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Abstract In this study, we present and analyze a virtual element discretization for a non-selfadjoint
fourth order eigenvalue problem derived from the transmission eigenvalue problem. Using suitable
projection operators, the sesquilinear forms are discretized by only using the proposed degrees of
freedom associated with the virtual spaces. Under standard assumptions on the polygonal meshes,
we show that the resulting scheme provides a correct approximation of the spectrum and prove an
optimal order error estimate for the eigenfunctions and a double order for the eigenvalues. Finally,
we present some numerical experiments illustrating the behavior of the virtual scheme on different
families of meshes.
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1 Introduction

This paper deals with the numerical approximation by the Virtual Element Method (VEM) [5] of the
transmission eigenvalue problem. This problem has important applications in inverse scattering. For
instance, it can be used to obtain estimates for the material properties of the scattering object and
have a theoretical importance for the analysis of reconstruction in inverse scattering theory. For these
reasons, this problem has attracted much interest in the last years.

From the mathematical point of view, the transmission eigenvalue problem is nonstandard and
difficult to treat. As a consequence, different variational formulations have been proposed and analyzed
to solve the eigenvalue problem. More precisely, the problem can be formulated as a fourth order
quadratic eigenvalue problem, as a mixed eigenvalue problem, among others. Several conforming and
nonconforming finite element methods, mixed formulations have been proposed during the last years.
We cite as a minimal sample of them [14–16,20,23,26,32,41,44,47].
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Among the existing techniques, in [15] it has been introduced and analyzed a variational formula-
tion in H2(Ω) × H1(Ω). The resulting variational problem is obtained by considering an additional
second order elliptic problem to write a double-size linear eigenvalue problem. By using Argyris and
Lagrange finite element spaces, a conforming discretization is proposed. A complete analysis of the
method including error estimates is proved using the theory for compact nonselfadjoint operators.
Following a similar approach, in [46] it has been written a weak formulation in H2(Ω)×L2(Ω) for the
transmission eigenvalue problem which is based on a linearization technique by considering an addi-
tional unknown in L2. The authors have proposed a conforming C1 −C1 finite element discretization
in 2D and 3D and error estimates have been obtained. We recall that fourth order problems require
the use of globally C1 polynomial spaces. The construction of C1-conforming finite elements is difficult
in general, since they usually involve a large number of degrees of freedom [21]; thus, they are often
viewed as prohibitively expensive due to their high polynomial degree.

The VEM is a recent technology introduced in [5] as a generalization of finite element method
which among its advantages permits to easily implement highly regular conforming discrete spaces.
This make the method very feasible to solve fourth order problems [2,3,7,9,13,35]. The method has
been also used to solve eigenvalue problems, among which we mention the following recent works [18,
19,8,11,24,25,29–31,34,33,35,37].

Regarding the approximation by VEM of the transmission eigenvalue problem, in [36] it has been
presented a C1 − C0-conforming virtual element method to solve the spectral problem on general
polygonal meshes. This scheme is based on the formulation presented in [15]. Optimal order error
estimates for the eigenfunctions and a double order for the eigenvalues are derived. More recently, in
[38] it has been introduce and analyze a conforming C1−C1 VEM on polytopal meshes by considering
the variational formulation introduced in [46]. Optimal order error estimates for the eigenfunctions
and a double order for the eigenvalues are derived. The aim of this work is to consider the same
continuous formulation as in [46,38] and use a different discretization for the additional unknown
introduced to transform the problem into an equivalent double-size linear eigenvalue. We remark that
by considering this new discretization, we obtain a smaller generalized eigenvalue problem.

In the present paper, we consider a C1−C0-conforming virtual element method to solve the trans-
mission eigenvalue problem. The variational formulation leads to a fourth order quadratic eigenvalue
problem, which is transformed into an equivalent double-size linear eigenvalue problem that fits within
the functional framework for nonselfadjoint compact bounded operators. At the continuous level, we
follow [39] to obtain an appropriate spectral characterization. Next, we propose a C1−C0-conforming
virtual element approximation that applies to general polygonal meshes. More precisely, the scheme is
based on the discrete space introduced in [2] for the Canh-Hilliard equations and in [1] for the linear
reaction-diffusion equation. We construct proper L2-projection operators that are used to approximate
the sesquilinear form presented in the system. At the discrete level, we use once again [39] to prove
that the spectrum is correctly approximated and to obtain error estimates.

Outline. This paper is structured as follows: we introduce in Section 2 the interior transmission
eigenvalue problem, first in terms of a system of second order equations and then in an equivalent
form as a linear nonselfadjoint fourth order eigenvalue problem. In Section 3, we present the discrete
spaces together with their properties. In Section 4, we construct the discrete sesquilinear forms by
using the projection operators. Moreover, we introduce the virtual element discrete formulation. In
Section 5, we present the error analysis of the virtual scheme. In Section 6, we report three numerical
tests that allow us to assess the convergence properties of the virtual element scheme.



3

2 Model Problem

The transmission eigenvalue problem can be stated as follows (see, for instance, [22,42]). Find k ∈ C
and ψ, φ ∈ L2(Ω) with ψ − φ ∈ H2(Ω) such that

∆ψ + k2nψ = 0 in Ω, (2.1a)

∆φ+ k2φ = 0 in Ω, (2.1b)

ψ − φ = 0 on Γ, (2.1c)

∂νψ − ∂νφ = 0 on Γ. (2.1d)

The system (2.1a)–(2.1d) corresponds to the scattering problem for an isotropic inhomogeneous
medium for the Helmholtz equation, where Ω ⊆ R2 is a bounded simply-connected Lipschitz domain
with boundary Γ := ∂Ω. Here, ν denotes the outward unit normal vector to Γ , ∂ν denotes the normal
derivative and n is the index of refraction. We assume that n(x) =: n ∈ W2,∞(Ω) satisfying either
one of the following assumptions for all x ∈ Ω:

1 < n∗ ≤ n(x) ≤ n∗ <∞,
0 < n∗ ≤ n(x) ≤ n∗ < 1.

