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A fully-DG method for the stationary Boussinesq system

Eligio Colmenares, Ricardo Oyarzúa,
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Abstract

In this work we present and analyze a finite element scheme yielding discontinuous Galerkin approx-
imations to the solutions of the stationary Boussinesq system for the simulation of non-isothermal
flow phenomena. The model consists of a Navier-Stokes type system, describing the velocity and the
pressure of the fluid, coupled to an advection-diffusion equation for the temperature. The proposed
numerical scheme is based on the standard interior penalty technique and an upwind approach
for the nonlinear convective terms and employs the divergence-conforming Brezzi-Douglas-Marini
(BDM) elements of order k for the velocity, discontinuous elements of order k − 1 for the pressure
and discontinuous elements of order k for the temperature. Existence and uniqueness results are
shown and stated rigorously for both the continuous problem and the discrete scheme, and optimal
a priori error estimates are also derived. Numerical examples back up the theoretical expected
convergence rates as well as the performance of the proposed technique.
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1 Introduction

Non-isothermal flows refer to a basic physical process of fluid flows with varying temperature. This
phenomenon commonly appears, and its research is of crucial relevance, in several situations in engi-
neering and applied sciences, in particular in desalination processes based on sweeping gas membrane
distillation (see [38]).

The Boussinesq hypothesis allows to study such flows under the assumption that variations in fluid
density have no effect on the flow field, except that they give rise to buoyancy forces [7, 40].

The mathematical model based on the Boussinesq approximation for non-isothermal flows is then a
system that consists of the Navier-Stokes equations (for describing the velocity and the pressure of the
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fluid) and an advection-diffusion equation (for modeling the temperature field) coupled by means of a
buoyancy term and convective heat transfer. Because of its relevance and complexity, a wide variety
of numerical techniques to approximate this and related models have been proposed so far (see, e.g.,
[2, 3, 4, 6, 12, 13, 15, 16, 17, 18, 21, 22, 23, 35, 36, 37, 41] and references therein).

To the best of our knowledge, [6] is the first method developed for this problem based on a finite element
primal formulation. There the topological degree theory is applied to state existence results of solutions
and, at discrete level, it is showed that the use of equal-order finite element subspaces for the velocity
and the temperature leads to optimal–order convergence. The same results are later extended in [18]
using a dual-mixed finite element technique, employing the Leray-Shauder theory and, at discrete
level, inf-sup compatible finite element spaces constructed over triangulations with a macroelement
structure [29, 30]. Other related primal techniques including projection-based strategies, adaptivity
and divergence-free velocity approximations are proposed in [2, 12, 23, 35, 36, 37, 41] whereas the
works [3, 4, 15, 16, 17, 21, 22] deal with the design of mixed finite element methods. These references
consider the model with constant and/or temperature-dependent parameters and different boundary
conditions.

In particular, [35, 36, 37] are proposed divergence-conforming schemes, based on a discontinuous
Galerkin method for the Navier-Stokes equations, that yield exactly divergence-free velocity approx-
imations; an essential constraint of the governing equations since it particularly guarantees that the
solutions to the flow equations are locally conservative as well as energy stable (see [10, 11, 32], for
more details in this regard). Regarding the discretization of the corresponding heat equation, three
different approaches have been employed. In [36] it is considered a conforming scheme for the stan-
dard primal formulation, where the derivation of the corresponding a priori estimates relies on the
introduction of a suitable lifting of the Dirichlet datum which may lead to an unstable discretization of
(2.5) (see [36, Section 4.2]). In addition, a mixed-primal approach (introducing a Lagrange multiplier)
and a mixed (introducing an additional vector variable) formulation have been proposed in [35, 37]
to overcome this drawback, at the price of assuming that the non-homogeneous Dirichlet boundary
condition for the temperature is sufficiently small.

According to the above discussion, in this work we propose a fully-DG finite element method for the
Boussinesq problem with the following two main features:

1. As in [36, 37], it provides an exactly divergence-free approximation of the velocity.

2. The a priori estimates are derived without assuming any sufficiently small data assumption and
without employing any suitable lifting of the Dirichlet datum, thus avoiding the possibility of
obtaining an unstable discretization.

More precisely, we introduce a fully discontinuous Galerkin scheme based on the standard interior
penalty technique and an upwind approach (that is, for both the fluid and the temperature equations),
such as in [36]. The finite element subspaces are given by the divergence-conforming Brezzi-Douglas-
Marini (BDM) elements of order k for the velocity, and discontinuous elements of order k − 1 and
order k for the pressure and the temperature, respectively.

The rest of the work is structured as follows. In Section 2 we introduce the model problem and the
analysis of its weak formulation. In particular, for the sake of a better understanding of our approach,
in Section 2.4 we carry out the solvability analysis of the continuous problem. In particular we follow
the analysis in [18] to show that the a priori estimates explicitly depend on the inverse of the viscosity
and the thermal conductivity and on a negative power of a positive parameter which is chosen close
to zero (see Theorem 2.2).

Throughout Section 3 we introduce and analyze the corresponding discrete problem. Next, in
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Section 4 we derive the a priori error analysis, and finally in Section 5 provide some numerical examples
to illustrate the performance of the numerical scheme and to confirm the theoretical convergence rates.

2 The model problem

2.1 Preliminary notations and definitions

The model to be considered will be set in an open and bounded spatial domain Ω ⊆ Rd, with d = 2 or
d = 3, with polyhedral boundary Γ with outward unit normal n. Also, we suppose that ΓD ,ΓN ⊆ Γ
satisfy ΓD ∩ ΓN = ∅, |ΓD| > 0 and Γ = ΓD ∪ ΓN. Standard notations for Lebesgue and Sobolev
spaces will be employed. In particular, W s,p(Ω) (s ≥ 0) stands for the space of all the Lp(Ω) (p ≥ 1)
functions whose distributional derivatives up to order s are in Lp(Ω), and their respective norm and
seminorm are denoted by ‖ · ‖s,p,Ω and | · |s,p,Ω. When p = 2, we denote by Hs(Ω) := W s,2(Ω),
‖ · ‖s,Ω := ‖ · ‖s,2,Ω and | · |s,Ω := | · |s,p,Ω, respectively. The case s = 1/2 on the domain ΓD corresponds
to the space of traces, denoted by H1/2(ΓD), on ΓD with norm defined as

‖φ‖1/2,ΓD
= inf

{
‖ψ‖1,Ω : ψ ∈ H1(Ω), ψ|ΓD

= φ
}
.

The space of functions with trace zero on subdomain Γ? ⊆ Γ, with |Γ?| > 0, will be denoted by
H1

Γ?
(Ω) (or H1

0 (Ω) when Γ? = Γ), for which, thanks to the generalized Poincaré inequality, there
exists CFP > 0 (depending only on Ω and Γ?), such that

‖ψ‖1,Ω ≤ CFP |ψ|1,Ω ∀ψ ∈ H1
Γ?

(Ω) . (2.1)

Also, we will use and denote by L2
0(Ω) to the space of L2-functions with zero mean value over Ω.

Likewise, we will make reference to the vector-valued Hilbert spaces

H(div,Ω) :=
{
w ∈ [L2(Ω)]d : divw ∈ L2(Ω)

}
,

H0(div,Ω) :=
{
w ∈H(div,Ω) : w · n = 0 on Γ

}
,

H0(div0,Ω) :=
{
w ∈H0(div,Ω) : divw = 0 in Ω

}
.

We further recall that the Sobolev embedding H1(Ω) ↪→ Lq(Ω) holds for 1 ≤ q <∞ when d = 2 and
1 ≤ q ≤ 6 when d = 3. In particular, there exists a constant, let us say CSob(q, d) > 0, depending only
on the domain, such that

‖ψ‖0,q,Ω ≤ CSob(q, d)‖ψ‖1,Ω for

{
q ≥ 1 if d = 2 ,

q ∈ [1, 6] if d = 3.
(2.2)

The norm ‖ · ‖, with no subscripts, will be use for denoting the natural norm of an element or an
operator in any product function space. A generic, positive constant is denoted by C which, unless
labeled, is independent of any mesh parameters and data parameters.

2.2 The stationary Boussinesq problem: strong and weak forms

The equations for describing steady thermally driven flows in an enclosure Ω, using the Boussinesq
approximation, reads: Find the velocity u = (ui)1≤i≤d : Ω −→ Rd, the pressure p : Ω −→ R and the
temperature θ : Ω −→ R satisfying the following system of partial differential equations

− ν∆u + (u · ∇)u + ∇p − θ g = 0 , divu = 0,

−κ∆θ + u · ∇θ = 0

 in Ω , (2.3)
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where ν > 0 stands for the kinematic viscosity of the fluid, g ∈ [L2(Ω)]d is the acceleration due to
gravity and κ > 0 is the thermal conductivity of the fluid.

Equations in the first row of (2.3) express the momentum and mass conservation, respectively, and
the latter one particularly enforces the divergence-free constraint on the velocity. The term θ g appe-
aring there is known as a buoyancy force and drives the fluid flow. In turn, the diffusion–convection
equation appearing in the second row of (2.3) expresses the energy conservation and describes the
heat distribution in the fluid.

