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Abstract

In this paper we consider the Navier–Stokes–Brinkman equations, which constitute one of the
most common nonlinear models utilized to simulate viscous fluids through porous media, and
propose and analyze a Banach spaces-based approach yielding new mixed finite element methods
for its numerical solution. In addition to the velocity and pressure, the strain rate tensor, the
vorticity, and the stress tensor are introduced as auxiliary unknowns, and then the incompressibility
condition is used to eliminate the pressure, which is computed afterwards by a postprocessing
formula depending on the stress and the velocity. The resulting continuous formulation becomes a
nonlinear perturbation of, in turn, a perturbed saddle point linear system, which is then rewritten
as an equivalent fixed-point equation whose operator involved maps the velocity space into itself.
The well-posedness of it is then analyzed by applying the classical Banach fixed point theorem,
along with a smallness assumption on the data, the Babuška–Brezzi theory in Banach spaces, and
a slight variant of a recently obtained solvability result for perturbed saddle point formulations
in Banach spaces as well. The resulting Galerkin scheme is momentum-conservative. Its unique
solvability is analyzed, under suitable hypotheses on the finite element subspaces, using a similar
fixed-point strategy as in the continuous problem. A priori error estimates are rigorously derived,
including also that for the pressure. We show that PEERS and AFW elements for the stress, the
velocity and the rotation, together with piecewise polynomials of a proper degree for the strain
rate tensor, yield stable discrete schemes. Then, the approximation properties of these subspaces
and the Céa estimate imply the respective rates of convergence. Finally, we include two and three
dimensional numerical experiments that serve to corroborate the theoretical findings, and these
tests illustrate the performance of the proposed mixed finite element methods.

Key words: Navier–Stokes–Brinkman equations, Banach framework, mixed finite element methods,
Babuška–Brezzi theory, perturbed saddle-point, fixed-point theory, a priori error analysis.
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1 Introduction

The Navier–Stokes–Brinkman equations are nowadays present in a wide range of applications, among
which we highlight the flow of a viscous fluid through porous media with adsorption, and the phase
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change models for natural convection in porous media as well. The former arises, for instance, in
petroleum engineering [17], chromatography [44], and water decontamination [49], particularly in the
design of water filtering devices [9], whereas the latter appears in melting and solidification processes
[29, 50], design of energy storage devices [31], and ocean and atmosphere dynamics [30], to name a few.
Motivated by the above, the devising of suitable numerical procedures to solve these problems, most
of them within a Hilbertian framework, has gained increasing interest in recent years. The variational
formulations utilized, which include the case of axisymmetric flow and time-dependent models, are
based on velocity and pressure, stress, pseudostress, vorticity, or stream function, as main unknowns,
whereas the techniques employed are basically finite element, mixed finite element, finite volume,
stabilized finite element, spectral, mortar, and augmented finite element methods. For an overview of
some contributions in these directions, we refer to [9, 17, 41] and [2, 3, 39], and the references therein,
in the case of the aforementioned first and second model, respectively.

Aiming to provide further details on the state of the art, as well as to explain the main motivation
of the present paper, we now refer specifically to [2], where rigorous mathematical and numerical
analyses of mixed-primal and fully mixed methods for phase change models for natural convection,
are provided, up to our knowledge, for the first time. Indeed, the problem under consideration there
is the one originally proposed in [3], where a fully-primal formulation for the non-stationary case was
analyzed. The governing equations are given by the Navier–Stokes–Brinkman equations coupled with
a generalized energy equation, in addition to Dirichlet boundary conditions for the velocity and the
temperature. The fluid part of the coupled model is handled similarly to [4] by introducing, besides
the velocity, the strain rate tensor and the stress tensor relating the latter with the convective term,
as auxiliary unknowns, so that the pressure is eliminated by using the incompressibility condition,
and recovered later on via a postprocessing formula depending on the stress and the velocity. In turn,
due to the convective term, and in order to stay within a Hilbertian framework, the velocity is sought
in the Sobolev space of order 1, which requires the incorporation into the variational formulation of
additional Galerkin-type terms arising from the constitutive and equilibrium equations. Furthermore,
the symmetry of the stress is imposed in an ultra-weak sense (cf. [5]), which avoids to include the vor-
ticity as a fourth unknown. Nevertheless, and while the augmentation procedure allows to circumvent
the necessity of proving continuous and discrete inf-sup conditions, which yields, in particular, more
flexibility for choosing the finite element subspaces, it is no less true that the complexity of both the
resulting system and its associated computational implementation increases considerably, thus leading
to much more expensive schemes. This last remark constitutes our main motivation to look now for
non-augmented schemes.

A similar procedure to the one from [2] for the Navier–Stokes–Brinkman equations was introduced
and analyzed in [35]. However, differently from [2], the authors do not include the strain rate tensor
as an unknown, though it can also be computed via a postprocess, and instead of employing the stress
and imposing the incompressibility condition, they use the pseudostress and consider a nonselenoidal
condition, respectively. Besides these aspects and a minor difference related to the handling of the
equilibrium equation, the rest of the variational formulation proceeds analogously by forcing as well
a Hilbert spaces-based framework by means of the introduction of residual terms arising from the
constitutive equation and the Dirichlet boundary condition. In addition to [9] and [35], just a few
other contributions dealing with numerical methods for the Navier-Stokes-Brinkman equations seem
to be available in the literature, among which we refer to [10, 36, 47]. More extensive is the list of
references dealing with the related Stokes-Brinkman model (see, e.g. [16, 38, 51, 52]).

On the other hand, a significant amount of contributions showing the suitability of Banach spaces-
based approaches to analyze the continuous and discrete formulations of diverse linear, nonlinear,
and coupled problems in continuum mechanics, have appeared in recent years. A non-exhaustive list
of them includes [11, 18, 22, 23, 25, 27, 34, 37], and among the different models addressed we can
mention Poisson, Brinkman–Forchheimer, Darcy–Forchheimer, Navier-Stokes, Boussinesq, coupled
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flow-transport, and fluidized beds, most of which share a Banach saddle-point structure for the result-
ing variational formulations. The main advantage of employing this Banach framework is, precisely as
sought, the fact that no augmentation is required, and hence the spaces to which the unknowns belong
are the natural ones arising from the application of the Cauchy–Schwarz and Hölder inequalities to
the tested and eventually integrated by parts equations. In this way, simpler and closer to the original
physical model formulations are obtained. Moreover, it also allows to derive momentum conservative
schemes, and to obtain direct approximations of further variables of physical interest, either by incor-
porating them into the formulation or by employing postprocessing formulae in terms of the discrete
solution.

According to all the previous discussion, and bearing in mind that we finally aim at developing a
non-augmented finite element method for the model from [2], the purpose of the present paper is to
advance toward that goal by introducing and analyzing first Banach spaces-based mixed finite element
methods for the Navier–Stokes–Brinkman equations. The extension of it to the phase change model
for natural convection in a porous medium will be reported in a separate work. The manuscript
is organized as follows. The rest of this section collects some preliminary notations and results to
be employed throughout the paper. In Section 2 we set the model of interest, define the auxiliary
unknowns to be considered, and eliminate the pressure. The variational formulation is introduced
and analyzed in Section 3. In fact, in Section 3.1 we describe the mixed approach and realize that
the resulting continuous system, which is very close to the one from [2] before augmenting it, can be
written as a nonlinear perturbation of a perturbed saddle point formulation in Banach spaces. Then,
some abstract results that include a slight variant of the continuous and discrete well-posedness of
the latter, as well as the Babuška–Brezzi theory in Banach spaces, are recalled in Section 3.2. The
solvability analysis itself is developed in Section 3.3 by employing a fixed-point strategy along with the
theorems from Section 3.2. Next, in Section 4 we introduce and analyze the associated Galerkin scheme
under suitable assumptions on the finite element subspaces to be employed, adopting an analogous
fixed-point strategy, and making use of the discrete versions of the theoretical results from Section
3.2. In addition, a priori error estimates are derived, specific finite element subspaces satisfying the
aforementioned assumptions are described, and corresponding rates of convergence are established.
Finally, several illustrative numerical results are reported in Section 5.

Preliminary notations

Throughout the paper, Ω is a given bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, whose
outward unit normal at its boundary Γ is denoted ν. Standard notations will be adopted for Lebesgue
spaces Lr(Ω), with r ∈ (1,∞), and Sobolev spaces Ws,r(Ω), with s ≥ 0, endowed with the norms
∥ · ∥0,r;Ω and ∥ · ∥s,r;Ω, respectively, whose vector and tensor versions are denoted in the same way.
In particular, note that W0,r(Ω) = Lr(Ω), and that when r = 2 we simply write Hs(Ω) in place
of Ws,2(Ω), with the corresponding Lebesgue and Sobolev norms denoted by ∥ · ∥0,Ω and ∥ · ∥s,Ω,
respectively. We also set | · |s,Ω for the seminorm of Hs(Ω). In turn, H1/2(Γ) is the space of traces of
functions of H1(Ω), H−1/2(Γ) is its dual, and ⟨·, ·⟩ denotes the duality pairing between them. On the
other hand, by S and S we mean the corresponding vector and tensor counterparts, respectively, of a
generic scalar functional space S. Furthermore, for any vector fields v = (vi)i=1,n and w = (wi)i=1,n,
we set the gradient, symmetric part of the gradient (also named strain rate tensor), divergence, and
tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, e(v) :=
1

2

(
∇v + (∇v)t

)
,

div(v) :=

n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n ,
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where the superscript t stands for the matrix transpose. Next, for any tensor fields τ = (τij)i,j=1,n

and ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence operator div acting along the rows of τ , and
define the trace, the tensor inner product, and the deviatoric tensor, respectively, as

tr(τ ) :=
n∑

i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr(τ )I,

where I is the identity matrix in R := Rn×n. On the other hand, for each r ∈ [1,+∞] we introduce
the Banach space

H(divr; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lr(Ω)

}
, (1.1)

which is endowed with the natural norm

∥τ∥divr;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,r;Ω ∀ τ ∈ H(divr; Ω) , (1.2)

and recall that, proceeding as in [33, eq. (1.43), Section 1.3.4] (see also [19, Section 4.1] and [25,
Section 3.1]), one can prove that for each r ≥ 2n

n+2 there holds

⟨τ ν,v⟩ =

∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ H(divr; Ω)×H1(Ω) , (1.3)

where ⟨·, ·⟩ stands as well for the duality pairing between H−1/2(Γ) and H1/2(Γ). Finally, bear in mind
that when r = 2, the Hilbert space H(div2; Ω) and its norm ∥ · ∥div2;Ω are simply denoted H(div; Ω)
and ∥ · ∥div;Ω, respectively.