(2.2)

The transmission eigenvalue problem is often solved by reformulating it as a fourth-order eigen-
value problem. More precisely, by introducing a new unknown u := (ψ − φ) ∈ H2

0(Ω), the model
problem (2.1a)-(2.1d) can be rewritten as follows:

(∆+ k2n)
1

n− 1
(∆+ k2)u = 0 in Ω. (2.3)

In this section we introduce a continuous variational formulation associated with the fourth order
transmission eigenvalue problem (cf. (2.3)) and its spectral characterization. With this aim, we mul-
tiply the identity (2.3) by w ∈ H2

0(Ω) and we arrive at the following quadratic eigenvalue problem:
find k ∈ C and u ∈ H2

0(Ω), u 6= 0 such that∫
Ω

1

n− 1
∆u∆w+ k2

∫
Ω

∆u
( n

n− 1
w
)

+ k2
∫
Ω

1

n− 1
u∆w+ k4

∫
Ω

n

n− 1
uw = 0 ∀w ∈ H2

0(Ω). (2.4)

One of the main difficulties of the variational formulation (2.4) is the nonlinearity with respect
to the parameter k2. For the theoretical analysis it is convenient to transform the above variational
problem into a double-size linear eigenvalue problem. There are different options to do that. In this
work we will follow the approach used in [46,45,38]. More precisely, we consider an auxiliary variable
denoted by z and defined as:

z := k2u in Ω. (2.5)

Now, we denote by H the product space H := H2
0(Ω)×L2(Ω), endowed with the following product

norm
||(w, v)||H :=

(
||D2w||20,Ω + ||v||20,Ω

)1/2
,

where D2w denotes the Hessian matrix of w. Moreover, it is clear that the above norm is equivalent
with the usual norm in H2

0(Ω)× L2(Ω).

Using (2.5) we arrive at the following weak formulation of the transmission eigenvalue problem:

Problem 1 Find (λ, (u, z)) ∈ C×H with (u, z) 6= 0 such that∫
Ω

1

n− 1
∆u∆w +

∫
Ω

zv = λ

(∫
Ω

∆u
( n

n− 1
w
)

+

∫
Ω

1

n− 1
u∆w +

∫
Ω

n

n− 1
zw −

∫
Ω

uv

)
,

for all (w, v) ∈ H and with λ := −k2.
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In order to write the problem in a compact form, we introduce the following forms:

A : H×H→ C, A((u, z), (w, v)) :=

∫
Ω

1

n− 1
∆u∆w +

∫
Ω

zv, (2.6)

B : H×H→ C, B((u, z), (w, v)) :=

∫
Ω

∆u
( n

n− 1
w
)

+

∫
Ω

1

n− 1
u∆w+

∫
Ω

n

n− 1
zw−

∫
Ω

uv. (2.7)

Thus, the nonselfadjoint eigenvalue problem can be written as follows:

Problem 2 Find (λ, (u, z)) ∈ C×H with (u, z) 6= 0 such that

A((u, z), (w, v)) = λB((u, z), (w, v)) ∀(w, v) ∈ H.

The following lemma establishes some properties for the forms A(·, ·) and B(·, ·), which will play
an important role in the analysis of the solution operator.

Lemma 1 There exist positive constants α0 and C that depend on the index of refraction n such that

A((w, v), (w, v)) ≥ α0||(w, v)||2H, (2.8)

|A((u, z), (w, v))| ≤ C||(u, z)||H||(w, v)||H, (2.9)

|B((u, z), (w, v))| ≤ C||(u, z)||H||(w, v)||H, (2.10)

for all (u, z), (w, v) ∈ H.

According to Lemma 1, we are in a position to introduce the solution operator.

T : H −→ H
(f, g) 7−→ T (f, g) = (û, ẑ)

defined as the unique solution of the following source problem (see Lemma 1):

A((û, ẑ), (w, v)) = B((f, g), (w, v)) ∀(w, v) ∈ H. (2.11)

Thus, we have that the linear operator T is well defined and bounded. Moreover, we have that
(λ, (u, z)) solves Problem 1 if and only if (µ, (u, z)) is an eigenpair of T , i.e. T (u, z) = µ(u, z), with
µ := 1/λ.

We observe that no spurious eigenvalues are introduced into the problem. In fact, if µ 6= 0, then
(0, z) is not an eigenfunction of the problem.

The following is an additional regularity result associated with the solution of the source problem
(2.11). The proof follows from the classical regularity result for the biharmonic problem (see for
instance [10,27,40]).

Lemma 2 There exist s ∈ (0, 1] and a positive constant C depending on the index of refraction n such
that for all (f, g) ∈ H, the unique solution (û, ẑ) of problem (2.11) satisfies (û, ẑ) ∈ H2+s(Ω)×H2

0(Ω)
and

||û||2+s,Ω + ||ẑ||2,Ω ≤ C||(f, g)||H.

Proof On the one hand, by testing problem (2.11) with (w, 0) ∈ H, we obtain a biharmonic problem
with its right-hand side in H−1(Ω). Thus, the estimate for û follows. On the other hand, by testing
problem (2.11) with (0, v) ∈ H, we obtain that ẑ = f ∈ H2

0(Ω) and we conclude the proof.

Now, as a consequence of Lemma 2 and the compact inclusion H2+s(Ω)×H2
0(Ω) ↪→ H, we obtain

that operator T is compact. In addition, we have the following spectral characterization result.

Lemma 3 The spectrum of T satisfies sp(T ) = {0}∪{µk}k∈N, where {µk}k∈N is a sequence of complex
eigenvalues which converges to 0 and their corresponding eigenspaces lie in H2+s(Ω)×H2+s(Ω) and

||u||2+s,Ω + ||z||2+s,Ω ≤ C||(u, z)||H.
In addition, µ = 0 is not an eigenvalue of T .
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3 Virtual Element Discretization

In this section, we will introduce the virtual element spaces (local and global) to be used in the
discretization of Problem 2.

