
, depending only on α

rS,d
, }iρ}, and κη, such that

}rShpzh, rhq}Q “ }ηh}0,ρ;Ω ď }prσh, ηhq}HˆQ ď C
rS,d

!

}ηD}1{2,Γ ` }fη}0,ϱ;Ω

)

. (4.16)

Proof. It is a direct application of [16, Theorem 2.22].

Furthermore, the well-definedness of Th requires the introduction of the discrete kernels of b1 and
b2, namely

K1,h :“
!

qh P X1,h : b1pqh, ϕhq “ 0 @ϕh P M1,h

)

,

and
K2,h :“

!

qh P X2,h : b2pqh, ϕhq “ 0 @ϕh P M2,h

)

,

and the following hypotheses:

(H.5) there exists a positive constant αd, independent of h, such that

sup
qhPK1,h
qh‰0

aprh,qhq

}qh}X1

ě αd }rh}X2 @ rh P K2,h , and

sup
rhPK2,h

aprh,qhq ą 0 @qh P K1,h, qh ‰ 0 ,

(H.6) for each i P
␣

1, 2
(

there exists a positive constant βi,d, independent of h, such that

sup
qhPXi,h
qh‰0

bipqh, ϕhq

}qh}Xi
ě βi,d }ϕh}Mi @ϕh P Mi,h .

Thanks to (H.5) and (H.6), a straightforward application of [3, Corollary 2.2, Section 2.2] implies
the discrete global inf-sup condition for A (cf. (3.33)) with a positive constant αT,d depending only
on αd, β1,d, β2,d and }a}, and hence the same property is shared by Azh,χh (cf. (3.48)) for each
pzh, χhq P Hu

h ˆ Qh satisfying the discrete version of (3.51), that is

}zh}0,4;Ω ` }χh}0,ρ;Ω ď
αT,d

2 }c}
. (4.17)

In this way, the well-definedness of Th is stated as follows.

Lemma 4.3. For each pzh, χhq P Hu
hˆQh verifying (4.17), there exists a unique pph, φhq P X2,hˆM1,h

solution of (4.7), and hence one can define Thpzh, χhq :“ ph P X2,h. Moreover, there exists a positive
constant CT,d, depending only on αT,d, Cr, and κφ, such that

}Thpzh, χhq}X2 “ }ph}X2 ď }pph, φhq}X2ˆM1 ď CT,d

!

}φD}1{s,r;Γ ` }fφ}0,j;Ω

)

. (4.18)

Proof. Similarly to the proof of Lemma 4.2, it reduces to a simple application of [16, Theorem 2.22].
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Having established that the discrete operators Sh, rSh, Th, and hence Ξh (under the constraint
imposed by (4.17)), are all well defined, we now proceed as in Section 3.3 to address the solvability of
the corresponding fixed point equation (4.9). Indeed, letting δd be the discrete version of (3.62), that
is

δd :“ min
! α

rS,d

2 }rc}
,
αT,d

4 }c}

)

, (4.19)

we first introduce the ball

Wδd :“
!

pzh, rhq P Hu
h ˆX2,h : }pzh, rhq} :“ }zh}0,4;Ω ` }rh}X2 ď δd

)

. (4.20)

Then, analogously to the derivation of Lemma 3.8 (cf. beginning of Section 3.3), we deduce that Ξh

maps Wδd into itself under the discrete versions of (3.64) and (3.65), which read exactly as those,
except that the constants C

rS
, αT, and Cpδq, and the radius δ utilized there are replaced by C

rS,d
, αT,d,

Cdpδq, and δd, respectively, where, similarly to Cpδq, Cdpδq depends explicitly on CS,d, C
rS,d

, p1 ` δq,
and CT,d. Moreover, following analogue arguments to those employed in the proofs of Lemmas 3.9,

3.10, and 3.11, we are able to prove the continuity properties of Sh, rSh, and Th, that is the discrete
versions of (3.66), (3.74), and (3.78), which are the same as the latter, but instead of LS, L

rS
, and LT,

the resulting constants are given by

LS,d :“ α´1
d max

␣

|Ω|1{4, }c}
(

, L
rS,d

:“ 2 }rc}α´1
rS,d
C
rS,d
, and LT,d :“ 2 }c}α´1

T,dCT,d ,

respectively. Hence, proceeding analogously to the derivation of (3.85), (3.86), and the consequent
Lemma 3.12, we are able to show that, under the discrete version of (3.64), there holds

}Ξhpzh, rhq ´ Ξhpz0,h, r0,hq}

ď LΞ,d

!

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘`

}∇f}0,r;Ω ` }φD}1{s,r;Γ ` }fφ}0,j;Ω
˘

` }f}0,4{3;Ω ` }uD}1{2,Γ ` }φD}1{s,r;Γ ` }fφ}0,j;Ω

)

}pzh, rhq ´ pz0,h, r0,hq} ,

(4.21)

for all pzh, rhq, pz0,h, r0,hq P Wδd , where LΞ,d is a positive constant depending only on LS,d, L
rS,d

, LT,d,
CS,d, C

rS,d
, and δ.

According to the above, the main result of this section is established as follows.

Theorem 4.4. Assume that the data are sufficiently small so that the discrete versions of (3.64) and
(3.65) hold, that is

C
rS,d

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

ď
αT,d

4 }c}
, (4.22)

and
Cdpδq

!

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

}∇f}0,r;Ω ` }f}0,4{3;Ω

` }uD}1{2,Γ ` }φD}1{s,r;Γ ` }fφ}0,j;Ω

)

ď δd .
(4.23)

Then, the operator Ξh has a fixed point puh,phq P Wδd. Equivalently, the coupled problem (4.1) has
a solution pu⃗h,σhq P Hh ˆ Qh, prσh, ηhq P Hh ˆ Qh, and pph, φhq P X2,h ˆ M1,h, with puh,phq P Wδd.
Moreover, there hold the following a priori estimates

}pu⃗h,σhq}HˆQ ď Cu⃗,σ,d

!

}∇f}0,r;Ω
`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

` }f}0,4{3;Ω ` }uD}1{2,Γ

)

,

}prσh, ηhq}HˆQ ď C
rS,d

!

}ηD}1{2,Γ ` }fη}0,ϱ;Ω

)

,

}pph, φhq}X2ˆM1 ď CT,d

!

}φD}1{s,r;Γ ` }fφ}0,j;Ω

)

,
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where Cu⃗,σ,d is a positive constant depending only on CS,d, C̄S,d, C
rS,d

, and δd. Furthermore, under
the additional assumption

LΞ,d

!

`

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘`

}∇f}0,r;Ω ` }φD}1{s,r;Γ ` }fφ}0,j;Ω
˘

` }f}0,4{3;Ω ` }uD}1{2,Γ ` }φD}1{s,r;Γ ` }fφ}0,j;Ω

)

ă 1 ,
(4.24)

the aforementioned solutions of (4.9) and (4.1) are unique.

