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Abstract

This work analyzes a high order unfitted hybridizable discontinuous Galerkin (HDG) method for the
Helmholtz equation in a non-polyhedral domain Ω with first order absorbing boundary condition.
The HDG method is posed in a polyhedral subdomain Ωh whose boundary is at a distance δ from
the boundary of Ω. The absorbing boundary data is properly transferred from ∂Ω to ∂Ωh in such
a way that the method achieves high order accuracy. We first derive a stability analysis and then
obtain the corresponding a priori error estimates, with the explicit dependence on the wavenumber
κ, the meshsize h, the distance between the boundaries δ and the stabilization parameter of the
method. Finally, the theoretical rates of convergence are supported by numerical experiments.

1 Introduction.

For a given source term f ∈ L2(Ω) and a prescribed boundary data g ∈ H1/2(Γ), we consider the
problem of seeking (u, q) which satisfies the following Helmholtz equation in mixed form, defined in a
non-polyhedral domain Ω ⊂ Rd (d = 2, 3) with compact Lipschitz boundary Γ:

q +∇u = 0 in Ω, (1a)
∇ · q − κ2u = f in Ω, (1b)

−q · nΓ + i κu = g on Γ := ∂Ω, (1c)

where nΓ, i =
√
−1 and κ > 0 denote the unit outward normal vector, the imaginary unit and

the wavenumber, respectively. Since we are interested in analyzing the case of a large wavenumber,
without loss of generality, we consider κ ≥ 1.

There is a vast literature on the characterization and approximation of the solutions of the Helmholtz
problem in two or three dimensions and it is widely known that the problems with large wavenumbers
have highly oscillatory solutions [1] and therefore the system of equations could be ill-conditioned
or difficult to solve numerically. In particular, one of the most attractive numerical scheme is the
discontinuous Galerkin (DG) method, due to its flexibility of choosing different polynomial degrees
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on each local approximation space and also meshes with hanging nodes. However, DG methods
yield to a very large linear system to solve, which in the case of Helmholtz equations is the main
drawback for high wavenumbers. With the aim to circumvent this difficulty, hybridization of DG
method were proposed by [4]. Since then, a wide variety of equations have been solved numerically
by using hybridizable discontinuous Galerkin (HDG) schemes. The HDG method does not present
the disadvantage of nodal duplication along the inter-element boundaries since its globally coupled
unknowns are single-valued numerical traces defined on the element boundaries. Moreover, it can be
efficiently implemented by employing static condensation and parallelization.

The first h-version analysis of an HDG method for the Helmholtz equation was provided in [16]
for a Dirichlet boundary value problem posed on a polyhedral Lipschitz domain where, considering
the projection-based error analysis of HDG methods [5] and a duality argument, the authors proved
optimal convergence rates for all the variables under the constraint κh sufficiently small, and con-
stants which depend implicitly on the wavenumber. On the other hand, also considering a first order
absorbing boundary condition and a star-shaped domain respect to a point, the authors in [3] proved
that the HDG scheme is stable without any mesh constraint. Recently, for the linear case, [32] showed
optimal error estimates under the condition κ3h2 small enough. In all these HDG methods, the choice
of a complex-valued stabilization parameter plays a key role in controlling the pollution error, as can
be seen in the dispersion analysis performed in [15].

All the aforementioned methods are for polyhedral domains and, for that reason, the focus of our
work is to deal with a high order approximation on domains having a curved boundary. In general,
it is possible to distinguish in the literature two different approaches to deal with non-polygonal
domains: fitted and unfitted methods. In both cases, since the boundary condition is prescribed
in Γ, the challenge is determining how to impose a proper boundary data on Γh and preserve high
order accuracy. For a complete discussion about both families of methods, we refer the reader to
[9, 11, 21, 23, 22] and the references therein. Briefly speaking, in the first approach the computational
boundary Γh somehow "fits" or resolves the original boundary Γ with certain degree of accuracy. For
instance, when the solution is approximated by piecewise linear functions, Γh can be constructed
by means of piecewise linear interpolation of Γ. For high order polynomial degree approximation,
isoparametric finite element methods [20] or isogeometric analysis [18] can be used. In the second
approach, the computational boundary Γ does not necessarily fit Γ, as in the immerse boundary
method [24]. It is usually based on background meshes that facilitates its implementation in complex
geometries. However, the main drawback of these types of methods is their low order approximation,
due to the fact that Γh is "far" from Γ. During the last decade, several contributions have been made
with the aim to combine the flexibility in the mesh construction of unfitted methods with a high order
approximation. For instance, the authors in [7, 9, 11] proposed and analyzed a novel technique, which
consists of transferring the boundary data from Γ to Γh by integrating a local extrapolation of the
gradient approximation. Even though this idea does not depend on the Galerkin method employed, as
long as the gradient of the solution is one of the unknowns, it has been applied mainly in the context
of HDG methods [21, 25, 27, 28, 29, 30, 31] and also in mixed finite element methods [22, 23].

The main purpose of this work is to propose an HDG method for (1) posed in a curved domain
Ω that is approximated by a polyhedral computational domain. The boundary condition (1c) is
properly transferred to the computational boundary in such a way that the method acquires high
order precision. To that end, we generalize the transferring technique in [10, 11], originally developed
for Dirichlet boundary data, for the boundary condition (1c). Although the purpose of this work
consists of quantifying the effect of the wavenumber on the accuracy of the approximation on the
curved domain, a side consequence is that the study that we will present here also allow us to deal
with a Neumann boundary data. We would like to point out that the authors in [25] proposed a way

2



to handle Neumann boundary conditions by using a method that requires the distance between Γh
and Γ to be of order of the square of the meshsize, but they did not include any error analysis. In this
way, one of the side contribution of our work is to provide an improvement of the technique in [25]
and the corresponding theoretical framework.

We provide the stability and error analysis of our scheme by considering an energy argument to
deduce a Gårding type identity and a duality argument to bound the L2-norm of the approximation of
the scalar unknown. We will show that the stability of the scheme holds for a meshsize h such that hκ
is sufficiently small. The deduced error estimates allow us to affirm that the method achieves optimal
convergence rates for both unknowns. In other words, we carry out a study that extends the known
a priori error analysis for the Helmholtz equation, to the case where the domain is non-polyhedral
and the boundary data is transferred through local extrapolations. We also establish, explicitly, the
influence of the wavenumber and meshsize on the closeness conditions between the computational
boundary Γh and the true boundary Γ that must be satisfied in order to ensure the stability and
convergence of the method.

The remainder of the paper is organized as follows. In Section 2 we introduce notation and the
concept of admissible subdomains and triangulations. Then, we present in Section 3 the unfitted HDG
scheme and its stability analysis is shown in Section 4. In Section 5 we carry out the corresponding
error analysis. In the last section the performance of the method is illustrated by means of numerical
simulations. Finally, we end with conclusion and a discussion.

2 Notation and computational domain.

This section is devoted to recall standard notation regarding HDG methods and introduce the ter-
minology related to the unfitted method. Even though most of the notation and definitions are
nowadays somehow standard in this type of methods and they have been introduced in several works
[9, 21, 26, 27], we state them here in order to make this manuscript self-contained.

Families of admissible subdomains and admissible triangulations. We say {ΩJ}J>0 is a
family of admissible subdomains if it satisfies the following five conditions. For each J > 0, (1)
ΩJ ⊆ Ω is simply connected, (2) ΓJ := ∂ΩJ is a polygon with unit normal nJ pointing outwards ΩJ

and (3) there exists a bijection φJ : ΓJ → Γ. Moreover, for every δ > 0 there are infinite many indices
J satisfying that (4) dist(ΓJ ,Γ) ≤ δ and (5) ‖nΓ − nJ ◦ φ−1

J ‖∞,Γ ≤ CΓ δ
α, for some non-negative

constants CΓ and α. We observe that the first four conditions ensure that the family of admissible
subdomains will exhaust Ω, whereas the last one establishes that the normal vectors of the subdomains
uniformly aligns with the normal of Ω when δ aproaches zero. On the other hand, let us note that if
the first condition is removed, the subdomains will still exhaust Ω, but we will keep it for the sake of
clarity of the explanations.

Let {ΩJ}J>0 be a family of admissible subdomains and δ > 0. We say that {T δh }h>0 is a family of
simplicial δ-admissible triangulations if, for each h > 0, Th satisfies the following conditions: (1) it is
a triangulation for at least one admissible subdomain ΩJ , (2) it is a shape-regular tetrahedrization of
ΩJ i.e., there exists γ > 0 such that for all elements K ∈ Th, hK/ρK ≤ γ, where hK is the diameter of
K and ρK is the diameter of the largest ball contained in K, (3) the meshsize h := max

K∈Th
hK satisfies

δ ≤ Ch for some non-negative constant C; and (4) for each facet e, |e| is proportional to |φ(e)|, where
| · | denotes the Lebesgue measure. For the aforementioned admissible subdomain ΩJ in condition (1),
we set Ωh,J as the union of elements K ∈ T δh , which will be referred as computational domain. For
the sake of simplicity of notation we write Ωh, Γh and nΓh instead of Ωh,J , ΓJ and nJ , respectively.
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Similarly, the bijection φJ will be just denoted by φ. From now on, we will drop the upper index δ and
consider always a family of δ-admissible triangulation {Th}h>0. We also set ∂Th := {∂K : K ∈ Th} and
Eh := EI ∪ EΓ, where EI and EΓ denote the interior and boundary facets, respectively. Furthermore,
he will represent the diameter of a given face e ∈ Eh and for every element K, we will denote by nK
the outward unit normal vector to K, writing n instead of nK when there is no confusion.

Remark 1. If Ω is convex, we can construct a polyhedral domain Ωh such that its boundary Γh is
the piecewise linear interpolation of Γ. In this case, Ωh is an admissible subdomain with δ = O(h2)
and α = 1/2. Moreover, any simplicial triangulation of Ωh is δ-admissible. On the other hand, this
property also holds for a non-convex domain since the condition Ωh ⊂ Ω is not essential, see Remark
3.2 in [22].

Spaces and norms. Given an element K and a non-negative integer k, Pk(K) and Pk(e) denote
the spaces of polynomials of total degree at most k on K and on e, respectively. We also define
Pk(K) := [Pk(K)]d. On the other hand, given a region D ⊂ Rd, we denote by (·, ·)D and 〈·, ·〉∂D
the L2(D) and L2(∂D) complex inner products, respectively. The L2-norms over D and ∂D will be
denoted by ‖ · ‖D and ‖ · ‖∂D. We use the standard notation for Sobolev spaces and their associated
norms and seminorms, where vector-valued functions and their corresponding spaces are denoted in
bold face.

