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A GRAPH-BASED ALGORITHM FOR THE APPROXIMATION OF
THE SPECTRUM OF THE CURL OPERATOR
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Abstract. We analyze a new algorithm for the finite element approximation of a family of
eigenvalue problems for the curl operator that includes, in particular, the approximation of the
helicity of a bounded domain. It exploits a tree-cotree decomposition of the graph relating the
degrees of freedom of the Lagrangian finite elements and those of the first family of Nédélec finite
elements to reduce significantly the dimension of the algebraic eigenvalue problem to be solved.
The algorithm is well-adapted to domains of general topology. Numerical experiments, including a
non simply connected domain with non connected boundary, are presented in order to assess the
performance and generality of the method.
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1. Introduction. The spectral problem for the curl is relevant in several phys-
ical problems. In electromagnetism, a magnetic field H that satisfies curlH = λH
for some constant λ is called a linear force-free field. This name comes from the fact
that the Lorentz law in linear isotropic media, states that magnetic force F is given
by F = curlH×µH being µ the magnetic permeability and, in this case, a magnetic
field satisfying curlH = λH produces a vanishing magnetic force. In plasma physics,
it has been proved that a magnetic field H which minimizes the magnetic energy
with fixed helicity1 is a linear force-free field. The helicity of a bounded domain Ω,
a significative quantity in plasma physics2 (see [12, 13, 5]), can be represented as the
minimum of the absolute value of the eigenvalues of the curl operator defined on a
particular functional space that will be precised in the sequel.

The main mathematical setting for the study of the spectral problem for the curl
operator is the theory of unbounded operators in Hilbert spaces devising domain of
definitions of the curl operator where it is self-adjoint. These domains of definition are
characterized through appropriate boundary conditions that are strongly dependent
on the topology of Ω.

Let Ω ⊂ R3 be a bounded open connected set with Lipschitz continuous boundary
Γ and outer unit normal vector n. The following Green’s formula

(1.1)

∫
Ω

(v · curlw − curl v ·w) =

∫
Γ

v × n ·w ,

is valid for any regular enough fields v and w . The choice of the domain of definition
of a self-adjoint realization of the curl operator is driven by the need of satisfying∫

Γ
v × n · w = 0. This is clearly true when acting on vector fields with vanishing

tangential components on Γ, namely, satisfying v×n = 0 on Γ. However this condition
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1For a vector field v ∈ (L2(Ω))3, helicity is defined as H(v) = 1

4π

∫
Ω

∫
Ω(v(x)× v(y)) · x−y

|x−y|3 .
2The helicity of a bounded domain Ω is defined by HΩ = sup

v∈H0(div0;Ω),‖v‖
L2(Ω)

=1

|H(v)| being

H0(div0; Ω) = {v ∈ (L2(Ω))3 : div v = 0, v · n = 0 on ∂Ω}.
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is too strong for the spectral problem since the curl operator with boundary condition
v × n = 0 has no eigenvalue λ 6= 0. (See, e. g., [5, pp. 5638–5639], [19, Lemma 3]).

If Ω is simply connected then the curl operator is self-adjoint restricted to the
space

(1.2) X := {v ∈ H(curl ; Ω) : curl v · n = 0 on Γ}.

In fact, curl v ·n is the scalar tangential curl of v τ := n× v ×n on Γ (see, e.g., [3]).
On a simply connected boundary the tangential curl of a tangential field v τ is zero if
and only if it is a tangential gradient. Moreover if a tangential field v τ is a tangential
gradient then v τ × n = grad τφ× n = curl τφ. If both v and w are in X then one
has

∫
Γ
v × n ·w =

∫
Γ
v τ × n ·w τ =

∫
Γ
curl τφ · grad τψ = 0.

If Ω is not simply connected then the condition curl v · n = 0 is not enough to
obtain a self-adjoint realization of the curl operator since there are tangential fields
with scalar tangential curl equal to zero that are not tangential gradients. They are
the so-called tangential harmonic fields and they are related with the non-bounding
cycles on Γ. So it is necessary to incorporate additional constraints that are related
with the first homology group of Γ (see [8]).

In [2] it was studied the variational formulation and numerical approximation
of a family of eigenvalue problems of the curl operator restricted to appropriate
subspaces of X where it is self-adjoint. The additional constraints are vanishing line
integrals along non-bounding cycles of Γ, namely, along representatives of non trivial
elements of the first homology group of Γ. The numerical scheme is based on a saddle
point variational formulation of the problem and uses the first family of Nédélec finite
elements (see [14]).

In this paper we propose a new implementation of the same numerical scheme.
The main novelty is the construction of a basis of the finite element space that leads
to a reduced algebraic eigenvalue problem. For finite element spaces of the lowest
order this basis can be constructed using a tree-cotree decomposition of the graph
defined by the vertices and the edges of the mesh. The construction of the basis can
be easily extended to finite element spaces of degree r > 1 using the graph associated
to the Lagrangian and the Nédélec moments introduced in [1].

We pay particular attention to the topological generality of Ω that could be not
simply connected (first Betti number greater than zero) and with non connected
boundary (second Betti number greater than zero). We present some numerical ex-
periments for finite elements of degree r = 1 showing that the use of these basis
reduces significantly the dimension of the algebraic eigenvalue problem with the con-
sequent saving of computational time. We include a test case where the domain is
a toroidal shell, a non simply connected domain with non connected boundary. In
particular we approximate the helicity of different toroidal shells.

The paper is organised as follows. Next section contains some preliminary geo-
metrical results. In Section 3 we introduce the family of eigenvalue problems of the
curl operator that will be considered, its variational formulation and finite elements
approximation and we recall the convergence results proved in [2]. In Section 4 we
present a new procedure to construct a basis of the finite element spaces that re-
duce drastically the dimension of the algebraic problem. Section 5 contains numerical
experiments to asses the performance and generality of the method.

2. Some preliminary results. Let Ω ⊂ R3 be a bounded open connected set
with Lipschitz continuous boundary Γ (either smooth or polyhedral) and outer unit
normal vector n. Let B be an open ball containing Ω. We denote Ω′ = B \ Ω.
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If the second Betti number of Ω is equal to p ≥ 0 then the boundary Γ of Ω has
p+1 connected components: Γ =

⋃p
s=0 Γs. We denote Γ0 the most external one. Each

one of these connected components Γs divides R3 into two connected open regions: a
bounded one Ωs and an unbounded one R3 \ Ωs. We denote Ω′s = B \ Ωs. It holds
that

Ω = Ω0 ∩ Ω′1 ∩ · · · ∩ Ω′p and Ω′ = Ω′0 ∪ Ω1 ∪ · · · ∪ Ωp.