We begin with the mesh construction and the assumptions considered to introduce the discrete
virtual element spaces (see e.g [1,5]). Let {Th}h>0 be a sequence of decompositions of Ω into general
polygonal elements E. We will denote by hE the diameter of the element E and by h the maximum
of the diameters of all the elements of the mesh, i.e., h := maxE∈Th hE . In addition, we denote by NE
and NE

v the number of polygons in Th and the number of vertices of E, respectively. Moreover, we
denote by e a generic edge of Th and for all e ∈ ∂E, we define a unit normal vector νeE that points
outside of E.

As in [5], we need to assume regularity of the polygonal meshes in the following sense: there exists
a positive real number γ such that, for every h and every E ∈ Th,

A1: E ∈ Th is star-shaped with respect to every point of a ball of radius γhE ;
A2: the ratio between the shortest edge and the diameter hE of E is larger than γ.

Now, for all m ∈ N, we will denote by Pm(O) the space of polynomials of degree up to m defined
on the subset O ⊆ R2.

We introduce on each element E ∈ Th the following finite dimensional spaces:

W̃h(E) :=
{
wh ∈ H2(E) : ∆2wh ∈ P2(E), wh|∂E ∈ C0(∂E), wh|e ∈ P3(e) ∀e ∈ ∂E,

∇wh|∂E ∈ [C0(∂E)]2, ∂νe
E
wh|e ∈ P1(e) ∀e ∈ ∂E

}
,

and

Ṽh(E) := {vh ∈ H1(E) : ∆vh ∈ P1(E), vh|∂E ∈ C0(∂E), vh|e ∈ P1(e) ∀e ∈ ∂E}.

Moreover, in W̃h(E) and Ṽh(E) we define the following sets of linear operators. For all wh ∈ W̃h(E)

and vh ∈ Ṽh(E) we consider

DW1: evaluation of wh at the NE
v vertices of E;

DW2: evaluation of ∇wh at the NE
v vertices of E;

DV: evaluation of vh at the NE
v vertices of E.

Projection operators and local virtual spaces. In order to introduce the local virtual space, we
define the projector Π∆

E : W̃h(E) −→ P2(E) as follows:
∫
E

D2Π∆
Ewh : D2q =

∫
E

D2wh : D2q ∀q ∈ P2(E),

((Π∆
Ewh, q))E = ((wh, q))E ∀q ∈ P1(E),

(3.1)

where ((ϕh, φh))E is defined as follows:

((ϕh, φh))E :=

NE
v∑

i=1

ϕh( vi)φh( vi) ∀ϕh, φh ∈ C0(∂E),

with vi, 1 ≤ i ≤ NE
v , being the vertices of E.

Remark 1 The second equation in (3.1) is to select an element from the non-trivial kernel of the
operator Π∆

E . We mention that it could be substituted by any other appropriate compatible average
on ∂E, for instance,

(Π∆
Ewh, q)∂E = (wh, q)∂E ∀q ∈ P1(E),

where (·, ·)∂E is the standard L2 inner product over the boundary of E.
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We refer to [2] to prove that operator Π∆
E is computable from the output values of the sets DW1

and DW2.

In a similar way, we define the projector Π∇E : Ṽh(E) −→ P1(E) for each ψ ∈ Ṽh(E) as the solution
of 

∫
E

∇Π∇E vh · ∇q =

∫
E

∇vh · ∇q ∀q ∈ P1(E),

(Π∇E vh, q)∂E = (vh, q)∂E ∀q ∈ P0(E).

We observe that operator Π∇E can be computed using only the output values of the set DV (see [1]).

We introduce on each element E ∈ Th the following local virtual space Wh(E) (see, for instance,
[2]).

Wh(E) :=

{
wh ∈ W̃h(E) :

∫
E

(Π∆
Ewh)q =

∫
E

whq ∀q ∈ P2(E)

}
.

Now, since Wh(E) ⊆ W̃h(E) the projector Π∆
E is well defined and computable in Wh(E). Moreover,

the sets of linear operators DW1 and DW2 constitutes a set of degrees of freedom for Wh(E), we refer
to [2, Lemma 2.3] for further details.

Now, we introduce the following local virtual space (see [1]):

Vh(E) :=

{
vh ∈ Ṽh(E) :

∫
E

(Π∇E vh)q =

∫
E

vhq ∀q ∈ P1(E)

}
.

It is clear that Vh(E) ⊆ Ṽh(E). Thus, the linear operator Π∇E is well defined on Vh(E). Moreover, the
set of operators DV constitutes a set of degrees of freedom for the space Vh(E) (see [1]).

We also have that P2(E)× P1(E) ⊆Wh(E)× Vh(E). This will guarantee the good approximation
properties for the spaces.

Now, for all m ∈ N ∪ {0} and E ∈ Th, we define the following projector:

Πm
E : L2(E)→ Pm(E);

∫
E

(r −Πm
E r)q = 0 ∀q ∈ Pm(E). (3.2)

It easy to check that for all wh ∈ Wh(E) the scalar functions Π2
Ewh and Π0

E∆wh are computable
from the degrees of freedom DW1 and DW2 (see [2]). Moreover, for all vh ∈ Vh(E) the scalar function
Π1
Evh is computable from the degrees of freedom DV (see [1]).

Global virtual spaces. Now, we introduce the global virtual spaces to be used in the discretization
of Problem 2.

For every decomposition Th of Ω into simple polygons E, the first global virtual element space is
defined as

Wh :=
{
wh ∈ H2

0(Ω) : wh|E ∈Wh(E)
}
.

A set of degrees of freedom for Wh is given by all pointwise values of wh on all vertices of Th together
with all pointwise values of ∇wh on all vertices of Th, excluding the vertices on the boundary (where
the values vanish).

Next, we introduce the following global virtual space.

Vh := {vh ∈ H1
0(Ω) : vh|E ∈ Vh(E)}.

In this case, a set of degrees of freedom for Vh is given by all pointwise values vh on all vertices of Th
excluding the vertices on the boundary (where the values vanish).

