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Abstract

In this paper we introduce and analyze, up to our knowledge for the first time, Banach spaces-based
mixed variational formulations for nearly incompressible linear elasticity and Stokes models. Our
interest in this subject is motivated by the respective need that arises from the solvability studies
of nonlinear coupled problems in continuum mechanics that involve these equations. We consider
pseudostress-based approaches in both cases and apply a suitable integration by parts formula for
ad-hoc Sobolev spaces to derive the corresponding continuous schemes. We utilize known and new
preliminary results, along with the Babuška-Brezzi theory in Banach spaces, to establish the well-
posedness of the formulations for a particular range of the indexes of the Lebesgue spaces involved.
Among the aforementioned new results from us, we highlight the construction of a particular
operator mapping a tensor Lebesgue space into itself, and the generalization of a classical estimate
in L2 for deviatoric tensors, which plays a key role in the Hilbertian analysis of linear elasticity, to
arbitrary Lebesgue spaces. The extension of the present analysis to associated Galerkin systems
will be reported in a forthcoming work.

Key words: linear elasticity, Stokes, Lebesgue spaces, Sobolev spaces, mixed formulation, inf-sup
conditions, Babuška-Brezzi theory
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1 Introduction

In many nonlinear models in continuum mechanics, specially in coupled ones, the coefficients, source
terms, or arbitrary terms of each equation depend on the unknowns from the other equations in-
volved, which certainly makes the corresponding analyses much more cumbersome than for simple
linear problems. Indeed, one of the main challenges that one often encounters there refers to the fact
that the natural spaces to which the unknowns belong force the respective variational formulations
to be posed in terms of Banach spaces instead of Hilbert ones. In order to overcome this, in some
cases one may resort to the incorporation of augmented terms, as done for instance in [3] and [4] for
coupled flow-transport problems, in [1] and [10] for the Boussinesq equations, in [8] and [9] for the
Navier-Stokes equations, or in [15] and [16] for stress-assisted diffusion, thanks to which one recovers
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Hilbertian frameworks for the models, which are much easier to analyze. Nevertheless, while show-
ing this and other advantages as well, the augmentation procedure adds further complexity to the
problems, mainly affecting the associated discrete schemes and the respective computational imple-
mentations, which could be avoided if proper analyses are developed for the original non-augmented
variational formulations. Needless to mention, in some models the augmentation is not even possible,
as for the coupled Darcy and heat equations, and hence a Banach framework becomes unavoidable in
these cases (see, e.g. [18]).

As a matter of illustration of the above, let us briefly recall that the model from [15] and [16]
consists of a system of partial differential equations governing the diffusion of a solute interacting
with the motion of an elastic solid occupying a bounded domain Ω with boundary Γ. In particular,
the respective diffusion coefficient ϑ depends on the Cauchy stress tensor σ of the solid, so that the
diffusive flux p and the diffusion equation become

p := ϑ(σ)∇φ and − div(p) = g(u) in Ω , (1.1)

respectively, where φ is the solute concentration, ∇ and div are the usual gradient and divergence
operators, respectively, and g is a source term depending on the displacement u of the solid. Then,
dividing the first equation of (1.1) by ϑ(σ), which is assumed to be strictly positive, multiplying
by a test vector q associated with the unknown p, formally integrating by parts, and assuming for
simplicity that φ vanishes on Γ, one obtains∫

Ω

1

ϑ(σ)
p · q +

∫
Ω
φ div(q) = 0 . (1.2)

In turn, denoting by ψ a test function associated with φ, the second equation of (1.1) yields∫
Ω
ψ div(p) = −

∫
Ω
ψ g(u) . (1.3)

Thus, because of the terms ϑ(σ) and g(u), with σ and u coming from the elasticity model, one can
employ fixed point arguments to analyze the solvability of (1.2) - (1.3). A similar procedure is applied
to the linear elasticity equation, whose source term depends on φ. As a consequence, and in order to
derive, in particular, a continuity property of the fixed-point operator for the stress-assisted diffusion
problem, most likely one will have to deal, among others, with the following expression arising from
the first term of (1.2) ∫

Ω

{ϑ(τ )− ϑ(ζ)

ϑ(τ )ϑ(ζ)

}
p · q , (1.4)

where τ and ζ are generic tensors belonging to the same space where σ lives. In this case, if ϑ is
assumed to be bounded from below and satisfy a Lipschitz-continuity property, the Cauchy-Schwarz
and Hölder inequalities allow to conclude that the above expression can be controlled only if τ − ζ,
p, and q, belong to particular Lebesgue spaces. This simple example illustrates that, even if σ and
u are solutions of a linear elasticity problem, for which the solvability via Hilbert spaces is already
well-established, when this equation is coupled with (1.1), the fixed-point argumentation requires that
the analysis of the former be performed within a suitable Banach spaces framework. Same conclusions
arise if linear elasticity is coupled with other equations, if other model, as Stokes in [3], is employed,
or if similar coupled problems are considered.