In addition, given a triangulation Th, we introduce the following finite dimensional spaces of piece-
wise polynomials

V h := {v ∈ L2(Th) : v|K ∈ Pk(K), ∀ K ∈ Th},
Wh := {w ∈ L2(Th) : w|K ∈ Pk(K), ∀ K ∈ Th},
Mh := {µ ∈ L2(Eh) : µ|e ∈ Pk(e), ∀ e ∈ Eh},

and the inner products (·, ·)Th :=
∑
K∈Th

(·, ·)K , 〈·, ·〉∂Th :=
∑
K∈Th

〈·, ·〉∂K with their corresponding norms

‖ · ‖Ωh :=

∑
T∈Th

‖ · ‖2T

1/2

, ‖ · ‖∂Th :=

∑
T∈Th

‖ · ‖2∂T

1/2

and ‖ · ‖Γh :=

∑
e∈EΓ

‖ · ‖2e

1/2

.

Transferring paths and extension patch. Let us consider the mapping φ : Γh → Γ and, for each
point x ∈ Γh, we write x = φ(x) ∈ Γ. We denote by σ(x) the segment starting at x and ending
at x, with unit tangent vector t(x) and length l(x) := |σ(x)|. The segment σ(x) is referred as the
transferring paths associated to x and it is assumed to satisfy two conditions: it does not intersect the
interior of another segment and its length |σ(x)| is of order at most δ.

For e ∈ EΓ, we define the extension patch as

Ke
ext := {x+ st(x) : 0 ≤ s ≤ l(x),x ∈ e}.

Since the HDG solution will be computed in the computational domain Ωh, this extension patch will
be used to “extend” the solution to the entire domain Ω.

Now, for a smooth enough p, let us introduce the norm |||·|||e,

|||p|||e :=
(∫

e

∫ l(x)

0
|p(x+ st(x))|2 ds dSx

)1/2

, (2)
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which, under certain conditions, is equivalent to the L2(Ke
ext)-norm. For instance, in two dimensions,

let u and v be the vertices of the edge e, and forw ∈ {u,v}, we setmw := t(w)/|t(w)| if t(w) 6= 0 and
mw := ne, otherwise. Therefore, a point x on e can be represented as x(θ) = u+θ(v−u) for θ ∈ [0, 1]
and the tangent vector of the path associated to x can be written as m̂(θ) := mu + θ(mv −mu).
Moreover, the normalized tangent vector can be written as m(θ) := m̂(θ)/|m̂(θ)| if m̂(θ) 6= 0; and
m(θ) = ne, otherwise. We recall Lemma 3.4 in [22]:

Lemma 2. Let p ∈ L2(Ke
ext). In addition, let us consider the following conditions:

(i) mu · pv ≥ 0,

(ii) there exists constant βe, independent of h, such that m(θ) · ne ≥ βe > 0 for all θ ∈ [0, 1] ; and

(iii) mu · (mv)⊥ ≥ 0.

If (i) holds, then there exists Ce2 > 0 such that

‖p‖Ke
ext
≤ Ce2 |||p|||e. (3)

Moreover, if (ii) and (iii) hold, then there exists Ce1 > 0 such that

Ce1 |||p|||e ≤ ‖p‖Ke
ext
. (4)

We point out that, if mu is parallel to mv, then |||p|||e = ‖p‖Ke
ext

and conditions (i)-(iii) are not
required. In three dimensions a similar result holds, according to Lemma A.1 in [23].

Extrapolation operator. The region enclosed by Ω and Ωh will be denoted by Ωc
h. Since Ωc

h is
not meshed, the HDG approximation of the flux q will be locally extrapolated, on each extension
patch, from the computational domain Ωh to Ωc

h. More precisely, let e ∈ EΓ and the element Ke

where e belongs. Let p|Ke : Pk(Ke) → R be a vector-valued polynomial function. We will define its
extrapolation to Ke

ext as
Eh(p)(y)|Ke

ext
:= p|Ke(y) ∀y ∈ Ke

ext. (5)

Note that the extended function Eh(p)(y)|Ke
ext

is a vector-valued polynomial function whose support
includes Ωc

h. Each element K will have its own extended function. If there is no confusion, we just
write vh instead of Eh(vh).

On the other hand, we will denote by h⊥e (resp. δe) the largest distance between a point of Ke (resp.
Ke
ext) and the plane determined by the facet e. We define

Ceext := (δe)−1/2(h⊥e )1/2 sup
vh∈Pk(Ke)
vh 6=0

|||vh|||e
‖vh‖0,Ke

, (6)

where, the constant Ceext is independent of the meshsize h, but depends on the shape-regularity
constant γ and on the polynomial degree; see Appendix in [22]. Finally, we note that δ ≥ max

e∈EΓ
δe.
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3 The numerical method.

3.1 The equations in Ωh.

We consider a computational domain Ωh and a δ-admissible triangulation Th. Then, by restricting (1)
to Ωh, we write

q +∇u = 0 in Ωh, (7a)
∇ · q − κ2u = f in Ωh, (7b)

−q · nΓh + i κu = ϕ on Γh := ∂Ωh, (7c)

where ϕ is a boundary data that we need to specify and nΓh is the unit outward normal vector of the
domain Ωh. In the context of pure diffusion problems, a way to determine ϕ was proposed for one
dimension in [7] and then extended to higher dimensions by [11]. The method consists of transferring
the data from Γ to Γh along the transferring paths. Let x ∈ Γh and x := φ(x) ∈ Γ. After integrating
(1a) along the segment connecting x and x, we have

u(x) = u(x) +
∫ l(x)

0
q(x+ t(x)s) · t(x) ds,

which, according with (1c), is equivalent to

i κu(x) = q · nΓ(x) + g(x) + i κ

∫ l(x)

0
q(x+ t(x)s) · t(x) ds. (8)

Finally, arranging terms based on ϕ given in (7c), we obtain

ϕ(x) = q · nΓ(x)− q · nΓh(x) + g(x) + i κ

∫ l(x)

0
q(x+ t(x)s) · t(x) ds. (9)

In other words, we have obtained an identity that relates the Robin boundary data ϕ on Γh with
the gradient of the solution q and the data g on Γ.

3.2 The HDG method.

The HDG scheme associated to (7) seeks (qh, uh, ûh) ∈ V h×Wh×Mh, an approximation of (q, u, u|Eh)
in Ωh, such that

(qh,v)Th − (uh,∇ · v)Th + 〈ûh,v · n〉∂Th = 0, (10a)
−(qh,∇w)Th + 〈q̂h · n, w〉∂Th − κ2(uh, wh)Th = (f, w)Th , (10b)

〈q̂h · n, µ〉∂Th\Γh = 0, (10c)
〈−q̂h · nΓh + iκûh, µ〉Γh = 〈ϕh, µ〉Γh , (10d)

for all (v, w, µ) ∈ V h ×Wh ×Mh. Here,

q̂h · n := qh · n+ iτ(uh − ûh) on ∂Th, (10e)

for τ being a positive stabilization function such that τmin := min
e∈Eh

τe and τmax := max
e∈Eh

τe. Furthermore,
the approximate boundary condition motivated by (9), is given by

ϕh(x) = qh · nΓ(x)− qh · nΓh(x) + g(x) + i κ

∫ l(x)

0
qh(x+ t(x)s) · t(x) ds, (10f)

where we point out that qh is being evaluated outside of the computational domain Ωh and is under-
stood as the extrapolation defined in (5).
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3.3 Reconstruction on Ωc
h.

The HDG scheme (10) provides an approximation of the solution in the computational domain Ωh.
With the aim to complete the approximation of q and u in Ω, in this section we will explain how an
approximation in Ωc

h can be calculated.
First of all, for the approximation of q outside Ωh, we use the extrapolation operator defined in (5).
On the other hand, based on (8) we propose the following approximation of u in Ωc

h. For any point
y ∈ Ke

ext, there is a transferring paths σ(x) starting at x ∈ Γh and ending at x = φ(x) ∈ Γ, so that
we can write y = x+ (η/l(x))(x− x) for some η ∈ [0, l(x)]. Then, we set

uh(y) := −iκ−1 (qh · nΓ(y) + g(y)) +
∫ |y−y|

0
qh(y + t(y)s) · t(y) ds, (11)

with y := x and t(y) := (y − y)/|y − y|.

4 Stability analysis.

In this section we provide a stability analysis by employing an energy argument to deduce first a
Gårding type identity and then we derive a bound for the L2-norm of the scalar approximation,
based on a duality argument. We begin by introducing preliminary results that will be used through
the analysis. With these tools at our disposal, we will move forward to the main results of this
work, namely, the aforementioned stability analysis and the a priori error analysis. To that end,
and in order to employ the stability estimates to prove well-posedness and also to deduce the error
bounds, we generalize the right hand sides in (10a) and (10d), by adding the sources G ∈ L2(Ωh) and
G∂ ∈ L2(Γh), as follows:

(qh,v)Th − (uh,∇ · v)Th + 〈ûh,v · n〉∂Th = (G,v)Th , (12a)

and

〈−q̂h · n+ iκûh, µ〉Γh = 〈ϕh, µ〉Γh + 〈G∂ , µ〉Γh . (12b)

SinceG is equal to zero in the original equation (10a) and will be equal to the error of the projection
in Section 5, we consider G to be orthogonal to piecewise polynomials of degree k − 1.

4.1 Preliminaries.

Projectors. First, let us characterize a projector commonly used in the analysis of HDG methods
for elliptic problems (cf. [6, 8]),

Πh : H(div, Th)×H1(Th)→ V h ×Wh

(v, u) 7→ Πh(v, u) := (ΠV v,ΠWu),

which, for a given K ∈ Th and a non-negative stabilization parameter τ , uniquely solves

(ΠV v, z)K = (v, z)K , ∀z ∈ Pk−1(K)
(ΠWu,w)K = (u,w)K , ∀w ∈ Pk−1(K) (13)

〈ΠV v · nΓh + iτ ΠWu, µ〉e = 〈v · nΓh + iτ u, µ〉e,∀µ ∈ Pk(e) ∀e ⊂ ∂K.
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Moreover, since we are working with complex-valued functions, it is convenient to define the following
projection operator,

Π∗h : H(div, Th)×H1(Th)→ V h ×Wh

(v, u) 7→ Π∗h(v, u) := (Π∗V v,Π∗Wu),

which, for a given K ∈ Th and a non-negative stabilization parameter τ , uniquely solves

(Π∗V v, z)K = (v, z)K , ∀z ∈ Pk−1(K)
(Π∗Wu,w)K = (u,w)K , ∀w ∈ Pk−1(K) (14)

〈Π∗V v · nΓh − iτ Π∗Wu, µ〉e = 〈v · nΓh − iτ u, µ〉e,∀µ ∈ Pk(e) ∀e ⊂ ∂K.