Finally, for every decomposition Th of Ω into simple polygons E, we introduce the global virtual
space denoted by Hh as follow:

Hh := Wh × Vh.
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Remark 2 We observe that the virtual element space Vh is a conforming space in H1(Ω). This space
will be used for the approximation of the auxiliary variable z ∈ L2(Ω). This choice permit us to
incorporate a Dirichlet boundary condition for z and also facilitate the analysis of the proposed
virtual method. Other virtual element discretizations based on piecewise discontinuous polynomials
will be studied in a future work.

4 Discrete Spectral Problem

In this section, we will introduce a virtual element scheme to approximate the spectrum of the trans-
mission eigenvalue problem stated in Problem 2 and using the virtual spaces introduced in Section 3

In what follows, for simplicity, we assume that the index of refraction n is piecewise constant with
respect to the decomposition Th, i.e., n is constant on each polygon E ∈ Th.

Next, we decompose the continuous sesquilinear forms (2.6)-(2.7) in an element by element con-
tribution as follows:

A((u, z), (w, v)) :=A1(u,w) +A2(z, v),

=
∑
E∈Ωh

[A1
E(u,w) +A2

E(z, v)],

with

A1
E(u,w) :=

∫
E

1

n− 1
∆u∆w, and A2

E(z, v) :=

∫
E

zv.

Moreover, we introduce

BE((u, z), (w, v)) :=

∫
E

∆u
( n

n− 1
w
)

+

∫
E

1

n− 1
u∆w +

∫
E

n

n− 1
zw −

∫
E

uv.

Now, in order to propose the discrete scheme, we need to introduce some definitions. First, we
consider S∆E (·, ·) and S0E(·, ·) any hermitian positive definite forms satisfying:

α∗A1
E(wh, wh) ≤ S∆E (wh, wh) ≤ α∗A1

E(wh, wh) ∀wh ∈Wh(E) Π∆
Ewh = 0, (4.1)

β∗A2
E(vh, vh) ≤ S0E(vh, vh) ≤ β∗A2

E(vh, vh) ∀vh ∈ Vh(E), (4.2)

where α∗, β∗ and α∗, β∗ are positive constants depending only on the constant γ from mesh assump-
tions A1–A2.

Next, we define the discrete versions of the sesquilinear forms presented in (2.6)-(2.7) as follows:

A1h : Wh ×Wh → C; A1h(uh, wh) :=
∑
E∈Th

A1h
E (uh, wh),

A2h : Vh × Vh → C; A2h(zh, vh) :=
∑
E∈Th

A2h
E (zh, vh),

Bh : Hh ×Hh → C; Bh((uh, zh), (wh, vh)) :=
∑
E∈Th

BhE((uh, zh), (wh, vh)),

where

A1h
E : Wh(E)×Wh(E)→ C, A2h

E : Vh(E)× Vh(E)→ C, BhE : HE
h ×HE

h → C,

are local sesquilinear forms given by

A1h
E (uh, wh) := A1

E(Π∆
E uh, Π

∆
Ewh) + S∆E (uh −Π∆

E uh, wh −Π∆
Ewh), (4.3)

A2h
E (zh, vh) := A2

E(Π1
Ezh, Π

1
Evh) + S0E(zh −Π1

Ezh, vh −Π1
Evh), (4.4)
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BhE((uh, zh), (wh, vh)) :=

∫
E

n

n− 1
Π0
E∆uhΠ

2
Ewh +

∫
E

1

n− 1
Π2
EuhΠ

0
E∆wh

+

∫
E

n

n− 1
Π1
EzhΠ

2
Ewh −

∫
E

Π2
EuhΠ

1
Evh, (4.5)

with HE
h := Wh(E)× Vh(E).

The following lemma establishes properties of consistency and stability for the local sesquilinear
forms A1h

E (·, ·) and A2h
E (·, ·). The proof follows standard arguments in the VEM literature (see [1]).

Proposition 1 The local forms A1h
E (·, ·) and A2h

E (·, ·) satisfy the following properties:

– Consistency: for all h > 0 and for all E ∈ Th we have that

A1h
E (q, wh) = A1

E(q, wh) ∀q ∈ P2(E) ∀wh ∈Wh(E); (4.6)

A2h
E (q, vh) = A2

E(q, vh) ∀q ∈ P1(E) ∀vh ∈ Vh(E). (4.7)

– Stability and boundedness: There exist positive constants α1, α2, β1, β2 depending on the index of
refraction n and the constant γ from mesh assumptions A1–A2 such that:

α1A1
E(wh, wh) ≤ A1h

E (wh, wh) ≤ α2A1
E(wh, wh) ∀wh ∈Wh(E); (4.8)

β1A2
E(vh, vh) ≤ A2h

E (vh, vh) ≤ β2A2
E(vh, vh) ∀vh ∈ Vh(E). (4.9)

Now, for all (uh, zh), (wh, vh) ∈ Hh, we introduce the discrete sesquilinear form

Ah : Hh ×Hh → C; Ah((uh, zh), (wh, vh)) := A1h(uh, wh) +A2h(zh, vh). (4.10)

As consequence of Proposition 1, we have the following result, which is the discrete version of
Lemma 1.

Lemma 4 There exist positive constants C and α that depend on the index of refraction n and the
constants in (4.8)-(4.9) such that for all (uh, zh), (wh, vh) ∈ Hh we have

Ah((wh, vh), (wh, vh)) ≥ α||(wh, vh)||2H, (4.11)

|Ah((uh, zh), (wh, vh))| ≤ C||(uh, zh)||H||(wh, vh)||H, (4.12)

|Bh((uh, zh), (wh, vh))| ≤ C||(uh, zh)||H||(wh, vh)||H. (4.13)

Proof It is straightforward to prove the estimates (4.11)-(4.13) from Proposition 1 and the definition
(4.5).

For the sesquilinear form Bh(·, ·), we do not require any lower bound. Thus, we do not need to
stabilize this form.

Now, we are in a position to write the virtual element discretization of Problem 2.

Problem 3 Find (λh, (uh, zh)) ∈ C×Hh with (uh, zh) 6= 0 such that

Ah((uh, zh), (wh, vh)) = λhBh((uh, zh), (wh, vh)) ∀(wh, vh) ∈ Hh. (4.14)

In order to characterize the spectrum of Problem 3, we introduce the discrete version of the solution
operator T .

