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Centro de Investigación en
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NONLOCAL REACTION TRAFFIC FLOW MODEL WITH ON-OFF RAMPS

F. A. CHIARELLO, H. D. CONTRERAS, AND L. M. VILLADA

Abstract. We present a non-local version of a scalar balance law modeling traffic flow with on-

ramps and off-ramps. The source term is used to describe the traffic flow over the on-ramp and

off-ramps. We approximate the problem using an upwind-type numerical scheme and we provide

L∞ and BV estimates for the sequence of approximate solutions. Together with a discrete entropy

inequality, we also show the well-posedness of the considered class of scalar balance laws. Some

numerical simulations illustrate the behaviour of solutions in sample cases.

1. Introduction

1.1. Scope. Models of conservation laws with nonlocal flux has been used to describe traffic flow

dynamics in which drivers adapt their velocity with respect to what happens to the cars in front

of them [3, 5, 10, 15, 18]. In this type of models, the flux function depends on a downstream

convolution term between the density or the velocity of vehicles and a kernel function with support

on the negative axis. However, the above models cannot be used to study the traffic flow on the

highway with ramps since they did not include their presence. Indeed, ramps are an important

element of traffic systems and develops some complex traffic phenomena, see [11, 14, 16, 19, 20, 21,

22].

In this work, we propose a new nonlocal traffic model which includes the effects of on- and off-

ramps. We start by considering a local reaction traffic model proposed in [16],

(1.1) ρt + (ρv(ρ))x = Son − Soff ,

where the non-negative functions Son and Soff are the source and sink term, respectively, defined

by

Son(t, x, ρ) = 1on(x)qon(t)(ρmax − ρ),(1.2)

Soff(t, x, ρ) = 1off(x)qoff(t)ρ,(1.3)

with qon ∈ R+, and qoff ∈ R+ the rate of the on- and off-ramp respectively. The spatial position

of the on- and off- ramp is described by indicator functions 1on(x), and 1off(x) defined as

1on(x) =

 1
L xon ≤ x ≤ xon,

0 otherwise,
1off(x) =

 1
L xoff ≤ x ≤ xoff ,

0 otherwise.

In order to obtain a non-local version of the model (1.1), we first rewrite the flux function

f(ρ) = ρv(ρ) in its non-local version, see [1, 3, 10],

f(ρ) = ρv(ρ ∗ ωη), with (ρ ∗ ωη)(t, x) =

∫ x+η

x
ρ(t, y)ωη(y − x)dy.

Date: August 31, 2021.

1



2 F. A. CHIARELLO, H. D. CONTRERAS, AND L. M. VILLADA

qon

x− η + δ x+ η + δx

qoff

Figure 1. Illustration of our model setting.

On the on-ramp the idea is that at position x the flow merging in the traffic way is inversely

proportional to the average density around position x, see Fig. 1 , i.e, we write

(1.4) Son(t, x, ρ, ρ ∗ ωη,δ) = 1on(x)qon(t)(ρmax − ρ ∗ ωη,δ),

with

(ρ ∗ ωη,δ)(t, x) =

∫ x+η+δ

x−η+δ
ρ(t, y)ωη,δ(y − x)dy,

with η ∈ [0, 1] and δ ∈ [−η, η]. However, in the numerical test section we will see that the choice of

the non-local term (1.4) does not guarantee that the proposed model satisfies a Maximum Principle,

see Example 3. In order to overcome this difficulty, we consider a first variant of (1.4) taking

(1.5) Son(t, x, ρ, ρ ∗ ωη,δ) = 1on(x)qon(t)(ρmax − ρ)(ρmax − ρ ∗ ωη,δ).

Note that this term contains a product which differentiates it from the original model. An alter-

native is to choose

(1.6) Son(t, x, ρ, ρ ∗ ωη,δ) = 1on(x)qon(t) (ρmax −max{ρ; ρ ∗ ωη,δ}) .

The purpose of this work is the study of the well-posedness of a nonlocal reaction traffic flow

model with source term given by (1.5) and (1.6).

1.2. Related work. In [2, 3, 4, 5, 6, 10, 15] the authors studied a nonlocal conservation law to

model vehicular traffic flow in the case Son = Soff = 0, i.e., without on- and off-ramps. The need

to design more realistic models has led to the development of multi-lane vehicular traffic models

among which we can highlight the following. In [13], it is introduced a new local model for multilane

dense vehicular traffic by means of a system of a weakly coupled scalar conservation laws. In [9], the

authors consider the model proposed in [13] but with a more general source terms and they allow

for the presence of space discontinuities both in the speed law and in the number of lanes; in these

two local models the source term accounts for the lane change rate and the key assumption is that

the drivers prefer to drive faster, and that the tendency of a vehicle change the lines is proportional

to the difference in velocity between neighboring lanes. In [8] is studied a multilane model with

local and non-local flux combined with a source term that also incorporates a nonlocality; here,

the non-local source term describes the lane changing rate depending on a (nonlinear) evaluation

of the velocity. In particular, the lane changing rate is proportional to the difference in the velocity

between two adjacent lanes, but the velocities are evaluated in a neighbourhood of the current

position, moreover, this rate is proportional also to the density in the receiving lane, meaning that

if that lane is crowded only a few vehicles can actually change lane.

Regarding to vehicular traffic flow models taking into account the presence of ramps we can mention
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[16], where the authors study the (local) first order nonlinear conservation law (1.1). In [21] a (lo-

cal) second order model is proposed to study the effects of on- and off-ramps on a main road traffic

during two rush periods. Likewise, other works about the study of effects of ramps in vehicular

traffic flow models are referenced in [21]. In particular, in [7] the authors consider a Lighthill-

Witham-Richards (LWR) traffic flow model on a junction composed by one mainline, an on-ramp

and an off-ramp, which are connected by a node. Moreover, in [12] a non-local gas-kinetic traffic

model including ramps is proposed, the model allows to simulate syncronized congested traffic and

reproduces realistic phenomena of vehicular traffic by variations of the on-ramp flow . In [17] a

new modeling methodology for merging and diverging flows is studied, the methodology includes

coupling effects between main and ramps flows and a new formulation for the modeling of traffic

friction is also introduced.

1.3. Outline of the paper. This work is organized as follows: In Section 2 we present the pro-

posed mathematical model with all the considered assumptions on it. Afterwards, we introduce

an upwind-type Scheme with two different source terms and derive important properties such as

maximum principle, L1− bound and BV estimates. Furthermore, we derive the L1−Lipschitz

continuous dependence of solutions to (2.1) on the initial data and the terms qon and qoff in Section

3. In Section 4, we present numerical examples illustrating the behavior of the solutions of our

model.

2. Mathematical model

The main goal of this work is to study the well-posedness of the non-local reaction traffic model

(2.1) ρt + (ρv(ρ ∗ ωη))x = Son(·, ·, ρ, ρ ∗ ωη,δ)− Soff(·, ·, ρ), x ∈ R,

where Son(·, ·, ρ, ρ ∗ ωη,δ) defined in (1.5) or (1.6), Soff defined by (1.3) and initial condition

ρ(x, 0) = ρ0(x) ∈
(
L1 ∩BV

)
(R, [0, 1]).(2.2)

From now on we called Model 0 the equations (2.1)-(1.4)-(2.2), Model 1 the equations (2.1)-(1.5)-

(2.2), and Model 2 (2.1)-(1.6)-(2.2). Let us assume the following assumptions:

(H1)

qon ∈ L∞(R+;R+), qoff ∈ L∞(R+;R+).

v ∈ C2(R; [0, 1]) v′ ≤ 0.

ωη ∈ C1([0, η];R+) with ω′η(x) ≤ 0,
∫ η

0 ωη(x)dx = 1, ∀η > 0.

ωη,δ ∈ C1([δ − η, δ + η];R+) with ω′(x)η,δ ≥ 0 for x ∈ [δ − η, 0],

ω′(x)η,δ ≤ 0 for x ∈ [0, δ + η], and
∫ δ+η
δ−η ωη,δ(x)dx = 1, ∀η > 0.