According to the above discussion, the initial purpose of this work is to introduce and analyze a
Banach spaces-based mixed variational formulation for linear elasticity, particularly for the nearly
incompressible case, which is of much more interest in applications. Additionally, and because of the
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similarities between the resulting continuous formulations, we also include the Stokes system in our
discussion. In this way, the rest of the paper is organized as follows. In Section 2 we introduce both
models of interest and use a suitable integration by parts formula to derive their mixed variational
formulations. Some preliminary results, namely the well-posedness of Banach spaces-based primal
formulations for the Stokes and Poisson equations, a suitable operator mapping a tensorial Lebesgue
space into itself, and a generalization to arbitrary Lebesgue spaces of a key inequality for the Hilbertian
analysis of linear elasticity, are stated in Section 3. Finally, the well-posedness of the formulations
from Section 2 are established in Section 4.

We end this section by mentioning that throughout the rest of the paper we adopt the standard
notations for the Lebesgue spaces Lt(Ω) and Sobolev spaces W`,t(Ω) and W`,t

0 (Ω), with ` ≥ 0 and
t ∈ [1,+∞). In particular, the corresponding norms and seminorms, either for the scalar, vectorial,
or tensorial versions of them, are denoted by ‖ · ‖0,t;Ω, ‖ · ‖`,t;Ω and | · |`,t;Ω, respectively. In addition, if

t, t′ ∈ (1,+∞) are conjugate to each other, that is 1
t + 1

t′ = 1, we let W−1,t′(Ω) be the dual of W1,t
0 (Ω).

Also, we denote by W1/t′,t(Γ) the trace space of W1,t(Ω), and let W−1/t′,t′(Γ) be the dual of W1/t′,t(Γ)
endowed with the norms ‖ · ‖−1/t′,t′;Γ and ‖ · ‖1/t′,t;Γ, respectively. Furthermore, given a generic
scalar functional space S, we denote by S and S its vectorial and tensorial versions, respectively,
examples of which are W`,t(Ω) := [W`,t(Ω)]n, W−1,t′(Ω), the dual of W1,t

0 (Ω) := [W1,t
0 (Ω)]n, and

Lt(Ω) := [Lt(Ω)]n×n. Finally, we let I be the identity matrix of R := Rn×n, and for any τ := (τij),
ζ := (ζij) ∈ R, we write as usual

τ t := (τji), tr(τ ) :=
n∑
i=1

τii, τ d := τ − 1

n
tr(τ ) I ,

and τ : ζ :=

n∑
i,j=1

τijζij ,

which corresponds, respectively, to the transpose, the trace, the deviatoric of a tensor τ , and the
tensorial product between τ and ζ.

2 The models and their mixed formulations

In this section we define our models of interest and derive their corresponding Banach spaces-based
mixed formulations. In what follows, Ω is a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3},
which is star shaped with respect to a ball, and whose outward normal at Γ is denoted by ν.

2.1 Nearly incompressible linear elasticity

The aim of the linear elasticity model is to determine the displacement u and the Cauchy stress
tensor ρ of a linear elastic material occupying the region Ω, under the action of external forces. More
precisely, given a volume force f and a Dirichlet datum uD, we seek a symmetric tensor field ρ and a
vector field u satisfying the constitutive relation given by Hooke’s law, the corresponding momentum
balance, and a Dirichlet boundary condition on Γ, that is

ρ = 2µ e(u) + λ tr(e(u)) I in Ω ,

div(ρ) = −f in Ω , and u = uD on Γ ,
(2.1)

where e(u) := 1
2

(
∇u + (∇u)t

)
is the strain tensor of small deformations, λ, µ > 0 denote the

corresponding Lamé constants, and div stands for the operator div acting along the rows of each
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tensor. We are particularly interested in the nearly incompressible case, which reduces to assume
from now on that λ is sufficiently large. In addition, in order to avoid the symmetry of ρ, thus
implying less complexity of the associated discrete scheme, we can reformulate (2.1) in terms of the
non-symmetric pseudostress tensor σ introduced in [14]. More precisely, according to the analysis
provided in [14, Section 2.1], we know that (2.1) is equivalent to

σ = µ∇u +
(
λ+ µ

)
tr(∇u) I in Ω ,

div(σ) = −f in Ω , and u = uD on Γ .
(2.2)

Hence, applying matrix trace to the first equation of (2.2), we can express tr(∇u) in terms of tr(σ)
(cf. [14, eq. (2.3)]), so that the former is eliminated and (2.2) is rewritten, equivalently, as

1

µ
σd +

1

n
(
nλ+ (n+ 1)µ

) tr(σ) I = ∇u in Ω ,

div(σ) = −f in Ω , and u = uD on Γ .