This additional projector will be useful during the developing of the duality argument that will lead
us to obtain a stability estimate for the scalar unknown, as it will be seen in Section 4.3.

Furthermore, if (v, u) ∈H lv+1(K)×H lu+1(K), with lv, lu ∈ [0, k], it holds

‖ΠV v − v‖K . hlv+1
K |v|lv+1,K + hlu+1

K τ |u|lu+1,K , (15a)
‖ΠWu− u‖K . hlu+1

K |u|lu+1,K + hlv+1
K τ−1 |∇ · v|lv ,K . (15b)

We highlight that the approximation properties (15) are also satisfied by (Π∗V v,Π∗Wu). In addition,
we will use the L2-projection PMh

: L2(Eh)→Mh and recall its approximation property:

‖PMh
ρ− ρ‖e . hlρ+1/2

e |ρ|lρ+1,K ,

for all ρ ∈ H lρ+1(K) with lρ ∈ [0, k].
Here, we have made use of the notation A . B to indicate that there exists a constant C > 0,

independent of the meshsize and wavenumber, such that A ≤ CB. From now on, C will denote a
positive constant independent of h and κ, which might take different values along the manuscript.

On the other hand, in order to obtain the error estimates on Ωc
h, we also need the approximation

properties of the extrapolation of the HDG projectors in the following lemma.

Lemma 3. Let v ∈Hm+1(Ω). There holds,

‖v − ΠV v‖Ωc
h
.(1 + δ1/2h−1/2)hm+1‖v‖Hm+1(Ω) + δ1/2h−1/2‖v − ΠV v‖Ωh (16a)

and

‖∇(v − ΠV v)‖Ωc
h
.(1 + δ1/2h−1/2)hm‖v‖Hm+1(Ω) + δ1/2h−3/2‖v − ΠV v‖Ωh . (16b)

Proof. To deduce the estimates we follow the same steps as in the proof of Lemma 3.8 of [9], but
adapted to our context. Specifically, in our case we employ the norm |||·|||e and keep track the depen-
dence on δ.

Let us first introduce the extension operator E : Hm+1(Ω) → Hm+1(Rd), for all m ∈ Z+
0 , such

that E(ρ)|Ω = ρ, for all ρ ∈Hm+1(Ω) and

‖E(ρ)‖Hm+1(Rd) . ‖ρ‖Hm+1(Ω). (17)

Then, for a given e ∈ EΓ, we define Be as the ball with center xBe in the middle point of e, such that
Ke
ext ∪Ke ⊂ Be. We denote by Tme (E(ρ)) the Taylor polynomial of degree m of the function E(ρ)
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around xBe . Let v ∈ Hm+1(Ω) and denote Iv := v − ΠV v. Then, by using the triangule inequality,
(3) and (6), we have

‖Iv‖Ke
ext
≤‖v − Tme (E(v))‖Ke

ext
+ Ce2C

e
extδ

1/2
e (h⊥e )−1/2‖Tme (E(v))−ΠV v‖Ke ,

from which, after adding and subtracting v in the second term and making use of the approximation
properties of the Taylor polynomial ([2], Section 4.1), we obtain

‖Iv‖Ke
ext
≤(1 + (Ce1)−1Ce2C

e
extδ

1/2
e (h⊥e )−1/2)‖v − Tme (E(v))‖Ke

ext
+ Ce2C

e
extδ

1/2
e (h⊥e )−1/2‖Iv‖Ke

≤(1 + (Ce1)−1Ce2C
e
extδ

1/2
e (h⊥e )−1/2)‖E(v)− Tme (E(v))‖Be + Ce2C

e
extδ

1/2
e (h⊥e )−1/2‖Iv‖Ke

.(1 + (Ce1)−1Ce2C
e
extδ

1/2
e (h⊥e )−1/2)hm+1|E(v)|Hm+1(Be) + Ce2C

e
extδ

1/2
e (h⊥e )−1/2‖Iv‖Ke .

The result follows by (17), recalling that he . h⊥e and summing over all e ∈ EΓ.
On the other hand, by similar arguments and employing the inverse inequality, we conclude that

‖∇(v − ΠV v)‖Ke
ext

.‖∇v −∇Tme (E(v))‖Ke
ext

+ Ce2C
e
extδ

1/2
e (h⊥e )−1/2h−1

Ke
‖Tme (E(v))−ΠV v‖Ke .

Even more, by the approximation properties of the Taylor polynomial and (17),

‖∇(v − ΠV v)‖Ke
ext

.hm|E(v)|Hm+1(Be) + Ce2C
e
extδ

1/2
e (h⊥e )−3/2‖Tme (E(v))− v‖Ke

+ Ce2C
e
extδ

1/2
e (h⊥e )−3/2‖Iv‖Ke

.hm|E(v)|Hm+1(Be) + Ce2C
e
extδ

1/2
e (h⊥e )−3/2‖Tme (E(v))−E(v)‖Be

+ Ce2C
e
extδ

1/2
e (h⊥e )−3/2‖Iv‖Ke ,

which implies (16b).

Discrete trace inequality on an extension patch. In the following result, we establish a relation
between the norms ‖ · ‖Γe and ‖ · ‖Ke

ext
, for functions defined in the extension patch associated to e.

Lemma 4. If Ke
ext is the corresponding extension patch of e and Γe = φ(e), then there exist positive

constants CtrΓe and CΓe, independent of the meshsize, such that

δ1/2
e ‖p‖Γe ≤ CtrΓe‖p‖Ke

ext
∀p ∈ Pk(Ke

ext) (18)

and
δ1/2
e ‖v‖Γe ≤ CΓe

(
‖v‖2Ke

ext
+ δe‖∇v‖2Ke

ext

)1/2
∀v ∈ H1(Ke

ext). (19)

Proof. Let us assume δe > 0. If not, both inequalities trivially hold true. Proceeding by a scaling
argument, we define K̂e

ext := {ŷ : ŷ = y/δe,y ∈ Ke
ext}, p̂(ŷ) := p(y/δe) and Γ̂e the part of the

boundary of K̂e
ext that has been mapped from Γe. By the trace inequality in the reference patch K̂e

ext,
we have, for all p ∈ Pk(Ke

ext), that

‖p‖2Γe . |Γe| ‖p̂‖
2
Γ̂e

. |Γe| ‖p̂‖2
K̂e
ext

. |Γe| |Ke
ext|−1 ‖p‖2Ke

ext
.

The result in (18) follows by noticing that |Γe|δe is proportional to |Ke
ext|. The second inequality is

obtained by a similar argument, but using the continuous trace inequality on the reference element.
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Estimates on extrapolated functions. The following estimates will be helpful when we employ
a duality argument in the forthcoming analysis (cf. Section 4.3).

Lemma 5. If ψ ∈ H2(Ω) and ϕ := −∇ψ, it holds

‖l−1/2(ψ − ψ ◦ φ) + l1/2(ϕ ◦ φ) · n‖Γh . δ ‖ψ‖H2(Ω),

‖l−1/2(ψ − ψ ◦ φ)‖Γh . δ1/2 ‖ψ‖H2(Ω).

If ϕ ∈H1(Ω), then

‖l−1/2(ϕ−ϕ ◦ φ) · n‖Γh . |ϕ|H1(Ω).

Let e ∈ EΓ, Γe = φ(e) and Ke the element where e belongs. If p ∈ Pk(Ke), then

‖p− p ◦ φ‖e . Ceext δe h
−3/2
e ‖p‖Ke .

Proof. The result follows by adapting the arguments in the proof of Lemma 1 of [21] to our context.

4.2 Energy estimate.

We begin by showing the following Gårding-type identity.

Lemma 6. The solution of (10), (qh, uh, ûh) ∈ V h ×Wh ×Mh, satisfies

‖qh‖2Th − κ
2‖uh‖2Th − i‖τ

1/2(uh − ûh)‖2∂Th − i κ‖ûh‖
2
Γh

= 〈ûh, ϕh +G∂〉Γh + (G, qh)Th + (uh, f)Th .
(20)

Proof. After defining v := qh in (12a), w := uh in the conjugate of (10b), integrating by parts and
adding the resulting expressions, we obtain

‖qh‖2Th − κ
2‖uh‖2Th + 〈uh − ûh, q̂h · n− qh · n〉∂Th + 〈ûh, q̂h · n〉∂Th = (G, qh)Th + (uh, f)Th . (21)

Taking into account (12b), we deduce that

〈ûh, q̂h · n〉∂Th = 〈ûh, q̂h · n〉Γh = −〈ûh, ϕh +G∂〉Γh − i κ‖ûh‖
2
Γh .

Then, by substituting the above expression in (21) and using (10e), (20) follows.

In the right hand side of (20) we observe not only the presence of the unknowns qh, uh and ûh, but
also on the transferred boundary data ϕh. The former can be treated by using the Cauchy-Schwarz
inequality and the information on the left hand side(20), whereas for the latter we need the following
result.

