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Abstract

In this paper we introduce and analyze a Banach spaces-based approach yielding a fully-mixed
finite element method for numerically solving the stationary chemotaxis-Navier-Stokes problem.
This is a nonlinear coupled model representing the biological process given by the cell movement,
driven by either an internal or an external chemical signal, within an incompressible fluid. In
addition to the velocity and pressure of the fluid, the velocity gradient and the Bernouilli-type
stress tensor are introduced as further unknowns, which allows to eliminate the pressure from
the equations and compute it afterwards via a postprocessing formula. In turn, besides the cell
density and the chemical signal concentration, the pseudostress associated with the former and
the gradient of the latter are introduced as auxiliary unknowns as well. The resulting continuous
formulation, posed in suitable Banach spaces, consists of a coupled system of three saddle point-
type problems, each one of them perturbed with trilinear forms that depend on data and the
unknowns of the other two. The well-posedness of it is analyzed by means of a fixed-point strategy,
so that the classical Banach theorem, along with the Babuska-Brezzi theory in Banach spaces,
allow to conclude, under a smallness assumption on the data, the existence of a unique solution.
Adopting an analogue approach for the associated Galerkin scheme, and under suitable hypotheses
on arbitrary finite element subspaces employed, we apply the Brouwer and Banach theorems to show
existence and then uniqueness of the discrete solution. General a priori error estimates, including
those for the postprocessed pressure, are also derived. Next, a specific set of finite element subspaces
satisfying the required stability conditions is introduced, which, given an integer k > 0, is defined
in terms of Raviart-Thomas spaces of order k£ and piecewise polynomials of degree < k only. The
respective rates of convergence of the resulting Galerkin method are then provided. Finally, several
numerical experiments confirming the latter and illustrating the good performance of the method,
are reported.
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1 Introduction

Chemotaxis refers to the active and directed movement of cells triggered by a chemical stimulus in
their surrounding microenvironment. From the development of multicellular organisms, to blood vessel
formation, to immune system function, to cancer growth and metastasis, chemotaxis plays an essential
role in many different biological processes [31]. The study of this phenomenon has particularly allowed
valuable insights for basic research, drug discovery to decrease or inhibit certain infectious diseases
and has ignited much hope for new prognostic tools and therapeutic interventions in oncology [23, 32].
From the mathematical point of view, the well-known Keller-Segel system and their variations [1, 27]
are the simplest models for describing this phenomenon, which only relate the cell density and the
concentration of the chemical signal, neglecting any interplay with further components. However,
in many contexts, cell migration may influence the motion of a surrounding fluid through buoyant
forces due to differences in densities, and vice versa the fluid-driven transport of cells and signal
may substantially affect the overall behavior [13, 34]. In this regard, and for understanding the
chemotaxis systems interaction with liquid environments, several models have been studied (see, e.g.
[4, 26, 28, 33, 36, 37] and the references therein), which couple the Keller-Seguel equations to a
Navier-Stokes system. These works include models describing chemo-repulsion, chemo-attraction, the
presence of either a signal production mechanism or a singular sensitivity, double-chemotaxis, among
others. In particular, theoretical results on existence and uniqueness of solutions to the unsteady
chemotaxis—Navier-Stokes system when the chemical signal is consumed by the organisms, case we
focus in this work, are found in [25, 35, 36].

Regarding the numerical solvability, a wide variety of techniques have been constructed so far to
simulate the chemotaxis—fluid interaction [8, 12, 14, 29, 30]. These references include a combined fi-
nite volume-nonconforming finite element method [30], a high-resolution vorticity-based hybrid finite-
volume finite-difference discretization [8], a splitting-type Navier-Stokes solver for a realistic three-
dimensional setting [29] and an upwind finite element technique in two dimensions [12]. Other numer-
ical techniques for close models can be found in the references of the aforementioned works. In turn,
and up to our knowledge, [14] is the only work in which a finite element method for approximating
the solutions of the full chemotaxis—Navier—Stokes system is proposed and analyzed, including corre-
sponding optimal errors estimates. More precisely, an equivalent model in Hilbert spaces is proposed
in [14] by using a splitting technique based on the introduction of the chemical concentration gradient
as an extra unknown, allowing to control the strong regularity required by the model, which is one of
the main difficulties appearing throughout the respective numerical analysis.

On the other hand, it is well-known that when dealing with problems involving couplings and non-
linearities, the introduction of additional variables, that is the use of mixed methods, yields the
corresponding variational settings to be properly posed in terms of Banach spaces. This has become
particularly frequent in recent years for a wide family of models (see, e.g. [2, 6, 7, 10, 11, 20, 21]
and the references therein), whose resulting mixed formulations show mainly saddle-point, twofold
saddle-point, or perturbed saddle-point structures. One of the advantages of keeping this functional
framework, in addition to avoiding the incorporation of further redundant Galerkin-type penalty terms,
as it has been usual, for instance, for diverse augmented schemes, lies on the fact that the sought vari-
ables belong to the natural Banach spaces that are originated after carrying out the respective testing
and integration by parts procedures. Furthermore, the above not only allows to develop numerical
schemes that are conservative but also to compute additional physically relevant variables that might
be introduced into the formulation or by employing postprocessing formulae in terms of the discrete
solution. Nevertheless, no mixed methods with these features seem to be available in the literature so
far to solve the chemotaxis—Navier—Stokes model, which certainly constitutes a gap in the field.

According to the previous discussion, and in order, on one hand, to fill the aforementioned gap, and



on the other hand, to continue extending the applicability of Banach spaces-based approaches to
study the continuous and discrete well-posedness of nonlinear coupled problems in fluid mechanics,
our present purpose is to introduce and analyze a continuous Banach framework yielding a fully-mixed
finite element method for the stationary Chemotaxis-Navier-Stokes model. The work is organized as
follows. The rest of this section first collects some preliminary notations, definitions, and results to be
utilized throughout the paper, and then describes the model of interest. In particular, the auxiliary
unknowns are introduced here. In Section 2 we derive the fully-mixed variational formulation of the
problem by splitting the analysis according to the there equations forming the coupled model. Suitable
integration by parts formulae jointly with the Cauchy-Schwarz and Holder inequalities are crucial for
determining the right Lebesgue and related spaces to which the unknowns and corresponding test
functions are required to belong. In Section 3, a fixed-point strategy is adopted to analyze the
solvability of the continuous formulation. The Babuska-Brezzi theory in Banach spaces is employed
to study the corresponding uncoupled problems, and then the classical Banach theorem is applied to
conclude the existence of a unique solution. An analogue fixed-point approach to that of Section 3 is
utilized in Section 4 to study the well-posedness of the associated Galerkin scheme. Under suitable
stability conditions on the finite element subspaces employed, existence and uniqueness of solution
are proved by applying the Brouwer and Banach theorems along with the discrete Babuska-Brezzi
theory. Specific finite element subspaces satisfying those assumptions are then introduced in Section
5, and the rates of convergence of the resulting discrete scheme are also established there. Several
numerical examples confirming these theoretical findings and illustrating the good performance of the
method, are presented in Section 6. Finally, further properties of the Raviart-Thomas interpolator to
be employed in Section 5, are proved in Appendix A.

1.1 Preliminaries

Throughout the paper 2 is a bounded Lipschitz-continuous domain of R™, n € {2, 3}, whose outward
unit normal at its boundary I' is denoted n. Standard notation will be adopted for Lebesgue spaces
LY(), with t € [1,+00), and Sobolev spaces W%*(Q) and Wé’t(Q), with ¢ > 0, whose corresponding
norms and seminorms, either for the scalar, vector, or tensorial version, are denoted by |- [o.+.0, | - [|e,t:0
and | - |¢4.q, respectively. Note that WO(Q) = LY(Q), and that when ¢ = 2, we simply write H’(Q)
instead of W52(Q), with its norm and seminorm denoted by | - [s.q and | - |q, respectively. Now,
letting ¢, ¢’ € (1, +0) conjugate to each other, that is such that 1/t + 1/t = 1, we let WY¥*(T') and
W1t (T') be the trace space of WH(2) and its dual, respectively, and denote the duality pairing
between them by (-,-). In particular, when ¢t = ¢/ = 2, we simply write H'/2(T") and H~Y/?(T) instead
of W/22(I') and W~1/22(T"), respectively. Also, given any generic scalar functional space M, we let
M and M be its vector and tensorial counterparts. Furthermore, for any vector fields v = (v;)
and w = (w;) we set the gradient, divergence, and tensor product operators, as

i=1,n

1=1n’

i - 0vj
v — (81} ) 7 div(v) := Z %, and VW := (v;w;)ij=1n -
i,j=1,n j=1 J

&a:j

In addition, for any tensor fields T = (Tij)ijzl n and € = (Gij); iy ,,» we let div(T) be the divergence
operator div acting along the rows of 7, and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

n

n
¢ = (Tji)i,jzl,n , tr(7) = ZTZ'Z', T:C¢ = Z TiGij »
=1

i,j=1

and 7= 7 — —tr(7)l,
n



where I stands for the identity tensor of R := R™*™. On the other hand, for each ¢, j € [1,+o0) such
that ¢ > j, we introduce the Banach spaces

H(div,; Q) = {T eL2(Q): div(r) e Lt(Q)} , (1.1)
H(div; Q) = {T eL2(Q): div(r) e Lt(Q)} , (1.2)
and ‘
HY (div;; Q) = {T eLYQ): div(r)e LJ(Q)} : (1.3)
which are endowed with the natural norms
HTHdin;Q = HT| 0,0 T HdiV(T) ’[]J;Q VT e H(divt; Q) R (1.4)
ITlaivie = ITloge + Idiv(T)fose V7 e H(divy; ), (1.5)
and
HT‘t,diVj;Q = HT 0,t;9 + HdiV(T) 0,7:9 VTe Ht(diVj;Q) . (16)

Then, we recall that, proceeding as in [18, eq. (1.43), Section 1.3.4] (see also [6, Section 4.1] and [10,
Section 3.1]), one can prove that for each t > nQ—fQ there holds

(T -n,v)y = fQ {T -Vv + UdiV(T)} Y (7,v) € H(divy; Q) x HY(Q), (1.7)
and analogously
(Tn,v) = L {T Vo + v div(T)} ¥ (1, v) € H(divy; Q) x HL(Q) (1.8)

where (-,-) denotes in (1.7) (resp. (1.8)) the duality pairing between HY?(T) (resp. HY?(I")) and
H~2(I") (resp. H~Y/2(I")). In turn, given t, ¢’ € (1, +o0) conjugate to each other, there also holds (cf.
[16, Corollary B.57])

ron) = |

{'r Vv + ’UdiV(T)} YV (7,v) € H (divy; Q) x WH'(Q), (1.9)
Q

where (-, -) stands for the duality pairing between W~/44(T") and W/4¢(T).

1.2 The model problem

The stationary chemotaxis-Navier-Stokes problem consists of finding the velocity vector field u and
the pressure scalar field p of an incompressible fluid occupying the region 2, along with the additional
scalar fields given by the cell density 7, and the chemical signal concentration ¢, satisfying the following
system of coupled partial differential equations:

—vAu + A(Vu)u + Vp —nVf = f in Q,
div(u) = 0 in Q,
f p = 0,
& (1.10)

—kyAn + pdiv(nVe) + u-Vnp = f, in Q,
—k,Ap + e +u-Vo = f, in Q,

u=up, n=np and ¢ = ¢p on I,



where f, f, f;), and f, are given functions belonging to suitable spaces to be indicated later on, whereas
v, A, Ky, Ku, b, and v are positive constants representing the fluid viscosity, the fluid density, the cell
diffusion constant, the chemical diffusion constant, the chemotactic coefficient, and the consumption
rate of the chemical signal, respectively. In turn, up, np, and ¢p are corresponding Dirichlet data
belonging to suitable spaces as well to be specified throughout the analysis. Meanwhile, we observe
here that, due to the incompressibility of the fluid (cf. second equation of (1.10)), up must satisfy
the compatibility condition

LuD‘n =0. (1.11)

Next, in order to derive a fully-mixed formulation of (1.10) in Section 2, we first adopt the approach
from [11] (see also [10]) and introduce the velocity gradient and the Bernoulli-type stress tensor as
further unknowns, that is

t:=Vu in Q@ and o := I/t—g(u®u)—pﬂ in Q, (1.12)

so that the second equation of (1.12) is considered from now on as the constitutive law of the fluid.
Then, noting that div(u® u) = (Vu)u = tu, which follows from the fact that div(u) = 0, we find
that the first equation of (1.10) can be rewritten as

—div(a)+gtu—an=f in Q.

In turn, it is straightforward to prove, taking matrix trace and the deviatoric part of the aforementioned
constitutive equation, that the latter and the incompressibility condition, which can also be stated as
the identity tr(t) = 0, are equivalent to

adzyt—g(u(@u)d in Q and

A
2

| (1.13)
p = —ﬁtr<0'+ (u®u)) in Q,

and thus the pressure can be eliminated from the system and computed afterwards in terms of o
and u as indicated in the foregoing equation. As a consequence, the third equation of (1.10), which
constitutes a uniqueness condition for p, is rewritten as

A
J tr(oc + S(u®u)) = 0.
Q 2
On the other hand, for the cell density and chemical signal concentration equations, we proceed
similarly and define the auxiliary unknowns
o= Vn—m,;luano—m,;lnu in Q and p:=Vy in Q,
and observe that the fourth and fifth equations of (1.10) become, respectively,
div(e) = —n;l fn in Q,

and
div(p) — m;lfymp — m;lu-p = —m;1 fo in Q.

Note that & can be seen as the pseudostress associated with the cell density equation. Summarizing,
(1.10) can be equivalently reformulated as: Find u,t, o, &, 7, p and ¢ in proper spaces to be introduced



below, such that
t = Vu in Q,

—Ud—l—l/t—%(u@u)d =0 in Q,

A
—div(a)+§tu = npVf+£f in Q,

f tr(o + %(u@u)) = 0,
0

& —Vn+ktpunp + Ky pu = 0 in Q, (1.14)
div(e) = —Ii;l In in Q,
p = Vo in Q,
div(p) — k;lyngp — k;lu-p = —m;l fo in ),
u=up, n=np and ¢ = pp on I

2 The fully-mixed formulation

In this section we derive a Banach spaces-based fully-mixed formulation of (1.14). The integration by
parts formulae provided by (1.7) - (1.9), along with the Cauchy-Schwarz and Holder inequalities, play a
key role in this derivation. The corresponding analysis is split in the following three subsections, which
correspond to the Navier-Stokes equations (first to fourth rows of (1.14)), the cell density equations
(fifth and sixth rows of (1.14)), and the chemical signal concentration equations (seventh and eighth
rows of (1.14)), respectively.