T h : H −→ Hh ⊆ H
(f, g) 7−→ T h(f, g) = (ûh, ẑh),

defined as the unique solution of the following source problem (see Lemma 4):

Ah((ûh, ẑh), (wh, vh)) = Bh((f, g), (wh, vh)) ∀(wh, vh) ∈ Hh. (4.15)

We have that operator T h is well defined and uniformly bounded. Once more, as in the continuous
case, we have that (λh, (uh, zh)) solves Problem 3 if and only if (µh, (uh, zh)) is an eigenpair of T h,
i.e., T h(uh, zh) = µh(uh, zh), with µh := 1/λh.



9

5 Convergence and Error Estimates

In what follows, we focus on proving the convergence and error analysis of the proposed virtual
element scheme for the transmission eigenvalue problem. First, we recall some well-known results on
star-shaped polygons [12].

Proposition 2 There exists a positive constant C, such that for all w ∈ Hδ(E) there exists wπ ∈
Pk(E), k ∈ N such that

|w − wπ|`,E ≤ Chδ−`E |w|δ,E 0 ≤ δ ≤ k + 1, ` = 0, . . . , [δ],

with [δ] denoting largest integer equal to or smaller than δ ∈ R+.

Now, we consider interpolation operators in the virtual element spaces Wh and Vh. First, for the C1

interpolation operator, we have the following result and the proof can be found in [2, Proposition 3.1].

Proposition 3 Assume A1–A2 are satisfied, let w ∈ Hε(Ω) with ε ∈ [2, 3]. Then, there exist wI ∈Wh

and C > 0, independent of h, such that

‖w − wI‖`,Ω ≤ Chε−`‖w‖ε,Ω , ` = 0, 1, 2.

For the C0 interpolation operator, we have the following result whose proof can be obtained by
repeating the arguments in [17, Theorem 11] (see also [34, Proposition 4.2]).

Proposition 4 Assume A1–A2 are satisfied, let v ∈ H2(Ω). Then, there exist vI ∈ Vh and C > 0,
independent of h, such that

‖v − vI‖0,Ω + h|v − vI |1,Ω ≤ Ch2‖v‖2,Ω .

The following lemma shows that T h converges in norm to T as h goes to zero.

Lemma 5 There exist s ∈ (0, 1] and a positive constant C > 0 that depends on the index of refraction
n, both independent of the meshsize h such that: For all (f, g) ∈ H, if (û, ẑ) = T (f, g) and (ûh, ẑh) =
T h(f, g), then

|| (T − T h) (f, g)||H ≤ Chs||(f, g)||H.

Proof Let (f, g) ∈ H. As a consequence of Lemma 2, there exists s ∈ (0, 1] such that (û, ẑ) ∈
H2+s(Ω) × H2(Ω). Let (ûI , ẑI) ∈ Hh be such that Propositions 3 and 4 hold true. By using the
triangle inequality, we have

|| (T − T h) (f, g)||H = ||(û, ẑ)− (ûh, ẑh)||H
≤ ||(û, ẑ)− (ûI , ẑI)||H + ||(ûI , ẑI)− (ûh, ẑh)||H. (5.1)

We define (wh, vh) := (ûh − ûI , ẑh − ẑI) ∈ Hh. Then, for all ûπ ∈ P2(E) and ẑπ ∈ P1(E), from (4.11)
(ellipticity of the sesquilinear form Ah(·, ·)), we have

α||(wh, vh)||2H ≤Ah((wh, vh), (wh, vh)) (5.2)

=Ah((ûh, ẑh), (wh, vh))−Ah((ûI , ẑI), (wh, vh))

=Bh((f, g), (wh, vh))−
∑
E∈Th

{
A1h
E (ûI , wh) +A2h

E (ẑI , vh)
}

=Bh((f, g), (wh, vh))−
∑
E∈Th

{
{A1h

E (ûI − ûπ, wh) +A1
E(ûπ − û, wh)}
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+ {A2h
E (ẑI − ẑπ, vh) +A2

E(ẑπ − ẑ, vh)}+ {A1
E(û, wh) +A2

E(ẑ, vh)}
}

=
∑
E∈Th

{BhE((f, g), (wh, vh))− BE((f, g), (wh, vh))}︸ ︷︷ ︸
R1

E

−
∑
E∈Th

{A1h
E (ûI − ûπ, wh) +A1

E(ûπ − û, wh)}︸ ︷︷ ︸
R2

E

−
∑
E∈Th

{A2h
E (ẑI − ẑπ, vh) +A2

E(ẑπ − ẑ, vh)}︸ ︷︷ ︸
R3

E

, (5.3)

where we have used the definition of the solution operators T and T h and the consistency proper-
ties (4.6) and (4.7). In what follows, we will bound the terms R1

E , R
2
E and R3

E .

We start with the term R1
E : we use the definitions of BE(·, ·) and BhE(·, ·) (cf. (2.7) and (4.5),

respectively) to obtain

R1
E =

∫
E

{ n

n− 1
Π0
E∆fΠ

2
Ewh −

n

n− 1
∆fwh

}
︸ ︷︷ ︸

R11
E

+

∫
E

{ 1

n− 1
Π2
EfΠ

0
E∆wh −

1

n− 1
f∆wh

}
︸ ︷︷ ︸

R12
E

+

∫
E

{ n

n− 1
Π1
EgΠ

2
Ewh −

n

n− 1
gwh

}
︸ ︷︷ ︸

R13
E

+

∫
E

{
Π2
EfΠ

1
Evh − fvh

}
︸ ︷︷ ︸

R14
E

=: R11
E +R12

E +R13
E +R14

E . (5.4)

Thus, we have to bound each term on the right-hand side above. First, the terms R11
E and R12

E can
be bounded repeating the same arguments in [38, Lemma 4.2]. We obtain

R11
E ≤ ChE

∥∥∥∥ n

n− 1

∥∥∥∥
L∞(E)

|f |2,E
{
|wh|2,E + |wh|1,E

}
, (5.5)

and

R12
E ≤ ChE

∥∥∥∥ n

n− 1

∥∥∥∥
L∞(E)