Lemma 7. Let e ∈ EΓ. There holds,

‖ϕh‖2e ≤
1
3
(
Cδ,κ,h‖qh‖2Ke + ‖g‖2Γe

)
, (22)

where

Cδ,κ,h := max
e∈EΓ

(
(Ceext)2δ2

eh
−3
e

(1
2 + κ2γh2

e

)
+ 1

2(Ce2CtrΓeC
e
extCΓ)2γ h−1

e δ2α
e

)
. (23)

10



Proof. Let us note that, from (10f),

|ϕh(x)| ≤ |qh · nΓ(x)− qh · nΓh(x)|+ |g(x)|+ κl(x)1/2
(∫ l(x)

0
|qh(x+ t(x)s)|2ds

)1/2

,

and, given e ∈ EΓ and x ∈ e, we have∫
e
|ϕh(x)|2dx ≤ 1

3

∫
e
|qh · nΓ(x)− qh · nΓh(x)|2dx+ 1

3

∫
e
|g(x)|2dx+ 1

3κ
2
∣∣∣∣∣∣∣∣∣l1/2qh∣∣∣∣∣∣∣∣∣2

e
, (24)

by the definition in (2).
Since φ is bijective, from (24) and (6), we obtain

‖ϕh‖2e ≤
1
3‖(qh · nΓ) ◦ φ− qh · nΓh‖

2
e + 1

3‖g ◦ φ‖
2
e + 1

3κ
2δe|||qh|||

2
e

≤ 1
3‖(qh · nΓ) ◦ φ− qh · nΓh‖

2
e + 1

3‖g ◦ φ‖
2
e + 1

3κ
2(Ceext)2δ2

e(h⊥e )−1‖qh‖2Ke ,

from which, after adding and subtracting qh · nΓh , it follows that

‖ϕh‖2e ≤
1
6‖(qh · nΓh) ◦ φ− qh · nΓh‖

2
e + 1

6‖(qh · nΓ) ◦ φ− (qh · nΓh) ◦ φ‖2e

+ 1
3‖g ◦ φ‖

2
e + 1

3κ
2(Ceext)2δ2

e(h⊥e )−1‖qh‖2Ke

and by Lemma 5,

‖ϕh‖2e ≤
1
6(Ceext)2δ2

eh
−3
e ‖qh‖2Ke + 1

6‖(qh · nΓ) ◦ φ− (qh · nΓh) ◦ φ‖2e

+ 1
3‖g ◦ φ‖

2
e + 1

3κ
2(Ceext)2δ2

e(h⊥e )−1‖qh‖2Ke .
(25)

Since Γe = φ(e), (25) can be rewritten as

‖ϕh‖2e ≤
1
6(Ceext)2δ2

eh
−3
e ‖qh‖2Ke + 1

6‖qh · (nΓ − nΓh)‖2Γe + 1
3‖g‖

2
Γe + 1

3κ
2(Ceext)2δ2

e(h⊥e )−1‖qh‖2Ke

≤1
6(Ceext)2δ2

eh
−3
e ‖qh‖2Ke + 1

6‖qh‖
2
Γe‖nΓ − nΓh‖

2
∞,Γe + 1

3‖g‖
2
Γe + 1

3κ
2(Ceext)2δ2

e(h⊥e )−1‖qh‖2Ke

and by considering that Th is an admissible triangulation, we have that

‖ϕh‖2e ≤
1
6(Ceext)2δ2

eh
−3
e ‖qh‖2Ke + 1

6C
2
Γδ

2α
e ‖qh‖2Γe + 1

3‖g‖
2
Γe + 1

3κ
2(Ceext)2δ2

e(h⊥e )−1‖qh‖2Ke .

Now, by the discrete trace inequality (18), (3), (5) and (6), we obtain

‖qh‖Γe ≤ CtrΓeδ
−1/2
e ‖qh‖Ke

ext
≤ Ce2CtrΓeδ

−1/2
e |||qh|||e ≤ C

e
extC

e
2C

tr
Γe(h

⊥
e )−1/2‖qh‖Ke .

Finally, the last two inequalities and the fact that he ≤ γh⊥e , imply (22).

From the Gårding-type identity (20) and the bound for ϕh in (7), we can observe that a smallness
assumption on Cδ,κ,h will be required:

(A.1) Cδ,κ,hκ−1 ≤ 3
200 .
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Remark 8. This assumption provides a condition that relates the distance δ between Γh and Γ with
the meshsize h and wavenumber κ. For instance, in virtue of Remark 1, if α = 1/2 and δ is of order
h2, by performing some calculations we observe that (A.1) holds true if hκ−1(1 + κ2h2) is sufficiently
small. In particular, this is true when hκ . 1. On the other hand, in the case of Ω being polyhedral,
we mean Ω = Ωh, δ would be zero and therefore Cδ,κ,h too.

We now employ the Gårding identity in order to obtain estimates for qh, τ1/2(uh − ûh) and ûh in
terms of the source terms and scalar unknown uh. The latter ones will be controlled afterwards by a
duality argument.

It is convenient to define the following quantity related to the sources of the problem:

S(f, g,G, G∂ , κ) := κ−2‖f‖2Th + κ−1‖g‖2Γ + ‖G‖2Th + κ−1‖G∂‖2Γh . (26)

Since we are interested in analyzing the case of large wavenumbers, for κ ≥ 1 we notice that
S(f, g,G, G∂ , κ) ≤ S(f, g,G, G∂ , 1).

Lemma 9. Let us assume (A.1) holds. There exist positive constants C1 and C2, independent of h,
κ and δ such that the solution (qh, uh, ûh) ∈ V h ×Wh ×Mh of (10) satisfies

‖qh‖2Th ≤
6
5κ

2‖uh‖2Th + C1S(f, g,G, G∂ , κ) (27a)

and

‖τ1/2(uh − ûh)‖2∂Th + κ

2‖ûh‖
2
Γh ≤

κ2

20‖uh‖
2
Th + C2S(f, g,G, G∂ , κ). (27b)

Proof. Taking real part in (20) and using Young’s inequality, we deduce that

199
200‖qh‖

2
Th ≤ κ

2
(

1 + 1
12

)
‖uh‖2Th + κ−1

2 ‖ϕh +G∂‖2Γh + κ

2‖ûh‖
2
Γh + 50‖G‖2Th + 3κ−2‖f‖2Th

and combining this inequality with the estimate in (22), it follows(199
200 −

1
3Cδ,κ,hκ

−1
)
‖qh‖2Th ≤κ

2 13
12‖uh‖

2
Th + κ−1‖G∂‖2Γh + 50‖G‖2Th

+ 3κ−2‖f‖2Th + κ−1

3 ‖g‖
2
Γh + κ

2‖ûh‖
2
Γh .

Then, by Assumption (A.1), Cδ,κ,hκ−1 ≤ 3/200; and definition (26), we have

99
100‖qh‖

2
Th ≤

13κ2

12 ‖uh‖
2
Th + κ

2‖ûh‖
2
Γh + 50S(f, g,G, G∂ , κ). (28)

On the other hand, considering the imaginary part in (20) and Young’s inequality with parameters
ε2 > 0 and ε4 > 0 at our disposal; and the estimate (22), we obtain

‖τ1/2(uh − ûh)‖2∂Th + κ

2‖ûh‖
2
Γh ≤

ε2
2 ‖uh‖

2
Th + κ−1

2 ‖ϕh +G∂‖2Γh + 1
2ε4
‖G‖2Th + ε4

2 ‖qh‖
2
Th + 1

2ε2
‖f‖2Th

≤ε22 ‖uh‖
2
Th + κ−1‖G∂‖2Γh +

(
ε4
2 + κ−1

3 Cδ,κ,h

)
‖qh‖2Th

+ κ−1

3 ‖g‖
2
Γ + 1

2ε4
‖G‖2Th + 1

2ε2
‖f‖2Th , (29)
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from which, by taking ε2 = κ2/6, ε4 = 4/225 and noticing that Cδ,κ,hκ−1 ≤ 3/200 ≤ 6/225, by
Assumption (A.1), we deduce that there exists C > 0, independent of h and κ, such that

‖τ1/2(uh − ûh)‖2∂Th + κ

2‖ûh‖
2
Γh ≤

κ2

12‖uh‖
2
Th + 4

225‖qh‖
2
Th + CS(f, g,G, G∂ , κ).

Then, by using this expression to bound the second term in (28), we conclude (27a).
Now, if we choose ε2 = κ2/25, ε4 = 1/25 in (29), we have

‖τ1/2(uh − ûh)‖2∂Th + κ

2‖ûh‖
2
Γh ≤

κ2

50‖uh‖
2
Th + κ−1‖G∂‖2Γh +

(
1
50 + κ−1

3 Cδ,κ,h

)
‖qh‖2Th

+ κ−1

3 ‖g‖
2
Γ + 25

2 ‖G‖
2
Th + 25

2 κ
−2‖f‖2Th ,

which implies (27b), according with the bounds given in (27a) and Assumption (A.1).

4.3 Duality argument.

In this section we will employ a duality argument in order to bound ‖uh‖Th . We consider that, given
Θ ∈ L2(Ω), the solution to the auxiliary problem

Φ +∇ψ = 0 in Ω, (30a)
∇ ·Φ− κ2ψ = Θ in Ω, (30b)

−Φ · nΓ − iκψ = 0 on Γ, (30c)

satisfies the regularity estimate

κ‖ψ‖L2(Ω) + |ψ|H1(Ω) + κ−1|ψ|H2(Ω) ≤ Creg‖Θ‖Ω, (31)

where Creg is independent of κ. This estimate holds true, for example, in the case of smooth star-
shaped domains [14, 17]. In addition, since the auxiliary problem is posed in Ω and the HDG sheme
is defined in Ωh, we consider the following smallness assumptions that relates the regularity constant
Creg with the meshsize h, distance δ and wavenumber κ:

(D.1) D1Creghκ
3(h+ τ−1

min) ≤ 1
2 , where D1 > 0 is a constant, independent of h and κ, that appears in

the proof of Corollary 11.1.

(D.2) D2C
2
regκ

2
(
h2(1 + h2τ2

max) + Cδ,κ,h + δmin{1,2α}
)
≤ 1/2, whereD2 > 0 is a constant, independent

of h and κ, that will appear in the proof of Theorem 13.

We observe that Assumption (D.1) is satisfied for h small enough, whereas (D.2) is fulfilled, for
instance, when α = 1/2 and δ is of order h2, as it was mentioned in Remark 8.

Now, an important observation regarding the auxiliary problem, is the fact that the equation (30c)
is posed in the boundary Γ. However, as it will be seen in Lemma 11, we will need to deal with terms
in Γh. Hence, we present the following result that provides a bound of −Φ ·nΓh − iκψ on Γh, in terms
of the local closeness parameter δe and Θ.

Proposition 10. Let ϕΘ := −Φ · nΓh − iκψ on Γh. It holds,

‖ϕΘ‖2Γh ≤ 3C2
reg max

e∈EΓ

(
(1 + κ2)δe + C2

Γ δ
2α
e

)
‖Θ‖2Ω. (32)
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Proof. Let e ∈ EΓ and x ∈ e with its corresponding x ∈ Γ. The same argument employed to obtain
(9) yields, after adding and subtracting Φ(x) · nΓ(x),

ϕΘ(x) = Φ · nΓ(x)−Φ(x) · nΓ(x) + Φ(x) · nΓ(x)−Φ · nΓh(x) + i κ

∫ l(x)

0
Φ(x+ t(x)s) · t(x) ds.