2.1 The Navier-Stokes equations

We begin by seeking originally u € H(Q), which requires to assume that up € HY/?(I'). Then, a

straightforward application of (1.8) with ¢ > nz—fQ and 7 € H(divy; Q), gives

J T:Vu = —J u-div(7) + (tn,up),
Q Q
and hence the corresponding testing of the first equation of (1.14) becomes
j T:t + J u-div(r) = (tn,up)r V1 e H(div; Q). (2.1)
Q Q

It is clear, thanks to Cauchy-Schwarz’s inequality, that the first term of (2.1) makes sense for t € L2(Q),
so that according to its free trace property, we look for this unknown in the space

L2.(Q) = {seLQ(Q): tr(s) = o}. (2.2)

In addition, knowing that div(7) € L!(2), and using Holder’s inequality, we deduce from the second
term of (2.1) that, instead of H'(Q), it would suffice to look for u in L’ (), where ' is the conjugate
of t. Nevertheless, testing the second equation of (1.14) against tensors in L2,(9), we formally get

—fa:s—i—yft:s—)\f(u@u):s:O VselL2.(Q), (2.3)
Q Q 2 Jo

6



from which, employing the Cauchy-Schwarz and Hélder inequalities, we deduce that its third term
makes sense for u € L*(Q), and hence from now we chose ¢’ = 4, which yields ¢t = 4/3. Needless
to say, the first term in (2.3) is finite if o € L?(2), and thus, aiming to use the same space for this
unknown and its test functions 7, we seek o in H(div, /35 Q) as well. In this way, knowing now that
div(o) € L¥3(Q), we test the third equation of (1.14) against the vector functions in L*(2), which
yields

—Jﬂv-div(a) +;Ltu-v = Lan-erJQf-v VveLiQ). (2.4)

Note here, thanks again to the aforementioned inequalities and the already established spaces for t,
u, and v, that the first, second, and fourth terms of (2.4) are well-defined, the latter if the datum f
belongs to L/ 3(9), which is assumed from now on. Regarding the third one, which will depend on
where to look for 7, and where to assume the datum f, we will refer to it in Section 2.2. We now
consider the decomposition

H(diV4/3; Q) = Ho(diV4/3; Q) @ R]I, (25)

where

Ho(divy3; Q) = {T & H(divys; Q) : L tr(r) = o}, (2.6)

and observe, in particular, that the unknown o can be uniquely decomposed, according to (2.5) and
the mean value condition given by the fourth equation of (1.14), as o = o + col, where

2n)\|m Jﬂtr(u@)u). (2.7)
In this way, similarly as for the pressure, the constant ¢y can be computed once the velocity is known,
and hence it only remains to obtain o. In this regard, we notice that (2.3) and (2.4) remain unchanged
if o is replaced by og. In addition, thanks to the fact that t is sought in LZ(Q), and using the
compatibility condition (1.11), we realize that testing (2.1) against 7 € H(divy/s; ) is equivalent to
doing it against 7 € Hy(divy /35 Q). Consequently, bearing in mind the foregoing discussion, introducing
the notations

1
op € HQ(diV4/3;Q) and co = m Jﬂtr(o') = —

i=(ut), V=(v,s), W= (w9)eH:=L(Q)xLLQ), and Q := Hy(divy;Q),

redenoting from now on oy as simply o € Q, and suitably gathering (2.1), (2.3), and (2.4), we arrive
at the following mixed formulation for the Navier-Stokes equations: Find (u, o) € H x Q such that

a(u,v) + c(u;u,v) + b(v,0) = F,(¥V) VveH,
2.8
b(u,7) = G(7) VreQ, 29

where, given z € L*(€2), the bilinear foormsa: HxH - R, b: HxQ — R, and ¢(z;-,-) : HxH — R,
are defined as

a(w,v) := l/f 9:s Vw,veH, (2.9)
Q
b(v, 1) = —fT:S—JV-diV(T) V(V, T)eHxQ, (2.10)
Q Q
and \
c(z; W, V) := — {J vz -v — J (W@Z):S} Vw,ve H, (2.11)
2 e 0

whereas, given x in the same space where n will be sought, the linear functionals F, : H — R and
G : Q — R are given by

F, (V) := Jﬂxvf-v—i—fﬂﬂv VveH, (2.12)

7



and
G(t) := —{(tn,up)r VreQ. (2.13)

Next, it is easily seen that a, b, c(z;-,), and G are bounded. In fact, endowing H and Q with the
norms

[Vle = Ivloae + [sloe VV:=(v,s)eH, [7]q = |Tlaiv,s0 Y7T€Q, (2.14)
applying the Cauchy-Schwarz and Hoélder inequalities, and invoking (1.8) along with the continuous

injection iy : H(Q) — L*(£2), we find that there exists positive constants, denoted and given as

A .

la| = v, Ib| =1, lel =5, and |G| := (1 + lial) [uplijor (2.15)

such that
a(w,9)| < [al [Wlu|vla VW, VeH, (2.16)
b7 < bl [¥lulrlq  ¥(¥.7)eHxQ,. (2.17)
lc(z; W, V)| < |c| |zfose [Wa|V]la  VzeL'(Q), VW, veH, (2.18)

and

G(T)| < |G|l V7TeQ. (2.19)

In addition, simple algebraic computations show that

c(z;v,v) =0 VzeL'(Q), VveH. (2.20)

Regarding F, (cf. (2.12)), and as already commented for its first term, we remark that its well-
definedness will be concluded below at the end of Section 2.2.

2.2 The cell density equations

Testing the fifth equation of (1.14) against functions ¥ € L?(€2), we formally obtain
J5'-7~'—JVn-?'—km;lufnpw*—i—m;lfnu-7-=0, (2.21)
Q Q Q Q

from which we observe that the first and second terms of (2.21) are finite if & € L%(Q) and n € H}(Q),
respectively. In turn, using the Cauchy-Schwarz and Hoélder inequalities, we find that for all [, j €
(1, +00) conjugate to each other, there hold

’J np'T
Q
Q

from which we deduce that the third and fourth terms of (2.21) make sense for 1 € L2(Q), p € L% (Q),
and u € L% (Q). However, since we already know from Section 2.1 that u will be sought in L*(), we
have to impose here that 25 < 4. On the other hand, in order to be able to apply (1.7) to T and 7,
so that we obtain

< lnlo.2ne [Plo2je [7log (2.22)

and

< [nllo2ne lafo2je [7]o0 (2.23)

f Vn-1 = —f ndiv(7) + (¥ -n,np)r, (2.24)
Q Q



with 7-n e H-Y2(T) and (-, -) denoting the duality pairing between H~'/2(T") and H'/2(I"), it suffices
to assume that div(F) € L&Y (Q), where (21) := % is the conjugate of 2I, the datum np belongs
to HY2(I"), and H'(Q) is continuously embedded in L%(Q). The later is guaranteed for 21 € [1, +o0)

when n = 2, which is always satisfied, and for 2 € [1,6] when n = 3 (cf. [16, Corollary B.43]).

On the other hand, in order to utilize later on a result on the W12/ (Q)-solvability of a Poisson
equation, which will be required to establish a continuous inf-sup condition, and according to the
result detailed in [19, Theorem 3.2] (see also [24, Theorems 1.1 and 1.3]), we need that 4/3 < 2j <4
when n = 2, and 3/2 < 2j < 3 when n = 3. Note that these constraints are compatible with the
previous requirement that 25 < 4. Now, since the respective lower bounds are already satisfied, we

21
1 < 4 if and only if 2 > 4,

< 3 if and only if 2] > 6. Thus, intersecting the above with the

just look at the upper ones, and readily observe that for n = 2, 25 =

21

-1
previous restrictions on 2/, we find that when n = 2 we require 4 < 2[, and when n = 3 the only
possible choice is 2l = 6. Therefore, denoting

whereas for n = 3, 25 =

(T’, 3) = (2j7 (2j)/)7 and (pv Q) = (2l7 (2l)/)>

we conclude from the foregoing discussion that the feasible ranges for r, s, p, 0, j and I, are given by

re(2,4] and se[4/3,2) ifn=2, pel4,+0) and pe (1,4/3] ifn=2,
(2.25)
r=3 and s =3/2 ifn=3, p =26 and o =6/5 ifn=3,
and
je(1,2] and l€e([2,400) ifn=2,
(2.26)

j =3/2 and I =3 ifn=3.

Needless to say, once j (or its conjugate 1) is chosen according to the indicated range, then r and p,
and their respective conjugates s and g, are fixed. For instance, taking for n = 2, j = [ = 2 yields
r=p=4ands=p=4/3.

Hence, in terms of these indexes, we look for n € L?(2) and p € L"(Q2), whereas the test function
7 e L2(Q) is such that div(F) € L(9). In this way, replacing the resulting expression from (2.24) into
(2.21), and taking into account the definition (1.1), we arrive at

L& F 4 Lndiv(%) L Bap(F ) = B(F)  VFeHdivy: ),
where, given z € L4(Q) and q € L"(Q), G, : H(div,; Q) x L?(Q2) — R is the bilinear form given by
Caq(T, ) = KJEIMJQSQ'% + E;I JQ§Z~? V(T,€) € H(div,; Q) x LP(Q), (2.27)
and F : H(div,; 2) — R is the linear functional defined as

F(7) == ¢ nopyr V7 eH(divy, Q). (2.28)

In turn, testing now the sixth equation of (1.14) against £ € LP(£2), which implicitly impose the
unknown & to live in H(div,; ), and assuming that the datum f, belongs to L¢(2), we obtain

L&diV(&) _ ) veeLn(w),



where G : LP(Q) — R is the functional given by

G(&) == —r," L &€ VEeLr(Q). (2.29)
In this way, given p € L"(Q2) and u € L*(2), and denoting the spaces

H := H(div,; ) and Q := L°(Q), (2.30)
the mixed formulation for the cell density equation reduces to: Find (&,7) € H x Q such that

A&, F) + b(F,n) + Gup(F,m) = F(F) VFeH,

N N (2.31)
b(@,§) = G() VEeQ,
where & : H x H— R and b : H x Q — R are the bilinear forms defined as
(¢, F) = J -7 V(¢ FeH, (2.32)
Q
and
J Ediv(T V(T,6) e Hx Q. (2.33)

It is easily seen that a, b Ca,q> F and G are bounded with the corresponding norms given by
ITu = |T|aiv,e for all 7 € H, and HfHQ = p for all £ € Q. Indeed, applying the Holder and
Cauchy-Schwarz inequalities, invoking the bounds provided by (2.22) and (2.23), along with the fact
that | - o0 < [QE47 |- o400 for &4, and proceeding similarly to G (cf. (2.15), (2.19)) for F,
besides letting i, : H'(2) — L*(2) be the respective continuous injection, we deduce the existence of
positive constants, denoted and given as

[ =1, B =1, @ o= syt max {p, Q4T
~ (2.34)
IF] = (1+ i) Inplijer,  and |Gl = 5" [ flloen,
such that N N
@&, 7)< [al[ClulFla V¢ FeH, (2.35)
|5(~7 Ol < HEH ITluléle V(7,6 eHxQ, (2.36)
C2.a(T.6)| < 2] (I2lo.0 + ldlore) ITluléle  V(F.6) e HxQ, (2.37)
IPN“(?')\ < [|F||#|ls VFeH, (2.38)
and

GE) < |G gl VEEQ. (2.39)

Finally, knowing that n will be sought in L”(€2), we consider x € L?(2), proceed similarly to the
derivation of (2.22) and (2.23), and use that || - [o.o < |Q|"/* to bound the first term defining

F, (cf. (2.12)) as
J xVf-v
Q

which requires to assume from now on that V f € L"(€2). Then, bearing in mind the definition of F,
(cf. (2.12)) and the foregoing estimate, and setting the constant

|F| := max{1,]Q|"/*}, (2.41)

< QY4 x VveL4Q), (2.40)

0,p;

we readily conclude that

Fx (D) < [F] (Ixlo

thus confirming the announced well-definedness and boundedness of F.

o) lVla vveH, (2.42)

Ps
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2.3 The chemical signal concentration equations
Knowing already that p € L"(2), the seventh equation of (1.14) suggests to look originally for ¢ in

WLHT(Q). In this way, testing that equation against q € H*(divy; Q) (cf. (1.3)), and then employing
(1.9) and the Dirichlet boundary condition for ¢, we obtain

f P-q+ f @div(q) = {(q-n,¢p)r, (2.43)
Q Q

which requires to assume that ¢p € WY (I'). It follows from (2.43) that it suffices to seek the
concentration ¢ of the chemical signal in the space L"(£2). In turn, testing the eighth equation of
(1.14) against an arbitrary function ¢ belonging to a space to be determined, we formally get

LqﬁdiV(p) - ﬁgl’yanﬁ — K, Lu-pqﬁ = —r! Jgfwﬁ- (2.44)

Next, given the same [, j € (1, +00) conjugate to each other as before, and proceeding similarly to the
derivation of (2.22) and (2.23), we find that

\ anﬁ‘ <In oz = [rlome lelors [Blose (2.45)

0,25:2 |©llo,25:0 1@

and

0.2j:2 [Plo.2j:2 [Plloz = [afora [Plorsa [9lose (2.46)

U u-mb‘ < fu
Q

whence, recalling from (2.25) that r < 4 < p, we deduce that the second and third terms of (2.44)
make sense for n € L(Q), ¢ € L"(Q), ¢ € LY(N), u e L*(Q), and p € L"(Q). In addition, in order for
the first and fourth terms to be well-defined, we need that both div(p) and the datum f, belong to
L/(§), which yields, in particular, to look for p in H"(div;; Q) (cf. (1.3)).

According to the foregoing discussion, we now set the Banach spaces
Xy := H'(div;;Q), X; := H(div;Q), M; := L"(Q), and M, := LY(Q), (2.47)

so that, given u € L*(Q) and 1 € L”(£2), the mixed formulation for the chemical signal concentration
equation reduces to: Find (p, ¢) € Xo x M; such that

a(p,q) + bi(q,») = F(q) Vqe Xy,

ba(p,9) — cun((Pr9),¢) = G(¢) Ve M,

where, given z € L4(Q2) and x € L?(Q), the bilinear forms a : Xy x X3 — R, b; : X; x M; — R,
1€ {1,2}, and ¢z : (Xg X Ml) x My — R, are defined as

(2.48)

a(r,q) := Lr-q V(r,q) € Xo x My, (2.49)
had) = | odivia) V(@) Xox M (2.50)

and
o (1,0),0) = K1 Lz-w + @WJQX@W V() 0) € (Xax M) x My, (2.51)

whereas the linear functionals F : X; — R and G : My — R are given by

F(q) := {a-n,pp)yr  Vqe Xy, (2.52)

11



and

G(¢) == —r," L fod VoeMs. (2.53)

Next, it is straightforward to see that the bilinear forms a, b;, i € {1,2}, and ¢z, as well as
the functionals F and G, are all bounded. In fact, applying Hoélder’s inequality, appealing to the
bounds given by (2.45) and (2.46), and making use of the fact that | - o0 < [Q|*/4" || |¢.4.0 and
|- Joma < QPP+ o0 for ¢z, we find that there exist positive constants, given by

la| == 1, |b:]| := 1 (ie{1,2}), le| == k' max { Q|44 Q|le=r)/ery
(2.54)
and |G| = ;" [ follogia
such that
la(r,q)| < llafllrlx, lalan, — V(r,q) € Xo x My, (2.55)
bi(a, ®)| < l|bi] llalx; [|¢lr, Vg, ¢) € Xi x M;, (2.56)
o ((r,9), 0)| < le|l (Izllo,a0 + Ixlo.pe) 1(r, ) xox a8, [0] 222 257)
v ((r7¢)’¢) € (X2 X Ml) X MQ;
and
G(9)| < |G| |@lrr, Ve M. (2.58)

In turn, for the boundedness F we first observe, thanks to [16, Lemma A.36] and the surjectivity of
the trace operator mapping W7 (Q) onto WY/ (T'), that there exists a fixed constant C, > 0 such
that for each ¢ € W/ (I") there exists v € W7 (Q) satisfying v|r = ¢ and

[olhrme = [vlora + [Volore < Crlelysmr-

In particular, denoting by vp € WH(Q) a corresponding function for pp € WI/S’T(F), applying (1.9)
to (t,t') = (s,r) and (7,v) = (q,vp), and then using Holder’s inequality, we deduce that

F(a)l < |F|falx, VaeXi, (2.59)

with the constant
IF] = Cyllepli/srr- (2.60)

As a consequence of the analysis developed in Sections 2.1 and 2.2, and the present Section 2.3, and
under the assumption that the data belong to the indicated spaces, namely Vf € L"(Q), f € LY3(Q),
fr e L), f, € L7 (Q), up € HYA(T), np € H/2(T), and ¢p € W57 (T'), we conclude that the fully-
mixed formulation of the chemotaxis-Navier-Stokes problem (1.14) can be summarized by gathering
(2.8), (2.31) and (2.48), that is: Find (d,0) e Hx Q, (6,1) € Hx Q, and (p, p) € X3 x My, such that

a(i,v) + c(wu,v) + b(V,0) = F, (V) VveH,
b(u,7) = G(7) VreqQ,
a(&,%) + b(F,n) + Cup(F,n) = F(F)  vFeH,
~ N (2.61)
b(a,§) = G(§) VEeQ,
a(p,q) + bi(a,9) = F(q) Vqe X1,
ba(p,®) — cun((P @), ¢) = G(¢) VoeMs.
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3 The continuous solvability analysis

In this section we proceed similarly as in [10] and [20] (see also [2], [6], [21], and some of the references
therein) and adopt a fixed-point strategy to analyze the solvability of (2.61).