{
|f |2,E + |f |1,E

}
|wh|2,E . (5.6)

Now, to bound the term R13
E , we use the fact that n is piecewise constant, the definition of Π1

E

and Π2
E , the Cauchy-Schwarz inequality and n/(n− 1) ∈ L∞(Ω) to have

R13
E =

∫
E

{ n

n− 1
Π1
EgΠ

2
Ewh −

n

n− 1
gwh

}
(5.7)

=

∫
E

n

n− 1
Π1
Eg(Π2

Ewh −Π1
Ewh) +

∫
E

n

n− 1
(Π1

Eg − g)(Π1
Ewh − wh)

≤ Ch2E
∥∥∥∥ n

n− 1

∥∥∥∥
L∞(E)

||g||0,E |wh|2,E . (5.8)

For the term R14
E , we use the definition of Π2

E and the Cauchy-Schwarz inequality to obtain

R14
E =

∫
E

{
Π2
EfΠ

1
Evh − fvh

}
(5.9)
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=

∫
E

(Π2
Ef −Π1

Ef)Π1
Evh +

∫
E

(Π1
Ef − f)(Π1

Evh − vh)

≤ Ch2E |f |2,E ||vh||0,E . (5.10)

Now, taking sum over E in the terms (5.5),(5.6),(5.8) and (5.10) and applying Cauchy-Schwarz
inequality for sequences we obtain

∑
E∈Th

R1,E ≤ Chmax

{∥∥∥∥ n

n− 1

∥∥∥∥
L∞(E)

,

∥∥∥∥ 1

n− 1

∥∥∥∥
L∞(E)

}
||(f, g)||H||(wh, vh)||H. (5.11)

Next, we bound the term
∑
E∈Th

R2
E . By using the Cauchy-Schwarz inequality and the stability and

boundedness properties of A1
E(·, ·) (cf. (4.8)), we obtain∑

E∈Th

R2
E =

∑
E∈Th

{
A1h
E (ûI − ûπ, wh) +AE1 (ûπ − û, wh)

}
≤
∑
E∈Th

{
|ûI − ûπ|2,E |wh|2,E + |ûπ − û|2,E |wh|2,E

}
≤
∑
E∈Th

{
|ûI − û|2,E + 2|û− ûπ|2,E

}
|wh|2,E .

Next, from Propositions 2, 3, and Lemma 2, we have∑
E∈Th

R2
E ≤ Chs||(f, g)||H||(wh, vh)||H. (5.12)

To bound the last term:
∑
E∈Th

R3
E , we use the Cauchy-Schwarz inequality and we add and subtract

the term ẑ, to obtain ∑
E∈Th

R3
E =

∑
E∈Th

{
A2h
E (ẑI − ẑπ, vh) +A2

E(ẑπ − ẑ, vh)
}

≤
∑
E∈Th

{
||ẑI − ẑ||0,E + 2||ẑ − ẑπ||0,E

}
||vh||0,E .

Hence, applying Proposition 2 and Proposition 4 (with ` = 0), and Lemma 2 in the above inequality
we deduce ∑

E∈Th

R3
E ≤ Ch2||(f, g)||H||(wh, vh)||H. (5.13)

Now, by combining (5.3) with (5.11), (5.12) and (5.13), we obtain

||(ûI , ẑI)− (ûh, ẑh)||H ≤
C

α
hs||(f, g)||H. (5.14)

Finally, we complete the proof from (5.1), (5.14), Propositions 3, 4 and Lemma 2.

Since Problem 1 is nonselfadjoint, we need to analyze the adjoint solution operators (continuous
and discrete). Thus, first we introduce the adjoint solution operator T ∗:

T ∗ : H −→ H
(f, g) 7−→ T ∗(f, g) = (û∗, ẑ∗)
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defined as the unique solution (see Lemma 1) of the following source problem:

A((w, v), (û∗, ẑ∗)) = B((w, v), (f, g)) ∀(w, v) ∈ H. (5.15)

It is simple to prove that if µ is an eigenvalue of T with multiplicity m, µ̄ is an eigenvalue of T ∗

with the same multiplicity m. In addition, a result analogous to Lemma 2 can be proven in this case.

Lemma 6 There exist s ∈ (0, 1] and a positive constant C depending on the index of refraction n
such that for all (f, g) ∈ H, the unique solution (û∗, ẑ∗) of (5.15) satisfies (û∗, ẑ∗) ∈ H2+s(Ω)×H2

0(Ω)
and

||û∗||2+s,Ω + ||ẑ∗||2,Ω ≤ C||(f, g)||H.

Now, let T ∗h : H → Hh ⊆ H the adjoint operator of T h. This operator is defined by T ∗h(f, g) :=
(û∗h, ẑ

∗
h), where (û∗h, ẑ

∗
h) is the unique solution of the following source problem:

Ah((wh, vh), (û∗h, ẑ
∗
h)) = Bh((wh, vh), (f, g)) ∀(wh, vh) ∈ Hh. (5.16)

The next result establishes the convergence in norm of the operator T ∗h to T ∗ as h goes to zero.
The proof follows repeating the same arguments as those used to prove Lemma 5.

Lemma 7 There exist a positive constant C that depends on the index of refraction n and s ∈ (0, 1],
both independent of the meshsize h, such that: For all (f, g) ∈ H, if (û∗, ẑ∗) = T ∗(f, g) and (û∗h, ẑ

∗
h) =

T ∗h(f, g), then

|| (T ∗ − T ∗h) (f, g)||H ≤ Chs||(f, g)||H.

Now we are ready to prove the convergence and obtain error estimates of the eigenvalue problem.
First, we recall that in [39], the author gives the convergence conditions under which the eigenvalues
of T h converge to those of T , where T is a nonselfadjoint compact operator (see also [4]).

We first recall the definition of the spectral projectors. Let µ be a nonzero eigenvalue of T with
algebraic multiplicity m. Denote by C a circle in the complex plane centered at µ such that no other
eigenvalue lies inside C. Define the spectral projection E as

E := (2πi)−1
∫
C
(z − T )−1dz.