We recall the definition of weak entropy solution for (2.1).

Definition 2.1. Let ρ0 ∈ (L1 ∩ BV)(R; [0, 1]). We say that ρ ∈ C([0, T ]; L1(R; [0, 1])), with

ρ(t, ·) ∈ BV(R; [0, 1]) for t ∈ [0, T ], is a weak solution to (2.1) with initial datum ρ0 if for any

ϕ ∈ C1
c([0, T [×R;R)∫ T

0

∫
R

(ρϕt + ρV ϕx) dxdt+

∫ T

0

∫
Ωon

Sonϕdxdt−
∫ T

0

∫
Ωoff

Soffϕdxdt+

∫
R
ρ0(x)ϕ(0, x)dx = 0,

where V (t, x) = v((ρ ∗ ω)(t, x)) and Son is as in (1.5) or (1.6).
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Definition 2.2. Let ρ0 ∈ (L1∩BV)(R; [0, 1]). We say that ρ ∈ C([0, T ]; L1(R; [0, 1])), with ρ(t, ·) ∈
BV(R; [0, 1]) for t ∈ [0, T ], is a entropy weak solution to (2.1) with initial datum ρ0 if for any

ϕ ∈ C1
c([0, T [×R;R) and for all k ∈ R∫ T

0

∫
R

(|ρ− k|ϕt + |ρ− k|V ϕx − sgn(ρ− k)kVxϕ) dxdt+

∫ T

0

∫
Ωon

sgn(ρ− k)Sonϕdxdt

−
∫ T

0

∫
Ωoff

sgn(ρ− k)Soffϕdxdt+

∫
R
|ρ0 − k|ϕ(0, x)dx ≥ 0.

Our main result is given by the following theorem, which states the well-posedness of problem

(2.1) to (2.2) with source term given by (1.5) or (1.6).

Theorem 2.1. Let ρ0 ∈
(
L1 ∩BV

)
(R; [0, 1]). Assume v ∈ C2 ([0, 1];R) . Then, for all T > 0,

the problem (2.1) has a unique solution ρ ∈ C0
(
[0, T ]; L1(R; [0, 1])

)
in the sense of Definition 2.2.

Moreover, the following estimates hold: for any t ∈ [0, T ]

‖ρ(t)‖L1(R) ≤ R1(t),

0 ≤ ρ(t, x) ≤ 1,

TV (ρ(t)) ≤ etH
(
TV (ρ0) + t

(‖qon‖L∞([0,T ])+‖qoff‖L∞([0,T ])

L

))
,

where

R1 = ‖ρ0‖L1(R) +
∥∥qon(·)

∥∥
L1([0,t])

− min
x∈Ωon

‖qon(·)ρ(·, x)‖L1([0,t])(2.3)

− min
x∈Ωoff

‖qoff(·)ρ(·, x)‖L1([0,t]) ,

H = 2 ‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ]) + ωη(0)L(2.4)

L =
(
‖v‖L∞([0,1]) + ‖v′‖L∞([0,1])

)
.(2.5)

3. Existence of entropy solution

3.1. Numerical discretization. We take a space step ∆x such that η = N∆x, for some N ∈ N,

and a time step ∆t subject to a CFL condition which will be specified later. For any j ∈ Z, let

xj−1/2 = j∆x be a cells interfaces, xj =

(
j+ 1

2

)
∆x the cells centers. We consider ramps with length

L and take L = `∆x, for some ` ∈ Z+ such that xon = xkon+1/2, xon = xkon+1/2+`, xoff = xkoff+1/2

and xoff = xkoff+1/2+`, for some kon, koff ∈ Z. With this notation, we define the subdomains

Ωon = [xon, xon], Ωoff = [xoff , xoff ], and we put Ωk
on = [kon + 1, kon + `] and Ωk

off = [koff + 1, koff + `].

We fix T > 0, and set NT ∈ N such that NT∆t ≤ T < (NT + 1) ∆t and define the time mesh

as tn = n∆t for n = 0, . . . , NT . Set λ = ∆t/∆x. The initial data is approximated for j ∈ Z, as

follows:

ρ0
j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0(x)dx.

We define a piecewise constant approximate solution ρ∆(t, x) to (2.1) as

ρ∆(t, x) = ρnj , for

t ∈
[
tn, tn+1

[
x ∈]xj−1/2, xj+1/2],

where
n = 0, . . . , NT − 1,

j ∈ Z.
(3.1)

The Son terms (1.5) and (1.6) are discretized via

Son

(
tn+1/2, xj , qon, ρ

n+1/2
j , R

n+1/2
on,j

)
= 1on,jq

n+1/2
on (1− ρn+1/2

j )(1−Rn+1/2
on,j ),(3.2)
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Son

(
tn+1/2, xj , qon, ρ

n+1/2
j , R

n+1/2
on,j

)
= 1on,jq

n+1/2
on,j

(
1−max

{
ρ
n+1/2
j , R

n+1/2
on,j

})
.(3.3)

The Soff term is discretizated via

Soff

(
tn+1/2, xj , qoff , ρ

n+1/2
j

)
= 1off,jq

n+1/2
off ρ

n+1/2
j ,(3.4)

where we denote

1on,j =


1

∆x

∫ xj+1/2

xj−1/2
1on(x)dx, xon,k ≤ xj ≤ xon,k,

0 otherwise.

1off,j =


1

∆x

∫ xj+1/2

xj−1/2
1off(x)dx, xoff,k ≤ xj ≤ xoff,k,

0 otherwise.

qn+1/2
on =

1

∆t

∫ tn+1

tn
qon(t)dt, q

n+1/2
off =

1

∆t

∫ tn+1

tn
qoff(t)dt,

The approximate solution ρ∆ is obtained via an upwind-type scheme together with operator

splitting to account for the reaction term, see Algorithm 3.1

Algorithm 3.1 (Upwind scheme).

Input: approximate solution vector {ρnj }j∈Z for t = tn

do j ∈ Z

ρ
n+1/2
j ← ρnj − λ

(
ρnj v(Rnj+1/2)− ρnj−1v(Rnj−1/2)

)
(3.5)

enddo

do j ∈ Z
S
n+1/2
on,j ← Son

(
tn+1/2, xj , ρ

n+1/2
j , R

n+1/2
on,j

)
, using (3.2) or (3.3),

S
n+1/2
off,j ← Soff

(
tn+1/2, xj , ρ

n+1/2
j

)
, using (3.4),

ρn+1
j ← ρ

n+1/2
j + ∆tS

n+1/2
on,j −∆tS

n+1/2
off,j(3.6)

enddo

Output: approximate solution vector {ρn+1
j }j∈Z for t = tn+1 = tn + ∆t.

The terms Rnj+1/2, R
n+1/2
on,j for j ∈ Z and n = 0, . . . , NT − 1 denotes the discrete convolution

operators in the velocity and source term and they are defined, respectively, by

Rnj+1/2 =

bη/∆xc−1∑
p=0

γpρ
n
j+p+1,

R
n+1/2
on,j =

b δ+η
∆x
c−1∑

h=b δ−η
∆x
c

γ̂hρ
n+1/2
j+h .

Here we denote γp =
∫ xp+1/2

xp−1/2
ωη(y − x)dy, for p ∈ [0, bη/∆xc − 1] and γ̂h =

∫ xh+1/2

xh−1/2
ωη,δ(y − x)dy,

for h ∈ [b(δ − η)/∆xc, b(δ + η)/∆xc − 1].
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Remark 3.1. If 0 ≤ ρn+1/2
j ≤ 1 for all j ∈ Z, then for all n ∈ {0, . . . , NT − 1},∥∥∥Rn+1/2

on

∥∥∥
L∞(Ωkon)

≤ 1. Indeed, we have that

∣∣∣Rn+1/2
on,j

∣∣∣ ≤ b δ+η
∆x
c−1∑

h=b δ−η
∆x
c

γ̂h

∣∣∣ρn+1/2
j+h+1

∣∣∣ ≤ b δ+η∆x
c−1∑

h=b δ−η
∆x
c

γ̂h = 1.