To complete the system (2.3) we need to specify appropriate boundary conditions. To do so, we
assume that the fluid has zero velocity relative to the boundary Γ (a no-slip condition/homogeneous
Dirichlet condition for the fluid velocity), that its temperature is given and prescribed on the boundary
ΓD (a non-homogeneous Dirichlet condition for the temperature) and that there is no heat flow across
ΓN (an isolated surface/homogeneous Neumann condition for the temperature). Hence, denoting the
prescribed Dirichlet temperature by θD ∈ H1/2(ΓD), we then arrive at the following physical boundary
conditions

u = 0 on Γ , θ = θD on ΓD and κ
∂θ

∂n
= 0 on ΓN . (2.4)

To attain the standard weak formulation of (2.3)-(2.4), we multiply the equations in (2.3) by appropri-
ate test functions v ∈ [H1

0 (Ω)]d, q ∈ L2
0(Ω) and ψ ∈ H1

ΓD
(Ω), respectively, integrate in the domain, then

use integration-by-parts formulae in the diffusion terms and after incorporating the boundary condi-
tions (2.4), we obtain the following variational formulation: Find (u, p, θ) ∈ [H1

0 (Ω)]d×L2
0(Ω)×H1(Ω)

with θ|ΓD
= θD such that

A S(u,v) + C S(u;u,v) − BS(v, p) = DS(θ,v),

BS(u, q) = 0 ,

A T (θ, ψ) + C T (u; θ, ψ) = 0,

(2.5)

for all (v, q, ψ) ∈ [H1
0 (Ω)]d×L2

0(Ω)×H1
ΓD

(Ω), where the bilinear forms A S : [H1
0 (Ω)]d× [H1

0 (Ω)]d → R
and A T : H1(Ω)×H1(Ω)→ R are defined by

A S(u,v) = ν

∫
Ω
∇u : ∇v and A T (θ, ψ) = κ

∫
Ω
∇θ · ∇ψ , (2.6)

BS : [H1
0 (Ω)]d × L2

0(Ω)→ R is the bilinear form associated to the divergence operator, namely

BS(v, q) =

∫
Ω
q divv (2.7)

whereas C S : [H1
0 (Ω)]d × [H1

0 (Ω)]d × [H1
0 (Ω)]d → R and C T : [H1

0 (Ω)]d ×H1(Ω)×H1(Ω)→ R are the
trilinear forms linked to the convective terms, given by

C S(w;u,v) =

∫
Ω

(∇u)w · v , and C T (w; θ, ψ) =

∫
Ω

(w · ∇θ)ψ . (2.8)

Finally, the form D : H1(Ω)× [H1(Ω)]d −→ R is associated to the buoyancy term and it is defined by

DS(θ,v) =

∫
Ω
θ g · v. (2.9)
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2.3 Stability properties

We state now some properties of the forms defining the variational problem (2.5). Firstly, by their
own definitions and using the Cauchy-Schwarz inequality, it is easy to check that the forms A S and
A T defined in (2.6) are bounded on their respective spaces, satisfying∣∣∣A S(u,v)

∣∣∣ ≤ ν ‖u‖1,Ω ‖v‖1,Ω ∀u,v ∈ [H1(Ω)]d (2.10)∣∣∣A T (θ, ψ)
∣∣∣ ≤ κ ‖θ‖1,Ω ‖ψ‖1,Ω ∀ θ, ψ ∈ H1(Ω) . (2.11)

In addition, thanks to the Poincaré inequality with constant CFP > 0 (see (2.1)) it follows that

A S(v,v) = ν |v|21,Ω ≥ ν C−1
FP‖u‖

2
1,Ω ∀v ∈ [H1

0 (Ω)]d (2.12)

A T (ψ,ψ) ≥ κ |ψ|21,Ω ≥ κC−1
FP‖ψ‖

2
1,Ω ∀ψ ∈ H1

ΓD
(Ω) , (2.13)

and so the bilinear forms A S and A T are elliptic on [H1
0 (Ω)]d and H1

ΓD
(Ω), respectively. In addition,

by the Cauchy-Schwarz inequality and the fact that ‖divv‖0,Ω ≤ d1/2 ‖∇v‖0,Ω, we have that the
bilinear form BS defined in (2.7) is clearly continuous, that is,∣∣∣BS(q,v)

∣∣∣ ≤ d1/2 ‖q‖0,Ω ‖v‖1,Ω ∀ q ∈ L2
0(Ω), ∀v ∈ [H1(Ω)]d ,

and satisfies the inf-sup condition

sup
v∈[H1

0 (Ω)]d

v 6=0

BS(v, q)

‖v‖1,Ω
≥ β ‖q‖0,Ω ∀ q ∈ L2

0(Ω) , (2.14)

for some positive constant β, only depending on Ω, which comes from the the well-known fact that the
divergence operator is an isomorphism from X⊥ onto L2

0(Ω) (and thus surjective), where X stands
for the kernel of BS (see [26, Corollary I.2.4]), that is,

X =
{
v ∈ [H1

0 (Ω)]d : BS(v, q) = 0 , ∀q ∈ L2
0(Ω)

}
=
{
v ∈ [H1

0 (Ω)]d : divv = 0
}
. (2.15)

In turn, regarding the trilinear forms C S and C T (cf. (2.8)), we use the Hölder’s inequality to find
that ∣∣∣C S(w;u,v)

∣∣∣ ≤ ‖w‖0,q,Ω‖∇u‖0,Ω‖v‖0,q′,Ω, (2.16)∣∣∣C T (w; θ, ψ)
∣∣∣ ≤ ‖w‖0,q,Ω ‖∇θ‖0,Ω ‖ψ‖0,q′,Ω , (2.17)

for all w,u,v ∈ [H1(Ω)]d and θ, ψ ∈ H1(Ω), where q and q′ satisfy 1
q + 1

q′ = 1
2 . In particular, taking q

and q′ consistently with the dimension d in agreement with (2.2), from these estimates we obtain∣∣∣C S(w;u,v)
∣∣∣ ≤ CS ‖w‖1,Ω ‖u‖1,Ω ‖v‖1,Ω, (2.18)∣∣∣C T (w; θ, ψ)
∣∣∣ ≤ CT ‖w‖1,Ω ‖θ‖1,Ω ‖ψ‖1,Ω . (2.19)

for all w,u,v ∈ [H1(Ω)]d and θ, ψ ∈ H1(Ω). Moreover, by using an integration-by-parts formula, it
follows that both C S and C T are skew-symmetric with respect to the last two components whenever
the first argument is divergence-free and has normal component zero on the boundary, that is,

C S(w;u,v) = −C S(w;v,u) and C T (w; θ, ψ) = −C T (w;ψ, θ) , (2.20)
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for all w ∈X, u,v ∈ [H1(Ω)]d and θ, ψ ∈ H1(Ω). In particular, taking v = u and ψ = θ in (2.20)

C S(w;v,v) = 0 and C T (w;ψ,ψ) = 0 , (2.21)

for all w ∈X, v ∈ [H1(Ω)]d and ψ ∈ H1(Ω).

As for the form DS defined in (2.9), by using again the Hölder’s inequality, we easily find that∣∣∣DS(θ,v)
∣∣∣ ≤ ‖θ‖0,q,Ω‖g‖0,Ω‖v‖0,q′,Ω , (2.22)

for all v ∈ [H1(Ω)]d and θ ∈ H1(Ω), with q and q′ satisfying 1
q + 1

q′ = 1
2 . Then, applying the Sobolev

inequality (2.2) with q and q′ taken consistently with the dimension d, there holds∣∣∣DS(θ,v)
∣∣∣ ≤ ‖θ‖0,q,Ω‖g‖0,Ω‖v‖0,q′,Ω ≤ CD ‖g‖0,Ω ‖θ‖1,Ω ‖v‖1,Ω , (2.23)

for all v ∈ [H1(Ω)]d and θ ∈ H1(Ω).

2.4 Well-posedness of the weak formulation

In this section we revisit the analysis of existence and uniqueness of solution of problem (2.5), originally
studied in [33] and [34] for sufficiently smooth boundaries (see also [6]).

We begin by noticing that, as in the standard velocity-pressure formulation for the Navier-Stokes
equations, the divergence-free constraint given by the second equation of (2.5) implies that an eventual
solution u must belong to the kernel of the bilinear form BS (defined in (2.15)) and so the fluid
problem can be equivalently reduced to X, without pressure, thanks to the inf-sup condition (2.14).
More precisely, problem 2.5 is equivalent to the reduced one: Find (u, θ) ∈ X × H1(Ω), such that
θ|ΓD

= θD and:
A S(u,v) + C S(u;u,v) = DS(θ,v),

A T (θ, ψ) + C T (u; θ, ψ) = 0,
(2.24)

for all (v, ψ) ∈X ×H1
ΓD

(Ω).

According to the above, in what follows we focus on establishing the well-posedness of (2.24). We
begin by deriving the corresponding a priori estimates which later on will help us to prove existence
of solution by means of the Leray-Schauder Principle/Shafer’s Theorem (see Section 2.4.2).

2.4.1 A priori estimates

In what follows we derive a priori bounds for weak solutions to the reduced problem (2.24). To
that end, in particular for handling the non-homogeneous Dirichlet condition on the temperature, we
introduce the following result.

Lemma 2.1 Let Ω be a bounded domain in Rd, d = 2 or d = 3, with Lipschitz continuous boundary.
Then for any δ > 0, there exists an extension operator Eδ : H1/2(ΓD)→ H1(Ω), such that

‖Eδψ‖0,3,Ω ≤ CE,1δ‖ψ‖1/2,ΓD
and ‖Eδψ‖1,Ω ≤ CE,2

(
δ−4 + 1

)
‖ψ‖1/2,ΓD

, (2.25)

for all ψ ∈ H1/2(ΓD), with CE,1, CE,2 > 0 independent of δ.
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Proof. The result follows from a slight modification of the proof of [18, Lemma 3.2]. �

Using this extension operator, for the forthcoming analysis we fix a suitable δ > 0 (to be specified
below in Theorem 2.2), and write the temperature θ as

θ = θ0 + θδ, with θδ = Eδ(θD) and θ0 ∈ H1
ΓD

(Ω). (2.26)

The main result of this section is established now.

Theorem 2.2 Let (u, θ) be a solution to (2.24). Then, for a fixed δ > 0, satisfying

Ĉ ν−1 κ−1 δ ‖g‖0,Ω ‖θD‖1/2,ΓD
≤ 1

2
, (2.27)

with Ĉ > 0 independent of the physical parameters (see (2.34)), the following a priori estimates hold

‖u‖1,Ω ≤ C1(δ, ν, g, θD) and ‖θ‖1,Ω ≤ C2(δ, θD) , (2.28)

with

C1(δ, ν, g, θD) := CAP,1 (δ−4 +1) ν−1 ‖g‖0,Ω ‖θD‖1/2,ΓD
and C2(δ, θD) := CAP,2 (δ−4 +1) ‖θD‖1/2,ΓD

,
(2.29)

where CAP,1, CAP,2 are positive constants independent of the physical parameters.