(2.3)

Note that the original Cauchy stress tensor ρ can be recovered in terms of the pseudostress σ through
the postprocessing formula (cf. [14, eq. (2.14)])

ρ = σ + σt − (λ+ 2µ)(
nλ+ (n+ 1)µ

)tr(σ) I . (2.4)

Next, in order to set the Banach spaces-based variational formulation of (2.3), we need a couple of
further concepts and tools. Indeed, we first introduce for each t ∈ (1,+∞) the Banach space

Ht(divt; Ω) :=
{
τ ∈ Lt(Ω) : div(τ ) ∈ Lt(Ω)

}
, (2.5)

which is endowed with the natural norm defined as

‖τ‖t,divt;Ω := ‖τ‖0,t;Ω + ‖div(τ )‖0,t;Ω ∀ τ ∈ Ht(divt; Ω) . (2.6)

Note that H2(div2; Ω) is the usual Hilbert space H(div; Ω). Then, given t, t′ ∈ (1,+∞) conjugate to
each other, we invoke the integration by parts formula (cf. [12, Corollary B. 57])

〈τ ν,v〉Γ =

∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ Ht(divt; Ω)×W1,t′(Ω) , (2.7)

where 〈·, ·〉Γ stands for the duality pairing between W−1/t,t(Γ) and W1/t,t′(Γ). Finally, we observe
that for each t ∈ (1,+∞) there holds

Ht(divt; Ω) = Ht
0(divt; Ω) ⊕ R I , (2.8)

where

Ht
0(divt; Ω) :=

{
τ ∈ Ht(divt; Ω) :

∫
Ω

tr(τ ) = 0
}
. (2.9)

Equivalently, each τ ∈ Ht(divt; Ω) can be decomposed, uniquely, as

τ = τ 0 + d I , with τ 0 ∈ Ht
0(divt; Ω)

and d :=
1

n|Ω|

∫
Ω

tr(τ ) ∈ R .
(2.10)
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Now, given r, s ∈ (1,+∞) conjugate to each other, we assume that f ∈ Lr(Ω) and uD ∈W1/s,r(Γ),
and initially look for (σ,u) ∈ Hr(divr; Ω)×W1,r(Ω) as the solution of (2.3). In this way, multiplying
the first equation of (2.3) by a test tensor τ ∈ Hs(divs; Ω), applying (2.7) with t = s and t′ = r, and
using the Dirichlet boundary condition for u, we find that

1

µ

∫
Ω
σd : τ d +

1

n
(
nλ+ (n+ 1)µ

) ∫
Ω

tr(σ) tr(τ ) +

∫
Ω
u · div(τ ) = 〈τ ν,uD〉Γ , (2.11)

whereas the second equation of (2.3) tested against v ∈ Ls(Ω) becomes∫
Ω
v · div(σ) = −

∫
Ω
f · v . (2.12)

In turn, taking τ = I in (2.11), it follows that

1(
nλ+ (n+ 1)µ

) ∫
Ω

tr(σ) =

∫
Γ
uD · ν ,

from which, along with (2.10), we deduce that

σ = σ0 + c I , with σ0 ∈ Hr
0(divr; Ω)

and c :=

(
nλ+ (n+ 1)µ

)
n|Ω|

∫
Γ
uD · ν ∈ R .

(2.13)

Regarding the explicit knowledge of the unknown σ, the foregoing equation shows that it only remains
to find its Hr

0(divr; Ω)-component σ0. Hence, replacing σ = σ0 + c I back into (2.11), redenoting σ0

simply by σ, noting that the testing of the resulting (2.11) against τ ∈ Hs(divs; Ω) is equivalent to
doing it against τ ∈ Hs

0(divs; Ω), and placing this new equation jointly with (2.12), we arrive at the
following mixed variational formulation of (2.3): Find (σ,u) ∈ X2 ×M1 such that

a(σ, τ ) + b1(τ ,u) = F (τ ) ∀ τ ∈ X1 ,

b2(σ,v) = G(v) ∀v ∈M2 ,
(2.14)

where

X2 := Hr
0(divr; Ω) , M1 := Lr(Ω) , X1 := Hs

0(divs; Ω) , and M2 := Ls(Ω) , (2.15)

and the bilinear forms a : X2×X1 → R and bi : Xi×Mi → R, i ∈
{

1, 2
}

, and the functionals F ∈ X ′1
and G ∈M ′2, are defined, respectively, as

a(ζ, τ ) :=
1

µ

∫
Ω
ζd : τ d +

1

n
(
nλ+ (n+ 1)µ

) ∫
Ω

tr(ζ) tr(τ ) ∀ (ζ, τ ) ∈ X2 ×X1 , (2.16)

bi(τ ,v) :=

∫
Ω
v · div(τ ) ∀ (τ ,v) ∈ Xi ×Mi , (2.17)

