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Abstract

We propose and analyze a new mixed formulation for the Brinkman—Forchheimer equations for un-
steady flows. Besides the velocity, our approach introduces the velocity gradient and a pseudostress
tensor as further unknowns. As a consequence, we obtain a three-field Banach spaces-based mixed
variational formulation, where the aforementioned variables are the main unknowns of the sys-
tem. We establish existence and uniqueness of a solution to the weak formulation, and derive
the corresponding stability bounds, employing classical results on nonlinear monotone operators.
We then propose a semidiscrete continuous-in-time approximation on simplicial grids based on the
Raviart—-Thomas elements of degree k > 0 for the pseudostress tensor and discontinuous piecewise
polynomials of degree k for the velocity and the velocity gradient. In addition, by means of the
backward Euler time discretization, we introduce a fully discrete finite element scheme. We prove
well-posedness and derive the stability bounds for both schemes, and under a quasi-uniformity
assumption on the mesh, we establish the corresponding error estimates. We provide several nu-
merical results verifying the theoretical rates of convergence and illustrating the performance and
flexibility of the method for a range of domain configurations and model parameters.
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1 Introduction

In this work we study mathematical and computational modeling of fast flows in highly porous media
using the unsteady Brinkman—Forchheimer equations. Such flows occur in a wide range of applica-
tions, among which we highlight predicting and controlling processes arising in chemical, petroleum
and environmental engineering. Fast flows in the subsurface may occur in fractured or vuggy aquifers
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or reservoirs, as well as near injection and production wells during groundwater remediation or hy-
drocarbon production. The widely used Darcy’s law is not suitable for flows through media with high
porosity or with high Reynolds number. To overcome this limitation, an alternative is to employ the
Forchheimer law [17], which accounts for faster flows by including a nonlinear inertial term. We refer
the reader to [19,20,22,26,27,]29] for previous works on the numerical solution of the Forchheimer
model. Another possible option is the Brinkman model [5], which describes Stokes flows through a set
of obstacles, and therefore it can be applied for highly porous media. Depending on its parameters, it
can model flows in either the Stokes and Darcy regimes. Various numerical methods for the Brinkman
model have been developed that are robust in both limits, see, e.g., [31] and references therein.

The Brinkman—Forchheimer model (see, e.g., [12/15/24,28] and |11]), which combines the advantages
of both models, has been used to model fast flows in highly porous media. Up to the authors’
knowledge, one of the first works in analyzing the unsteady Brinkman—Forchheimer equations is 28],
where stability of solutions in the L?-norm is established. This result is extended to the H'-norm
in [12]. In [15], well-posedness for a velocity-pressure variational formulation is established, whereas, a
perturbed compressible system that approximates the Brinkman—Forchheimer equations is proposed
and analyzed in [24]. There, a fully discrete numerical scheme is developed that combines a semi-
implicit Euler scheme with the lowest-order Raviart—Thomas elements for the spatial discretization. In
[25], a pressure stabilization method and its finite element approximation are developed and analyzed.
The Brinkman—Forchheimer model is coupled with a variable porosity Darcy model and applied for
simulating wormhole propagation in |23]. More recently, a mixed pseudostress-velocity formulation is
analyzed in |11], where existence and uniqueness of a solution are established for the weak formulation
in a Banach space framework. Semidiscrete continuous-in-time and fully discrete mixed finite element
approximations are introduced and sub-optimal rates of convergence are established. In turn, in [10],
the coupling of the steady Brinkman—Forchheimer and double-diffusion equations is analyzed. There,
the velocity gradient, the pseudostress tensor, the temperature and concentration gradients, and a
pair of flux vectors are introduced as further unknowns. As a consequence, a Banach space fully
mixed variational formulation in each set of equations is obtained. Well-posedness of the solution of
the continuous and discrete problems are proved by employing a fixed-point approach combined with
classical results on nonlinear monotone operators and Babuska-Brezzi’s theory in Banach spaces.

The purpose of the present work is to develop and analyze a new three-field mixed formulation of the
unsteady Brinkman—Forchheimer problem and study a suitable conforming numerical discretization.
To that end, unlike previous works and motivated by [13] and [10], we introduce the velocity gradient
and a pseudostress tensor as additional unknowns besides the fluid velocity. The pressure is elimi-
nated from the system and can be easily recovered through a simple postprocessing of the pseudostress.
There are several advantages of this new approach, including the direct and accurate approximation
of additional unknowns of physical interest, which are the velocity gradient and pseudostress tensors.
The approximation of the pseudostress tensor in the H(div) space ensures compatible enforcement of
momentum conservation. Moreover, our approach improves the suboptimal theoretical rates of conver-
gence obtained in [11] for the pseudostress-velocity formulation under a quasi-uniformity assumption
on the mesh. Compared to classical velocity-pressure formulations, which may not be suitable for
both the Stokes and Darcy regimes in the Brinkman equation, our approach is robust in both regimes,
which is illustrated in the numerical experiments. Two of the numerical examples also illustrate the
capability of the method to resolve sharp velocity gradients in the presence of discontinuous spatially
varying parameters in complex geometries.

We establish existence and uniqueness of a solution to the continuous weak formulation by em-
ploying techniques from [30], [9], and [13], combined with the classical monotone operator theory in a
Banach space setting. Stability for the weak solution is established by means of an energy estimate.



We further develop semidiscrete continuous-in-time and fully discrete finite element approximations.
The pseudostress tensor is approximated by the Raviart—Thomas elements of order k£ > 0, whereas,
discontinuous piecewise polynomials of degree k are employed to approximate the velocity and the
velocity gradient tensor. We make use of the backward Euler method for the discretization in time.
Adapting the tools employed for the analysis of the continuous problem, we prove well-posedness of the
discrete schemes and derive the corresponding stability estimates. We further perform error analysis
for the semidiscrete and fully discrete schemes, establishing rates of convergence in space and time.

The rest of this work is organized as follows. The remainder of this section describes standard
notation and functional spaces to be employed throughout the paper. In Section [2, we introduce
the model problem and derive its three-field mixed variational formulation. Next, in Section [3] we
establish the well-posedness of the weak formulation. The semidiscrete continuous-in-time scheme is
introduced and analyzed in Section [l Error estimates and rates of convergence are also derived. In
Section [5] the fully discrete approximation is developed and analyzed. Finally, the performance of the
method is illustrated in Section [6] with several numerical examples in 2D and 3D, thus verifying the
aforementioned rates of convergence, as well as its flexibility to handle spatially varying parameters
in complex geometries.

Preliminaries

Let Q ¢ R%, d € {2,3}, denote a domain with Lipschitz boundary I'. For s > 0 and p € [1,40oq],
we denote by LP(Q2) and W*P(Q) the usual Lebesgue and Sobolev spaces endowed with the norms
|- le () and || - [[wsr(q), respectively. Note that WOP(Q) = LP(Q). If p = 2, we write H*(2) in place of
W52(Q), and denote the corresponding norm by ||- ls(q)- By H and H we will denote the corresponding
vectorial and tensorial counterparts of a generic scalar functlonal space H. Moreover, given 7' > 0 and
a separable Banach space V endowed with the norm || - ||y, we let LP(0,7; V) be the space of classes
of functions f : (0,7") — V that are Bochner measurable and such that || f||1»(,1:v) < 00, with

T
AT (073 r=/ IS dt, [ fllLeo,rvy = esssup|lf(t)]v-.
0 te[0,T]

)

In turn, for any vector field v := (v;);=1,4, we set the gradient and divergence operators, as

0v; 0v;j
Vv = ( Z> and div(v) := —Z,
05 ) j=1.a Z dw;

In addition, for any tensor fields 7 = (7;)i j=1,4 and ¢ = ((ij)ij=1,d, we let div(7) be the divergence
operator div acting along the rows of 7, and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

d d
1
T = (Tji)ij=1.d, tr(7T):= Zm, T:¢:= Z Tij Gij, and =7 gtr('r) I,

i=1 ij=1

where I is the identity tensor in R**¢. For simplicity, in what follows we denote

(v, w)a ::/va, (v, W) = /Qv-w, (r.)o ::/ch.

When no confusion arises, |-| will denote the Euclidean norm in R or R44. Additionally, we introduce
the Hilbert space

H(div; Q) = {’7’ cL2(Q): div(r) € L2(Q)},
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equipped with the usual norm HTH]%I(divﬂ) = ‘|T||H%2(Q) + ||div(7')||i2( )~ In addition, in the sequel we
will make use of the well-known Young’s inequality, for a,b >0, 1/p+1/q=1, and § > 0,

p/2
<5 aP + ! b4, (1.1)

ab < . 1092

Finally, we end this section by mentioning that, throughout the rest of the paper, we employ 0 to
denote a generic null vector (or tensor), and use C' and ¢, with or without subscripts, bars, tildes
or hats, to denote generic constants independent of the discretization parameters, which may take
different values at different places.

2 Continuous formulation

2.1 Model problem

In this work we are interested in approximating the solution of the unsteady Brinkman—Forchheimer
equations (see for instance [11}|12,15,124,25]). More precisely, given the body force term f and a
suitable initial data ug, the aforementioned system of equations is given by
a—u—uAu—l—au—i—Flu\p_zu—i—Vp:f div(u) =0 in Qx (0,7

a t ) ) ) (2‘1)
u=0 on I'x(0,7], u0) =u in Q, (p,l)o=0 in (0,77,

where the unknowns are the velocity field u and the scalar pressure p. In addition, the constant v > 0
is the Brinkman coefficient, @ > 0 is the Darcy coefficient, F > 0 is the Forchheimer coefficient and
p € [3,4] is given.

Now, in order to derive our weak formulation, we first rewrite (2.1 as an equivalent first-order set
of equations. To that end, unlike [11] and inspired by [13] and [10], we introduce the velocity gradient
and pseudostress tensors as further unknowns, that is

t:=Vu, o:=vt—pl in Qx(0,7]. (2.2)

In this way, applying the trace operator to t and o, and utilizing the incompressibility condition
div(u) = 0 in £ x (0,T], one arrives at tr(t) = 0 in Q x (0,7] and

p = —étr(a) i Qx(0,7]. (2.3)

Hence, replacing back (2.3) in the second equation of (2.2)), we find that our model problem (2.1 can
be rewritten, equivalently, as the set of equations with unknowns u,t and o, given by

du
— +au+Fluf?u—divie) =f in Qx (0,77,
i u (@) 01

u=0 on I'x(0,7], u0) =uy in Q, (tr(e),l)o =0 in (0,77].

t = Vu, O'd:I/t,

At this point we stress that, as suggested by (2.3), p is eliminated from the formulation (2.4) and
computed afterwards in terms of o by using identity (2.3)). This fact, justifies the last equation in
(2.4)), which is equivalent to imposing (p,1)q = 0 in (0, 7.



2.2 Variational formulation

In this section we derive our three-field Banach mixed variational formulation for the system . To
that end, we proceed as in |10, Section 2.2] (see also [7,[8}/13] for similar approaches) and extend the
analysis derived there to our current unsteady regime, considering a generalized version of the inertial
term |u|P~2u, with p € [3,4]. In fact, multiplying the first, second and third equations of by
suitable test functions 7, r, and v, respectively, integrating by parts and using the Dirichlet boundary
condition u =0 on I" x (0, 7], we get

(t,7)a + (u,div(7))o =0, (2.5)
v(t,r)g— (6d1r)q =0, (2.6)
Dy, v)g + a(u,v)g +F (JulP2u,v)q — (div(e),v)o = (f,v)q, (2.7)

for all (7,r,v) in X x Q x M, where X,Q and M are spaces to be defined below.