Proof. Let us suppose that (u, θ) is a solution to (2.24) and set θδ = Eδ(θD) and θ0 = θ − θδ. Hence,
taking v = u and ψ = θ0 in (2.24), and using the properties (2.20) and (2.21) of the trilinear forms
C S and C T , we find

A S(u,u) = DS(θ0 + θδ,u),

A T (θ0, θ0) = −A T (θδ, θ0) − C T (u; θδ, θ0) = −A T (θδ, θ0) + C T (u; θ0, θδ).
(2.30)

Using the ellipticity of A S and the continuity of the bilinear form DS (see (2.12) and (2.23)) in the
first equation of (2.30), we have that

ν C−1
FP ‖u‖

2
1,Ω ≤ CD ‖g‖0,Ω ‖θ0 + θδ‖1,Ω ‖u‖1,Ω ,

and then, after simplifying and using the triangle inequality, we obtain

‖u‖1,Ω ≤ CFPCD ν
−1 ‖g‖0,Ω

(
‖θ0‖1,Ω + ‖θδ‖1,Ω

)
. (2.31)

On the other hand, using the continuity and the ellipticity of A T (see (2.11) and (2.13)), the second
identity in (2.21), the estimate (2.19) (with q = 6 and q′ = 3) of the trilinear form C T , and subsequently
the Sobolev embeddings [H1(Ω)]d ↪→ [L6(Ω)]d and H1(Ω) ↪→ L3(Ω) (see (2.2)) in the second equation
of (2.30), and finally the inequalities in (2.25), it follows that

κC−1
FP ‖θ0‖21,Ω ≤ κ‖θ0‖1,Ω ‖θδ‖1,Ω + ‖u‖0,6,Ω‖∇θ0‖0,Ω‖θδ‖0,3,Ω

≤ κ‖θ0‖1,Ω ‖θδ‖1,Ω + CSob(3, d)CE,1δ ‖u‖1,Ω‖θ0‖1,Ω‖θD‖1/2,ΓD
,

and, after simplifying, we obtain

‖θ0‖1,Ω ≤ CFP‖θδ‖1,Ω + κ−1CFPCSob(3, d)CE,1δ‖u‖1,Ω‖θD‖1/2,ΓD
. (2.32)
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Using (2.32) in (2.31) we get

‖u‖1,Ω ≤ CD ν
−1 ‖g‖0,ΩCFP(CFP +1)‖θδ‖1,Ω + κ−1ν−1C2

FPCSob(3, d)CE,1δ‖u‖1,Ω‖θD‖1/2,ΓD
. (2.33)

Thus, defining the positive constant Ĉ in (2.27) as

Ĉ = CDC
2
FPCSob(3, d)CE,1, (2.34)

which is clearly independent of the physical parameters, from (2.27), (2.33), and the second estimate
in (2.25), we readily obtain

‖u‖1,Ω ≤ 2CD CFP(CFP + 1) ν−1 ‖g‖0,Ω ‖θδ‖1,Ω . (2.35)

In turn, by replacing (2.35) in (2.32), we get

‖θ0‖1,Ω ≤
1

2
(3CFP + 1) ‖θδ‖1,Ω , (2.36)

which together with (2.26) and the triangle inequality, implies

‖θ‖1,Ω ≤
3

2
(CFP + 1) ‖θδ‖1,Ω. (2.37)

According to the above, the result follows from (2.35), (2.37) and the second estimate in (2.25).

�

Remark 2.1 It is important to observe here that, as long as δ approaches to 0, the right-hand sides
in estimates (2.28) exploit, and this issue is clearly inherited when the temperature θ is approximated
through a conforming scheme, which may lead to an unstable discretization of (2.5) (see [36, Section
4.2]). As we will see next in Section 3.3, this is no longer an issue when using a non-conforming
approach to approximate the temperature θ, since the Dirichlet datum θD appears on the right hand
side of the system, thus no lifting operators must be used in the analysis.

2.4.2 Existence of solution

In this section we provide the existence analysis to problem (2.24) by using the following special case
of the Leray–Schauder Principle, known as Schaefer’s Theorem. The statement is as follows:

Theorem 2.3 Let B be a Banach space and L : B −→ B a continuous and compact operator.
Assume further that the set{

x ∈ B : x = λL(x) for some λ ∈ [0, 1]
}
,

is bounded. Then L has a fixed point.

To put the problem (2.24) in the context of Theorem 2.3, let us firstly consider a linearized version
of (2.24) defined as: Given (w, φ) ∈ X × H1

ΓD
(Ω) and θδ = EδθD, with δ > 0 defined according to

(2.27), find (u, θ0) ∈X ×H1
ΓD

(Ω) satisfying

A S(u,v) + C S(w;u,v) = DS(φ+ θδ,v),

A T (θ0, ψ) + C T (w; θ0, ψ) = −A T (θδ, ψ) − C T (w; θδ, ψ) ,
(2.38)
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or equivalently,
Aw((u, θ0), (v, ψ)) = F(w,φ)(v, ψ) ∀ (v, ψ) ∈ X ×H1

0 (Ω). (2.39)

where,
Aw((u, θ0), (v, ψ)) = A S(u,v) + C S(w;u,v) + A T (θ0, ψ) + C T (w; θ0, ψ) (2.40)

and
F(w,φ)(v, ψ) = DS(φ+ θδ,v) − A T (θδ, ψ) − C T (w; θδ, ψ) (2.41)

for all (v, ψ) ∈ X ×H1
ΓD

(Ω). Secondly, let us consider the following fixed-point operator:

L : X ×H1
ΓD

(Ω) −→ X ×H1
ΓD

(Ω)

(w, φ) 7−→ (u, θ0) := (L1(w, φ),L2(w, φ)) ,
(2.42)

where, given (w, φ) ∈ X × H1
ΓD

(Ω), (u, θ0) := (L1(w, φ),L2(w, φ)) is the unique solution (to be
verified next in Lemma 2.4) of problem 2.38. Then, it is quite clear that to prove existence and
uniqueness of solution of problem (2.24) is equivalent to prove that there exists a unique (w, φ) ∈
X ×H1

ΓD
(Ω), such that

(w, φ) = L (w, φ). (2.43)

Then, in what follows we firstly apply Theorem 2.3 to prove that there exists at least one (w, φ) ∈
X × H1

ΓD
(Ω) satisfying (2.43) and later on we provide suitable assumptions on the data to prove

uniqueness of solution. Before doing that, in what follows we establish that problem 2.38 is well-
posed, which equivalently means that L is well-defined.

Lemma 2.4 The operator L (cf. (2.42)) is well-defined. Moreover, there holds

‖L (w, φ)‖ ≤ 1

CAw

{
C3(δ, κ, θD, g) ‖(w, φ)‖ + C4(δ, κ, θD, g)

}
, (2.44)

for any (w, φ) ∈X×H1
ΓD

(Ω), where CAw , C3(δ, κ, θD, g) and C4(δ, κ, θD, g) are the constants specified
in (2.46), (2.51) and (2.52) below, respectively.

Proof. Let (w, φ) ∈ X × H1
ΓD

(Ω). By using the estimates (2.10), (2.11), (2.18) and (2.19), and the
Cauchy-Schwarz inequality, we find that the bilinear form Aw is bounded as follows∣∣Aw((u, θ0), (v, ψ))

∣∣ ≤ ∣∣A S(u,v)
∣∣ +

∣∣C S(w;u,v)
∣∣ +

∣∣A T (θ0, ψ)
∣∣ +

∣∣C T (w; θ0, ψ)
∣∣

≤ ν ‖u‖1,Ω ‖v‖1,Ω + CS‖w‖1,Ω ‖u‖1,Ω ‖v‖1,Ω + κ‖θ0‖1,Ω ‖ψ‖1,Ω + CT ‖w‖1,Ω ‖θ0‖1,Ω ‖ψ‖1,Ω

≤
{
ν + κ+ (CS + CT )‖w‖1,Ω

} (
‖u‖21,Ω + ‖θ0‖21,Ω

)1/2 (‖v‖21,Ω + ‖ψ‖21,Ω
)1/2

,

which implies ∣∣Aw((u, θ0), (v, ψ))
∣∣ ≤ ‖Aw‖ ‖(u, θ0)‖ ‖(v, ψ)‖ ,

with ∥∥Aw

∥∥ ≤ {ν + κ+ (CS + CT )‖w‖1,Ω
}
.

Additionally, thanks to the ellipticity of A S and A T (see (2.12) and (2.13)) and the skew-symmetric
property of C S and C T (see (2.21)), there holds

Aw((v, ψ), (v, ψ)) ≥ ν C−1
FP ‖v‖21,Ω + κC−1

FP ‖ψ‖21,Ω ≥ CAw ‖(v, ψ)‖2 (2.45)
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and so, Aw is coercive on X ×H1
ΓD

(Ω) with constant

CAw = C−1
FP min{ν, κ}. (2.46)

Finally, regarding the linear functional F(w,φ) (see (2.41)), we observe by convenience that it can be
rewritten as

F(w,φ)(v, ψ) = F1,(w,φ)(v, ψ) + F2(v, ψ) , (2.47)

where
F1,(w,φ)(v, ψ) = DS(φ,v) − C T (w; θδ, ψ) , (2.48)

and
F2(v, ψ) = DS(θδ,v) − A T (θδ, ψ) . (2.49)

Hence, using the estimates (2.19) and (2.23) as well as the second bound for θδ given in (2.25), we
find that ∣∣F1,(w,φ)(v, ψ)

∣∣ ≤ ∣∣DS(φ,v)
∣∣ +

∣∣C T (w; θδ, ψ)
∣∣

≤ C
(
‖g‖0,Ω‖φ‖1,Ω‖v‖1,Ω + ‖w‖1,Ω‖θδ‖1,Ω‖ψ‖1,Ω

)
≤ C3(δ, κ, θD, g) ‖(w, φ)‖ ‖(v, ψ)‖ ,

(2.50)

where
C3(δ, κ, θD, g) = C max

{
(δ−4 + 1)‖θD‖1/2,ΓD

, ‖g‖0,Ω
}
. (2.51)

In turn, combining now the estimates (2.11) and (2.23), and using once again the bound for ‖θδ‖1,Ω
(as in the previous estimate) we obtain from (2.49)∣∣F2(v, ψ)

∣∣ ≤ ∣∣DS(θδ,v)
∣∣ +

∣∣A T (θδ, ψ)
∣∣ ≤ C

(
‖g‖0,Ω‖v‖1,Ω + κ‖ψ‖1,Ω

)
‖θδ‖1,Ω

≤ C4(δ, κ, θD, g) ‖(v, ψ)‖ ,

with
C4(δ, κ, θD, g) = C (δ−4 + 1)‖θD‖1/2,ΓD

{
‖g‖20,Ω + κ2

}1/2
. (2.52)

Then, by combining the last two estimates we obtain∣∣F(w,φ)(v, ψ)
∣∣ ≤ C3(δ, κ, θD, g) ‖(w, φ)‖ ‖(v, ψ)‖ + C4(δ, κ, θD, g) ‖(v, ψ)‖ ,

and therefore F(w,φ) ∈
(
X ×H1

ΓD
(Ω)
)′

with∥∥F(w,φ)

∥∥ ≤ C3(δ, κ, θD, g) ‖(w, φ)‖ + C4(δ, κ, θD, g) .

In this way, owing to the Lax-Milgram Lemma [20, Lemma 1.4], for any (w, φ) ∈X ×H1
ΓD

(Ω), there

exists a unique (u, θ0) ∈X ×H1
ΓD

(Ω) solution to (2.38) or, equivalently, such that L (w, φ) = (u, θ0),
which implies that the operator L is well-defined, and the estimate (2.44) is an immediate consequence.

�

The next result states key properties of the operator L .