Remark 3.2. The discrete convolution operator R
n+1/2
on,j satisfies∑

j∈Z

∣∣∣Rn+1/2
on,j+1 −R

n+1/2
on,j

∣∣∣ ≤∑
j∈Z

∣∣∣ρn+1/2
j+1 − ρn+1/2

j

∣∣∣ .
The proof of this property can be seen in [8] Lemma 3.2.

3.2. Existence of solution Model 1. In order to prove the existence of solution of model (2.1)-

(1.5), in the next lemmas we will show some properties of the approximate solutions constructed

by the Algorithm 3.1.

Lemma 3.1 (Maximum principle). Let ρ0 ∈ L∞(R; [0, 1]). Let hypotheses (H1) and the following

Courant-Friedrichs-Levy (CFL) condition hold

∆t ≤ min

{
∆x(

γ0‖v′‖L∞([0,1]) + ‖v‖L∞([0,1])

) , L

‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

}
(3.7)

then for all t > 0 and x ∈ R the piece-wise constant approximate solution ρ∆ constructed through

Algorithm 3.1 is such that

0 ≤ ρ∆(t, x) ≤ 1.

Proof. The proof is made by induction. Let us assume that 0 ≤ ρnj ≤ 1 for all j ∈ Z. Consider the

convective step (3.5) of Algorithm 3.1, by CFL condition (3.7) we have 0 ≤ ρn+1/2
j ≤ 1 for j ∈ Z

(see Theorem 3.3 of [15]).

Now focus on the remaining step, involving the source term.

ρn+1
j = ρ

n+1/2
j + ∆t

(
1on,jq

n+1/2
on

(
1− ρn+1/2

j

) (
1−Rn+1/2

on,j

)
− 1off,jq

n+1/2
off ρ

n+1/2
j

)
≤ ρ

n+1/2
j + ∆t1on,jq

n+1/2
on

(
1− ρn+1/2

j

)
−∆t1off,jq

n+1/2
off ρ

n+1/2
j

=
(

1−∆t
(
1on,jq

n+1/2
on + 1off,jq

n+1/2
off

))
ρ
n+1/2
j + ∆t1on,jq

n+1/2
on .

Because of CFL condition (3.7), the last right-hand side is a convex combination of ρ
n+1/2
j and one.

Then ρn+1
j ∈

[
ρ
n+1/2
j , 1

]
and since ρ

n+1/2
j ∈ [0, 1], we therefore conclude that 0 ≤ ρn+1

j ≤ 1, for

j ∈ Z.
�

Lemma 3.2 (L1 − Bound). Let ρ0 ∈ L1(R, [0, 1]). Let (H1) and the CFL condition (3.7) hold.

Then, the piece-wise constant approximate solution ρ∆ constructed through Algorithm 3.1 satis-

fies, for all T > 0,

‖ρ∆(T, ·)‖L1(R) ≤ C1(T ),
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with

(3.8) C1(t) = ‖ρ0‖L1(R)+‖qon‖L1([0,t])− min
x∈Ωon

‖qon(·)ρ∆(·, x)‖L1([0,t])− min
x∈Ωoff

‖qoff(·)ρ∆(·, x)‖L1([0,t]) .

Proof. For the conservative form of the scheme (3.5), it is satisfied∥∥∥ρn+1/2
∥∥∥
L1(R)

= ‖ρn‖L1(R) .

Now, we going to work L1 norm for relaxation step (3.6). By Remark 3.1 and CFL condition (3.7)

we have ∣∣∣ρn+1
j

∣∣∣ ≤ ∣∣∣ρn+1/2
j

∣∣∣+ ∆t1on,jq
n+1/2
on

(
1−

∣∣∣ρn+1/2
j

∣∣∣)−∆t1off,jq
n+1/2
off

∣∣∣ρn+1/2
j

∣∣∣ ,(3.9)

multiplying this inequality by ∆x and summing over all j ∈ Z we obtain

∥∥ρn+1
∥∥
L1(R)

≤
∥∥∥ρn+1/2

∥∥∥
L1(R)

+ ∆tqn+1/2
on

∆x
∑
j∈Ωkon

1on,j −∆x
∑
j∈Ωkon

1on,j

∣∣∣ρn+1/2
j

∣∣∣


−∆tq
n+1/2
off ∆x

∑
j∈Ωkoff

1off,j

∣∣∣ρn+1/2
j

∣∣∣
=

∥∥∥ρn+1/2
∥∥∥
L1(R)

+ ∆tqn+1/2
on

(
1−

∥∥ρn+1/2
∥∥
L1(Ωkon)

L

)

−∆tq
n+1/2
off

∥∥ρn+1/2
∥∥
L1(Ωkoff)

L

≤ ‖ρn‖L1(R) + ∆tqn+1/2
on

(
1− min

j∈Ωkon

ρn+1/2

)
−∆tq

n+1/2
off min

j∈Ωkoff

ρ
n+1/2
j

= ‖ρn‖L1(R) + ∆tqn+1/2
on −∆t min

j∈Ωkon

qn+1/2
on ρ

n+1/2
j

−∆t min
j∈Ωkoff

q
n+1/2
off ρ

n+1/2
j .

Thus, by a standard iterative procedure we can deduce

‖ρn‖L1(R) ≤ ‖ρ0‖L1(R) + ‖qon‖L1([0,T ]) − min
x∈Ωon

‖qon(·)ρ∆(·, x)‖L1([0,T ]) − min
x∈Ωoff

‖qoff(·)ρ∆(·, x)‖L1([0,T ]) .

�

3.3. BV estimates.

We first prove the Lipschitz continuity of the source terms (3.2) in its second, third and fourth

argument and (3.4) in its second and third argument.

Lemma 3.3. The map Son defined in (3.2) is Lipschitz continuous in second, third and fourth

argument with Lipschitz constant ‖qon‖L∞([0,T ]), and the map Soff defined in (3.4) is Lipschitz

continuous in second and third argument with Lipschitz constant ‖qoff‖L∞([0,T ]).

Proof. Let us start with term (3.2). We denote Son = Son(t, x, ρ,Ron)− Son(t, x̃, ρ̃, R̃on), then

|Son| ≤ |Son(t, x, ρ,Ron)− Son(t, x, ρ̃, Ron)|

+
∣∣∣Son(t, x, ρ̃, Ron)− Son(t, x, ρ̃, R̃on)

∣∣∣
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+
∣∣∣Son(t, x, ρ̃, R̃on)− Son(t, x̃, ρ̃, R̃on)

∣∣∣
= |1onqon (1−Ron) (ρ̃− ρ)|+

∣∣∣1onqon (1− ρ̃)
(
R̃on −Ron

)∣∣∣
+
∣∣∣(1on − 1̃on

)
qon (1− ρ̃)

(
1− R̃on

)∣∣∣
≤ ‖qon‖L∞([0,T ]) |ρ̃− ρ|+ ‖qon‖L∞([0,T ])

∣∣∣R̃on −Ron

∣∣∣
+ ‖qon‖L∞([0,T ])

∣∣1on − 1̃on

∣∣
≤ ‖qon‖L∞([0,T ])

(
|ρ̃− ρ|+

∣∣∣R̃on −Ron

∣∣∣+
∣∣1on − 1̃on

∣∣) .
Now, we prove the Lipschitz continuity of Soff term (3.4). Denoting

Soff = Soff(t, x, ρ)− Soff(t, x̃, qoff , ρ̃), we get

|Soff | ≤ |Soff(t, x, ρ)− Soff(t, x̃, ρ, )|+ |Soff(t, x̃, ρ)− Soff(t, x̃, ρ̃)|

=
∣∣1offqoffρ− 1̃offqoffρ

∣∣+
∣∣1̃offqoffρ− 1̃offqoff ρ̃

∣∣
≤ ‖qoff‖L∞([0,T ])

(∣∣1off − 1̃off

∣∣+ |ρ− ρ̃|
)
,

Thus, we have completed the proof. �

The Lipschitz continuity of the source term proved in Lemma 3.3 is one of the key ingredients

in order to prove the following total variation bound on the numerical approximation.