Proof. As previously mentioned, (4.22) and (4.23) guarantee that Ξh maps Wδd into itself. Then,
knowing from (4.21) that Ξh : Wδd Ñ Wδd is continuous, a straightforward application of Brouwer’s
theorem (cf. [9, Theorem 9.9-2]) implies the existence of solution of (4.9), and hence of (4.1). In turn,
under the further hypotheses (4.24), the Banach fixed-point theorem yields the respective uniqueness
of solution. Finally, in any case, the a priori estimates are consequences of (4.12), (4.13), (4.16) and
(4.18), and the fact that }uh}0,4;Ω ď δd.

4.3 A priori error analysis

In this section we derive an a priori error estimate for the Galerkin scheme (4.1) with arbitrary
finite element subspaces satisfying the hypotheses introduced in Section 4.2. More precisely, we are
interested in establishing the Céa estimate for the error

E :“ }pu⃗,σq ´ pu⃗h,σhq}HˆQ ` }prσ, ηq ´ prσh, ηhq}HˆQ ` }pp, φq ´ pph, φhq}X2ˆM1 , (4.25)

where
`

pu⃗,σq, prσ, ηq, pp, φq
˘

P pH ˆ Qq ˆ pH ˆ Qq ˆ pX2 ˆ M1q is the unique solution of (2.61) with
pu,pq P Wδ (cf. (3.55)), and

`

pu⃗h,σhq, prσh, ηhq, pph, φhq
˘

P pHh ˆ Qhq ˆ pHh ˆ Qhq ˆ pX2,h ˆ M1,hq

is a solution of (4.1) with puh,phq P Wδd (cf. (4.20)). To this end, we consider the pairs of associated
continuous and discrete formulations arising from (2.61) and (4.1) once the latter are split according to
the three equations forming the full model. In what follows, given a subspace Zh of a generic Banach
space pZ, } ¨ }Zq, we set for each z P Z

distpz, Zhq :“ inf
zhPZh

}z ´ zh}Z . (4.26)

We begin by applying the Strang estimate provided by [10, Lemma 6.1], whose proof is a simple
modification of that of [18, Theorem 2.6], to the context given by the first two rows of (2.61) and
(4.1). As a consequence, we deduce the existence of a positive constant pCS, depending only on αd βd,
}a}, }b}, }c}, δ, and δd, such that

}pu⃗,σq ´ pu⃗h,σhq}HˆQ ď pCS

!

distpu⃗,Hhq ` distpσ,Qhq

` }Fη ´ Fηh}H1
h

` }cpu; u⃗, ¨q ´ cpuh; u⃗, ¨q}H1
h

)

.
(4.27)

Then, using the boundedness properties of Fη (cf. (2.40) and (3.72)) and c (cf. (2.18) and (3.73)), we
readily obtain

}Fη ´ Fηh}H1
h

ď |Ω|1{4 }η ´ ηh}0,ρ;Ω }∇f}0,r;Ω ,

and
}cpu; u⃗, ¨q ´ cpuh; u⃗, ¨q}H1

h
ď }c} }u ´ uh}0,4;Ω }u⃗}H ,

which, replaced back in (4.27), give

}pu⃗,σq ´ pu⃗h,σhq}HˆQ ď pCS

!

distpu⃗,Hhq ` distpσ,Qhq

)

` sCS

!

}∇f}0,r;Ω }η ´ ηh}0,ρ;Ω ` }u⃗}H }u ´ uh}0,4;Ω

)

,
(4.28)
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where sCS :“ pCS max
␣

|Ω|1{4, }c}
(

.

Next, we apply the Strang a priori error estimate from [3, Proposition 2.1, Corollary 2.3, and
Theorem 2.3] to the context given by the third and fourth rows of (2.61) and (4.1), in which each
term involving rc is considered as part of the respective functional on the right hand side. In this way,
we deduce the existence of a positive constant pC

rS
, depending only on rαd, rβd, }ra} and }rb}, such that

}prσ, ηq ´ prσh, ηhq}HˆQ ď pC
rS

!

distprσ,Hhq ` distpη,Qhq ` }rcu,pp¨, ηq ´ rcuh,php¨, ηhq}H1
h

)

. (4.29)

In turn, subtracting and adding ηh to the second component of rcu,pp¨, ηq, making use of the triangle
inequality, bearing in mind the definition of rcz,q (cf. (2.27)), and employing its boundedness property
(cf. (2.37)), we find that

}rcu,pp¨, ηq ´ rcuh,php¨, ηhq}H1
h

ď }rcu,pp¨, η ´ ηhq}H1
h

` }rcu,pp¨, ηhq ´ rcuh,php¨, ηhq}H1
h

ď }rc}
!

`

}u}0,4;Ω ` }p}0,r;Ω
˘

}η ´ ηh}Q ` }ηh}Q
`

}u ´ uh}0,4;Ω ` }p ´ ph}0,r;Ω
˘

)

,

which, along with (4.29), yield

}prσ, ηq ´ prσh, ηhq}HˆQ ď pC
rS

!

distprσ,Hhq ` distpη,Qhq

)

` sC
rS

!

`

}u}0,4;Ω ` }p}0,r;Ω
˘

}η ´ ηh}Q ` }ηh}Q
`

}u ´ uh}0,4;Ω ` }p ´ ph}0,r;Ω
˘

)

,
(4.30)

where sC
rS
:“ pC

rS
}rc}.

Furthermore, we proceed analogously to the previous case for the context given by the fifth and sixth
rows of (2.61) and (4.1), that is, we consider each term involving c as part of the respective functional
on the right hand side, and then apply the Strang a priori error estimate from [3, Proposition 2.1,
Corollary 2.3, and Theorem 2.3]. As a result of it we obtain

}pp, φq ´ pph, φhq}X2ˆM1

ď pCT

!

distpp, X2,hq ` distpφ,M1,hq ` }cu,η
`

pp, φq, ¨
˘

´ cuh,ηh
`

pph, φhq, ¨
˘

}M 1
2,h

)

,
(4.31)

where pCT is a positive constant depending only on αd, β1,d, β2,d, }a}, }b1}, and }b2}. Now, in order
to estimate the consistency error term of (4.31), we subtract and add pph, φhq in the first component
of cu,η

`

pp, φq, ¨
˘

, employ triangle inequality, and invoke the definition of cz,χ (cf. (2.51)) and its
boundedness property (cf. (2.57)), to arrive at

}cu,η
`

pp, φq, ¨
˘

´ cuh,ηh
`

pph, φhq, ¨
˘

}M 1
2,h

ď }cu,η
`

pp, φq ´ pph, φhq, ¨
˘

}M 1
2,h

` }cu,η
`

pph, φhq, ¨
˘

´ cuh,ηh
`

pph, φhq, ¨
˘

}M 1
2,h

ď }c}
!