2 The model problem

The modelling of a viscous fluid within a porous medium occupying the domain Ω, is described by the
Navier–Stokes–Brinkman problem, which reduces to finding a velocity vector field u : Ω → R and a
pressure scalar field p : Ω → R satisfying the following system of partial differential equations:

η u − λdiv
(
µ e(u)

)
+

(
∇u

)
u + ∇p = f in Ω ,

div(u) = 0 in Ω ,

u = uD on Γ ,∫
Ω
p = 0 ,

(2.1)

where η is the scaled inverse permeability of the porous media, λ := Re−1, where Re is the Reynolds
number, µ is the dynamic viscosity of the fluid, f is an external body force, and uD is a Dirichlet
datum for u. The right spaces to which f and uD belong will be precise later on. The functions η
and µ are supposed to be bounded, which means that there exist positive constants η0, η1, µ0, and
µ1, such that

0 < η0 ≤ η(x) ≤ η1 and 0 < µ0 ≤ µ(x) ≤ µ1 ∀x ∈ Ω . (2.2)

In turn, note that the incompressibility of the fluid (cf. second equation of (2.1)) imposes on uD the
compatibility condition ∫

Γ
uD · ν = 0 , (2.3)

and that the last equation of (2.1) has been included for sake of uniqueness of p.
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We now proceed as in [2] and [4] (see, also [18], [20], [21], [24], [26]) and transform (2.1) into an
equivalent system of first order equations. To this end, we introduce the strain rate tensor t, the
vorticity γ, and the stress tensor σ as auxiliary unknowns, namely

t := e(u) = ∇u − γ , where γ :=
1

2

(
∇u− (∇u)t

)
, (2.4)

and
σ := λµ t − (u⊗ u) − p I , (2.5)

so that, thanks to the incompressibility of the fluid, the first equation of (2.1) is rewritten as

η u − div(σ) = f in Ω . (2.6)

Moreover, it is easy to see that, precisely the second equation of (2.1), which becomes tr(t) = 0,
together with (2.5), are equivalent to the pair of equations given by

σd = λµ t − (u⊗ u)d and p = − 1

n
tr
(
σ + (u⊗ u)

)
in Ω . (2.7)

Consequently, the pressure unknown is eliminated from the formulation and computed afterwards,
as suggested by the foregoing identity, in terms of σ and u. In this way, (2.1) can be equivalently
reformulated as

t + γ = ∇u in Ω ,

λ µ t − (u⊗ u)d = σd in Ω ,

η u − div(σ) = f in Ω ,

u = uD on Γ ,∫
Ω
tr
(
σ + (u⊗ u)

)
= 0 .

(2.8)

3 The continuous formulation

In this section we introduce and analyze the variational formulation of (2.8), which, differently from
[2] and [35], does not include any augmentation procedure, and employs the natural spaces arising
from the application of the Cauchy–Schwarz and Hölder inequalities to the terms, suitably tested and
integrated by parts, if necessary, of the equations in (2.8).

3.1 The mixed approach

We begin by originally seeking u in H1(Ω), for which we assume from now on that uD ∈ H1/2(Γ).
Then, given τ ∈ H(divr; Ω), with r ≥ 2n

n+2 , a straightforward application of (1.3) along with the fact
that u = uD on Γ, yield ∫

Ω
τ : ∇u = −

∫
Ω
u · div(τ ) + ⟨τ ν,uD⟩ , (3.1)

and hence the corresponding testing of the first equation of (2.8) becomes∫
Ω
t : τ +

∫
Ω
γ : τ +

∫
Ω
u · div(τ ) = ⟨τ ν,uD⟩ ∀ τ ∈ H(divr; Ω) . (3.2)

We observe here, thanks to Cauchy-Schwarz’s inequality and the fact that τ ∈ L2(Ω), that the first two
terms of (3.2) make sense for both t and γ in L2(Ω). Thus, bearing in mind the free trace property
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of t and the skew symmetry of γ (cf. (2.4)), we look for these unknowns in L2
tr(Ω) and L2

skew(Ω),
respectively, where

L2
tr(Ω) :=

{
s ∈ L2(Ω) : tr(s) = 0

}
, (3.3)

and
L2
skew(Ω) :=

{
δ ∈ L2(Ω) : δt = −δ

}
. (3.4)

In turn, knowing that div(τ ) ∈ Lr(Ω), and employing Hölder’s inequality, we notice from the third
term of (3.2) that, instead of H1(Ω), it would actually suffice to look for u in Lr′(Ω), where r′ is the
conjugate of r, that is r′ ∈ [1,+∞] is such that 1

r + 1
r′ = 1. On the other hand, testing the second

equation of (2.8) against s ∈ L2
skew(Ω), we formally obtain

λ

∫
Ω
µ t : s −

∫
Ω
(u⊗ u)d : s =

∫
Ω
σd : s ,

which, using the fact that tr(s) also vanishes, becomes

λ

∫
Ω
µ t : s −

∫
Ω
(u⊗ u) : s =

∫
Ω
σ : s . (3.5)

The boundedness of µ (cf. (2.2)) and the fact that both t and s lay in L2(Ω), guarantee that the first
term of (3.5) is finite, whereas the last one is as well if σ (and hence σd) belongs to L2(Ω). Regarding
the second one, straightforward applications of the Cauchy-Schwarz and Hölder inequalities imply
that, for each ℓ, j ∈ (1,+∞) such that 1

ℓ +
1
j , there holds∣∣∣ ∫

Ω
(u⊗ u)d : s

∣∣∣ =
∣∣∣ ∫

Ω
(u⊗ u) : s

∣∣∣ ≤ ∥u∥0,2ℓ;Ω ∥u∥0,2j;Ω ∥s∥0,Ω , (3.6)

which says that this term makes sense for u ∈ L2ℓ(Ω) ∩ L2j(Ω), that is, choosing in particular
l = j = 2, for u ∈ L4(Ω). In this way, our previous analysis on the first equation of (2.8) is restricted
hereafter to r′ = 4, and hence to r = 4/3. Moreover, aiming to keep the same space for the unknown
σ and its associated test functions τ , we will seek σ in H(div4/3; Ω). Therefore, knowing now that

div(σ) ∈ L4/3(Ω), and assuming that the datum f lays also in L4/3(Ω), we proceed to test the third
equation of (2.8) against v ∈ L4(Ω), which yields∫

Ω
v · div(σ) −

∫
Ω
η u · v = −

∫
Ω
f · v . (3.7)

Finally, the symmetry of σ, which, according to (2.5), is equivalent to that of t, is imposed weakly as∫
Ω
δ : σ = 0 ∀ δ ∈ L2

skew(Ω) . (3.8)

At this point, and before reordering the equations (3.2), (3.5), (3.7), and (3.8) in a suitable way,
we consider, for sake of convenience of the subsequent analysis, the decomposition (see, e.g. [25, eqs.
(3.12) - (3.13)], [34, eqs. (3.1) - (3.2)])

H(div4/3; Ω) := H0(div4/3; Ω) ⊕ R I , (3.9)

where

H0(div4/3; Ω) :=
{
τ ∈ H(div4/3; Ω) :

∫
Ω
tr(τ ) = 0

}
. (3.10)

In particular, the unknown σ can be uniquely decomposed as σ = σ0 + c0 I, where σ0 ∈ H0(div4/3; Ω),
and, employing the last equation of (2.8),

c0 :=
1

n |Ω|

∫
Ω
tr(σ) = − 1

n |Ω|

∫
Ω
tr(u⊗ u) . (3.11)
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In this way, knowing explicitly c0 in terms of u, it remains to find the H0(div4/3; Ω)-component σ0

of σ to fully determine it. In this regard, we readily observe that equations (3.5), (3.7), and (3.8)
remain unchanged if σ is replaced there by σ0. Moreover, it is easy to see, thanks to the compatibility
condition (2.3) satisfied by the Dirichlet datum uD, that both sides of (3.2) vanish for τ = I, and hence,
testing this equation against τ ∈ H(div4/3; Ω) is equivalent to doing it against τ ∈ H0(div4/3; Ω).
Consequently, redenoting from now on σ0 as simply σ ∈ H0(div4/3; Ω), introducing the spaces

H := L2
tr(Ω)×H0(div4/3; Ω) , Q := L4(Ω)× L2

skew(Ω) , (3.12)

setting the notations

t⃗ := (t,σ) , s⃗ := (s, τ ) , r⃗ := (r, ζ) ∈ H , u⃗ := (u,γ) , v⃗ := (v, δ) , w⃗ := (w, ξ) ∈ Q , (3.13)

endowing H and Q with the norms

∥⃗s∥H := ∥s∥0,Ω + ∥τ∥div4/3;Ω ∀ s⃗ := (s, τ ) ∈ H ,

∥v⃗∥Q := ∥v∥0,4;Ω + ∥δ∥0,Ω ∀ v⃗ := (v, δ) ∈ Q ,
(3.14)

and gathering (3.5), (3.2), and (3.7) + (3.8), we arrive at the following variational formulation of (2.8):
Find (⃗t, u⃗) ∈ H×Q such that

a(t, s) + b1(s,σ)

b2(t, τ ) + b(⃗s, u⃗)

+ b(u;u, s) =

=

0 ,

⟨τ ν,uD⟩ ,

b(⃗t, v⃗) − c(u⃗, v⃗) = −
∫
Ω
f · v ,

(3.15)

for all (⃗s, v⃗) ∈ H×Q, where the bilinear forms a : L2
tr(Ω)×L2

tr(Ω) → R, bi : L2
tr(Ω)×H0(div4/3; Ω) → R,

i ∈
{
1, 2

}
, b : H×Q → R, and c : Q×Q → R, are defined by

a(r, s) := λ

∫
Ω
µ r : s ∀ r, s ∈ L2

tr(Ω) , (3.16a)

b1(s, τ ) := −
∫
Ω
s : τ , b2(s, τ ) :=

∫
Ω
s : τ , ∀ (s, τ ) ∈ L2

tr(Ω)×H0(div4/3; Ω) , (3.16b)

b(⃗s, v⃗) :=

∫
Ω
δ : τ +

∫
Ω
v · div(τ ) ∀ (⃗s, v⃗) ∈ H×Q , (3.16c)

c(w⃗, v⃗) :=

∫
Ω
ηw · v ∀ w⃗, v⃗ ∈ Q , (3.16d)

whereas for each w ∈ L4(Ω), b(w; ·, ·) : L4(Ω)× L2
tr(Ω) → R is the bilinear form given by

b(w;v, s) := −
∫
Ω
(w ⊗ v) : s ∀ (v, s) ∈ L4(Ω)× L2

tr(Ω) . (3.17)

Equivalently, letting a : H ×H → R be the bilinear form that arises from the block

(
a b1
b2

)
by

adding the first two equations of (3.15), that is

a(⃗r, s⃗) := a(r, s) + b1(s, ζ) + b2(r, τ ) ∀ r⃗, s⃗ ∈ H , (3.18)

we find that (3.15) can be rewritten as: Find (⃗t, u⃗) ∈ H×Q such that

a(⃗t, s⃗) + b(⃗s, u⃗) + b(u;u, s) = ⟨τ ν,uD⟩ ∀ s⃗ ∈ H ,

b(⃗t, v⃗) − c(u⃗, v⃗) = −
∫
Ω
f · v ∀ v⃗ ∈ Q .

(3.19)
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Moreover, letting now A :
(
H ×Q

)
×

(
H ×Q

)
→ R be the bilinear from that arises from the block(

a b
b −c

)
by adding both equations of (3.19), that is

A
(
(⃗r, w⃗), (⃗s, v⃗)

)
:= a(⃗r, s⃗) + b(⃗s, w⃗) + b(⃗r, v⃗) − c(w⃗, v⃗) ∀ (⃗r, w⃗), (⃗s, v⃗) ∈ H×Q , (3.20)

we deduce that (3.19) (and hence (3.15)) can be stated, equivalently as well, as: Find (⃗t, u⃗) ∈ H×Q
such that

A
(
(⃗t, u⃗), (⃗s, v⃗)

)
+ b(u;u, s) = F(⃗s, v⃗) ∀ (⃗s, v⃗) ∈ H×Q , (3.21)

where F ∈
(
H×Q

)′
is defined by

F(⃗s, v⃗) := ⟨τ ν,uD⟩ −
∫
Ω
f · v ∀ (⃗s, v⃗) ∈ H×Q . (3.22)

Our next goal is to analyze the solvability of (3.21) (equivalently, that of (3.19) or (3.15)), for
which we will apply the abstract results collected in the following section. We stress that, except for
the handling of the rotation, (3.15) coincides with the variational formulation for the fluid part of the
phase change model for natural convection (cf. [2, first three rows of eq. (3.6)]), but before augmenting
it, thus emphasizing that this procedure will not be employed here. In addition, we remark that (3.21)
can be seen as a nonlinear perturbation of a perturbed saddle-point formulation in Banach spaces, for
which continuous and discrete well-posedness results have been recently shown in [28].

3.2 Some abstract results

We begin by recalling the Babuška–Brezzi theory in Banach spaces.