Proposition 3.1 (BV estimate in space). Let ρ0 ∈
(
L1 ∩BV

)
(R; [0, 1]) . Assume that the hy-

potheses (H1) and CFL condition (3.7) hold. Then, for n = 0, . . . , NT − 1 the following estimate

holds ∑
j∈Z

∣∣ρnj+1 − ρnj
∣∣ ≤ eTH(TV (ρ0) + T

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

))
,

with H like in (2.4)

Proof. Let us compute

ρn+1
j+1 − ρ

n+1
j = ρ

n+1/2
j+1 − ρn+1/2

j + ∆t
[
S
n+1/2
on,j+1 − S

n+1/2
on,j

]
−∆t

[
S
n+1/2
off,j+1 − S

n+1/2
off,j

]
By the Lipschitz continuity of the source term proved in Lemma 3.3 and the property of the

discrete convolution operator given in Remark 3.2, we get∑
j∈Z

∣∣∣ρn+1
j+1 − ρ

n+1
j

∣∣∣ ≤ (
1 +

∆t

L
‖qon‖L∞([0,T ])

)∑
j∈Z

∣∣∣ρn+1/2
j+1 − ρn+1/2

j

∣∣∣
+∆t ‖qon‖L∞([0,T ])

∑
j∈Ωkon

|1on,j+1 − 1on,j |

+∆t ‖qon‖L∞([0,T ])

∑
j∈Z

∣∣∣Rn+1/2
on,j+1 −R

n+1/2
on,j

∣∣∣
+

∆t

L
‖qoff‖L∞([0,T ])

∑
j∈Z

∣∣∣ρn+1/2
j+1 − ρn+1/2

j

∣∣∣
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+
∆t

L
‖qoff‖L∞([0,T ])

∑
j∈Ωoff

|1off,j+1 − 1off,j |

≤
(

1 +
∆t

L

(
2 ‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

))∑
j∈Z

∣∣∣ρn+1/2
j+1 − ρn+1/2

j

∣∣∣
+∆t ‖qon‖L∞([0,T ])

∑
j∈Ωkon

|1on,j+1 − 1on,j |

+∆t ‖qoff‖L∞([0,T ])

∑
j∈Ωoff

|1off,j+1 − 1off,j |

≤
(

1 +
∆t

L

(
2 ‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

))∑
j∈Z

∣∣∣ρn+1/2
j+1 − ρn+1/2

j

∣∣∣
+∆t

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

)
.(3.10)

Now, for convective part (3.5) we follow [15] and get∣∣∣ρn+1/2
j+1 − ρn+1/2

j

∣∣∣ ≤ (1 + ∆tωη(0)L)
∑
j∈Z

∣∣ρnj+1 − ρnj
∣∣ ,

with L =
(
‖v‖L∞([0,1]) + ‖v′‖L∞([0,1])

)
.

Plugging the inequality above in (3.10) we obtain∑
j∈Z

∣∣∣ρn+1
j+1 − ρ

n+1
j

∣∣∣ ≤ (
1 +

∆t

L

(
2 ‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

))
(1 + ∆tωη(0)L)

∑
j∈Z

∣∣ρnj+1 − ρnj
∣∣

+∆t

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

)
,

which applied recursively yields

∑
j∈Z

∣∣ρnj+1 − ρnj
∣∣ ≤ eTH

(
TV (ρ0) + T

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

))
,(3.11)

with H = 1
L

(
2 ‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

)
+ ωη(0)L .

�

Proposition 3.2 (BV estimate in space and time). Let hypotheses (H1) hold,

ρ0 ∈
(
L1 ∩BV

)
(R; [0, 1]). If the CFL condition (3.7) holds, then, for every T > 0 the following

discrete space and time total variation estimate is satisfied:

TV (ρ∆; [0, T ]× R) ≤ TCxt(T ),

with

Cxt(T ) = eTH

(
(1 + 2L)

(
TV (ρ0) + T

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

)))

+

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

)
C1(T ) +

‖qon‖L∞([0,T ])

L
.(3.12)
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Proof.

TV (ρ∆; [0, T ]× R) =

NT−1∑
n=0

∑
j∈Z

∆t
∣∣ρnj+1 − ρnj

∣∣+ (T −NT∆t)
∑
j∈Z

∣∣∣ρNTj+1 − ρ
NT
j

∣∣∣
+

NT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
j − ρnj

∣∣∣ .
By BV estimate in space (3.11), we have

NT−1∑
n=0

∑
j∈Z

∆t
∣∣ρnj+1 − ρnj

∣∣+ (T −NT∆t)
∑
j∈Z

∣∣∣ρNTj+1 − ρ
NT
j

∣∣∣
≤ TeTH

(
TV (ρ0) + T

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

))
.(3.13)

On the other hand, observe that∣∣∣ρn+1
j − ρnj

∣∣∣ ≤ ∣∣∣ρn+1
j − ρn+1/2

j

∣∣∣+
∣∣∣ρn+1/2
j − ρnj

∣∣∣ .(3.14)

We then estimate separately each term on the right hand side of the inequality (3.14).

By the definition of the relaxation step (3.6), for the first term on right hand side of (3.14) we have∣∣∣ρn+1
j − ρn+1/2

j

∣∣∣ ≤ ∆t
∣∣∣Sn+1/2

on,j − Sn+1/2
off,j

∣∣∣
≤ ∆t1on,jq

n+1/2
on

(
1− ρn+1/2

j

)(
1−Rn+1/2

on,j

)
+ ∆t1off,jq

n+1/2
off ρ

n+1/2
j

≤ ∆t‖qon‖L∞([0,T ])

(
1on,j + 1on,j

∣∣∣ρn+1/2
j

∣∣∣)+ ∆t1off,j ‖qoff‖L∞([0,T ])

∣∣∣ρn+1/2
j

∣∣∣ ,(3.15)

then multiplying by ∆x and summing over all j ∈ Z,

∆x
∑
j∈Z

∣∣∣ρn+1
j − ρn+1/2

j

∣∣∣ ≤ ∆t ‖qon‖L∞([0,T ])

∆x
∑
j∈Ωkon

1on,j + ∆x
∑
j∈Ωkon

1on,j

∣∣∣ρn+1/2
j

∣∣∣


+∆t ‖qoff‖L∞([0,T ]) ∆x
∑
j∈Ωkoff

1off,j

∣∣∣ρn+1/2
j

∣∣∣
≤ ∆t ‖qon‖L∞([0,T ])

(
1 +

∥∥ρn+1/2
∥∥
L1(R)

L

)

+∆t ‖qoff‖L∞([0,T ])

‖ρn+1/2‖L1(R)

L

= ∆t ‖qon‖L∞([0,T ])

(
1 +
‖ρn‖L1(R)

L

)
+ ∆t ‖qoff‖L∞([0,T ])

‖ρn‖L1(R)

L

= ∆t

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

)
‖ρn‖L1(R) + ∆t

‖qon‖L∞([0,T ])

L
(3.16)

Now we analyze the second term of the right hand side (3.14). Since the numerical flux defined

in (3.5) is Lipschitz continuous in both arguments with Lipschitz constant L, defined by (2.5), we

obtain ∣∣∣ρn+1/2
j − ρnj

∣∣∣ = λ
∣∣∣Fj+1/2(ρnj , R

n
j+1/2)− Fj−1/2(ρnj−1, R

n
j−1/2)

∣∣∣
≤ λL

(∣∣ρnj − ρnj−1

∣∣+
∣∣∣Rnj+1/2 −R

n
j−1/2

∣∣∣) ,
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multiplying by ∆x, summing over all j ∈ Z and by the Remark 3.2 we get

∆x
∑
j∈Z

∣∣∣ρn+1/2
j − ρnj

∣∣∣ ≤ 2L∆t
∑
j∈Z

∣∣ρnj − ρnj−1

∣∣
= 2L∆t

∑
j∈Z

∣∣ρnj+1 − ρnj
∣∣ .(3.17)

Collecting together (3.16) and (3.17), and by using Lemma 3.2 and Proposition 3.1 we have,

∆x
∑
j∈Z

∣∣∣ρn+1
j − ρnj

∣∣∣ ≤ ∆t

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

)
‖ρn‖L1(R) + ∆t

‖qon‖L∞([0,T ])

L

+2L∆t
∑
j∈Z

∣∣ρnj+1 − ρnj
∣∣

≤ ∆t

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

)
C1(T ) + ∆t

‖qon‖L∞([0,T ])

L

+2L∆teTH

(
TV (ρ0) + T

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

))
.(3.18)

Then, collecting together (3.13) and (3.18) we get

NT−1∑
n=0

∑
j∈Z

∆t
∣∣ρnj+1 − ρnj

∣∣+ (T −NT∆t)
∑
j∈Z

∣∣∣ρNTj+1 − ρ
NT
j

∣∣∣+

NT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1
j − ρnj

∣∣∣
≤ TeTH

(
(1 + 2L)

(
TV (ρ0) + T

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

)))

+T

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

)
C1(T ) + T

‖qon‖L∞([0,T ])

L
.