We begin by noting that the first term in (2.6)) is well defined for t,r € L2(Q), but due to the
incompressibility condition div(u) = tr(t) = 0, it makes sense to look for t, and consequently the test
function r, in

Q := {r cL?*Q): tr(r)=0 in Q} . (2.8)
This implies that (2.6) can be rewritten equivalently as
v(t,r)g—(o,r)g =0 VreQ@. (2.9)

In addition, we note that the first and second terms in and (or ), respectively, are well
defined if o, 7 € L2(Q2). In turn, if u,v € LP(Q), with p € [3,4], then the first, second, and third
terms in are clearly well defined, which forces both div(e) and div(7) to live in L4(Q), with
q € [4/3,3/2] satisfying 1/p + 1/q = 1. According to this, we introduce the Banach space

H(divy; Q) = {T cL2(Q): div(r) € Lq(Q)},

equipped with the norm
7 [f(aive:0) = [I7llL2@) + [[div(7T)]|La) ;
and deduce that the equations (2.5)—(2.7) and (2.9) are well defined if we choose the spaces Q as in

£8) and
M := LP(Q) and X := H(divy;Q)

with their respective norms: | - lg == | llaay, - It = I - o> andd |- 1 = || lszgaiwessy
Now, for convenience of the subsequent analysis and similarly as in [7] (see also [10,/13}|18]) we

consider the decomposition:
X =X9®RI,

where

Xo 1= {7 € H(divg;®):  (tx(r),1)0 =0}

that is, R I is a topological supplement for Xg. More precisely, each 7 € X can be decomposed uniquely
as:

1
r=710+cI with 79€X, and crzm(tr(f%l)ﬂGR-



Then, noticing that div(7) = div (7o) and employing the last equation of (2.4)), we deduce that both
o and 7 can be considered hereafter in Xy. Next, in order to write the above formulation in a more
suitable way for the analysis to be developed below, we now set the notations

u:=(ut), v:=(v,r)e MxQ,
with corresponding norm given by
Iv]| == [[vIlm+rllo YveMxQ.

Hence, the weak formulation associated with the unsteady Brinkman-Forchheimer system ([2.4]) reads:
Given f : [0,T] — L?(Q2) and up € M, find (u,o) : [0,7] — (M x Q) x Xy, such that u(0) = ug and,
for a.e. t € (0,7),

0 / — X
5 €®),¥] +[A@®)),v] + [B(o),v] = [F(t),y] YveMxQ, (2.10)

— [B(u(?)), 7] =0 VreXo,

where, the operators £, A: (M x Q) — (M x Q), and B : (M x Q) — X[, are defined, respectively, as
0

[E(u),v] == (u,v)a, (2.11)
[A(u),v] = a(u,v)g +F(JuP?u,v)g + v (t,r)q, (2.12)
B(v), 7] := —(v,div(T))q — (r,T)q, (2.13)

and F' is the bounded linear functional given by
[F,v] = (f,v)q. (2.14)
In all the terms above, [-,-] denotes the duality pairing induced by the corresponding operators. In

addition, we let B’ : Xo — (M x Q), be the adjoint of B, which satisfies [B'(7),v] = [B(v), 7] for all
veMxQand T e Xp.

3 Well-posedness of the model

In this section we establish the solvability of (2.10). To that end we first collect some previous results
that will be used in the forthcoming analysis.

3.1 Preliminary results

We begin by recalling the key result |30, Theorem IV.6.1(b)], which will be used to establish the
existence of a solution to (2.10]).

Theorem 3.1 Let the linear, symmetric and monotone operator N be given for the real vector space
E to its algebraic dual E*, and let E; be the Hilbert space which is the dual of E with the seminorm

lz|p = (/\/a:(zr:))l/2 x € F.
Let M C E x Ej be a relation with domain D = {x €eE: M(x)# (ZJ}.
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Assume M is monotone and Rg(N + M) = E;. Then, for each f € WH(0,T; E}) and for each
ug € D, there is a solution u of

%(/\/u(t)) + M(u(t)) > ft) ae 0<t<T, (3.1)

with
Nue WHe(0,T; E), wu(t)eD, foral 0<t<T, and N u(0)=N u.

In addition, in order to provide the range condition in Theorem [3.1] we will require the following
abstract result (see [9, Theorem 3.1] for details).

Theorem 3.2 Let X1, Xo and Y be separable and reflexive Banach spaces, X1 and Xo being uniformly
convez, and set X = X1 x Xy. Let a : X — X' be a nonlinear operator, b: L(X,Y"), and let V be the
kernel of b, that is,

YD:{UEX: [b(v),q] = 0 vqey}
Assume that
(i) a is hemi-continuous, that is, for each u, v € X the real mapping
J:R—=R, t—=J(t)=a(u+tv),v]
18 continuous;
(ii) there exist constants L > 0 and p1,p2 > 2, such that
2
la(w) = a@)llx < L3 {llus = vllx; + (sl + losllg) ™y =il o (32)
j=1
for all uw = (ui,uz),v = (vi,v2) € X;

(iii) the family of operators {a(- +t): V-V . te X} is uniformly strictly monotone, that is
there exist v > 0 and p1,p2 > 2, such that

fa(u+1) = a(v+1),u =] = 3 {lu —vill}, + lluz = 02, }

for allt € X, and for all u = (u1,uz2),v = (v1,v2) € V;

(iv) there exist 5 > 0 such that

b(v), q
sup PO S gialy veey.
X Tl

Then, for each (f,g) € X' x Y’ there exists a unique (u,p) € X XY such that
[a(u),v] + [b(v),p] = [f,v] VveX,

[b(u), q] = [g,q] VqeY.



Next, we establish the stability properties of the operators involved in :2.10 ). We begin by observing
that the operators £, B and the functional F' are linear. In turn, from (2.11)), (2.13) and (2.14]), and
employing Holder and Cauchy—Schwarz inequalities, there hold

1B),7]| < [IvllITllx V(v,7) e (MxQ) x X, (3.3)
P v]] < lfllez@ [Viiz@) < 1Q21C2/CPif]l2q) lv] YveMxQ, (3.4)

and
€@, v)| < Q2P| [lvll, [E@).v] = [VIZq YuveMxQ, (3.5)

which implies that B and F' are bounded and continuous, and £ is bounded, continuous, and mono-
tone. In addition, employing the Cauchy—Schwarz and Hélder inequalities, it is readily seen that the
nonlinear operator A (cf. (2.12))) is bounded, that is

A, ]| < (1927 ull + F ul " + v o) vil. (3.6)

Finally, recalling the definition of the operators £, .4, and B (cf. (2.11)-(2.13)), we stress that
problem ([2.10f) can be written in the form of (3.1]) with

E:= (MxQ)xXg, u:<:> N::<§ g), M::(_“é;,), z(s;’). (3.7)

Let E} be the Hilbert space that is the dual of M x Q with the seminorm induced by the operator £ =
(19) (cf. @II)), whichis |v]e = (v, V) = |Vllte(y ¥v € Mx Q. Note that E) = L2(2) x {0}.
Then we define the spaces

B = (L2(Q) x {0}) x {0}, D := {(g, o) e (MxQ) xXo: Mu,o)e E,’,}. (3.8)

In the next section we prove the hypotheses of Theorem to establish the well-posedness of ([2.10)).

3.2 Range condition and initial data

We begin with the verification of the range condition in Theorem Let us consider the resolvent
system associated with (2.10)): Find (u,o) € (M x Q) x Xg such that

[(E+A)(u),v]+[B(o),v] = [F.v] VveMxQ, (39)
[B(u), 7] = 0 V1 eXo, .

where F' € L2() x {0} ¢ M/ x {0} is a functional given by F(v) := (/f:, v)q for some fe L2(9).
Next, a unique solution to (3.9) is established by employing Theorem We stress that alternatively
to Theorem similar arguments developed in [10, Section 3.3] can be employed to establish the

well-posedness of (3.9). We begin by observing that, thanks to the uniform convexity and separability
of LP(Q2) for p € (1, +00), the spaces M, Q, and X are uniformly convex and separable as well.

We continue our analysis by proving that the nonlinear operator £ 4+ A satisfies hypothesis (ii) of
Theorem with p; = p € [3,4] and ps = 2.

Lemma 3.3 Let p € [3,4]. Then, there exists Lgr > 0, depending on v,F, and «, such that
-2
(€ +A)(w) — (€ + A < Les {u—vline + 1t = rlg + (v + v = via}, (3.10)

for allu= (u,t),v = (v,r) € M x Q.



Proof. Let u = (u,t),v = (v,r) € M x Q. Then, according to the definition of the operators

E, A (cf. (2.11), (2.12))), similarly to the boundedness estimates (3.5) and (3.6)), using Holder’s and

Cauchy—Schwarz inequalities, we find that

(€ +A)(u) = (€+ A ()]
(3.11)
< (14 Q)2 u = v]jp +F[[[uf*u— [v[P v + vt — g

In turn, applying [3, Lemma 2.1, eq. (2.1a)] to bound the second term on the right hand side of (3.11)),
we deduce that there exists ¢, > 0, depending only on || and p such that

_ _ -2
ulP~u = vy < ep ([l + Vi) * o = vl (3.12)
Thus, using (3.12) and (3.11]), we obtain (3.10) with Lgr = max{(l + a)|Q\(p*2)/p,Fcp,u}, which
completes the proof. O

Next, the following lemma shows that the operator £ + A satisfies hypothesis (iii) of Theorem (3.2
with p; = p € [3,4] and py = 2.

Lemma 3.4 Letp € [3,4]. The family of operators {(5—}-/\)(-—1—;) :MxQ —» (MxQ)': ze MXQ}
1s uniformly strictly monotone, that is, there exists vgr > 0, such that

(E+Au+z) - (E+A)v+z),u-—v] > VBF{Hu—vH{iAJr Ht—rué}, (3.13)
for allz = (z,s8) € M x Q, and for allu = (u,t),v=(v,r) € M x Q.

Proof. Let z = (z,8) € M X Q and u = (u,t),v = (v,r) € M x Q. Then, from the definition of the
operators £, A (cf. , ), we get
[(E+Au+z)—(E+A)(v+2),u—y]
(3.14)
= (o) VI + F (2P0t 2) — v+ 2P ) v o el

where, employing [3| Lemma 2.1, eq. (2.1b)] to bound the second term in (3.14)), we deduce that there
exists Cp > 0 depending only on || and p such that

(ju+zP2(u+z) - |[v+zPi(v+z),u-v)g > Cllu—v|y,. (3.15)

Thus, replacing (3.15)) back into (3.14)), and bounding below the first term on the right-hand side of
(3.14)) by 0, we obtain

[(E+A)(u+z)— (E+AT+z),u—v] > CpoFlu—v|¥+v|t—r|d,

which gives (3.13)) with ygr = min {Cp F, V}. O

Remark 3.1 We observe that, using similar arguments to (13, eq. (3.30)], the kernel of the operator

B (cf. (2.13)) can be written as
V:{y:(v,r)GMXQ: Vv=r and VGH(I](Q)}. (3.16)

In turn, since the strict monotonicity bound (3.13) holds on M x Q, it is clear that it also holds on
V. Notice also that, alternatively to Lemma and similarly to [10, Lemma 3.5], it is possible to



prove that the family of operators {(5 +A)(-+2z): V>V zeMx Q} is uniformly strongly

monotone, that is, there exists ygr > 0, such that
[(E+Au+z)— (E+A)(v+z),u—v] > Fer lu—v|?,
for allz = (z,8) € M x Q, and for allu = (u,t),v = (v,r) € V.