`

}u}0,4;Ω ` }η}Q
˘

}pp, φq ´ pph, φhq}X2ˆM1

`
`

}u ´ uh}0,4;Ω ` }η ´ ηh}Q
˘

}pph, φhq}X2ˆM1

)

,

which, jointly with (4.31), imply

}pp, φq ´ pph, φhq}X2ˆM1 ď pCT

!

distpp, X2,hq ` distpφ,M1,hq

)

` sCT

!

`

}u}0,4;Ω ` }η}Q
˘

}pp, φq ´ pph, φhq}X2ˆM1

` }pph, φhq}X2ˆM1

`

}u ´ uh}0,4;Ω ` }η ´ ηh}Q
˘

)

,

(4.32)
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with sCT :“ pCT }c}.

Consequently, adding the inequalities (4.28), (4.30), and (4.32), denoting pC :“ max
␣

pCS, pC
rS
, pCT

(

,
employing the bounds for }u⃗}H, }p}X2 , }η}Q, }ηh}Q, and }pph, φhq}X2ˆM1 provided by Theorems 3.13
and 4.4, and performing some algebraic manipulations, we find, in terms of the notations introduced
in (4.25) and (4.26), that

E ď pC
!

dist
`

pu⃗,σq,Hh ˆ Qh

˘

` dist
`

prσ, ηq,Hh ˆ Qh

˘

` dist
`

pp, φq, X2,h ˆM1,h

˘

)

` pC0

!

`

1 ` }∇f}0,r;Ω
˘ `

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

` }∇f}0,r;Ω

` }f}0,4{3;Ω ` }uD}1{2,Γ ` }φD}1{s,r;Γ ` }fφ}0,j;Ω

)

E ,

(4.33)

where pC0 is a positive constant depending on sCS, sC
rS
, sCT, Cu⃗,σ, CrS

, CT, C
rS,d

, and CT,d.

We are now in a position to establish the announced Céa estimate.

Theorem 4.5. In addition to the hypotheses of Theorems 3.13 and 4.4, assume that

pC0

!

`

1 ` }∇f}0,r;Ω
˘ `

}ηD}1{2,Γ ` }fη}0,ϱ;Ω
˘

` }∇f}0,r;Ω

` }f}0,4{3;Ω ` }uD}1{2,Γ ` }φD}1{s,r;Γ ` }fφ}0,j;Ω

)

ď
1

2
.

(4.34)

Then, denoting sC :“ 2 pC, there holds

}pu⃗,σq ´ pu⃗h,σhq}HˆQ ` }prσ, ηq ´ prσh, ηhq}HˆQ ` }pp, φq ´ pph, φhq}X2ˆM1

ď sC
!

distpu⃗,Hhq ` distpσ,Qhq ` distprσ,Hhq ` distpη,Qhq ` distpp, X2,hq ` distpφ,M1,hq

)

.

Proof. It follows straightforwardly from (4.33).

We end the section with the a priori estimate for }p ´ ph}0,Ω, where ph is the discrete pressure
suggested by the postprocessing formula given by the second identity in (1.13), which, according to
(2.7), becomes

ph “ ´
1

n
tr
´

σh ` ch I `
λ

2
puh b uhq

¯

, (4.35)

with

ch :“ ´
λ

2n |Ω|

ż

Ω
trpuh b uhq . (4.36)

Then, applying Cauchy-Schwarz’s inequality, performing some algebraic manipulations, and employing
the a priori bounds for }u}0,4;Ω and }uh}0,4;Ω, we deduce the existence of a positive constant C,
depending on data, but independent of h, such that

}p´ ph}0,Ω ď C
!

}σ ´ σh}0,Ω ` }u ´ uh}0,4;Ω

)

. (4.37)

5 Specific finite element subspaces

We now define specific finite element subspaces satisfying the conditions (H.1) - (H.6) that were
introduced in Section 4.2, and provide the rates of convergence of the resulting discrete method.
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5.1 Preliminaries

Bearing in mind the notations introduced at the beginning of Section 4.1, and given an integer k ě 0
andK P Th, we let PkpKq be the space of polynomials of degree ď k defined onK, and denote its vector
and tensor versions by PkpKq and PkpKq, respectively. In addition, we letRTkpKq “ PkpKq‘PkpKqx
be the local Raviart-Thomas space of order k defined on K, where x stands for a generic vector in Rn,
and denote by RTkpKq its corresponding tensor counterpart. In turn, we let PkpThq, PkpThq, PkpThq,
RTkpThq and RTkpThq be the corresponding global versions of PkpKq, PkpKq, PkpKq, RTkpKq and
RTkpKq, respectively, that is

PkpThq :“
!

ϕh P L2pΩq : ϕh|K P PkpKq @K P Th
)

,

PkpThq :“
!

vh P L2pΩq : vh|K P PkpKq @K P Th
)

,

PkpThq :“
!

sh P L2pΩq : sh|K P PkpKq @K P Th
)

,

RTkpThq :“
!

qh P Hpdiv; Ωq : qh|K P RTkpKq @K P Th
)

,

and
RTkpThq :“

!

τh P Hpdiv; Ωq : τh|K P RTkpKq @K P Th
)

.

We stress here that for each t, s P p1,`8q such that t ě s, there hold PkpThq Ď LtpΩq,
RTkpThq Ď Hpdivt; Ωq, RTkpThq Ď Hpdivt; Ωq, and RTkpThq Ď Htpdivs; Ωq, inclusions that are
implicitly utilized below to introduce the announced specific finite element subspaces. Indeed, we now
define

Hu
h :“ PkpThq , Ht

h :“ L2
trpΩq X PkpThq , Hh :“ Hu

h ˆ Ht
h , Hσ

h :“ RTkpThq ,

Qh :“ Hσ
h X H0pdiv4{3; Ωq , Hh :“ RTkpThq , Qh :“ PkpThq ,

X2,h :“ RTkpThq , M1,h :“ PkpThq , X1,h :“ RTkpThq , M2,h :“ PkpThq .

(5.1)

5.2 Verification of the stability conditions

In this section we prove that the specific finite element subspaces given by (5.1) verify the assumptions
(H.1) - (H.6). We begin with the following lemma establishing (H.1) and (H.2), for which we recall
that the definition of the discrete kernel Vh of the bilinear form b is given in (4.10).

Lemma 5.1. There exist positive constants βd and Cd, independent of h, such that

sup
v⃗hPHh
v⃗h‰0

bpv⃗h, τhq

}v⃗h}H
ě βd }τh}Q @ τh P Qh , (5.2)

and
}sh}0,Ω ě Cd }vh}0,4;Ω @ v⃗h :“ pvh, shq P Vh . (5.3)

Proof. We first introduce the subspace

Q0,h :“
!