F (τ ) := 〈τ ν,uD〉Γ ∀ τ ∈ X1 , (2.18)

and

G(v) := −
∫

Ω
f · v ∀v ∈M2 . (2.19)
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2.2 The Stokes system

The goal of this model is to determine the pseudostress tensor σ, the velocity u, and the pressure p
of a steady flow occupying the region Ω, under the action of external forces. More precisely, given a
volume force f and a Dirichlet datum uD, we now seek a tensor field σ, a vector field u, and a scalar
field p such that

σ = 2µ∇u − p I in Ω , div(σ) = −f in Ω ,

div(u) = 0 in Ω ,

∫
Ω
p = 0 , and u = uD on Γ ,

(2.20)

where µ is the kinematic viscosity, and, as required by the incompressibility equation div(u) = 0,
the datum uD satisfies the compatibility condition

∫
Γ uD · ν = 0 . Then, proceeding exactly as

in [17, Section 2.1], we can show that (2.20) can be rewritten as

σ = 2µ∇u − p I in Ω , div(σ) = −f in Ω ,

p +
1

n
tr(σ) = 0 in Ω ,

∫
Ω
p = 0 , and u = uD on Γ ,

(2.21)

from which, eliminating the pressure p, which can calculated later on by the postprocessing formula
p = − 1

n tr(σ), we arrive at the equivalent system

1

2µ
σd = ∇u in Ω , div(σ) = −f in Ω ,∫

Ω
tr(σ) = 0 , and u = uD on Γ .

(2.22)

In this way, assuming that f ∈ Lr(Ω) and uD ∈ W1/s,r(Γ), and proceeding analogously to the
derivation of (2.14), we obtain the following mixed variational formulation of (2.22): Find (σ,u) ∈
X2 ×M1 such that

ã(σ, τ ) + b1(τ ,u) = F (τ ) ∀ τ ∈ X1 ,

b2(σ,v) = G(v) ∀v ∈M2 ,
(2.23)

where the spaces X2, M1, X1 and M2, the bilinear forms bi : Xi ×Mi → R, i ∈
{

1, 2
}

, and the
functionals F and G are those given by (2.15), (2.17), (2.18), and (2.19), whereas the bilinear form
ã : X2 ×X1 → R is defined as

ã(ζ, τ ) :=
1

2µ

∫
Ω
ζd : τ d ∀ (ζ, τ ) ∈ X2 ×X1 . (2.24)

Later on in Section 4 we prove the well-posedness of the mixed variational formulations (2.14) and
(2.23), for which we establish below some results that will be employed in the respective proofs.

3 Some preliminary results

We begin by considering a Banach spaces-based primal formulation for the Stokes system, which,
given r, s ∈ (1,+∞) conjugate to each other, f ∈ Lr(Ω), and g ∈ Lr(Ω), consists of seeking a pair
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(u, p) ∈W1,r(Ω)× Lr(Ω) such that

div(∇u− p I− f) = g in Ω ,

div(u) = 0 in Ω, u = 0 on Γ,

∫
Ω
p = 0 .

(3.1)

Then, applying (2.7) with τ := ∇u− p I− f ∈ Hr(divr; Ω) and v ∈W1,s
0 (Ω), and performing some

minor algebraic rearrangements, the testing of the first equation of (3.1) becomes∫
Ω
∇u : ∇v −

∫
Ω
p div(v) =

∫
Ω
f : ∇v −

∫
Ω
g · v ∀v ∈W1,s

0 (Ω) . (3.2)

In turn, it is easy to see, thanks to the homogeneous Dirichlet boundary condition satisfied by u,
that testing the incompressibility equation div(u) = 0 in Ω against q ∈ Ls(Ω) is equivalent to
doing it against q ∈ Ls0(Ω). Consequently, the weak formulation of (3.1) reduces to: Find (u, p) ∈
W1,r

0 (Ω)× Lr0(Ω) such that∫
Ω
∇u : ∇v −

∫
Ω
p div(v) = F (v) ∀v ∈W1,s

0 (Ω) ,∫
Ω
q div(u) = 0 ∀ q ∈ Ls0(Ω) ,

(3.3)

where the functional F ∈W−1,r(Ω) := W1,s
0 (Ω)′ is defined as

F (v) :=

∫
Ω
f : ∇v −

∫
Ω
g · v ∀v ∈W1,s

0 (Ω) . (3.4)

We now establish, as a consequence of a more general result from [20], the well-posedness of (3.3),
even irrespective of the particular form of F given by (3.4).