In a similar way, we define the spectral projector E∗ as follows:

E∗ := (2πi)−1
∫
C
(z − T ∗)−1dz.

We have that E and E∗ are projections onto the space of generalized eigenvectors R(E) and R(E∗),
respectively. It is easy to check that R(E), R(E∗) ∈ H2+s(Ω)×H2+s(Ω) (see Lemma 3).

As a consequence of the convergence in norm of T h to T (cf. Lemma 5), there exist m eigenvalues

(which lie in C) µ(1)
h , . . . , µ

(m)
h of T h (repeated according to their respective multiplicities) which will

converge to µ as h goes to zero.

Analogously, we introduce the following spectral projector Eh := (2πi)−1
∫
C(z − T h)−1dz, which

is a projector onto the invariant subspace R(Eh) of T h spanned by the generalized eigenvectors of T h

corresponding to µ
(1)
h , . . . , µ

(m)
h .

We recall the definition of the gap δ̂ between two closed subspaces X and Y of of a Hilbert space
H:

δ̂(X ,Y) := max {δ(X ,Y), δ(Y,X )} , where δ(X ,Y) := sup
x∈X : ‖x‖H=1

(
inf
y∈Y
‖x− y‖H

)
.

The following error estimates for the approximation of eigenvalues and eigenfunctions hold true.
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Theorem 1 There exists a strictly positive constant C that depends on the index of refraction such
that

δ̂(R(E), R(Eh)) ≤ Chs, (5.17)

|µ− µ̂h| ≤ Ch2s, (5.18)

where µ̂h := 1
m

m∑
i=1

µ
(i)
h and s ∈ (0, 1] as in Lemma 3.

Proof The proof follows repeating the same arguments used in [38, Theorem 4.1].

6 Numerical Results

We report in this section a series of numerical tests to approximate the transmission eigenvalues
k described in the system (2.1a)-(2.1d), using the Virtual Element Method proposed and analyzed
in this paper. Thus, we have implemented in a MATLAB code the proposed VEM on arbitrary
polygonal meshes (see [6]). Moreover, the spectral problem is solved by using the built-in function eigs
in MATLAB.

In order to compare our results with the ones reported in the literature of the transmission eigen-
value problem, we have chosen three configurations for the computational domain Ω:

Square domain: ΩS := (0, 1)2, (6.1)

L-shaped domain: ΩL := (−1/2, 1/2)2\([0, 1/2]× [−1/2, 0]), (6.2)

Circular domain: ΩC := {(x, y) ∈ R2 : x2 + y2 < 1/4}. (6.3)

Additionally, we have tested the method by using different families of polygonal meshes (see
Figure 6.1):

– Ωtzh : Trapezoidal meshes;
– Ωth: Triangular meshes;
– Ωhexh : Hexagonal meshes made of convex hexagons;
– Ωvh: Voronoi meshes which have been partitioned with NP number of polygons.

On the other hand, to complete the choice of the VEM scheme, we had to fix the forms S∆E (·, ·)
and S0E(·, ·) satisfying (4.1) and (4.2), respectively. In particular, we have considered the forms

S∆E (uh, wh) := h−2E

NE
v∑

i=1

[uh( vi)wh( vi) + h2vi
∇uh( vi) · ∇wh( vi)] ∀uh, wh ∈Wh(E),

S0E(zh, vh) := h2E

NE
v∑

i=1

zh( vi)vh( vi) ∀zh, vh ∈ Vh(E),

where v1, . . . , vNE
v

are the vertices of E, h vi corresponds to the maximum diameter of the elements
with vi as a vertex. With the above choice, we have that (4.1) and (4.2) are satisfied (see [2,1] for
further details).
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Fig. 6.1 Sample meshes: Ωs
h (top left), Ωtz

h (top middle), Ωhex
h (top right), Ωt

h (bottom left) and Ωv
h (bottom right).

6.1 Test 1: Square domain ΩS

In this numerical test, we have computed the three lowest transmission eigenvalues kih, i = 1, 2, 3,
with three different index of refraction n on the unit square ΩS.

We report in Table 6.1 the three lowest in magnitude transmission eigenvalues computed with the
virtual scheme introduced in this work. The table includes orders of convergence as well as accurate
values extrapolated by means of a least-squares fitting. We consider three different values for the index
of refraction and three different families of meshes. We compare the results with the ones reported in
references [28,36,23,20,38].

It can be seen from Table 6.1 that the eigenvalue approximation order of the proposed method is
quadratic and that the results obtained by the different methods agree perfectly well. We illustrate in
Figure 6.2 the eigenfunctions corresponding to the four lowest transmission eigenvalues obtained with
meshes Ωhexh and n = 16.

6.2 Test 2: L-shaped domain ΩL

In order to compare our results with those presented in the literature of the transmission eigenvalue (for
instance [15,36,38]), in this numerical test we have computed the three lowest transmission eigenvalues
kih, i = 1, 2, 3, with the index of refraction n = 16 on the L-shaped domain ΩL and with meshes Ωth
and Ωsh.

We report in Table 6.2 the three lowest in magnitude transmission eigenvalues, for n = 16, and
computed with the VEM (4.14) on the meshes Ωth (triangular meshes), and Ωsh (square meshes) (cf.
Figure 6.1). The table includes orders of convergence as well as accurate values extrapolated by means
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Table 6.1 Test 1: Lowest transmission eigenvalues kih, i = 1, 2, 3, computed on different families of meshes, on the
square domain ΩS and with different index of refraction.

n ΩS k1h k2h k3h

N = 32 4.2551-1.1855i 4.2551+1.1855i 5.5954
N = 64 4.2674-1.1573 i 4.2674+1.1573 i 5.5048
N = 128 4.2706-1.1499i 4.2706+1.1499i 5.4832
Order 1.94 1.94 2.07