τh P Qh : bppvh,0q, τhq :“

ż

Ω
vh ¨ divpτhq “ 0 @vh P Hu

h

)

,
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which, using from (5.1) that div
`

Qh

˘

Ď Hu
h , reduces to

Q0,h “

!

τh P Qh : div
`

τh
˘

“ 0 in Ω
)

.

Next, we proceed as in [2, Lemma 4.2] and apply the abstract equivalence result provided by [10,
Lemma 5.1] to the setting X “ Hu

h , Y “ Y1 “ Ht
h, Y2 “ t0u, V “ Vh, Z “ Qh, and Z0 “ Q0,h,

where X, Y , Y1, Y2, V , Z, and Z0 correspond to the notations employed in [10, Lemma 5.1]. As a
consequence of it, we deduce that (5.2) and (5.3) are jointly equivalent to the existence of positive
constants β1 and β2, independent of h, such that there hold

sup
τhPQh
τh‰0

bppvh, 0q, τhq

}τh}Q
“ sup

τhPQh
τh‰0

ż

Ω
vh ¨ divpτhq

}τh}Q
ě β1 }vh}0,4;Ω @vh P Hu

h , (5.4)

and

sup
shPHt

h
sh‰0

bpp0, shq, τhq

}sh}0,Ω
“ sup

shPHt
h

sh‰0

ż

Ω
sh : τh

}sh}0,Ω
ě β2 }τh}Q @ τh P Q0,h . (5.5)

Regarding (5.4), we stress that this result was already established in [10, Lemma 5.5]. In turn, for the
proof of (5.5), we first recall from [18, proof of Theorem 3.3] that, being Qh Ď RTkpThq, there holds
Q0,h Ď PkpThq. In this way, given τh P Q0,h, it is clear that τ

d
h P Ht

h, and hence bounding below the
supremum in (5.5) with sh :“ τ d

h , and employing (3.15) for t “ 4{3, gives the required inequality with

β2 :“ C
1{2
4{3 .

Now, as far as (H.3) and (H.4) are concerned, we observe from (5.1) that divpHhq Ď Qh, which
confirms the former hypothesis, whereas the latter is proved in [20, Lemma 4.8].

On the other hand, in order to address the verification of (H.5) and (H.6), we first notice from
(5.1) that div

`

Xi,h

˘

Ď Mi,h for all i P t1, 2u. Thus, being the pairs
`

X2,h,M2,h

˘

and
`

X1,h,M1,h

˘

algebraically equal, the corresponding discrete kernels of the bilinear forms b1 and b2 (cf. (2.50))
coincide as well, and it is easily seen that they become the space

Kk
h :“

!

qh P RTk

`

Th
˘

: divpqhq “ 0 in Ω
)

. (5.6)

In turn, we let Θk
h : L1pΩq Ñ Kk

h be the projector defined for each r P L1pΩq as the unique Θk
hprq P Kk

h

satisfying
ż

Ω
Θk
hprq ¨ qh “

ż

Ω
r ¨ qh @qh P Kk

h . (5.7)

Then, we recall from [15, Theorem 3.1] (see also [20, Lemma 4.2] for a slight variant of it), that in the
2D case, given t P p1,`8q and an integer k ě 0, there exist positive constants Ckt and C̄kt , independent
of h, such that, defining

ckt :“

$

&

%

Ckt if Ω is convex,

C̄kt t´ logphqu|1´2{t| if Ω is non-convex and k “ 0,
C̄kt if Ω is non-convex and k ě 1

there holds
}Θk

hprq}0,t;Ω ď ckt }r}0,t;Ω @ r P rHtpdivj ; Ωq , (5.8)

where
rHtpdivj ; Ωq :“

!

r P Htpdivj ; Ωq : divprq “ 0 in Ω
)

.
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We stress here that only when Ω is non-convex and k “ 0, ckt depends on h, though in a very harmless
manner. In fact, the term t´ logphqu|1´2{t| grows very slowly when h approaches 0, and thus it remains
reasonably bounded for very small values of the mesh size. In particular, taking t “ 3{2, which lies
in the range for s (cf. (2.25)), index with which (5.8) will be applied below, we observe that for
h ě 10´10 there holds t´ logphqu|1´2{t| “ t´ logphqu1{3 ă 3. In addition, we remark that whether
the boundedness property (5.8) is satisfied or not in 3D is still an open problem, and hence the
hypothesis (H.5), to be established next by using (5.8), constitutes the only aspect of the analysis of
the present section that is not valid in 3D. All the other stability conditions hold in both 2D and 3D.

Lemma 5.2. There exists a positive constant αd, independent of h, such that

sup
qhPKk

h
qh‰0

aprh,qhq

}qh}X1

ě αd }rh}X2 @ rh P Kk
h , (5.9)

and
sup

rhPKk
h

aprh,qhq ą 0 @qh P Kk
h , qh ‰ 0 . (5.10)

Proof. It proceeds analogously to the proof of [20, Lemma 4.3]. Indeed, given rh P Kk
h (cf. (5.6)),

rh ‰ 0, one first defines rh,s :“ |rh|r´2 rh, which belongs to LspΩq. Note from (2.25) that r ą 2.
Next, bounding below the supremum in (5.9) with qh :“ Θk

h

`

Dsprh,sq
˘

P Kk
h , and then employing

(5.7), (3.37) (cf. Lemma 3.3), and the boundedness of Θk
h (cf. (5.8)) and Ds (cf. Lemma 3.3), we

arrive at (5.9) with αd :“
`

cks }Ds}
˘´1

. A similar procedure is applied to derive (5.10). We omit
further details and refer to the proof of [20, Lemma 4.3].

We now employ the notations and results from the Appendix (cf. Section A) to prove (H.6), that
is the discrete inf-sup conditions for the bilinear forms bi, i P t1, 2u. Actually, being the proof for i “ 1
a slight modification of that for [20, Lemma 4.5], we omit its details and just focus on the case i “ 2.

Lemma 5.3. There exists a positive constant β2,d, independent of h, such that

sup
qhPX2,h
qh‰0

b2pqh, ϕhq

}qh}X2

ě β2,d }ϕh}M2 @ϕh P M2,h . (5.11)

Proof. Given ϕh P M2,h, we set ϕh,j :“ |ϕh|l´2 ϕh, which belongs to LjpΩq, and notice that
ż

Ω
ϕh,j ϕh “ }ϕh,j}0,j;Ω }ϕh}0,l;Ω . (5.12)

Note from (2.26) that l ě 2. Also, we let O be a bounded convex polygonal domain containing Ω̄, and
set

g :“

"

ϕh,j in Ω ,

0 in OzΩ .