Theorem 3.1. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, and let r, s ∈
(1,+∞) conjugate to each other. Then, there exists δ > 0 such that for each r ∈

(
2n
n+1 − δ,

2n
n−1 + δ

)
,

and for each F ∈ W−1,r(Ω), there exists a unique pair (u, p) ∈ W1,r
0 (Ω) × Lr0(Ω) solution to (3.3).

Moreover, there exists a positive constant cr, such that

‖u‖1,r;Ω + ‖p‖0,r;Ω ≤ cr ‖F‖−1,r;Ω . (3.5)

Proof. We first assume that Ω ⊂ R2. Then, taking the local parameters α = −1 and q = 2 in [20,
Corollary 1.7], we deduce, according to [20, eq. (1.47)], that there exists ε ∈ (0, 1

2 ] such that for

each F ∈ W−1,r(Ω) the problem (3.3) has a unique solution (u, p) ∈ W1,r
0 (Ω) × Lr0(Ω) satisfying

(3.5) whenever the point
(
α − 1

r + 2, 1
r

)
=
(
1 − 1

r ,
1
r

)
belongs to the two-dimensional region specified

by [20, Figure 1]. More precisely, the latter means either

i) 0 < 1− 1

r
<

1

2
+ ε and 0 <

1

r
<

3

2
− 1

r
+ ε, or

ii)
1

2
+ ε ≤ 1− 1

r
< 1 and

1

2
− 1

r
− ε < 1

r
<

3

2
− 1

r
+ ε.

Then, solving these inequalities, one obtains r ∈
(

4
3 − ε1,

2
1−2ε

)
, with ε1 := 8ε

9+6ε , and r ∈
[

2
1−2ε , 4+ ε2

)
,

with ε2 := 8ε
1−2ε , as solutions of i) and ii), respectively, so that the final feasible range for r is the

interval
(

4
3 − ε1, 4 + ε2

)
. In this way, observing now that ε1 < ε < ε2, we arrive at the indicated range

for r (cf. [20, eq. (1.52)]) with δ = ε1. In turn, the case Ω ⊂ R3 proceeds analogously by imposing
now the point

(
1− 1

r ,
1
r

)
to belong to the two-dimensional region specified by [20, Figure 2]. We omit

further details.
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We stress here that when F is given by (3.4), the a priori estimate (3.5) becomes

‖u‖1,r;Ω + ‖p‖0,r;Ω ≤ cr

{
‖f‖0,r;Ω + ‖g‖0,r;Ω

}
. (3.6)

The following result, which constitutes an extension of [18, Lemma 2.3] to the present tensorial
context, makes use of Theorem 3.1 to introduce a suitable operator mapping Lt(Ω) into itself for each
t in the range specified by this theorem.

Lemma 3.1. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, and let t, t′ ∈
(1,+∞) conjugate to each other with t satisfying the range given by Theorem 3.1. Then, there exists
a linear and bounded operator Dt : Lt(Ω)→ Lt(Ω) such that

div
(
Dt(τ )

)
= 0 in Ω , (3.7)

and ∫
Ω

tr
(
Dt(τ )

)
=

∫
Ω

tr(τ ) , (3.8)

for all τ ∈ Lt(Ω). In addition, for each ζ ∈ Lt′(Ω) such that div(ζ) = 0 in Ω, there holds∫
Ω
ζd :

(
Dt(τ )

)d
=

∫
Ω
ζd : τ d ∀ τ ∈ Lt(Ω) . (3.9)

Proof. Given τ ∈ Lt(Ω), we let (u, p) ∈ W1,t(Ω) × Lt(Ω) be the unique solution, guaranteed by
Theorem 3.1, of the Stokes problem (3.1) with r = t, f = τ and g = 0, that is

div(∇u− p I− τ ) = 0 in Ω ,

div(u) = 0 in Ω, u = 0 on Γ,

∫
Ω
p = 0 ,

(3.10)

whose weak formulation is given by (3.3) and (3.4). Note that the functional F ∈ W−1,t(Ω) =

W1,t′

0 (Ω)′ (cf. (3.4)) reduces in this case to F (v) := −
∫

Ω
τ : ∇v for all v ∈ W1,t′

0 (Ω). It follows,

in virtue of the continuous dependence result (3.6), that ‖u‖1,t;Ω + ‖p‖0,t;Ω ≤ ct ‖τ‖0,t;Ω, so that,
defining

Dt(τ ) := τ − (∇u− p I) ∈ Lt(Ω) , (3.11)

we see that Dt is linear and bounded, namely

‖Dt(τ )‖0,t;Ω ≤ (1 + n1/t ct) ‖τ‖0,t;Ω , (3.12)

which implies ‖Dt‖ ≤ (1 + n1/t ct), and clearly Dt(τ ) is divergence free in Ω. In addition, since

tr(∇u) = div(u) = 0 and

∫
Ω
p = 0, we readily deduce from (3.11) that for each τ ∈ Lt(Ω) there holds∫

Ω
tr
(
Dt(τ )