We end the verification of the hypotheses of Theorem [3.2], with the corresponding inf-sup condition
for the operator B.

Lemma 3.5 There exists a constant 5 > 0 such that

B
sup 1Bv). 7] > Blrllx VT eXo. (3.17)
zel\;IgQ vl

Proof. For the case p = 4 and q = 4/3 we refer the reader to [13| eq. (3.44), Lemma 3.3], whose
proof can be easily extended to the case p € [3,4] and q € [4/3,3/2] satisfying 1/p+ 1/q = 1. Further
details are omitted. U

Now, we are in a position of establishing the solvability of the resolvent system (3.9)).

Lemma 3.6 Given I = (f,0) € L%(Q) x {0}, there exists a unique solution (u,o) = ((u,t),o) €
(M x Q) x Xg of the resolvent system (3.9)).

Proof. First, we recall from (3.3) and (3.4) that B and F are linear and bounded. In turn, we note
that Lemma [3.3] implies, in particular, that the nonlinear operator £ + A is hemi-continuous, that is,
for each u,v € M x Q, the mapping

J:R—=R, z—=Jz)=[(E+A)u+z2v),v]

is continuous. In this way, as a consequence of Lemmas and and a straightforward
application of Theorem we conclude the result. O

We end this section by establishing a suitable initial condition result, which is necessary to apply
Theorem B.] to our context.

Lemma 3.7 Assume that the initial condition ug € M N H, where
H = {v cHIQ): AveLl?(Q) and div(v)=0 in Q} (3.18)

Then, there exists (to,00) € Q x Xg such that uy := (ug, to) and o satisfy

< _/;g ’f)/ ) < . > € (L2(9) x {0}) x {0} (3.19)

0o

Proof. We proceed similarly to the proof of |11, Lemma 3.6]. Given ug € M N H, we can define
to := Vug and o := v tg, which satisfy

tr(tp) = 0, div(eg) = vAug, and tr(op) =0 in Q. (3.20)

Notice that tg € Q and ¢ € Ho(div; Q) C Xo, with Ho(div; Q) := {7 € H(div;Q) : (tr(7),1)q = 0}.
Next, integrating by parts the identity to = Vug and proceeding similarly to (2.5)), we obtain

—[B(uy), 7] =0 V1reXp.
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Hence, given ug € M NH (cf. (3.18])), multiplying the identity vty = o and the second equation in
(3.20) by r € Q and v € M, respectively, and after minor algebraic manipulation we deduce that

(4 9)(2)-(5)

(fo,v)q = (—V Auy+aug +F |U.o‘p72u(), v)q .

where, Fy = (f,0) and

Using the additional regularity of up and the continuous injection of H'(Q) into L2P~1(Q), with
p € [3,4], we obtain

(o, v)a| < {vllAuolLe) + o uollLaoy + F 1uolBag 1) g } IVl

1 (3.22)
< C{lIauliea@) + ol + 1ol o,  IVIze)
Thus, Fy € L?(Q) x {0} so then (3.19) holds, completing the proof. O

Remark 3.2 The assumption on the initial condition ug in (3.18)) is not necessary for all the results
that follow but we shall assume it from now on for simplicity. A similar assumption to ug is also made
in (11, Lemma 3.6] (see also [15, eq. (2.2)]). Note also that (uy, o) satisfying (3.19) is not unique.

3.3 Main result

We now establish the well-posedness of problem (2.10)).

Theorem 3.8 For each compatible initial data (uy,00) = ((ug,to),o0) constructed in Lemma
and each £ € WH(0,T;L*(Q)), there exists a unique (u,0) = ((u,t),0) : [0,T] = (M x Q) x X
solution to ([2.10), such that u € WH(0,T; L2(Q)) and (u(0),t(0),d4(0)) = (uo,to,ag)

Proof. We recall that fits in the framework of Theorem with the definitions and .
Note that N is linear, symmetric and monotone since £ is (cf. (3.5)). In addition, since A is strictly
monotone, it is not difficult to see that M is monotone. On the other hand, from Lemma we know
that given (F,0) € E} with F = (f,0), there is a unique (u,0) = ((u,t),0) € (M x Q) x X, such
that (F,0) = (N + M)(u, &) which implies Rg(A + M) = Ej. Finally, considering up € M N H (cf.
(3.18), from a straightforward application of Lemma we are able to find (to,00) € Q x Xy such
that (uy,00) = ((ug, to),o0) € D. Therefore, applying Theorem [3.1| to our context, we conclude the
existence of a solution (u, o) = ((u,t),o) to (2.10), with u € WH>(0,T;L?(Q)) and u(0) = uo.

We next show that the solution of is unique. To that end, let (u;,0;), with ¢ € {1,2}, be
two solutions corresponding to the same data. Then, taking with (v, 7) = (u; —uy,01 —02) €
(M X Q) x Xp, we deduce that

1
9 O a1 — UQH%Q(Q) + [A(uy) — A(uy),u; —u,] =0,
which together with the strict monotonicity bound of A (cf. (3.13))), yields

1
5 O llm —W[fa(g) + o lur — w2llfaq) + Cp F lur — wel[jy + vt — t2]|g < 0.
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Integrating in time from 0 to ¢ € (0,7], and using u;(0) = uy(0), we obtain

t
[ur(t) — w2 (t)f2(q) +/0 (Hu1 — g|[faq + w1 — w2}y + 61 — t2H<§> ds < 0. (3.23)

Therefore, it follows from ({3.23) that u;(t) = ua(t) and t(t) = to(¢t) for all ¢ € (0,7T]. Next, from the
inf-sup condition of the operator B (cf. (3.17))) and the first equation of (2.10), we get

Blloy —o2flx < sup Blo1 — ). ¥
veMxQ vl
v#0
— s 00 £(uy —uy), v] + [Alwy) — Aluy), v]
veEMXQ vl ’
v#0

which implies that o1 (t) = o2(t) for all ¢t € (0,7, and therefore ([2.10) has a unique solution.

Finally, since Theorem implies that M(u) € L>(0,T}; E}), we can take ¢ — 0 in all equations
without time derivatives in (2.10). Using that the initial data (ugy, o¢) = ((uo,to), oo) satisfies the
same equations at ¢ = 0 (cf. (3.21)), and that u(0) = ug, we obtain

v (t(0) —to,r)g — (6(0) —op,r)o = 0 VreQ,
(t(0) —tg, 7)o = 0 VTeXp.

(3.24)

Thus, taking r = t(0) — tp and 7 = 6(0) — o in (3.24) we deduce that t(0) = to. In addition, from
the latter and testing the first equation in (3.24) with r = (o(0) — 0¢)? € Q implies that 04(0) = o,
completing the proof. O

We conclude this section with the corresponding stability bounds for the solution of (2.10)).

Theorem 3.9 Let p € [3,4]. Assume that f € WH(0,T;L2(Q)) n L2P~1D(0,T;L2(Q)), and ug €
M N H satisfying (3.19). Then, there exist constants Cgr,1,Crr2 > 0 only depending on |Q|,v, o, F,
and 3, such that

e 0,2 + lall2o,rnny + Itz 0,m0) + o llizorx)
(3.25)
< Crr {HfHLg(p vorL29) T 1£llL20,7:L202)) + Hu0||M + (o}, ot [[uo]|g Q)}

and
2
lallieoran < Cora {IEITSR, rpaay) + ol + olizhg, | - (3.26)

Proof. We follow an analogous reasoning to the proof of [11, Theorem 3.3]. We begin by choosing

(v,7) = (u,0) in (2.10), to get
1
Oy + A, 1] = (£ )

Next, from the definition of the operator A (cf. (2.12))), using Cauchy—Schwarz and Young’s inequalities
(cf. (1.1])), we obtain

1 1
5 O l[ullEz o)+ ullfa o) + F llullRy + v [16]G < Hflliz(m + 55 L) (3.27)
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In turn, noting from the second row of (2.10)) that u = (u,t) belongs to V (cf. (3.16])), we know that
t = Vu and u € H}(Q2), which combined with the Sobolev embedding from H!(Q) into LP(Q2), with
p € [3,4], implies

gwﬁmn+QW@zIm“f”}mwémuwvw$@)z“?ﬁ}ﬁnwﬁ,
where i, is the embedding operator. Combining the above with and choosing 6 = 1/a, yields
min {a, 1/}
ip][*

Notice that, in order to simplify the stability bound, we have neglected the term F||u||}; in the left
hand side of (3.27). Integrating (3.28) from 0 to ¢ € (0,7, we obtain

t t
Ry + [ (Il + 162) ds < € { [ 101y ds + e | (329

with C7 > 0 depending only on ||, v, and a.

On the other hand, from the inf-sup condition of B (cf. - the first equation of (2.10), and
the stability bounds of F, &, A (cf. (3.5)), (3.4) and ) we deduce that

1
O 2y + e+ v 1603 < — 1£122(0)- (3.28)

Bllollx < sup M: sup [F,v] = [0:E(n), v] — [Au), V]
XEXI\;IE;@ HXH XEXI\;ISQ HXH (3.30)

< s (Il + lallne + R+ litllo + 190 wllceo)

with Cy > 0 depending on ||, v, «, and F. In turn, using (3.28), the Sobolev embedding of LP(2)
into L2(£2), with p € [3,4], the Young inequality (cf. (T.1))), and simple algebraic computations, we
are able to find that

2 1 2(p—1 2 (p—2) -2
O [[ullf $ey + i = (0 = DlIalFLe;” 0 [[ul2a o) + a3 [[ull3s
2) 2 1) 2(p—1
< Oy E12(0) I3 < o lE128e) + 5 lulad?
which, similarly to (3.29)), implies

t t
wwﬁ%y+Auw%”msg@{éwﬁ%ﬁm+wmhp”} (3.31)

with C3 > 0 depending on ||, v, and .. Then, taking square in (3.30)), integrating from 0 to ¢t € (0,77,

and using and -, we get
[otzas < e [ (1) + 1) ds

1
RO ) 1O oy + [ 10l ds

with Cy > 0 depending on |Q|,v,a,F, and . Next, in order to bound the last term in (3.32),
we differentiate in time the second equation of (2.10]), choose (v,7) = ((0¢u, s t), o), and employ
Cauchy—Schwarz and Young’s inequalities, to obtain

(3.32)

2 O (o llEaqe) + =~ Nl + 2 11815) + 10 mlEag) < 5 1E12q0) + 5 190l
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Integrating from 0 to ¢ € (0,7, we get
t 2 t 2 2 2
25 ) 5+ /0 002y ds < Cs { /0 812, ds + [1(0) By + [1(0) |20, + Ht(O)HQ}, (3.33)

with C5 := max {1, a,2F/p,v}. Then, combining (3.33]) with (3.32)), yields

t t
[otzas < cof [ (1185 + 181 @

(3.34)
2(p—1
(R + IO + 1) ey + 16O)IR }.
which, combined with (3.29) and the fact that (u(0),t(0)) = (up, to), with tg = Vug in © (cf. Lemma
and Theorem [3.8), implies (3.25). In addition, (3.33) yields (3.26) with

1/p
P 2F

Cerp = ( max{l,oz,,y}> ,
2F p

concluding the proof. O

Remark 3.3 The stability bound can be derived alternatively without using the fact that u =
(u,t) belongs to V (cf. ), but in that case the expression on the right-hand side of would
be more complicated, involving other terms related to p € [3,4]. We also note that will be
employed in the next section to deal with the nonlinear term associated to the operator A (cf. ),
which is necessary to obtain the corresponding error estimate.