Then,

‖ϕΘ‖2Γh ≤ 3 ‖Φ ◦ φ−Φ‖2Γh + 3 ‖Φ‖2Γh‖nΓ − nΓh‖
2
∞,Γe + 3κ2 ∑

e∈EΓ

∣∣∣∣∣∣∣∣∣l1/2Φ∣∣∣∣∣∣∣∣∣2
e
.

Now, by (31) and considering the fact that Th is an admissible triangulation, we obtain

‖ϕΘ‖2Γh ≤ 3 ‖Φ ◦ φ−Φ‖2Γh + 3C2
reg ‖Θ‖2Ω max

e∈EΓ
C2

Γ δ
2α
e + 3C2

reg κ
2 max
e∈EΓ

δe ‖Θ‖2Ω,

where we have used the fact that for x ∈ e, l(x) ≤ δe.
Finally, by Lemma 1 in [21], we have that ‖Φ ◦ φ−Φ‖2Γh ≤ δe|Φ|

2
H1(Ω) and the result follows.

Lemma 11. Let (Φ, ψ) ∈ H(div,Ω) ×H1(Ω) and (qh, uh, ûh) ∈ V h ×Wh ×Mh be the solutions of
(30) and (10), respectively. If k ≥ 1, for any ψk−1 ∈ Pk−1(Th) and any Φk−1 ∈ Pk−1(Th), there holds

(uh,Θ)Th = (qh,Π∗V Φ−Φ)Th + (uh, κ2(Π∗Wψ − ψ))Th − (G,Π∗V Φ−Φk−1)Th
+ (f,Π∗Wψ − ψk−1)Th + (f, ψk−1)Th − 〈ûh, ϕΘ〉Γh + 〈ϕh +G∂ , PMh

ψ〉Γh .
(33)

Proof. First let us test (30b) with uh and after using integration by parts, the orthogonality of Π∗h
and (12a) with v = Π∗V Φ, we obtain

(uh,Θ)Th = (uh,∇ ·Φ)Th − (uh, κ2ψ)Th
= −(∇uh,Φ)Th + 〈uh,Φ · nΓh〉∂Th − (uh, κ2ψ)Th
= −(∇uh,Π∗V Φ)Th + 〈uh,Φ · nΓh〉∂Th − (uh, κ2ψ)Th (34)
= (uh,∇ ·Π∗V Φ)Th − 〈uh, (Π∗V Φ−Φ) · nΓh〉∂Th − (uh, κ2ψ)Th
= (qh,Π∗V Φ)Th − (G,Π∗V Φ)Th + 〈ûh,Π∗V Φ · nΓh〉∂Th − 〈uh, (Π∗V Φ−Φ) · nΓh〉∂Th
− (uh, κ2ψ)Th .

Now, by using (10b), (30a) and integration by parts, we have

−(uh, κ2ψ)Th = −(uh, κ2Π∗Wψ)Th − (uh, κ2(ψ −Π∗Wψ))Th
= (qh,∇Π∗Wψ)Th − 〈q̂h · nΓh ,Π∗Wψ〉∂Th + (f,Π∗Wψ)Th − (uh, κ2(ψ −Π∗Wψ))Th
= −(∇ · qh,Π∗Wψ)Th − 〈(q̂h − qh) · nΓh ,Π∗Wψ〉∂Th + (f,Π∗Wψ)Th
− (uh, κ2(ψ −Π∗Wψ))Th

= −(∇ · qh, ψ)Th − 〈(q̂h − qh) · nΓh ,Π∗Wψ〉∂Th + (f,Π∗Wψ)Th − (uh, κ2(ψ −Π∗Wψ))Th
= (qh,∇ψ)Th − 〈qh · nΓh , ψ〉∂Th − 〈(q̂h − qh) · nΓh ,Π∗Wψ〉∂Th + (f,Π∗Wψ)Th
− (uh, κ2(ψ −Π∗Wψ))Th

= −(qh,Φ)Th − 〈q̂h · nΓh , ψ〉∂Th + 〈(q̂h − qh) · nΓh , ψ −Π∗Wψ〉∂Th + (f,Π∗Wψ)Th
− (uh, κ2(ψ −Π∗Wψ))Th

= −(qh,Φ)Th − 〈q̂h · nΓh , ψ〉Γh + 〈iτ(uh − ûh), ψ −Π∗Wψ〉∂Th + (f,Π∗Wψ)Th
− (uh, κ2(ψ −Π∗Wψ))Th .
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Moreover, since 〈ûh,Π∗V Φ ·nΓh〉∂Th = 〈ûh, (Π∗V Φ−Φ) ·nΓh〉∂Th + 〈ûh,Φ ·nΓh〉Γh , substituting both
equalities in (34) and using (13), we obtain

(uh,Θ)Th =(qh,Π∗V Φ−Φ)Th − 〈uh − ûh, (Π∗V Φ−Φ) · nΓh − iτ(Π∗Wψ − ψ)〉∂Th
− (uh, κ2(ψ −Π∗Wψ))Th − (G,Π∗V Φ)Th + (f,Π∗Wψ)Th + 〈ûh,Φ · nΓh〉Γh − 〈q̂h · nΓh , ψ〉Γh .

By using the definition of ϕΘ given in Proposition 10, we rewrite the last two terms as follows

〈ûh,Φ · nΓh〉Γh − 〈q̂h · nΓh , ψ〉Γh =− 〈ûh, ϕΘ〉Γh + 〈−q̂h · nΓh + iκûh, ψ〉Γh ,

which implies (33), according with the orthogonality properties of PMh
, (12b) and the fact that G is

orthogonal to functions in Pk−1(Th).

Finally, for the identity in Lemma 11, the boubd in (10) and the approximation properties of the
HDG projection, we conclude the following estimate for the L2 norm of uh:

Corollary 11.1. Let (Φ, ψ) ∈H(div,Ω)×H1(Ω) and (qh, uh, ûh) ∈ V h ×Wh ×Mh the solutions of
(30) and (10), respectively. For k ≥ 1, under the Assumption (D.1) and the regularity estimate (31),
it holds

κ‖uh‖Th .Creg κ
((
h+ h2τmax + C

1/2
δ,κ,h

)
‖qh‖Th + (1 + κ)δmin{1/2,α}‖ûh‖Γh

+κh(1 + hτmax)‖G‖Th + (κh(h+ τ−1
min) + h+ κ−1)‖f‖Th + ‖g‖Γh + ‖G∂‖Γh

)
.

(35)

Remark 12. In the particular case that f is orthogonal to piecewise polynomials of degree k − 1, the
term multiplying ‖f‖Th becomes κh(h+ τ−1

min) + h, as we will see in the proof.

Proof. We bound each term of the right hand side of (33) by applying Cauchy-Schwarz inequality,
(31) and (22) as follows. For the first term we employ approximation property (15a) in the context of
the projector Π∗V :

|(qh,Π∗V Φ−Φ)Th | . Cregh(1 + hτmax)‖qh‖Th‖Θ‖Ω.

Similarly for the second term, but considering (15b) for Π∗W and recalling that κ ≥ 1,

|(uh, κ2(Π∗Wψ − ψ))Th | . Creghκ
3(h+ τ−1

min)‖uh‖Th‖Θ‖Ω.

Then, for the third term we write

|(G,Π∗V Φ−Φk−1)Th | ≤ |(G,Π∗V Φ−Φ)Th |+ |(G,Φ−Φk−1)Th |
. Cregκh(1 + hτmax)‖G‖Th‖Θ‖Ω + Cregκh‖G‖Th‖Θ‖Ω
. Cregκh(1 + hτmax)‖G‖Th‖Θ‖Ω,

where we have taken Φk−1 to be the L2-projection of Φ into the space Pk−1(Th) and used its approx-
imation properties. For the fourth and fifth term, we consider ψk−1 as the L2-projection of ψ into the
space Pk−1(Th) and use its approximation properties to deduce that

|(f,Π∗Wψ − ψk−1)Th + (f, ψk−1)Th | ≤|(f,Π∗Wψ − ψ)Th |+ |(f, ψ − ψk−1)Th |+ |(f, ψk−1)Th |
.(Creghκ(h+ τ−1

min)‖f‖Th + Cregh‖f‖Th)‖Θ‖Ω
+ ‖f‖Th‖ψk−1‖Th
≤Creg(hκ(h+ τ−1

min) + h+ κ−1)‖f‖Th‖Θ‖Ω.
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In addition, we observe that the term (f, ψk−1)Th would vanish if f is orthogonal to piecewise polyno-
mials of degree k−1. Since this is not the case in general, we bound |(f, ψk−1)Th | . Cregκ

−1‖f‖Th‖Θ‖Ω.
For the sixth term, we use (22) and the fact that ψ ∈ H1(Ω), in order to obtain

|〈ϕh +G∂ , PMh
ψ〉Γh | ≤ ‖ϕh +G∂‖Γh‖PMh

ψ‖∂Th
. ‖ψ‖H1(Ω) ‖ϕh +G∂‖Γh
. Creg

(
C

1/2
δ,κ,h‖qh‖Th + ‖g‖Γh + ‖G∂‖Γh

)
‖Θ‖Ω.

Finally, for the last term (32) implies that

|〈ûh, ϕΘ〉Γh | . Creg(1 + κ)δmin{1/2,α} ‖ûh‖Γh‖Θ‖Ω.

Then, if we take Θ :=
{
uh, in Ωh

0, in Ω \ Ωh

in (33) and use the above bounds, it follows that there

exists D1 > 0, independent of h and κ, such that

‖uh‖Th ≤D1Creg
(
hκ3(h+ τ−1

min)‖uh‖Th + κh(1 + hτmax)‖G‖Th + (1 + κ)δmin{1/2,α}‖ûh‖∂Th

+‖G∂‖Γh +
(
h(1 + hτmax) + C

1/2
δ,κ,h

)
‖qh‖Th + ‖g‖Γh + (κh(h+ τ−1

min) + h+ κ−1)‖f‖Th
)
,

which implies (35), according to Assumption (D.1).

4.4 Stability estimate.

The results presented in the preceding subsection allows us to derive one of the main results of this
work, namely, the stability estimate of the unfitted HDG scheme:

Theorem 13. Let (Φ, ψ) ∈H(div,Ω)×H1(Ω) the solution of (30) and (qh, uh, ûh) ∈ V h×Wh×Mh

the solution of (10). If we suppose Assumptions (A.1), (D.1) and (D.2) hold true, then

‖qh‖Th + κ‖uh‖Th . Cest S(f, g,G, G∂ , 1)1/2 (36)

where Cest = Cregκ(κ(h+ h2τmax + h2 + hτ−1
min) + h+ κ−1) + 1.