It is clear that g P LjpOq and }g}0,j;O “ }ϕh,j}0,j;Ω. Then, applying the elliptic regularity result

provided in [17, Corollary 1], we deduce that there exists a unique z P W2,jpOq X W1,j
0 pOq such that:

∆z “ g in O, z “ 0 on BO, and there exists a positive constant Creg, depending only on O,
such that

}z}2,j;O ď Creg }g}0,j;O “ Creg }ϕh,j}0,j;Ω . (5.13)

Thus, defining r :“ ∇z|Ω P W1,jpΩq, we observe that divprq “ ϕh,j in Ω, and, using (5.13), there holds

}r}1,j;Ω ď }z}2,j;O ď Creg }ϕh,j}0,j;Ω . (5.14)

37



In addition, letting rh be the global Raviart-Thomas interpolant of r, that is rh :“ Πkhprq, and
employing (A.1), we find that

divprhq “ div
`

Πkhprq
˘

“ Pk
h

`

divprq
˘

“ Pk
hpϕh,jq , (5.15)

so that, thanks to the stability estimate (A.5), it follows that

}divprhq}0,j;Ω ď CP }ϕh,j}0,j;Ω . (5.16)

In turn, noting from (2.25) and (2.26) that j ă r ď
nj

n´ j
, Lemma A.3 and (5.14) yield

}rh}0,r;Ω “ }Πkhprq}0,r;Ω ď CΠ }r}1,j;Ω ď CΠCreg }ϕh,j}0,j;Ω ,

which, jointly with (5.16), imply

}rh}X2 “ }rh}0,r;Ω ` }divprhq}0,j;Ω ď
`

CP ` CΠCreg

˘

}ϕh,j}0,j;Ω . (5.17)

Finally, bounding below the supremum in (5.11) with rh P X2,h, and using (5.15), (A.2), (5.12), and

(5.17), we conclude the required discrete inf-sup condition for b2 with β2,d :“
`

CP ` CΠCreg

˘´1
.

5.3 The rates of convergence

In this section we provide the rates of convergence of the Galerkin scheme (4.1) with the specific finite
element subspaces introduced in Section 5.1. To this end, we first collect the approximation properties
of the latter. Indeed, it is easily seen from (A.3) and its corresponding vector and tensorial versions,
along with interpolation estimates of Sobolev spaces, that those of Hu

h , Ht
h, Qh, and M1,h, are given

as follows

pAPu
hq there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for

each v P Wl,4pΩq, there holds

dist
`

v,Hu
h

˘

:“ inf
vhPHu

h

}v ´ vh}0,4;Ω ď C hl }v}l,4;Ω ,

`

APt
h

˘

there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for
each s P HlpΩq X L2

trpΩq, there holds

dist
`

s,Ht
h

˘

:“ inf
shPHt

h

}s ´ sh}0,Ω ď C hl }s}l,Ω ,

`

APη
h

˘

there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for
each ξ P Wl,ρpΩq, there holds

dist
`

ξ,Qh

˘

:“ inf
ξhPQh

}ξ ´ ξh}0,ρ;Ω ď C hl }ξ}l,ρ;Ω ,

pAPϕ
hq there exists a positive constant C, independent of h, such that for each l P r0, k ` 1s, and for

each ψ P Wl,rpΩq, there holds

dist
`

ψ,M1,h

˘

:“ inf
ψhPM1,h

}ψ ´ ψh}0,r;Ω ď C hl }r}l,r;Ω .

In turn, from [20, eq. (4.6), Section 4.1] and its tensorial version, along with interpolation estimates
of Sobolev spaces as well, we obtain the approximation properties of Qh and Hh, which reduce to
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pAPσ
h q there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s, and for

each σ P HlpΩq X H0pdiv4{3; Ωq with divpσq P Wl,4{3pΩq, there holds

dist
`

τ ,Qh

˘

:“ inf
τhPQh

}τ ´ τh}div4{3;Ω ď C hl
!

}τ }l,Ω ` }divpτ q}l,4{3;Ω

)

,

´

APrσ
h

¯

there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s, and for

each rτ P HlpΩq with divprτ q P Wl,ϱpΩq, there holds

dist
`

rτ ,Hh
˘

:“ inf
rτhPHh

}rτ ´ rτh}divϱ;Ω ď C hl
!

}rτ }l,Ω ` }divprτ q}l,ϱ;Ω

)

.

Finally, that of X2,h, which follows from Lemma A.2 and (A.4) (with m “ 0), and applying again
interpolation estimates of Sobolev spaces, becomes

pAPp
hq there exists a positive constant C, independent of h, such that for each l P r1, k ` 1s, and for

each q P Wl,rpΩq with divpqq P Wl,jpΩq, there holds

dist
`

q, X2,h

˘

:“ inf
qhPX2,h

}q ´ qh}r,divj ;Ω ď C hl
!

}q}l,r;Ω ` }divpqq}l,j;Ω

)

.

Hence, we can state the following main theorem.

Theorem 5.4. Let
`

pu⃗,σq, prσ, ηq, pp, φq
˘

P pH ˆ Qq ˆ pH ˆ Qq ˆ pX2 ˆ M1q be the unique solution
of (2.61) with pu,pq P Wδ pcf. (3.55)q, and let

`

pu⃗h,σhq, prσh, ηhq, pph, φhq
˘

P pHh ˆ Qhq ˆ pHh ˆ

Qhq ˆ pX2,h ˆ M1,hq be a solution of (4.1) with puh,phq P Wδd pcf. (4.20)q, which is guaranteed by
Theorems 3.13 and 4.4, respectively. In turn, let p and ph given by (1.13) and (4.35), respectively.
Assume the hypotheses of Theorem 4.5, and that there exists l P r1, k ` 1s such that u P Wl,4pΩq,
t P HlpΩq X L2

trpΩq, σ P HlpΩq X H0pdiv4{3; Ωq, divpσq P Wl,4{3pΩq, rσ P HlpΩq, divprσq P Wl,ϱpΩq,

η P Wl,ρpΩq, p P Wl,rpΩq, divppq P Wl,jpΩq, and φ P Wl,rpΩq. Then, there exists a positive constant
C, independent of h, such that

}pu⃗,σq ´ pu⃗h,σhq}HˆQ ` }prσ, ηq ´ prσh, ηhq}HˆQ ` }pp, φq ´ pph, φhq}X2ˆM1 ` }p´ ph}0,Ω

ď C hl
!

}u}l,4;Ω ` }t}l,Ω ` }σ}l,Ω ` }divpσq}l,4{3;Ω ` }rσ}l,Ω

` }divprσq}l,ϱ;Ω ` }η}l,ρ;Ω ` }p}l,r;Ω ` }divppq}l,j;Ω ` }φ}l,r;Ω

)

.

Proof. It follows straightforwardly from Theorem 4.5, (4.37), and the above approximation properties.