Remark 3.4 The analysis developed in this section can be easily extended to the problem with
non-homogeneous Dirichlet boundary condition, u = up on I' x (0,T]. To that end, has to be
rewritten as follows: given £ : [0,T] — L%(Q), up : [0,7] — HY2(T') and up € MNH (c¢f. B-13)).
find (u,0) = ((u,t),0): [0,7] = (M x Q) x Xq, such that u(0) =g and, for a.e. t € (0,T),

0
ot
— [B(u(t)), ] = [G@t),7] VTeXo,

[Eu(t),v] + [Au(®)),v] + [B'(e(t),¥] = [F(t),v] VveMxQ,

where the functional G € X, is given by [G, 7] = (Tn,up)p, with (-, ) denoting the duality between
HY2(I') and H'/*(T'). We refer the reader to [7, Lemma 3.5] for the proof that Tn € H=Y/2(T") for
all 7 € Xo in the case p = 4 and q = 4/3. The proof can be extended to the case p € [3,4] and
q € [4/3,3/2] satisfying 1/p+ 1/q =1, after slight adaptations. Then, we reformulate the problem as
a parabolic problem for u, and proceed as in [1, eq. (4.14), Section 4.1].

4 Semidiscrete continuous-in-time approximation
In this section we introduce and analyze the semidiscrete continuous-in-time approximation of ([2.10)).

We analyze its solvability by employing the strategy developed in Section Finally, we derive the
error estimates and obtain the corresponding rates of convergence.
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4.1 Existence and uniqueness of a solution

Let T, be a shape-regular triangulation of € consisting of triangles K (when d = 2) or tetrahedra K
(when d = 3) of diameter hg, and define the mesh-size h := max {hK : K e ’77L} In turn, given an
integer [ > 0 and a subset S of R, we denote by P;(.S) the space of polynomials of total degree at most
[ defined on S. Hence, for each integer k£ > 0 and for each K € T}, we define the local Raviart—Thomas
space of order k as B
RTk(K) = Pk(K) @ Pk(K) X,

where X := (x1,...,14)" is a generic vector of R?, f’k(K) is the space of polynomials of total degree
equal to k defined on K, and, according to the convention in Section |1, we set Py(K) := [Px(K)]?
and Py (K) := [Py(K)]?*?. In this way, introducing the finite element subspaces:

M), = {VhGMI Vil € Pi(K) VKEE},
@M:{meermﬁﬂwK)VKen} (4.1)
X = {rh eX: c'rylx € RTH(K) YceR" VK e 7;}, Xon = XpNXo,

and denoting from now on

wy, = (up,tp), vy, = (vp,1h) € My x Qy,

the semidiscrete continuous-in-time problem associated with (2.10) reads: Find (u,o) : [0,7] —
(Mh X Qh) x X 5, such that, for a.e. t € (0,7),
0
a[g(ﬂh%vh] + [A(uy), vp] + [B(vp),on] = [Fivy] Vv, € My x Qu, (4.2)
_[B(Hh)v'rh] = 0 VT}LEXQh.

As initial condition we take (uy, 5, 05,0) = ((Un,0,th,0), r0) to be asuitable approximations of (uy, o),
the solution of (3.21]), that is, we chose (uy, o, 01,0) solving

[A(wy0), vp] + B(vy), on0] = [Fo,vi] Vv, € My x Qp, 43)
— [B(uyo), ] - 0 V7, €Xon, '

with Fy € L*(2) x {0} being the right-hand side of (8.21]). This choice is necessary to guarantee that
the discrete initial datum is compatible in the sense of Lemma [3.7], which is needed for the application
of Theorem Notice that the well-posedness of problem follows from similar arguments to the
proof of Lemma In addition, taking (vj,7,) = (u;,,04) in (4.3), we deduce from the definition
of the operator A (cf. (2.12))) and the continuity bound of Fy (cf. (3.22)) that, there exists a constant
Cy > 0, depending only on ||, v, o, and F, and hence independent of h, such that

2(p—1
[0l + unollzg) + ol < Co {||u0||}§11)(9)) + [ Auo|f2 o) + ||110||%2(Q)} - (4.4)

In this way, the well-posedness of (4.2)) follows analogously to its continuous counterpart provided in
Theorem More precisely, we begin by introducing the discrete kernel of the operator B, that is,

V= {Xh = (vh,rh) e My, x Qp : (Vh,diV(Th))Q + (I'h,’Th)Q =0 VT4 € X07h}. (4.5)

Then, we derive from [13| Section 5] the following two properties, the first one being the discrete
inf-sup condition of B and the second one an auxiliary result that will be used to obtain the stability

bound (4.10) below.
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Lemma 4.1 There exist positive constants B and Cq, such that

B(v,), T ~
sup BTl S Fy o Vs € Xon (4.6)
v, eMpxQ, V4l
X}ﬁéo
and
Irnlle > Callvallm YV (Vh,Th) € Vi (4.7)

Proof. For the case p = 3 and q = 3/2 we refer the reader to [10, Lemma 4.1], whose proof can be
easily extended to the case p € [3,4] and q € [4/3,3/2] satisfying 1/p + 1/q = 1. In what follows we
provide some details just for sake of completeness. We begin by introducing the discrete space Zj
defined by

ZO,h = {Th € Xo’h : [B(Vh,O),Th] = (Vh,diV(Th))Q =0 VVh (S Mh} R
which, according to the fact that div(Xg ) € My, becomes
ZO,h = {Th S XO,h : diV(Th) =0 in Q} .

Next, by using the abstract equivalence result provided by [13, Lemma 5.1], we deduce that (4.6 and
(4.7) are jointly equivalent to the existence of positive constants $; and (3, independent of A, such
that there hold

B(vy,0), 1 v, div(Ty))a
sup [Blvn, 0), 7] _ sup (v, div(Ts))a > Bilvallm Vvi € My (4.8)
Th€Xo,n HThHX Th€X0,n ”Th”X
770 Tr#0
and B(0,5),74] (1, 70)
yTh), Th Tn, Th)Q
sup ————"—— = sup ————— > [o||Tnlx VT E Zop. (4.9)
r,€Qp ”thQ r, €Qp HthQ
rp#0 rp7#0

Then, we observe that (4.8]) follows from a slight adaptation of |7, Lemma 4.3] (see also [13, eq.
(5.45)]). Furthermore, recalling from [18, Lemma 2.3] that there exists a constant ¢; > 0, depending
only on 2, such that

a7z < 172 + 1div(T) 2 V7 € Ho(div; Q),
and using the fact that 74 € Qy, for each 7, € Zy, (see the proof of [18, Theorem 3.3] for details), we
easily get (4.9)) with £y = 01/2. O

Next, we address the discrete counterparts of Lemmas [3.3] and whose proofs, being almost
verbatim of the continuous ones, are omitted.

Lemma 4.2 Let p € [3,4]. The family of operators {(5 + A)(-+z,) : My xQp — (My x Qp)

z, € Mj, X Qh} is uniformly strongly monotone with the same constant ~gr > 0 from (3.13)), that is,
there holds

(& + A)(wy +21) = (€ + AN, +28)w, = v] = 0r {Jun = valg + ltn —rald }
for each z, = (zp,sp) € My, x Qp, and for all w, = (up, tr), vy, = (vp, 1) € My, x Qp. In addition,

the operator € + A : (My, x Q) = (My, x Q)" is continuous in the sense of (3.10), with the same
constant Lgg.
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We are now in a position to establish the semi-discrete continuous in time analogue of Theorems

and 3.9

Theorem 4.3 Let p € [3,4]. For each compatible initial data (wy,, o) = ((Up,0,th0), ono) satis-
fying and £ € WHH0,T; LQ(Q)), there exists a unique (wy,opn) = ((up,tp),on) : [0,7] —
(Mh X Qh) x Xo,p, solution to , satisfying uh € W1 (0, T;Myp,) and (up(0),t,(0)) = (up0,tho)-
Moreover, assuming that ug € M N H satisfies ( and that f € L2(p—1) (O,T L2(2)), there exist
constants égp’l, éBF,Q > 0 depending only on |Q|,v, «, F and ﬂ, such that

anllre 0,m12(0)) + nllizo ) + Itellizomo) + lonllvzorx)

< 5BF,1{HfHL2<p norrzqy T Ifl2ore @) (4.10)
1oy + ol + 1AuolBaio, + [ Auollyae) + uolla |
and
lunllieoran < Cora{IEITAR, rpay) + Mollfbe)® + 1AuolfHg) + uolfhe b (411)

Proof. According to Lemma the discrete inf-sup condition for B provided by (cf. Lemma
, and considering that (Ehpa oh) satisfies , the proof of existence and uniqueness of solution
of (4.2) with u, € W*°(0,T; M) and up(0) = uyp, follows similarly to the proof of Theorem
by applying Theorem (3.1] . Moreover, from the dlscrete version of (3.24] -, we deduce that t5(0) = t, 0.
Notice that, it is not possible to prove that o}(0) = O'h o since (ah(O) o10)? does not belong to Qp,.

On the other hand noticing from the second row of that u, = (up,ty) 0 [0,7] — Vp (cf.
(4.5)), employing (4.7) to obtaln the discrete version of , using the fact that (uy(0),t,(0)) =
(up,0,th0) and estlmate ) to obtain the discrete versions of (| - -, we proceed as in the
proof of Theorem and derive (4.10) and (4.11)), thus completing the proof. O

4.2 Error analysis

Now we derive suitable error estimates for the semidiscrete scheme (4.2)). To that end, in what follows
we assume that {7 }n>0 is a family of quasi-uniform triangulations, which implies that the following
inverse inequality holds (see, for instance, |16, Corollary 1.141]):

1_1
for 1 <p<q<oo, €l <Ch™ ) €llLoe), (4.12)

for all piecewise polynomial functions & with C' > 0 independent of h.