Theorem 3.1. Let H1, H2, Q1, and Q2 be real reflexive Banach spaces, and let a : H2 × H1 → R
and bi : Hi ×Qi → R, i ∈ {1, 2}, be bounded bilinear forms with boundedness constants given by ∥a∥
and ∥bi∥, i ∈ {1, 2}, respectively. In addition, for each i ∈ {1, 2}, let Ki be the kernel of the operator
induced by bi, that is

Ki :=
{
v ∈ Hi : bi(v, q) = 0 ∀ q ∈ Qi

}
. (3.23)

Assume that

i) there exists a constant α > 0 such that

sup
v∈K1
v ̸=0

a(w, v)

∥v∥H1

≥ α ∥w∥H2 ∀w ∈ K2 , (3.24)

ii) there holds
sup
w∈K2

a(w, v) > 0 ∀ v ∈ K1 , v ̸= 0 , (3.25)

iii) for each i ∈ {1, 2} there exists a constant βi > 0 such that

sup
v∈Hi
v ̸=0

bi(v, q)

∥v∥Hi

≥ βi ∥q∥Qi ∀ q ∈ Qi . (3.26)
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Then, for each (F,G) ∈ H ′
1 ×Q′

2 there exists a unique (u, p) ∈ H2 ×Q1 such that

a(u, v) + b1(v, p) = F (v) ∀ v ∈ H1 ,

b2(u, q) = G(q) ∀ q ∈ Q2 ,
(3.27)

and the following a priori estimates hold:

∥u∥H2 ≤ 1

α
∥F∥H′

1
+

1

β2

(
1 +

∥a∥
α

)
∥G∥Q′

2
,

∥p∥Q1 ≤ 1

β1

(
1 +

∥a∥
α

)
∥F∥H′

1
+

∥a∥
β1 β2

(
1 +

∥a∥
α

)
∥G∥Q′

2
.

(3.28)

Moreover, i), ii), and iii) are also necessary conditions for the well-posedness of (3.27).

Proof. See [12, Theorem 2.1, Corollary 2.1, Section 2.1] for the original version and its proof. For the
particular case given by H1 = H2, Q1 = Q2, and b1 = b2, we also refer to [32, Theorem 2.34].

We remark here that the roles of K1 and K2 in the assumptions i) and ii) of Theorem 3.1 can be
exchanged without altering the joint meaning of these hypotheses (cf. [12, eqs. (2.10) and (2.11)]). In
addition, it is important to stress that (3.28) is equivalent to an inf-sup condition for the bilinear form
arising after adding the left-hand sides of (3.27), which means that there exists a constant C > 0,
depending only on α, β1, β2, and ∥a∥, such that

sup
(v,q)∈H1×Q2

(v,q)̸=0

a(u, v) + b1(v, p) + b2(u, q)

∥(v, q)∥H1×Q2

≥ C ∥(u, p)∥H2×Q1 ∀ (u, p) ∈ H2 ×Q1 . (3.29)

We continue with the following abstract result, which constitutes a slight variation of the recent
result [28, Theorem 3.4] tailored for perturbed saddle-point problems in Banach spaces.

Theorem 3.2. Let H and Q be reflexive Banach spaces, and let a : H×H → R, b : H×Q → R, and
c : Q × Q → R be given bounded bilinear forms. In addition, let B : H → Q′ be the bounded linear
operator induced by b, and let V := N(B) be the respective null space. Assume that:

i) a and c are positive semi-definite, that is

a(τ, τ) ≥ 0 ∀ τ ∈ H and c(v, v) ≥ 0 ∀ v ∈ Q , (3.30)

and that c is symmetric.

ii) there exists a constant α > 0 such that

sup
τ∈V
τ ̸=0

a(ϑ, τ)

∥τ∥H
≥ α ∥ϑ∥H ∀ϑ ∈ V , (3.31)

and

sup
ϑ∈V
ϑ ̸=0

a(ϑ, τ)

∥ϑ∥H
≥ α ∥τ∥H ∀ τ ∈ V , (3.32)

iii) and there exists a constant β > 0 such that

sup
τ∈H
τ ̸=0

b(τ, v)

∥τ∥H
≥ β ∥v∥Q ∀ v ∈ Q , (3.33)
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Then, for each pair (f, g) ∈ H′ ×Q′ there exists a unique (σ, u) ∈ H×Q such that

a(σ, τ) + b(τ, u) = f(τ) ∀ τ ∈ H ,

b(σ, v)− c(u, v) = g(v) ∀ v ∈ Q .
(3.34)

Moreover, there exists a constant C̃ > 0, depending only on ∥a∥, ∥c∥, α, and β, such that

∥(σ, u)∥H×Q ≤ C̃
{
∥f∥H′ + ∥g∥Q′

}
. (3.35)

The foregoing theorem is referred to as a slight variant of the original version given by [28, Theorem
3.4] because, on one hand, it does not assume symmetry of a, as the latter does, but on the other
hand, it does require the second inf-sup condition (3.32) for this bilinear form, which the latter does
not. Indeed, the proof of [28, Theorem 3.4] reduces basically to show that there exists a positive
constant Ĉ, depending on ∥a∥, ∥c∥, α, and β, such that the bilinear form arising from adding the left
hand sides of (3.34), say A :

(
H×Q

)
×
(
H×Q

)
→ R, satisfies the inf-sup condition

sup
(τ,v)∈H×Q

(τ,v)̸=0

A
(
(ζ, w), (τ, v)

)
∥(τ, v)∥

≥ Ĉ ∥(ζ, w)∥ ∀ (ζ, w) ∈ H×Q . (3.36)

In this way, thanks to the symmetry of a and c, A is obviously symmetric, and hence (3.36) suffices
to conclude, via the Banach–Nečas–Babuška Theorem (cf. [32, Theorem 2.6]), also known as the
generalized Lax–Milgram Lemma, the well-posedness of (3.34). However, if one drops the symmetry
assumption on a (and therefore on A), as done in the present Theorem 3.2, the same conclusion is
attained if additionally (3.36) is also satisfied by the bilinear form Ã that arises from A after exchanging
its components. Thus, noting that the above reduces to fixing the second component of A and taking
the supremum in (3.36) with respect to the first one, we realize that in order to prove this further
inf-sup condition, the assumption (3.32) needs to be added, as we did in Theorem 3.2. Needless to
say, and because of the same constant α in (3.31) and (3.32), the aforementioned further condition
holds with the same constant Ĉ from (3.36), that is

sup
(ζ,w)∈H×Q

(ζ,w)̸=0

A
(
(ζ, w), (τ, v)

)
∥(ζ, w)∥

≥ Ĉ ∥(τ, v)∥ ∀ (τ, v) ∈ H×Q . (3.37)

The Banach–Nečas–Babuška Theorem will also be employed in Section 3.3 below.

3.3 Solvability analysis

In this section we address the solvability of the variational formulation (3.21), for which we introduce
the operator T : L4(Ω) → L4(Ω) defined by

T(z0) := u0 ∀ z0 ∈ L4(Ω) , (3.38)

where (⃗t0, u⃗0) =
(
(t0,σ0), (u0,γ0)

)
∈ H×Q is the unique solution (to be derived below under what

conditions it does exist) of the linear problem

A
(
(⃗t0, u⃗0), (⃗s, v⃗)

)
+ b(z0;u0, s) = F(⃗s, v⃗) ∀ (⃗s, v⃗) ∈ H×Q . (3.39)

It follows that (3.21) can be rewritten as the fixed-point equation: Find u ∈ L4(Ω) such that

T(u) = u , (3.40)
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so that, letting (⃗t0, u⃗0) be the solution of (3.39) with z0 := u, (⃗t, u⃗) := (⃗t0, u⃗0) ∈ H×Q is solution
of (3.21), equivalently of (3.15) and (3.19).

We now aim at proving that the operator T is well-defined, which reduces to show that problem
(3.39) is well-posed. To this end, we first state the boundedness of all the variational forms involved
(cf. (3.16a), (3.16b), (3.16c), (3.16d), and (3.22)). Direct applications of the Cauchy–Schwarz and
Hölder inequalities, along with the upper bounds of η and µ (cf. (2.2)), and the continuity of the
normal trace operator in H(div4/3; Ω), yield the existence of positive constants, denoted and given as:

∥a∥ = λµ1 , ∥b1∥ = ∥b2∥ = 1 , ∥a∥ = λµ1 + 2 , ∥b∥ = 1 , ∥c∥ = η1 |Ω|1/2 , (3.41a)

∥F∥ = ∥uD∥1/2,Γ + ∥f∥0,4/3;Ω , (3.41b)

such that there hold

|a(r, s)| ≤ ∥a∥ ∥r∥0,Ω ∥s∥0,Ω ∀ r, s ∈ L2
tr(Ω)

|bi(s, τ )| ≤ ∥bi∥ ∥s∥0,Ω ∥τ∥div4/3;Ω ∀ (s, τ ) ∈ L2
tr(Ω)×H0(div4/3; Ω) ,

|a(⃗r, s⃗)| ≤ ∥a∥ ∥⃗r∥H ∥⃗s∥H ∀ (⃗r, s⃗) ∈ H×H ,

|b(⃗s, v⃗)| ≤ ∥b∥ ∥⃗s∥H ∥v⃗∥Q ∀ (⃗s, v⃗) ∈ H×Q ,

|c(w⃗, v⃗)| ≤ ∥c∥ ∥w⃗∥Q ∥v⃗∥Q ∀ w⃗, v⃗ ∈ Q , and

|F(⃗s, v⃗)| ≤ ∥F∥ ∥(⃗s, v⃗)∥H×Q ∀ (⃗s, v⃗) ∈ H×Q .

(3.42)

In turn, employing again Cauchy–Schwarz and Hölder inequalities, similarly as we did in (3.6), we
find that for each w ∈ L4(Ω) there holds (cf. (3.17))

|b(w;v, s)| ≤ ∥w∥0,4;Ω ∥v∥0,4;Ω ∥s∥0,Ω ∀ (v, s) ∈ L4(Ω)× L2
tr(Ω) . (3.43)

In what follows, and as suggested by the matrix representation

(
a b
b −c

)
of A (cf. (3.20)), we

will apply Theorem 3.2 to derive global inf-sup conditions for this bilinear form. To this end, and due

to the corresponding structure

(
a b1
b2

)
of a, we will employ in turn Theorem 3.1 to establish the

required assumptions on the latter. According to the above, we begin by deducing from the definition
(3.16c) that the kernel V of b reduces to

V := L2
tr(Ω)×V0 , (3.44)

where
V0 :=

{
τ ∈ H0(div4/3; Ω) : τ = τ t and div(τ ) = 0 in Ω

}
. (3.45)

Hereafter, we refer to the null space of the bounded linear operator induced by a bilinear form as the
kernel of the latter. Then, for each i ∈

{
1, 2

}
we let Ki be the kernel of bi|L2

tr(Ω)×V0
, that is

Ki :=
{
s ∈ L2

tr(Ω) : bi(s, τ ) = 0 ∀ τ ∈ V0

}
, (3.46)

which, recalling from (3.16b) that b1 = −b2, yields

K1 = K2 = K :=
{
s ∈ L2

tr(Ω) :

∫
Ω
s : τ = 0 ∀ τ ∈ V0

}
. (3.47)

However, irrespective of the above, we readily observe, according to the definition of a (cf. (3.16a))
and the lower bound of µ (cf. (2.2)), that a is L2

tr(Ω)-elliptic with the constant α̃ := λµ0, that is

a(s, s) ≥ α̃ ∥s∥20,Ω ∀ s ∈ L2
tr(Ω) , (3.48)
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and hence, in particular, a is K-elliptic. Then it is fairly simple to see that a satisfies the assumptions
i) (with constant α = α̃) and ii) of Theorem 3.1. In turn, in order to prove that for each i ∈

{
1, 2

}
,

bi|L2
tr(Ω)×V0

satisfies hypothesis iii), we first need to recall a useful estimate for tensors in H0(div4/3; Ω).
Indeed, suitably modifying the proof of [33, Lemma 2.3] (or [15, Proposition 3.1, Chapter IV]), one
can show (see also [18, Lemma 3.2]) that there exists a positive constant c1, depending only on Ω,
such that

c1 ∥τ∥0,Ω ≤ ∥τ d∥0,Ω + ∥div(τ )∥0,4/3;Ω ∀ τ ∈ H0(div4/3; Ω) . (3.49)

Then, we are in position to prove the following result.