3.1 The fixed-point approach
We begin by rewriting (2.61) as an equivalent fixed point equation. To this end, we first let S :
L4(Q2) x Q — L*(Q) be the operator defined by

S(z,x) == u  VY(z,x) e L' Q) xQ, (3.1)

where (4,0) = ((u,t),0) € H x Q is the unique solution (to be confirmed below) of problem (2.8)
(equivalently, the first and second rows of (2.61)) when c(u;-,-) and F,, are replaced by c(z;,-) and
F, respectively, that is

a(u,v) + c(z;4,v) + b(v,0) = F,(V) VveH,
b(d,7) = G(7) VTreQ. 32
Similarly, we let S: L*(©2) x X5 — Q be the operator given by
S(z,r) =7 V(z,r) € L*(Q) x Xo, (3.3)

where (o,7) € H x Q is the unique solution (to be confirmed below) of problem (2.31) (equivalently,
the third and fourth rows of (2.61)) when ¢, p is replaced by ¢, r, that is

W&, F) + bF ) + &e(Fm) = F(F) vieH,
0&.¢) = GE)  VeEeq.
In turn, we let T : L*(Q) x Q — X3 be the operator given by

T(ZaX) =P V(ZaX) € L4(Q) xQ, (35)

where (p, ¢) € X2 x M is the unique solution (to be confirmed below) of problem (2.48) (equivalently,
the fifth and sixth rows of (2.61)) when ¢y, is replaced by ¢, that is

(3.4)

a(p,q) + bi(q,») = F(q) VaqeXi,

(3.6)
ba(p,9) — cax((P.0),¢) = G(¢) VoeMs.
Thus, defining the operator Z : L*(Q) x X5 — L*(Q) x X5 as
B(z,r) := <S(z,g(z,r)),T(z,§(z,r))> VY (z,r) e LY(Q) x Xo, (3.7)

we realize that solving (2.61) is equivalent to seeking a fixed point of Z, that is: Find (u,p) €
L*(Q) x X5 such that

E(u,p) = (u,p). (3-8)

3.2 Well-posedness of the uncoupled problems

We now employ the Babuska-Brezzi theory in Banach spaces (cf. [3, Theorem 2.1, Corollary 2.1,
Section 2.1] for the general case, and [16, Theorem 2.34] for a particular one), and the Banach-Necas-
Babuska Theorem (also known as the generalized Lax-Milgram Lemma) (cf. [16, Theorem 2.6]), to
establish the well-posedness of the problems (3.2), (3.4), and (3.6), defining the operators S, g, and
T, respectively.

13



3.2.1 Well-definedness of operator S

Here we apply [16, Theorem 2.34] to prove that problem (3.2) is well-posed (equivalently, that S
is well-defined). In this regard, it is important to stress that the structure of (3.2) is the same of
the problem stated in [10, eq. (3.23)], and hence, several results and techniques from there will be
employed in what follows. Indeed, given (z,x) € L*(Q) x Q, we proceed as in [10, Section 3.3], and
introduce first the bilinear form A, : H x H — R defined by

Az (W, V) := a(w,V) + c(z;w, V) Vw,veH, (3.9)
so that problem (3.2) can be rewritten as: Find (u, o) € H x Q such that

A, (4, V) + b(V,0) = F, (V) VveH,
(3.10)
b(i,7) = G(7) VTeqQ.

Now, we let V be the kernel of the operator induced by the bilinear form b (cf. (2.10)), that is
Vo= {v:: (v,s)eH: b(¥,7) =0 VTEQ},
which, exactly as [10, eq. (3.34)], reduces to
V= {v = (v,s)eH: Vv =s and veH(l)(Q)}. (3.11)

Then, letting cp be the positive constant yielding the Friedrichs-Poincaré inequality, which states that
[V[ig = cp|[v]|? for all v e H{(Q), denoting by is the continuous injection of H(Q) into L*(£2),
beafing in mind 7(3.9) and (2.20), and proceeding analogously to the proof of [10, eq. (3.41), Lemma
3.2], we find that

A, (V,¥) = a(¥,¥) = a|V|}] VVvevVv, (3.12)
with a = 3 min{l, ﬁ}, which gives the V-ellipticity of A,. Thus, it is easily seen, thanks to
(3.12), that A, satisfies the hypothesis specified in [16, Theorem 2.34, eq. (2.28)] with the constant
a defined above. In addition, it follows from (3.9), along with (2.15), (2.16), and (2.18), that there

holds
Az (W, V)| < |Ag| [Wa [V]a VW, VeH, (3.13)

with the constant
AL == laf + [ef ||z

A
oo = v + e, (3.14)
which says that A is bounded.

In turn, using that for each ¢ > f—& there exists a constant C; > 0, depending only on €2, such that

Celtlia < %5 + Idiv(T)[§ra V7€ Ho(dive ), (3.15)

which follows from a slight modification of the proof of [18, Lemma 2.3], one can prove the continuous
inf-sup condition for the bilinear form b. More precisely, employing (3.15) with ¢ = 4/3, it is shown in
[10, Lemma 3.3, eq. (3.44)] that there exists a positive constant 3, depending only on Cy3, such that

s
sup 20T 5 girlq  vreq, (3.16)
o ¥l

whence the bilinear form b satisfies the hypothesis indicated in [16, Theorem 2.34, eq. (2.29)].

We are now in position to confirm that the operator S is well-defined.

14



Lemma 3.1. For each (z,x) € L*(Q) x Q there ezists a unique (d,0) = ((u,t),0) € Hx Q solution
of (3.10) (equivalently (3.2)), and hence one can define S(z,x) := ue L*(). Moreover, there exists
a positive constant Cg, depending only on ||, |i4|, v, A, @, and B, such that

I1S(z, x)

< Cs{Ix

040 = [[ufose < [d|a

(3.17)

0,00 IV£flora + [floama + (1 + HZ\OA;Q) HUDH1/2,F}-
Proof. Having previously established that A, and b satisfy [16, egs. (2.28) and (2.29)], and knowing
that Az, b, F, and G are all bounded, a straightforward application of [16, Theorem 2.34] confirms the
existence of a unique (d,0) := ((u,t),0) € H x Q solution of (3.10). In addition, the corresponding

a priori estimate in [16, Theorem 2.34, eq. (2.30)] yields

. 1 1 A
il < LI+ 5 (1]

z
5 ~ > IGJ. (3.18)

Then, noting from (2.41) and (2.42) that

IFx ]l < max {1, 121"} (Ixllo,p0 [V /]

0,0 T Hf

0,4/3:2) » (3.19)

invoking the expressions for |G| and ||.A,|| provided in (2.15) and (3.14), respectively, and performing
some minor algebraic manipulations, we readily derive from (3.18) the required inequality (3.17). O

Regarding the a priori estimate for the component o of the unique solution of (3.10), which will
be used later on, we recall that the second inequality in [16, Theorem 2.34, eq. (2.30)] gives

1 A, A, Az
ol < 5 (1+ 2} e+ el (14 )

which, proceeding similarly to the derivation of (3.17), yields

0,p;82 va

lola = lofaiv,,e < Cs (1 + |z]o.x0) {IIX\ 0,92

(3.20)

+ [Elo.ase + L+ lzloso) luplir}

where Cg is a positive constant depending as well on |Q], |li4]|, v, A, ¢, and 3.

3.2.2 Well-definedness of operator S

In this section we make use of [16, Theorems 2.34 and 2.6] to show that (3.4) is well-posed (equivalently,
that S is well-defined). To this end, and similarly to Section 3.2.1, we notice that, given (z,r) €
L*(Q) x X, the structure of (3.4) is analogous to that of the problem specified in [20, eq. (2.33),
Section 2.3], so that some results and techniques from its corresponding analysis are employed below.
In particular, following the approach from [20, Section 2.4.3], we first apply [16, Theorem 2.34] to a
perturbation of (3.4), and then employ [16, Theorem 2.6] to conclude that the whole problem (3.4) is
well-posed. More precisely, we let A (Hx Q) x (H x Q) — R be the bounded bilinear form arising
from (3.4) after adding the left hand sides of its equations, but without including ¢, r, that is

A& ). (7,8) == a(l,7) + b(F,x) + b(C,€) (3.21)

for all (5 ,X)s (7,€) € H x Q, and show next that A satisfies a global continuous inf-sup condition.

Note that, being A symmetric, thg latter will be valid with respect to any of its components. We also
remark that the boundedness of A follows from those of @ and b (cf. (2.34), (2.35), and (2.36)).
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Since establishing the aforementioned property for Ais equivalent to proving that the bilinear forms
dand b satisfy the hypotheses of [16, Theorem 2.34], we proceed with the latter in what follows. We
begin by letting V be the null space of the operator induced by the bilinear form b that is

~

V.= {%eH: b(F,€) = 0 vgeQ},
which, according to the definitions of b (cf. (2.33)) and the spaces H and Q (cf. (2.30)), yields
Vo= {?-e H: div(#) = 0}. (3.22)

Then, it is straightforward to see from the definitions of @ (cf. (2.32)) and the norm of H := H(div,; (2)
(cf. (1.4)) that there holds R
aF7) = |Fu  VFeV, (3.23)

from which one easily deduces that @ satisfies the hypotheses given by [16, Theorem 2.34, eq. (2.28)]
with the constant & = 1.

Furthermore, since the continuous inf-sup condition for b has already been established (see, e.g. [6,
Lemma 2.1}, [20, Lemma 2.9], and also [21, Lemma 3.5] for a closely related result), we provide next
only the main details of its corresponding proof. In fact, given £ € Q := L?(2), we note from (2.25)
that p > 2, introduce &, := |¢[P72¢, and observe that

oL@ and | €6 = [Elopal€oloon: (3.24)
Then, letting w € H{(2) be the unique weak solution of Aw = —&, in Q, w = 0 on T, for
which there holds |wl; o < |Z” ” |€0]l0,0:02, Where cp is the constant yielding the Friedrichs-Poincaré

inequality, and i, is the contlnuous injection of HY(Q) into LA(2), we define ¢ := —Vw € L%(Q) and
notice that div(¢) = &,, so that ¢ € H := H(div,;(2). In this way, bounding by below with 7 = ¢,
and using the above identities and estimates, we arrive at

5(% £)

=
feH |7

> B¢l (3.25)

with § .= (1+ L2l)™!
Consequently, thanks to (3.23) and (3.25), the hypotheses of [16, Theorem 2.34] are satisfied, and

hence the a priori estimates given by [16, Theorem 2.34, eq. (2.30)] imply the existence of a positive
constant ag, depending only on @, 6 , and |al|, such that

A, (.)

(+,£)eHxQ H(; )HH xQ
(7,6)#0

> o5 (¢ 0 axq V(¢ x)eHxQ. (3.26)

Next, we let g“ : (H X Q) (H X Q) — R be the bounded bilinear form that results after adding
the full left hand sides of the equations of (3.4), that is

A (), (7,9) == A((Cx). (F,) + &Ge(F X)) V(I x), (F.6) e HxQ, (3.27)

whence problem (3.4) can be rewritten, equivalently, as: Find (,7) € H x Q such that

~ ~

(&), (7.6) = F(F) + G&)  V(F,HeHxQ. (3.28)
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We remark that the boundedness of A and Czr (cf. (2.37)) implies the same property for ﬁzyr. In
turn, it follows from (3.26), (3.27), and the boundedness of ¢, (cf. (2.34) and (2.37)), that for each
(¢, x) € H x Q there holds

p Axrl(€0.(7.0)

@
@Foexg (T8 nxq
(7,£)#0

> o5 [(€, ) luxq — 2] (Izloso + Irlore) IXla

o2+ Ielora) } 1 0 lxq

> {ag - 12] (2

and thus, under the assumption that

a~
R L (3.29)
20
we arrive at N -
A y X)» %75 ag o~ =
qup AerlC VO o By g V@0 eHx Q. (330
(%,6)eHxQ H(ﬂf)“HxQ
(7,6)#0

Analogously, noting that Ais symmetric, proceeding as before, and under the same assumption (3.29),

we obtain N
AZI‘ 9 i 7'\-/7 ag ~ ~
sup ; ((NC X), (7,€)) > 7s (7, 6)|uxq V(7,6 eHxQ. (3.31)
(€, 0)eHxQ 1<, ) [mxq
(€,x)#0

According to the foregoing analysis, the well-definedness of S is established as follows.

Lemma 3.2. For each (z,r) € L*(Q) x Xy satisfying (3.29) there exists a unique (o,n) € H x Q
solution of (3.28) (equivalently (3.4)), and hence one can define S(z,r) := n € Q. Moreover, there
exists a positive constant Cy, depending only on ag, lip|, and Ky, such that

B(z.1)lg = lnlope < 1@ nlixq < Cs {lmlyar + aloso} (3:32)

Proof. Bearing in mind the boundedness of /Tz,r, (3.30), and (3.31), a straightforward application of
[16, Theorem 2.6] yields the existence of a unique solution (a,7) € H x Q to (3.28). In addition, the
corresponding a priori estimate (cf. [16, Theorem 2.6, eq. (2.5)]) gives

N 2 (im0 i
1@ luxq < — {IF| + 16/},
ag

which, along with the expressions for |F| and |G| provided in (2.34), lead to (3.32) with the constant
Cy = 2 max {1+ ||ip\|,/£;1 . O
S

(e

3.2.3 Well-definedness of operator T

Our goal now is to show that (3.6) is well-posed (equivalently, that T is well-defined), for which we will
make use of the most general Babuska-Brezzi theory in Banach spaces (cf. [3, Theorem 2.1, Corollary
2.1, Section 2.1]) and the Banach-Necas-Babuska Theorem (cf. [16, Theorem 2.6]). To this end, and
as observed for Sections 3.2.1 and 3.2.2, we notice here that, given (z,x) € L*(Q) x Q, the structure
of (3.6) is similar to a perturbation of the problem described by [20, eq. (2.32)], so that some of the
techniques employed there will be adapted for our analysis below. In particular, proceeding as in [20,
Section 2.4.2], we first employ [3, Theorem 2.1, Corollary 2.1, Section 2.1] to analyze part of (3.6),
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and then we apply [16, Theorem 2.6] to conclude the well-posedness of the whole problem. According
to this, we now let A : (X2 X Ml) X (X1 X Mg) — R be the bounded bilinear form arising from (3.6)
after adding the left hand sides of its equations, but without including ¢, ,, that is

A((r,9),(q,¢)) := a(r,q) + bi(q,v) + ba(r, )

(3.33)
V(r,y) e (Xo x My), V(q,¢)¢€ (X1 x M),

and aim to prove next that A satisfies global continuous inf-sup conditions with respect to both its
first and second component. Note that the boundedness of A follows from those of a, b; and by (cf.
(2.55), (2.56)).

The verification of the aforementioned properties of A is equivalent to establishing that the bilinear
forms a, by, and by verify the hypotheses of [3, Theorem 2.1, Section 2.1], which we address in what
follows. Firstly, for each i € {1,2} we let K; be the kernel of the bilinear form b; (cf. (2.50)), that is

K; = {QEXi3 bi(q,¢) =0 Vo e Mi},
which, according to the definitions of X, Xy, Mj, and My (cf. (2.47)), and b; (cf. (2.50)), gives
Ky = {qus(divS;Q): div(q) = 0 in Q} (3.34)
and

Ky = {qu”(divj;Q); div(q) = 0 in Q} (3.35)

The following lemma introduces a suitable linear operator mapping L(£2) into itself for a range of
t containing the one specified for s in (2.25). This result will be utilized next to establish the inf-sup
conditions required by [3, Theorem 2.1] (equivalently, [3, egs. (2.8) and (2.9)]) for our bilinear form a
(cf. (2.49)).