Now we introduce some notations and state a couple of previous results. First, we recall the discrete
inf-sup condition of B (cf. (4.6)), and a classical result on mixed methods (see, for instance [18, eq.
(2.89) in Theorem 2.6]) ensure the existence of a constant C' > 0, independent of h, such that:

f lu—wvyl <C inf — vyl 4.13
inf [lu— v v oinf = (4.13)

vV, EVy Vi hXWh

Now, in order to obtain the theoretical rates of convergence for the discrete scheme (4.2)), we recall
the approximation properties of the finite element subspaces My, Qp, and X (cf. (4.1))), that can be
found in [4], [16], [18], and [8, Section 3.1] (see also [13], Section 5]).
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(AP}) For each [ € [0,k + 1] and for each v € W'P(Q), there holds

; l
v = Vil < CR Vi)

(APY) For each I € [0,k + 1] and for each t € H'(Q) N Q, there holds

inf [[r—r < Chl|r .
inf r—millo < CH Il

r

(APY) For each I € (0,k + 1] and for each 7 € H/(Q) N Xo with div(r) € Wh9(9Q), there holds

inf 7 =7l < ORIl + 14iv(T) lwia | -

ThEX()’h

Owing to ([£.13) and (AP}!), (AP}) and (APY), it follows that, under an extra regularity assump-
tion on the exact solution (to be specified below in Theorem , there exist positive constants C'(u),
C(0¢u), C(o), and C(0; o), depending on u, t and o, respectively, such that

Lt Jus vy < COt i 9u -] < C@H,
(4.14)
inf |lo—7ulx < C(e)h!, and inf ||0,0 —Tullx < COro)ht.
ThEXO’h ThGXO,h

In turn, in order to simplify the subsequent analysis, we write ey, = (ey,€¢) = (u—uy, t —tp), and
e = 0 — oy,. Next, given arbitrary v, := (Vj,Th) : [0,T] — V}, (cf. (4.5)) and 7, : [0,T] — Xo 5, as
usual, we shall then decompose the errors into

eg = 62 + TIQ = (5U7 (st) + (nuvnt) ) €o = 60‘ + 770- ’ (415)

with
6u:u—6h, 51—,:13—/1"\}“ 50-:0'—’/7'\}“
(4.16)
Nu=Vh—Up, MNy=Tp—ty, Ng=Th—0p.

In addition, we stress for later use that d; v, : [0,T] — V, for each v;,(t) € Vj, (cf. (4.5)). In fact,
given (vy,,7p) : [0,T] = V, x X p,, after simple algebraic computations, we obtain

[B(Orvy), mh] = 0:([B(vn), n]) — [B(vn), dr 4] = 0, (4.17)

where, the latter is obtained by observing that 0; 74(t) € Xq .

In this way, by subtracting the discrete and continuous problems (4.2)) and (2.10]), respectively, we
obtain the following system:

9
ot
[B(eg)a'rh] = 0 V7 eXgp.

[E(ew), vp] + [A(w) — Awy), v, + [B(vy). es] = 0 Vv, € My x Qy, (4.18)

We now establish the main result of this section, namely, the theoretical rate of convergence of the
discrete scheme (4.2]). Notice that, optimal and sub-optimal rates of convergences of order O(h!) and
O(ht=dP=2)/(2p)) are confirmed for (u,t) and o, respectively.
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Theorem 4.4 Let ((u,t),0) : [0,7] = (M x Q) x X with u € WH*(0,T;L*(Q)) and ((up, ts), o) :
[0,7] — (Mh X Qh) x Xop with up, € WH(0,T;My,), be the unique solutions of the continuous
and semidiscrete problems and , respectively. Assume further that {Tp}n>o is a family of
quasi-uniform triangulations and that there exists | € (0,k + 1], such that u € W'P(Q), t € H/(Q),
o € H(Q), and div(e) € WHI(Q), with p € [3,4] and q € [4/3,3/2] satisfying 1/p+1/q=1. Then,
there ezist Ci(u,0),Ca2(u,o) > 0 depending only on C(u), C(0;u), C(o), C(0; o), |Q|, v, o, F, 3,
and data, such that

lewleoriney + leulizoran + ledlzoro) < Cilw o) (R +AED)  (419)

and
HeaHL2(o,T;X) < C(u, o) h~dP=2)/(2p) <hl + n! (p*1)> . (4.20)

Proof. First, adding and subtracting suitable terms in (4.18) with v, = n, = (n,,m¢) : [0,7] = Vj,
(cf. (4.5)) and 74 = n,, : [0,T] = Xo 5, and employing the strict monotonicity bound of A (cf. (3.13))
and the fact that n,(t) € Vy,, thus [B(n,),n,] = 0, we deduce that

300 Il + [l + F Cp e+ el o)

< =01 8w, m)e — a(8u,my)e — F(lulP7?u — [F4P 705, ny)a — v(8e,m0)e — [B(ny). 0s] -

Next, using again the fact that n,(t) = (74, m¢)(t) € Vp, we deduce from that Cq||nyllm <
m¢l@- Thus, using (3.12), the continuity bound of the operator B (cf. (3.3)), the Cauchy—Schwarz,
Hélder and Young’s inequalities (cf. (L.1)), and neglecting the term |53 in to obtain a
simplified error estimate, we obtain

02
atllnu\lm(g +Oé||17uHLz(Q)+ Imalle+ = Hmll@
—2
< (10 dullz@) 1mull2 @) + @ [|0ullLz@ ||77uHL2(Q)+Fcp(Hf5uHM+2HHHM)p 16l ll72allv
+ v |0¢llglngll + 106 llxlmyll

2 (p—1 2(p—2
< Cu (110 0ulRa + 18al A" + (1+ [ulRf") 18alRa + 1063 + 1641%)
1 9 02
+ 5 (o lmulie) + == lmalRe + 5 limell3)
where C] is a positive constant depending on ||, v, o, F, and Cy4, which yields

2

C’ v v
0 1mull2a(y + @ 1l + —5 Il + & el
(4.22)

2 (p—1 2(p—2
< 2C1 (1100 8l + 18ulR47 + (1+ [IR) I8ulRe + 8¢ + 1851

Integrating (4.22)) from 0 to ¢ € (0,71, recalling that |||y 7;m) is bounded by data (cf. (3.26))), we
find that

t
a1 220 + /0 (I1mal2(o) + ImalRe + Imel13 ) ds
(4.23)

t
2(p—1
< G { / (1100 8uli3a + I18uliRf” >+rwu\%4+u6tué+rcsau%)ds+unu<o>ui2(g)},

19



with Cy > 0 depending only on |Q|,v, a, F, Cyq, and data.
Next, in order to bound the last term in (4.23]), we subtract the continuous and discrete initial
condition problems (3.21]) and (4.3)), to obtain the error system:
[A(ug —wy,0), ¥p] + [B(vy), 00 —ono] = 0 Vv, € My x Qa,
= [B(uy — Hh,o), Th = 0 VraeXgy.

Then, proceeding as in (4.22)), recalling from Theorems and that (u(0),t(0)) = (uo,to) and
(uz(0), £1(0)) = (U0, th,0), respectively, we get

~ 2 (p—1
17a(0) 320 + 11O < Co (I8uolif>™ + 18,12 + 156, %) (4.24)

where, similarly to (4.16)), we denote 6y, = (du, dt,) = (1o —Vp(0),t0 —14(0)) and 4, = o0 —T1(0),
with arbitrary (v(0),T,(0)) € Vj, and 74(0) € X4, and Co is a positive constant depending only

on |Q,v,a,F, and Cq. Thus, combining (4.23]) and (4.24)), and using the error decomposition (4.15),
there holds

t
lew(®la@ + [ (loulf + llecly) ds < €W o). (4.25)
where

t
V(. 0) = [8uO1 + [ (108l + 18700 + 80l + 661) ds

+ 18y 7P 4 (18, 1 + 116670 15 -
Then, using the fact that v, : [0,7] — V} and 7 : [0,7] — X4 are arbitrary, taking infimum
in over the corresponding discrete subspaces Vj, and X, and applying the approximation
properties , we obtain .
On the other hand, to get the estimate , we observe that from the discrete inf-sup condition

of B (cf. (4.6)), the first equation of (4.18), and the continuity bounds of &, 4, B (cf. (3.5 (3.10]),
(3.3)), there holds

Bl < sup B0)n]
XhthXQh HX}’LH
v, 70
= _ sup [at g(eg)7Xh] + [-A(E) - A(gh)7Xh] + [B(!h)’ 50_]
XhGMhXQh HXhH
X}ﬁéo

IN

~ -2
Cs <||0t eullLz() + lleullv + ([[ullv + [lusllv)” " lleullnt + lleclle + ||5a||x) ;

with C5 > 0 depending only on ||, v, a, and F. Then, taking square in the above inequality, integrating
from 0 to ¢ € (0,77, recalling that both [[ullgeor;n) and [[upl[re (o) are bounded by data (cf.

(3.26)), (4.11])), and employing (4.25)), we deduce that
t t
[ inolias < cafwor+ [ 1ol s} (4.20)

with C3 > 0 depending on |Q|, v, a, F, B', and data. Next, in order to bound the last term in (4.26]), we
choose v;, = 0y = (0 My, Ot M) in the first equation of (4.18), to find that

1
5 0 (eIl + v Imel3 ) + 10 muliz@) = =@ du,dma)a — @ (8w dimy)e

—F ([ulP7*u — [up[P"?up, 0 ny)a + (0 1y, div(9o))a — v (8¢, dne)a + (D e, 0o )a -
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Notice that [B(8; 11,), n5] = 0 since n,(t) € Vj, (cf. ([4.17)). Then, using the identities

(5t,3t m)ﬂ = O (5t,m)9 - (at 6’07771;)9 and (at 77t75a)§2 = 0O (m,éa)n - (ntaat 50)9

in combination with the Cauchy—Schwarz, Hélder and Young’s inequalities, the continuity bound of

A (cf. ([3.10)), and the inverse inequality [|0; m,llm < ch ™4 P=2)/(P) |5, Nullt2) (cf (4.12)), with
Nu(t) € My, we obtain

5 0 (almaliZagey + v Imel3) + 100720
< Coh™ 20 Clu,wy) (110, 8ulRa + 10ule + lleal3s + 18513)

S 10 B0y + 00 (00,8000 — v (Bumi)a) + v (206 m)o — (16,9 80)0

with
2(p—2 2 2
Clu,up) =1+ [uf 3P + [fuy 3P

and Cy > 0 depending on ||, v, a,F, B, and data. Thus, integrating from 0 to ¢ € (0,7], we find that
2 a ma()F20) + v 00 + t 18: 4320
B Nu\t)llL2(Q) UG ; t ThllL2 () @8

t
< Gy /0 Clua,un) (10, 6ullie + 18uln + leullds + 16,12 ) ds

( Yo — v (8¢(t), nt(t))Q) + /Ot <u (0: 8¢, me)o — (¢, O 60)9) ds
%

174(0) 320y + = [ O)I3 — ((16(0). 85(0))0 = ¥ (64(0), me(0))e)

Then, using Cauchy— Schwarz and Young’s inequalities, recalling that HuHLoo 0 vy and [[up]|zee 0,7m)

are bounded by data (cf. and - ), employing estimates 4.24)) and -, and some

algebraic mampulatlons we deduce that
t
Ima (O E2 ) + Hm(t)\léJr/O 10 7l E2 0 ds
t
< 05{h—d@-”/wu,a)+H6t<t>ué+\6a<t>|@g+ | (10807 + 1018 s s (427)

/ (18alR4"™" + 18ull? + 116511% ) ds + ||6uOr|i4“"”+r|6uo|r2+|raao|r§},

with C5 > 0 depending on |Q|, v, o, F, E, and data. Thus, combining (4.26)) and (4.27]), using the error
decomposition (4.15) and considering sufficiently small values of h, yields

t ¢
[ lealzas < corte2 Lo + 18,01 + [ 100641205 }. (428)

0 0
Finally, using again the fact that v, : [0,7] — V, and T, : [0, T] — X 5, are arbitrary, taking infimum
in (4.28) over the corresponding discrete subspaces V), and Xg 4, and applying the approximation

properties (4.14]), we derive (4.20)) and conclude the proof. O
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Remark 4.1 The rates of convergences obtained in f improve the ones obtained in (11,
Theorem 4.4] for the pseudostress-velocity formulation. More precisely, an additional order of conver-
gence ht (P=2)/2(0=1) s gained, which illustrate one of the advantage of our three-field mized formulation
. We also note that in the steady state case of the error estimate does not include the
term h=4®=2)/(P) pecquse the global inverse inequality is not necessary to bound |n,||lx (see [10, Sec-
tion 5] for details of the case p = 3).