Lemma 3.3. There exists a positive constant β̃ such that for each i ∈
{
1, 2

}
there holds

sup
s∈L2tr(Ω)

s ̸=0

bi(s, τ )

∥s∥0,Ω
≥ β̃ ∥τ∥div4/3;Ω ∀ τ ∈ V0 . (3.50)

Proof. Since b1 = −b2, it suffices to show for one of these bilinear forms, so that we stay with b2.
Thus, given τ ∈ V0 (cf. (3.45)), such that τ d ̸= 0, we have that τ d ∈ L2

tr(Ω), and hence, bounding
from below the supremum in (3.50) with s = τ d, and noting that

∫
Ω τ d : τ = ∥τ d∥20,Ω, we obtain

sup
s∈L2tr(Ω)

s̸=0

b2(s, τ )

∥s∥0,Ω
≥ b2(τ

d, τ )

∥τ d∥0,Ω
= ∥τ d∥0,Ω ,

from which, using (3.49) and the fact that div(τ ) = 0, it follows (3.50) with β̃ := c1. Certainly, if
τ ∈ V0 is such that τ d = 0, we deduce from (3.49) that τ = 0, whence (3.50) is trivially satisfied.

As a consequence of Lemma 3.3 and the previous discussion on the bilinear form a, we conclude
that a, b1, and b2 satisfy the hypotheses of Theorem 3.1, and hence, a straightforward application of
this abstract result, though more specifically of the global inf-sup condition (3.29), yields the existence
of a positive constant αa, depending only on α̃ = λµ0, β̃ = c1, and ∥a∥ = λµ1 (cf. (3.41a)), such that

sup
s⃗∈V
s̸⃗=0

a(⃗r, s⃗)

∥⃗s∥H
≥ αa ∥⃗r∥H ∀ r⃗ ∈ V . (3.51)

Moreover, exchanging the roles of b1 and b2, so that, instead of the matrix structure

(
a b1
b2

)
, we

consider

(
a b2
b1

)
, we can apply again Theorem 3.1 and (3.29) to conclude that, with the same

constant αa from (3.51), there holds

sup
r⃗∈V
r̸⃗=0

a(⃗r, s⃗)

∥⃗r∥H
≥ αa ∥⃗s∥H ∀ s⃗ ∈ V . (3.52)

Furthermore, it is readily seen from (3.18) and the ellipticity of a in L2
tr(Ω) (cf. (3.48)), that

a(⃗r, r⃗) = a(r, r) ≥ α̃ ∥r∥20,Ω ∀ r⃗ := (r, ζ) ∈ H , (3.53)

which proves that a is positive semi-definite. In turn, it is clear from the definition of c (cf. (3.16d))
that this bilinear form is symmetric, and that, thanks to the lower bound of η (cf. (2.2)), there holds

c(v⃗, v⃗) ≥ η0 ∥v∥20,Ω ∀ v⃗ := (v, δ) ∈ Q , (3.54)
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which shows that c is positive semi-definite as well. In this way, we have proved that a and c verify the
hypotheses i) and ii) of Theorem 3.2, and hence it only remains to show the corresponding assumption
iii), that is the continuous inf-sup condition for b. This result has already been given in [34, Lemma
3.5], so that, in addition to its statement, and for sake of clearness, we provide next most details of
the corresponding proof. For this purpose, we will make use of the Poincaré and the first Korn (cf.
[42, Theorem 10.1] or [14, Corollaries 9.2.22 and 9.2.25]) inequalities, which establish that

∥v∥21,Ω ≤ cP |v|21,Ω and |v|21,Ω ≤ 2 ∥e(v)∥20,Ω ∀v ∈ H1
0(Ω) , (3.55)

respectively, with a positive constant cP depending on Ω. In addition, we also let i4 be the continuous
injection of H1(Ω) into L4(Ω). Then, the announced result is as follows.

Lemma 3.4. There exists a positive constant βb, depending only on cP and ∥i4∥, such that

sup
s⃗∈H
s̸⃗=0

b(⃗s, v⃗)

∥⃗s∥H
≥ βb ∥v⃗∥Q ∀ v⃗ ∈ Q . (3.56)

Proof. Given v⃗ := (v, δ) ∈ Q, we set ṽ := |v|2 v and notice that ∥ṽ∥4/30,4/3;Ω = ∥v∥40,4;Ω, which says

that ṽ ∈ L4/3(Ω), and additionally there holds∫
Ω
v · ṽ = ∥v∥40,4;Ω = ∥v∥0,4;Ω ∥ṽ∥0,4/3;Ω . (3.57)

Then, letting A : H1
0(Ω)×H1

0(Ω) → R and F : H1
0(Ω) → R be the bilinear form and linear functional,

respectively, defined by

A(w, z) :=

∫
Ω
e(w) : e(z) and F(z) := −

∫
Ω
ṽ · z ∀w, z ∈ H1

0(Ω) ,

we readily see that A is bounded, and that, using (3.55), it becomes H1
0(Ω)-elliptic with constant

αA := 1
2c

P
. In turn, thanks to Hölder’s inequality and the continuous injection i4, it follows that F

is well-defined and bounded with ∥F∥ ≤ ∥i4∥ ∥ṽ∥0,4/3;Ω. Hence, a straightforward application of the
classical Lax-Milgram Lemma implies the existence of a unique w̃ ∈ H1

0(Ω) such that A(w̃, z) = F(z)
for all z ∈ H1

0(Ω), and ∥w̃∥1,Ω ≤ 2cP∥i4∥∥ṽ∥0,4/3;Ω. Moreover, it is easy to see from the foregoing
identity involving A and F that div

(
e(w̃)

)
= ṽ in D′(Ω), which together with the fact that e(w̃) ∈

L2(Ω), proves that e(w̃) ∈ H(div4/3; Ω). Then, letting τ̃ be the H0(div4/3; Ω) component of e(w̃),
we readily find that div(τ̃ ) = ṽ and

∥τ̃∥div4/3;Ω ≤ ∥w̃∥1,Ω + ∥ṽ∥0,4/3;Ω ≤
(
2cP ∥i4∥+ 1

)
∥ṽ∥0,4/3;Ω , (3.58)

and hence, noting that τ̃ is symmetric, since e(w) and the identity matrix are, and employing (3.57)
and (3.58), we get

sup
s⃗∈H
s̸⃗=0

b(⃗s, v⃗)

∥⃗s∥H
≥ b((0, τ̃ ), v⃗)

∥τ̃∥div4/3;Ω
=

∫
Ω
v · div(τ̃ )

∥τ̃∥div4/3;Ω
=

∫
Ω
v · ṽ

∥τ̃∥div4/3;Ω
≥ β̃b ∥v∥0,4;Ω , (3.59)

with β̃b :=
(
2cP ∥i4∥ + 1

)−1
. Similarly, introducing the bounded linear functional G : H1

0(Ω) → R
defined by

G(z) := −
∫
Ω
δ : e(z) ∀ z ∈ H1

0(Ω) ,
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we deduce that there exists a unique ŵ ∈ H1
0(Ω) such that A(ŵ, z) = G(z) for all z ∈ H1

0(Ω),
and ∥e(ŵ)∥0,Ω ≤ ∥δ∥0,Ω. It follows from the above that div

(
e(ŵ) + δ

)
= 0 in D′(Ω), so that

e(ŵ) + δ ∈ H(div4/3; Ω), and hence, letting now τ̂ be the H0(div4/3; Ω) component of e(ŵ) + δ, we
get div(τ̂ ) = 0 and

∥τ̂∥div4/3;Ω = ∥τ̂∥0,Ω ≤ ∥e(ŵ)∥0,Ω + ∥δ∥0,Ω ≤ 2 ∥δ∥0,Ω . (3.60)

In this way, noting that τ̂ : δ = δ : δ, and using (3.60), we obtain

sup
s⃗∈H
s̸⃗=0

b(⃗s, v⃗)

∥⃗s∥H
≥ b((0, τ̂ ), v⃗)

∥τ̂∥div4/3;Ω
=

∫
Ω
τ̂ : δ

∥τ̂∥div4/3;Ω
=

∥δ∥20,Ω
∥τ̂∥div4/3;Ω

≥ β̂b ∥δ∥0,Ω , (3.61)

with β̂b := 1
2 . Finally, the required inequality (3.56) is a direct consequence of (3.59) and (3.61), with

βb := 1
2 min

{
β̃b, β̂b

}
.

Consequently, having the bilinear forms a, b, and c satisfied the three hypotheses of Theorem 3.2,
a straightforward application of this abstract result yields the existence of a positive constant αA,
depending on ∥a∥, ∥c∥, αa, and βb, such that (cf. (3.36), (3.37))

sup
(⃗s,v⃗)∈H×Q

(⃗s,v⃗)̸=0

A
(
(⃗r, w⃗), (⃗s, v⃗)

)
∥(⃗s, v⃗)∥H×Q

≥ αA ∥(⃗r, w⃗)∥H×Q ∀ (⃗r, w⃗) ∈ H×Q , (3.62)

and

sup
(⃗r,w⃗)∈H×Q

(⃗r,w⃗)̸=0

A
(
(⃗r, w⃗), (⃗s, v⃗)

)
∥(⃗r, w⃗)∥H×Q

≥ αA ∥(⃗s, v⃗)∥H×Q ∀ (⃗s, v⃗) ∈ H×Q . (3.63)

Moreover, employing (3.62) and the boundedness property from (3.43), it readily follows that, given
z ∈ L4(Ω), there holds

sup
(⃗s,v⃗)∈H×Q

(⃗s,v⃗)̸=0

A
(
(⃗r, w⃗), (⃗s, v⃗)

)
+ b(z;w, s)

∥(⃗s, v⃗)∥H×Q
≥

(
αA − ∥z∥0,4;Ω

)
∥(⃗r, w⃗)∥H×Q ∀ (⃗r, w⃗) ∈ H×Q ,

and hence, for each z ∈ L4(Ω) such that, say ∥z∥0,4;Ω ≤ αA

2
, we get

sup
(⃗s,v⃗)∈H×Q

(⃗s,v⃗) ̸=0

A
(
(⃗r, w⃗), (⃗s, v⃗)

)
+ b(z;w, s)

∥(⃗s, v⃗)∥H×Q
≥ αA

2
∥(⃗r, w⃗)∥H×Q ∀ (⃗r, w⃗) ∈ H×Q . (3.64)

Similarly, but now using (3.63) and (3.43), and under the same assumption on z, we arrive at

sup
(⃗r,w⃗)∈H×Q

(⃗r,w⃗)̸=0

A
(
(⃗r, w⃗), (⃗s, v⃗)

)
+ b(z;w, s)

∥(⃗r, w⃗)∥H×Q
≥ αA

2
∥(⃗s, v⃗)∥H×Q ∀ (⃗s, v⃗) ∈ H×Q . (3.65)

We are now in a position to prove that the operator T (cf. (3.38)) is well-defined, equivalently that
problem (3.39) is well-posed.
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Lemma 3.5. For each z0 ∈ L4(Ω) such that ∥z0∥0,4;Ω ≤ αA

2
, problem (3.39) has a unique solution

(⃗t0, u⃗0) =
(
(t0,σ0), (u0,γ0)

)
∈ H × Q, and hence T(z0) := u0 ∈ L4(Ω) is well-defined. Moreover,

there holds

∥T(z0)∥0,4;Ω = ∥u0∥0,4;Ω ≤ ∥(⃗t0, u⃗0)∥H×Q ≤ 2

αA

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
. (3.66)

Proof. Given z0 as indicated, the existence of a unique solution of (3.39) follows from (3.64), (3.65),
and a straightforward application of the Banach–Nečas–Babuška Theorem (cf. [32, Theorem 2.6]).
In turn, the corresponding a priori estimate and the boundedness of F (cf. (3.41b), (3.42)) yield
(3.66).