Lemma 3.3. Let Q be a bounded Lipschitz-continuous domain of R"™, n € {2,3}, and let t,t' € (1,+0)
[4/3,4] ifn=2

conjugate to each other with t (and hence t') lying in . Then, there exists a linear
[6/5,3] ifn=3

and bounded operator Dy : L'(Q) — LY(Q) such that

div(Di(w)) =0 in Q VYweL{(Q). (3.36)
In addition, for each z € LY (Q) such that div(z) = 0 in Q, there holds

Lz-pt(w) _ Lz-w Ywe LYQ). (3.37)

Proof. Tt is a slight modification of the proof of [20, Lemma 2.3]. Indeed, given w € L!(Q), with ¢ in
the range indicated, we know from the scalar version of [19, Theorem 3.2] (see also [24, Theorems 1.1
and 1.3]) that there exists a unique u € W () such that

diviVu+w) =0 in ©, w=0 on 09,

and there exists a constant Cy > 0 such that |ull; .0 < C;|wlo+o. Then, defining Dy(w) := Vu+w,
it is readily seen that Dy is linear and bounded, and satisfies (3.36). In turn, given z € L (Q) such
that div(z) = 0 in €, it is clear that z € H (divy; Q), so that applying (1.9) to z and u, we obtain

Lz.vu - Ludiv(z) + (z-n,u) = 0,

which yields (3.37) and finishes the proof. O
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The following result, which makes use of Lemma 3.3, resembles [20, Lemma 2.6], which, in turn,
employs [20, Lemma 2.3]. Note that the difference between Lemma 3.3 and [20, Lemma 2.3] lies on
the boundary conditions involved.

Lemma 3.4. There exists a positive constant o such that

sup alr,q) > ar|x, Vre Ks, (3.38)
acrry 4l x;
q#0

and
sup a(r,q) > 0 Vqe K1,q #0. (3.39)
I‘GKQ

Proof. Givenr € K> (cf. (3.35)), that is r € H"(div;; 2) such that div(r) = 0 in 2, and recalling from
(2.25) that r > 2, we set rs := |r|""?r, and observe, similarly to (3.24), that

rs € L(Q) and J r-ry = |r|
Q

0,32 [Ts]0,5:02 - (3.40)
Then, noting from (2.25) that s does belong to the range required by Lemma 3.3, an application of
this result to ¢t = s yields D4(rs) € K1, and hence, using (3.37), the identity given in (3.40), and the
boundedness of Dy, we find that

amm>ammm»_ﬁfﬂ$9 Lp” 5 L

sup > = = > |
e lalx, = 1Ds(s)lx [Ds(rs)los [Ds(rs)losa — D]
q

0,758 »

which proves (3.38) with o =
{ al*?q ifq+0

1
m. In turn, we now take q € Kj (cf. (3.34)), q # 0, define
S

qr =

, and observe, similarly to (3.24) and (3.40), that
0 ifq=0

@ eL'(Q)  and quwﬂmm@. (3.41)

In this way, noting from Lemma 3.3 that D,(q,) € K3 (cf. (3.35)), and using (3.37) and the identity
in (3.41), we obtain

swamn>fam»q=jqfq=mmﬂ>m
I‘EKQ Q Q

which shows (3.39) and finishes the proof of the lemma. O

We stress here that, belonging the index r as well (cf. (2.25)) to the range required by Lemma 3.3,
we can proceed analogously to the proof of Lemma 3.4 to conclude that the inequalities (3.38) and
(3.39) remain valid if the roles of X3 and X; (and hence of K3 and K) are exchanged. More precisely,
we have the following result.

Lemma 3.5. There exists a positive constant o such that

a(r,
sup (r,q) > alq|x, Vqe Ky, (3.42)
reKo HrHXQ
r+#0
and
sup a(r,q) > 0 Vre Ko, r #0. (3.43)
qeKy
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The continuous inf-sup conditions for the bilinear forms b;, i € {1, 2}, which resemble, though with
relevant differences, the results given by [20, Lemma 2.7], are established in the following lemma.

Lemma 3.6. For each i € {1,2} there exists a positive constant [3; such that

bi )

sup (g, 9) = Bi o], Voe M. (3.44)
qeX; Hq”Xz

q#0

Proof. For the case ¢ = 1, in which X; = H*(divs; Q) and M; = L"(Q2), with » and s conjugate to
each other (cf. (2.25)), the present proof proceeds similarly to that of [20, Lemma 2.7], except for
the fact that the boundary conditions of the auxiliary problems utilized are homogeneous Dirichlet
and Neumann, respectively. We omit further details and refer to [20, Lemma 2.7]. On the other
hand, for the case i = 2, in which X; = H"(div;; Q) and M; = L}(2), with j and [ conjugate to each
other (cf. (2.26)), we first let O be a bounded convex polygonal domain containing 2. Then, given
¢ € My = L1(Q), we recall from (2.26) that [ > 2, set ¢; := |¢|!"2 ¢, and observe, as before, that

0, e V@  ad [ 06, = lolusaldla. (3.45)
qu in € y .
Next, we define g := 0 n 00 , which clearly belongs to L7 (QO), and deduce, applying [17,
in .

Corollary 1] to j € (1,2] (cf. (2.26)), that there exists a unique z € W(l]’j(O) n W23(0O) such that
Az =g in O, z=0 on 00,

and

Izl2.5:0 < Cjligloj;o = Cjlldiloga,

with a positive constant C; depending only on j and O. Thus, letting q := Vz|o € WHI(Q), it follows
that div(q) = ¢; in , whereas using the continuous embedding i;, from WJ(Q) into L"(£2), which
is valid (cf. [16, Corollary B.43]) for the ranges of r and j specified in (2.25) and (2.26), respectively,
we get

lallose < lijrllalige < lijrllzl250 < li.1Cjléiloza-

In this way, we conclude that q € Xy := H'"(div;; ), and that

lalx, = lalore + ldiv@logie < (1 + [ C5) [éiloi;
whence, using the identity in (3.45) as well, we find that
_ ¢ 9j
b q,Cb b (Ld) 1 J ’ 1

sup 2( ) > 25 ) > : Q = ; [ 0,;€2 »

wxp lale = lalx = (U + 1l G) Tosloge (1 + il )

q
which proves (3.44) with 82 = (1 + [, C;) . -

According to Lemmas 3.4 and 3.6 (equivalently, Lemmas 3.5 and 3.6), the required hypotheses of
[3, Theorem 2.1, Section 2.1] are satisfied, and hence the a priori estimates provided by [3, Corollary
2.1, Section 2.1] imply the existence of a positive constant ar, depending only on «, (1, 52, and |al,

such that
ap Allr).(a.0)

(q,$)eX] x My I(a, &)l x, x az,
(9,9)#0

= ar (6 9)[xoxm V(r9) € Xo x My, (3.46)
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and

swp  AUEEDO) o @) Y(@e) e Xix My (347
(r,zp)c;;()gx(i\fl H(r>¢)”X2XM1
r,p)#

Now, we let A, : (X2 x My) x (X1 x M3) — R be the bounded bilinear form arising from (3.6) after
adding the full left hand sides of its equations, that is

AZ,X((ra 7/1)7 (q7 gb)) = A((I‘, w)’ (qa ¢)) - CZ,X((ra w)a ¢)
V(r,¢) € (X2 x M), V(q,¢)€ (X1 x M),
and realize that (3.6) can be rewritten, equivalently, as: Find (p, ) € X2 x M; such that

Azx((P.9),(a,8)) = Fa) + G(¢)  V(a,¢) € X1 x M>. (3.49)

Note that the boundedness of A and ¢, (cf. (2.57)) guarantees that A, is bounded as well. Thus,
bearing in mind (3.48), and employing (3.46) and (2.57), we find that for each (r, ) € Xo x M; there
holds

(3.48)

A‘ r? ) 9y
ap A @GO oy o) I ) lxprs, . (350
(q,¢)eX | x My H (q7 ¢) HX1 X Mo
(a,¢)#0
and then, under the assumption that
oT
0 < ) 3.51
§ 0= 3] (351
we arrive at
A q, «
sup ,x(( ), (a4, 9)) > %H(L¢)HX2><M1 V(r,v) € Xo x M. (3.52)
(a,0)€X1 x My H(q’ )HXI x M2
(a,¢)#0

Similarly, but employing now (3.47) instead of (3.46), and under the same assumption (3.51), we

obtain Aur((0,9), ()
Zz r? b) b O{
sup X L) S 2T (q, @) lxawnr, V(@ d) € X1 x M. (3.53)
(r,zz;)i;;?le ”(R¢)HX2><M1 2
r,0)#0

We are now in position to establish the well-definedness of T.

Lemma 3.7. For each (z,x) € L*(Q) x Q satisfying (3.51), there exists a unique (p,¢) € Xo x M
solution of (3.49) (equivalently (3.6)), and hence one can define T(z,x) := p € Xo. Moreover, there
exists a positive constant Cp, depending only on art, Cr, and k,, such that

IT( 0l = Iplxs < 10 @)lxexrn < Or {lenlijurr + Iflogal}- (3.54)

Proof. Thanks to the boundedness of A, ,, and the global inf-sup conditions (3.52) and (3.53), a
direct application of [16, Theorem 2.6] provides the existence of a unique solution (p,¢) € Xo x M;
0 (3.49). Moreover, the corresponding a priori estimate (cf. [16, Theorem 2.6, eq. (2.5)]) yields

2
P Plxaxnns < — {IF] + Gl
T

which, together with the expressions for ||F| and |G| given in (2.60) and (2.54), imply (3.54) with
Ct :=%max{ ' gO} O

[0}
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3.3 Solvability analysis of the fixed-point equation

Knowing that the operators S, §, T and hence E as well, are well defined, in this section we address the
solvability of the fixed point equation (3.7). To this end, in what follows we aim to verify the hypotheses
of the respective Banach Theorem. We begin the analysis by establishing sufficient conditions under
which E maps a closed ball of L*(Q) x X5 into itself. Indeed, given a radius d to be explicitly defined
later on, we first set

Wy = {(z,r) e LY x Xo:  |(z,1)] = |z

loasa +[rlx, < 5}- (3.55)
Then, given (z,r) € Ws, we have from the a priori estimate for S (cf. (3.17) in Lemma 3.1) that
HS (Z’ §(Z7 I‘)) HO,4;Q

N (3.56)
< Cs {18z, 1)llop IV

or + Ifloase + (1+ lzlosa) lupliar ),

from which, using the corresponding estimate for S (cf. (3.32), Lemma 3.2), and assuming (cf. (3.29))

(07

lzloaso + IFlome < sro, (3.57)
S e
we get
I8(2.8(z, 1)) oo < Cs {C5 (Inpljor + Inloee) IV oo
(3.58)
+ floase + (1+ lzlosa) upliar} -
Furthermore, supposing now that (cf. (3.51))
~ «
Izlos0 + [S(z, 1)@ < 5 (3.59)
2
the a priori estimate for T (cf. (3.54) in Lemma 3.7) gives
IT(2,5(2,1) |x. < Cr{llenlysrr + [ folosal- (3.60)

g

3 27e]
that certainly |z[jo.4.0 < 6, and according to the estimate for ||S(z,r)|q (cf. (3.32)), we deduce that
a sufficient condition for (3.59) is given by the assumptions

Regarding (3.57), we observe that it is satisfied if we consider § such that § < . In turn, noting

aT ar
0 < and Gy ([npl1j2,r + | fnlo.e) < : (3.61)
i ¢ CsUmhartilosn) < g
In this way, defining
. as ot
0 = mm{—SN, —}, (3.62)
2" 4]e]
(3.57) and (3.59) are satisfied, whence (3.58) and (3.60) are valid, and thus, assuming the second
inequality in (3.61), and recalling that |E(z,r)| := ||S(z,S(z,r))|0,4;0 + | T(2,S(z, 1)) x,, we obtain

l.0:2) IV flors + |£]

1=z, ) < CO) { (Inplijor + I 04/30

(3.63)
+ uplizr + leplysrr + ool
where C(6) is a positive constant depending explicitly on Cs, Cg, (1 + J), and Cr.

We have then proved the following result.
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Lemma 3.8. Assume that the data are sufficiently small so that

(6%
Cs (Inplhyar + Ualo.se) < 475 (3.64)
and
C®) { (Inplhjor + 1 fallo.e2) 1V flora + [€loase |
(3.65
+ Juplizr + leplyenr + 1felogo} < 4.

Then, E(Ws) < Wjs.

We now aim to show that the operator E is Lipschitz-continuous, for which, according to its
definition (cf. (3.7)), it suffices to show that S, S and T satisfy suitable continuity properties. We
begin with the corresponding result for S.

Lemma 3.9. There exists a positive constant Lg, depending on «, ||, and |c||, such that

[S(z, x) = S(z0, x0) |1

(3.66)
< Ls {|\Vf|o,r;§2 Ix — xolop + F(zo0,x0) |z — ZOHOA;Q}
fO?” all (Z)X)v (ZOa XO) € L4(Q) X Q7 where
F(20.x0) = Cs {Ix0lope [V Flore + [Elose + (1+ |Zoloa0) [plyar}- (3.67)

Proof. Given (z,Y), (2o, x0) € L*(Q) x Q, we let S(z, x) := u € L*(Q) and S(zo, x0) := up € L*(),
where (U, o) = ((u,t),a') e H x Q and (dyp, 09) = ((uo,to),a'o) € H x Q are the respective solutions
of (3.2). It follows from the corresponding second equations of (3.2) that i —uy e V (cf. (3.11)), and
then the V—ellipticity of a (cf. (3.12)) gives

ot — to|%; < a(ti — g, d — tp) . (3.68)
In turn, applying the corresponding first equations of (3.2) to Vv = d — Uy, we obtain
a(u,d —up) + c(z;u,d —tp) = F,(d— ), (3.69)
and
a(tp, i — Up) + c(zo; Uy, d — Up) = Fy,(d — ), (3.70)
so that, subtracting (3.70) from (3.69), and using, thanks to the bilinearity of ¢(z; -, ) and (2.20), that
c(z;u,d — tp) = c(z;u — Up,d — tp) + c(z;up,d —tp) = c(z;up,d — dp),
we find
a(d — o, U —Up) = (Fy —Fy,) (U — o) + c(zo — 2;Up, U — p) . (3.71)

Next, utilizing (2.40), we get

(Fy — Fyo) (i — fig) = L(x )V - (u—ug)

(3.72)
< ’Q|1/4 HX — X0110,p; va 0,79 Hﬁ - 1_jOHH ;
whereas the boundedness property of ¢ (cf. (2.18)) yields
c(z0 — z;to, U — W) < || |z — 2zollo.4:0 [Tl rx [0 — Tols - (3.73)

Finally, employing (3.72) and (3.73) in (3.71), replacing the resulting estimate back into (3.68), sim-
plifying by |d — tg|m, and bounding |tp| g by the corresponding upper bound in (3.17), we arrive at
the required inequality (3.66) with Lg := a~! max{|Q|1/4, Ie|l}- O
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The continuity of S is addressed next. More precisely, we have the following result.

Lemma 3.10. There exists a positive constant Ly, depending only on |¢], ag, and Cy, such that

IS(z,r) = S(z0,70)lq
(3.74)
< Ly {Iolizr + Ifaloge} 127) = (20,%0)]

for all (z,r), (zo,10) € L4(Q) x Xo satisfying (3.29).