Let s ∈ {0, 1, . . . , p}: if the first Betti number of Γs is equal to 2gs ≥ 0 then
the first Betti number of both Ωs and Ω′s is equal to gs ≥ 0. If gs > 0 it is possible
to consider 2gs non-bounding connected cycles on Γs, {γs,i}gsi=1 ∪ {γ′s,j}

gs
j=1, that are

(representative of) the generators of the first homology group of Γs and such that:
• {γs,i}gsi=1 are (representative of) the generators of the first homology group of

Ω′s;
• {γ′s,j}

gs
j=1 are (representative of) the generators of the first homology group

of Ωs;
• in Ωs there exist gs ‘cutting’ surfaces {Σs,i}gsi=1, that are connected orientable

Lipschitz surfaces satisfying Σs,i ⊂ Ωs and ∂Σs,i ⊂ Γs, such that every curl-
free vector in Ωs has a global potential in the ‘cut’ domain Ωs \

⋃gs
i=1 Σs,i;

each surface Σs,j satisfies ∂Σs,i = γs,i, ‘cuts’ the corresponding cycle γ′s,i and
does not intersect the other cycles γ′s,j for j 6= i;

• in Ω′s there exist gs ‘cutting’ surfaces {Σ′s,j}
gs
j=1, that are connected orientable

Lipschitz surfaces satisfying Σ′s,j ⊂ Ω′s and ∂Σ′s,j ⊂ Γs, such that every curl-

free vector in Ω′s has a global potential in the ‘cut’ domain Ω′s \
⋃g
j=1 Σ′s,j ;

each surface Σ′s,j satisfies ∂Σ′s,j = γ′s,j , ‘cuts’ the corresponding cycle γs,j ,
and does not intersect the other cycles γs,i for i 6= j.

In particular we can assume that γs,i ∩ γs,j = ∅ and γ′s,i ∩ γ′s,j = ∅ if i 6= j, while γs,i
intersects γ′s,i just at a point Psi.

For each i ∈ {1, . . . , gs} we fix a unit normal vector ns,i on Σs,i. By Σ+
s,i and

Σ−s,i we denote the two faces of Σs,i. For any function φ ∈ H1(Ωs \ Σs,i) we denote
[[φ ]]Σs,i the jump of φ across Σs,i, namely, φ|Σ+

s,i
− φ|Σ−s,i . In general, the functions

φ ∈ H1(Ωs \ Σs,i) do not admit an extension to the whole Ωs that lies in the space
H1(Ωs). However, any extension of gradφ obviously belongs to [L2(Ωs)]

3. We denote

g̃radφ such an extension.
The choice of the unit normal vector ns,i on Σs,i induces a right hand orientation

on ∂Σs,i = γs,i. We denote ts,i the corresponding unit tangent vector. Moreover we
denote t′s,i the unit tangent vector on γ′s,i such that∮

γ′s,i

g̃radφ · t′s,i = [[φ ]]Σs,i

for any φ ∈ H1(Ωs \ Σs,i) regular enough on Γs. Then we choose the unit normal
vector n′s,i on Σ′s,i according with this choice of t′s,i. It is worth noting that if

φ′ ∈ H1(Ω′s \ Σ′s,i) is regular enough on Γs then∮
γs,i

g̃radφ′ · ts,i = [[φ′ ]]Σ′s,i .

Figure 1 shows an example of consistent orientation of the cutting surfaces for a
toroidal surface Γs.
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Fig. 1. The oriented cycles and cutting surfaces of a toroidal surface Γs.

If β1(Ω) = g and β2(Ω) = p are the first Betti number and the second Betti
number of Ω respectively, then g =

∑p
s=0 gs. The first Betti number of Γ = ∪ps=0Γs

is equal to 2g and the non-bounding cycles {γi}gi=1 ∪ {γ′i}
g
i=1 with

{γi}gi=1 = {γ0,j}g0

j=1 ∪ {γ
′
1,j}

g1

j=1 ∪ · · · ∪ {γ
′
p,j}

gp
j=1

and
{γ′i}

g
i=1 = {γ′0,j}

g0

j=1 ∪ {γ1,j}g1

j=1 ∪ · · · ∪ {γp,j}
gp
j=1

are (representative of) the generators of the first homology group of Γ. They are such
that:

• {γi}gi=1 are (representative of) the generators of the first homology group of
R3 \ Ω;

• {γ′j}
g
j=1 are (representative of) the generators of the first homology group of

Ω.
Clearly γi ∩ γj = ∅ and γ′i ∩ γ′j = ∅ while γi intersects γ′i just at a point Pi.

The associated sets of cutting surfaces in Ω and Ω′ are given by

{Σi}gi=1 := {Σ0,i ∩ Ω}g0

i=1 ∪ {Σ
′
1,i ∩ Ω}g1

i=1 ∪ · · · ∪ {Σ
′
p,i ∩ Ω}gpi=1

and
{Σ′j}

g
j=1 := {Σ′0,j}

g0

j=1 ∪ {Σ1,j}g1

j=1 ∪ · · · ∪ {Σp,j}
gp
j=1

respectively.
If ∂Ω is not connected then ∂Σi could be not connected. In such a case γi 6= ∂Σi.

However it holds that [γi]H1(Ω′) = [∂Σi]H1(Ω′), namely, the homology class in Ω′ of
γi and ∂Σi are the same. If ∂Σi is not connected then γi is one of its connected
components. The other connected components of ∂Σi are homologically trivial in Ω′.
On the other hand, ∂Σ′j = γ′j .

Figure 2 shows the cutting surfaces of a toroidal shell and its complementary. In
this case ∂Ω has two connected components that are two concentric torous. In the
figure half of these two toroidal surface are sketched in black. The cutting surfaces of
Ω are Σ1(= Σ0,1∩Ω), in green, and Σ2(= Σ′1,1∩Ω) in yellow and the cutting surfaces
of Ω′ are Σ′1(= Σ′0,1), in blue, and Σ′2(= Σ1,1) in pink. The boundary of Σ′1 and Σ′2
are connected while the boundaries of Σ1 and Σ2 are not. They have two connected
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Fig. 2. Half of he toroidal shell and the cutting surfaces in Ω (green and yellow) and Ω′ (blue
and pink).

components. One of them is the boundary of a surface in Ω′, so homologically trivial
in Ω′, while the other one, γ1 and γ2 respectively, are homologically non trivial in Ω′.

The following lemma gives a representation of a basis of the space

KT (Ω) = {ρ ∈ [L2(Ω)]3 : curlρ = 0 and divρ = 0 in Ω and ρ · n = 0 on Γ}

of harmonic Neumann fields in Ω.

Lemma 2.1. A basis of the space KT (Ω) is given by {ρi}
g
i=1 where ρi := g̃radφi,

i ∈ {1, . . . , g}, and φi ∈ H1(Ω \ Σi)/R is the unique solution of

∆φi = 0 in Ω \ Σi ,

∂nφi = 0 on ∂Ω ,

[[ ∂nφi ]]Σi = 0 ,

[[φi ]]Σi = 1 .