Next, we introduce the ball

W :=
{
z ∈ L4(Ω) : ∥z∥0,4;Ω ≤ αA

2

}
, (3.67)

and prove that, under sufficiently small data, T maps W into itself.

Lemma 3.6. Assume that

∥uD∥1/2,Γ + ∥f∥0,4/3;Ω ≤
α2
A

4
. (3.68)

Then, there holds T(W) ⊆ W.

Proof. It is a direct consequence of the a priori estimate (3.66) and the assumption (3.68).

The main result concerning the solvability of the fixed-point equation (3.40), and hence, equiva-
lently, that of (3.21), (3.19), or (3.15), is stated as follows.

Theorem 3.7. Assume that

∥uD∥1/2,Γ + ∥f∥0,4/3;Ω <
α2
A

4
. (3.69)

Then, the operator T has a unique fixed-point u ∈ W. Equivalently, (3.21) has a unique solution
(⃗t, u⃗) := (⃗t0, u⃗0) ∈ H ×Q with u ∈ W, where (⃗t0, u⃗0) is the unique solution of (3.39) with z0 = u.
Moreover, there holds

∥(⃗t, u⃗)∥H×Q ≤ 2

αA

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
. (3.70)

Proof. It is clear, thanks to (3.69) and Lemma 3.6, that T maps W into itself, so that aiming to apply
the classical Banach fixed-point theorem, it only remains to show that T is a contraction. To this
end, given zi ∈ W, i ∈

{
1, 2

}
, we let T(zi) := ui, where (⃗ti, u⃗i) :=

(
(ti,σi), (ui,γi)

)
∈ H×Q is the

unique solution of (3.39) with z0 := zi, that is

A
(
(⃗ti, u⃗i), (⃗s, v⃗)

)
+ b(zi;ui, s) = F(⃗s, v⃗) ∀ (⃗s, v⃗) ∈ H×Q . (3.71)

Now, applying the inf-sup condition (3.64) with z = z1 to (⃗r, w⃗) := (⃗t1, u⃗1)− (⃗t2, u⃗2), we obtain

|(⃗t1, u⃗1)− (⃗t2, u⃗2)∥H×Q ≤ 2

αA
sup

(⃗s,v⃗)∈H×Q

(⃗s,v⃗) ̸=0

A
(
(⃗t1, u⃗1)− (⃗t2, u⃗2), (⃗s, v⃗)

)
+ b(z1;u1 − u2, s)

∥(⃗s, v⃗)∥H×Q
, (3.72)
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from which, adding and subtracting b(z2;u2, s), and then employing (3.71), we arrive at

|(⃗t1, u⃗1)− (⃗t2, u⃗2)∥H×Q ≤ 2

αA
sup

(⃗s,v⃗)∈H×Q

(⃗s,v⃗)̸=0

b(z2 − z1;u2, s)

∥(⃗s, v⃗)∥H×Q
. (3.73)

In turn, using the boundedness of b (cf. (3.43)) and the a priori estimate for ∥u2∥0,4;Ω = ∥T(z2)∥0,4;Ω
provided by (3.66) (cf. Lemma 3.5), it follows from (3.73) that

∥T(z1)−T(z2)∥0,4;Ω = ∥u1 − u2∥0,4;Ω ≤ 2

αA
∥z1 − z2∥0,4;Ω ∥u2∥0,4;Ω

≤ 4

α2
A

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
∥z1 − z2∥0,4;Ω ,

(3.74)

which, according to (3.69), confirms the announced property on T, thus ending the proof for the
existence of a unique fixed-point u in W of this operator. Finally, the a priori estimate (3.70) is a
straightforward consequence of (3.66) (cf. Lemma 3.5).

4 The discrete formulation

In this section we approximate the solution of (3.21) (equivalently, that of (3.19) or (3.15)) by intro-
ducing and analyzing the associated Galerkin scheme. To this end, similar tools to those employed in
Section 3.3 will be utilized here.

4.1 The Galerkin scheme

We begin by considering arbitrary finite element subspaces Ht
h, H̃σ

h , H
u
h , and Hγ

h of the spaces L2
tr(Ω),

H(div4/3; Ω), L
4(Ω), and L2

skew(Ω), respectively. Hereafter, h stands for both the sub-index of each
foregoing subspace and the size of a regular triangulation Th of Ω̄ made up of triangles K (in R2) or
tetrahedra K (in R3) of diameter hK , that is h := max

{
hK : K ∈ Th

}
. Specific finite element

subspaces satisfying suitable hypotheses to be introduced in due course will be provided later on in
Section 4.4. Then, letting

Hσ
h := H̃σ

h ∩ H0(div4/3; Ω) , (4.1)

defining the product spaces

Hh := Ht
h ×Hσ

h , Qh := Hu
h ×Hγ

h , (4.2)

and setting the notations

t⃗h := (th,σh) , s⃗h := (sh, τh) , r⃗h := (rh, ζh) ∈ Hh ,

u⃗h := (uh,γh) , v⃗h := (vh, δh) , w⃗h := (wh, ξh) ∈ Qh ,
(4.3)

the Galerkin scheme associated with (3.15) reads as follows: Find (⃗th, u⃗h) :=
(
(th,σh), (uh,γh)

)
∈

Hh ×Qh such that

a(th, sh) + b1(sh,σh)

b2(th, τh) + b(⃗sh, u⃗h)

+ b(uh;uh, sh) =

=

0 ,

⟨τh ν,uD⟩ ,

b(⃗th, v⃗h) − c(u⃗h, v⃗h) = −
∫
Ω
f · vh ,

(4.4)
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for all (⃗sh, v⃗h) ∈ Hh ×Qh. Similarly, the ones associated with (3.19) and (3.21), which are certainly
equivalent to (4.4), become, respectively: Find (⃗th, u⃗h) ∈ Hh ×Qh such that

a(⃗th, s⃗h) + b(⃗sh, u⃗h) + b(uh;uh, sh) = ⟨τh ν,uD⟩ ∀ s⃗h ∈ Hh ,

b(⃗th, v⃗h) − c(u⃗h, v⃗h) = −
∫
Ω
f · vh ∀ v⃗h ∈ Qh ,

(4.5)

and: Find (⃗th, u⃗h) ∈ Hh ×Qh such that

A
(
(⃗th, u⃗h), (⃗sh, v⃗h)

)
+ b(uh;uh, sh) = F(⃗sh, v⃗h) ∀ (⃗sh, v⃗h) ∈ Hh ×Qh . (4.6)

In order to analyze the solvability of (4.6) (equivalently that of (4.5) or (4.4)) in Section 4.2 below,
we will require the finite dimensional versions of the Babuška–Brezzi theory in Banach spaces (cf.
Theorem 3.1) and the Banach–Nečas–Babuška theorem, which are available in [12, Sections 2.2 and
2.3] and [32, Theorem 2.22], respectively. In turn, we will also need the discrete analogue of Theorem
3.2, which is given by the slight improvement of [28, Theorem 3.5] that is stated next.

Theorem 4.1. Let H and Q be reflexive Banach spaces, and let a : H×H → R, b : H×Q → R, and
c : Q×Q → R be given bounded bilinear forms. In addition, let

{
Hh

}
h>0

and
{
Qh

}
h>0

be families of
finite dimensional subspaces of H and Q, respectively, and let Vh be the kernel of b|Hh×Qh

, that is

Vh :=
{
τh ∈ Hh : b(τh, vh) = 0 ∀ vh ∈ Qh

}
. (4.7)

Assume that:

i) a and c are positive semi-definite, and that c is symmetric.

ii) there exists a constant α̃d > 0, independent of h, such that

sup
τh∈Vh
τh ̸=0

a(ϑh, τh)

∥τh∥H
≥ α̃d ∥ϑh∥H ∀ϑh ∈ Vh , (4.8)

iii) and there exists a constant β̃d > 0, independent of h, such that

sup
τh∈Hh
τh ̸=0

b(τh, vh)

∥τh∥H
≥ β̃d ∥vh∥Q ∀ vh ∈ Qh . (4.9)

Then, for each pair (f, g) ∈ H′ ×Q′ there exists a unique (σh, uh) ∈ Hh ×Qh such that

a(σh, τh) + b(τh, uh) = f(τh) ∀ τh ∈ Hh ,

b(σh, vh)− c(uh, vh) = g(vh) ∀ vh ∈ Qh .
(4.10)

Moreover, there exists a constant C̃d > 0, depending only on ∥a∥, ∥c∥, α̃d, and β̃d, such that

∥σh∥H + ∥uh∥Q ≤ C̃d

{
∥f∥H′ + ∥g∥Q′

}
. (4.11)

We stress here that the aforementioned improvement refers to the fact that the symmetry of a,
originally assumed in [28, Theorem 3.5], is actually not needed for Theorem 4.1. In addition to the
above, note as well that the discrete analogue of (3.32) is not required either. The reason for these
simplifications of the analysis is due to the fact that Hh×Qh is the space to which both the unknowns
and test functions of (4.10) belong, and hence, as stipulated by the finite dimensional version of the
Banach–Nečas–Babuška theorem (cf. [32, Theorem 2.22]), in this case one only needs to prove the
discrete analogue of (3.36). In this way, it is easy to see, as done in [28, Theorems 3.4 and 3.5], that
in order to achieve the latter, it suffices to assume the already described hypotheses of Theorem 4.1.

17



4.2 Solvability analysis

In this section we adopt the discrete version of the fixed-point strategy employed in Section 3.3 to
study the solvability of (4.6). For this purpose, we now let Th : Hu

h → Hu
h be the operator defined by

Th(z0,h) := u0,h ∀ z0,h ∈ Hu
h , (4.12)

where (⃗t0,h, u⃗0,h) =
(
(t0,h,σ0,h), (u0,h,γ0,h)

)
∈ Hh ×Qh is the unique solution (to be derived below

under what conditions it does exist) of the linear problem

A
(
(⃗t0,h, u⃗0,h), (⃗sh, v⃗h)

)
+ b(z0,h;u0,h, sh) = F(⃗sh, v⃗h) ∀ (⃗sh, v⃗h) ∈ Hh ×Qh . (4.13)

Then, it is easily seen that (4.6) can be rewritten as the fixed-point equation: Find uh ∈ Hu
h such that

Th(uh) = uh , (4.14)

so that, letting (⃗t0,h, u⃗0,h) be the solution of (4.13) with z0,h := uh, (⃗th, u⃗h) := (⃗t0,h, u⃗0,h) ∈ Hh×Qh

is solution of (4.6), equivalently of (4.4) and (4.5).

In what follows we derive the preliminary results needed to address later on the solvabilities of
(4.13) and (4.14), and hence of (4.6). Indeed, following a similar procedure to the one from Section
3.3, we first observe that the kernel Vh of b|Hh×Qh

reduces to

Vh := Ht
h ×V0,h , (4.15)

where

V0,h :=
{
τh ∈ Hσ

h :

∫
Ω
τh : δh = 0 ∀ δh ∈ Hγ

h and

∫
Ω
vh · div(τh) = 0 ∀vh ∈ Hu

h

}
. (4.16)

At this point, we introduce our first hypotheses on the finite element subspaces, namely

(H.0) H̃σ
h contains the multiplies of the identity tensor I.

(H.1) div(H̃σ
h ) ⊆ Hu

h .

As a consequence of (H.0) and the decomposition (3.9), Hσ
h (cf. (4.1)) can be redefined as

Hσ
h :=

{
τh −

( 1

n|Ω|

∫
Ω
tr(τh)

)
I : τh ∈ H̃σ

h

}
. (4.17)

We remark in advance, however, that for the computational implementation of the Galerkin scheme
(4.6), which will be addressed later on in Section 5, we will utilize a real Lagrange multiplier to impose
the mean value condition on the trace of the unknown tensor lying in Hσ

h .