Lemma 2.5 The operator L : X ×H1
ΓD

(Ω)→X ×H1
ΓD

(Ω) defined by (2.42) is compact. Moreover,

the operator is Lipschitz continuous, that is, for all (w, φ) , (w̃, φ̃) ∈ X ×H1
ΓD

(Ω), there holds

‖L (w, φ)−L (w̃, φ̃)‖ ≤ CLIP ‖(w, φ) − (w̃, φ̃)‖, (2.53)

with CLIP = C−1
Aw

C3(δ, κ, θD, g) where CAw = C−1
FP min{ν, κ} is the coercivity constant of the bilinear

form Aw (defined in (2.46)) and C3(δ, κ, θD, g) is given by (2.51).
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Proof. Let us start by showing that the operator L defined by (2.42) is compact. To do so, we let
{(wn, φn)}n≥1 ⊆ X × H1

ΓD
(Ω) be a sequence weakly convergent to (w, φ) ∈ X × H1

ΓD
(Ω), and let

(u, θ0) = L (w, φ) and {(un, θ0,n)}n≥1 ⊆X ×H1
ΓD

(Ω), be the sequence given by

(un, θ0,n) = L (wn, φn) for each n ≥ 1 . (2.54)

From the definition of L (cf. (2.42)), and applying the coercivity of Aw (cf. (2.45)), its linearity
in the first component, the definition of F1 (cf. (2.48)), and the estimates (2.17) and (2.22), with
q = q′ = 4, it follows that

‖L (wn, φn)−L (w, φ)‖2 = ‖(un, θ0,n)− (u, θ0)‖2

≤ C−1
Aw

Aw((un, θ0,n)− (u, θ0), (un, θ0,n)− (u, θ0))

≤ C−1
Aw

{
Aw((un, θ0,n), (un − u, θ0,n − θ0))−Aw((u, θ0), (un − u, θ0,n − θ0))

}
= C−1

Aw
F1,(wn−w,φn−φ)(un − u, θ0,n − θ0)

≤ C−1
Aw

{
‖g‖0,Ω ‖φn − φ‖0,4,Ω ‖un − u‖0,4,Ω − ‖wn −w‖0,4,Ω ‖∇θδ‖0,Ω ‖θ0,n − θ0‖0,4,Ω

}
.

(2.55)

Now, since (wn, φn) ⇀ (w, φ) in [H1(Ω)]d × H1(Ω), it follows that ‖wn − w‖0,4,Ω
n→∞−−−→ 0 and

also ‖φn − φ‖0,4,Ω
n→∞−−−→ 0 according to the Rellich-Kondrachov compactness Theorem (see e.g., [1,

Theorem 6.3] and [39, Theorem 1.3.5]). Also, note that (un, θ0,n) and (u, θ0), coming from (2.54),
satisfy (2.44) and therefore, they are bounded in their respective norms since {(wn, φn)}n≥1 is bounded
as it is weakly convergent, as a consequence of the Banach-Steinhaus Theorem [8, Theorem 2.2]. In
view of these facts and the estimate (2.55), we can conclude that ‖L (wn, φn) −L (w, φ)‖ n→∞−−−→ 0,
that is, the sequence {L (wn, φn)}n≥1 is strongly, i.e. norm, convergent to L (w, φ), and so L is
compact.

Next, in order to show the Lipschitz continuity property we consider (w, φ), (w̃, φ̃) ∈ X × H1
ΓD

(Ω)
and set

(u, θ0) = L (w, φ) and (ũ, θ̃0) = L (w̃, φ̃) . (2.56)

By proceeding similarly to (2.55), and then using (2.50) we find

‖L (w, φ)−L (w̃, φ̃)‖2 ≤ C−1
Aw

F
1,(w−w̃,φ−φ̃)

(u− ũ, θ0 − θ̃0)

≤ C−1
Aw

C3(δ, κ, θD, g) ‖(w, φ)− (w̃, φ̃)‖ ‖(u, θ0)− (ũ, θ̃0)‖ ,

and after using (2.56) and simplifying we get (2.53). �

In the following result we show that the set

K :=
{

(u, θ0) ∈X ×H1
ΓD

(Ω) : (u, θ0) = λL (u, θ0) for λ ∈ [0, 1]
}
,

is bounded.

Lemma 2.6 K is a bounded set.

Proof. We first observe that if (u, θ0) ∈ K, for some λ ∈ (0, 1], then according to the definition of L ,
it follows that

Au((λ−1u, λ−1θ0), (v, ψ)) = F(u,θ0)(v, ψ) ∀ (v, ψ) ∈ X ×H1
ΓD

(Ω) ,
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or equivalently

Au((u, θ0), (v, ψ)) = λF(u,θ0)(v, ψ) ∀ (v, ψ) ∈ X ×H1
ΓD

(Ω) .

In particular, by using the definition of Aw and F(w,φ), according to (2.40) and (2.41), with (u, θ0) in

place of (w, φ), taking there (v, ψ) = (u, θ0), using the skew-symmetry property of C S and C T given
by (2.21), and decoupling, we get

A S(u,u) = λDS(θ0 + θδ,u),

A T (θ0, θ0) = −λA T (θδ, θ0) − λC T (u; θδ, θ0)

which coincides with (2.30) in Theorem 2.2 up to the multiplicative constant λ on the right hand side
of these expressions, and therefore we can immediately deduce that

‖u‖1,Ω ≤ λCFPCD ν
−1 ‖g‖0,Ω

(
‖θ0‖1,Ω + ‖θδ‖1,Ω

)
≤ CFPCDν

−1 ‖g‖0,Ω
(
‖θ0‖1,Ω + ‖θδ‖1,Ω

)
, (2.57)

and
‖θ0‖1,Ω ≤ λ

(
CFP‖θδ‖1,Ω + κ−1CFPCSob(3, d)CE,1δ‖u‖1,Ω‖θD‖1/2,ΓD

)
≤ CFP‖θδ‖1,Ω + κ−1CFPCSob(3, d)CE,1δ‖u‖1,Ω‖θD‖1/2,ΓD

,
(2.58)

where we have used that λ ≤ 1. Next, we realize that the estimates (2.57) and (2.58) are the same of
(2.31) and (2.32), respectively. Thus, we can proceed exactly as in the proof of Theorem 2.2 to obtain
that u and θ0 satisfy estimates (2.35) and (2.36), respectively. Finally, if (u, θ0) ∈ K, for λ = 0, then
(u, θ0) = (0, 0), and evidently estimates (2.35) and (2.36) hold, which concludes the proof. �

Now, we are in position to establishing existence of solutions to problem (2.24).

Theorem 2.7 There exists a solution (u, θ) to (2.24).

Proof. First, we observe that Lemma 2.5 implies that operator L : X × H1
ΓD

(Ω) −→ X × H1
ΓD

(Ω)
is continuous and compact. Furthermore, Lemma 2.6 states that K is bounded. Therefore, Shaefer’s
Theorem (see Theorem 2.3) guarantees the existence of a fixed point (u, θ0) ∈ X × H1

ΓD
(Ω) of L ;

that is,
(u, θ0) = L (u, θ0) ,

and so, satisfying

A S(u,v) + C S(u;u,v) = DS(θ0 + θδ,v),

A T (θ0, ψ) + C T (u; θ0, ψ) = −A T (θδ, ψ) − C T (u; θδ, ψ) ,

which implies that (u, θ0 + θδ) is a solution to (2.24). �

We close the section by mentioning that the existence of the pressure p solution to problem (2.5)
follows from the inf–sup condition (2.14) and the properties (2.10) (2.18) and (2.23) of the forms A S ,
C S and DS , respectively (see also e.g., [24, Theorem 1.4]).

2.4.3 Uniqueness of solution

Now we establish the uniqueness result for (2.24) under a sufficiently small data assumption.
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Theorem 2.8 Assume that the Lipschitz continuity constant (see Lemma 2.5) satisfies

CLIP = C−1
FP min{ν, κ}C3(δ, κ, θD, g) < 1. (2.59)

Then, there exists a unique solution (u, p, θ) ∈ [H1
0 (Ω)]d × L2

0(Ω)×H1
ΓD

(Ω) to (2.5).

Proof. Let (u, p, θ) and (ũ, p̃, θ̃) be two solutions of problem (2.5). Then, since (u, θ) and (ũ, θ̃) are
solutions to (2.24), we let θ0 = θ − θδ and θ̃0 = θ̃ − θδ and conclude that (u, θ0) and (ũ, θ̃0) are fixed
points of the operator L . Thus, from the Lipschitz continuity of L (cf. Lemma 2.5), we deduce that

‖(u, θ0)− (ũ, θ̃0)‖ = ‖L (u, θ0)−L (ũ, θ̃0)‖ ≤ CLIP‖(u, θ0)− (ũ, θ̃0)‖,

which together with (2.59), implies that u − ũ = 0 and θ − θ̃ = θ0 − θ̃0 = 0. In turn, using the fact
that (u, p, θ) and (ũ, p̃, θ̃) satisfy the first equation of (2.5), it readily follows that

BS(v, p− p̃) = DS(θ − θ̃,v)−A S(u− ũ,v) − (C S(u;u,v)− C S(ũ; ũ,v)) = 0,

for all v ∈ [H1
0 (Ω)]d, which combined with the inf-sup condition (2.14) imply that p − p̃ = 0, which

concludes the proof. �

3 The fully-dG finite element discretization

In this section, we present and analyze the discrete scheme based on discontinuous Galerkin approxi-
mations to find the solution to problem (2.5). In this way, after introducing some preliminary notations
and definitions in Section 3.1, we then set and analyze the discrete scheme throughout Section 3.2.

3.1 Preliminaries

Let Th be a shape-regular partition of Ω, made up of simplices K, where K is a triangle in 2D or a
tetrahedron in 3D, with unit outward normal vector nK and element diameter hK . As usual, the mesh
size is defined as h := max

K∈Th
hK . For simplicity, we further assume that if ∂K ∩ ∂Ω 6= ∅ then either

|∂K ∩ ΓD| = 0 or |∂K ∩ ΓN| = 0 and that the intersection of two elements is either empty, a vertex,
an edge, or a face. The set of edges/faces of the mesh Th will be denoted by Eh = E ih ∪ Ebh, where E ih
and Ebh stand for the sets of all interior and boundary edges/faces, respectively, and Ebh,ΓD

= Ebh ∩ ΓD.
For any edge/face e ∈ Eh, we denote by he its respective (d− 1)-diameter, that is, its length in 2D or
its maximum diameter in 3D.