Remark 14. According with the observation in Remark 12, if f is orthogonal to piecewise polynomials
of degree k − 1, we have that Cest = Cregκ

2
(
h+ h2τmax + h2 + τ−1

minh
)

+ 1. Moreover, if Cregκh . 1,
then the stability constant reduces to Cest = κ(1 + hτmax + τ−1

min).

Proof. First, we square (35) and, by (27a) and (27b), it is deduced that there exists D2 > 0, indepen-
dent of h and κ, such that

κ2‖uh‖2Th ≤D2C
2
regκ

2
{(

h2(1 + h2τ2
max) + Cδ,κ,h + δmin{1,2α}

) (
κ2‖uh‖2Th + S(f, g,G, G∂ , κ)

)
+ h2κ2(1 + hτmax)2‖G‖2Th + (κh(h+ τ−1

min) + h+ κ−1)2‖f‖2Th
}
.

Then, according to Assumption (D.2) it follows that

κ2‖uh‖2Th .S(f, g,G, G∂ , κ) + C2
regκ

4h2(1 + hτmax)2‖G‖2Th
+ C2

regκ
2(κh(h+ τ−1

min) + h+ κ−1)2‖f‖2Th .

Therefore, combining this expression with (27a) and (26) we obtain (36).
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5 Error analysis.

In the first part of the error analysis, we define the error of the projection Iq := q−ΠV q, Iu := u−ΠWu
and the projection of the errors by

eqh := ΠV q − qh, euh := ΠWu− uh, eûh := PMh
u− ûh, eq̂h · n := PMh

(q · n)− q̂h · n, (37)

which satisfy a system of equations, whose structure is justified in the proof of the following lemma.

Lemma 15. Let (q, u) ∈ H(div; Ω) × H1(Ω) and (qh, uh, ûh) ∈ V h × Wh × Mh solutions of (1)
and (7), respectively. Then, the projection of the errors eqh, euh and eûh satisfy the following system of
equations

(eqh,v)Th − (euh,∇ · v)Th + 〈eûh,v · n〉∂Th = −(Iq,v)Th , (38a)

−(eqh,∇w)Th + 〈eqh · n, w〉∂Th + i〈τ(euh − eûh), w〉∂Th − κ2(euh, w)Th = κ2(Iu, w)Th , (38b)

〈eq̂h · n, µ〉∂Th\Γh = 0, (38c)

〈−eq̂h · n+ iκeûh, µ〉Γh = 〈ϕ− ϕh, µ〉Γh , (38d)

for all (v, w, µ) ∈ V h ×Wh ×Mh. Moreover,

eq̂h · n = eqh · n+ iτ(euh − eûh), on ∂Th (38e)

and, for x ∈ Γh, ϕ(x)− ϕh(x) = ϕe(x) +G∂(x), where

ϕe(x) = eqh · n(x)− eqh · nΓh(x) + i κ

∫ l(x)

0
eqh(x+ t(x)s) · t(x) ds

and

G∂(x) = Iq · n(x)− Iq · nΓh(x) + i κ

∫ l(x)

0
Iq(x+ t(x)s) · t(x) ds. (39)

Proof. Due to the deduction of each equation of (38) is similar, we only show the procedure of (38b).
Initially, we use the definitions given in (37) in (10b); and organize the expression

−(eqh,∇w)Th + 〈eqh · n, w〉∂Th + i〈τ(euh − eûh), w〉∂Th − κ2(euh, w)Th
= −(f, w)Th − (ΠV q,∇w)Th + 〈ΠV q · n, w〉∂Th + i〈τ(ΠWu− PMh

u), w〉∂Th − κ2(ΠWu,w)Th .

Then, from (13), integration by parts and (1b), we have

−(eqh,∇w)Th + 〈eqh · n, w〉∂Th + i〈τ(euh − eûh), w〉∂Th − κ2(euh, w)Th
= 〈(ΠV q − q) · n, w〉∂Th + i〈τ(ΠWu− u), w〉∂Th − i〈τ(PMh

u− u), w〉∂Th − κ2(ΠWu− u,w)Th ,

from which (38b) is deduced, as a consequence of (13) and the orthogonality of PMh
.

Theorem 16. Let us assume (q, u) ∈ H lq+1(Th) × H lu+1(Th) for lq, lu ∈ [0, k]. Under the same
assumptions of Theorem 13, we have

‖eqh‖Th + κ‖euh‖Th .Cest

(
‖Iq‖Th + κ‖Iu‖Th + δ1/2|Iq|H1(Ω) + δα‖∇Iq‖Ωc

h

+ (δα−1/2 + κ δ1/2)‖Iq‖Ωc
h

)
.

(40)

17



Proof. We highlight that the structure of (38) is similar to (10). Then, (36) can be tailored in order
to deduce (40). In fact, if we take g ≡ 0, G := −Iq and f := κ2Iu in (36), it follows that

‖qh‖Th + κ‖uh‖Th . Cest
(
κ‖Iu‖Th + ‖Iq‖Th + κ−1/2‖G∂‖Γh

)
.

Now, in order to bound the last term, we take into account the arguments used in the proof of Lemma
7 to deduce that

‖G∂‖2Γh .
∑
e∈EΓ

(
‖(Iq ◦ φ− Iq) · nΓ‖2e + ‖(Iq · nΓ) ◦ φ− (Iq · nΓh) ◦ φ‖2e + κ2|||l1/2Iq|||2e

)
.

Then, by Lemma 5, the fact that ‖nΓ − nΓh‖∞,Γe ≤ CΓ δ
α, the norm equivalence given in Lemma 2

and recalling that l(x) ≤ δ, for all x ∈ Γh, we have

‖G∂‖2Γh .δ|Iq|2H1(Ω) +
∑
e∈EΓ

(
δ2α
e ‖Iq‖2Γe + κ2δe‖Iq‖2Ke

ext

)
.δ|Iq|2H1(Ω) +

∑
e∈EΓ

(
δ2α
e ‖∇Iq‖2Ke

ext
+ (δ2α−1

e + κ2δe)‖Iq‖2Ke
ext

)
,

where we have made use of the trace inequality (19). The result follows by recalling that κ ≥ 1.

Corollary 16.1. Suppose that (q, u) ∈Hk+1(Th)×Hk+1(Th), α > 1/2. Under the same assumptions
of Theorem 13 and Creghκ . 1. There holds

‖q − qh‖Th + κ‖u− uh‖Th .κhk(κ2h+ δ1/2), (41)

for τ of order one or κ. Moreover, if (q, u) ∈ Hk+1(Ω) ×Hk+1(Ω), then ‖q − qh‖Ωch + κ‖u − uh‖Ωch
is of the same order as ‖q − qh‖Ωh + κ‖u− uh‖Ωh.

Proof. We have that (41) follows from (40), by noticing that Cest . κ if τ is of order one or κ,
according with Remark 14. Moreover, the last assertion is a straightforward consequence of Theorem
17, (41) and the approximation properties of the HDG projection (15).

Finally, we also obtain the following estimates of the approximation error outside Ωh:

Theorem 17. Let (qh, uh) the approximation of (q, u) in Ωc
h. If q ∈Hm+1(Ω) with m ∈ [0, k], then

‖q − qh‖Ωch . ‖Iq‖Ωc
h

+ ‖eqh‖Ωh , (42)

and

κ‖u− uh‖Ωch . δh−3/2‖Iq‖Ωh + (1 + κδ)‖Iq‖Ωc
h

+ (1 + δh−3/2 + κδ)‖eqh‖Ωh
+ δ1/2hm(1 + δ1/2h−1/2)‖q‖Hm+1(Ω).

Proof. The first estimate was proved in [9], Lemma 3.7. For the second one, we employ a similar
argument as in the proof of Lemma 3.5 in [22].

For the second one, let e ∈ EΓ, with its corresponding extension patch Ke
ext and let us note that by

inequality (3), ‖u− uh‖Ke
ext

. |||u− uh|||e. Now, let y = x+ st(x) with x ∈ e and s ∈ [0, l(x)]. Then,
from (8), (11) and using the fact that y = x, we have

iκ(u− uh)(y) = (q − qh) · nΓ(x) + iκ

∫ |y−y|
0

(q − qh)(y + t(y)s) · t(y) ds,
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which implies that

κ2|u− uh|2(y) ≤2 |(q − qh) · nΓ(x)|2 + 2κ2|y − y|
∫ |y−y|

0
|q − qh|2(y + t(y)s)ds

≤2 |(q − qh) · nΓ(x)|2 + 2κ2δe

∫ l(x)

0
|q − qh|2(y + t(y)s)ds.

Then, integrating over e and [0, l(x)], we obtain

κ2|||u− uh|||2e ≤2
∫
e

∫ l(x)

0
|(q − qh) · nΓ(x)|2 ds dSx + 2κ2δe

∫
e
l(x)

∫ l(x)

0
|q − qh|2(y + t(y)s) ds dSx

.
∫
e
l(x)|(q − qh) · nΓ(x)|2 dSx + κ2δ2

e |||q − qh|||
2
e

. δe‖q − qh‖2Γe + κ2δ2
e |||q − qh|||

2
e

and from (4),

κ2|||u− uh|||2e . δe‖q − qh‖2Γe + κ2δ2
e‖q − qh‖2Ke

ext
.

Then, by using (19), inverse inequality and (6), we obtain

δe‖q − qh‖2Γe ≤ CΓe

(
‖q − qh‖2Ke

ext
+ δe‖∇(q − qh)‖2Ke

ext

)
. CΓe

(
‖q − qh‖2Ke

ext
+ δe

(
‖∇Iq‖2Ke

ext
+ h−2

e (h⊥e )−1δe‖eqh‖
2
Ke

))
.

Finally, by summing over e ∈ EΓ, using (42) and (16b), the result follows.

6 Numerical results.

In this section we present two-dimensional numerical experiments to validate the theoretical orders
of convergence of the approximations provided by the HDG method. We calculate the errors in the
whole domain Ω, i.e., eΩ

u := ‖u − uh‖Ω and eΩ
q := ‖q − qh‖Ω; and also in the computational domain

Ωh, that is, eΩh
u := ‖u − uh‖Ωh and eΩh

q := ‖q − qh‖Ωh . Even more, we compute the projection error
of the numerical trace, given by

eûh :=

 ∑
K∈Ωh

hK‖PMh
u− ûh‖∂K

1/2

.