Proof. See, for instance, [7, Lemma 1.3].

A basis of KT (Ω′) := {z ∈ [L2(Ω′)]3 : curl z = 0, div z = 0, and z · n = 0 on Γ}
can be obtained similarly from the set of cutting surfaces {Σ′j}

g
j=1. We denote

{
ρ′j
}g
j=1

the corresponding basis of KT (Ω′).
Following [2] for each v ∈ X we set, for i, j ∈ {1, . . . , g}

(2.1)

∮
∂Σi

v · ti :=

∫
Ω

curl v · ρi =

∫
Γ

n× v · ρi ,∮
∂Σ′j

v · t′j :=

∫
Ω′

curl ṽ · ρ′j = −
∫

Γ

n× v · ρ′j .

Here ṽ is a bounded extension of v to H(curl ;R3).
It has been proved in [2] that for all k ∈ {1, . . . , g}∮

∂Σi

ρk · ti = 0 and

∮
∂Σ′j

ρk · t′j = δj,k.
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3. Statement of the problem. Let I be a subset of G = {1, . . . , g} and Ic =
G \ I. For each choice of I we can consider the following eigenvalue problem:

Find λ ∈ C and u ∈ [L2(Ω)]3, u 6= 0, such that

(3.1)

curlu = λu in Ω ,

curlu · n = 0 on Γ ,∮
∂Σi

u · ti = 0 ∀ i ∈ I ,∮
∂Σ′j

u · t′j = 0 ∀ j ∈ Ic .

Denoting

ZI =

{
v ∈ X :

∮
∂Σi

v · ti = 0 ∀ i ∈ I and

∮
∂Σ′j

v · t′j = 0 ∀ j ∈ Ic
}
,

the previous eigenvalue problem can be equivalently rewritten as follows:

Problem 1. Find λ ∈ C and u ∈ ZI , u 6= 0, such that

(3.2) curlu = λu .

Remark 3.1. From (2.1) it follows that when I = G,

ZI =

{
v ∈ X :

∫
Ω

curl v · ρ = 0 ∀ρ ∈ KT (Ω)

}
.

This case corresponds to the eigenvalue problem studied in [9], [10], [15], [16], and
[20].

Let us denote H(curl 0; Ω) := {v ∈ H(curl ; Ω) : curl v = 0 in Ω}. Then

HI := ZI ∩H(curl 0; Ω)

is the eigenspace associated to the zero eigenvalue of (3.2). We consider the following
mixed variational problem:

Problem 2. Find λ ∈ C and (u , q) ∈ ZI ×HI , u 6= 0, such that

(3.3)

∫
Ω

curlu · curl v +

∫
Ω

q · v = λ

∫
Ω

u · curl v ∀ v ∈ ZI ,∫
Ω

u · p = 0 ∀p ∈HI .

The following result establishes the equivalence between the two previous prob-
lems.

Lemma 3.1. If (λ,u), λ 6= 0, is a solution to Problem 1, then (λ,u,0) is a solution
to Problem 2. If (λ,u, q) is a solution to Problem 2, then q = 0 and (λ,u) is a solution
to Problem 1.

Proof. See Lemma 8 in [2].
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The proof of the well-posedness of Problem 1 in [2] is based on the following
solution operator T : ZI → ZI . For a given f ∈ ZI , Tf = w ∈ ZI and there exits
q ∈HI such that∫

Ω

curlw · curl v +

∫
Ω

q · v =

∫
Ω

f · curl v ∀ v ∈ ZI ,∫
Ω

w · p = 0 ∀p ∈HI .

This operator T is compact and self-adjoint and its spectrum σ(T) decomposes
as {µn}n∈N ∪ {0} being {µn}n∈N a sequence of finite multiplicity eigenvalues which
converges to 0, (see [2]). The spectrum of T and the solution of Problem 2 are related
in the following sense: Tu = µu with u 6= 0 and µ 6= 0 if and only if (λ,u ,0) is a
solution of Problem 2 with λ = 1/µ.

Remark 3.2. If I = ∅ then T is the projected Biot-Savart operator B̂S defined
in [18] (see also [4]). The helicity of Ω is |µmax|, the maximum of the absolute value

of the eigenvalues of B̂S.

3.1. Finite element approximation. To introduce a Galerkin approximation
of Problem 2 we assume that Ω has polyhedral Lipschitz continuous boundary and
we choose the ‘cutting’ surfaces Σi, i = 1, · · · , g, also polyhedral. Let {Th}h>0 be a
regular family of tetrahedral partitions of Ω. We denote by Vh, Eh and Fh the set of
all the vertices, edges and faces of Th respectively. It is not restrictive to assume that
there exist sets FΣi ⊂ Fh and Eγ′j ⊂ Eh, for j = 1, . . . , g such that

(3.4) Σi =
⋃

f ∈ FΣi

f and ∂Σ′j = γ′j =
⋃

e∈ Eγ′
i

e for j = 1, . . . , g.

The mesh parameter h denotes the maximum diameter of all the tetrahedra T ∈
Th. For any T ∈ Th and r ≥ 1, let N r(T ) := Pr−1(T )3⊕{p ∈ P̃r(T )3 : p(x ) ·x = 0},
where Pr is the set of polynomials of degree not greater than r and P̃r is the subset of
homogeneous polynomials of degree r. The corresponding global space to approximate
H(curl ; Ω) is the well-known Nédélec space defined as follows:

N r
h := {vh ∈ H(curl ; Ω) : vh ∈ N r(T ) , ∀T ∈ Th}.

Whence, the natural approximation space for ZI is ZI,h = ZI ∩N r
h , namely,

ZI,h =

{
vh ∈ N r

h : curl vh · n = 0 on Γ,

∮
∂Σi

vh · ti = 0 if i ∈ I

and

∮
∂Σ′j

vh · t′j = 0 if j ∈ Ic
}
.

To discretize the Lagrange multiplier q ∈HI we use the finite element space

HI,h := ZI,h ∩H(curl 0; Ω) .

Note that

(3.5) HI,h =

{
vh ∈ N r

h : curl vh = 0 in Ω, and

∮
∂Σ′j

vh · t′j = 0 if j ∈ Ic
}
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as
∮
∂Σi

vh · ti =
∫

Σi
curl vh · ni, i ∈ I, and the last integral vanishes as curl vh = 0

in Ω.
Now, we are in position to introduce a finite element discretization of Problem 2.