Jumps and average operators to be used in the sections that follow are introduced next. Firstly, let
e ∈ E ih be a common edge/face of two neighbor elements K+,K− ∈ Th satisfying e = ∂K+ ∩ ∂K−,
and let n±e be the unit outward normal vector to e on K±. If ψ and v are sufficiently regular scalar
or vector piecewise functions on Th, respectively, denote by ψ± and v± their traces taking from the
interior of K±. We then define the jump [[ · ]] acting on ψ and v as

[[ψ]] =

ψ
+n+

e + ψ−n−e , e ∈ E ih

ψn , e ∈ Ebh
and [[v]] =

v
+ ⊗ n+

e + v− ⊗ n−e , e ∈ E ih

v ⊗ n e ∈ Ebh ,

where n is the unit outward normal vector to ∂Ω. In turn, For any smooth enough piecewise (scalar-,
vector- or tensor-valued) function η we define its average across e ∈ E ih as {{ η }} = 1

2

(
η+ + η−

)
and

{{η}} = η if e ∈ Ebh.
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For r ≥ 0, we set the standard broken Sobolev space

Hr(Th) =
{
φ ∈ L2(Ω) : φ

∣∣
K
∈ Hr(K) ∀K ∈ Th

}
, (3.1)

and the mesh-dependent broken norms

‖ψh‖21,Th =
∑
K∈Th

‖∇hψ‖20,K +
∑
e∈Eh

a0

he
‖[[ψ]]‖20,e ∀ψ ∈ H1(Th) ,

‖ψh‖22,Th = ‖ψh‖21,Th +
∑
K∈Th

h2
K |ψ|22,K ∀ψ ∈ H2(Th) ,

(3.2)

where ∇h( · ) is the broken gradient operator and a0 is a fixed parameter. An inverse inequality allows
to guarantee the existence of a positive constant C, independent of the meshsize, such that (see [36,
Section 3.3.1]):

‖ψh‖2,Th ≤ C ‖ψh‖1,Th ∀ψh ∈ Ψh , (3.3)

where Ψh is any piece-wise polynomial space.

Also, we recall the broken version of the Sobolev embedding (2.2) (see e.g., [25, 42]): there exists a
constant C̃Sob > 0 such that

‖ψ‖0,q,Ω ≤ C̃Sob‖ψ‖1,Th ∀ψ ∈ H1(Th) , where

{
q ≥ 1 if d = 2 ,

q ∈ [1, 6] if d = 3,
(3.4)

which is useful to proof the discrete estimates and stability properties of the forms defining the discrete
problem to be defined next in Section 3.2. The respective vector versions of (3.1)-(3.4) are extended
in a natural way.

3.2 Discontinuous Galerkin finite element scheme

For an approximation of order k ≥ 1 and a mesh Th on Ω as in Section (3.1), let Pk(K) be the local
space spanned by polynomials of degree ≤ k on K. We then consider the following finite dimensional
spaces

V h :=
{
vh ∈H0(div; Ω) : vh

∣∣
K
∈ [Pk(K)]d, ∀K ∈ Th

}
, Qh := Sk−1

h ∩ L2
0(Ω) , Wh := Skh ,

(3.5)
where

Slh :=
{
rh ∈ L2(Ω) : rh

∣∣
K
∈ Pl(K), ∀K ∈ Th

}
, for l ≥ 0. (3.6)

Note that V h is the space of divergence-conforming BDM elements [9]. In this way, based on the
discrete spaces (3.5), we propose the following fully discontinuous Galerkin finite element method for
problem (2.5): Find (uh, ph, θh) ∈ V h ×Qh ×Wh, tal que

A S
h (uh,vh) + C S

h (uh;uh,vh) + BS(vh, ph) = DS(θh,vh),

BS(uh, qh) = 0 ,

A T
h (θh, ψh) + C T

h (uh; θh, ψh) = DT
θD

(ψh),

(3.7)
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for all (vh, qh, ψh) ∈ V h × Qh ×Wh. Here, the discrete bilinear forms A S
h and A T

h we consider are
based on the interior penalty method [5] and given, respectively, by

A S
h (uh,vh) =

∫
Ω
ν∇huh : ∇hvh −

∑
e∈Eh

∫
e
{{ν∇huh}} : [[vh]]

−
∑
e∈Eh

∫
e
{{ν∇hvh}} : [[uh]] +

∑
e∈Eh

νa0

he

∫
e

[[uh]] : [[vh]] ,
(3.8)

and

A T
h (θh, ψh) =

∫
Ω
κ∇hθh · ∇hψh −

∑
e∈Eih∪E

b
h,ΓD

∫
e
{{κ∇hθh}} · [[ψh]]

−
∑

e∈Eih∪E
b
h,ΓD

∫
e
{{κ∇hψh}} · [[θh]] +

∑
e∈Eih∪E

b
h,ΓD

κa0

he

∫
e

[[θh]] · [[ψh]] ,

where a0 is the interior penalty parameter taken large enough so that the bilinear forms A S
h and

A T
h are both coercive (see [5] for further details). In turn, the discrete forms linked to the nonlinear

convective terms, based on an upwind approach [31], are defined by

C S
h (wh;uh,vh) =

∫
Ω

(wh · ∇h)uh · vh +
1

2

∑
K∈Th

∫
∂K\Γ

(wh · nK − |wh · nK |)
(
ueh − uh

)
· vh,

and

C T
h (wh; θh, ψh) =

∫
Ω

(wh · ∇hθh)ψh +
1

2

∑
K∈Th

∫
∂K\Γ

(wh · nK − |wh · nK |)
(
θeh − θh

)
ψh,

where ueh and θeh stand for the traces of uh and θh, respectively, taken from within the exterior of K.
Finally, the functional DT

θD
is defined by

DT
θD

(ψh) =
∑

e∈Ebh,ΓD

∫
e

( a0

he
ψh − κ∇hψh · n

)
θD , (3.9)

and the bilinear form BS and the linear functional DS are defined by (2.7) and (2.9), respectively.

3.2.1 Discrete estimates and stability properties

Here we state some properties of the forms defining (3.7) and that are required for the discrete analysis.
Their proofs can be found in the previous related works [10, 25, 36, 37] and therefore we omit them.∣∣∣A S

h (uh,vh)
∣∣∣ ≤ ν C̃A S ‖uh‖1,Th ‖vh‖1,Th ∀uh,vh ∈ V h , (3.10)∣∣∣A S

h (u,vh)
∣∣∣ ≤ ν ĈA S ‖u‖2,Th ‖vh‖1,Th ∀u ∈ [H2(Th)]n ∀vh ∈ V h , (3.11)∣∣∣A T

h (θh, ψh)
∣∣∣ ≤ κ C̃A T ‖θh‖1,Th ‖ψh‖1,Th ∀ θh, ψh ∈Wh , (3.12)∣∣∣A T

h (θ, ψh)
∣∣∣ ≤ κ ĈA T ‖θ‖2,Th ‖ψh‖1,Th ∀ θ ∈ H2(Th) ∀ψh ∈Wh , (3.13)∣∣∣BS(vh, q)
∣∣∣ ≤ C̃BS ‖vh‖1,Th ‖q‖0,Ω ∀vh ∈ V h ∀ q ∈ L2

0(Ω) , (3.14)
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∣∣∣C S
h (wh;uh,vh)

∣∣∣ ≤ C̃CS ‖wh‖1,Th ‖uh‖1,Th ‖vh‖1,Th ∀wh,uh,vh ∈ V h , (3.15)∣∣∣C T
h (wh; θh, ψh)

∣∣∣ ≤ C̃C T ‖wh‖1,Th ‖θh‖1,Th ‖ψh‖1,Th ∀wh ∈ V h ∀ θh, ψh ∈Wh . (3.16)

Also, it is well-known that for a sufficiently large parameter a0 the bilinear forms A S
h and A T

h are
coercive (see [5, 20] for further details). More precisely, there exist positive and h−independent
constants α̃S and α̃T such that

A S
h (vh,vh) ≥ ν α̃S‖vh‖21,Th ∀vh ∈ V h , and A T

h (ψh, ψh) ≥ κ α̃T ‖ψh‖21,Th ∀ψh ∈Wh. (3.17)

Regarding the bilinear form Bs, we recall from [27] the discrete inf-sup condition: there exists an
h-independent constant β̃ > 0 such that

sup
vh∈V h
vh 6=0

BS(vh, qh)

‖vh‖1,Th
≥ β̃ ‖qh‖0,Ω ∀ qh ∈ Qh . (3.18)

As in the continuous case, we define the discrete kernel Xh of the bilinear form BS as

Xh :=
{
vh ∈ V h : BS(vh, qh) = 0 , ∀qh ∈ Qh

}
=
{
vh ∈ V h : divvh = 0 in Ω

}
,

where the last equality follows from the fact that V h ⊂H0(div; Ω) and divV h ⊂ Qh (see [11]). This
particularity implies that Xh ⊂H0(div0; Ω). Incidentally, according to [11, 36] we deduce that

C S
h (wh;vh,vh) =

1

2

∑
e∈Eih

∫
e
|wh · ne| |[[vh]]| ≥ 0 ∀wh ∈H0(div0; Ω) ,∀vh ∈ V h , (3.19)

C T
h (wh;ψh, ψh) =

1

2

∑
e∈Eih

∫
e
|wh · ne| |[[ψh]]| ≥ 0 ∀wh ∈H0(div0; Ω) ,∀ψh ∈Wh . (3.20)

Note further that the convective forms C S
h and C T

h are not linear in their first argument. However,
they satisfy the following Lipschitz continuity property: For all wh, w̃h,uh ∈ [H2(Th)]d, θh ∈ H2(Th),
vh ∈ V h and ψh ∈Wh, there exist positive constants C̃S,LIP and C̃T,LIP, independent of the meshsize,
such that∣∣C S

h (wh;uh,vh)− C S
h (w̃h;uh,vh)

∣∣ ≤ C̃S,LIP‖wh − w̃h‖1,Th‖uh‖1,Th‖vh‖1,Th ,∣∣C T
h (wh; θh, ψh)− C T

h (w̃h; θh, ψh)
∣∣ ≤ C̃T,LIP‖wh − w̃h‖1,Th‖θh‖1,Th‖ψh‖1,Th .

(3.21)

As for the forms DS and DT
θD

defined in (2.9) and (3.9), we easily find that∣∣∣DS(ψh,vh)
∣∣∣ ≤ C̃DS ‖g‖0,Ω ‖ψh‖1,Th ‖vh‖1,Th , ∀ψh ∈Wh , ∀ vh ∈ V h , (3.22)∣∣∣DS(ψ,vh)
∣∣∣ ≤ ĈDS ‖g‖0,Ω ‖ψ‖2,Th ‖vh‖1,Th , ∀ψ ∈ H2(Th) , ∀ vh ∈ V h , (3.23)∣∣∣DT

θD
(ψh)

∣∣∣ ≤ C̃DT ‖θD‖1/2,ΓD
‖ψh‖1,Th , ∀ψh ∈Wh . (3.24)

3.3 Well-posedenss of the discrete problem

In this section we adapt the analysis developed in Section 2.4 to prove the well-posedness of problem
(3.7). We begin by observing that, analogously to the continuous case, and owing to the discrete
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inf-sup condition (3.18), problem (3.7) is equivalent to the reduced problem: Find (uh, θh) ∈Xh×Wh

such that:
A S
h (uh,vh) + C S

h (uh;uh,vh) = DS(θh,vh),

A T
h (θh, ψh) + C T

h (uh; θh, ψh) = DT
θD

(ψh) ,
(3.25)

for all (vh, ψh) ∈Xh ×Wh. Consequently, in what follows we focus on analyzing problem (3.25).