For each variable, we compute the experimental order of convergence

e.o.c. = −2
log

(
eT1/eT2

)
log(NT1/NT2) ,

where eT1 and eT2 are the errors associated to the corresponding variable considering two consecutive
meshes with NT1 and NT2 elements, respectively. In all the following numerical experiments we take
the stabilization parameter τ = κ.

6.1 Distance between Γh and Γ of order h2.

We consider the domain Ω as the circle of radius 0.75 centered at the origin. By Remark 1 it is
possible to construct a δ-admissible domain Ωh whose boundary Γh is a piecewise linear interpolation
of Γ with δ = O(h2) and α = 1/2. Moreover, on each edge e of this δ−admissible discretization of Ωh,
the vector t in (10f) is set to be the unit normal vector to e, see Remark 3.2 in [22].
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Example 1. The source term and boundary condition are obtained through the exact solution
u(x, y) = sin(x) sin(y) and the stabilization parameter is taken as τ = κ.

We display the history of convergence by considering κ = 1 and κ = 100 in Tables 1 and 2,
respectively. When κ = 1, the errors in q and u converge to zero with order k + 1 as predicted by
Corollary 16.1, since δ is of order h2. Moreover, the numerical trace converge to the trace of u with
order k + 2 as we should expect. On the other hand, when κ = 100, the errors reported in Table
2 shows a slightly better behavior than the one predicted by Corollary 16.1. We also infer that the
errors in Ωc

h are negligible compared to those of Ω.

k N eΩh
u e.o.c. eΩ

u e.o.c. eΩh
q e.o.c. eΩ

q e.o.c. eûh e.o.c.
1 234 2.45e−04 − 2.48e−04 − 6.31e−04 − 6.32e−04 − 1.99e−05 −

485 1.29e−04 1.77 1.29e−04 1.78 3.10e−04 1.95 3.10e−04 1.96 7.31e−06 2.75
918 6.46e−05 2.16 6.48e−05 2.17 1.56e−04 2.15 1.56e−04 2.15 2.54e−06 3.32
1764 3.28e−05 2.07 3.29e−05 2.08 7.95e−05 2.07 7.95e−05 2.07 8.97e−07 3.19
3546 1.68e−05 1.91 1.68e−05 1.92 4.05e−05 1.93 4.05e−05 1.93 3.23e−07 2.92
7089 8.51e−06 1.97 8.51e−06 1.97 2.03e−05 2.00 2.03e−05 2.00 1.16e−07 2.96
14291 4.24e−06 1.99 4.24e−06 1.99 1.01e−05 1.98 1.01e−05 1.98 4.07e−08 2.98
28457 2.13e−06 2.00 2.13e−06 2.00 5.05e−06 2.02 5.05e−06 2.02 1.45e−08 3.00

2 234 5.64e−06 − 5.71e−06 − 1.31e−05 − 1.31e−05 − 1.90e−07 −
485 1.92e−06 2.95 1.93e−06 2.97 4.70e−06 2.80 4.70e−06 2.81 4.48e−08 3.96
918 7.10e−07 3.12 7.12e−07 3.13 1.66e−06 3.26 1.66e−06 3.26 1.23e−08 4.04
1764 2.70e−07 2.97 2.70e−07 2.97 6.03e−07 3.10 6.03e−07 3.10 3.07e−09 4.26
3546 9.73e−08 2.92 9.74e−08 2.92 2.19e−07 2.90 2.19e−07 2.90 7.84e−10 3.91
7089 3.44e−08 3.00 3.45e−08 3.00 7.82e−08 2.97 7.82e−08 2.97 1.92e−10 4.06
14291 1.22e−08 2.95 1.22e−08 2.95 2.78e−08 2.95 2.78e−08 2.95 4.42e−11 4.19
28457 4.34e−09 3.01 4.34e−09 3.01 9.81e−09 3.02 9.81e−09 3.02 1.15e−11 3.91

3 234 1.30e−07 − 1.30e−07 − 1.52e−07 − 1.52e−07 − 4.13e−09 −
485 3.45e−08 3.64 3.45e−08 3.64 3.81e−08 3.80 3.82e−08 3.80 6.77e−10 4.96
918 8.51e−09 4.39 8.51e−09 4.39 9.63e−09 4.32 9.63e−09 4.32 1.33e−10 5.10
1764 2.11e−09 4.27 2.11e−09 4.27 2.50e−09 4.13 2.50e−09 4.13 2.31e−11 5.36
3546 5.60e−10 3.80 5.60e−10 3.81 6.63e−10 3.80 6.63e−10 3.80 4.17e−12 4.90
7089 1.43e−10 3.94 1.43e−10 3.94 1.67e−10 3.98 1.67e−10 3.98 7.24e−13 5.06
14291 3.59e−11 3.94 3.59e−11 3.94 4.25e−11 3.90 4.25e−11 3.90 1.13e−13 5.29
28457 8.97e−12 4.03 8.97e−12 4.03 1.06e−11 4.03 1.06e−11 4.03 3.42e−14 3.48

Table 1: History of convergence of Example 1. Here, τ = κ, κ = 1 and δ = O(h2).

6.2 Distance between Γh and Γ of order h.

In practice, it is convenient to avoid the interpolation of the boundary Γ. Instead, it is preferable
to consider a background where the domain Ω is immersed. Therefore, Ωh is set as the union of the
elements of the background mesh that are completely contained in Ω. In this case, the transferring
paths can be constructed as in Section 2.4 in [11]. Unfortunately in this setting, Assumption (A.1) is
not satisfied, since δ is of order h and we can not guarantee α to be equal to 1/2. However, we will see
in the following two numerical experiments that the method still provides optimal approximations.
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k N eΩh
u e.o.c. eΩ

u e.o.c. eΩh
q e.o.c. eΩ

q e.o.c. eûh e.o.c.
1 234 2.67e−04 − 2.67e−04 − 2.35e−02 − 2.35e−02 − 5.53e−04 −

485 1.73e−04 1.19 1.73e−04 1.19 1.71e−02 0.88 1.71e−02 0.88 2.90e−04 1.77
918 1.01e−04 1.70 1.01e−04 1.70 1.12e−02 1.33 1.12e−02 1.33 1.42e−04 2.25
1764 5.53e−05 1.83 5.53e−05 1.84 6.72e−03 1.55 6.72e−03 1.55 6.69e−05 2.30
3546 3.25e−05 1.52 3.25e−05 1.52 3.93e−03 1.54 3.93e−03 1.54 3.42e−05 1.92
7089 1.72e−05 1.83 1.72e−05 1.83 2.17e−03 1.72 2.17e−03 1.72 1.70e−05 2.02
14291 8.58e−06 1.99 8.58e−06 1.99 1.11e−03 1.90 1.11e−03 1.90 8.05e−06 2.13
28457 3.40e−06 2.69 3.40e−06 2.69 5.08e−04 2.28 5.08e−04 2.28 3.02e−06 2.85

2 234 5.81e−06 − 5.82e−06 − 2.59e−04 − 2.61e−04 − 6.76e−06 −
485 2.78e−06 2.02 2.78e−06 2.02 1.58e−04 1.35 1.59e−04 1.37 2.75e−06 2.46
918 1.25e−06 2.51 1.25e−06 2.51 8.58e−05 1.91 8.60e−05 1.92 1.06e−06 2.98
1764 4.95e−07 2.83 4.95e−07 2.84 4.04e−05 2.31 4.04e−05 2.31 4.22e−07 2.83
3546 1.76e−07 2.96 1.76e−07 2.96 1.59e−05 2.68 1.59e−05 2.68 1.49e−07 2.99
7089 4.86e−08 3.72 4.86e−08 3.72 4.52e−06 3.63 4.52e−06 3.63 3.74e−08 3.98
14291 1.28e−08 3.81 1.28e−08 3.81 1.20e−06 3.77 1.20e−06 3.77 7.45e−09 4.60
28457 3.70e−09 3.60 3.70e−09 3.60 3.51e−07 3.58 3.51e−07 3.58 1.14e−09 5.46

3 234 1.90e−07 − 1.90e−07 − 9.15e−06 − 9.18e−06 − 1.82e−07 −
485 5.96e−08 3.18 5.96e−08 3.18 4.30e−06 2.07 4.30e−06 2.08 6.18e−08 2.97
918 2.62e−08 2.58 2.62e−08 2.58 2.38e−06 1.86 2.38e−06 1.86 2.63e−08 2.68
1764 5.89e−09 4.57 5.89e−09 4.57 5.71e−07 4.37 5.71e−07 4.37 5.36e−09 4.87
3546 1.05e−09 4.94 1.05e−09 4.94 1.02e−07 4.92 1.02e−07 4.92 8.61e−10 5.24
7089 1.63e−10 5.39 1.63e−10 5.39 1.55e−08 5.45 1.55e−08 5.45 7.74e−11 6.95
14291 3.61e−11 4.29 3.61e−11 4.29 3.35e−09 4.37 3.35e−09 4.37 8.22e−12 6.40

Table 2: History of convergence of Example 1. Here, τ = κ, κ = 100 and δ = O(h2).

Example 2. We consider the same domain and exact solution as in Example 1. In Table 3 are
displayed the results for κ = 1 and can be observed that the error in all the variables is of order k+ 1.
We emphasize that the last column for k = 3 is affected by round-off errors. On the other hand, for
κ = 100, we also observe in Table 4 order of convergence of k + 1 for all the variables when k > 1.
When the polynomial degree of the approximation spaces is k = 1, the rate of convergence observed
is less than 2, but it seems that will be approached by 2 for a sufficiently fine mesh.