5 Fully discrete approximation

In this section we introduce and analyze a fully discrete approximation of (cf. ) To that
end, for the time discretization we employ the backward Euler method. Let At be the time step,
T = NAt, and let t, = nAt, n = 0, ..., N. More precisely, we let dyu” = (At)~'(u” — u"~!) be the
first order (backward) discrete time derivative, where u" := w(t,). Then the fully discrete method
reads: given f* € L?(Q) and (uf, o)) = (w,,04,0) satisfying find (u}, o) = ((up,t}),o}) €
(M}, x Qp) x Xgp, n=1,..., N, such that

de [E(up), vi] + [A(uyp), vi] + [B(vy), 0] = [F",v,] Vv, € My x Qp, 5.1)
— [B(up), 7] =0 Vi € Xon,s '

where [F", v;] := (", vp)a.

In what follows, given a separable Banach space V endowed with the norm || - ||y/, we make use of
the following discrete in time norms

lullfoo.rvy 7= At Y llu™5 and i) = max [lu”llv. (5.2)
n=1

Next, we state the main results for method ([5.1)).
Theorem 5.1 Let p € [3,4]. For each (1),0)) = ((un0,tn0),0n0) satisfying [A.3) and £ € L2(Q)
n =1,...,N, there exists a unique solution (u},o}) = ((uy,t}),o}) € (Mh X Qh) x Xop to

Moreover, under a suitable extra reqularity assumption on the data, there exist constants Cgr 1, CBF"Q >
0 depending only on |Q|,v,a,F, and 3, such that

[whlgoo (0,7512(0)) + At | deur |20, min2(0)) + sl 0.y + [IEalle20,7,0) + lonlleo,r:x)

< Cora {||ngz<p vorLz@) T HfHZQ(O,T;L2(Q)) (5.3)
1o 1) + 1ol oy + 1AuolBa o, + [ Auollya(e) + uollia |

and
lanlleorany < Cora {IEIEE, rpaqay) + 100l Rb ) + AT R + uolfHo b (5:4)

Proof. First, we note that at each time step the well-posedness of the fully discrete problem ([5.1]),
with n =1, ..., N, follows from similar arguments to the proof of Lemma (see also [10, Section 3.3]
for the case p = 3).
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On the other hand, the derivation of (5.3) and (5.4)) can be obtained similarly as in the proof of
Theorem In fact, we choose (v, T) = (u},o}) in (5.1), use the identity

(di u, up)o = dt||uh||L2 +3 AtHdtuhHLQ : (5.5)

the definition of the operator A (cf. (2.12)), and the Cauchy—Schwarz and Young’s inequalities (cf.
(1.1)), to obtain

dt”uhHL2 +3 AtHdtuh”LQ +aHuhHL2 +FHuhHM+Vch”Q
< DU By + 5 I
S 5 L) T 55 IUrliLz()
In turn, noting from the second row of 1that uy = (up,ty) € Vy, (cf. (4.5)), withn =1,...,N,
using the estimate (4.7)), and choosing 6 = 2q e obtain
a

dy ||uhHL2(Q + At Hdtuh”L2 @ T Civllupia +vIth1d < — an”rﬂ (5.7)

Notice that, in order to simplify the stability bound, we have neglected the term |[u}||}; in the left—
hand side of (5.6). Thus summing up over the time index n = 1,...,m, with m = 1,..., N, in (5.7))
and multiplying by At, we get

i 2oy + (A0 3 lldeu By + At - (IaflRe + 1£513)
n=1 n=1 (58)

< Cl{At Z anH%Q(Q) + Hug“%}(m} )
n=1

with C7 depending only on v, «, and Cjy.
On the other hand, from the discrete inf-sup condition of B (cf. (4.6)) and the first equation of

(5.1), we deduce that

loflle < Co {7 ey + Ik ey + g IR + I8Ee + lduflia) } (5.9)

with Cy > 0 depending on ||, v, o, F, and 3. In turn, using Young’s inequality (cf. (1.1))), we readily

obtain

p

-1 2) 1 12 (p—1 1
HuZ ||%2 || hHLp S EHUZ 1”ngﬂ))+p P )

(S

which, together with (5.7)), the fact that LP(Q2) is continuously embedded into LQ(Q), with p € [3,4],
the Young inequality (cf. (1.1))), and simple algebraic computations, imply

2 1 nn2 (p—2 n 2 (p—2)
di [ 17 ey + gl < (0 = D50 do f[ug|2a ) + g IR w3,
=~ len nn2(p—2 N len 1 2 1
< Gyl 20 0282 < Callf" 1%, + fu upa .
which, similarly to (5.8]), yields
1) n 1
Iz ) +At§j||uh||Mp < Cs {Athf 130, + IRl >}, (5.10)
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with C3 > 0 depending on |Q],v, and a. Then, taking square in (5.9)), using (5.8) and (5.10]), we
deduce the analogous estimate of (3.32)), that is

Atz ol < o far S (118 + 1)

=t (5.11)
2(p—1 .
+uhllgay + 11082 ) + A 37 HdtuZ‘Hia(Q)}  with m =1, N
n=1

with Cy > 0 depending on ||, v, «,F, and E Next, in order to bound the last term in (5.11)), we
choose (vy,,7Th) = ((diu},dit}}),0}) in (.1)), apply some algebraic manipulation, and employ the
Cauchy—Schwarz and Young’s inequalities, to obtain

||dtuh||L2 g de (o By + 188 32y ) + F (P20, den )

(5.12)
1
+ 5 At (o llde 20y + 7 Nt Iay) < SIE3aq0 + 5 ldnf e,
In turn, employing Holder and Young’s inequalities, we have
_ p—1
(2 ol < P Ry g R
which implies
_ (At)~t 1
(g P24, dpa)o > (o e — ™ R ) = e ol (5.13)

Thus, combining (5.12]) with ([5.13]), summing up over the time index n =1,....m, withm=1,..., N
and multiplying by At, we get

2F m||P = n| 2
FHuh g+ Aty [deup]lf2q)
n=1

m (5.14)
< {At SN2 + Il + 0220y + Htﬁillé} |
n=1
with C5 depending on v, «, and F. Then, combining (/5.11]) and - 5.14)) yields
- n - n n | 2(p—1
DL cﬁ{mz (1 gy + 17120700
n=1 n=1 (5.15)

+ [y + [[f1Re + ud e o +||t2|!é}7 with m=1,...,N

with Cg > 0 depending on ]Q|,1/,04,F,E, and p, which combined with (5.8]), the fact that (ug,tg) =
(up,0,tho) and the estimate (4.4), implies (5.3). In addition, (5.14) and (4.4)) yields (5.4]), which

concludes the proof. O

Now, we proceed by establishing the corresponding rates of convergence for the fully discrete scheme
(5.1)). To that end, as in Section[4.2] we assume that {7}, },>0 is a family of quasi-uniform triangulations
and write e}, = (e} et) (u"—u},t"—t}), and e} = 0" —0o}. Next, given arbitrary vj, := (V},T}) €
Vi, (cf. . and T}, € Xo 4, with n=1,..., N, we decompose the errors into

ey =0y + 1y = (04,0¢) + (N, n) . €5 =05 + 05, (5.16)
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with

oy=u"—-vy, of=t"-71}, dL=0"—-T),

Ma=Vh—Uh, M{=Tp—t;, Ng=Ty—0}.
Thus, subtracting the fully discrete problem (j5.1)) from the continuous counterparts (2.10) at each
time step n = 1,..., N, we obtain the following error system:

di [E(ey), vil + [A(") — A(up), vp] + [B(vy), €5] = (ra(u), vi)a,
[B(ew), 7] = 0.

(5.17)

for all v;, € My, x Qp, and 7, € Xy 5, where r,(u) denotes the difference between the time derivative
and its discrete analog, that is
rp(u) = dpu” — dpulty,) .

In addition, we recall from [6, Lemma 4] that for sufficiently smooth u, there holds

Then, using discrete-in-time arguments as in the proof of Theorem and the estimate ([5.18)), the
derivation of the theoretical rate of convergence of the fully discrete scheme (5.1 follows similarly to
the proof of Theorem [4.4].

We stress for later use that d; vy € Vy,, when vji € Vy, (cf. (4.5))), for each n =1,..., N. In fact,

given vi € Vj,, with n =1,..., N, assuming gg € V, and using the linearity of the operator B, we
obtain
1
Bl vi), ) = 5 (IBOR), 7] = (B ), 7a]) = 0 Y7y € Koy (5.19)

We now establish the aforementioned result.

Theorem 5.2 Let the assumptwns of Theorem - hold, with p € [3,4]. Then, for the solution of
the fully discrete problem (5.1) there ewist Ci(u,0),C(u,0) > 0 depending only on C(u), C(8;u),
C(Oyu), C(o), C(0, o), ]Q| v, o, F, B, and data, such that

leullese0,7;12(0)) + At [|[dieull20.7:L2(0) + ll€ullezo,rm) + [letlleo,r,0)
(5.20)

~

< Ci(u,0) (hl + AL 4 At)

and

leallzorx) < Ca(u, o) h=dP=2)/) (hl LD At). (5.21)

Proof. Similarly as in the proof of Theorem adding and subtracting suitable terms in (5.17)
with v, = ng = (4, nt) € Vi and 7, = n € Xop, with n = 1,..., N, and employing the strict
monotonicity of A (cf. (3.15))), we deduce that

(de i e + e llngllEe () + F Cp InbliRg + v It 1
—(d¢ 05, my)e — @ (85, m)e — F (Ju"[P72u" — [VEP7290, nl)e
—v (8¢, m¢)a — [B(My), 0] + (rn(u), my)o
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Notice that [B(n;), my] = 0 since n; € Vi, n = 1,..., N. In addition, using the identity (5.5)), the
fact that (n2,ny) € Vi, (cf. (4.7)), the continuity bound of B (cf. (3.3)), and similar arguments
employed to derive (|4.22]), we obtain

de |InalIEe () + At Idemil ) + I1m6lE2() + Im6llRe + 1015

< C1 {1l 8% Ra + 183IRE ™" + (1 + IR ) 108130 + 1971 + 19513 + llrn (W) (e |
(5.22)
with C7 > 0 depending on |Q2|,v, «,F, and Cyq. Thus, summing up over the time index n = 1,...,m,
withm=1,...,N, in and multiplying by At, we get

I ey + (A0 D ldemilEaey + At S (ImalEaay + el + I l13)
n=1 n=1
= n n2(p—1 nn2(p—2 n
< Cont Y {1 dRa+ 18R + (14 130 ) 193, (523)
n=1

8T + 8 1E + ||rn<u>||i2(m} T

with Cy > 0 depending on ||, v, a,F, and Cqy. Thus, using (4.24) and the error decomposition (5.16)
to bound ||77?1H%2(Q), noting that [|ul|e o 7;m) is bounded by [[ul|ge (o r;m), which is bounded by data

(cf. (3.26)), we find that

I ey + (A2 S ldiel oy + At S (lellBa+ IelIR) < Co(wo),  (521)
n=1 n=1
with m=1,..., N, where
B, 0) = 071+ (A S ey + A S {1a a2 + 1531200 + o2}
n=1 n=1
fary {I31E: + (w0 + 162 + 3312 + 165 2.
n=1

Then, proceeding as in (4.25)), using the fact that vj; € Vj and 7} € Xop, with n = 0,1,..., N,
are arbitrary, taking infimum in (5.24]) over the corresponding discrete subspaces Vj, and X, using
(5.18)) and the approximation properties (4.14]), we obtain (5.20)).