In turn, thanks to (H.1), V0,h becomes

V0,h :=
{
τh ∈ Hσ

h :

∫
Ω
τh : δh = 0 ∀ δh ∈ Hγ

h and div(τh) = 0 in Ω
}
. (4.18)

Next, for each i ∈
{
1, 2

}
we let Ki,h be the kernel of bi|Ht

h×V0,h
, and notice, similarly as for the

continuous case (cf. (3.47)), that

K1,h = K2,h = Kh :=
{
sh ∈ Ht

h :

∫
Ω
sh : τh = 0 ∀ τh ∈ V0,h

}
. (4.19)
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While, as in the continuous case, the above does not allow us to derive an explicit characterization for
the elements of Kh, this is actually unnecessary since, having already stated that the bilinear form a
is L2

tr(Ω)-elliptic (cf. (3.48)), this property is certainly valid for the subspace Kh. Consequently, the
corresponding hypotheses on a, K1,h, and K2,h specified in the discrete version of Theorem 3.1 (cf.
[12, eqs. (2.19) and (2.20)]) are clearly satisfied with the same constant α̃ from (3.48). Nevertheless,
we notice that [12, eq. (2.20)] is not required in the present case since obviously the dimensions of
K1,h and K2,h coincide (cf. [12, eq. (2.21)] and the remark right before it).

Furthermore, in order to show that for each i ∈
{
1, 2

}
, bi|Ht

h×V0,h
satisfies the discrete version of

the hypothesis iii) of Theorem 3.1, namely eq. (2.22)i in [12], we consider the following additional
hypothesis:

(H.2)
(
V0,h

)d
:=

{
τ d
h : τh ∈ V0,h

}
⊆ Ht

h.

In this way, proceeding analogously as for the proof of Lemma 3.3, that is, given τh ∈ V0,h, bounding
from below with sh = τ d

h ∈ Ht
h, we find that

sup
sh∈Ht

h
sh ̸=0

b2(sh, τh)

∥sh∥0,Ω
≥

b2(τ
d
h , τh)

∥τ d
h∥0,Ω

= ∥τ d
h∥0,Ω ,

which, using (3.49) and the fact that div(τh) = 0, yields

sup
sh∈Ht

h
sh ̸=0

b2(sh, τh)

∥sh∥0,Ω
≥ β̃ ∥τh∥div4/3;Ω ∀ τh ∈ V0,h , (4.20)

with β̃ = c1. A similar reasoning provides the corresponding discrete inf-sup condition for b1 with the
same constant β̃.

Therefore, having a, b1, and b2 satisfied the hypotheses of the discrete version of Theorem 3.1 (cf.
[12, Corollary 2.2]), we conclude the discrete analogue of the global inf-sup condition (3.29), namely,
with the same constant αa from (3.51), there holds

sup
s⃗h∈Vh
s⃗h ̸=0

a(⃗rh, s⃗h)

∥⃗sh∥H
≥ αa ∥⃗rh∥H ∀ r⃗h ∈ Vh . (4.21)

In addition, we know from the continuous analysis (cf. (3.53) and (3.54)) that a and c are positive
semi-definite on H and Q, respectively, so that they certainly keep this property on Hh and Qh. We
have thus shown that the bilinear forms a and c satisfy the hypotheses i) and ii) of Theorem 4.1, and
hence, in order to be able to apply this abstract result, we now add the remaining hypothesis iii) as
an assumption:

(H.3) there exists a positive constant βb,d, independent of h, such that

sup
s⃗h∈Hh
s⃗h ̸=0

b(⃗sh, v⃗h)

∥⃗sh∥H
≥ βb,d ∥v⃗h∥Q ∀ v⃗h ∈ Qh . (4.22)

As already announced, specific finite element subspaces satisfying the four hypotheses (H.0) -
(H.3) will be detailed later on in Section 4.4.
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Now, having a, b, and c satisfied the hypotheses of Theorem 4.1, we conclude, similarly to the
continuous case (cf. (3.62), (3.64)), the existence of a positive constant αA,d, depending on ∥a∥, ∥c∥,
αa, and βb,d, and hence independent of h, such that

sup
(⃗sh,v⃗h)∈Hh×Qh

(⃗sh,v⃗h )̸=0

A
(
(⃗rh, w⃗h), (⃗sh, v⃗h)

)
∥(⃗sh, v⃗h)∥H×Q

≥ αA,d ∥(⃗rh, w⃗h)∥H×Q ∀ (⃗rh, w⃗h) ∈ Hh ×Qh , (4.23)

and thus, for each zh ∈ Hu
h such that ∥zh∥0,4;Ω ≤

αA,d

2
, there holds

sup
(⃗sh,v⃗h)∈Hh×Qh

(⃗sh,v⃗h )̸=0

A
(
(⃗rh, w⃗h), (⃗sh, v⃗h)

)
+ b(zh;wh, sh)

∥(⃗sh, v⃗h)∥H×Q
≥

αA,d

2
∥(⃗rh, w⃗h)∥H×Q (4.24)

for all (⃗rh, w⃗h) ∈ Hh ×Qh.

According to the above, we are now in a position to present the discrete analogues of Lemmas 3.5
and 3.6, and Theorem 3.7, whose proofs follow almost verbatim to those for the continuous case, and
hence only some remarks are provided. We begin with the well-posedness of (4.13), which is the same
as establishing that Th is well-defined.

Lemma 4.2. For each z0,h ∈ Hu
h such that ∥z0,h∥0,4;Ω ≤

αA,d

2
, problem (4.13) has a unique solution

(⃗t0,h, u⃗0,h) =
(
(t0,h,σ0,h), (u0,h,γ0,h)

)
∈ Hh ×Qh, and hence Th(z0,h) := u0,h ∈ Hu

h is well-defined.
Moreover, there holds

∥Th(z0,h)∥0,4;Ω = ∥u0,h∥0,4;Ω ≤ ∥(⃗t0,h, u⃗0.h)∥H×Q ≤ 2

αA,d

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
. (4.25)

Proof. Given z0,h as indicated, and bearing in mind (4.24), it suffices to apply the discrete version
of the Banach–Nečas–Babuška Theorem (cf. [32, Theorem 2.22]) and its corresponding a priori error
estimate.

We continue with the result ensuring that Th maps a ball of Hu
h into itself.

Lemma 4.3. Let Wh be the ball

Wh :=
{
zh ∈ Hu

h : ∥zh∥0,4;Ω ≤
αA,d

2

}
, (4.26)

and assume that

∥uD∥1/2,Γ + ∥f∥0,4/3;Ω ≤
α2
A,d

4
. (4.27)

Then, there holds Th(Wh) ⊆ Wh.

Proof. It follows straightforwardly from (4.25) and (4.27).

The unique solvability of (4.14), and hence, equivalently that of (4.6), is stated next.

Theorem 4.4. Assume that

∥uD∥1/2,Γ + ∥f∥0,4/3;Ω <
α2
A,d

4
. (4.28)

Then, the operator Th has a unique fixed-point uh ∈ Wh. Equivalently, (4.6) has a unique solution
(⃗th, u⃗h) := (⃗t0,h, u⃗0,h) ∈ Hh × Qh with uh ∈ Wh, where (⃗t0,h, u⃗0,h) is the unique solution of (4.13)
with z0,h = uh. Moreover, there holds

∥(⃗th, u⃗h)∥H×Q ≤ 2

αA,d

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
. (4.29)
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Proof. Similarly to the proof of Theorem 3.7, it reduces to employ (4.24), (4.13), (4.25), and (3.43) to
prove that Th : Wh → Wh is a contraction, and then apply the Banach fixed-point theorem.

4.3 A priori error analysis

In this section we derive an a priori error estimate for the Galerkin scheme (4.6) with arbitrary finite
element subspaces satisfying the hypotheses (H.0) up to (H.3) specified in Section 4.2. In other
words, our main goal is to establish a Céa estimate for the error

∥(⃗t, u⃗) − (⃗th, u⃗h)∥H×Q ,

where (⃗t, u⃗) :=
(
(t,σ), (u,γ)

)
∈ H×Q and (⃗th, u⃗h) :=

(
(th,σh), (uh,γh)

)
∈ Hh ×Qh are the unique

solutions of (3.21) and (4.6), respectively, with u ∈ W (cf. (3.67)) and uh ∈ Wh (cf. (4.26)). As a
byproduct of this, we also derive an a priori estimate for ∥p−ph∥0,Ω, where ph is the discrete pressure
computed according to the postprocessing formula suggested by the second identity in (2.7), that is

ph = − 1

n
tr
(
σh + (uh ⊗ uh)

)
. (4.30)

We begin by observing from (3.21) that for each (⃗sh, v⃗h) ∈ Hh ×Qh there holds

A
(
(⃗t, u⃗), (⃗sh, v⃗h)

)
+ b(u;u, sh) = F(⃗sh, v⃗h) ,

which, combined with (4.6), yields for each (⃗sh, v⃗h) ∈ Hh ×Qh

A
(
(⃗t, u⃗)− (⃗th, u⃗h), (⃗sh, v⃗h)

)
= b(uh;uh, sh) − b(u;u, sh) . (4.31)

Now, the triangle inequality gives for each (⃗rh, w⃗h) ∈ Hh ×Qh

∥(⃗t, u⃗) − (⃗th, u⃗h)∥H×Q ≤ ∥(⃗t, u⃗) − (⃗rh, w⃗h)∥H×Q + ∥(⃗rh, w⃗h) − (⃗th, u⃗h)∥H×Q , (4.32)

and then, applying (4.23), subtracting and adding (⃗t, u⃗) in the first component of A, using the
boundedness ofA with constant ∥A∥, which depends on ∥a∥, ∥b∥, and ∥c∥ (cf. (3.41a)), and employing
the identity (4.31), we find that

αA,d ∥(⃗rh, w⃗h) − (⃗th, u⃗h)∥H×Q ≤ sup
(⃗sh,v⃗h)∈Hh×Qh

(⃗sh,v⃗h) ̸=0

A
(
(⃗rh, w⃗h) − (⃗th, u⃗h), (⃗sh, v⃗h)

)
∥(⃗sh, v⃗h)∥H×Q

≤ ∥A∥ ∥(⃗t, u⃗) − (⃗rh, w⃗h)∥H×Q + sup
(⃗sh,v⃗h)∈Hh×Qh

(⃗sh,v⃗h )̸=0

A
(
(⃗t, u⃗) − (⃗th, u⃗h), (⃗sh, v⃗h)

)
∥(⃗sh, v⃗h)∥H×Q

= ∥A∥ ∥(⃗t, u⃗) − (⃗rh, w⃗h)∥H×Q + sup
(⃗sh,v⃗h)∈Hh×Qh

(⃗sh,v⃗h )̸=0

b(uh;uh, sh) − b(u;u, sh)

∥(⃗sh, v⃗h)∥H×Q
.

(4.33)

In turn, subtracting and adding u in the second component of the first term, and then invoking
the boundedness property of b (3.43), and the a priori estimates (3.70) and (4.29) for ∥u∥0,4;Ω and
∥uh∥0,4;Ω, respectively, we obtain

b(uh;uh, sh) − b(u;u, sh) = b(uh;uh − u, sh) + b(uh − u;u, sh)

≤ 4

α̃A

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
∥u− uh∥0,4;Ω ∥s∥0,Ω ,

(4.34)
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where α̃A := min
{
αA, αA,d

}
. In this way, using (4.34) in the last term of (4.33), we obtain

∥(⃗rh, w⃗h) − (⃗th, u⃗h)∥H×Q

≤ ∥A∥
αA,d

∥(⃗t, u⃗) − (⃗rh, w⃗h)∥H×Q +
4

α̃2
A

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
∥u− uh∥0,4;Ω ,

(4.35)

which, replaced back into (4.32), leads to

∥(⃗t, u⃗) − (⃗th, u⃗h)∥H×Q

≤
(
1 +

∥A∥
αA,d

)
∥(⃗t, u⃗) − (⃗rh, w⃗h)∥H×Q +

4

α̃2
A

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
∥u− uh∥0,4;Ω ,

for each (⃗rh, w⃗h) ∈ Hh ×Qh, and hence we conclude that

∥(⃗t, u⃗) − (⃗th, u⃗h)∥H×Q

≤
(
1 +

∥A∥
αA,d

)
dist

(
(⃗t, u⃗),Hh ×Qh)

)
+

4

α̃2
A

{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
∥u− uh∥0,4;Ω .