Problem 3. Find λh ∈ C and (uh, qh) ∈ ZI,h ×HI,h, uh 6= 0, such that∫
Ω

curluh · curl vh +

∫
Ω

qh · vh = λh

∫
Ω

uh · curl vh ,∫
Ω

uh · ph = 0

for all (vh,ph) ∈ ZI,h ×HI,h.
Let λ be an eigenvalue of Problem 2 with multiplicity m and E ⊂ ZI the corre-

sponding eigenspace. Then, there exist exactly m eigenvalues λ
(1)
h , . . . , λ

(m)
h of Prob-

lem 3 (repeated according to their respective multiplicities) which converge to λ as
h→ 0.

Let Eh be the direct sum of the eigenspaces corresponding to λ
(1)
h , ..., λ

(m)
h and

let us introduce the so-called gap between the continuous and discrete eigenspaces,
given by

δ̂(E,Eh) := max{δ(E,Eh), δ(Eh,E)} ,

with δ(M,N) := sup x∈M
‖x‖=1

dist(x,N). Then, it follows that δ̂(E,Eh)→ 0 as h goes to

zero. Finally, the following estimates hold true (it is Theorem 2 in [2].)

Theorem 3.2. Let s > 0 be such that E ⊂ Hs(curl ; Ω). There exist constants
C1, C2 > 0, independents of h, such that, for small h,

(3.6) δ̂(E,Eh) ≤ C1h
min{s,r} ,

and

(3.7) |λ− λ(i)
h | ≤ C2h

2 min{s,r}, i = 1, ...,m .

Once we know basis for ZI,h and HI,h, after assembling the matrices corre-
sponding to Problem 3, we obtain an algebraic generalized eigenvalue problem of the
form:

(3.8)

(
A BT

B 0

)(
~u
~q

)
= λh

(
C 0
0 0

)(
~u
~q

)
,

where ~u and ~q are the coefficients in the above given basis of uh and qh, respectively.
We observe that both matrices are symmetric, but none is positive definite. However,
in [10, Proposition 2] it was proved that (λh, ~u , ~q) is a solution of (3.8) if and only if
~q = 0 and (λh, ~u) is a solution of the following problem:

(3.9) (A + BTB)~u = λhC~u .

The above is a well-posed generalized matrix eigenvalue problem with a real symmet-
ric and positive definite left-hand side matrix and a real symmetric right-hand side
matrix. According to this fact, in [10] was implemented (3.9) instead of (3.8).

4. An equivalent reduced algebraic eigenvalue problem. Let us assume

that we know {wh,l}
dHI
l=1 a basis of HI,h, and {zh,l}

dZI
l=1 , a basis of ZI,h that contains

it. Without loss of generality we can assume that zh,l = wh,l for l = 1, . . . , dHI .

8



In this way any function of vh ∈ ZI,h can be decomposed uniquely as the sum of

vh,a ∈HI,h plus vh,b ∈ Span{zh,l}
dZI
l=dHI+1

=: Hc
I,h.

Recalling that the entries of A ∈ RdZI×dZI are al,k =
∫

Ω
curl zh,k · curl zh,l, the

entries of C ∈ RdZI×dZI are cl,k =
∫

Ω
zh,k ·curl zh,l, and the entries of B ∈ RdHI×dZI

are bk,l =
∫

Ω
zh,k · zh,l, for a basis of ZI,h that extends a basis of HI,h we obtain

A =

(
0 0
0 Ab,b

)
C =

(
0 0
0 Cb,b

)
B =

(
Ba,a Ba,b

)
.

The symmetric square matrices Ab,b and Cb,b have dimension dZI − dHI . In
particular Ab,b is symmetric positive definite. In fact, if ~v ∈ RdZI−dH then vh =∑dZI−dHI
i=1 vi zh,dHI+i ∈ ZI,h and ~vTAb,b~v = ‖curl vh‖2[L2(Ω)]3 ≥ 0. If Ab,b~v = ~0

then curl vh = 0, hence vh ∈ HI,h and ~v = ~0. The submatrix Ba,a ∈ RdHI×dHI
is the mass matrix for the basis {wh,i}

dHI
i=1 of HI,h hence it is symmetric positive

definite.
This means that the generalised eigenvalue problem (3.8) takes the form: 0 0 BT

a,a

0 Ab,b BT
a,b

Ba,a Ba,b 0


 ~ua

~ub

~q

 = λh

 0 0 0

0 Cb,b 0

0 0 0


 ~ua

~ub

~q

 .

From the first block of equations, BT
a,a~q = ~0, it follows that ~q = ~0. Then the

second block reads

(4.1) Ab,b~ub = λhCb,b~ub.

From the third block of equations, Ba,a~ua+Ba,b~ub = 0, one has ~ua = −B−1
a,aBa,b~ub.

We study in the sequel how to construct such a basis of ZI,h with the aid of a
tree-cotree decomposition of the degrees of freedom of N r

h . We will use some elemen-
tary results of graph theory that can be found, for instance, in [17]. This kind of
decomposition is well known when using finite elements of the lowest degree. In this
case the degrees of freedom in N 1

h are the line integrals on the edges of the mesh, and
the degrees of freedom in the space of Lagrangian finite elements of degree one, L1

h,
the values at the vertices of the mesh. In the following, for the sake of simplicity we
consider the case r = 1. The general case r ≥ 1 is discussed in Appendix A.

4.1. A basis of ZI,h. We recall that Vh is the set of vertices of Th and, with
a slight abuse of notation, we denote Eh the set of oriented edges of the mesh. We
denote by T Γ

h the triangulation induced on Γ by Th. We also denote VΓ
h , EΓ

h, and FΓ
h

the set of vertices, oriented edges and oriented faces of T Γ
h , respectively.

Let {Φh,i}dLi=1 and {ωh,k}dNk=1 be the canonical basis of L1
h and N 1

h respectively.
This means that Φh,i(Pj) = δi,j for all Pj ∈ Vh and similarly,

∫
el
ωh,k · tel = δk,l for

all el ∈ Eh.
If β2(Ω) = p, namely, Γ = ∪ps=0Γs then for s ∈ {0, . . . , p} we denote

IL,s := {j ∈ {1, . . . , dL} : Qj ∈ Γs},

IL,Γ = ∪ps=0IL,s,

IL,int := {j ∈ {1, . . . , dL} : Qj 6∈ Γ} = {1, . . . , dL} \ IL,Γ,
9



and dL,s, dL,Γ, dL,int their respective cardinality. Similarly we denote

IN,Γ := {l ∈ {1, . . . , dN} : el ⊂ Γ},

IN,int := {l ∈ {1, . . . , dN} : el 6⊂ Γ} = {1, . . . , dN} \ IN,Γ,

and dN,Γ, dN,int their respective cardinality.
Then VΓ

h = {Pj}j∈IL,Γ and EΓ
h = {el}l∈IN,Γ . Moreover {ωh,k}k∈IN,int is a basis of

N 1
h ∩H0(curl ; Ω) being

H0(curl ; Ω) := {v ∈ H(curl ; Ω) : v × n = 0 on Γ} .