On the other hand, to get the estimate (5.21]), we observe that from the discrete inf-sup condition

of B (cf. (4.6)), the first equation of (5.17), and the continuity bound of £, A, B (cf. (3.5), (3.10),
(3-3))), there holds

~ n
Blmilx < sup [B)7ol
v, €M xQp, ”XhH
v, #0
_ sup —[di E(ey), vi] — [A("™) — A(up),v,] — [B(vy),05] + (ra(u), vi)a
My G, vl
vy 0

-2
< Cs(l!dt enllLei) + (u” (v + [luf nve) " lleglina + llegll + 1165 1% + ”Tn(u)HL?(Q)) :
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Then, taking square in the above inequality, summing up over the time index n = 1,...,m, with
m = 1,..., N, multiplying by At, noting that ||u]|e OTM is bounded by |[ul|r,e 0,7z, Which in
turn is bounded by data, as well as |[u|| g (0,7;m) (cf and . and employing ([5.24)), we
deduce that

ALY a2 < 04{ (wo)+ AS e } (5.25)

n=1 n=1

with Cy > 0 depending on |Q|,v, «a, F, B, and data. Next, in order to bound the last term in the
right-hand side of (5.25)), we choose v;, = (d;m, dimy) in the first equation of (5.17) and use the
identity (5.5)), and the fact that i}, € Vy (cf. (5.19)), which implies [B(d;ny),n5] = 0, to find that

e (oIl + v el + 5 At (0 ldmG ey +» I I3) + de m 2o
~(d: %, dy i) — @ (9, dimp)a — F ([P~ — [ujP~2uf, dy my)o

+(dimy, div(05))e + (ra(w), dimy)o — v (8¢, di g )a + (deny, 65 )0

Then, using the identities
(O, den)e = di (88, m¢) g — (de6F N, and  (dinf,83)0 = di (ng,05)q — (nf ™", di 65)a

with n =1,..., N, in combination with Cauchy—Schwarz, Holder and Young’s inequalities (cf. (1.1))),
the continuity bound (3.12)), and the fact that ||d; n7||m < ¢ h=4®=2)/(2p) |4, NullLz(@) > with g € My,

(cf. (4.12))), we obtain
5 e (aImll2aqey +vImEIR) + 5 At (o ldmlZa) + v Ida ) + i mGlaqe)

< G b= 10=2/p Cur, up) (|1ds 330 + 185130 + elRe + 16313 + rm(w)2(q,

1 n n o sn n ,n n o, n— n— n
+ 5 Hdt nuH%Q(Q) + dt ((Tlt760')ﬂ -V (5t7nt )Q> + V(dt t> M I)Q - (nt ludt 6(7)(2

where

-~ 2(p—2 2(p—2
Cu™,u) = 1+ [[u” 3P + ap 2P,

and Cj is a positive constant depending on |€2|, @ and F. Thus, summing up over the time index n =
1,...,m, with m = 1,..., N, and multiplying by At, using Cauchy—Schwarz and Young’s inequalities,
and minor algebraic manipulations, we get

I3y + I + (D07 37 (ldemilEey + Idemt 1) + At S ds mialiEe o)
n=1

n=1

< Coh~ 1020 ArS " Clu, ) (Id: 82x + 1820 + el B + 16212 + () 22
n=1

m (5.26)
+ Cr {107 ey + 103 1+ 80 Y- (1t 0810y + 003 1) + 108 oy + 189
n=1
m—1
ALY I + 102 + (14 At)lln?\lé} |
n=1

27



with Cg,C7 > 0 depending on |2|,v,« and F. Thus, using the error decomposition ([5.16)), com-

bining (5.26) and (5.23), employing (4.24) to bound the terms |99 [lr2(q), [|n¢]lg, noting again that
lallge(0,7;my is bounded by [[ul|ge(o,7:m), Which together with ||l vy are bounded by data

(cf. (3.26) and (5.3))), and considering sufficiently small values of h, there holds

At ek < Ch—d@—?)/p{@(u, o)+ 0715 + At > |ds 5g||§}, with m=1,...,N. (5.27)

n=1 n=1
Finally, noting again that vy € Vj, and 7 € X5, with n =0,1,..., N, are arbitrary, taking infimum
in (5.27) over the corresponding discrete subspaces V}, and Xy 5, using (5.18) and the approximation
properties (4.14]), we derive (5.21]) and conclude the proof. O

6 Numerical results

In this section we present four numerical results that illustrate the performance of the fully discrete
method on a set of quasi-uniform triangulations of the respective domains, considering the finite
element subspaces defined by (cf. Section. In what follows, we refer to the corresponding sets
of finite element subspaces generated by k = 0 and k = 1, as simply Py — Py —RTy and P; —P; —RTq,
respectively. Our implementation is based on a FreeFem++ code [21], in conjunction with the direct
linear solver UMFPACK [14]. We handle the nonlinearly using a Newton—Raphson algorithm with a fixed
tolerance tol = 1E —06. As usual, the iterative method is finished when the relative error between two
consecutive iterations of the complete coefficient vector, namely coeff™ ! and coeff™, is sufficiently
small, that is,

|coeff™ 1 — coeff™|

Hcoeﬁ'mHH

where || - || stands for the usual Euclidean norm in RP% with DOF denoting the total number of degrees
of freedom defined by the finite element subspaces My, Qp, and Xqp, (cf. (4.1)).

We stress that, according to the notation used for the fully discrete norm (5.2)), and besides the
unknowns u, t, and o, we are also able to compute the pressure error:

N 1/2
lepllzoriz@) = {At > llp" —Pz||i2(9)} ,
n=1

where, p; stands for the post-processed pressure suggested by the identity (2.3), that is

< tol,

1
Py = ~3 tr(oy) with n=1,...,N. (6.1)

It follows that
1 1
lepllezo iz = (e —an)lleorize) < 7 lo—onlleorx

which shows that the rate of convergence for p is at least the one for . This is indeed confirmed by
the numerical results reported below.

The examples considered in this section are described next. In all of them, and for the sake of
simplicity, we choose v = 1. In addition, the condition (tr(c7}),1)q = 0 is implemented using a scalar
Lagrange multiplier (adding one row and one column to the matrix system that solves (5.1)) for uj, t}.,
and o).

h
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Examples 1 and 2 are used to corroborate the rate of convergence in two and three dimensional
domains, respectively. The total simulation time for these examples is 7' = 0.01 and the time step is
At = 1073. The time step is sufficiently small, so that the time discretization error does not affect
the convergence rates. On the other hand, Examples 3 and 4 are used to analyze the behavior of the
method when different Darcy and Forchheimer coefficients are considered in different scenarios. For
these cases, the total simulation time and the time step are considered as 7' = 1 and At = 1072,
respectively.

Example 1: 2D domain with different values of the parameter p

In this test we corroborate the convergence for the space discretization using an analytical solution
and also study the performance of the numerical method with respect to the total error and different
values of the power p in the inertial term [u|P~?u (cf. ([2.4)). The domain is the square Q = (0,1)2.
First, we consider p = 4, a = 1,F = 10, and the data f and the initial condition uy are defined by
means of the exact solution given by the smooth functions

sin(mx) cos(my)
— cos(mz) sin(my

u = exp(t) ( )> . p = exp(t) cos(rz) sin (@)

2
Notice that the given exact solution u is non-homogeneous on the boundary so that the right-hand

side must be adjusted properly as described in Remark

In Figure [6.1] we display the solution obtained with the mixed Py — Py — RT; approximation
with mesh size h = 0.0128 and 39, 146 triangle elements (actually representing 979,674 DOF) at time
T = 0.01. Note that we are able to compute not only the original unknowns, but also the pressure field
through the formula . Tables and show the convergence history for a sequence of quasi-
uniform mesh refinements, including the average number of Newton iterations. The results illustrate
that the optimal and sub-optimal spatial rates of convergence O(h*+1) and O(h¥*1/2) for (u,t) and
o, respectively, provided by Theorem [5.2| (see also Theorem are attained for d = 2,p = 4, and
k = 0,1. Moreover, the numerical results suggest optimal rate of convergence O(h¥*+1) for all the
unknowns. The Newton’s method exhibits a behavior independent of the mesh size, converging in
average of 2.2 iterations in all cases. On the other hand, in Table we show the behavior of our
method with respect to the total error

/
evorar = (llealBoran + letlborg + leolEorm)

considering o = 1,F = 10, and different powers p € {3.0,3.2,3.4,3.6,3.8,4.0} in the inertial term
lu[P~2u (cf. (2.4))), polynomial degree k = 0, and different mesh sizes h. Here we observe that the
method provides optimal rate of convergence independently of p.

Example 2: Convergence against smooth exact solutions in a 3D domain

In our second example, we consider the cube domain € = (0,1)3 and the exact solution:

sin(m x) cos(m y) cos(m 2)
u = exp(t) | —2cos(ra)sin(my)cos(mz) |, p = exp(t)(z—0.5)3sin(y+ z2).
cos(m x) cos(my) sin(7 2)

Similarly to the first example, we consider the parameters p = 4,a = 1, and F = 10, whereas the
right-hand side function f is computed from (2.1]) using the above solution. In addition, the model
problem is complemented with the appropriate Dirichlet boundary condition and initial data.
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The numerical solutions at time 7' = 0.01 are shown in Figure which were built using the
fully-mixed Py — Py — RTy approximation with mesh size h = 0.0786 and 34, 992 tetrahedral elements
(actually representing 600,696 DOF). The convergence history for a set of quasi-uniform mesh refine-
ments using k = 0 is shown in Table Again, the mixed finite element method converges optimally
with order O(h) for all the unknowns, which, in particular, is better than the theoretical suboptimal
rate of convergence O(h'/4) provided by in Theorem (see also Theorem for o with
d=3,p=4, and k= 0.