)
=

∫
Ω

tr(τ ) + n

∫
Ω
p =

∫
Ω

tr(τ ) ,

which proves (3.8). Furthermore, using again that tr(∇u) = 0, we have that
(
Dt(τ )

)d
= τ d − ∇u,

and hence, given ζ ∈ Lt′(Ω) such that div(ζ) = 0 in Ω, and applying (2.7) to ζ ∈ Ht′(divt′ ; Ω) and
u ∈W1,t

0 (Ω), we deduce that ∫
Ω
ζd : ∇u =

∫
Ω
ζ : ∇u = 0 ,

which yields (3.9) and ends the proof.
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On the other hand, for each t ∈ (1,+∞) we introduce the subspace of Lt(Ω) given by

Lt0(Ω) :=
{
v ∈ Lt(Ω) :

∫
Ω
v = 0

}
. (3.13)

Then, we have from [12, Lemma B.69] (see [6] for the original reference, or [11]) the following result.

Lemma 3.2. Let Ω be a bounded domain of Rn, n ≥ 2, which is star-shaped with respect to a ball.
Then, for each t ∈ (1,+∞) the operator div : W1,t(Ω)→ Lt0(Ω) is surjective.

Thanks to Lemma 3.2 and the open mapping theorem (cf. [2, Theorem 7.7]), we readily deduce
that, given t ∈ (1,+∞), there exists a constant Ct > 0, such that for every v ∈ Lt0(Ω) there exists
zv ∈W1,t

0 (Ω) satisfying
div(zv) = v and ‖zv‖1,t;Ω ≤ Ct ‖v‖0,t;Ω . (3.14)

We now employ Lemma 3.2, and particularly (3.14), to provide a generalization from r = 2 to any
r ∈ (1,+∞) of the inequality stated in [7, Chapter IV, Proposition 3.1] (see also [13, Lemma 2.3]),
namely

‖τ‖0,Ω ≤ C
{
‖τ d‖0,Ω + ‖div(τ )‖0,Ω

}
∀ τ ∈ H2

0(div2; Ω) ,

which plays a key role in the solvability analysis of the classical Hilbertian dual-mixed variational
formulation of linear elasticity (cf. [7, Chapter IV, Section IV.3], [13, Section 2.4.3]). More precisely,
we have the following result.

Lemma 3.3. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, which is star-shaped
with respect to a ball, and let r ∈ (1,+∞). Then, there exist positive constants C̃r and Ĉr such that

‖tr(τ )‖0,r;Ω ≤ C̃r

{
‖τ d‖0,r;Ω + ‖div(τ )‖0,r;Ω

}
(3.15)

and
‖τ‖0,r;Ω ≤ Ĉr

{
‖τ d‖0,r;Ω + ‖div(τ )‖0,r;Ω

}
(3.16)

for all τ ∈ Hr
0(divr; Ω).

Proof. Given r, s ∈ (1,+∞) conjugate to each other, we first recall that the dual of Ls(Ω) is identified
with Lr(Ω). Then, given τ ∈ Hr

0(divr; Ω), which yields tr(τ ) ∈ Lr0(Ω), we apply the associated duality
argument and the fact that Ls(Ω) = Ls0(Ω)⊕ R, to observe that

‖tr(τ )‖0,r;Ω = sup
v∈Ls(Ω)

v 6=0

∫
Ω
v tr(τ )

‖v‖0,s;Ω
= sup

v∈Ls0(Ω)

v 6=0

∫
Ω
v tr(τ )

‖v‖0,s;Ω
. (3.17)

Next, given v ∈ Ls0(Ω), v 6= 0, we make use of (3.14) (with t = s) and proceed analogously to the proof
of [7, Chapter IV, Proposition 3.1] to estimate

∫
Ω v tr(τ ). Indeed, recalling that div(zv) = tr(∇zv),

utilizing the definition and properties of the deviatoric tensors, and then integrating by parts according
to (2.7) with τ ∈ Hr

0(divr; Ω) and zv ∈W1,s
0 (Ω), we find that∫

Ω
v tr(τ ) =

∫
Ω

div(zv) tr(τ ) =

∫
Ω

tr(∇zv) τ : I

=

∫
Ω
τ : tr(∇zv) I = n

∫
Ω
τ :
(
∇zv − (∇zv)d

)
= n

∫
Ω
τ : ∇zv − n

∫
Ω
τ d : ∇zv

= −n
∫

Ω
zv · div(τ )− n

∫
Ω
τ d : ∇zv ,
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from which, employing Hölder’s inequality and (3.14), we obtain∣∣∣∣ ∫
Ω
v tr(τ )

∣∣∣∣ ≤ n ‖zv‖1,s;Ω
{
‖τ d‖0,r;Ω + ‖div(τ )‖0,r;Ω

}
≤ nCs ‖v‖0,s;Ω

{
‖τ d‖0,r;Ω + ‖div(τ )‖0,r;Ω

}
.