6 Numerical results

In this section we present three examples illustrating the performance of the fully-mixed finite element
method (4.1) on a set of quasi-uniform triangulations of the respective domains, and considering
the finite element subspaces defined by (5.1) (cf. Section 5.1). In what follows, we refer to the
corresponding sets of finite element subspaces generated by k “ 0 and k “ 1, as simply P0 ´ P0 ´

RT0´RT0´P0´RT0´P0 and P1´P1´RT1´RT1´P1´RT1´P1, respectively. The implementation
of the numerical method is based on a FreeFem++ code [22]. A Newton–Raphson algorithm with a
fixed tolerance tol “ 1E ´ 6 is used for the resolution of the nonlinear problem (4.1). As usual, the
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iterative method is finished when the relative error between two consecutive iterations of the complete
coefficient vector, namely coeffm and coeffm`1, is sufficiently small, that is,

}coeffm`1 ´ coeffm}

}coeffm`1}
ď tol ,

where } ¨ } stands for the usual Euclidean norm in RDOF with DOF denoting the total number of degrees
of freedom defining the finite element subspaces Hu

h ,Ht
h,Hσ

h ,Hh,Qh, X2,h, and M1,h (cf. (5.1)).

We now introduce some additional notation. The individual errors are denoted by:

epuq :“ }u ´ uh}0,4;Ω, eptq :“ }t ´ th}0,Ω, epσq :“ }σ ´ σh}div4{3;Ω, eppq :“ }p´ ph}0,Ω,

eprσq :“ }rσ ´ rσh}divϱ;Ω, epηq :“ }η ´ ηh}0,ρ;Ω, eppq :“ }p ´ ph}r,divj ;Ω, epφq :“ }φ´ φh}0,r;Ω,

where ϱ, ρ, r and j are described in (2.25)–(2.26), and will be specified in the examples below. Next,
as usual, for each ‹ P

␣

u, t,σ, p, rσ, η,p, φ
(

we let rp‹q be the experimental rate of convergence given

by rp‹q :“ log
`

ep‹q{pep‹q
˘

{ logph{phq, where h and ph denote two consecutive meshsizes with errors e
and pe, respectively.

The examples to be considered in this section are described next. In the first two examples, for
the sake of simplicity, we take ν “ 1, λ “ 1, κη “ 1, µ “ 1, κφ “ 1, and γ “ 1. In addition, the mean
value of trpσhq over Ω is fixed via a Lagrange multiplier strategy (adding one row and one column to
the matrix system that solves (4.3) for uh, th, and σh).

Example 1: Convergence against smooth exact solutions in a 2D domain

In this test we corroborate the rates of convergence in a two-dimensional domain. The domain is the
square Ω “ p´1, 1q2. We choose j “ l “ 2, whence the remaining parameters become r “ ρ “ 4 and
ϱ “ 4{3 (cf. (2.25)–(2.26)). In turn, we consider the given function fpx1, x2q “ sinpx1 ` x2q, and
choose the data f , fη, fφ (cf. (1.14)) such that the exact solution is given by

upx1, x2q “

ˆ

sinpπx1q cospπx2q

´ cospπx1q sinpπx2q

˙

, ppx1, x2q “ cospπx1q exppx2q ,

ηpx1, x2q “ 0.5 ` 0.5 cospx1x2q , and φpx1, x2q “ 0.1 ` 0.3 exppx1x2q .

The model problem is then complemented with the appropriate Dirichlet boundary conditions. Tables
6.1 and 6.2 show the convergence history for a sequence of quasi-uniform mesh refinements, including
the number of Newton iterations. Notice that we are able not only to approximate the original
unknowns but also the pressure field through the formula (4.35). The results confirm that the optimal
rates of convergence Ophk`1q predicted by Theorem 5.4 are attained for k “ 0, 1. The Newton method
exhibits a behavior independent of the meshsize, converging in six iterations in all cases.

Example 2: Convergence against smooth exact solutions in a 3D domain

In the second example we consider the cube domain Ω “ p0, 1q3 and the only possible choice of
parameters in 3D, that is j “ 3{2, r “ 3, ρ “ 6, and ϱ “ 6{5 (cf. (2.25)–(2.26)). The solution is given
by

upx1, x2, x3q “

¨

˝

sinpπx1q cospπx2q cospπx3q

´2 cospπx1q sinpπx2q cospπx3q

cospπx1q cospπx2q sinpπx3q

˛

‚, ppx1, x2, x3q “ cospπx1q exppx2 ` x3q ,

ηpx1, x2, x3q “ 0.5 ` 0.5 cospx1x2x3q , and φpx1, x2, x3q “ 0.1 ` 0.3 exppx1x2x3q .
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Similarly to the first example, we consider fpx1, x2, x3q “ sinpx1 ` x2 ` x3q, whereas the data f , fη, fφ
are computed from (1.14) using the above solution. The convergence history for a set of quasi-uniform
mesh refinements using k “ 0 is shown in Table 6.3. Again, the mixed finite element method converges
optimally with order Ophq, as it was proved by Theorem 5.4. In addition, some components of the
numerical solution are displayed in Figure 6.1, which were built using the fully-mixed P0 ´P0 ´RT0 ´

RT0 ´ P0 ´ RT0 ´ P0 approximation with meshsize h “ 0.0643 and 63, 888 tetrahedral elements
(actually representing 1, 483, 944 DOF). The numerical results suggest that perhaps only technical
difficulties stop us of proving (5.8) for the 3D framework.

Example 3: Movement of cells guided by the concentration of a chemical signal

In the last example, we replicate the one from [14, Test1, Section 7]. More precisely, we consider the
rectangle domain Ω “ p0, 2q ˆ p0, 1q, and the unsteady version of the problem (1.14) with physical
parameters ν “ 10, λ “ 1, κη “ 4, µ “ 8, κφ “ 1, γ “ 6, data fpx1, x2q “ ´1000x2, f “ 0, fη “ 0, fφ “

0, boundary conditions u “ 0 on Γ, rσ ¨ n “ 0 on Γ, p ¨ n “ 0 on Γ, and initial conditions

u0 “ 0, η0 “

3
ÿ

i“1

70 expp´8px1 ´ siq
2 ´ 10px2 ´ 1q2q, φ0 “ 30 expp´5px1 ´ 1q2 ´ 5px2 ´ 0.5q2q,

where s1 “ 0.2, s2 “ 0.5 and s3 “ 1.2. We employ a suitable backward Euler time discretization, with
time step ∆t “ 10´5 and final time T “ 5ˆ 10´3. We observe that at each time step we are solving a
slight adaptation of the stationary problem (4.1). In Figure 6.2, we display the computed magnitude
of the velocity, and the cell density and chemical signal concentration fields, which were built using the
fully-mixed P0 ´P0 ´RT0 ´RT0 ´P0 ´RT0 ´P0 approximation on a mesh with meshsize h “ 0.0298
and 18, 566 triangle elements (actually representing 242, 126 DOF). Similarly to [14], the cells are in
two clusters in the upper part of the domain at time T “ 10´5, and then they begin to orient their
movement in the direction of greater concentration of the chemical signal (the center of the domain) as
we can see at time T “ 10´3, where the organisms tend to agglomerate in the center of the rectangle.
This interesting behavior occurs because the chemotaxis/cross-diffusion term is the dominant one in
the initial times. However, as time progresses, the chemical signal is consumed, which causes that
the cross-diffusion loses strength, and the self-diffusion of the cells begins to dominate, and therefore
they begin to distribute themselves homogeneously over the domain. At final time T “ 5 ˆ 10´3 the
cells move towards the bottom of the domain, which is due to the external force ∇f “ p0,´1000q. In
addition, some changes in the velocity field are evidenced, influenced by the movement of the cells.