�

3.4. Discrete Entropy Inequality.

We define, for κ ∈ [0, 1],

Gj+1/2(u ∨ κ) = uv(Rj+1/2), Fκj+1/2(u) = Gj+1/2(u ∨ κ)−Gj+1/2(u ∧ κ),

with a ∨ b = max{a, b}, and a ∧ b = min{a, b}.

Lemma 3.4. Let ρ0 ∈
(
L1 ∩BV

)
(R; [0, 1]). Assume that hypotheses (H1) and CFL condition

(3.7) hold. Then, the approximate solution ρ∆ constructed by Algorithm 3.1 satisfies the following

discrete entropy inequality: for j ∈ Z, for n = 0, . . . , NT − 1 and for any κ ∈ [0, 1],∣∣∣ρn+1
j − κ

∣∣∣− ∣∣ρnj − κ∣∣+ λ
(
Fkj+1/2

(
ρnj
)
− Fkj+1/2

(
ρnj−1

))
−∆t sgn

(
ρn+1
j − κ

)(
Son

(
tn+1/2, xj , ρ

n+1/2
j , R

n+1/2
on,j

)
− Soff

(
tn+1/2, xj , ρ

n+1/2
j

))
+λ sgn

(
ρn+1
j − κ

)
κ
(
v
(
Rnj+1/2

)
− v

(
Rnj−1/2

))
≤ 0.

Proof. We set

Gj(u,w) = w − λ
(
Gj+1/2(w)−Gj−1/2(u)

)
= w − λ

(
wv(Rj+1/2)− uv(Rj−1/2)

)
.
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Clearly ρ
n+1/2
j = Gj(ρ

n
j−1, ρ

n
j ).

The map Gj is a monotone non-decreasing function with respect to each variable under the CFL

condition (3.7) since we have

∂G

∂w
= 1− λv(Rj+1/2) ≥ 0,

∂G

∂u
= λv(Rj−1/2).

Moreover, we have the following identity

Gj(ρ
n
j−1 ∨ κ, ρnj ∨ κ)− Gj(ρ

n
j−1 ∨ κ, ρnj ∧ κ) =

∣∣ρnj − κ∣∣− λ(Fkj+1/2

(
ρnj
)
− Fkj−1/2

(
ρnj−1

))
.

Then, by monotonicity, the definition of scheme (3.5) and by using |a+ b| ≥ |a|+ sgn(a)b, we get

Gj(ρ
n
j−1 ∨ κ, ρnj ∨ κ)− Gj(ρ

n
j−1 ∨ κ, ρnj ∧ κ)

≥ Gj(ρ
n
j−1, ρ

n
j ) ∨ Gj(κ, κ)− Gj(ρ

n
j−1, ρ

n
j ) ∧ Gj(κ, κ)

=
∣∣Gj(ρnj−1, ρ

n
j )− Gj(κ, κ)

∣∣
=

∣∣∣ρn+1/2
j − Gj(κ, κ)

∣∣∣
=

∣∣∣∣ρn+1
j − κ+ λκ

(
v(Rnj+1/2)− v(Rnj−1/2)

)
−∆t

(
Son

(
tn+1/2, xj , ρ

n+1/2
j , R

n+1/2
on,j

)
− Soff

(
tn+1/2, xj , ρ

n+1/2
j

)) ∣∣∣∣
≥

∣∣∣ρn+1
j − κ

∣∣∣+ λ sgn
(
ρn+1
j − κ

)
κ
(
v(Rnj+1/2)− v(Rnj−1/2)

)
−∆t sgn

(
ρn+1
j − κ

)(
Son

(
tn+1/2, xj , ρ

n+1/2
j , R

n+1/2
on,j

)
− Soff

(
tn+1/2, xj , ρ

n+1/2
j

))
.

�

The following Theorem states the L1-Lipschitz continuous dependence of solution to (2.1) on

both the initial datum and the qon and qoff functions.

Theorem 3.1 (Uniqueness). Let ρ and ρ̃ be two solutions to problem (2.1) in the sense of Definition

2.2, with initial data ρ0, ρ̃0 ∈ L1 ∩BV (R; [0, 1]) respectively. Assume v ∈ C2 ([0, 1],R). Then, for

a.e. t ∈ [0, T ],

‖ρ(t)− ρ̃(t)‖L1(R) ≤ eCT
(
‖ρ0 − ρ̃0‖L1(R) + ‖qon − q̃on‖L1([0,t]) + ‖qoff − q̃off‖L1([0,T ])

)
.

Proof. The proof follows closely Theorem 5.6 of [8].

By using Kružkov’s doubling of variables technique we get

‖ρ(T, ·)− ρ̃(T, ·)‖L1(R) ≤ ‖ρ0 − ρ̃0‖L1(R) +

∫ T

0

∫
Ωon

∣∣∣S̃on

∣∣∣ dxdt+

∫ T

0

∫
Ωoff

∣∣∣S̃off

∣∣∣dxdt

+

∫ T

0

∫
R
|V| |∂xρ(t, x)|dxdt+

∫ T

0

∫
R
|Vx| |ρ(t, x)|dxdt,

where

S̃on = Son (t, x, qon, ρ, Ron)− Son

(
t, x, q̃on, ρ̃, R̃on

)
,

S̃off = Soff (t, x, qon, ρ)− Soff (t, x, q̃on, ρ̃) ,

V = v(R)− v(P ),

Vx = ∂xv(R)− ∂xv(P )
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Let us now estimate all the terms appearing in the right hand side of the above inequality. We

start bounding S̃on and S̃off terms:

∫ T

0

∫
Ωon

∣∣∣S̃on

∣∣∣dxdt =

∫ T

0

∫
Ωon

∣∣∣Son (t, x, qon, ρ, Ron)− Son

(
t, x, q̃on, ρ̃, R̃on

)∣∣∣ dxdt

≤
∫ T

0

∫
Ωon

(∣∣∣S̃1
on

∣∣∣+
∣∣∣S̃2

on

∣∣∣+
∣∣∣S̃3

on

∣∣∣)dxdt,

where

S̃1
on = Son (t, x, qon, ρ, Ron)− Son

(
t, x, qon, ρ, R̃on

)
,

S̃2
on = Son

(
t, x, qon, ρ, R̃on

)
− Son

(
t, x, qon, ρ̃, R̃on

)
,

S̃3
on = Son

(
t, x, qon, ρ̃, R̃on

)
− Son

(
t, x, q̃on, ρ̃, R̃on

)
.

First we going to bound S̃1
on term ,∣∣∣S̃1

on

∣∣∣ =
∣∣∣1onqon (1− ρ)

(
(1−Ron)−

(
1− R̃on

))∣∣∣
≤
‖qon‖L∞([0,T ])

L

∣∣∣R̃on −Ron

∣∣∣ ,
thus ∫ T

0

∫
Ωon

∣∣∣S̃1
on

∣∣∣ dxdt ≤
‖qon‖L∞([0,T ])

L

∫ T

0

∫
Ωon

∣∣∣R̃on −Ron

∣∣∣dxdt

≤
‖qon‖L∞([0,T ])

L

∫ T

0

∥∥∥R̃on −Ron

∥∥∥
L1(Ωon)

.