(3.18)

In this way, replacing (3.18) back into (3.17) we arrive at (3.15) with C̃r := nCs. Furthermore, using
the triangle inequality and the fact that ‖tr(τ ) I‖r0,r;Ω = n‖tr(τ )‖r0,r;Ω, we get

‖τ‖0,r;Ω ≤ ‖τ d‖0,r;Ω +
1

n
‖tr(τ ) I‖0,r;Ω = ‖τ d‖0,r;Ω + n1/r−1 ‖tr(τ )‖0,r;Ω ,

which, along with (3.15), implies (3.16) with Ĉr := 1 + n1/r Cs.

We end this section with a Banach spaces-based primal formulation for the vector Poisson equation,
which, given r, s ∈ (1,+∞) conjugate to each other, f ∈ Lr(Ω), and g ∈ Lr(Ω), consists of seeking
u ∈W1,r(Ω) such that

div(∇u− f) = g in Ω , u = 0 on Γ . (3.19)

Then, proceeding similarly as for (3.1), that is applying (2.7) with τ := ∇u − f ∈ Hr(divr; Ω) and
w ∈W1,s

0 (Ω), we arrive at the following weak formulation of (3.19): Find u ∈W1,r
0 (Ω) such that∫

Ω
∇u : ∇w = F (w) ∀w ∈W1,s

0 (Ω) , (3.20)

where F ∈W−1,r(Ω) := W1,s
0 (Ω)′ is defined as in (3.4), that is

F (w) :=

∫
Ω
f : ∇w −

∫
Ω
g ·w ∀w ∈W1,s

0 (Ω) . (3.21)

We establish next the analogue of Theorem 3.1 for the vector Poisson equation, which arises in this
case as a straightforward consequence of more general results provided in [19]. We remark in advance
that the arguments of the proof are very similar to those from Theorem 3.1, whereas the resulting
ranges for r are exactly the same. In addition, we stress that while [19] addresses the scalar Poisson
equation, the analysis and results certainly applies to the present version as well.

Theorem 3.2. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, and let r, s ∈
(1,+∞) conjugate to each other. Then, there exists δ > 0 such that for each r ∈

(
2n
n+1 − δ,

2n
n−1 + δ

)
,

and for each F ∈ W−1,r(Ω), there exists a unique u ∈ W1,r
0 (Ω) solution to (3.20). Moreover, there

exists a positive constant c̄r, such that

‖u‖1,r;Ω ≤ c̄r ‖F‖−1,r;Ω . (3.22)

Proof. We first assume that Ω ⊂ R3. Then, taking the local parameter α = 1 in [19, Theorem 1.1], we
deduce that there exists ε ∈ (0, 1] such that for each F ∈W−1,r(Ω) the problem (3.20) has a unique
solution u ∈W1,r

0 (Ω) satisfying (3.22) whenever:

i) 1 < r ≤ κ and
3

r
− 1− ε < 1 < 1 +

1

r
, or
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ii) κ < r < κ′ and
1

r
< 1 < 1 +

1

r
, or

iii) κ′ ≤ r < +∞ and
1

r
< 1 <

3

r
+ ε,

where κ = 2
1+ε and κ′ = 2

1−ε . Then, in order to guarantee that at least one of the above is accomplished,
one simply solves the three inequalities on the right hand-side, which gives

3

2
− ε1 < r < 3 + ε2 with ε1 :=

3ε

2(2 + ε)
and ε2 :=

3ε

1− ε
.

Hence, noticing that ε1 < ε < ε2, we obtain the indicated range for r with δ = ε1. The case Ω ⊂ R2

proceeds analogously by taking now α = 1 in [19, Theorem 1.3]. Further details are omitted.

4 The main results

In this section we apply the Babuška-Brezzi theory in Banach spaces and the results from Section 3 to
prove the unique solvability and continuous dependence result for each one of the mixed variational
formulations (2.14) and (2.23). For sake of completeness and clearness, we follow [5, Theorem 2.1,
Corollary 2.1, Section 2.1] to state below the main theorem concerning the aforementioned theory.

Theorem 4.1. Let X1, X2, M1, and M2 be real reflexive Banach spaces, and let a : X2 × X1 → R
and bi : Xi ×Mi → R, i ∈ {1, 2}, be bounded bilinear forms with boundedness constants given by ‖a‖
and ‖bi‖, i ∈ {1, 2}, respectively. In addition, for each i ∈ {1, 2}, let Ki be the kernel of the operator
induced by bi, that is

Ki :=
{
τ ∈ Xi : bi(τ, v) = 0 ∀ v ∈Mi

}
.