For s ∈ {0, . . . , p} we set Ψh,s =
∑
i∈IL,s Φh,i. Then Ψh,s|Γs = 1 and Ψh,s|Γn = 0

if n ∈ {0, . . . , p} and s 6= n. It is well known that gradΦh,i ∈ N 1
h ∩H0(curl ; Ω) for

all i ∈ IL,int and also gradΨh,s ∈ N 1
h ∩H0(curl ; Ω) for all s ∈ {0, . . . , p}. Moreover

the set
{gradΦh,i}i∈IL,int ∪ {gradΨh,s}ps=1

is linear independent. It is in fact a basis of N 1
h ∩ H0(curl ; Ω) ∩ H(curl 0; Ω). In

the sequel we will complete this set to obtain a basis of N 1
h ∩ H0(curl ; Ω) using a

tree-cotree decomposition of the oriented graph Gint with nodes the vertices of the
mesh Th contained in Ω plus one additional node for each connected component of Γ,
and arcs the internal oriented edges of Th, {el}l∈IN,int .

If Θh =
∑dL
i=1 θiΦh,i and gradΘh = zh =

∑dN
k=1 zkωh,k then

~z = G~θ ,

being ~θ ∈ RdL the vector with components θi, ~z ∈ RdN the vector with components
zk and G ∈ ZdN×dL the matrix of the gradient operator that is related with the edge-
vertices connectivity of the mesh. The matrix GT ∈ ZdL×dN is in fact the all-nodes
incidence matrix of the oriented graph G with nodes the vertices and arcs the oriented
edges of the mesh Th (The all-nodes incidence matrix of a graph has a row for each
node an a column for each arc. See, e.g., [17]).

If β2(Ω) = p, replacing on GT the rows corresponding to vertices on each Γs by a
single row equal to their sum and removing the columns corresponding to the edges on
Γ we obtain the all-nodes incidence matrix GT

int of an oriented graph Gint with nodes
the vertices in the interior of Ω plus an additional node for each connected component
of Γ, and arcs the oriented edges of the mesh Th that are not on Γ. This graph Gint is
obtained by contracting for each s ∈ {0, 1, . . . , p} the arcs of G corresponding to edges
on Γs to a single node. The matrix GT

int has dimension (p+1+dL,int)×dN,int. Without
lost of generality we can assume that the first p+ 1 rows are those corresponding to
the nodes in the graph Gint associated to the connected components of Γ. The entries

of these rows are the coefficients of gradΨh,s = grad
(∑

i∈IL,s Φh,i

)
in the canonical

basis of basis N 1
h for s ∈ {0, . . . , p}.

We recall that the all-nodes incidence matrix of a connected oriented graph is
not full rank since the sum of the rows is equal to zero. Each submatrix obtained
eliminating a row (that corresponds to the choice of a root node in the graph) is
called an incidence matrix of the graph and it is full rank. A spanning tree of a graph
is a connected subgraph that contains all the nodes of the graph and that does not
contain any cycle. For each connected oriented graph the columns of an incidence
matrix corresponding to the arcs on a spanning tree are linear independent so the

10



corresponding submatrix of the incidence matrix is invertible (see, e.g., Theorem 6.9
and Theorem 6.12 in [17]).

In the graph Gint we choose as root node the one corresponding to Γ0 and we
denote GT

int,∗ the corresponding incidence matrix (that has dimension (p+ dL,int)×
dN,int; we have eliminated the first row of the all nodes incidence matrix GT

int ). We

consider a spanning tree Sint of the graph Gint and decompose GT
int,∗ = [GT

st,∗ G
T
ct,∗].

By GT
st,∗ we indicate the columns of the incidence matrix of the graph Gint corre-

sponding to the arcs in the spanning tree and by GT
ct,∗ the columns corresponding to

the arcs in the co-tree. So we have ordered the elements of {ωh,k}k∈IN,int in such a
way that the first p + dL,int elements are those associated to edges in the spanning
tree of the graph. The remaining dN,int − (p+ dL,int) are those corresponding to the
cotree. We denote IN,ct := {k ∈ IN,int : ek 6∈ Sint}

The submatrix GT
st,∗ ∈ R(p+dL,int)×(p+dL,int) corresponding to the arcs in the

spanning tree is non singular and then also the square matrix

M =

[
Gst,∗ 0
Gct,∗ I

]
∈ RdN,int×dN,int ,

where I indicates the identity matrix of dimension dN,int−(p+dL,int), is non singular.

As a direct consequence, the functions {zh,j}
dN,int
j=1 ⊂ N 1

h given by

zh,j =

dN,int∑
k=1

mk,jωh,k,

where mk,j denote the entries of the matrix M, are a basis ofN 1
h∩H0(curl ; Ω). In fact

these functions are linear independent because M is not singular and the dimension
of N 1

h ∩H0(curl ; Ω) is equal to dN,int. Moreover zh,s = gradΨh,s for s ∈ {1, . . . , p}
while zh,p+i = gradΦh,i with i ∈ IL,int.

We have thus proved the following result.

Proposition 4.1. The set

(4.2) {zh,j}
dNint
j=1 := {gradΨh,s}ps=1 ∪ {gradΦh,i}i∈IL,int ∪ {ωh,k}k∈IN,ct

is a basis of N 1
h ∩H0(curl ; Ω).

The next step is to extend this set to a basis of

X 0
h :=

{
vh ∈ N 1

h : curl vh · n = 0 on Γ, and∮
∂Σi

vh · ti =

∮
∂Σ′i

vh · t′i = 0 ∀i ∈ {1, . . . , g}

}

by including the gradients of the elements of the canonical basis of L1
h associated to

vertices of the mesh on the boundary of Ω. We choose a vertex Qs∗ on each connected
component Γs, s ∈ {0, 1, . . . , p}, of Γ. We denote I∗L,s = {i ∈ IL,s : Qi 6= Qs∗}.

Proposition 4.2. The set

{gradΦh,i}i∈I∗L,0 ∪ {gradΦh,i}i∈I∗L,1 ∪ · · · ∪ {gradΦh,i}i∈I∗L,p ∪ {zh,j}
dNint
j=1

is a basis of the space X 0
h.

11



Proof. See Proposition 4.2 in [11].

The following result follows taking (4.2) into account.

Corollary 4.3. Let us denote I∗L = I∗L,0 ∪ (∪ps=1IL,s) ∪ IL,int. The set

{gradΦh,i}i∈I∗L ∪ {ωh,k}k∈IN,ct

is a basis of X 0
h.

We complete this set to a basis of the space

X h :=
{
vh ∈ N 1

h : curl vh · n = 0 on Γ
}
.