We start by deriving the corresponding a priori estimates.

Theorem 3.1 Let (uh, θh) be a solution to (3.25). Then, the following a priori estimates hold

‖uh‖1,Th ≤ C̃1(ν, κ, θD, g) and ‖θh‖1,Th ≤ C̃2(κ, θD) , (3.26)

where

C̃1(ν, κ, θD, g) = c1 ν
−1 κ−1 ‖g‖0,Ω ‖θD‖1/2,ΓD

and C̃2(κ, θD) = c2 κ
−1 ‖θD‖1/2,ΓD

, (3.27)

with c1, c2 > 0, independent of h and the physical parameters.

Proof. Assuming that (uh, θh) is a solution to (3.25) and taking there (vh, ψh) = (uh, θh) yields

A S
h (uh,uh) + C S

h (uh;uh,uh) = DS(θh,uh),

A T
h (θh, ψh) + C T

h (uh; θh, θh) = DT
θD

(θh) .

Invoking now the coercivity of the bilinear forms A S
h and A T

h (cf. (3.17)), the non-negativity property
of the forms C S

h and C T
h (cf. (3.19)-(3.20)), and the continuity of DS and DT

θD
(cf. (3.22)-(3.24)) we

immediately obtain

ν α̃S‖uh‖21,Th ≤ C̃DS ‖g‖0,Ω ‖θh‖1,Th‖uh‖1,Th ,

κ α̃T ‖θh‖21,Th ≤ C̃DT ‖θD‖1/2,ΓD
‖θh‖1,Th .

Then, estimates (3.26) follow after simplifying and using the bound obtained for ‖θh‖1,Th in the
respective one for uh. �

Remark 3.1 Notice that, differently from (2.28), here the estimates for uh and θh do not depend on
any other parameter but the inverse of the viscosity and the thermal conductivity.

In order to state existence of discrete solutions, similarly to the continuous case, we firstly define
the discrete version of operator L defined in (2.42), namely,

Lh : Xh ×Wh −→ Xh ×Wh

(wh, φh) 7−→ (uh, θh) := (Lh,1(wh, φh),Lh,2(wh, φh)) ,
(3.28)

where, given (wh, φh) ∈ Xh ×Wh, (uh, θh) ∈ Xh ×Wh is the unique solution (to be verified next in
Lemma 3.2) of problem: Find (uh, θh) ∈Xh ×Wh, such that

A S
h (uh,vh) + C S

h (wh;uh,vh) = DS(φh,vh) ,

A T
h (θh, ψh) + C T

h (wh; θh, ψh) = DT
θD

(ψh) ,
(3.29)

for all (vh, ψh) ∈ Xh ×Wh.
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According to the above, it is clear that (uh, θh) is a solution to (3.25), if and only if (uh, θh) is a
fixed-point of Lh, namely,

Lh(uh, θh) = (uh, θh).

Then in what follows we prove the existence of a fixed-point of Lh by means of the well-known
Brouwer’s fixed-point theorem given in the following form (see e.g. [8]):

Let B be a nonempty compact convex subset of a finite-dimensional normed space, and let L be a
continuous mapping of B into itself. Then L has a fixed point in B. Before doing that, in the following
result we establish that operator Lh is well defined.

Lemma 3.2 Operator Lh (cf. (3.28)) is well-defined, or equivalently, for all (wh, φh) ∈ Xh ×Wh,
there exists a unique (uh, θh) ∈ Xh × Wh solution to (3.29). Moreover, the pairs (wh, φh) and
(uh, θh) = Lh(wh, φh), satisfy

‖uh‖1,Th ≤ α̃
−1
S C̃DS ν−1 ‖g‖0,Ω ‖φh‖1,Th and ‖θh‖1,Th ≤ C̃2(κ, θD) ‖θD‖1/2,ΓD

, (3.30)

with C̃2(θD) defined in (3.27).

Proof. Given (wh, φh) ∈ Xh ×Wh, using the ellipticity of A S
h and A T

h (cf. (3.17)) and estimates
(3.19) and (3.20), we deduce that

ν α̃S‖vh‖21,Th ≤ A S
h (vh,vh) + C S

h (wh;vh,vh) and κ α̃T ‖ψh‖21,Th ≤ A T
h (ψh, ψh) + C T

h (wh;ψh, ψh),
(3.31)

for all (vh, ψh) ∈ Xh ×Wh, that is, A S
h (·, ·) + C S

h (wh; ·, ·) and A T
h (·, ·) + C T

h (wh; ·, ·) are elliptic
and bounded bilinear forms on Xh×Wh, where the boundedness follows immediately from estimates
(3.10), (3.12), (3.15) and (3.16). Then, since DS(φh, ·) and DT

θD
(·) are bounded and linear functionals

on Xh and Wh, respectively, an straightforward application of the Lax-Milgram Lemma [20, Lemma
1.4] to the uncoupled problem (3.29) yields the well-definedness of Lh.

Finally, we observe that (3.30) follows straightforwardly from (3.29), (3.31), (3.22) and (3.24), which
concludes the proof. �

Now, to apply the Brouwer’s fixed point theorem in our context, we define the compact and convex
set Bh ⊂Xh ×Wh, defined by

Bh :=
{

(wh, φh) ∈Xh ×Wh : ‖wh‖1,Th ≤ C̃1(ν, κ, θD, g) and ‖φh‖1,Th ≤ C̃2(κ, θD)
}

(3.32)

where C̃1(ν, κ, θD, g) and C̃2(κ, θD) are the constants given in (3.27).

It is not difficult to see from (3.31), that L (Bh) ⊆ Bh. In fact, given (wh, φh) ∈ Bh, we let
(vh, ψh) = L (wh, φh) and observe from (3.29) and (3.31), that there hold

ν α̃S‖vh‖21,Th ≤ DS(φh,vh) and κ α̃T ‖ψh‖21,Th ≤ DT
θD

(ψh),

Then, from the continuity of DS and DT
θD

(cf. (3.22) and (3.24)), the latter yields

ν α̃S‖vh‖1,Th ≤ C̃DS ‖g‖0,Ω ‖φh‖1,Th , and κ α̃T ‖ψh‖1,Th ≤ C̃DT ‖θD‖1/2,ΓD
,

which together with the fact that ‖φh‖1,Th ≤ C̃2(κ, θD), implies that (vh, ψh) ∈ Bh.

Now we state the Lipschitz continuity of the operator Lh on Bh.
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Lemma 3.3 The operator Lh defined in (3.28) is Lipschitz continuous on Bh, that is

‖Lh(wh, φh)−Lh(w̃h, φ̃h)‖1,Th ≤ C̃LIP ‖(wh, φh) − (w̃h, φ̃h)‖1,Th , (3.33)

for all (wh, φh) , (w̃h, φ̃h) ∈ Bh, where C̃LIP > 0, independent of the meshsize, is defined in (3.34).

Proof. Let (wh, φh), (w̃h, φ̃h), (uh, θh), (ũh, θ̃h) ∈ Bh be such that

(uh, θh) = Lh(wh, φh) and (ũh, θ̃h) = Lh(w̃h, φ̃h) .

According to the definition of Lh (cf. (3.28)), it follows that

A S
h (uh,vh) + C S

h (wh;uh,vh) = DS(φh,vh) ,

A T
h (θh, ψh) + C T

h (wh; θh, ψh) = DT
θD

(ψh) ,

and
A S
h (ũh,vh) + C S

h (w̃h; ũh,vh) = DS(φh,vh) ,

A T
h (θ̃h, ψh) + C T

h (w̃h; θ̃h, ψh) = DT
θD

(ψh) ,

for all (vh, ψh) ∈ Xh ×Wh. Then, by subtracting these systems of equations and manipulating the
resulting expression, we find that

A S
h (uh − ũh,vh) + C S

h (wh;uh − ũh,vh) = −C S
h (wh − w̃h; ũh,vh) + DS(φh − φ̃h,vh) ,

and
A T
h (θh − θ̃h, ψh) + C T

h (wh; θh − θ̃h, ψh) = −C T
h (wh − w̃h; θ̃h, ψh) ,

for all (vh, ψh) ∈ Xh×Wh. Then, using (3.31), (3.15), (3.22) and (3.16), from the previous identities
with (vh, ψh) = (uh − ũh, θh − θ̃h), we obtain

ν α̃S‖uh − ũh‖1,Th ≤ C̃CS ‖wh − w̃h‖1,Th ‖ũh‖1,Th + C̃DS ‖g‖0,Ω ‖φh − φ̃h‖1,Th

and
κ α̃T ‖θh − θ̃h‖1,Th ≤ C̃C T ‖wh − w̃h‖1,Th ‖θ̃h‖1,Th .

But, since (ũh, θ̃h) ∈ Bh, which means that ‖ũh‖1,Th ≤ C̃1(ν, κ, θD, g) and ‖θ̃h‖1,Th ≤ C̃2(κ, θD), from
the previous inequalities, we obtain

ν α̃S‖uh − ũh‖1,Th ≤ C̃CS C̃1(ν, κ, θD, g) ‖wh − w̃h‖1,Th + C̃DS ‖g‖0,Ω ‖φh − φ̃h‖1,Th

and
κ α̃T ‖θh − θ̃h‖1,Th ≤ C̃C T C̃2(κ, θD) ‖wh − w̃h‖1,Th ,

which imply (3.33), with C̃LIP > 0, given by

C̃LIP := C max
{
ν−1C̃1(ν, κ, θD, g) + κ−1C̃2(κ, θD), ν−1‖g‖0,Ω

}
, (3.34)

with C > 0, independent of h and the physical parameters.

�

Now we are in position of establishing the existence result.