Proof. Given (z,r), (zo,r0) € L4(Q) x Xy, we let S(z,r) := 5 € Q and S(zo, 1) := 10 € Q, where
(o,n) € H x Q and (69,m0) € H x Q are the respective solutions of (3.4), equivalently (3.28), that is

A ((@,1),(F,6) = F(F) + G)  V(FeHxQ, (3.75)

and
Azoro (Fo,m0), (7,6)) = F(F) + G(§) V(& eHxQ. (3.76)

It follows from the foregoing identities and the definitions of ﬁ“ (cf. (3.27)) and ¢, ¢ (cf. (2.27)) that

~

gz,r((&v 77) - (&07 770)7 (7-7 f)) = ﬁz,r((&a 77)7 (7-7 f)) - Az,r((&m 770)7 (7-7 5)) (3 77)
= ‘/ZZOJ'O ((&07 7]0)7 (7’:7 g)) - IZZ,I"((&Oa 770)7 (%v g)) = EZO*Z,I"O*I‘(%7 770) )

and hence, applying the global inf-sup condition (3.30) to (&,1) — (60, 10), and employing (3.77) and
the boundedness of ¢, (cf. (2.37)), we find that

3 sup EZo—iro—r(;'?UO)
ag zoenxa | (T,8)]Hxq

(7.£)#0
O,T';Q} )

which, together with the a priori estimate (3.32) for ||no|q, yields (3.74) with Ly := 2||¢| agl Cy. O

I(e,n) — (F0,m0)[HxQ <

2]

S

<

mollq {2 = 2o + I = xo|

It remains to establish the continuity of T, which is the purpose of the following lemma.

Lemma 3.11. There exists a positive constant Lt, depending only on |c|, cr, and Ct, such that

IT(2, %) ~ T(z0, x0) |x.
(3.78)
< Lz {leplsrr + Ifolosal 1) = (@0, %0)

for all (z,%), (zo, x0) € LY(Q) x Q satisfying (3.51).
Proof. Given (z, ), (2o, xo0) € L*(Q) x Q as indicated, we proceed similarly to the proof of Lemma 3.10

and let T(z, x) := p € X3 and T(zo, x0) := po € X2, where (p, ¢) € Xo x M; and (po, o) € X2 x M
are the respective solutions of (3.6), equivalently (3.49), that is

A ((p9):(a,0) = Fla) + G(¢)  V(a,9) € X1 x My, (3.79)

and
Azoxo (0, 90), (a,¢)) = Fla) + G(¢)  V(q,¢) € X1 x M,. (3.80)
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Next, proceeding analogously to the derivation of (3.77), we deduce from the identities (3.79) and
(3.80), along with the definitions of A, (cf. (3.48)) and ¢, (cf. (2.51)) that

A, ((P.9) — (P0, 0): (A, D)) = Ca—zgix—xo (PO, ©0), @) » (3.81)

and thus, applying the global inf-sup condition (3.52) to (p,¥) — (Po, ¢0), and making use of (3.81)
and the boundedness of ¢, (cf. (2.57)), we get

2 Cz—z0,x—X0 ((pO’ 900)7 (b)
I(p, ) — (Pos o) [ xoxnry < —  sup ’
2 QAT (q,0)eX] x My H(Q,Cﬁ)HXlng
(a,¢)#0

|0,p;9} ’

which, together with the a priori estimate (3.54) for ||(po,¥o)|x,xnr, yields (3.78) with Ly :=
2 |e| ag' Cr. O

< 2 pg, o)) Iz - zoloan + Ix —
X o Po0, $0) | Xox My Y112 — Z0|0,4;Q2 X — Xo

Having proved Lemmas 3.9, 3.10 and 3.11, we now aim to establish the continuity property of the
fixed point operator E in the closed ball Wy (cf. (3.55)). Indeed, given (z,r), (zg,r9) € Wy, we first
observe from the definition of Z (cf. (3.7)) that

|E(z,v) — E(z0,0)| = S(2,S(z,1)) — S(20, (20, T0))

+ ||T(z,§(z,r)) — T(zo, g(zo,ro)) I x, -

|0,4;Q
(3.82)

Then, employing the continuity properties of S (cf. Lemma 3.9, (3.66)) and S (cf. Lemma 3.10,
(3.74)), we find that
IS(2,S(z,t)) — S (20, S(20, 10))]l0.4:0

< Ls {1V flore 18z r) — S(z0,10)|

0,002 + j:(z()vg(zﬂvr())) HZ — 2o

!o,m} (3.83)
< Ls {Ls (Inplyor + Lfalo.ge) [V flora + F (20, 8(z0,70)) | 1 (2,7) = (20,70

whereas (3.67) and the a priori estimate of S (cf. (3.32)) gives
f(ZO) §(ZO7 I'()))

0 Hf

< Cs {IB(z0,x0)ll0n0 |V f oasmo + (1+ [20l00) [unliyzr | (3.84)

000) IV o4z + (1+ 120loe) [uplizr} -

In this way, replacing the bound from (3.84) into (3.83), and using that ||zg[o 4.0 < J, we deduce the
existence of a positive constant Lz s, depending only on Lg, Ly, Cs, Cg, and 4, such that

om0 t ”f

< Cs {C5 (Imohar + 1]

IS(2,8(2,1)) = S (20,8(z0.70) ot < Lz { (I ljor + Ifuloo) 19 o

(3.85)
+  flloamza + ”uD”l/ZF} I(z, ) — (20, T0)] -

In turn, proceeding similarly as before, but applying now the continuity properties of T (cf. Lemma
3.11, (3.78)) and S (cf. Lemma 3.10, (3.74)), we arrive at

|'T(2,S(z,1)) — T(z0,S(20, 0)) | x
(3.86)

< Lax (1+ Iplar + Ifaloga) {lenlysrr + Ifelosa} 12,1) = (20,x0),
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where Lg T is a positive constant depending only on Lt and Lg.
Defining Lz := max {Las, L57T}, we summarize the above discussion in the following result.

Lemma 3.12. Assume (3.64), that is

ar
4]

07Q§Q) <

Cy (HUDHl/Q,F + | £y
Then, there holds

HE(Zv I‘) - E(Zo,l‘o)” < LE{(HT’DHUZF + Hfﬁ”O,Q;Q) (va

0.2 + [enli/smr + [ follo )
(3.87)
+ |f

lo.azz + [uplij2r + lenlysrr + HfsaHo,j;Q}H(L r) — (20, 7o),
for all (z,r), (zg,rp) € W.
Proof. We first stress that (3.64) is assumed here to ensure that both (z,g(z,r)) and (zo,g(zo, ro))

verify the hypothesis (3.51), which is required by the definition of T and its continuity property. Then,
it is readily seen that (3.87) follows directly from (3.82), (3.85), and (3.86) O

The main result of this section is hence stated as follows.

Theorem 3.13. Assume that the data are sufficiently small so that (3.64) and (3.65) hold. In addi-
tion, suppose that

Ls {(H??DHl/z,r + | fallo.g:2) IV fllorse + lenlliysmr + [ folloe)

+ ]

(3.88)

04/3:0 T [upllior + leplliser + | fo fo,j;ﬂ} < 1.

Then, the operator E has a unique fized point (u,p) € Wy. Equivalently, the coupled problem (2.61)
has a unique solution (d,o) € H x Q, (a,n7) € Hx Q, and (p,¢) € Xo x My, with (u,p) € Ws.
Moreover, there hold the following a priori estimates

I, 0) xq < Cao {1V

0,02 (H77D|\1/2,r + | fy

O,Q;Q} )

1@ )t < Cr{lenlysrr + Ifologol

002) + IEloyse + [unlisr},

@ mlixq < Cg{Inplhzr + 1,

where Cy o 18 a positive constant depending only on Cs, Cs, Cx, and 6.

S’
Proof. We begin by recalling from Lemma 3.8 that (3.64) and (3.65) guarantee that E maps Wj
into itself. Hence in virtue of the equivalence between (2.61) and (3.8), and bearing in mind the
Lipschitz-continuity of 2 (cf. Lemma 3.12) and the hypothesis (3.88), a straightforward application
of the Banach fixed point Theorem implies the existence of a unique solution (u,p) € Wy of (2.61).
In addition, the a priori estimates follow straightforwardly from (3.17), (3.20), (3.32) and (3.54), and
bounding [ulo 4,0 by 9. O

4 The Galerkin scheme

In this section we introduce the Galerkin scheme of the fully-mixed formulation (2.61), analyse its
solvability by employing a discrete version of the fixed point strategy introduced in Section 3.1, and
develop the corresponding a priori error analysis.
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4.1 Preliminaries

We begin by considering arbitrary finite element subspaces HY, Hz, HY, Hy, Qn, Xon, My, X154 and
My, of the spaces L(Q2), LZ.(), H(divy/3; ), H, Q, X2, M1, X1, and My, respectively. Hereafter,
h stands for both the sub-index of each foregoing subspace and the size of a regular triangulation 7,
of Q2 made up of triangles K (when n = 2) or tetrahedra K (when n = 3) of diameter hy, that is
h := max {h xk: Ke 77L} Specific finite element subspaces satisfying the stability conditions to be
introduced along the analysis will be provided later on in Section 5. Then, defining the spaces

H), := Hjl xH}, Qp := Hf nHoy(divys;€Q),
and setting the notations
Uy, := (up,tp), Vi = (Vh,sp) € Hy,

the Galerkin scheme associated with (2.61) reads: Find (up, o) € Hy, x Qp, (61, 1) € Hp x Qp, and
(Ph, 1) € Xoj, x My, such that

a(tp, vi) + c(up;up, vp) + b(vi, o) = Fy, (V) Vv, € Hy,
b(uy, 7)) = G(m) V7€ Qp,
A(&n, ) + b(Fnmn) + Cupn (Fam) = F(F) V7, € Hy, m
b@n &) = Gl&) Vén € Qn, '
a(pn,qn) + bi(an,on) = F(an) Vane X,
b2(Phy &n) — Cupn ((Phson), dn) = G(on) Vone My .

Throughout the rest of this section, we adopt the discrete analogue of the fixed point strategy
introduced in Section 3.1 to analyse the solvability of (4.1). According to it, we now let Sy, : H}! xQp, —
H}' be the operator defined by

Sh(zh, Xn) == uy Y (zn, xn) € Hy x Qp, (4.2)

where (Up, o) = ( up, ty), o) € Hy x Qp is the unique solution (to be confirmed) of the first and
second rows of (4.1) when c(up;-,-) and F,, are replaced by c(z;-,-) and Fy,, respectively, that is

a(up, Vp) + c(zp;Up, Vi) + b(Vy,04) = Fy, (Vh) Vv, € Hy,, 3
b(tn, ) = G(m) V1€ Q. -

In turn, we let §h : Hy x X5, — Qp be the operator given by
Sh(zn,th) == mn  V(zn,1h) € HY x Xo,, (4.4)

where (o, m,) € Hp X Qp, is the unique solution (to be confirmed) of the third and fourth rows of (4.1)
when ¢y, p, is replaced by ¢, r,, that is

(&, ) + b(Fnn) + Cpry Fromn) = F(F)  ¥F e Hy, 45
b &) = G(&) Y eQn. |
Similarly, we let T}, : Hp} x Qp — Xa 5, be the operator given by
Tr(2zn, xn) == Pr VY (zn,xn) € Hy x Qu, (4.6)
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where (pp,¢n) € Xop x My is the unique solution (to be confirmed) of the fifth and sixth rows of
(4.1) when ¢y, n, is replaced by ¢, ,, that is

a(Pn,dn) + bi(an,n) = Flan)  Vape Xy, @
b2(Ph, #0) — Capoen (Phon), 0n) = G(dn)  Vone Myy.
Finally, we define Ej, : Hp x X5, — H}p x X5, as
En(zn,1h) = <Sh(zha§h(zharh))aTh (Zh,gh(zh,rh))> Y (zn,rn) € HY x Xop, (4.8)

and notice that solving (4.1) is equivalent to seeking a fixed point of Zp, that is: Find (up,pp) €
H}' x X5 ) such that

En(un, pr) = (up, pa) - (4.9)

4.2 Discrete solvability analysis

Similarly to the approach from Section 3, here we establish the well-posedness of the discrete system
(4.1) by studying the equivalent fixed-point equation (4.9). More precisely, being the respective
analyses fully analogous to those developed in Sections 3.2 and 3.3, in what follows we basically
collect the corresponding results and, eventually, discuss some details of the respective proofs.

We begin by stating next that the discrete operators Sy, §h, and T}, are well-defined, equivalently,
that the problems (4.3), (4.5), and (4.7) are well-posed. Certainly, instead of [3, Theorem 2.1, Corollary
2.1, Section 2.1], [16, Theorem 2.34], and [16, Theorem 2.6], we now resort to the respective discrete
versions given by [3, Corollary 2.2, Section 2.2], [16, Proposition 2.42], and [16, Theorem 2.22]. To this
end, we need to introduce general hypotheses on the finite element subspaces to be utilized in (4.1),
and later on in Section 5 we will introduce specific examples of the latter satisfying them. According
to the above, and in order to address first the well-definedness of S, we assume that

(H.1) there exists a positive constant 34, independent of h, such that

b ‘_;h Th
sup (ﬂ’ ) > Balmlq Ve Qn.
VheHh ||Vh||H
¥ 20

In addition, we let Vj, be the discrete kernel of the bilinear form b, that is
Vh = {‘_;h € Hh : b(\_l'h,Th) =0 VTh € Qh} s (4.10)

and suppose that
(H.2) there exists a positive constant Cy4, independent of h, such that

Iskllo,e = Ca|vhloan VvV = (Vh,sp) € Vi,

Then, given z; € H}!, it readily follows from the definitions of A,, (cf. (3.9)) and a (cf. (2.9)), the
identity (2.20), and the assumption (H.2), that

L. oL v v .
Az, (%1, 1) = a(Vi, Vi) = vsplgq = 5(33 IVal§ a0 + 3 Isula  VVai= (vh.sp) € Vi, (4.11)

which proves the V-ellipticity of Az, with constant cg := § min {Cg, 1}. Thus, the discrete analogue
of Lemma 3.1 reads as follows.
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Lemma 4.1. For each (zp, xn) € H}} x Q) there exists a unique (Up, o) 1= ((uh,th), ah) e H, x Qp
solution of (4.3), and hence one can define Sy(zn, xn) = uy, € H}Y. Moreover, there exists a positive
constant Cg 4, depending only on |, |[i4], v, A, aa, and Ba, such that

ISh(Zn, xn)lo.a:2 = [lunlloge < [Gnla
(4.12)

< Csgq {HXhHO,p;Q i

or t ||f

l0,4/3:0 + (1 + |zn 0,4;9) HUDH1/2,F} .