(4.36)

Hereafter, given a subspace Xh of a generic Banach space
(
X, ∥ · ∥X

)
, we set for each x ∈ X

dist(x,Xh) := inf
xh∈Xh

∥x− xh∥X .

The Céa estimate for the error ∥(⃗t, u⃗) − (⃗th, u⃗h)∥H×Q is stated then as follows.

Theorem 4.5. Assume that for some δ ∈ (0, 1) there holds{
∥uD∥1/2,Γ + ∥f∥0,4/3;Ω

}
≤

δ α̃2
A

4
. (4.37)

Then, there exists a positive constant Cd, depending only on ∥A∥, αA,d, and δ, and hence independent
of h, such that

∥(⃗t, u⃗) − (⃗th, u⃗h)∥H×Q ≤ Cd dist
(
(⃗t, u⃗),Hh ×Qh)

)
. (4.38)

Proof. It suffices to use (4.37) in (4.36), which yields (4.38) with Cd := (1− δ)−1
(
1 +

∥A∥
αA,d

)
.

Regarding the pressure error, we readily deduce from (2.7) and (4.30), applying Cauchy-Schwarz’s
inequality, performing some algebraic manipulations, and employing again the a priori bounds for
∥u∥0,4;Ω and ∥uh∥0,4;Ω (cf. (3.70) and (4.29)), that there exists a positive constant C̃, depending only
on n, α̃A, ∥uD∥1/2,Γ, and ∥f∥0,4/3;Ω, and hence, independent of h, such that

∥p− ph∥0,Ω ≤ C̃
{
∥σ − σh∥0,Ω + ∥u− uh∥0,4;Ω

}
. (4.39)

Thus, combining (4.38) and (4.39), we conclude the existence of a positive constant C̃d, independent
of h, such that

∥(⃗t, u⃗) − (⃗th, u⃗h)∥H×Q + ∥p− ph∥0,Ω ≤ C̃d dist
(
(⃗t, u⃗),Hh ×Qh)

)
. (4.40)

We end this section by stressing that (4.37) and the fact that α̃A := min
{
αA, αA,d

}
guarantee

that the assumptions (3.69) and (4.28) of Theorems 3.7 and 4.4, respectively, are satisfied.
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4.4 Specific finite element subspaces

In this section we resort to [34, Section 4.4] to specify two examples of finite element subspaces Ht
h,

H̃σ
h , H

u
h , and Hγ

h of the spaces L2
tr(Ω), H(div4/3; Ω), L

4(Ω), and L2
skew(Ω), respectively, satisfying the

hypotheses (H.0), (H.1), (H.2), and (H.3) that were introduced in Section 4.2.

4.4.1 Preliminaries

Here we collect some definitions and results that are employed in what follows. Indeed, given an
integer ℓ ≥ 0 and K ∈ Th, we first let Pℓ(K) be the space of polynomials of degree ≤ ℓ defined
on K, whose vector and tensor versions are denoted Pℓ(K) := [Pℓ(K)]n and Pℓ(K) = [Pℓ(K)]n×n,
respectively. Also, we let RTℓ(K) := Pℓ(K)⊕Pℓ(K)x be the local Raviart–Thomas space of order ℓ
defined on K, where x stands for a generic vector in R := Rn. Furthermore, we let bK be the bubble
function on K, which is defined as the product of its n+1 barycentric coordinates, and introduce the
local bubble spaces of order ℓ as

Bℓ(K) := curl
(
bK Pℓ(K)

)
if n = 2 , and Bℓ(K) := curl

(
bK Pℓ(K)

)
if n = 3 ,

where curl(v) :=
(

∂v
∂x2

,− ∂v
∂x1

)
if n = 2 and v : K → R, and curl(v) := ∇× v if n = 3 and v : K → R3.

In addition, we need to set the global spaces

Pℓ(Ω) :=
{
vh ∈ L2(Ω) : vh|K ∈ Pℓ(K) ∀K ∈ Th

}
,

Pℓ(Ω) :=
{
δh ∈ L2(Ω) : δh|K ∈ Pℓ(K) ∀K ∈ Th

}
,

RTℓ(Ω) :=
{
τh ∈ H(div; Ω) : τh,i|K ∈ RTℓ(K) ∀ i ∈

{
1, ..., n

}
, ∀K ∈ Th

}
,

and
Bℓ(Ω) :=

{
τh ∈ H(div; Ω) : τh,i|K ∈ Bℓ(K) ∀ i ∈

{
1, ..., n

}
, ∀K ∈ Th

}
,

where τh,i stands for the ith-row of τh. As noticed in [34], it is easily seen that Pℓ(Ω) and Pℓ(Ω) are
also subspaces of L4(Ω) and L4(Ω), respectively, and that RTℓ(Ω) and Bℓ(Ω) are both subspaces of
H(div4/3; Ω) as well. Actually, since H(div; Ω) is clearly contained in H(div4/3; Ω), any subspace of
the former is also subspace of the latter.

Next, defining H0(div; Ω) :=
{
τ ∈ H(div; Ω) :

∫
Ω tr(τ ) = 0

}
, we recall that a triplet of subspaces

H̃σ
h , H

u
h , and Hγ

h of H(div; Ω), L2(Ω), and L2
skew(Ω), respectively, is said to be stable for the classical

Hilbertian mixed formulation of linear elasticity, if, denoting Hσ
h := H̃σ

h ∩ H0(div; Ω), there exists a
positive constant βe, independent of h, such that

sup
τh∈Hσ

h
τh ̸=0

∫
Ω
δh : τh +

∫
Ω
vh · div(τh)

∥τh∥div;Ω
≥ βe

{
∥vh∥0,Ω + ∥δh∥0,Ω

}
∀ (vh, δh) ∈ Hu

h ×Hγ
h . (4.41)

In turn, since the definition of the bilinear form b (cf. (3.16c)) does not involve the L2
tr(Ω)-variable,

we notice that hypothesis (H.3) (cf. (4.22)) becomes

sup
τh∈Hσ

h
τh ̸=0

∫
Ω
δh : τh +

∫
Ω
vh · div(τh)

∥τh∥div4/3;Ω
≥ βb,d

{
∥vh∥0,4;Ω + ∥δh∥0,Ω

}
∀ (vh, δh) ∈ Hu

h ×Hγ
h . (4.42)
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Certainly, the inequalities (4.41) and (4.42) do not coincide since the spaces Hσ
h and Hu

h employ
different norms in them. However, the following result, already proved in [34, Lemma 4.8], establishes
a very suitable connection between these discrete inf-sup conditions.

Lemma 4.6. Let H̃σ
h , H

u
h , and Hγ

h be subspaces of H(div; Ω), L2(Ω), and L2
skew(Ω), respectively, such

that they satisfy (4.41). In addition, assume that there exists an integer ℓ ≥ 0 such that RTℓ(Ω) ⊆ H̃σ
h

and Hu
h ⊆ Pℓ(Ω). Then Hσ

h := H̃σ
h ∩H0(div4/3; Ω), H

u
h , and Hγ

h satisfy (4.42) with a positive constant
βb,d, independente of h.

According to the above, we now employ the stable triplets for elasticity proposed in [34, Section 4.4]
to describe two examples of finite element subspaces Ht

h, H̃σ
h , H

u
h , and Hγ

h satisfying the hypotheses
(H.0), (H.1), (H.2), and (H.3) from Section 4.2.

4.4.2 PEERS-based finite element subspaces

We first consider the plane elasticity element with reduced symmetry (PEERS) of order ℓ ≥ 0, whose
stability was originally proved in [7] for ℓ = 0 and n = 2, and later on in [40] for ℓ ≥ 0 and n ∈

{
2, 3

}
.

In fact, denoting C(Ω̄) := [C(Ω̄)]n×n, the corresponding subspaces are given by

H̃σ
h := RTℓ(Ω) ⊕ Bℓ(Ω) , Hu

h := Pℓ(Ω) , and Hγ
h := C(Ω̄) ∩ L2

skew(Ω) ∩ Pℓ+1(Ω) . (4.43)

It is easily seen that H̃σ
h andHu

h satisfy (H.0) and (H.1), and, thanks to Lemma 4.6, whose hypotheses

on H̃σ
h and Hu

h are also guaranteed, it is clear that Hσ
h := H̃σ

h ∩ H0(div4/3; Ω), H
u
h , and Hγ

h satisfy
(H.3) (cf. (4.42)). Next, in order to check (H.2), we recall from (4.18) that

V0,h :=
{
τh ∈ Hσ

h :

∫
Ω
τh : δh = 0 ∀ δh ∈ Hγ

h and div(τh) = 0 in Ω
}
,

which, noting that Bℓ(Ω) is divergence free, recalling that the divergence free tensors of RTℓ(Ω) are
contained in Pℓ(Ω) (cf. [33, proof of Theorem 3.3]), and observing that Bℓ(Ω) ⊆ Pℓ+n(Ω), we deduce
that

V0,h ⊆ Pℓ(Ω) ⊕ Bℓ(Ω) ⊆ Pℓ+n(Ω) ,

so that, to accomplish (H.2), that is
(
V0,h

)d ⊆ Ht
h, it suffices to choose

Ht
h := Pℓ+n(Ω) ∩ L2

tr(Ω) . (4.44)

4.4.3 AFW-based finite element subspaces

Our second example is the Arnold–Falk–Winther (AFW) element of order ℓ ≥ 0, which is defined as

H̃σ
h := Pℓ+1(Ω) ∩H(div; Ω) , Hu

h := Pℓ(Ω) , and Hγ
h := L2

skew(Ω) ∩ Pℓ(Ω) , (4.45)

and whose stability for the Hilbertian mixed formulation of linear elasticity is proved in [8]. In this
case, it is also straightforward to see that H̃σ

h andHu
h satisfy (H.0) and (H.1), as well as the hypotheses

required by Lemma 4.6, and hence Hσ
h := H̃σ

h ∩H0(div4/3; Ω), H
u
h , and Hγ

h satisfy (H.3). In turn, for
(H.2), and since V0,h does not seem to be additionally simplifiable, it suffices to take

Ht
h := Pℓ+1(Ω) ∩ L2

tr(Ω) . (4.46)
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4.4.4 The rates of convergence

The approximation properties of Hσ
h , Hu

h , and Hγ
h , for PEERS (cf. (4.43)) as well as for AFW

(cf. (4.45)), whose derivations follow basically from the error estimates of the Raviart–Thomas and
AFW interpolation operators, and of projectors onto piecewise vector and tensor polynomials (cf. [32,
Proposition 1.135]), and which make use of the commuting diagram properties and of the interpolation
estimates of Sobolev spaces, are given as follows (see also [13], [15], [25, eqs. (5.37) and (5.40)]):(
APσ

h

)
there exists a positive constant C, independent of h, such that for each r ∈ [0, ℓ+ 1], and for

each τ ∈ Hr(Ω) ∩H0(div4/3; Ω) with div(τ ) ∈ Wr,4/3(Ω), there holds

dist
(
τ ,Hσ

h

)
≤ C hr

{
∥τ∥r,Ω + ∥div(τ )∥r,4/3;Ω

}
, (4.47)

(
APu

h

)
there exists a positive constant C, independent of h, such that for each r ∈ [0, ℓ+ 1], and for

each v ∈ Wr,4(Ω), there holds
dist

(
v,Hu

h

)
≤ C hr∥v∥r,4;Ω , (4.48)

and(
APγ

h

)
there exists a positive constant C, independent of h, such that for each r ∈ [0, ℓ+ 1], and for

each δ ∈ Hr(Ω) ∩ L2
skew(Ω), there holds

dist
(
δ,Hγ

h

)
≤ C hr∥δ∥r,Ω . (4.49)

In turn, denoting ℓ∗ :=

{
ℓ+ n for PEERS-based
ℓ+ 1 for AFW-based

, the approximation property for Ht
h is similar

to that of Hu
h , that is:(

APt
h

)
there exists a positive constant C, independent of h, such that for each r ∈ [0, ℓ∗ + 1], and for

each s ∈ Hr(Ω) ∩ L2
tr(Ω), there holds

dist
(
s,Ht

h

)
≤ C hr∥s∥r,Ω . (4.50)

We are now in a position to provide the rates of convergence of the Galerkin scheme (4.6) with the
finite element subspaces defined in Sections 4.4.2 and 4.4.3.