Example 3. This example is motivated by the solution of a problem coming from modeling the
scattering of an acoustic wave from a sound-soft impenetrable obstacle in a circular scatterer. We
consider the annular domain Ω := {(x, y) ∈ R2 : 0.5 <

√
x2 + y2 < 1} and the truncated exact

solution in polar coordinates with M = 20 and κ = 7π:

u(r, θ) = − J0(0.5κ)
H

(2)
0 (0.5κ)

H
(2)
0 (rκ)− 2

M∑
m=1

im
Jm(0.5κ)
H

(2)
m (0.5κ)

H(2)
m (rκ) cos(mθ),

where {Jm}m and {H(2)
m }m denote the family of Bessel and Hankel functions, respectively. As usual,

the source term and boundary condition are obtained from the solution. For a more wide explanation
of the scattering problem see for example [12, 19]. The results in Table 5 show that the experimental
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k N eΩh
u e.o.c. eΩ

u e.o.c. eΩh
q e.o.c. eΩ

q e.o.c. eûh e.o.c.
1 400 4.24e−04 − 5.54e−04 − 2.10e−03 − 3.01e−03 − 3.98e−04 −

1680 1.81e−04 1.19 2.18e−04 1.30 8.77e−04 1.22 1.07e−03 1.44 1.75e−04 1.15
7000 4.24e−05 2.03 4.66e−05 2.17 1.99e−04 2.08 2.42e−04 2.09 4.06e−05 2.05
28504 9.73e−06 2.10 1.02e−05 2.17 4.48e−05 2.12 5.53e−05 2.10 9.23e−06 2.11
115000 2.10e−06 2.20 2.14e−06 2.23 9.55e−06 2.22 1.24e−05 2.14 1.97e−06 2.22
461656 5.07e−07 2.04 5.12e−07 2.06 2.30e−06 2.05 3.02e−06 2.03 4.73e−07 2.05

2 400 1.47e−05 − 2.10e−05 − 8.64e−05 − 1.19e−04 − 1.47e−05 −
1680 3.22e−06 2.12 4.00e−06 2.31 1.64e−05 2.31 2.03e−05 2.47 3.21e−06 2.12
7000 3.43e−07 3.14 3.83e−07 3.29 1.73e−06 3.15 2.15e−06 3.15 3.42e−07 3.14
28504 3.68e−08 3.18 3.88e−08 3.26 1.87e−07 3.17 2.40e−07 3.13 3.66e−08 3.18
115000 3.74e−09 3.28 3.84e−09 3.32 1.97e−08 3.23 2.69e−08 3.14 3.72e−09 3.28
461656 4.51e−10 3.05 4.56e−10 3.06 2.39e−09 3.04 3.30e−09 3.02 4.48e−10 3.05

3 400 4.75e−07 − 6.21e−07 − 2.48e−06 − 3.70e−06 − 4.77e−07 −
1680 8.35e−08 2.42 1.01e−07 2.53 4.12e−07 2.50 4.92e−07 2.81 8.36e−08 2.43
7000 4.47e−09 4.10 4.92e−09 4.24 2.15e−08 4.14 2.49e−08 4.18 4.47e−09 4.10
28504 2.30e−10 4.23 2.40e−10 4.30 1.09e−09 4.25 1.26e−09 4.25 2.29e−10 4.23
115000 1.09e−11 4.38 1.11e−11 4.41 4.95e−11 4.43 6.07e−11 4.35 1.08e−11 4.38
461656 4.60e−12 1.23 4.62e−12 1.26 5.11e−12 3.27 5.75e−12 3.39 4.60e−12 1.23

Table 3: History of convergence of Example 2. Here, τ = κ, κ = 1 and δ = O(h).

k N eΩh
u e.o.c. eΩ

u e.o.c. eΩh
q e.o.c. eΩ

q e.o.c. eûh e.o.c.
1 400 1.17e−04 − 1.73e−04 − 1.57e−02 − 1.69e−02 − 2.73e−04 −

1680 2.43e−05 2.19 3.57e−05 2.20 5.18e−03 1.55 5.50e−03 1.56 4.54e−05 2.50
7000 5.33e−06 2.12 6.35e−06 2.42 1.36e−03 1.87 1.40e−03 1.91 6.62e−06 2.70
28504 1.93e−06 1.45 2.01e−06 1.64 3.71e−04 1.85 3.78e−04 1.87 1.84e−06 1.82
115000 7.83e−07 1.29 7.89e−07 1.34 1.12e−04 1.72 1.13e−04 1.73 7.54e−07 1.28
461656 2.51e−07 1.63 2.52e−07 1.64 3.21e−05 1.79 3.23e−05 1.80 2.45e−07 1.62

2 400 3.12e−06 − 6.48e−06 − 1.71e−04 − 2.71e−04 − 3.43e−06 −
1680 5.16e−07 2.51 9.11e−07 2.73 4.68e−05 1.80 6.20e−05 2.05 4.87e−07 2.72
7000 2.12e−07 1.25 2.23e−07 1.98 2.11e−05 1.12 2.16e−05 1.48 2.12e−07 1.17
28504 4.39e−08 2.24 4.41e−08 2.31 4.37e−06 2.24 4.41e−06 2.27 4.38e−08 2.24
115000 4.35e−09 3.31 4.36e−09 3.32 4.35e−07 3.31 4.38e−07 3.31 4.33e−09 3.32
461656 4.59e−10 3.24 4.60e−10 3.24 4.60e−08 3.23 4.62e−08 3.23 4.57e−10 3.24

3 400 2.90e−08 − 1.72e−07 − 2.31e−06 − 7.82e−06 − 3.73e−08 −
1680 1.48e−08 0.94 2.00e−08 3.00 1.46e−06 0.63 1.93e−06 1.95 1.49e−08 1.27
7000 2.10e−09 2.73 2.17e−09 3.11 2.10e−07 2.72 2.17e−07 3.06 2.10e−09 2.75
28504 1.02e−10 4.30 1.03e−10 4.34 1.02e−08 4.30 1.04e−08 4.33 1.02e−10 4.30
115000 4.36e−12 4.53 4.37e−12 4.53 4.37e−10 4.52 4.42e−10 4.53 4.35e−12 4.53
461656 2.66e−13 4.02 2.67e−13 4.03 2.67e−11 4.02 2.69e−11 4.03 2.66e−13 4.02

Table 4: History of convergence of Example 2. Here, τ = κ, κ = 100 and δ = O(h).
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order of convergence is slightly less than k+ 1. Finally, in Figure 1 can be appreciated the magnitude
of the approximation of the scalar variable obtained by the method.

k N eΩh
u e.o.c. eΩ

u e.o.c. eΩh
q e.o.c. eΩ

q e.o.c. eû e.o.c.
1 520 2.88e-01 − 3.35e-01 − 6.40e+00 − 7.53e+00 − 2.75e-01 −

2224 1.00e-01 1.45 1.11e-01 1.52 2.25e+00 1.44 2.54e+00 1.50 9.50e-02 1.46
9280 2.51e-02 1.94 2.64e-02 2.00 5.70e-01 1.92 6.10e-01 1.99 2.37e-02 1.94
37856 6.34e-03 1.96 6.52e-03 1.99 1.44e-01 1.95 1.51e-01 1.98 5.98e-03 1.96
152784 1.70e-03 1.89 1.72e-03 1.91 3.84e-02 1.90 3.93e-02 1.93 1.61e-03 1.88

2 520 1.52e-01 − 1.92e-01 − 3.37e+00 − 3.94e+00 − 1.50e-01 −
2224 3.36e-02 2.07 3.90e-02 2.19 7.48e-01 2.07 8.47e-01 2.12 3.35e-02 2.06
9280 3.98e-03 2.99 4.27e-03 3.10 8.82e-02 2.99 9.51e-02 3.06 3.96e-03 2.99
37856 5.11e-04 2.92 5.30e-04 2.97 1.14e-02 2.91 1.21e-02 2.94 5.09e-04 2.92
152784 7.04e-05 2.84 7.16e-05 2.87 1.55e-03 2.85 1.60e-03 2.90 7.02e-05 2.84

3 520 9.97e-02 − 1.23e-01 − 2.23e+00 − 2.62e+00 − 9.97e-02 −
2224 9.87e-03 3.18 1.14e-02 3.28 2.23e-01 3.16 2.59e-01 3.19 9.87e-03 3.18
9280 5.34e-04 4.08 5.72e-04 4.18 1.22e-02 4.07 1.36e-02 4.12 5.34e-04 4.08
37856 3.48e-05 3.89 3.61e-05 3.93 8.03e-04 3.87 8.75e-04 3.91 3.47e-05 3.89
152784 2.34e-06 3.87 2.38e-06 3.90 5.37e-05 3.88 5.61e-05 3.94 2.34e-06 3.87

Table 5: History of convergence of Example 3. Here, τ = κ, κ = 7π and δ = O(h).

7 Concluding remarks and discussion.

We carried out a stability analysis based on a duality argument of the proposed unfitted HDG method
for the mixed form of the Helmholtz equation defined in a non-polyhedral domain with first order
boundary conditions. One of the novelties of our work is the introduction of a way to transfer a
given Robin boundary data to the computational boundary of the unfitted domain. Moreover, the
framework presented in this paper provides the tools to analyze the transference of Neumann data.

We performed an stability analysis making explicit the dependence on the wavenumber κ, the
meshsize h and the gap δ between Ω and Ωh, under certain closeness assumptions between Γh and Γ.
This resutl was achieved by combining the known analyses of HDG schemes developed for problems
posed in polyhedral domains with the boundary data transferring technique. In addition, the stability
estimate was employed to deduce optimal convergence rates of the scheme. Numerical experiments
were included to show the optimal performance of the numerical scheme, even in cases that are not
completely covered by the theory, indicating the capability of the method to deal with problems defined
in domains with complex geometries. In this direction, we plan to analyze the possibility of relaxing
Assumption (A.1) in order to allow δ to be only of order h, according to what we have observed in
the numerical simulations.

Another interesting approach to show stability without any constraint on the mesh can be obtained
by employing a Rellich identity, in which the domain Ω is assumed to be star-shaped as it was
considered by [13] in the polyhedral case. In the context of our unfitted HDG method, it is also
possible to make use of a Rellich identity to avoid a meshsize restriction in most of the estimates.
However, Assumption (A.1) still imposes a restriction on h and δ that depends on the wavenumber.
In this sense, it is natural to expect that δ should be small enough for a high wavenumber since the
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Figure 1: Example 3 with k = 3 and a mesh (top-left) with N = 2224. Approximation |uh| in the
computational domain Ωh (top-right), in the extrapolation region Ωc

h (bottom-left) and in the physical
domain Ω (bottom-right).

identity to transfer the boundary data depends linearly on κ (cf. (10f)). Once again, we believe this
assumption could be relaxed at least on the dependence on h and this will be subject of future work.
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dolfo Rodŕıguez, Pilar Salgado, Pablo Venegas: Numerical solution of an
axisymmetric eddy current model with current and voltage excitations

2021-19 Raimund Bürger, Sonia Valbuena, Carlos A. Vega: A well-balanced and
entropy stable scheme for a reduced blood flow model

2021-20 Gabriel N. Gatica, Cristian Inzunza, Ricardo Ruiz-Baier, Felipe San-
doval: A posteriori error analysis of Banach spaces-based fully-mixed finite element
methods for Boussinesq-type models

2021-21 David Mora, Iván Velásquez: A C1−C0 conforming virtual element discretization
for the transmission eigenvalue problem
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