For each i ∈ {1, . . . , g} let φh,i ∈ H1(Ω \ Σi) be such that φi,h|T ∈ P1(T ) for

any T ∈ Th and [[φh,i ]]Σi = 1. We denote ρh,i = g̃radφh,i. Then ρh,i ∈ N 1
h and

curlρh,i = 0 in Ω. It is worth noting that φi−φh,i ∈ H1(Ω\Σi) and [[φi−φh,i ]]Σi = 0
hence φi − φh,i admits an extension to the whole Ω that lies in the space H1(Ω),
ρi − ρh,i is a gradient and

(4.3)

∮
∂Σk

ρh,i · tk =

∮
∂Σk

ρi · tk = 0 and

∮
∂Σ′k

ρh,i · t′k =

∮
∂Σ′k

ρi · t′k = δi,k,

for all k ∈ {1, . . . , g}.
Finally we associate a function of ŵ ′h,j ∈ N 1

h to each cycle γ′j = ∂Σ′j with j ∈
{1, . . . , g} defined as in [2].

We consider the curves γ′
+
j := ∂Σ′j

+
and γ′

−
j := ∂Σ′j

−
. Then for j ∈ {1, . . . , g} we

denote ξ′h,j ∈ C(Γ \γ′j) the function such that ξ′h,j ∈ P1(f) for all f ∈ FΓ
h, ξ′

h,j|γ′+j
= 1,

ξ′
h,j|γ′−j

= 0 and ξ′h,j(P ) = 0 for all P ∈ VΓ
h \ γ′j .

For each oriented edge em ∈ EΓ
h we denote P (em) and Q(em) the initial and final

vertices of em, respectively and e̊m := em \ {P (em), Q(em)}. Then we set

c′m(ξ′h,j) :=

 lim
s → Q(em)
s ∈ e̊m

ξ′h,j(s)− lim
s → P (em)
s ∈ e̊m

ξ′h,j(s), if e̊m ⊂ Γ \ γ′j ,

0, if em ⊂ γ′j ,

and define the functions

ŵ ′h,j :=
∑

m∈IN,Γ

c′m(ξ′h,j)ωh,m .

Figure 3 shows the edges of EΓ
h where the associated degree of freedom of the

function ŵ ′h,j is different from zero.

It has been proved in [2] that ŵ ′h,j ∈ X h and that∮
γ′k

ŵ ′h,j · t′k =

∮
∂Σ′k

ŵ ′h,j · t′k = 0 and

∮
γk

ŵ ′h,j · tk = δk,j

for j, k ∈ {1, . . . , g}. In particular this prove that the set of functions {ŵ ′h,j}
g
j=1 is

linear independent.
It is worth noting that the tangential trace of ŵ ′h,j is equal to zero on all but one

the connected components of Γ and that it is different from zero only on the connected
components of Γ contained both γ′j and γj . Hence in fact one has

(4.4)

∮
∂Σk

ŵ ′h,j · tk = δk,j
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Fig. 3. In green the edges where the function ŵ′h,j associated to a cycle γ′j has integral equal

one. The integrals along all remaining edges, including those of γ′j (the blue ones) are equal to zero.

for j, k ∈ {1, . . . , g}.
Now we are in position to prove the main result of this section:

Proposition 4.4. The set

{gradΦh,i}i∈I∗L ∪ {ρh,i}i∈I ∪ {ŵ
′
h,j}j∈Ic ∪ {ωh,k}k∈IN,ct .

is a basis of ZI,h and the set

{gradΦh,i}i∈I∗L ∪ {ρh,i}i∈I
is a basis of HI,h.

Proof. If vh ∈HI,h, then from (4.3), and (4.4) one has that

v̂h = vh −
∑
i∈I

(∮
∂Σ′i

vh · t′i

)
ρh,i −

∑
j∈Ic

(∮
∂Σj

vh · tj

)
ŵ ′h,j

belongs to X 0
h. Then the first part of the result follows from Corollary 4.3. The second

part follows from (4.3) and the well-known fact that {gradΦh,i}i∈I∗L ∪ {ρh,i}
g
i=1 is a

basis of Hh := {vh ∈ N 1
h : curl vh = 0}.

5. Numerical experiments. In this section we report some numerical tests
that underline the benefits of the proposed algorithm. The algebraic generalized
eigenvalue problems have been solved using the command eigs of MATLAB R©. When
computing the complete eigenfunctions the algebraic linear systems have been solved
using the direct solver of MATLAB R©.

5.1. Validation of the implementation. To validate the implementation we
consider one example where the least positive eigenvalue can be computed analytically
(the unit sphere). It is the smallest positive solution of the equation λ = tanλ, namely,
λ = 4.493409 . . . , and it has multiplicity three (see [6]). Table 1 shows the three
smallest positive eigenvalues of the discrete problem computed on different meshes
with Nh tetrahedra, and the numerical convergence rate

order = −3
log(|λ− λh|)/ log(|λ− λh′ |)

log(Nh/Nh′)
.

As can be seen the convergence rate is close to the theoretical one that is two.
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Nh λh,1 order λh,2 order λh,3 order
6,328 4.6529 - 4.6545 - 4.6562 -
16,539 4.5747 2.10 4.5751 2.12 4.5757 2.13
31,109 4.5450 2.15 4.5455 2.14 4.5457 2.16
65,018 4.5243 2.09 4.5243 2.13 4.5245 2.12

Table 1
Unit sphere. Smallest positive eigenvalues computed on different meshes and orders of conver-

gence.

5.2. Non-simply connected domains with connected boundary. We con-
sider a toroidal domain Ω of radius r1 = 1 with circular cross section of radius
r2 = 0.5 (see Figure 4 left). In this case β1(Ω) = 1 and we consider I = ∅. The
exact eigenvalues are unknown so we compute corresponding extrapolated eigenval-
ues and an estimated convergence rate by means of a least-squares fitting of the model

λh,k ≈ λex,k + Chα with h = N
−1/3
h .

Table 2 shows the five smallest positive eigenvalues computed on different meshes
with Nh tetrahedra, the corresponding extrapolated eigenvalue λex and the estimated
convergence rate. It shows also the dimension of the matrix Ab,b and the dimension of
the complete matrix A to quantify the reduction of the algebraic eigenvalue problem
to be solved. The extrapolated eigenvalues are similar to those computed in [10] and
the estimated convergence rate is again close to the theoretical one.