Theorem 4.7. Assume that for some δ ∈ (0, 1) there holds (4.37), and let (⃗t, u⃗) :=
(
(t,σ), (u,γ)

)
∈

H × Q and (⃗th, u⃗h) :=
(
(th,σh), (uh,γh)

)
∈ Hh × Qh be the unique solutions of (3.21) and (4.6),

respectively, with u ∈ W (cf. (3.67)) and uh ∈ Wh (cf. (4.26)), whose existences are guaranteed
by Theorems 3.7 and 4.4, respectively. In turn, let p and ph be the exact and approximate pressure
defined by the second identity in (2.7) and (4.30), respectively. Furthermore, given an integer ℓ ≥ 0,
assume that there exists r ∈ [0, ℓ + 1] such that t ∈ Hr(Ω) ∩ L2

tr(Ω), σ ∈ Hr(Ω) ∩ H0(div4/3; Ω),

div(σ) ∈ Wr,4/3(Ω), u ∈ Wr,4(Ω), and γ ∈ Hr(Ω) ∩ L2
skew(Ω). Then, there exists a positive constant

C, independent of h, such that

∥(⃗t, u⃗)− (⃗th, u⃗h)∥H×Q + ∥p− ph∥0,Ω

≤ C hr
{
∥t∥r,Ω + ∥σ∥r,Ω + ∥div(σ)∥r,4/3;Ω + ∥u∥r,4;Ω + ∥γ∥r,Ω

}
.

(4.51)

Proof. It follows straightforwardly from the final Céa estimate (4.40) and the approximation properties(
APσ

h

)
,
(
APu

h

)
,
(
APγ

h

)
, and

(
APt

h

)
.
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5 Numerical results

We report on the performance of the proposed numerical methods. The set of computational tests
collected in this section have been implemented using the open source finite element library FEniCS

[1]. A Newton-Raphson algorithm with null initial guess is used for the resolution of all nonlinear
problems, and the solution of tangent systems resulting from the linearization is carried out with the
multifrontal massively parallel sparse direct solver MUMPS [6].

5.1 Accuracy verification

The convergence of the methods is assessed in 2D and 3D. We consider the unit square (0, 1)2 and unit
cube (0, 1)3 domains, discretized into meshes that are successively refined. We fix λ = 0.2 together
with the heterogeneous viscosity and inverse permeabilities µ(x1, x2) = exp(−x1x2), η(x1, x2) = 2 +
sin(x1x2) (in 2D) and µ(x1, x2, x3) = exp(−x1x2x3), η(x1, x2, x3) = 2 + sin(x1x2x3) (in 3D). And we
choose a boundary velocity uD and a forcing term f such that the exact solutions are

uex(x1, x2) =

(
cos(πx1) sin(πx2)
− sin(πx1) cos(πx2)

)
, pex(x1, x2) = sin(x1x2),

and

uex(x1, x2, x3) =

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)
cos(πx1) cos(πx2) sin(πx3)

 , pex(x1, x2) = sin(x1x2x3),

for the 2D and 3D cases, respectively.

The condition of zero-average pressure (which, owing to (2.7), entails to fix the trace of the tensor
quantity σ + u ⊗ u) is imposed by means of a real Lagrange multiplier ξ. The modified system (cf.
(3.19)) is then of the form

a(⃗t, s⃗) + b(⃗s, u⃗) + b(u;u, s) + b̂1(τ , ξ) = ⟨τ ν,uD⟩ ∀ s⃗ ∈ H ,

b(⃗t, v⃗) − c(u⃗, v⃗) = −
∫
Ω
f · v ∀ v⃗ ∈ Q ,

b̂2(σ,u, ζ) =
∫
Ω tr(σex + uex ⊗ uex)ζ ∀ ζ ∈ R,

(5.1)

where b̂1(τ , ξ) :=
∫
Ω tr(τ )ξ, and b̂2 is associated with the term

∫
Ω tr(σ+u⊗u)ζ. Note that we do not

have a zero-mean manufactured pressure, and in this case we require the additional right-hand side
term in the third equation of (5.1).

Errors between exact and approximate solutions relevant to the norms used in the analysis of
Section 4 are denoted as

e(t) := ∥t− th∥0,Ω e(σ) := ∥σ − σh∥0,div4/3;Ω , e(u) := ∥u− uh∥0,4;Ω ,

e(γ) := ∥γ − γh∥0,Ω , e(p) := ∥p− ph∥0,Ω .

The error decay according to the mesh refinement is reported in Figure 5.1. We plot, in log-log scale,
errors for the individual variables in the norms above vs the number of degrees of freedom associated
with each triangulation. Apart from the rotation tensor, which has a slightly better convergence than
the optimal for the PEERS-based family and for the lowest-order case only, the convergences observed
for all fields, even for coarser meshes, and for the two methods in 2D and 3D and using polynomial
degrees ℓ = 0 (dashed lines) and ℓ = 1 (dot-dashed lines) are all optimal, O(hl+1), in accordance
with Theorem 4.7. In addition, we show in Figures 5.2 and 5.3 approximate solutions after 4 steps of
uniform mesh refinement. All field variables are well resolved.
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Figure 5.1: Error history for the mixed methods defined using the spaces in (4.43)-(4.44) (left panels)
and in (4.45)-(4.46) (right panels), using manufactured solutions in 2D (top) and 3D (bottom).

5.2 Channel flow

Next we test the performance of the mixed finite element methods in reproducing flow patterns on
a channel with three obstacles (using the domain and boundary configuration from the micro-macro
models for incompressible flow introduced in [48]), and including mixed boundary conditions. An
external forcing term is imposed f = (0, 1)t. On the inlet (the bottom horizontal section of the
boundary defined by (0, 1)×{−2}) we prescribe a parabolic inflow velocity uin = (0, x1(1−x1))

t. On
the outlet (the vertical segment on the top left part of the boundary, defined by {−2} × (0, 1)) we
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Figure 5.2: Sample of approximate solutions (velocity with line integral convolution) for the conver-
gence test, obtained using the second-order AFW-based finite element family.

Figure 5.3: Sample of approximate solutions (velocity with streamlines) for the convergence test,
obtained using the first-order PEERS-based finite element family.

impose a zero normal Cauchy stress, which means that we need to set

(σ + u⊗ u)ν = 0 on Γout,

and on the remainder of the boundary we set no-slip velocity u = 0. The above Neumann boundary
condition can be easily incorporated in the analysis developed in Sections 3 and 4 by imposing it
via either a Nitsche method or a Lagrange multiplier. We proceed with the former for the present
numerical example. We use η = 0.1+x21+x22, λ = 0.02, and µ = exp(−x1x2). No closed-form solution
is available for this problem. For this test we use ℓ = 1 and the PEERS-based finite element family.
The computed flow profiles are shown in Figure 5.4.

5.3 Flow on an intracranial aneurysm

We finalize this section by computing numerical solutions on a section of the middle cerebral artery
with an aneurysm (abnormal bulge of a blood vessel). The surface mesh was obtained from the
Gmsh repository1, and it was then truncated and volume-meshed into 68’024 unstructured tetrahedral
elements. For this test we use the AFW-based finite element family of second-order.

As a typical indicator of a risk factor for aneurysm rupture, we compute the wall shear stress (see,
e.g., [45]). Its magnitude on the boundary (representing the tangential drag exerted by flowing blood

1https://gitlab.onelab.info/gmsh/gmsh/-/blob/master/examples/api/aneurysm2.stl
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Figure 5.4: Approximate strain rate magnitude, total stress magnitude, velocity magnitude and line
integral contour, and postprocessed pressure for the Navier–Stokes–Brinkman equations on a complex
channel with obstacles. Solutions computed with a PEERS-based method using ℓ = 1.

on the aneurysmal sac and in general, on the vessel wall) is computed as the vector field wh ∈ Hu
h

such that ∑
e∈Eh,w

∫
e
wh · vh =

∑
e∈Eh,w

1

he

∫
e
(σh + uh ⊗ uh)s · vh ∀vh ∈ Hu

h ,

where Eh,w stands for the set of faces e that are contained in the polyhedral approximation of the vessel
wall that is inherited from the triangulation Th, and τs := τν − (τν · ν)ν denotes the tangential part
of τ . We do not require differentiation of the velocity as in the usual postprocess-based computation
of the wall shear stress.

The parameters for the incompressible fluid (in this case, blood) were defined by a constant density
of 1g/cm3 and a dynamic viscosity µ = 3.5 · 10−3Kg ·m−1s−1 (and we take λ = 1 and η = 10). We
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Figure 5.5: Approximate strain rate magnitude, wall shear stress magnitude, velocity streamlines, and
postprocessed pressure for the Navier–Stokes–Brinkman equations on a cerebral aneurysm. Solutions
computed with an AFW-based method using ℓ = 1.

impose a zero external force. At the vessel walls the no-slip condition u = 0 is imposed. On the
inlet (a disk-shaped surface on the parent artery branch near to the visualization center) we impose
a constant velocity profile u = −umν (with um = 1 cm/s), while at the outlet (the caps at the two
remaining distal ends), and differently than the previous example, we set σν = 0. This condition
is simply included in the definitions of the spaces to which σ and σh belong, so that the continuous
and discrete analyses remain basically unchanged. Under physiological circumstances the wall shear
stress magnitude is of the order of 10 dyne/cm2. The initiation of atherosclerosis is associated with
a decrease in wall shear stress and a reduction in the function of several endothelial cell mechanisms.
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We plot in Figure 5.5 the obtained numerical solutions. It is observed that the wall shear stress is very
low (magnitude less than 0.1 dyne/cm2) in the aneurysm and we also see a large recirculation with a
much lower velocity in that region. These findings are in qualitative agreement with, e.g., [43, 46].
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[22] S. Caucao, R. Oyarzúa and S. Villa-Fuentes, A new mixed-FEM for steady-state natural
convection models allowing conservation of momentum and thermal energy. Calcolo 57 (2020),
no. 4, Paper No. 36.

[23] S. Caucao and I. Yotov, A Banach space mixed formulation for the unsteady Brinkman-
Forchheimer equations. IMA J. Numer. Anal. 41 (2021), no. 4, 2708–2743.

[24] E. Colmenares, G.N. Gatica and W. Miranda, Analysis of an augmented fully-mixed finite
element method for a bioconvective flows model. J. Comput. Appl. Math. 393 (2021), Paper No.
113504.

[25] E. Colmenares, G.N. Gatica and S. Moraga, A Banach spaces-based analysis of a new fully-
mixed finite element method for the Boussinesq problem. ESAIM Math. Model. Numer. Anal. 54
(2020), no. 5, 1525–1568.

[26] E. Colmenares, G.N. Gatica and R. Oyarzúa, Analysis of an augmented mixed-primal
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