4 Ωhex
h Extrap. 4.2718-1.1473i 4.2718+1.1473i 5.4765

[28] [Multigrid FEM] 4.2717-1.1474i 4.2717+1.1474i 5.4761
[36] [C1-C0-VEM] 4.2718-1.1475i 4.2718+1.1475i 5.4779
[38] [C1-C1-VEM] 4.2717-1.1474i 4.2717+1.1474i 5.4768

N = 32 1.8897 2.4607 2.4660
N = 64 1.8821 2.4483 2.4496
N = 128 1.8802 2.4452 2.4456
Order 2.03 2.03 2.02

16 Ωtz
h Extrap. 1.8796 2.4442 2.4442

[23] [Argyris method] 1.8651 2.4255 2.4271
[36] [C1-C0-VEM] 1.8796 2.4442 2.4442
[38] [C1-C1-VEM] 1.8796 2.4442 2.4442

N = 32 2.8329 3.5512 3.5570
N = 64 2.8248 3.5418 3.5434
N = 128 2.8228 3.5395 3.5401
Order 2.03 2.03 2.03

8 + x− y Ωt
h Extrap. 2.8222 3.5387 3.5390

[20] [C0-FEM] 2.8221 3.5383 3.5387
[38] [C1-C1-VEM] 2.8222 3.5387 3.5390

of a least-squares fitting. Once again, the last rows show the values obtained by extrapolating those
computed with different methods presented in [15,36,38].

Table 6.2 Test 2: Lowest transmission eigenvalues kih, i = 1, 2, 3, computed on meshes Ωt
h and Ωs

h with an index of
refraction n = 16 on the L-shaped domain ΩL.

n ΩL k1h k2h k3h

N = 32 2.9706 3.1472 3.4237
N = 64 2.9589 3.1414 3.4141

16 Ωt
h N = 128 2.9549 3.1400 3.4114

Order 1.53 1.96 1.82
Extrap. 2.9528 3.1394 3.4103
N = 32 2.9678 3.1481 3.4281
N = 64 2.9571 3.1414 3.4149

16 Ωs
h N = 128 2.9539 3.1399 3.4114

Order 1.76 2.11 1.94
Extrap. 2.9526 3.1394 3.4102

[15] [Argyris method] 2.9553 - -
[36] [C1-C0-VEM] 2.9527 3.1395 3.4103
[38] [C1-C1-VEM] 2.9528 3.1394 3.4103

It can be seen from Table 6.2 that the results obtained by our method agree perfectly well with those
reported in [15,36,38]. Moreover, we observe that for the first transmission eigenvalue the associated
eigenfunction presents a singularity. Thus, the order of convergence is affected by this singularity and
we obtain an order close to 1.54, which corresponds to the Sobolev regularity for the biharmonic
equation in both cases. In addition, the method converges with larger orders for the rest of the
transmission eigenvalues (k2h and k3h).

Figure 6.3 shows the eigenfunctions corresponding to the four lowest transmission eigenvalues with
index of refraction n = 16 on an L-shaped domain with meshes Ωth.
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Fig. 6.2 Test 1. Eigenfunctions: u1h (top left), u2h (top right), u3h (bottom left) and u4h (bottom right) obtained
with meshes Ωhex

h and n = 16.

6.3 Test 3: Circular domain ΩC

Finally, we have computed the three lowest transmission eigenvalues kih, i = 1, 2, 3, with three different
index of refraction n on the circular domain ΩC. The domain ΩC is partitioned using a sequence of
polygonal meshes (Centroidal Voronoi tessellation) created with PolyMesher [43].

We report in Table 6.3 the three lowest in magnitude transmission eigenvalues computed with the
virtual scheme introduced in this work. The table includes orders of convergence as well as accurate
values extrapolated by means of a least-squares fitting. We consider three different values for the index
of refraction and three different families of meshes. Once again, a quadratic order of convergence can
be clearly appreciated from Table 6.3. Moreover, Figure 6.4 shows the eigenfunctions corresponding
to the four lowest transmission eigenvalues on a circular domain with index of refraction n = 16.
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ANID-Chile through FONDECYT project 1180913 and by project AFB170001 of the PIA Program: Concurso Apoyo
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17

Fig. 6.3 Test 2. Eigenfunctions: u1h (top left), u2h (top right), u3h (bottom left) and u4h (bottom right) obtained
with meshes Ωt

h and n = 16.
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Table 6.3 Test 3: Lowest transmission eigenvalues kih, i = 1, 2, 3, computed on different families of meshes, on the
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n ΩC k1h k2h k3h

NP = 1024 4.5271-1.1913i 4.5271+1.1913i 5.9298
NP = 4096 4.5393-1.1667i 4.5393+1.1667i 5.8351
NP = 16384 4.5422-1.1604i 4.5422+1.1604i 5.8125
Order 1.97 1.97 2.07

4 Ωv
h Extrap. 4.5431-1.1582i 4.5431+1.1582i 5.8055

[26] [C0IPG] 4.5434-1.1583i - -
[38] [C1-C1-VEM] 4.5431-1.1582i 4.5431+1.1582i 5.8054

NP = 1024 1.9961 2.6301 2.6308
NP = 4096 1.9900 2.6173 2.6173
NP = 16384 1.9885 2.6140 2.6140
Order 2.03 1.97 2.03

16 Ωv
h Extrap. 1.9880 2.6129 2.6129

[20] [C0-FEM] 1.9879 2.6124 2.6124
[36] [C1-C0-VEM] 1.9880 2.6129 2.6129
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dolfo Rodŕıguez, Pilar Salgado, Pablo Venegas: Numerical solution of an
axisymmetric eddy current model with current and voltage excitations

2021-19 Raimund Bürger, Sonia Valbuena, Carlos A. Vega: A well-balanced and
entropy stable scheme for a reduced blood flow model

2021-20 Gabriel N. Gatica, Cristian Inzunza, Ricardo Ruiz-Baier, Felipe San-
doval: A posteriori error analysis of Banach spaces-based fully-mixed finite element
methods for Boussinesq-type models

2021-21 David Mora, Iván Velásquez: A C1−C0 conforming virtual element discretization
for the transmission eigenvalue problem

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de
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