Observe that ∥∥∥Ron − R̃on

∥∥∥
L1(Ωon)

≤ ‖ρ(t, ·)− ρ̃(t, ·)‖L1(Ωon) ,

since
∫
R ωη(x)dx = 1. Then,

∫ T

0

∫
Ωon

∣∣∣S̃1
on

∣∣∣ dxdt ≤
‖qon‖L∞([0,T ])

L

∫ T

0
‖ρ(t, ·)− ρ̃(t, ·)‖L1(Ωon) dt

≤
‖qon‖L∞([0,T ])

L

∫ T

0
‖ρ(t, ·)− ρ̃(t, ·)‖L1(R) dt.

Now we going to bound S̃2
on.∣∣∣S̃2

on

∣∣∣ =
∣∣∣1onqon

(
1− R̃on

)
(1− ρ) (ρ̃− ρ)

∣∣∣
≤
‖qon‖L∞([0,T ])

L
|ρ− ρ̃| .

Integrating in time and space we have∫ T

0

∫
Ωon

∣∣∣S̃2
on

∣∣∣ dxdt ≤
‖qon‖L∞([0,T ])

L

∫ T

0
‖ρ(t, ·)− ρ̃(t, ·)‖L1(Ωon) dt

≤
‖qon‖L∞([0,T ])

L

∫ T

0
‖ρ(t, ·)− ρ̃(t, ·)‖L1(R) dt.

Bounding S̃3
on, ∣∣∣S̃3

on

∣∣∣ =
∣∣∣1on (1− ρ̃)

(
1− R̃on

)
(qon − q̃on)

∣∣∣
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≤ |qon − q̃on|
L

,

thus ∫ T

0

∫
Ωon

∣∣∣S̃3
on

∣∣∣ dxdt ≤ 1

L

∫ T

0

∫
Ωon

|qon − q̃on| dxdt

≤ ‖qon − q̃on‖L1([0,T ]) .

Therefore, we get the following estimate∫ T

0

∫
Ωon

∣∣∣S̃on

∣∣∣dxdt

≤ 2‖qon‖L∞([0,T ])

∫ T

0
‖ρ(t, ·)− ρ̃(t, ·)‖L1(R) dt+ ‖qon − q̃on‖L1([0,T ]) .(3.19)

Regarding S̃off term, we proceed in a similar way like above and we get∣∣∣S̃off

∣∣∣ = |1offqoffρ− 1off q̃off ρ̃|

≤
∣∣∣S̃1

off

∣∣∣+
∣∣∣S̃2

off

∣∣∣ ,
where

S̃1
off = Soff (t, x, qoff , ρ)− Soff (t, x, qoff , ρ̃) ,

S̃2
off = Soff (t, x, qoff , ρ̃)− Soff (t, x, q̃off , ρ̃) .

Then, ∫ T

0

∫
Ωoff

∣∣∣S̃1
off

∣∣∣dxdt ≤
‖qoff‖L∞([0,T ])

L

∫ T

0
‖ρ(t, ·)− ρ̃(t, ·)‖L1(Ωoff) dt

≤
‖qoff‖L∞([0,T ])

L

∫ T

0
‖ρ(t, ·)− ρ̃(t, ·)‖L1(R) dt,

and ∫ T

0

∫
Ωoff

∣∣∣S̃2
off

∣∣∣ dxdt ≤ ‖qoff − q̃off‖L1([0,T ]) .

Thus, we get ∫ T

0

∫
Ωoff

|Soff | dxdt

≤
‖qoff‖L∞([0,T ])

L

∫ T

0
‖ρ(t, ·)− ρ̃(t, ·)‖L1(R) dt+ ‖qoff − q̃off‖L1([0,T ]) .(3.20)

Next, focus on V, by using the following estimate

|V| ≤ ωη(0)
∥∥v′∥∥

L∞([0,1])
‖ρ(t, ·)− ρ̃(t, ·)‖L1(R) ,

we obtain

∫ T

0

∫
R
|V| |∂xρ(t, x)| dxdt

≤ ωη(0)
∥∥v′∥∥

L∞([0,1])
sup
t∈[0,T ]

‖ρ(t, ·)‖TV(R)

∫ T

0
‖ρ(t, ·)− ρ̃(t, ·)‖L1(R) dt.(3.21)

Next, we pass to Vx. Following [8] we compute
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|Vx| ≤
(

2 (ωη(0))2
∥∥v′′∥∥

L∞([0,1])
+
∥∥v′∥∥

L∞([0,1])

∥∥ω′η∥∥L∞([0,η])

)
‖ρ(t, ·)− ρ̃(t, ·)‖L1(R)

+ωη(0)‖v′‖L∞([0,1]) (|ρ− ρ̃| (t, x+ η) + |ρ− ρ̃| (t, x)) ,

thus ∫ T

0

∫
R
|Vx| |ρ(t, x)|dxdt ≤ W

∫ T

0
‖ρ(t, ·)− ρ̃(t, ·)‖L1(R) dt,(3.22)

where

W =
(

2 (ωη(0))2
∥∥v′′∥∥

L∞([0,1])
+
∥∥v′∥∥

L∞([0,1])

∥∥ω′η∥∥L∞([0,η])

)
C1(t) + 2ωη(0)

∥∥v′∥∥
L∞([0,1])

.

Collecting together (3.19), (3.20), (3.21) and (3.22) we get

‖ρ(T, ·)− ρ̃(T, ·)‖L1(R) ≤ ‖ρ0 − ρ̃0‖L1(R) +
(
‖qon − q̃on‖L1([0,t]) + ‖qoff − q̃off‖L1([0,t])

)
+C
∫ T

0
‖ρ(t, ·)− ρ̃(t, ·)‖L1(R) dt,(3.23)

where

C = 2 ‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ]) + ωη(0)
∥∥v′∥∥

L∞([0,1])
sup
t∈[0,T ]

‖ρ(t, ·)‖TV(R) +W(3.24)

An application of Gronwall Lemma to (3.23) completes the proof. �

3.5. Proof of theorem 2.1. The convergence of the approximate solutions constructed by Al-

gorithm 3.1 towards the unique weak entropy solution can be proven by applying Helly’s com-

pactness theorem. The latter can be applied due to Lemma 3.1 and Proposition 3.2 and states

that there exists a sub-sequence of approximate solution ρ∆ that converges in L1 to a function

ρ ∈ L∞ ([0, T ]× R; [0, 1]). Following a Lax-Wendroff type argument, we can show that the limit

function ρ is a weak entropy solution of (2.1) in the sense of Definition 2.2. Together with the

uniqueness result in Theorem 3.1. this concludes the proof of Theorem 2.1.

3.6. Existence for Model 2. In this section we consider the problem (2.1) with the Son (1.6).

In Algorithm 3.1 we substitute Son term in the reaction step (3.6) by (3.3), thus now the term

(3.6) is given by

ρn+1
j = ρ

n+1/2
j + ∆t1on,jq

n+1/2
on

(
1−max

{
ρ
n+1/2
j , R

n+1/2
on,j

})
−∆t1off,jq

n+1/2
off ρ

n+1/2
j .(3.25)

Lemma 3.5 (Maximum Principle). Let ρ0 ∈ L∞(R; [0, 1]). Let hypotheses (H1) and CFL condition

(3.7) hold, then for all t > 0 and x ∈ R the piece-wise constant approximate solution ρ∆ constructed

through Algorithm 3.1 is such that

0 ≤ ρ∆(t, x) ≤ 1.

Proof. The proof is made by induction. We assume that 0 ≤ ρnj ≤ 1 for all j ∈ Z. Consider the

step (3.5) of Algorithm 3.1, by CFL condition (3.7) we have 0 ≤ ρn+1/2
j ≤ 1 for j ∈ Z.

Now focus on the remaining step, involving the source term.