A Further properties of the Raviart-Thomas interpolator

We begin by introducing for all t, s P p1,`8q such that t ě s, the space

Ht
s :“

!

τ P Htpdivs; Ωq : τ |K P W1,spKq @K P Th
)

,

and let Πkh : Ht
s Ñ RTkpThq be the global Raviart-Thomas interpolation operator (cf. [5, Section 2.5]).

Then, we recall from [5, Proposition 2.5.2 and eq. (2.5.27)] that the commuting diagram property
states that

div
`

Πkhpqq
˘

“ Pk
h

`

divpqq
˘

@q P Ht
s , (A.1)

where Pk
h : L1pΩq Ñ PkpThq is the projector defined analogously to (5.7), that is, given ϕ P L1pΩq,

Pk
hpϕq is the unique element in PkpThq satisfying

ż

Ω
Pk
hpϕqψh “

ż

Ω
ϕψh @ψh P PkpThq . (A.2)

41



DOF h epuq rpuq eptq rptq epσq rpσq eppq rppq

500 0.7454 6.08E-01 – 3.60E-00 – 2.14E+01 – 1.50E-00 –
2170 0.3667 2.87E-01 1.056 1.76E-00 1.014 9.75E-00 1.109 5.84E-01 1.325
8032 0.1971 1.50E-01 1.048 9.09E-01 1.061 5.05E-00 1.060 3.08E-01 1.033
31508 0.1036 7.43E-02 1.092 4.60E-01 1.057 2.52E-00 1.079 1.52E-01 1.102

126066 0.0554 3.76E-02 1.083 2.29E-01 1.113 1.27E-00 1.099 7.63E-02 1.095
509350 0.0284 1.87E-02 1.049 1.13E-01 1.057 6.28E-01 1.053 3.70E-02 1.085

eprσq rprσq epηq rpηq eppq rppq epφq rpφq iter

1.13E-00 – 4.20E-02 – 3.55E-01 – 6.47E-02 – 6
5.42E-01 1.033 1.98E-02 1.058 1.83E-01 0.934 3.22E-02 0.984 6
2.90E-01 1.011 1.09E-02 0.960 9.68E-02 1.028 1.77E-02 0.965 6
1.45E-01 1.078 5.71E-03 1.009 4.92E-02 1.052 9.35E-03 0.991 6
7.30E-02 1.093 2.88E-03 1.089 2.50E-02 1.082 4.89E-03 1.035 6
3.60E-02 1.059 1.44E-03 1.046 1.21E-02 1.088 2.37E-03 1.087 6

Table 6.1: Example 1, Number of degrees of freedom, meshsizes, errors, rates of convergence, and
number of Newton iterations for the fully-mixed P0 ´P0 ´RT0 ´RT0 ´P0 ´RT0 ´P0 approximation
of the chemotaxis-Navier–Stokes model .

DOF h epuq rpuq eptq rptq epσq rpσq eppq rppq

1540 0.7454 1.93E-01 – 9.99E-01 – 5.79E-00 – 3.47E-01 –
6770 0.3667 3.74E-02 2.310 2.04E-01 2.241 1.25E-00 2.164 6.63E-02 2.332

25184 0.1971 9.84E-03 2.153 5.47E-02 2.119 3.32E-01 2.134 1.66E-02 2.233
99076 0.1036 2.46E-03 2.156 1.36E-02 2.168 8.38E-02 2.139 4.06E-03 2.187
397002 0.0554 6.11E-04 2.220 3.46E-03 2.177 2.09E-02 2.212 1.05E-03 2.160

1605230 0.0284 1.48E-04 2.124 8.51E-04 2.105 5.11E-03 2.114 2.59E-04 2.100

eprσq rprσq epηq rpηq eppq rppq epφq rpφq iter

3.12E-01 – 8.27E-03 – 4.27E-02 – 7.64E-03 – 6
6.63E-02 2.185 1.41E-03 2.491 1.02E-02 2.021 1.81E-03 2.026 6
1.77E-02 2.131 3.85E-04 2.095 2.93E-03 2.005 5.18E-04 2.018 6
4.44E-03 2.148 1.12E-04 1.923 7.90E-04 2.039 1.48E-04 1.946 6
1.10E-03 2.218 2.71E-05 2.261 2.07E-04 2.132 3.95E-05 2.109 6
2.71E-04 2.106 6.43E-06 2.155 4.87E-05 2.172 9.42E-06 2.150 6

Table 6.2: Example 1, Number of degrees of freedom, meshsizes, errors, rates of convergence, and
number of Newton iterations for the fully-mixed P1 ´P1 ´RT1 ´RT1 ´P1 ´RT1 ´P1 approximation
of the chemotaxis-Navier–Stokes model .

In turn, employing the Wm,t version of the Deny-Lions Lemma (cf. [16, Lemma B.67]) with integer
m ě 0 and t P p1,`8q, along with the associated scaling estimates (cf. [16, Lemma 1.101]) and the
regularity of

␣

Th
(

hą0
, we deduce the existence of positive constants C1, C2, independent of h, such

that for integers l and m verifying 0 ď l ď k ` 1 and 0 ď m ď l, there hold

|ϕ ´ Pkpϕq|m,s;Ω ď C1 h
l´m |ϕ|l,s;Ω (A.3)

for all ϕ P Wl,spΩq, and

|divpqq ´ divpΠkhpqqq|m,s;Ω ď C2 h
l´m |divpqq|l,s;Ω (A.4)
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DOF h epuq rpuq eptq rptq epσq rpσq eppq rppq

1224 0.7071 5.74E-01 – 2.63E-00 – 1.50E+01 – 1.18E-00 –
9312 0.3536 3.02E-01 0.927 1.44E-00 0.872 8.00E-00 0.911 6.46E-01 0.874

72576 0.1768 1.55E-01 0.961 7.41E-01 0.955 4.03E-00 0.989 3.00E-01 1.110
384552 0.1010 8.90E-02 0.990 4.27E-01 0.982 2.29E-00 1.007 1.54E-01 1.185