Proof. Having the discrete inf-sup condition for b (cf. (H.1)) and the Vj-ellipticity of A,, for each
zp, € H}! (cf. (4.11)), the existence of a unique solution to (4.3) is a straightforward application of [16,

Proposition 2.42], whereas the a priori estimate (4.12) follows from [16, eq. (2.30)]. O

We remark here that the discrete analogue of (3.20) reads

lonlq = lonldivse < Csa (1 + |znfos0) {HXh|o,p;ﬂ IV fllore
(4.13)
+ [£loase + (1+ |znloae) lplysr}
where Cs 4 is a positive constant depending as well on |Q|, [i4]|, v, A, aq, and By.
In turn, for the well-definedness of gh, we now look at the discrete kernel of E, that is
\N/h = {%h S Hh : E(Fh,gh) =0 th € Qh}, (4.14)

and suppose that

(H.3) there holds diV(Hh) < Qn,

(H.4) there exists a positive constant 5d, independent of h, such that

~

b(Th:&n) _ %
sup —<—— = Balénlq V&€ Qn.
T eHy, HThHH
T1#0

Bearing in mind the definition of b (cf. (2.33)), and employing (H.3), we deduce from (4.14) that

~

vV, = {7~'h eHy,: div(T) = 0}7

which yields the discrete analogue of (3.23), and hence the V,-ellipticity of @ (cf. (2.32)) with constant
dq = 1. This fact together with (H.4) guarantee, thanks to [16, Proposition 2.42], the discrete global
inf-sup condition for A (cf. (3.21)) with a positive constant ag , depending only on &g, B4, and [d,

and thus the same property is transferred to ﬁzh’rh (cf. (3.27)) for each (zp,ry) € H) x Xy, satisfying
the discrete version of (3.29), that is

ag 4
2]

|zn]l0.4:0 + [rnlloro < (4.15)

In this way, the well-definedness of S, is established by the following lemma.
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Lemma 4.2. For each (zp,ry) € H} x X, verifying (4.15), there exists a unique (o, np) € Hy x Qp

solution of (4.5), and hence one can define §h(zh,rh) := np € Q. Moreover, there exists a positive
constant Cg ;, depending only on ag 4, lipl, and Ky, such that

ISk (zn:rr)lq = |nnlope < 1(@n,mm)nxq < Cg,d{H??Dlh/z,r + | |0,g;9}- (4.16)
Proof. 1t is a direct application of [16, Theorem 2.22]. O

Furthermore, the well-definedness of T}, requires the introduction of the discrete kernels of b1 and
bs, namely

Ky = {%EXUL: bi(an, ¢n) = 0 VﬁthMl,h},

and
Ky = {(Ih € Xop: ba(an,dn) =0 Vope M2,h}7

and the following hypotheses:

(H.5) there exists a positive constant g4, independent of h, such that

a\r
sup M = Q4 HthXz Vry, € KQJL, and
ap€ky p thHXI
qp#0

sup a(rp,qp) >0  Vane Ky, qn # 0,

I‘hEIngh

(H.6) for each i € {1, 2} there exists a positive constant f3; 4, independent of h, such that

b.
sup M > Bi,d
apeX; thHXz
qr#0

\nllng,  Yédn e Mip.

Thanks to (H.5) and (H.6), a straightforward application of [3, Corollary 2.2, Section 2.2] implies
the discrete global inf-sup condition for A (cf. (3.33)) with a positive constant a4 depending only
on ag, B4, P24 and |af, and hence the same property is shared by A, , (cf. (3.48)) for each
(zn, xn) € H}! x Qy, satisfying the discrete version of (3.51), that is

aT 4
0,0:0 < =, (4.17)
’ 2|

|Znllo,40 + [ xn]

In this way, the well-definedness of T}, is stated as follows.

Lemma 4.3. For each (zn, xp) € H}} xQy, verifying (4.17), there exists a unique (pp, ¢n) € Xopnx My
solution of (4.7), and hence one can define Tp(zn, xp) 1= Pn € Xon. Moreover, there exists a positive
constant Ct 4, depending only on argq, Cr, and Ky, such that

T xi)llxe = [oalxs < 1w wn)lxn < Cra{lephyorr + foloso}.  (418)

Proof. Similarly to the proof of Lemma 4.2, it reduces to a simple application of [16, Theorem 2.22]. [
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Having established that the discrete operators Sy, gh, T}, and hence E; (under the constraint
imposed by (4.17)), are all well defined, we now proceed as in Section 3.3 to address the solvability of
the corresponding fixed point equation (4.9). Indeed, letting d4q be the discrete version of (3.62), that
is

. (¥4 arg
dg = mln{ 2 }, (4.19)
21" 4c]
we first introduce the ball
Wi, i= {(znrn) € B x Xop s (zna)| = |znloso + [onlx, < daf. (4.20)

Then, analogously to the derivation of Lemma 3.8 (cf. beginning of Section 3.3), we deduce that Ej,
maps W;, into itself under the discrete versions of (3.64) and (3.65), which read exactly as those,
except that the constants Cy, aT, and C(0), and the radius ¢ utilized there are replaced by C’gj @ QT d;
Ca(9), and dq4, respectively, where, similarly to C(J), Cq(6) depends explicitly on Cg g4, C§,d7 (1+9),
and Ctg4. Moreover, following analogue arguments to those employed in the proofs of Lemmas 3.9,
3.10, and 3.11, we are able to prove the continuity properties of Sy, §h, and T}, that is the discrete
versions of (3.66), (3.74), and (3.78), which are the same as the latter, but instead of Ls, Ly, and Lr,
the resulting constants are given by

Lsq = ag' max {|Q|"4, |c|}, Lg

ga =2l ozg; Cy

S and Lrtg4:=2]c aild Cra,

respectively. Hence, proceeding analogously to the derivation of (3.85), (3.86), and the consequent
Lemma 3.12, we are able to show that, under the discrete version of (3.64), there holds

\Zn(2n, rh) — En(2zo,h,Ton)|

< Lza {(HWDH1/2,F + £y ’0,9;9) (HVfHO,r;Q + lepli/srr + I1fe ’Qj;Q) (4.21)

+ [fllo,4/3:0 + [uplije,r + lenllijsmr + 1ol O,j;Q}” (zh,th) — (Zo,hs Ton) | »

for all (zp,rp), (Zo,n,To,n) € Ws,, where Lz 4 is a positive constant depending only on Lg 4, Lg 4, LT q,
Csga, Cy 4, and 4.

S’

According to the above, the main result of this section is established as follows.

Theorem 4.4. Assume that the data are sufficiently small so that the discrete versions of (3.64) and
(3.65) hold, that is

OJT7
Cga (Implar + I fallogn) < Z7o0 (4.22)
and
Ca(®) { (ol + I falloc) IV Flore + [Elo.ys0 o
4.23

+ Juplizr + leplyenr + 1felogo} < d.

Then, the operator By, has a fized point (up, pr) € Ws,. Equivalently, the coupled problem (4.1) has
a solution (Up,op) € Hy, x Qp, (6h,1m) € Hy % Qp, and (ph, ¢n) € Xop X My p, with (up, pp) € Ws,.
Moreover, there hold the following a priori estimates

| (T, o) lExQ < Cﬁ,a,d{HVfHo,r;ﬂ (Inplijr + 1faloge) + [floase + HuDHI/Z,F}7
1@nm)lixe < Cgq{lmplar + Iflosa} .
[Pns @0l < Cra{lenliysmr + IFolosa}
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where Cg o4 18 a positive constant depending only on Cs g, Cs.q, Uy 4> and da. Furthermore, under

the additional assumption

7d’

l0.j:2)

’079;9) (Hvﬂ

Lea {(Inpljor + Iy o2 + Iopl o + 1f

(4.24)

+ [floase + [unlyzr + 1enlenr + I felogo} < 1,

the aforementioned solutions of (4.9) and (4.1) are unique.

Proof. As previously mentioned, (4.22) and (4.23) guarantee that = maps W, into itself. Then,
knowing from (4.21) that Ej : W5, — W, is continuous, a straightforward application of Brouwer’s
theorem (cf. [9, Theorem 9.9-2]) implies the existence of solution of (4.9), and hence of (4.1). In turn,
under the further hypotheses (4.24), the Banach fixed-point theorem yields the respective uniqueness
of solution. Finally, in any case, the a priori estimates are consequences of (4.12), (4.13), (4.16) and
(4.18), and the fact that |upfo4.0 < da. O

4.3 A priori error analysis

In this section we derive an a priori error estimate for the Galerkin scheme (4.1) with arbitrary
finite element subspaces satisfying the hypotheses introduced in Section 4.2. More precisely, we are
interested in establishing the Céa estimate for the error

E = |[(d,0) = (Un, on)[axq + [(6,1) = (Fn, ) [Hxq + [(P,9) = (Prpn) [ xosnsy,  (4:25)

where ((4,0),(5,1), (p,¢)) € (H x Q) x (H x Q) x (X x M) is the unique solution of (2.61) with
(u,p) € W5 (cf. (3.55)), and ((Un, o), (Gh:1n), (Ph,en)) € (Hi x Q) x (Hp x Qn) X (Xop x Mip)
is a solution of (4.1) with (up, pr) € Wy, (cf. (4.20)). To this end, we consider the pairs of associated
continuous and discrete formulations arising from (2.61) and (4.1) once the latter are split according to
the three equations forming the full model. In what follows, given a subspace Z;, of a generic Banach
space (Z,| - |z), we set for each z € Z

dist(z, Zp) := 11615 lz — zn|z - (4.26)
Zh h

We begin by applying the Strang estimate provided by [10, Lemma 6.1], whose proof is a simple
modification of that of [18, Theorem 2.6], to the context given by the first two rows of (2.61) and
(4.1). As a consequence, we deduce the existence of a positive constant és, depending only on a4 (4,
|all, |bll, [c|, 0, and d4, such that

(G, o) ~ (i, on)lxq < Cs {dist(ii, Hy) + dist(o, Q)
(4.27)
+ IFy = Foy g, + lle(us ) — el ) } -

Then, using the boundedness properties of F,, (cf. (2.40) and (3.72)) and c (cf. (2.18) and (3.73)), we
readily obtain

HFU - F77h ”th < ‘Q|1/4 ”77 —Th |O,p;ﬂ ”vf”O,r;Q ,

and
le(usd, ) — c(up; b, )|y, < lefl [u—unfos0 [t
which, replaced back in (4.27), give

(@, o) ~ (i, on)lxq < Cs {dist(d, Hy) + dist(o, Qu) } .
4.28

+ Cs{Ivf op + [l [a = unloso}

om0 |1 — 1
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where Cg := Cg max{|Q|1/4, Ic|l}-

Next, we apply the Strang a priori error estimate from [3, Proposition 2.1, Corollary 2.3, and
Theorem 2.3] to the context given by the third and fourth rows of (2.61) and (4.1), in which each
term involving ¢ is considered as part of the respective functional on the right hand side. In this way,
we deduce the existence of a positive constant @g, depending only on &, 34, || and [b], such that

18,m) = @nm)lixq < Cs {dist(3, Ha) + dist(n, Qu) + [Pup(1) = Caypn (o) iy, |- (4:29)

In turn, subtracting and adding 7, to the second component of ¢, p(-,7), making use of the triangle
inequality, bearing in mind the definition of ¢, q (cf. (2.27)), and employing its boundedness property
(cf. (2.37)), we find that

[Cup(om) = Cuppr o) vy, < [CapCom =m0y, + 1Cup (s mn) = Cuppr (10 [,

< el{ (I ore) )

which, along with (4.29), yield

0.4:2 + [Plors2) 7 = mnllq + |nnlq (Ju —urfose + lp — o

I&.m) = (@nm)lxq < Cg {dist(3,Hy) + dist(n. Qu) .
4.30

0,4, T+ Ip — pn

O,T;Q)} )

+Cy {(HUHOA;Q + [plors) In = mnllq + Inalq (o — x|

where Cy := Cy|.

Furthermore, we proceed analogously to the previous case for the context given by the fifth and sixth
rows of (2.61) and (4.1), that is, we consider each term involving ¢ as part of the respective functional
on the right hand side, and then apply the Strang a priori error estimate from [3, Proposition 2.1,
Corollary 2.3, and Theorem 2.3]. As a result of it we obtain

H(P, 90) - (phvﬁph)HszMl
~ (4.31)
< Cp {dist(P,th) + dist(p, M1 1) + chm((p7 gp)’.) _Cu}unh((ph?wh%')HMéJL}7

where Cr is a positive constant depending only on g, B1.4, P24, llal, ||b1], and |bz||. Now, in order
to estimate the consistency error term of (4.31), we subtract and add (pp, ¢p) in the first component
of cum((p,go),-), employ triangle inequality, and invoke the definition of ¢, , (cf. (2.51)) and its
boundedness property (cf. (2.57)), to arrive at

chﬁi((pa ‘P)a ) — Cupmp, ((phv (ph)v ) HMéh
< chm((pa (10) - (ph7 @h)) ) HMéh + ”Cu,n((ph, SOh)¢ ) — Cuy,my, ((pha Soh)a ) ”Méh
< el { (I

+ (Hu —uy

040 + [nlQ) [P, ©) = (Pr, en)llxsx

o0 + In—mnlq) I\(ph,wh)l\x2le} :
which, jointly with (4.31), imply
(P, ) — (Phyon)| xoxas; < Cr {diSt(p7X2,h) + dist(yp, Ml,h)}

+C’T{(|\u

040 + [11Q) 1P #) — (Ph,en) | xoxan (4.32)

+@nsen)xaxars (I = wnlo.ge + In=mla)}
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~ max {Cs, Cs. O},

with Cp := Cr .
Consequently, adding the inequalities (4.28), (4.30), and (4.32), denoting C' :

employing the bounds for |[U|s, |P[x,, I7]q. [7kllq. and |[(Ph, ¥r)|lx.xr, provided by Theorems 3.13
and 4.4, and performing some algebraic manipulations, we find, in terms of the notations introduced

in (4.25) and (4.26), that
E < é{dist((u o), Hy, x Qp) + dist((&,7), Hy, x Q) + dist((p, ¢), Xon x Mlvh)}
(4.33)

O,Q;Q) + “foO,T;Q

|0,j;Q}E=

+ Co{(1+197lore) (Inpljor + Ify

I£llo,a/3:0 + lupllijor + lenliseyr + 1fe

¢ and Cr .

+
where 6’0 is a positive constant depending on Cs, C_'é, Cr, Cio, Cg, Cr, Cy
We are now in a position to establish the announced Céa estimate.

Theorem 4.5. In addition to the hypotheses of Theorems 3.13 and 4.4, assume that
|0,Q;Q) + ”Vf”OJ“;Q
(4.34)

Co{(1+ 1V flor) (Inplhjor + 1fy

+ floasme + lupliar + lenhyarr + [foloso} <

N | —

Then, denoting C' := 26’, there holds
(U, 0) — (Un, on)[Exq + [(8,1) = (Th,m0)[1Hxq + [(Ps#) — (Pry¢n) [ X2,

|
<C {dist(ﬁ', H),) + dist(o, Qp) + dist(a, Hy) + dist(n, Qn) + dist(p, Xa2.) + dist(e, Ml,h)}-
0

Proof. Tt follows straightforwardly from (4.33).
0,0, Where py is the discrete pressure

We end the section with the a priori estimate for |p — pp,
suggested by the postprocessing formula given by the second identity in (1.13), which, according to

(4.35)

(2.7), becomes
1 A
Ph = — Etr(o'h +epl + §(uh ®uh)> ;
(4.36)

with
cp = —Aftr(u ®uy)

Then, applying Cauchy-Schwarz’s inequality, performing some algebraic manipulations, and employing
0.4:0 and |upllo.4.0, we deduce the existence of a positive constant C,

the a priori bounds for |u
depending on data, but independent of h, such that
Ilp = prloo < C {HU —opfon + lu—up !0,4;9}- (4.37)
5 Specific finite element subspaces
We now define specific finite element subspaces satisfying the conditions (H.1) - (H.6) that were
introduced in Section 4.2, and provide the rates of convergence of the resulting discrete method.
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5.1 Preliminaries

Bearing in mind the notations introduced at the beginning of Section 4.1, and given an integer k > 0
and K € T, we let Pr(K) be the space of polynomials of degree < k defined on K, and denote its vector
and tensor versions by Py (K) and Py (K), respectively. In addition, we let RTy(K) = P (K)®P,(K)x
be the local Raviart-Thomas space of order k defined on K, where x stands for a generic vector in R”,
and denote by RTy(K) its corresponding tensor counterpart. In turn, we let Py (73), Pr(7r), Px(7r),
RT(75) and RTg(7;) be the corresponding global versions of Py (K), Py(K), Pr(K), RT;(K) and
RTy(K), respectively, that is

{¢heL29 . énlx € Pr(K) VKeﬂL},
{vheL2 . vplx € Pu(K) VKen},
Py(Th) := {shenﬁ(m: sh|x € Pr(K) VKGE},

RT.(Th) :

{an e H(div;i Q) anlx € RTH(K) VK e T},
and

RTy(T3) i= {m € H(diviQ): ik € RT4(K) VK eT}.