19



Theorem 3.4 There exists at least one (uh, θh) ∈ Bh, solution to (3.25). Furthermore, there exists
ph ∈ Qh so that (uh, ph, θh) ∈ Vh ×Qh ×Wh is a solution to (3.7), with ph satisfying the estimate

‖ph‖0,Ω ≤ C̃3(ν, κ, θD, g), (3.35)

with

C̃3(ν, κ, θD, g) := β̃−1C̃DS ‖g‖0,ΩC̃2(κ, θD) + β̃−1ν C̃A S C̃1(ν, κ, θD, g) + β̃−1C̃CS C̃2
1 (ν, κ, θD, g),

with C̃1(ν, κ, θD, g) and C̃2(κ, θD) the parameter-dependent constants defined in (3.27).

Proof. Recalling that operator Lh is Lipschitz continuous on Bh and satisfies L (Bh) ⊆ Bh, the
existence of (uh, θh) ∈ Bh solution to (3.25) is a direct consequence of the Brouwer’s fixed-point
theorem. In turn, similarly to the continuous case, the existence of a discrete pressure is a direct
consequence of the inf-sup compatibility condition (3.18) (see [36, Lemma 3.6], for further details).

Finally, to derive estimate (3.35) we employ the inf-sup condition (3.18), the first equation of (3.7),
estimates (3.10), (3.15), (3.22), and the fact that (uh, θh) ∈ Bh (cf. (3.32)), so that the estimates in
(3.26) hold, to obtain

β̃ ‖ph‖0,Ω ≤ sup
vh∈V h
vh 6=0

BS(vh, ph)

‖vh‖1,Th
= sup

vh∈V h
vh 6=0

DS(θh,vh) − A S
h (uh,vh) − C S

h (uh;uh,vh)

‖vh‖1,Th
,

≤ C̃DS ‖g‖0,Ω ‖θh‖1,Th + ν C̃A S ‖uh‖1,Th + C̃CS‖uh‖21,Th ,

≤ C̃DS ‖g‖0,ΩC̃2(κ, θD) + ν C̃A S C̃1(ν, κ, θD, g) + C̃CS C̃2
1 (ν, κ, θD, g),

which concludes the proof. �

Now, as in the continuous case, we are further able to derive the uniqueness result as a straightfor-
ward consequence of the Lipschitz continuity property of operator Lh. In fact, if (uh, θh) and (ũh, θ̃h)
are both two different solutions to problem (3.25), then they satisfy

(uh, θh) = Lh(uh, θh) and (ũh, θ̃h) = Lh(ũh, θ̃h) ,

Then, from Lemma 3.3 we obtain

‖(uh, θh)− (ũh, θ̃)h‖1,Th = ‖Lh(uh, θh)−Lh(ũh, θ̃h)‖1,Th ≤ C̃LIP‖(uh, θh)− (ũh, θ̃h)‖1,Th ,

with C̃LIP being the constant defined in (3.34) that explicitly depends on data. Therefore, by assuming
that C̃LIP < 1 we readily obtain the desired uniqueness result. More precisely, we have the following
Theorem whose proof is omitted since it is analogous to the proof of Theorem 2.8.

Theorem 3.5 Assume that the data is small enough so that the constant C̃LIP (see (3.34)) satisfies
C̃LIP < 1. Then there exists a unique solution (uh, ph, θh) ∈ Vh ×Qh ×Wh to (3.7).

4 A priori error analysis

In this section we proceed to derive a priori error estimates for the numerical scheme introduced and
analyzed in Section 3. To do that, we assume that the hypotheses of Theorems 2.8 and 3.5 hold,
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and let (u, p, θ) and (uh, ph, θh) be the unique solutions to problems (2.5) and (3.7), respectively and
assume that the exact solution satisfies the following additional regularity:

u ∈ [Hk+1(Ω)]d ∩ [H1
0 (Ω)]d ∩X, p ∈ Hk(Ω) ∩ L2

0(Ω) and θ ∈ Hk+1(Ω) , for k ≥ 1.

To derive the theoretical rate of convergence of our scheme, we let ΠBDM
h be the BDM interpolation

operator from [Hk+1(Ω)]d into Vh, and for l ≥ 0, we denote by P l and P l0 the L2-projections into Slh
(cf. (3.6)) and Slh ∩L2

0(Ω), respectively. This operators satisfy the following approximation properties
(see [9, 20]):

‖u−ΠBDM
h u‖2,Th ≤ C hk‖u‖k+1,Ω ,

‖p− Pk−1
0 (p)‖0,Ω ≤ C hk‖p‖k,Ω ,

‖θ − Pk(θ)‖2,Th ≤ C hk‖θ‖k+1,Ω .

(4.1)

Then, denoting by

eu := u− uh , ξu := u−ΠBDM
h (u), χu := ΠBDM

h (u)− uh,

ep := p− ph, ξp := p− Pk−1
0 (p), χp := Pk−1

0 (p)− ph,

eθ := θ − θh, ξθ := θ − Pk(θ), χθ := Pk(θ)− θh,
(4.2)

and observing that

eu := ξu + χu , ep = ξp + χp , eθ = ξθ + χθ , (4.3)

from the triangle inequality, the approximation properties (4.1) and the inverse inequality (3.3), we
have that

‖eu‖2,Th ≤ ‖ξu‖2,Th + ‖χu‖2,Th ≤ Chk‖u‖k+1,Ω + C‖χu‖1,Th ,

‖ep‖0,Ω ≤ ‖ξp‖0,Ω + ‖χp‖0,Ω ≤ Chk‖p‖k,Ω + ‖χp‖0,Ω ,

‖eθ‖2,Th ≤ ‖ξθ‖2,Th + ‖χθ‖2,Th ≤ Chk‖θ‖k+1,Ω + C‖χθ‖1,Th ,

(4.4)

which means that the estimation of the individual errors eu, ep and eθ is reduced to estimate the
discrete individual errors χu, χp and χθ.

With these ingredients at hand we are now in position to state and prove the main result of this
section.

Theorem 4.1 Assume that the hypotheses of Theorems 2.8 and 3.5 hold and let (u, p, θ) and (uh, ph, θh)
be the unique solutions to problems (2.5) and (3.7), respectively, and suppose that u ∈ [Hk+1(Ω)]d ∩
[H1

0 (Ω)]d ∩X, p ∈ Hk(Ω) ∩ L2
0(Ω) and θ ∈ Hk+1(Ω) for k ≥ 1. Assume further that

C̃4(δ, κ, ν, g, θD) := C̃S,LIPC1(δ, ν, g, θD) +
C̃T,LIPC2(δ, θD)C̃DS ‖g‖0,Ω

κ α̃T
≤ 1

2
να̃S , (4.5)

with C1(δ, ν, g, θD) and C2(δ, θD) being the constants defined in (2.29). Then, there exists a constant
C > 0, independent of h, such that

‖u− uh‖2,Th + ‖θ − θh‖2,Th ≤ C hk
(
‖u‖k+1,Ω + ‖θ‖k+1,Ω

)
,

‖p− ph‖0,Ω ≤ C hk
(
‖p‖k,Ω + ‖u‖k+1,Ω + ‖θ‖k+1,Ω

)
.

(4.6)
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Proof. We start by noticing that, since u ∈ [Hk+1(Ω)]d ∩ [H1
0 (Ω)]d ∩X and θ ∈ Hk+1(Ω), then the

following Galerking orthogonality properties hold:

A S
h (eu,vh) + C S

h (u;u,vh) − C S
h (uh;uh,vh)−BS(vh, ep) − DS(eθ,vh) = 0 (4.7)

for all vh ∈ V h,
BS(eu, qh) = 0,

for all qh ∈ Qh, and
A T
h (eθ, ψh) + C T

h (u; θ, ψh) − C T
h (uh; θh, ψh) = 0, (4.8)

for all ψh ∈Wh. In particular, from (4.7), noticing that Xh ⊆ X, and applying some suitable algebraic
manipulations, we obtain

A S
h (eu,vh) + C S

h (eu;u,vh) + C S
h (uh; eu,vh) − DS(eθ,vh) = 0,

for all vh ∈Xh, which together with (4.3), implies

A S
h (χu,vh) + C S

h (uh;χu,vh) = DS(eθ,vh) −A S
h (ξu,vh)− C S

h (uh; ξu,vh)

−C S
h (ξu;u,vh) − C S

h (χu;u,vh),

for all vh ∈ Xh. Then, taking vh = χu ∈ Xh in the latter identity and employing (3.11), the first
estimate in (3.21), (3.22) and the first estimate in (3.31), we obtain

ν α̃S‖χu‖1,Th ≤ C̃DS ‖g‖0,Ω ‖ξθ‖1,Th + C̃DS ‖g‖0,Ω ‖χθ‖1,Th + ν ĈA S ‖ξu‖2,Th

+C̃S,LIP‖uh‖1,Th‖ξu‖1,Th + C̃S,LIP‖ξu‖1,Th‖u‖1,Th + C̃S,LIP‖χu‖1,Th‖u‖1,Th ,

and recalling that u and uh satisfy the a priori estimates (cf. (2.28) and (3.26), respectively)

‖u‖1,Ω ≤ C1(δ, ν, g, θD) and ‖uh‖1,Th ≤ C̃1(ν, κ, θD, g),

we readily obtain

(ν α̃S − C̃S,LIPC1(δ, ν, g, θD))‖χu‖1,Th ≤ C̃DS ‖g‖0,Ω ‖χθ‖1,Th + K1(ξθ, ξu) (4.9)

with
K1(ξθ, ξu) := C̃DS ‖g‖0,Ω ‖ξθ‖1,Th + ν ĈA S ‖ξu‖2,Th

+C̃S,LIPC̃1(ν, κ, θD, g)‖ξu‖1,Th + C̃S,LIPC1(δ, ν, g, θD)‖ξu‖1,Th .

Similarly, from (4.8) with ψh = χθ, combined with (4.2), the second estimate in (3.31), (3.13), (3.21)
and the bounds ‖uh‖1,Th ≤ C̃1(ν, κ, θD, g) and ‖θ‖1,Ω ≤ C2(δ, θD) (cf. (2.28) and (3.26)), we obtain

κ α̃T ‖χθ‖1,Th ≤ C̃T,LIPC2(δ, θD)‖χu‖1,Th +K2(ξθ, ξu) (4.10)

with

K2(ξθ, ξu) := κ ĈA T ‖ξθ‖2,Th + C̃T,LIPC̃1(ν, κ, θD, g)‖ξθ‖1,Th + C̃T,LIPC2(δ, θD)‖ξu‖1,Th .

Then, combining (4.9) with (4.10), we obtain(
ν α̃S − C̃4(δ, κ, ν, g, θD)

)
‖χu‖1,Th ≤ K1(ξθ, ξu) +

C̃DS ‖g‖0,Ω
κ α̃T

K2(ξθ, ξu)
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which together with (4.5), implies

ν α̃S
2
‖χu‖1,Th ≤ K1(ξθ, ξu) +

C̃DS ‖g‖0,Ω
κ α̃T

K2(ξθ, ξu). (4.11)

Finally, employing (4.11) in (4.10) we deduce that

κ α̃T ‖χθ‖1,Th ≤
2C̃T,LIPC2(δ, θD)

ν α̃S
K1(ξθ, ξu) +

(
2C̃T,LIPC2(δ, θD)C̃DS ‖g‖0,Ω

ν α̃Sκ α̃T
+ 1

)
K2(ξθ, ξu).