Nh λh,1 λh,2 λh,3 λh,4 λh,5 dim Ab,b dim A

15,554 5.0664 6.6332 6.6363 6.7097 6.7158 13,544 17,068
33,901 4.9858 6.4377 6.4405 6.5048 6.5057 30,067 37,480
65,720 4.9583 6.3720 6.3757 6.4324 6.4332 59,955 73,079
129,187 4.9314 6.3110 6.3118 6.3669 6.3676 120,272 145,056
247,239 4.9151 6.2717 6.2724 6.3256 6.3256 232,953 280,213
286,890 4.9139 6.2691 6.2696 6.3224 6.3226 269,923 323,853

λex 4.8946 6.2283 6.2252 6.2773 6.2785 - -

order 2.19 2.28 2.22 2.25 2.28 - -
Table 2

The toroidal domain with I = ∅. Smallest positive eigenvalues computed on different (tetrahe-
dral) meshes.

Table 3 shows the computational time in seconds to compute five eigenvalues and
corresponding eigenfunctions of the reduced generalized eigenvalue problem (Ab,b [s.
ev]), to solve the linear system to complete the eigenvalues (Ba,a [s. ef]), and to
compute five eigenvalues and eigenfunctions of the complete generalized eigenvalue
problem (A [s.]) (cf. (3.9)). The last column shows the ratio of the time to compute
eigenvalues and eigenfunctions using the reduced system over the time using the com-
plete system, namely (([s. ev]/ + [s. ef])/ [s.]). It can be seen that the reduction of
the algebraic eigenvalue problem reduce significantly the computational time even if
we take into account the solution of the linear system with matrix Ba,a necessary to
compute the complete eigenfunctions. It is worth noting that this speedup increase
with the dimension of the discrete problem.

In Figure 4 (right) we show the eigenfunction corresponding to the smallest pos-
itive eigenvalue that is known to be axisymmetric.
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Nh Ab,b [s. ev] Ba,a [s. ef] A [s.] ratio
15,554 9.59 0.77 66.99 0.1546
33,901 24.01 2.64 261.84 0.1018
65,720 66.97 5.79 1.3189e+03 0.0552
129,187 317.09 23.75 1.4224e+04 0.0240
247,239 999.99 50.07 4.2165e+04 0.0249
286,890 1.4147e+03 76.32 9.3810e+04 0.0159

Table 3
The toroidal domain with I = ∅. Computing time of eigenvalues and associated eigenfunctions

by using the reduced algebraic eigenvalue problem and the complete algebraic eigenvalue problem.

Fig. 4. The toroidal domain. On the right the eigenfunction corresponding to the smallest
positive eigenvalue for I = ∅

We also consider the toroidal domain with two handles (β1(Ω) = 2) shown in
Figure 5 and already studied in [2]. In this example we choose I = {1}. We use
an hexahedral mesh as in [2]. The approximated eigenvalues computed using the
proposed new basis coincide, up to the machine precision, with those computed in [2]
so we show not the computed eigenvalues neither the stimate convergence rate but
compare the computational cost of the two approaches.

Fig. 5. The toroidal domain with two handles.

Table 4 shows the number of elements of the mesh (Nh), the dimension of the ma-
trix Ab,b of the reduced algebraic eigenvalue problem ([d. ev]), and the computational
time in seconds to compute six eigenpairs using the command eigs of MATLAB R©
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([s. ev]). It also shows the dimension of the matrix Ba,a in the algebraic linear sys-
tem to compute the complete eigenvectors ([d. ef]), and the computational time in
seconds to solve the linear systems using the backslash command ([s. ef]). Columns
[d. A] and [s. A] show the dimension of the complete eigenvalue problem, and the
computational time in seconds to compute six eigenpairs of the complete eigenvalue
problem. The last column shows the ratio of the time to compute eigenvalues and
eigenfunctions using the reduced system over the the time using the complete system
(([s. ev]/ + [s. ef])/ [s. A]). It can be shown that the speedup is completely similar
to the one in the case of a toroidal domain withe one handle.

Nh
Ab,b Ba,a A

[d. ev] [s. ev] [d. ef] [s. ef] [d. A] [s. A] ratio

1,280 1,936 2.12 1,975 0.23 3,911 17.95 0.1309
4,320 7,236 17.55 5,831 1.97 13,067 82.64 0.2362
10,240 17,984 48.8 12,879 7.6 30,863 594.97 0.0948
20,000 36,100 145.06 24,079 20.34 60,179 4.82e+03 0.0343
34,560 63,504 428.93 40,391 53.11 103,895 2.46e+04 0.0196
54,880 102,116 1.08e+03 62,775 122.88 164,891 1.05e+05 0.0144
81,920 153,856 2.06e+03 92,191 220.18 246,047 1.55e+05 0.0147

Table 4
A domain with two handles and I = {1} (hexahedral mesh). Dimensions of the matrices

and computing time of eigenvalues and associated eigenfunctions by using the reduced algebraic
eigenvalue problem and the complete algebraic eigenvalue problem.

5.3. The toroidal shell. The computational domain in the last test problem
is a toroidal shell, a non-simply-connected domain (β1(Ω) = 2) with non-connected
boundary (β2(Ω) = 1). We consider two different toroidal shells. The exterior bound-
ary is the same but the cavities are different. The cavity has square section and the
length of the side of the square is s = 1.5 in the first case and s = 0.5 in the second
one. See Figure 6.
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2.5
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2.5

Ω

2.5

2.5

1.5

2.5

Ω

2.5

0.5

2.5

Ω

Fig. 6. The two toroidal shells: on the left the external boundary. On the center and the right
a section of the domain to show the cavity in the two test cases considered.

Table 5 shows the seven smallest positive eigenvalues corresponding to I = {1, 2},
I = {1}, I = {2}, and I = ∅ for the toroidal shell with a cavity of side s = 1.5. We
indicate in boldface the eigenvalues that are not in common to all the four spectral
problems. The case I = ∅ has the smallest positive eigenvalue, namely, λex = 3.5049.
Its inverse is the helicity of the domain.

In table 6 we show the smallest positive eigenvalue in the case I = ∅ for the two
toroidal shells and the torous without cavity. The mesh is the same in the three cases
and Nh is the number of elements in the mesh of the torous (without cavity). We
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I Nh λh,1 λh,2 λh,3 λh,4 λh,5 λh,6 λh,7
3,072 5.6194 5.6194 6.2493 6.2493 6.5086 6.5704 6.7265
10,368 5.1960 5.1960 5.7275 5.7275 5.9455 5.9597 6.0705

{1, 2} 24,576 5.0603 5.0603 5.5637 5.5637 5.7682 5.7712 5.8712
48,000 4.9982 4.9982 5.4899 5.4899 5.6870 5.6886 5.7826
82,944 4.9642 4.9642 5.4499 5.4499 5.6418 5.6457 5.7351
131,712 4.9434 4.9434 5.4257 5.4257 5.6145 5.6199 5.7065
196,608 4.9296 4.9296 5.4098 5.4098 5.5968 5.6031 5.6879
λex 4.8933 4.8933 5.3695 5.3695 5.5516 5.5623 5.6455
rate 2.13 2.13 2.19 2.19 2.16 2.28 2.28