Example 3: Flow through porous media with channel network

In our third example, inspired by [2 Section 5.2.4], we focus on a flow through a porous medium with
a channel network. We consider the square domain § = (—1,1)? with an internal channel network
denoted as ()., which is described in the first plot of Figure First, we consider the Brinkman-—
Forchheimer model in the whole domain €2, with inertial power p = 4 but with different values
of the parameters « and F for the interior and the exterior of the channel, that is,

- 1 in Q. d F — 10 in Q¢
TT 1000 in O\ YT T U1 i Q\Q

The parameter choice corresponds to a high permeability (o« = 1) in the channel and increased inertial
effect (F = 10), compared to low permeability (o = 1000) in the porous medium and reduced inertial
effect (F = 1). In addition, the body force term is f = 0, the initial condition is zero, and the
boundaries conditions are

u-n=02 u-t=0 on Iy, on=(0,0)0 on I\,

which corresponds to inflow on the left boundary and zero stress outflow on the rest of the boundary.

In Figure [6.3| we display the computed magnitude of the velocity, velocity gradient tensor, and
pseudostress tensor at times 7' = 0.01 and 7' = 1, which were built using the fully-mixed Py —Po—RTy
approximation on a mesh with 27,287 triangle elements (actually representing 218,561DOF). As
expected, we observe faster flow through the channel network, with a significant velocity gradient
across the interface between the channel and the porous medium. The pseudostress is more diffused
since it includes the pressure field. This example illustrates the ability of the Brinkman—Forchheimer
model to handle heterogeneous media using spatially varying parameters, as well as the ability of our
three-field mixed finite element method to resolve sharp velocity gradients in the presence of strong
jump discontinuity of the parameters. We further study the robustness of the method with respect to
the physical parameters. In Figure we display the computed magnitude of the velocity with the
setting = 1000,F = 1 in the porous medium and F € {10,100, 1000, 10000}, o« € {10,100} in the
channel. The top two rows are with p = 3 and the bottom two rows are with p = 4. We observe that
in both cases with p = 3 or p = 4 the inertial term F [u|P~2u has the effect of reducing the velocity
on the channel, with the velocity decreasing when F is increased. This effect is higher when p = 3
and F € {1000, 10000}. Furthermore, comparing the results with o = 10 and 100, we observe that the
higher value of « results in smaller velocity. This study illustrates that the method produces stable
and physically reasonable results for a wide range of the physical parameters in both the Stokes and
the Darcy regimes.

Example 4: Flow through porous media with fracture network

In our last example, inspired by [2, Section 5.2.5], we focus on flows through porous media with
fracture network. We consider the square domain Q = (—1,1)? with an internal network of thin
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fractures (denoted as )¢) that intersect at sharp angles, as shown in the first plot of Figure
Similarly to Example 3, we consider the Brinkman—Forchheimer model in the whole domain (2,
with inertial power p = 4 but with different values of the parameters o and F for the interior and the
exterior of the fracture, that is,

- 1 in Qf - 10 in Q¢
“= { 1000 in o\ F—{ 1 in Q\ 0 (6.2)

In turn, the body force term is f = 0, the initial condition is zero, and the boundaries conditions are

—0.5(y—1),0) on I,
on— ( (y ) ) left on= (0, 0) on I‘right U 1—11',0p ) (63)
(0, —0.5($ - 1)) on  Dpottom »

which drives the flow in a diagonal direction from the left-bottom corner to the right-top corner of the
square domain 2.

In Figure [6.5| we display the computed magnitude of the velocity, velocity gradient tensor, and
pseudostress tensor at times T = 0.01 and 7" = 1, which, due to the challenging geometry of the
fracture region, were built using the P; — Py — RT; approximation on a mesh with 48,891 triangle
elements (actually representing 1,222, 689D0OF). We note that the velocity in the fractures is higher
than the velocity in the porous medium, due to smaller fractures thickness and the parameter setting
(6.2). Also, the velocity is higher in branches of the network where the fluid enters from the left-
bottom corner and decreases toward the right-top corner of the domain. In addition, we observe
a sharp velocity gradient across the interfaces between the fractures and the porous medium. The
pseudostress is consistent with the boundary conditions and, similarly to the channel network
example, it is more diffused since it includes the pressure field. This example illustrates the ability of
the method to provide accurate resolution and numerically stable results for heterogeneous inclusions
with high aspect ratio and complex geometry, as presented in the network of thin fractures.

0.34

0 0.67 L BRI 1 32 3.2 2.1 11 0
[y, | ' 11,h it O12,h  me bl o

Figure 6.1: EXAMPLE 1, Computed magnitude of the velocity, velocity gradient component, pseu-
dostress tensor component, and pressure field.
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lleulles(0,7.L2(2)) lleullezo,r;m) letlle20.7:0)
DOF h error rate error rate error rate

304 | 0.3727 || 2.02E-01 - 2.51E-02 - 9.23E-02 -
1248 | 0.1964 || 8.73E-02 1.3069 | 1.09E-02 1.2964 | 4.48E-02 1.1299
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lea lle2(0,7:x) lepllez0,7:12(02))
error rate error rate iter
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9.65E-03 1.0865 | 8.44E-04 1.1264 || 2.2

Table 6.1: EXAMPLE 1, Number of degrees of freedom, mesh sizes, errors, rates of convergences, and
average number of Newton iterations for the Pg—Py—RT( approximation of the Brinkman-Forchheimer
model with p =4 and F = 10.

2 t -3.2 -1.1 1.1 3.2 -3.1 -1.0 1.0 3.1
T U1 e 012 it Ph e

‘19 -0.12 -0.027 0.066 0.16
WENRRRRRNENS

|10, | S
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dostress tensor component, and pressure field.
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lleulle (0.71.2(2)) lleullezio.rm) letlle20.1:0)
DOF h error rate €error rate €error rate

932 | 0.3727 || 5.71E-02 - 5.53E-03 - 3.56E-02 -
3864 | 0.1964 || 1.39E-02 2.2117 | 1.31E-03 2.2546 | 8.44E-03 2.2489
15228 | 0.0970 || 3.46E-03 1.9675 | 3.23E-04 1.9787 | 2.07E-03 1.9902
60656 | 0.0478 || 8.76E-04 1.9398 | 8.10E-05 1.9561 | 5.24E-04 1.9431
242362 | 0.0245 || 2.20E-04 2.0693 | 2.04E-05 2.0646 | 1.29E-04 2.0955
979674 | 0.0128 || 5.35E-05 2.1671 | 4.91E-06 2.1801 | 3.07E-05 2.2019

lealle2(0,7:x) leplle2(0,mi12(02))
error rate error rate iter
6.52E-01 - 6.34E-02 - 2.7

1.83E-01 1.9865 | 1.14E-02 2.6740 || 2.3
4.98E-02 1.8416 | 1.85E-03 2.5816 || 2.2
1.31E-02 1.8874 | 3.99E-04 2.1684 || 2.2
3.38E-03 2.0269 | 6.53E-05 2.7076 || 2.2
8.10E-04 2.1911 | 1.23E-05 2.5544 || 2.2

Table 6.2: EXAMPLE 1, Number of degrees of freedom, mesh sizes, errors, rates of convergences, and
average number of Newton iterations for the P; —P; —RT; approximation of the Brinkman-Forchheimer
model with p =4 and F = 10.

p=3.0 p=32 p=34
DOF h €total rate iter €total rate iter €total rate iter
304 | 0.3727 || 5.20E-01 — 2.1 | 5.17E-01 — 2.2 | 5.14E-01 — 2.3
1248 | 0.1964 || 1.99E-01 1.4991 2.1 | 1.98E-01 1.5005 2.1 | 1.97E-01 1.5017 2.2
4896 | 0.0970 || 9.18E-02 1.0978 2.1 | 9.11E-02 1.0992 2.1 | 9.05E-02 1.1004 2.2
19456 | 0.0478 || 4.26E-02 1.0834 2.1 | 4.23E-02 1.0839 2.1 | 4.20E-02 1.0844 2.2
77648 | 0.0245 || 2.11E-02 1.0500 2.1 | 2.10E-02 1.0507 2.1 | 2.08E-02 1.0514 2.2
313680 | 0.0128 || 1.04E-02 1.0846 2.1 | 1.03E-02 1.0849 2.1 | 1.02E-02 1.0852 2.2

p=3.6 p=3.8 p=4.0

€total rate iter €total rate iter €total rate iter
5.12E-01 — 2.3 | 5.10E-01 — 2.3 | 5.08E-01 - 2.3
1.96E-01 1.5027 2.2 | 1.95E-01 1.5035 2.2 | 1.94E-01 1.5042 2.2
8.99E-02 1.1015 2.2 | 8.95E-02 1.1025 2.2 | 8.91E-02 1.1034 2.2
4.17E-02 1.0849 2.2 | 4.15E-02 1.0854 2.2 | 4.13E-02 1.0859 2.2
2.07E-02 1.0519 2.2 | 2.05E-02 1.0524 2.2 | 2.04E-02 1.0529 2.2
1.02E-02 1.0854 2.2 | 1.01E-02 1.0857 2.2 | 1.01E-02 1.0859 2.2

Table 6.3: EXAMPLE 1, Number of degrees of freedom, mesh sizes, total errors, rates of convergences,
and average number of Newton iterations for the Py — Py — RT( approximation of the Brinkman-
Forchheimer model, considering p € {3.0,3.2,3.4,3.6,3.8,4.0} and F = 10.
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lleulle (0,712 lleullezo,r;m) letlle20.7:0)
DOF h error rate error rate error rate
888 | 0.7071 || 4.50E-01 - 5.73E-02 - 2.93E-01 -
2916 | 0.4714 || 3.11E-01 1.2964 | 3.96E-02 0.9106 | 1.93E-01 1.0284
22680 | 0.2357 || 1.60E-01 0.9806 | 2.06E-02 0.9394 | 9.54E-02 1.0179
137940 | 0.1286 || 8.81E-02 1.0294 | 1.14E-02 0.9831 | 5.18E-02 1.0068
600696 | 0.0786 || 5.39E-02 1.0115 | 6.97E-03 0.9943 | 3.16E-02 1.0020

leallez0,7:x) leplle2 (0,120
error rate error rate iter
2.70E-00 - 1.98E-01 - 3.1

1.40E-00 1.6237 | 1.14E-01 1.3593 || 2.8
5.49E-01 1.3470 | 5.03E-02 1.1810 || 2.3
2.67E-01 1.1900 | 2.26E-02 1.3220 || 2.2
1.54E-01 1.1178 | 1.10E-02 1.4654 || 2.2

Table 6.4: EXAMPLE 2, Number of degrees of freedom, mesh sizes, errors, rates of convergences, and
average number of Newton iterations for the mixed Py — Py — RTy approximation of the Brinkman-
Forchheimer model with p =4 and F = 10.
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Figure 6.3: EXAMPLE 3, Domain configuration, computed magnitude of the velocity, velocity gradient
tensor, and pseudostress tensor at time 7' = 0.01 (top plots), and at time 7" = 1 (bottom plots).
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Figure 6.4: ExaMPLE 3, Computed magnitude of the velocity with p = 3 and channel setting
F € {10,100, 1000,10000} with & = 10 and 100 (first and second rows, respectively), and p = 4 with
channel setting F € {10,100, 1000,10000} with o« = 10 and 100 (third and fourth rows, respectively).
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Figure 6.5: EXAMPLE 4, Domain configuration, computed magnitude of the velocity, velocity gradient
tensor, and pseudostress tensor at time T'= 0.01 (top plots), and at time T"= 1 (bottom plots).
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