(4.12)

In this way, from (4.4), (4.11), (4.12) we easily obtain the first estimate in (4.6).

Now, for the second estimate in (4.4), we first note from the discrete inf-sup condition (3.18) with
qh = ehp , using then that ehp = eΠ

p − ep and subsequently employing the bound (3.14) for BS , we find

β̃ ‖χp‖0,Ω ≤ sup
vh∈V h
vh 6=0

BS(vh,χp)

‖vh‖1,Th
≤ sup

vh∈V h
vh 6=0

BS(vh, ξp)

‖vh‖1,Th
+ sup

vh∈V h
vh 6=0

BS(vh,−ep)
‖vh‖1,Th

≤ C̃BS ‖ξp‖0,Ω + sup
vh∈V h
vh 6=0

BS(vh,−ep)
‖vh‖1,Th

.

(4.13)

Now, to handle the second term at the right-hand side of the latter expression, we use the Galerkin
orthogonality relation (4.7) and after adding and subtracting C S

h (uh;u,vh) it follows that

BS(vh,−ep) = −A S
h (eu,vh) − C S

h (u;u,vh) + C S
h (uh;uh,vh) + DS(eθ,vh)

= −A S
h (eu,vh) − C S

h (eu;u,vh) − C S
h (uh; eu,vh) + DS(eθ,vh) .

In this way, a straightforward application of the estimates (3.11), (3.21) and (3.23), and the fact that
‖ · ‖1,Th ≤ ‖ · ‖2,Th in H2(Th), yield

|BS(vh,−ep)| ≤ (ĈA S + C̃S,LIP ‖u‖1,Th + C̃S,LIP ‖uh‖1,Th) ‖eu‖2,Th ‖vh‖1,Th

+ ĈDS‖g‖0,Ω ‖eθ‖2,Th ‖vh‖1,Th .
(4.14)

Therefore, after replacing (4.14) into (4.13), simplifying by ‖vh‖1,Th , employing the a priori estimates
(2.28) and (3.26) for u and uh, respectively, and grouping terms we get

‖χp‖0,Ω ≤ β̃−1C̃BS ‖ξp‖0,Ω + β̃−1C̃5(δ, ν, κ, g, θD)
[
‖eu‖2,Th + ‖eθ‖2,Th

]
, (4.15)

where

C̃5(δ, ν, κ, θD, g) = max
{
ĈA S + C̃S,LIP

[
C1(δ, ν, g, θD) + C̃1(ν, κ, θD, g)

]
, ĈDS‖g‖0,Ω

}
.

Then, the result follows by inserting (4.15) in (4.4) and using the estimates for ‖eu‖2,Th + ‖eθ‖2,Th
obtained in the first part of the proof. �

5 Numerical results

This section presents a couple of examples in order to illustrate the performance of the fully discon-
tinuous Galerkin method (3.7) constructed and analyzed in Section 3 for approximating the solutions
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to the stationary Boussinesq system (2.3), and to confirm the theoretical convergence rates (4.6)
predicted by the theory according to the Theorem 4.1.

The first example below is a problem with manufactured smooth solution considering only non-
homogeneous Dirichlet boundary conditions for the temperature whereas the second one deals with
a setting that involves physical boundary conditions such as in (2.4); more general case that was
analyzed in the present work.

The computational implementation was carried out using a FreeFem++ code (see [28]) and the
linear solver UMFPACK (see [19]). The experimental errors and convergence rates for the velocity
vector field, for the pressure and the temperature are the result of iterations based on a Picard method
as fixed-point strategy over a family of triangulations Th of the respective domain. This process ends
when the relative error of the entire coefficients vector given by two consecutive iterations is small
enough, that is,

||coeffm+1 − coeffm||l2
||coeffm+1||l2

≤ tol,

where tol is a specific tolerance and || · ||`2 stands for the Euclidean `2−norm in RN with N denoting
the total number of degrees of freedom defined by the finite element family (V h, Qh,Wh) specified in
Section 3.2 with k = 1, that is, the velocity u, the pressure p and the temperature θ are approximated
by means of the discrete subspaces BDM1, P0(Th) and Pdisc

1 (Th), respectively, where the former
corresponds to the Brezzi-Douglas-Marini finite element space of first order, the second to piecewise
constant functions, and the last one to linear discontinuous piecewise polynomials. In all the cases,
we have chosen the penalization parameter as a0 = 5.

The individual experimental errors and the convergence rates associated to each variable are given by

e(u) := ‖u− uh‖1,Th , e(p) := ‖p− ph‖0,Ω , e(θ) := ‖θ − θh‖1,Th ,

r(u) :=
log(e(u)/e(u)′)

log(h/h′)
, r(p) :=

log(e(p)/e(p)′)

log(h/h′)
, r(θ) :=

log(e(θ)/e(θ)′)

log(h/h′)
,

where h and h′ denote the size of two consecutive meshes with their respective errors e and e′.

5.1 Example 1: a vortex in the unit box

In the first example we work on the domain Ω = (0, 1)2 and the physical parameters ν = κ = 1 and
g = (0,−1)t. The manufactured solutions are given by

u(x, y) = (u1(x, y),u2(x, y)) , θ(x, y) = u1(x, y) + u2(x, y) ,

p(x, y) = rs sin
(2π(erx − 1)

er − 1

)
sin
(2π(esy − 1)

es − 1

) erx+sy

(er − 1)(es − 1)
,

where,

u1(x, y) =
sesy

2π(es − 1)

(
1− cos

(
2π(erx − 1)

er − 1

))
sin

(
2π(esy − 1)

es − 1

)
,

u2(x, y) =
−rerx

2π(er − 1)

(
1− cos

(
2π(esy − 1)

es − 1

))
sin

(
2π(erx − 1)

er − 1

)
,

with r, s > 0. Here, the velocity vector field u is similar to a counter clockwise vortex in a unit-box
whose coordinates depend on the choice of the parameters r and s (cf. [14, 41]). In our example,
we take r = 3.5 and s = 9.1 which corresponds to a vortex located near the upper right corner of
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the domain. Table 5.1 presents the errors and the convergence rates obtained with a fixed tolerance
tol < 1E − 06. We confirm there that the individual errors of all the variables decrease with an
optimal O(h) convergence as predicted by Theorem 4.1 with k = 1 and that the discrete velocities
are divergence free (see 9th. column). In Figure 5.1 we display the streamlines of velocity uh, the
pressure ph and the temperature θh obtained with a mesh with N = 89920 degrees of freedom.

Finite element approximation BDM1 − P0(Th)− Pdisc
1 (Th)

N h e(u) r(u) e(p) r(p) e(θ) r(θ) ‖divuh‖∞,Ω Iter

2064 0.1179 16.5374 - 3.6655 - 17.8977 - 3.0407e-11 11
3648 0.0884 14.0742 0.5606 2.8195 0.9121 14.4985 0.7322 2.5919e-11 5
8160 0.0589 9.8316 0.8848 2.1387 0.6815 9.8172 0.9616 2.6303e-11 6
32448 0.0295 4.3685 1.1937 1.2322 0.8203 4.3631 1.1783 2.4174e-11 32
57600 0.0221 3.1019 1.1902 0.9599 0.8681 3.1290 1.1557 2.2162e-11 17
89920 0.0177 2.3862 1.1711 0.7849 0.9094 2.4276 1.1330 2.2453e-11 8

Table 5.1: Example 1: Convergence history for the Boussinesq system using the fully discontinuos
Galerkin Family BDM1 − P0(Th)− Pdisc

1 (Th) (k = 1).

Figure 5.1: Example 1: Streamlines of the velocity uh, pressure ph and temperature θh of the Boussi-
nesq system obtained with the discontinuous finite element family BDM1−P0(Th)−Pdisc

1 (Th) (k = 1)
and N = 89920 degrees of freedom.

5.2 Example 2: square cavity stationary flow.

In this example we consider a stationary flow problem in the unit box (0, 1)2 with the physical boundary
conditions

u = 0 on Γ , θ =

{
0 on Γ

(1)
D

4y(1− y) on Γ
(2)
D

and
∂θ

∂n
= 0 on ΓN ,
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where the Dirichlet boundary ΓD = Γ
(1)
D ∪ Γ

(2)
D with

Γ
(1)
D = {(x, y) ∈ R2 : x = 0 and 0 ≤ y ≤ 1 , or y = 0 and 0 ≤ x ≤ 1 } ,

Γ
(2)
D = {(x, y) ∈ R2 : x = 1 and 0 ≤ y ≤ 1 } ,

and the Neumann boundary is defined as

ΓN = {(x, y) ∈ R2 : y = 1 and 0 ≤ x ≤ 1 } .

In this example, we set κ = 1, ν = 0.5 and g = (0,−1)t. Since non analytical solution is known in
this case, we will compute the errors and the convergence rates by considering the discrete solution
obtained with a finer mesh (N = 273554) as the exact solution. In Table 5.2, we report the results we
obtained for a sequence of uniform triangulations considering the discontinuous finite element family
BDM1 −P0(Th)−Pdisc

1 (Th). Once again, it is observed that the rate of convergence O(h) is attained
by all the unknowns in agreement with Theorem 4.1 and that the discrete velocities are divergence
free. We further display in Figure 5.2 the approximate velocity, the pressure and the temperature.
Our results are concordance with [41]. All the figures presented there were obtained with N = 67792
degrees of freedom.

Finite element approximation BDM1 − P0(Th)− Pdisc
1 (Th)

N h e(u) r(u) e(p) r(p) e(θ) r(θ) ‖divuh‖∞,Ω Iter

268 0.7454 6.3201 - 5.6810 - 1.0258 - 1.2190e-12 15
1110 0.3802 3.6201 0.8277 4.3212 0.4067 0.5852 0.8337 1.9250e-15 12
4278 0.1901 1.9850 0.8669 2.5850 0.7412 0.3192 0.8749 1.6210e-14 12
17040 0.0951 1.0875 0.8686 1.4652 0.8195 0.1724 0.8888 1.8870e-14 13
67792 0.0530 0.5820 1.0690 0.8789 0.8739 0.1002 0.9279 1.6988e-13 12

Table 5.2: Example 2: Convergence history for the square cavity stationary flow using the fully
discontinuos Galerkin Family BDM1 − P0(Th)− Pdisc

1 (Th) (k = 1).
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