ρn+1
j = ρ

n+1/2
j + ∆t1on,jq

n+1/2
on

(
1−max

{
ρ
n+1/2
j , R

n+1/2
on,j

})
−∆t1off,jq

n+1/2
off ρ

n+1/2
j
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= ρ
n+1/2
j + ∆t1on,jq

n+1/2
on

1−
ρ
n+1/2
j +R

n+1/2
on,j +

∣∣∣ρn+1/2
j −Rn+1/2

on,j

∣∣∣
2


−∆t1off,jq

n+1/2
off ρ

n+1/2
j

= ρ
n+1/2
j + ∆t1on,jq

n+1/2
on − ∆t

2
1on,jq

n+1/2
on ρ

n+1/2
j − ∆t

2
1on,jq

n+1/2
on R

n+1/2
on,j

−∆t

2
1on,jq

n+1/2
on

∣∣∣ρn+1/2
j −Rn+1/2

on,j

∣∣∣−∆t1off,jq
n+1/2
off ρ

n+1/2
j

≤ ρ
n+1/2
j + ∆t1on,jq

n+1/2
on − ∆t

2
1on,jq

n+1/2
on ρ

n+1/2
j −

�����������
∆t

2
1on,jq

n+1/2
on R

n+1/2
on,j

+
������������
∆t

2
1on,jq

n+1/2
on

∣∣∣Rn+1/2
on,j

∣∣∣ − ∆t

2
1on,jq

n+1/2
on

∣∣∣ρn+1/2
j

∣∣∣−∆t1off,jq
n+1/2
off ρ

n+1/2
j

= ρ
n+1/2
j + ∆t1on,jq

n+1/2
on −∆t1on,jq

n+1/2
on ρ

n+1/2
j −∆t1off,jq

n+1/2
off ρ

n+1/2
j

=
(

1−∆t
(
1on,jq

n+1/2
on + 1off,jq

n+1/2
off

))
ρ
n+1/2
j + ∆t1on,jq

n+1/2
on ,

now we can proceed as in Lemma 3.1. �

Lemma 3.6. Let ρ0 ∈ L1(R, [0, 1]). Let (H1) and the CFL condition (3.7) hold. Then, the piece-

wise constant approximate solution ρ∆ constructed through Algorithm 3.1 satisfies,

‖ρ∆(t)‖L1(R) ≤ C1(t),

where C1 like in (3.8).

Proof. By (3.26) and CFL condition (3.7) we have∣∣∣ρn+1
j

∣∣∣ ≤ ∣∣∣ρn+1/2
j

∣∣∣+ ∆t1on,jq
n+1/2
on

(
1−

∣∣∣ρn+1/2
j

∣∣∣)−∆t1off,jq
n+1/2
off

∣∣∣ρn+1/2
j

∣∣∣ ,
this cases reduce to (3.9) and we can proceed as in Lemma 3.2. �

3.7. BV estimates.

Lemma 3.7. The map Son given in (3.25) is Lipschitz continuous in second, third and fourth

argument with Lipschitz constant ‖qon‖L∞([0,T ]).

Proof. ∣∣∣Son(t, x, ρ,Ron)− Son(t, x̃, ρ̃, R̃on)
∣∣∣ ≤ S1 + S2 + S3,

where

S1 = |Son(t, x, ρ,Ron)− Son(t, x, ρ̃, Ron)|

S2 =
∣∣∣Son(t, x, ρ̃, Ron)− Son(t, x, ρ̃, R̃on)

∣∣∣
S3 =

∣∣∣Son(t, x, ρ̃, R̃on)− Son(t, x̃, ρ̃, R̃on)
∣∣∣ .

by the definition of Son term we have

S1 ≤ ‖qon‖L∞([0,T ])

∣∣∣∣1−max {ρ,Ron} − (1−max {ρ̃, Ron})
∣∣∣∣

= ‖qon‖L∞([0,T ])

∣∣∣∣max {ρ̃, Ron} −max {ρ,Ron}
∣∣∣∣
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=
‖qon‖L∞([0,T ])

2

∣∣∣∣ρ̃+Ron + |ρ̃−Ron| − (ρ+Ron + |ρ−Ron|)
∣∣∣∣

=
‖qon‖L∞([0,T ])

2

∣∣∣∣ρ̃− ρ+ |ρ̃−Ron| − |ρ−Ron|
∣∣∣∣

≤
‖qon‖L∞([0,T ])

2

∣∣∣∣ρ̃− ρ+ |ρ̃− ρ|+ �����|ρ−Ron| −�����|ρ−Ron|
∣∣∣∣

≤
‖qon‖L∞([0,T ])

2
(|ρ̃− ρ|+ |ρ̃− ρ|)

= ‖qon‖L∞([0,T ]) |ρ̃− ρ| .

Pass now to S2:

S2 ≤ ‖qon‖L∞([0,T ])

∣∣∣∣max
{
ρ̃, R̃on

}
−max {ρ̃, Ron}

∣∣∣∣
=
‖qon‖L∞([0,T ])

2

∣∣∣∣ρ̃+ R̃on +
∣∣∣ρ̃− R̃on

∣∣∣− (ρ̃+Ron + |ρ̃−Ron|)
∣∣∣∣

=
‖qon‖L∞([0,T ])

2

∣∣∣∣R̃on −Ron +
∣∣∣ρ̃− R̃on

∣∣∣− |ρ̃−Ron|
∣∣∣∣

=
‖qon‖L∞([0,T ])

2

∣∣∣∣R̃on −Ron +
∣∣∣ρ̃−Ron +Ron − R̃on

∣∣∣− |ρ̃−Ron|
∣∣∣∣

≤
‖qon‖L∞([0,T ])

2

∣∣∣∣R̃on −Ron + �����|ρ̃−Ron| +
∣∣∣R̃on −Ron

∣∣∣−�����|ρ̃−Ron|
∣∣∣∣

≤ ‖qon‖L∞([0,T ])

∣∣∣Ron − R̃on

∣∣∣ .
Next, we analyze the S3 term:

S3 =

∣∣∣∣1onqon

(
1−max

{
ρ̃, R̃on

})
− 1̃onqon

(
1−max

{
ρ̃, R̃on

}) ∣∣∣∣
≤ ‖qon‖L∞([0,T ])

∣∣∣∣1on − 1on max
{
ρ̃, R̃on

}
− 1̃on + 1̃on max

{
ρ̃, R̃on

} ∣∣∣∣
= ‖qon‖L∞([0,T ])

∣∣∣∣1on − 1̃on −
1

2

(
ρ̃+ R̃on +

∣∣∣ρ̃− R̃on

∣∣∣) (1on − 1̃on

) ∣∣∣∣
≤ ‖qon‖L∞([0,T ])

∣∣∣∣1− 1

2

(
ρ̃+ �

�R̃on −
�

�
�

∣∣∣R̃on

∣∣∣ + |ρ̃|
) ∣∣∣∣∣∣∣∣1on − 1̃on

∣∣∣∣
= ‖qon‖L∞([0,T ])

∣∣1on − 1̃on

∣∣ |1− ρ̃|
≤ ‖qon‖L∞([0,T ])

∣∣1on − 1̃on

∣∣ .
�

Proposition 3.3 (BV estimate in space). Let ρ0 ∈
(
L1 ∩BV

)
(R; [0, 1]) . Assume that the hy-

potheses (H1) and CFL condition (3.7) hold. Then, for n = 0, . . . , NT − 1 the following estimate

holds ∑
j∈Z

∣∣ρnj+1 − ρnj
∣∣ ≤ eTH(TV (ρ0) + T

(
‖qon‖L∞([0,T ]) + ‖qoff‖L∞([0,T ])

L

))
,

with H like in (2.4).

Proof. Due to the results obtained in Lemma 3.7, the proof is analogous to that one of Proposition

3.1. �
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Proposition 3.4 (BV estimate in space and time). Let hypotheses (H1) hold, ρ0 ∈
(
L1 ∩BV

)
(R; [0, 1]).

If the CFL condition (3.7) holds, then, for every T > 0 the following discrete space and time total

variation estimate is satisfied:

TV (ρ∆; [0, T ]× R) ≤ TCxt(T ),

with Cxt(T ) defined in (3.12).