1483944 0.0643 5.68E-02 0.997 2.73E-01 0.992 1.46E-00 1.007 9.17E-02 1.152

eprσq rprσq epηq rpηq eppq rppq epφq rpφq iter

6.11E-01 – 3.90E-02 – 2.13E-01 – 4.52E-02 – 5
3.48E-01 0.811 2.34E-02 0.734 1.12E-01 0.929 2.37E-02 0.930 5
1.83E-01 0.927 1.22E-02 0.945 5.66E-02 0.985 1.20E-02 0.982 5
1.06E-01 0.974 6.98E-03 0.995 3.24E-02 0.997 6.87E-03 0.995 5
6.79E-02 0.989 4.44E-03 1.001 2.06E-02 0.999 4.38E-03 0.998 5

Table 6.3: Example 2, Number of degrees of freedom, meshsizes, errors, rates of convergence, and
number of Newton iterations for the fully-mixed P0 ´P0 ´RT0 ´RT0 ´P0 ´RT0 ´P0 approximation
of the chemotaxis-Navier–Stokes model .

Figure 6.1: Example 2, Computed magnitude of the velocity, cell density field and chemical signal
concentration field.

@q P W1,spΩq with divpqq P Wl,spΩq. Note that (A.4) follows from (A.1) and a direct application of
(A.3) to ϕ “ divpqq. In turn, taking in particular m “ l “ 0 in (A.3), we deduce the stability of Pk

h

with respect to } ¨ }0,s;Ω, that is the existence of a positive constant CP , independent of h, such that

}Pk
hpϕq}0,s;Ω ď CP }ϕ}0,s;Ω @ϕ P LspΩq . (A.5)

In what follows we prove additional approximation properties of Πkh. To this end, we now denote

the reference element of Th by pK, so that, given K P Th, we let FK : pK Ñ K be the bijective affine
mapping defined by FKppxq :“ BK px`bK @ px P pK, with BK P Rnˆn invertible and bK P Rn. Then, the
scaling properties via Piola’s transformation between Wm,tpKq and Wm,tp pKq, with m a non-negative
integer and t P p1,`8q, establish the existence of positive constants pCP and CP, such that for each
K P Th there hold

|pq|
m,t; pK

ď pCP }BK}m }B´1
K } |detpBKq|1´1{t |q|m,t;K @q P Wm,tpKq , (A.6)
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Figure 6.2: Example 3, Computed magnitude of the velocity, cell density field and chemical signal
concentration field at time T “ 10´5 (top plots), at time T “ 10´3 (middle plots), and at time
T “ 5 ˆ 10´3 (bottom plots).

and
|q|m,t;K ď CP }B´1

K }m }BK} |detpBKq|1{t´1 |pq|
m,t; pK

@ pq P Wm,tp pKq . (A.7)

Then, letting ΠkK : W1,spKq Ñ RTkpKq be the local Raviart-Thomas interpolator for each K P Th,
and letting Πk

pK
be the corresponding operator for pK, we have the following approximation property.

Lemma A.1. Let k and l be integers such that 1 ď l ď k`1, and let t and s such that 1 ď t ď ns
n´s

if s ă n, or s ď t ă `8 if s “ n. Then, there exists a positive constant C, depending only on pK,
Πk

pK
, k, n, t, and s, such that

}q ´ ΠkKpqq}0,t;K ď C h
l`n

t
´n
s

K |q|l,s;K @q P Wl,spKq . (A.8)

Proof. Given q P Wl,spKq, we use (A.7) with m “ 0 to obtain

}q ´ ΠkKpqq}0,t;K ď CP }BK} |detBK |1{t´1 |pq ´ Πk
pK

ppqq|
0,t; pK

,

which, thanks to the continuous embedding of W1,sp pKq in Ltp pKq for the indicated ranges of s and t,
yields

}q ´ ΠkKpqq}0,t;K ď C }BK} |detpBKq|1{t´1 }pq ´ Πk
pK

ppqq}
1,s; pK

. (A.9)
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Next, since Πk
pK

ppqq “ pq @ pq P RTkp pKq, and there holds Pl´1p pKq Ď Pkp pKq Ď RTkp pKq, the Bramble-
Hilbert Lemma implies that

}pq ´ Πk
pK

ppqq}
m,s; pK

ď C |pq|
l,s; pK

for 0 ď m ď l,

and hence, using in particular the above with m “ 1 we deduce

}pq ´ Πk
pK

ppqq}
1,s; pK

ď C |pq|
l,s; pK

. (A.10)

In this way, replacing (A.10) into (A.9), and then employing (A.6), it follows that

}q ´ ΠkKpqq}0,t;K ď C }BK} |detpBKq|1{t´1 |pq|
l,s; pK

ď C pCP }BK}l`1 }B´1
K } |detpBKq|1{t´1{s |q|l,s;K ,

from which, using that }BK} ď C hK , }B´1
K } ď C h´1

K , and |detpBKq| – hnK , we arrive at (A.8) and
end the proof.

The extension of Lemma A.1 to the global Raviart-Thomas interpolator Πkh is stated next.

Lemma A.2. Let k and l be integers such that 1 ď l ď k`1, and let t and s such that 1 ď t ď ns
n´s

if s ă n, or s ď t ă `8 if s “ n. Then, with the same constant C from (A.8), there holds

}q ´ Πkhpqq}0,t;Ω ď C hl`
n
t

´n
s |q|l,s;Ω @q P Wl,spΩq .

Proof. Given q P Wl,spΩq, it suffices to see that

}q ´ Πkhpqq}0,t;Ω “

!

ÿ

KPTh

}q ´ ΠkKpqq}t0,t;K

)1{t
“

!´

ÿ

KPTh

}q ´ ΠkKpqq}t0,t;K

¯s{t)1{s
,

and then apply the sub-additivity property with exponent s
t P p0, 1s, and Lemma A.1.

Finally, a simple corollary of Lemma A.2 reads as follows.

Lemma A.3. Let k and l be integers such that 1 ď l ď k`1, and let t and s such that 1 ď t ď ns
n´s

if s ă n, or s ď t ă `8 if s “ n. Then, there exists CΠ ą 0, depending only on C, |Ω|, n, t, and s,
such that

}Πkhpqq}0,t;Ω ď CΠ }q}1,s;Ω @q P W1,spΩq . (A.11)

Proof. Given q P W1,spΩq, the embedding is,t : W
1,spΩq Ñ LtpΩq and Lemma A.2 (with l “ 1) imply

}Πkhpqq}0,t;Ω ď }q}0,t;Ω ` }q ´ Πkhpqq}0,t;Ω ď }is,t} }q}1,s;Ω ` C |Ω|1`n
t

´n
s }q}1,s;Ω ,

which yields (A.11) with CΠ :“ }is,t} ` C |Ω|1`n
t

´n
s .
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