We stress here that for each ¢, s € (1,+00) such that ¢ > s, there hold Pp(7,) < L),
RT.(7n) < H(div; Q), RTi(T,) < H(divy;Q), and RTy(T,) < HY(divs; ), inclusions that are
implicitly utilized below to introduce the announced specific finite element subspaces. Indeed, we now

define
Hj = Py(Tn), Hj := L3(Q) n Pe(Th), Hy = Hy xH}, Hf := RT(Tz),
Qp = Hf nHo(divyss;Q), Hp := RTx(Tn), Qu := Pr(Th), (5.1)
Xop = RTR(Ty), My = Pip(Tn), Xip = RTy(Tn), My = Pr(Th).

5.2 Verification of the stability conditions

In this section we prove that the specific finite element subspaces given by (5.1) verify the assumptions
(H.1) - (H.6). We begin with the following lemma establishing (H.1) and (H.2), for which we recall
that the definition of the discrete kernel V}, of the bilinear form b is given in (4.10).

Lemma 5.1. There exist positive constants Bq and Cq, independent of h, such that

b(Vy, 7
sup M = Balmlq YV7neQn, (5.2)
v, eHy H hH
G}L;&O
and
| Q = Cd‘ V\_fh = (Vh,Sh) e Vy. (5.3)

Proof. We first introduce the subspace

Qop = {Th €Qn: b((vp,0),7) = L v -div(m,) =0 Vv, e H}:},
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which, using from (5.1) that div(Qh) < H}, reduces to

Qon = {Thth3 div(,) = 0 in Q}

Next, we proceed as in [2, Lemma 4.2] and apply the abstract equivalence result provided by [10,
Lemma 5.1] to the setting X = H), Y =Y, = Hf, Yo = {0}, V = V},, Z = Qp, and Zy = Qop,
where X, Y, Y1, Yo, V| Z, and Zj correspond to the notations employed in [10, Lemma 5.1]. As a
consequence of it, we deduce that (5.2) and (5.3) are jointly equivalent to the existence of positive
constants B and B39, independent of h, such that there hold

vy, - div(Ty,)
b Vh,O s Th f
sup b((vh, 0), 7a) = sup “t——— > Bi|vhfosa Vv eH], (5.4)
THLEQR HThHQ THLEQR ”ThHQ
Th#0 Th#0
and
Sp - Th
b((0,sp), T4 f
sup M = sup 22— > (3, Imhllq Y7h € Qo - (5.5)
et |shloe aet 1snllog
sp#0 sp#0

Regarding (5.4), we stress that this result was already established in [10, Lemma 5.5]. In turn, for the
proof of (5.5), we first recall from [18, proof of Theorem 3.3] that, being Q; < RT(7), there holds
Qo S Pi(7r). In this way, given 7, € Qg p, it is clear that 7 € H!, and hence bounding below the
supremum in (5.5) with s;, := 72, and employing (3.15) for ¢ = 4/3, gives the required inequality with
Bo = Ci//g ]

Now, as far as (H.3) and (H.4) are concerned, we observe from (5.1) that div(Hy) < Qp, which
confirms the former hypothesis, whereas the latter is proved in [20, Lemma 4.8].

On the other hand, in order to address the verification of (H.5) and (H.6), we first notice from
(5.1) that diV(XLh) C M, for all i € {1,2}. Thus, being the pairs (XQJHMQ’h) and (Xl,thl,h)
algebraically equal, the corresponding discrete kernels of the bilinear forms b; and by (cf. (2.50))
coincide as well, and it is easily seen that they become the space

K = {ay e RTy(T3) : div(a) = 0 in Q. (5.6)

In turn, we let ©OF : L1(Q) — KF be the projector defined for each r € L!(12) as the unique O%(r) € K
satisfying

Jﬂ@i(r%qh = Lr-qh Va, e Kj . (5.7)
Then, we recall from [15, Theorem 3.1] (see also [20, Lemma 4.2] for a slight variant of it), that in the

2D case, given ¢ € (1, +00) and an integer k > 0, there exist positive constants Cf and Cf, independent
of h, such that, defining

CF if 2 is convex,
=< CF{—log(h)}"=#" if Q is non-convex and k = 0,
Cck if 2 is non-convex and k£ > 1
there holds N
|0hm)lose < ¢ [rfose  VreH (div;;Q), (5-8)

where

ﬁt(divj;ﬂ) = {I‘EHt<diVj;Q): div(r) = 0 in Q}
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We stress here that only when € is non-convex and k = 0, ¢} depends on h, though in a very harmless
manner. In fact, the term {—log(h)}'=2/l grows very slowly when h approaches 0, and thus it remains
reasonably bounded for very small values of the mesh size. In particular, taking ¢ = 3/2, which lies
in the range for s (cf. (2.25)), index with which (5.8) will be applied below, we observe that for
h = 10710 there holds {—log(h)}'=2! = {—log(h)}"/* < 3. In addition, we remark that whether
the boundedness property (5.8) is satisfied or not in 3D is still an open problem, and hence the
hypothesis (H.5), to be established next by using (5.8), constitutes the only aspect of the analysis of
the present section that is not valid in 3D. All the other stability conditions hold in both 2D and 3D.

Lemma 5.2. There exists a positive constant aq, independent of h, such that

sup M > aq |rn)x, Vry, € K;’: , (5.9)
S0 Tanlx,
qp#0

and
sup a(rp,qn) > 0 Vaye K, gy #0. (5.10)
I‘hGKﬁ

Proof. 1t proceeds analogously to the proof of [20, Lemma 4.3]. Indeed, given rj, € KF (cf. (5.6)),
r;, # 0, one first defines rj 5 = |rp|" 21y, which belongs to L#(Q2). Note from (2.25) that r > 2.
Next, bounding below the supremum in (5.9) with q; := @2 (Ds(rh,s)) € K,’f, and then employing
(5.7), (3.37) (cf. Lemma 3.3), and the boundedness of ©F (cf. (5.8)) and Ds (cf. Lemma 3.3), we
arrive at (5.9) with a4 := (clsC HDSH)_l. A similar procedure is applied to derive (5.10). We omit
further details and refer to the proof of [20, Lemma 4.3]. O

We now employ the notations and results from the Appendix (cf. Section A) to prove (H.6), that
is the discrete inf-sup conditions for the bilinear forms b;, i € {1,2}. Actually, being the proof for i = 1
a slight modification of that for [20, Lemma 4.5], we omit its details and just focus on the case i = 2.

Lemma 5.3. There exists a positive constant 2 4, independent of h, such that

b ,

B2 9) o g bl Vén € Moy, (5.11)
apeXa p ”qh”Xz
qp#0

Proof. Given ¢p, € Map, we set ¢y ; = |¢n|' =2 ¢n, which belongs to L7(€2), and notice that

L Gn,j on = lén,jlog:0 [ Pnllosn - (5.12)

Note from (2.26) that [ > 2. Also, we let O be a bounded convex polygonal domain containing €2, and

set
L ¢h,j in Q,
9= { 0 in O\Q.
It is clear that g € LY(O) and ||gloj;0 = |énlo0j:0- Then, applying the elliptic regularity result
provided in [17, Corollary 1], we deduce that there exists a unique z € W7(0) n W(l]’j (O) such that:
Az =g in O, 2z = 0on dO, and there exists a positive constant Cres, depending only on O,

egs
such that
[Zl250 < Creglglogio = Cregl¢n.loj0- (5.13)
Thus, defining r := Vz|g € W17(9), we observe that div(r) = ¢, ; in 2, and, using (5.13), there holds
Itlige < [2l250 < Creglén.jlogo- (5.14)
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In addition, letting r; be the global Raviart-Thomas interpolant of r, that is rj, := Hﬁ(r), and
employing (A.1), we find that

div(r) = div(IT(r)) = Py(div(r)) = Py(en;), (5.15)
so that, thanks to the stability estimate (A.5), it follows that

| div(rs)

05;2 < Cp [dnllo 0 - (5.16)

In turn, noting from (2.25) and (2.26) that j < r < L, Lemma A.3 and (5.14) yield
n—J

Irallope = 5@ ome < Culrlije < CnCreglénloge

which, jointly with (5.16), imply

0,j:0 < (Cp + Cn Creg) ||¢h,j 0, - (5.17)

Finally, bounding below the supremum in (5.11) with r, € X5 4, and using (5.15), (A.2), (5.12), and
(5.17), we conclude the required discrete inf-sup condition for by with a4 := (C’p + Ch C'reg)_l. O

Irallx, = lrnfore + [div(rs)|

5.3 The rates of convergence

In this section we provide the rates of convergence of the Galerkin scheme (4.1) with the specific finite
element subspaces introduced in Section 5.1. To this end, we first collect the approximation properties
of the latter. Indeed, it is easily seen from (A.3) and its corresponding vector and tensorial versions,
along with interpolation estimates of Sobolev spaces, that those of H}, Ht, Q, and M j, are given
as follows

(AP}) there exists a positive constant C, independent of h, such that for each [ € [0, k + 1], and for
each v e WH4(Q), there holds

dist(v,H}) := inf v — vpfou0 < C A [v1,4:0

VhEHz

(APE) there exists a positive constant C', independent of h, such that for each [ € [0,k + 1], and for
each s € H'(Q) n L2 (Q), there holds

dist(s,H}“l) = inf [s — splon < Ch Is]i.q
ShEHZ

(APZ) there exists a positive constant C, independent of h, such that for each I € [0,k + 1], and for
each £ e WhP(Q), there holds

dist(§,Qn) := inf € = &ulopa < ORI

LS
(APﬁ) there exists a positive constant C, independent of h, such that for each [ € [0,k + 1], and for
each 1 € Wi (Q), there holds

dist (¢, M) = o b I¥ = ¥nlore < CRrfirma .
h 1,h

In turn, from [20, eq. (4.6), Section 4.1] and its tensorial version, along with interpolation estimates
of Sobolev spaces as well, we obtain the approximation properties of Qj and Hp, which reduce to
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(APY) there exists a positive constant C, independent of h, such that for each [ € [1,k + 1], and for
each o € H'(Q) N Ho(div,/3; Q) with div(e) e WH3(Q), there holds

dist(7,Qp) := Tigé |7 — Thllaivy0 < CH {HTHZ,Q + HdiV(T)|l,4/3;Q},
h h

<APg) there exists a positive constant C', independent of h, such that for each [ € [1,k + 1], and for
each ¥ € H/(Q) with div(F) € Whe(Q), there holds

dist (7, Hp,) := 1T = Thldivye < Ch {H%HZQ + Hdiv(%)Hl,g;Q}'

inf
‘IN'hEHh

Finally, that of X p,, which follows from Lemma A.2 and (A.4) (with m = 0), and applying again
interpolation estimates of Sobolev spaces, becomes

(AP?) there exists a positive constant C, independent of h, such that for each [ € [1,k + 1], and for
each q € W (Q) with div(q) € WH(Q), there holds
|l,j;ﬂ} :

dist(a, Xo) == inf |4 = anlnaive < O {ldlira + [div()
Jh

qrE€EX2

Hence, we can state the following main theorem.

Theorem 5.4. Let ((d,0),(5,1),(p,¢)) € (Hx Q) x (H x Q) x (X x My) be the unique solution
of (2.61) with (u,p) € Ws (¢f. (3.55)), and let ((Gn,o0n), (&h,nn), (Phywn)) € (Hu x Qp) x (Hjp x
Qn) x (Xop x My ) be a solution of (4.1) with (up,pn) € W5, (cf. (4.20)), which is guaranteed by
Theorems 3.13 and 4.4, respectively. In turn, let p and pp, given by (1.13) and (4.35), respectively.
Assume the hypotheses of Theorem 4.5, and that there exists | € [1,k + 1] such that u € WH4(Q),
t e H'(Q) nL%(Q), o € H(Q) n Ho(divys;Q), div(e) e WH3(Q), & € H(Q), div(s) € Whe(9Q),
ne Whe(Q), p e Wh(Q), div(p) € WH(Q), and ¢ € WET(Q). Then, there exists a positive constant
C, independent of h, such that

[(d,0) = (dn, on)laxq + [(&,1) = (Gn:mn)lHxq + [P #) = (Phspn) [ xoxa + P = Palog

< Chl{nu

Lo + [div(e)]

L0 + tle + o] a3 + [0

l,r;Q} .

Proof. Tt follows straightforwardly from Theorem 4.5, (4.37), and the above approximation properties.
O

1,0

+ [|div(e)

Leo + [l + [Plirme + [div(p)lie + ¢

6 Numerical results

In this section we present three examples illustrating the performance of the fully-mixed finite element
method (4.1) on a set of quasi-uniform triangulations of the respective domains, and considering
the finite element subspaces defined by (5.1) (cf. Section 5.1). In what follows, we refer to the
corresponding sets of finite element subspaces generated by £ = 0 and k£ = 1, as simply Py — Py —
RTy—RTy—Py—RTy—Pgand P; —P; —RT; —RT;—P; —RT;—Py, respectively. The implementation
of the numerical method is based on a FreeFem++ code [22]. A Newton-Raphson algorithm with a
fixed tolerance tol = 1E — 6 is used for the resolution of the nonlinear problem (4.1). As usual, the
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iterative method is finished when the relative error between two consecutive iterations of the complete
coefficient vector, namely coeff™ and coeff™*!, is sufficiently small, that is,

lcoeff™ ! — coeff™|
|coeff™ |

< tol,

where | - | stands for the usual Euclidean norm in RP% with DOF denoting the total number of degrees
of freedom defining the finite element subspaces H}', Hf \HY, Hy,, Qp, X2, and My, (cf. (5.1)).

We now introduce some additional notation. The individual errors are denoted by:

e(u) := u—uy

04,0, e(t) =t —trloo, e(o):=]|o—0onldiv,s0, eP®):=p—prfoa,

e(G) = |6 = Gnlaiv0,  e) = ln—mlopa,  eP):=[p—Prlrav;:a elp):=le—=enloro;

where g, p, 7 and j are described in (2.25)-(2.26), and will be specified in the examples below. Next,
as usual, for each * € {u, t,o,p,0,n, P, cp} we let r(x) be the experimental rate of convergence given
by r(x) := log (e(*)/@(*))/log(h/?z), where h and h denote two consecutive meshsizes with errors e
and €, respectively.

The examples to be considered in this section are described next. In the first two examples, for
the sake of simplicity, we take v =1, A =1, k; =1, u = 1, k, = 1, and v = 1. In addition, the mean
value of tr(op,) over € is fixed via a Lagrange multiplier strategy (adding one row and one column to
the matrix system that solves (4.3) for uy, ts, and o7p,).

Example 1: Convergence against smooth exact solutions in a 2D domain

In this test we corroborate the rates of convergence in a two-dimensional domain. The domain is the
square Q = (—1,1)2. We choose j = [ = 2, whence the remaining parameters become 7 = p = 4 and
0 =4/3 (cf. (2.25)-(2.26)). In turn, we consider the given function f(xi,x2) = sin(z1 + x2), and
choose the data f, f,, f, (cf. (1.14)) such that the exact solution is given by

u(zy,x2) = ( sin(7z:) cos(my)

— cos(mxy) sin(ﬂx2)> » plwr,22) = cos(mzy) exp(zz)

n(z1,x2) = 0.5+ 0.5cos(z1x2), and @(x1,22) = 0.1+ 0.3exp(z122) .

The model problem is then complemented with the appropriate Dirichlet boundary conditions. Tables
6.1 and 6.2 show the convergence history for a sequence of quasi-uniform mesh refinements, including
the number of Newton iterations. Notice that we are able not only to approximate the original
unknowns but also the pressure field through the formula (4.35). The results confirm that the optimal
rates of convergence O(h¥*1) predicted by Theorem 5.4 are attained for k& = 0, 1. The Newton method
exhibits a behavior independent of the meshsize, converging in six iterations in all cases.