Proof. For this proof we need to compute the following estimate,∣∣∣ρn+1
j − ρn+1/2

j

∣∣∣ ≤ ∆t
∣∣∣Sn+1/2

on,j − Sn+1/2
off,j

∣∣∣
≤ ∆t1on,j ‖qon‖L∞([0,T ])

∣∣∣∣1− 1

2

(
ρ
n+1/2
j +R

n+1/2
on,j +

∣∣∣ρn+1/2
j −Rn+1/2

on,j

∣∣∣)∣∣∣∣
+∆t1off,j ‖qoff‖L∞([0,T ])

∣∣∣ρn+1/2
j

∣∣∣
≤ ∆t1on,j ‖qon‖L∞([0,T ])

∣∣∣∣1− 1

2

(
ρ
n+1/2
j +

��
��R

n+1/2
on,j −

���
��

∣∣∣Rn+1/2
on,j

∣∣∣ +
∣∣∣ρn+1/2
j

∣∣∣)∣∣∣∣
+∆t1off,j ‖qoff‖L∞([0,T ])

∣∣∣ρn+1/2
j

∣∣∣
≤ ∆t1on,j ‖qon‖L∞([0,T ])

(
1 +

∣∣∣ρn+1/2
j

∣∣∣)+ ∆t1off,j ‖qoff‖L∞([0,T ])

∣∣∣ρn+1/2
j

∣∣∣
≤ ∆t‖qon‖L∞([0,T ])

(
1on,j + 1on,j

∣∣∣ρn+1/2
j

∣∣∣)+ ∆t ‖qoff‖L∞([0,T ]) 1off,j

∣∣∣ρn+1/2
j

∣∣∣ ,
this case reduces to (3.15).

The rest of the proof is analogous to Proposition 3.2. �

4. Numerical experiments

In this section we present some numerical examples to describe the effects that the ramps have

on a road. We solve Model 1 and Model 2 by means Algorithm 3.1 with the terms Son (3.2) and

(3.3), respectively. In all numerical examples below, we consider one on-ramp and one off-ramp,

both ramps with length L = 0.1, the on-ramp is located from x = 1.0 until x = 1.1, the off-ramp

is located from x = 3 until x = 3.1 and we consider the following kernel functions

ωη(x) := 2
η − x
η2

,

ωη,δ(x) :=
1

η6

16

5π

(
η2 − (x− δ)2

)5/2
,

for convective and reactive term respectively, with η ∈ [0, 1] and δ ∈ [−η, η].

4.1. Example 1: Dynamic of Model 1 vs. Model 2.

In this example we show numerically the behavior of the density of vehicles in a main road with

the presence of one on-ramp and one off-ramp. We solve (2.1) numerically in the interval [−1, 9] in

simulated times T = 0.5, T = 2, T = 5, T = 7. We consider ∆x = 1/1000, η = 0.05, δ = −0.01,

a constant initial condition ρ0(x) = 0.3, and the rate of the on- and off-ramp are given by qon(t) =

1.2, qoff(t) = 0.8, respectively.

In Fig.2 we can see that when vehicles enter the ramp, the density of vehicles on the main road

increases and a shock wave with negative speed is formed, after that, a rarefaction wave appears

and when some vehicles leave the main road through off-ramp a shock wave with positive speed is
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formed. In particular we can observe a difference between the maximum density that is reached in

each model, which may be due to the presence of the term 1− ρ in the Model 1.

(a) (b)
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(c) (d)
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Figure 2. Example 1. Numerical approximations of the problem (2.1). Dynamic

of Model 1 vs. Model 2 at (a)T = 0.5, (b)T = 2, (c)T = 5, (d)T = 7.

4.2. Example 2: limit η → 0 in Model 2.

In this example we take a look at the limit case η → 0 and investigate the convergence of the

Model 2 to the solution of the local problem (1.1)-(1.3). In particular, we consider the initial

condition ρ0(x) = 0.3 for x ∈ [0, 1], qon(t) = 1.2, qoff(t) = 0.8 at T = 5 with fixed ∆x = 1/1000

and η ∈ {0.1, 0.05, 0.01, 0.004}, and δ = 0. To evaluate the convergence, we compute the L1

distance between the approximate solution obtained for the proposed upwind-type scheme by means

Algorithm 3.1 with a given η and the result of a classical Godunov scheme for the corresponding

local problem. In Table 1, we can observe that the L1 distance goes to zero when η → 0. The

results are illustrated in Fig.3.

η 0.1 0.05 0.01 0.004

L1 distance 2.8e-1 1.6e-1 3.6e-2 1.1e-2

Table 1. Example 2. L1 distance between the approximate solutions to the

non-local problem and the local problem for different values of η at T = 5 with

∆x = 1/1000.
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Figure 3. Example 2. Numerical approximations of the problem (2.1) at T = 5.

Comparison of local and non-local versions of the model (2.1) with δ = 0 and

different values for η.

4.3. Example 3: Maximum principle.

In this example we verify that the Algorithm 3.1 with the terms Son (3.2) and (3.3) satisfy the

maximum principle, i.e., we verify numerically that Lemmas 3.1 and 3.5 respectively, are fulfilled.

On the other hand, we also verify that the Algorithm 3.1 with a discretization of the term Son

(1.4), which we called Model 0, does not satisfy a maximum principle. For this purpose we consider

the initial condition given by

ρ0(x) =

{
0.1 if x ≤ 1.1

0.9 if x > 1.1,

qon(t) = 1, qoff(t) = 0.2 at T = 0.3, with ∆x = 1/100, η = 0.05, and δ = −0.01. We can see in

Fig.4 (a) that the Model 0 does not satisfy a maximum principle unlike Model 1 and Model 2. The

Fig4 (b) is a zoom of (a) in which we can appreciate in a better form that Model 0 does not satisfy

a maximum principle.

(a) (b)

-1 0 1 2 3
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0.2

0.4

0.6

0.8
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1.2
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Model 1

Model 0

0.9 1 1.1 1.2 1.3

0.9

1

1.1

Model 2

Model 1

Model 0

Figure 4. Example 3. Numerical approximation at time T = 0.3. (a) Model 1,

Model 2 satisfying a maximum principle and Model 0 not satisfying a maximum

principle. (b) Zoom of a part of (a).
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4.4. Example 4: Free main road.

In this example we consider a free main road, i.e, we consider a initial condition ρ0 = 0, boundary

conditions ρ0(t) = 0.4 for all t > 0 and absorbing conditions at x = 5. We also consider the rate

of the on-ramp qon(t) = 1
2 (sin(πt) + 1) and the rate of the off-ramp qoff(t) = 0.2. We solve (2.1)

numerically in the interval [−1, 5] in different times, namely T = 1, T = 2, T = 5, T = 7 and

consider ∆x = 1/1000, η = 0.1, δ = −0.02. In Fig.5 we can see the dynamic of the model 2.1

approximated by means of Model 1 and Model 2.
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Figure 5. Example 4. Dynamic of the model (2.1). Behavior of the numerical

solution computed with Algorithm 3.1 by means of Model 1 and Model 2 at time

(a)T = 1, (b)T = 2, (c)T = 5, (d)T = 7.

5. Conclusion and perspectives

In this paper we introduced a nonlocal balance law to model vehicular traffic flow including on-

and off-ramps. We presented three different models called Model 0, Model 1 and Model 2 and

we proved existence and uniqueness of solutions for Model 1 and Model 2. We approximated the

problem through a upwind-type numerical scheme, providing a Maximum principle, L1 and BV

estimates for approximate solutions. Numerical simulations illustrate the dynamics of the studied

models and show that Model 0 does not satisfy a maximum principle. A limit model as the kernel

support tends to zero is numerically investigated. In a future work, we would like to consider a

nonlocal version of second order model proposed in [21].
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mixed finite element method for a class of quasi-Newtonian Stokes flow

2021-23 Felisia A. Chiarello, Harold D. Contreras, Luis M. Villada: Nonlocal
reaction traffic flow model with on-off ramps

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de
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