I Nh λh,1 λh,2 λh,3 λh,4 λh,5 λh,6 λh,7
3,072 5.6194 5.6194 6.1080 6.2493 6.2493 6.5086 6.5704
10,368 5.1960 5.1960 5.5793 5.7275 5.7275 5.9455 5.9597

{1} 24,576 5.0603 5.0603 5.4152 5.5637 5.5637 5.7682 5.7712
48,000 4.9982 4.9982 5.3416 5.4899 5.4899 5.6870 5.6886
82,944 4.9642 4.9642 5.3019 5.4499 5.4499 5.6418 5.6457
13,1712 4.9434 4.9434 5.2778 5.4257 5.4257 5.6145 5.6199
196,608 4.9296 4.9296 5.2621 5.4098 5.4098 5.5968 5.6031
λex 4.8933 4.8933 5.2236 5.3695 5.3695 5.5516 5.5623
rate 2.13 2.13 2.22 2.19 2.19 2.16 2.28

I Nh λh,1 λh,2 λh,3 λh,4 λh,5 λh,6 λh,7
3,072 5.6194 5.6194 6.2493 6.2493 6.5086 6.5704 6.7187
10,368 5.1960 5.1960 5.7275 5.7275 5.9455 5.9597 6.0609

{2} 24,576 5.0603 5.0603 5.5637 5.5637 5.7682 5.7712 5.8609
48,000 4.9982 4.9982 5.4899 5.4899 5.6870 5.6886 5.7720
82,944 4.9642 4.9642 5.4499 5.4499 5.6418 5.6457 5.7244
131,712 4.9434 4.9434 5.4257 5.4257 5.6145 5.6199 5.6956
196,608 4.9296 4.9296 5.4098 5.4098 5.5968 5.6031 5.6769
λex 4.8933 4.8933 5.3695 5.3695 5.5516 5.5623 5.6345
rate 2.13 2.13 2.19 2.19 2.16 2.28 2.28

I Nh λh,1 λh,2 λh,3 λh,4 λh,5 λh,6 λh,7
3,072 3.7098 5.6194 5.6194 6.2493 6.2493 6.5086 6.5704

∅ 10,368 3.5931 5.1960 5.1960 5.7275 5.7275 5.9455 5.9597
24,576 3.5538 5.0603 5.0603 5.5637 5.5637 5.7682 5.7712
48,000 3.5358 4.9982 4.9982 5.4899 5.4899 5.6870 5.6886
82,944 3.5261 4.9642 4.9642 5.4499 5.4499 5.6418 5.6457
131,712 3.5202 4.9434 4.9434 5.4257 5.4257 5.6145 5.6199
196,608 3.5164 4.9296 4.9296 5.4098 5.4098 5.5968 5.6031
λex 3.5049 4.8933 4.8933 5.3695 5.3695 5.5516 5.5623
rate 2.07 2.13 2.13 2.19 2.19 2.16 2.28

Table 5
Test 3. Smallest positive eigenvalues computed on different meshes with I = {1, 2}, {1}, {2}, ∅.

notice that in this case the helicity (HΩ = 1/λex) of the toroidal shell decrease with
the dimension of the cavity and it is smaller that the helicity of the torus.

Figure 7 shows the eigenfunctions associated to the smallest eigenvalues in the
two toroidal shells and the full torus with I = ∅.

Appendix A. High order approximation. The extension of the construction
of the basis of ZI,h to the case r > 1 is straightforward using the oriented graphMG

described in [1, Proposition 3.3] that has one node for each Lagrange moment and an
arc for each Nédélec moment. This graph generalizes to high order approximations
the graph G of vertices and edges of the mesh. In fact, if r = 1 the two graphs
coincide. The graph MG

int that generalize Gint is obtained by contracting for each
s ∈ {0, 1, . . . , p} the arcs of MG corresponding to edge and face moments supported
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Nh s = 1.5 s = 0.5 s = 0
4,800 3.7098 2.0024 1.8254
16,200 3.5931 1.9843 1.8131
38,400 3.5538 1.9779 1.8088
75,000 3.5358 1.9749 1.8069
129,600 3.5261 1.9732 1.8058
205,800 3.5202 1.9722 1.8052
307,200 3.5164 1.9715 1.8048
λex 3.5049 1.9693 1.8034
rate 2.07 1.95 2.01

Table 6
Test 3. Smallest positive eigenvalues computed on different meshes with I = ∅.

on Γs to a single node.

Let us denote {Φrh,i}
drL
i=1 the canonical basis of Lrh associated to the Lagrangian

moments and {ωrh,k}
dN
k=1 the canonical basis of N r

h associated to the Nédélec moments
defined as in [1, Section 3].

Corollary 4.3 holds true for r > 1 replacing the set {ωh,k}k∈IN,ct by the set
of elements of the canonical basis of N r

h , {ωrh,k}k∈IN,ct , corresponding to arcs in a

cotree of the graph MG
int, and the set {gradΦh,i}i∈I∗L by the gradients of all but one

the elements of the canonical basis of Lrh, {Φrh,i}
drL
i=1. (The missing element should

correspond to a moment supported on Γ.) A basis of X I,h is easily obtained including
the functions {ρh,i}i∈I ∪ {ŵ

′
h,j}j∈Ic ⊂ N 1

h ⊂ N r
h .
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dolfo Rodŕıguez, Pilar Salgado, Pablo Venegas: Numerical solution of an
axisymmetric eddy current model with current and voltage excitations

2021-19 Raimund Bürger, Sonia Valbuena, Carlos A. Vega: A well-balanced and
entropy stable scheme for a reduced blood flow model

2021-20 Gabriel N. Gatica, Cristian Inzunza, Ricardo Ruiz-Baier, Felipe San-
doval: A posteriori error analysis of Banach spaces-based fully-mixed finite element
methods for Boussinesq-type models

2021-21 David Mora, Iván Velásquez: A C1−C0 conforming virtual element discretization
for the transmission eigenvalue problem
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Gerardo Nuñez, Diego Paredes, Romina Pedreschi, Virgilio Uarrota:
Transcriptome and hormone analyses reveals differences in physiological age of “Hass”
avocado fruit

2021-26 Tomás Barrios, Edwin Behrens, Rommel Bustinza: Numerical analysis of a
stabilized mixed method applied to incompressible elasticity problems with Dirichlet and
with mixed boundary conditions

2021-27 Liliana Camargo, Manuel Solano: A high order unfitted HDG method for the
Helmholtz equation with first order absorbing boundary condition

2021-28 Ana Alonso-Rodriguez, Jessika Camaño: A graph-based algorithm for the ap-
proximation of the spectrum of the curl operator

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de
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