Example 2: Convergence against smooth exact solutions in a 3D domain

In the second example we consider the cube domain @ = (0,1)3 and the only possible choice of

1
parameters in 3D, that is j = 3/2, r = 3, p = 6, and p = 6/5 (cf. (2.25)—(2.26)). The solution is given
by

sin(mxy ) cos(mze) cos(mxs)
u(zy,z2,3) = | —2cos(mwxy)sin(mwxy) cos(mxs) |,  p(x1, 2, x3) = cos(mzy) exp(xa + x3) ,
cos(mzy) cos(mxe) sin(mxs)

n(z1, 2, z3) = 0.5 + 0.5cos(x1xow3), and @(x1,x9,23) = 0.1 + 0.3 exp(z1T223) .
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Similarly to the first example, we consider f(x1,x2,23) = sin(z1 + 2 + x3), whereas the data f, f,, f,
are computed from (1.14) using the above solution. The convergence history for a set of quasi-uniform
mesh refinements using & = 0 is shown in Table 6.3. Again, the mixed finite element method converges
optimally with order O(h), as it was proved by Theorem 5.4. In addition, some components of the
numerical solution are displayed in Figure 6.1, which were built using the fully-mixed Pg—Py —RTy —
RTy — Pp — RTy — Py approximation with meshsize h = 0.0643 and 63, 888 tetrahedral elements
(actually representing 1,483,944 D0OF). The numerical results suggest that perhaps only technical
difficulties stop us of proving (5.8) for the 3D framework.

Example 3: Movement of cells guided by the concentration of a chemical signal

In the last example, we replicate the one from [14, Test1, Section 7]. More precisely, we consider the
rectangle domain 2 = (0,2) x (0,1), and the unsteady version of the problem (1.14) with physical
parameters v = 10,A = 1,5, = 4,1 = 8, Kk, = 1,7 = 6, data f(x1,22) = —1000z2, £ =0, f,, = 0, f, =
0, boundary conditionsu=0onT,-n=0onT, p-n=0on I, and initial conditions

3
up =0, no =) T0exp(—8(z1 — s;)> — 10(z2 —1)%), o = 30exp(—5(z1 —1)* = 5(z2 — 0.5)),
i=1
where s; = 0.2, 50 = 0.5 and s3 = 1.2. We employ a suitable backward Euler time discretization, with
time step At = 1075 and final time 7' = 5 x 1073. We observe that at each time step we are solving a
slight adaptation of the stationary problem (4.1). In Figure 6.2, we display the computed magnitude
of the velocity, and the cell density and chemical signal concentration fields, which were built using the
fully-mixed Py — Py —RTy — RTy— Py — RTy— Py approximation on a mesh with meshsize h = 0.0298
and 18,566 triangle elements (actually representing 242, 126 DOF). Similarly to [14], the cells are in
two clusters in the upper part of the domain at time 7" = 1075, and then they begin to orient their
movement in the direction of greater concentration of the chemical signal (the center of the domain) as
we can see at time 7' = 1073, where the organisms tend to agglomerate in the center of the rectangle.
This interesting behavior occurs because the chemotaxis/cross-diffusion term is the dominant one in
the initial times. However, as time progresses, the chemical signal is consumed, which causes that
the cross-diffusion loses strength, and the self-diffusion of the cells begins to dominate, and therefore
they begin to distribute themselves homogeneously over the domain. At final time 7' = 5 x 1073 the
cells move towards the bottom of the domain, which is due to the external force Vf = (0, —1000). In
addition, some changes in the velocity field are evidenced, influenced by the movement of the cells.

A Further properties of the Raviart-Thomas interpolator

We begin by introducing for all ¢, s € (1, +00) such that t > s, the space

H = {rth(divs;Q): |k € Wh(K) \ﬂ(e’rh},

S

and let II¥ : H. — RTy(7y,) be the global Raviart-Thomas interpolation operator (cf. [5, Section 2.5]).
Then, we recall from [5, Proposition 2.5.2 and eq. (2.5.27)] that the commuting diagram property
states that

div(ITf(q)) = Pr(div(q)) VqeH:, (A1)

where PF : L1(Q) — Py(T3) is the projector defined analogously to (5.7), that is, given ¢ € L1(Q2),
PF(¢) is the unique element in Px(7y,) satisfying

J Pr(8) vhn = f dvn Vp e Pr(Th). (A.2)
Q Q
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DOF h H e(u) ‘ r(u) ‘ e(t) ‘ r(t) ‘ e(o) ‘ r(o) ‘ e(p) ‘ r(p)
500 | 0.7454 || 6.08E-01 — 3.60E-00 - 2.14E+01 - 1.50E-00 -
2170 | 0.3667 || 2.87E-01 | 1.056 | 1.76E-00 | 1.014 | 9.75E-00 | 1.109 | 5.84E-01 | 1.325
8032 | 0.1971 || 1.50E-01 | 1.048 | 9.09E-01 | 1.061 | 5.05E-00 | 1.060 | 3.08E-01 | 1.033
31508 | 0.1036 || 7.43E-02 | 1.092 | 4.60E-01 | 1.057 | 2.52E-00 | 1.079 | 1.52E-01 | 1.102
126066 | 0.0554 || 3.76E-02 | 1.083 | 2.29E-01 | 1.113 | 1.27E-00 | 1.099 | 7.63E-02 | 1.095
509350 | 0.0284 || 1.87E-02 | 1.049 | 1.13E-01 | 1.057 | 6.28E-01 | 1.053 | 3.70E-02 | 1.085

e(@) [r@) | e [r) | e [rp) | elp) | rlp) | iter
1I13E-00 | — [420E-02] - [355E-01| - |[647E-02| -
5.42E-01 | 1.033 | 1.98E-02 | 1.058 | 1.83E-01 | 0.934 | 3.22E-02 | 0.984
2.90E-01 | 1.011 | 1.09E-02 | 0.960 | 9.68E-02 | 1.028 | 1.77E-02 | 0.965
1.45E-01 | 1.078 | 5.71E-03 | 1.009 | 4.92E-02 | 1.052 | 9.35E-03 | 0.991
7.30E-02 | 1.093 | 2.88E-03 | 1.089 | 2.50E-02 | 1.082 | 4.89E-03 | 1.035
3.60E-02 | 1.059 | 1.44E-03 | 1.046 | 1.21E-02 | 1.088 | 2.37E-03 | 1.087

SOy O Oy O O

Table 6.1: Example 1, Number of degrees of freedom, meshsizes, errors, rates of convergence, and
number of Newton iterations for the fully-mixed Py —Py—RTy— RTy—Pg— RTy— Py approximation
of the chemotaxis-Navier—Stokes model .

DOF ‘ h H e(u) ‘ r(u) ‘ e(t) ‘ r(t) ‘ e(o) ‘ r(o) ‘ e(p) ‘ r(p)
1540 | 0.7454 || 1.93E-01 - 9.99E-01 - 5.79E-00 - 3.47E-01 —
6770 | 0.3667 || 3.74E-02 | 2.310 | 2.04E-01 | 2.241 | 1.25E-00 | 2.164 | 6.63E-02 | 2.332

25184 | 0.1971 || 9.84E-03 | 2.153 | 5.47E-02 | 2.119 | 3.32E-01 | 2.134 | 1.66E-02 | 2.233
99076 | 0.1036 || 2.46E-03 | 2.156 | 1.36E-02 | 2.168 | 8.38E-02 | 2.139 | 4.06E-03 | 2.187
397002 | 0.0554 || 6.11E-04 | 2.220 | 3.46E-03 | 2.177 | 2.09E-02 | 2.212 | 1.05E-03 | 2.160
1605230 | 0.0284 || 1.48E-04 | 2.124 | 8 51E-04 | 2.105 | 5.11E-03 | 2.114 | 2.59E-04 | 2.100

e@) [r@) | e [r) | eP) [rp) | elp) | rlp) | iter
3.12E-01 | — [827E-03| - [427E-02] - [7.64E-03] -
6.63E-02 | 2.185 | 1.41E-03 | 2.491 | 1.02E-02 | 2.021 | 1.81E-03 | 2.026
1.77E-02 | 2.131 | 3.85E-04 | 2.095 | 2.93E-03 | 2.005 | 5.18E-04 | 2.018
4.44E-03 | 2.148 | 1.12E-04 | 1.923 | 7.90E-04 | 2.039 | 1.48E-04 | 1.946
1.10E-03 | 2.218 | 2.71E-05 | 2.261 | 2.07E-04 | 2.132 | 3.95E-05 | 2.109
2.71E-04 | 2.106 | 6.43E-06 | 2.155 | 4.87E-05 | 2.172 | 9.42E-06 | 2.150

S O O O O O

Table 6.2: Example 1, Number of degrees of freedom, meshsizes, errors, rates of convergence, and
number of Newton iterations for the fully-mixed P; —P; —RT; — RT; — P; — RT; — P; approximation
of the chemotaxis-Navier—Stokes model .

In turn, employing the W™! version of the Deny-Lions Lemma (cf. [16, Lemma B.67]) with integer
m > 0 and ¢ € (1,400), along with the associated scaling estimates (cf. [16, Lemma 1.101]) and the
regularity of {77L} heo» We deduce the existence of positive constants C1, Cz, independent of h, such
that for integers [ and m verifying 0 <! <k + 1 and 0 < m < [, there hold

|¢ - Pk(gb)’m,s;ﬂ < Cl hl_m |¢’l,s;ﬂ (A3)
for all ¢ € WH5(Q), and

div(a) — div(ITf(a) e < C2h" divia) o (A.4)
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boF [ 5[ ew) [ [ e® [ [ @) [l [ em) [ @)
1224 | 0.7071 || 5.74E-01 — 2.63E-00 - 1.50E+01 1.18E-00 -
9312 | 0.3536 || 3.02E-01 | 0.927 | 1.44E-00 | 0.872 | 8.00E-00 | 0.911 | 6.46E-01 | 0.874
72576 | 0.1768 || 1.55E-01 | 0.961 | 7.41E-01 | 0.955 | 4.03E-00 | 0.989 | 3.00E-01 | 1.110
384552 | 0.1010 || 8.90E-02 | 0.990 | 4.27E-01 | 0.982 | 2.29E-00 | 1.007 | 1.54E-01 | 1.185
1483944 | 0.0643 || 5.68E-02 | 0.997 | 2.73E-01 | 0.992 | 1.46E-00 | 1.007 | 9.17E-02 | 1.152

e@ [r@) [ e [rin) | e [re) | elp) | rlp) [iter
6.11E-01 | — |3.90E-02| - |213B-01| - |4526-02| -
3.48E-01 | 0.811 | 2.34E-02 | 0.734 | 1.12B-01 | 0.929 | 2.37E-02 | 0.930
1.83E-01 | 0.927 | 1.22E-02 | 0.945 | 5.66E-02 | 0.985 | 1.20E-02 | 0.982
1.06E-01 | 0.974 | 6.98E-03 | 0.995 | 3.24E-02 | 0.997 | 6.87E-03 | 0.995
6.79E-02 | 0.989 | 4.44E-03 | 1.001 | 2.06E-02 | 0.999 | 4.38E-03 | 0.998

Ot Ot Ot Ot Ot

Table 6.3: Example 2, Number of degrees of freedom, meshsizes, errors, rates of convergence, and
number of Newton iterations for the fully-mixed Py —Py—RTy— RTy—Pg— RTy— Py approximation
of the chemotaxis-Navier—Stokes model .

0.50 099 1.5 2 08 085 090 095 1 04 052 063 075 0.86
|uh’ MIHHHHJHHH‘HHH nh M\‘HHHHHHHH‘HHH goh HK\HHHHHH\H‘HH“

Figure 6.1: Example 2, Computed magnitude of the velocity, cell density field and chemical signal
concentration field.

Yqe WH¥(Q) with div(q) € Wh(Q). Note that (A.4) follows from (A.1) and a direct application of
(A.3) to ¢ = div(q). In turn, taking in particular m = [ = 0 in (A.3), we deduce the stability of P}
with respect to | - o,s;0, that is the existence of a positive constant C'p, independent of h, such that

|5 ()

< Opldlose Yoel?(Q). (A.5)

In what follows we prove additional approximation properties of Hk To this end, we now denote
the reference element of 7j by K so that, given K € Ty, we let Fi : K — K be the bijective affine
mapping defined by Fx(X) := BgX+bg VX € I?, with B € R™*" invertible and bx € R™. Then, the
scaling properties via Piola’s transformation between W™!(K) and Wmt(f( ), with m a non-negative
integer and ¢ € (1,+400), establish the existence of positive constants Cp and Cp, such that for each
K € 7T}, there hold

@l e < ColBr|™ |Bg' | [det(Bg)| '~/ Vqe W(K), (A.6)
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Figure 6.2: Example 3, Computed magnitude of the velocity, cell density field and chemical signal
concentration field at time 7 = 107 (top plots), at time 7" = 1073 (middle plots), and at time
T =5 x 1073 (bottom plots).

and

dlmsx < Ce B! |™ | Bx | ldet(B) V" [dl Ve W™(K). (A.T)

m,t;f(

Then, letting 115 : W1*(K) — RT(K) be the local Raviart-Thomas interpolator for each K € T,
and letting H]Ii( be the corresponding operator for K, we have the following approximation property.

Lemma A.1. Let k and | be integers such that1 < I < k+1, and lett and s such that 1 < t < =

ifs<mn, ors <t<+w ifs=mn. Then, there exists a positive constant C, depending only on I?,
H];A(, k, n, t, and s, such that

j4n_n

la = We@losx < Chyg * *lalsx  Vae WH(K). (A.8)

Proof. Given q € W"(K), we use (A.7) with m = 0 to obtain

la — i (q)

0 < Ce |Br| |det B """ [d — I} (@)l .z »

which, thanks to the continuous embedding of WLS(I? ) in L! (I? ) for the indicated ranges of s and t,
yields
la—(@)osx < CIBx| ldet(Br)V*~H q = M @) 4.z - (A.9)
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Next, since H%(ﬁ) =4 V4 e RT(K), and there holds P;_1(K) = P,(K) < RT,(K), the Bramble-
Hilbert Lemma implies that

[a- L@, .7 < Cldl .z for0<m<l,
and hence, using in particular the above with m = 1 we deduce
~ k /A~ ~
d - @), oz < Clalz- (A.10)
In this way, replacing (A.10) into (A.9), and then employing (A.6), it follows that

la — M (q)

< CCo|Br | | B |det(Br) Y lalisx

o < C|Bic| |det(Bro)| V' (a2

from which, using that |Bx| < Chy, |Bg'| < Chy', and |det(Bk)| = h%, we arrive at (A.8) and
end the proof. ]

The extension of Lemma A.1 to the global Raviart-Thomas interpolator HZ is stated next.

Lemma A.2. Let k and | be integers such that1 < I < k+1, and lett and s such that 1 < t < ™
if s<n, ors <t<+0w if s =n. Then, with the same constant C from (A.8), there holds

la — (@)oo < CATE 5 |dlise  Vae WH(Q).

Proof. Given q € Wh%(Q), it suffices to see that

1/t s/ty1/s
la = W@lose = { 3 la - We@lher) = {( 3 la - Met@lher) "}
KeTy, KeT;,
and then apply the sub-additivity property with exponent § € (0, 1], and Lemma A.1. ]

Finally, a simple corollary of Lemma A.2 reads as follows.

Lemma A.3. Let k and | be integers such that1 < I < k+1, and lett and s such that 1 < t <
if s<mn, ors < t<+w if s=n. Then, there exists Cry > 0, depending only on C, |Q|, n, t, and s,
such that

1s0  Yge WhH(Q). (A.11)

[T (@lose < Cnldl
Proof. Given q € WH%(Q), the embedding is; : W*(Q2) — L{(Q) and Lemma A.2 (with [ = 1) imply

|11} (q)

which yields (A.11) with Cpy := [iss| + C|Q|'F

00 < lisel lalise + CIM5 alise,

o0 + la — Ij(q)

ot < |a

n_n
t s
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