Assume that

i) there exists α > 0 such that

sup
τ∈K1
τ 6=0

a(ζ, τ)

‖τ‖X1

≥ α ‖ζ‖X2 ∀ ζ ∈ K2 ,

ii) there holds
sup
ζ∈K2

a(ζ, τ) > 0 ∀ τ ∈ K1 , τ 6= 0 ,

iii) for each i ∈ {1, 2} there exists βi > 0 such that

sup
ζ∈Xi
ζ 6=0

bi(ζ, v)

‖ζ‖Xi
≥ βi ‖v‖Mi ∀ v ∈Mi .

Then, for each (F,G) ∈ X ′1 ×M ′2 there exists a unique (σ, u) ∈ X2 ×M1 such that

a(σ, τ) + b1(τ, u) = F (τ) ∀ τ ∈ X1 ,

b2(σ, v) = G(v) ∀ v ∈M2 ,
(4.1)
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and the following a priori estimates hold:

‖σ‖X2 ≤
1

α
‖F‖X′1 +

1

β2

(
1 +
‖a‖
α

)
‖G‖M ′2 ,

‖u‖M1 ≤
1

β1

(
1 +
‖a‖
α

)
‖F‖X′1 +

‖a‖
β1 β2

(
1 +
‖a‖
α

)
‖G‖M ′2 .

(4.2)

Moreover, i), ii), and iii) are also necessary conditions for the well-posedness of (4.1).

We begin by providing a tensor version of [18, Lemma 2.2]. Indeed, given t, t′ ∈ (1,+∞) conjugate
to each other, we define for each τ ∈ Lt(Ω)

Jt(τ ) :=

{
‖τ‖t−2 τ if τ 6= 0 ,

0 otherwise ,
(4.3)

and observe, after simple algebraic computations, that

τ t′ := Jt(τ ) ∈ Lt
′
(Ω) if and only if τ = Jt′(τ t′), and (4.4)∫

Ω
τ : τ t′ = ‖τ‖t0,t;Ω = ‖τ t′‖t

′
0,t′;Ω = ‖τ‖0,t;Ω ‖τ t′‖0,t′;Ω . (4.5)

Next, for each i ∈
{

1, 2
}

we let Ki ⊂ Xi be the kernel of the bilinear form bi, which, according to
the definition of the spaces involved (cf. (2.15)), and bi (cf. (2.17)), yields

Ki :=
{
τ ∈ Xi : div(τ ) = 0

}
. (4.6)

Then, the inf-sup conditions required for the bilinear form a (cf. (2.16)) are established as follows.

Lemma 4.1. Assume that r and s satisfy the range specified by Theorem 3.1. Then, there exist
positive constants M and α such that for each λ > M there hold

sup
τ∈K1
τ 6=0

a(ζ, τ )

‖τ‖X1

≥ α ‖ζ‖X2 ∀ ζ ∈ K2 , (4.7)

and
sup
ζ∈K2

a(ζ, τ ) > 0 ∀ τ ∈ K1 , τ 6= 0 . (4.8)

Proof. We first observe that for each pair (ζ, τ ) ∈ X2 ×X1 := Hr
0(divr; Ω)×Hs

0(divs; Ω) there holds∣∣∣∣ ∫
Ω

tr(ζ) tr(τ )

∣∣∣∣ ≤ n1/s ‖tr(ζ)‖0,r;Ω ‖τ‖0,s;Ω , (4.9)

which follows from simple applications of the Hölder and triangle inequalities, the latter in Ls(Ω)
and the former in Lr(Ω) × Ls(Ω) and R ×R. Now, let ζ ∈ K2, that is ζ ∈ X2 := Hr

0(divr; Ω) and
div(ζ) = 0, and assume that ζ 6= 0. Then, bearing in mind the definition of a (cf. (2.16)), and
employing (4.9) and (3.15) (cf. Lemma 3.3), we readily find that

sup
τ∈K1
τ 6=0

a(ζ, τ )

‖τ‖X1

≥ 1

µ
sup
τ∈K1
τ 6=0

∫
Ω
ζd : τ d

‖τ‖X1

− C̃r

n1/r
(
nλ+ (n+ 1)µ

) ‖ζd‖0,r;Ω . (4.10)
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In turn, letting ζs := Jr(ζ
d) ∈ Ls(Ω) as defined in (4.3), we clearly have tr(ζs) = 0, and thus, thanks

to Lemma 3.1, it follows that Ds(ζs) belongs to K1. Next, using (3.9) and (4.5), we get∫
Ω
ζd :

(
Ds(ζs)

)d
=

∫
Ω
ζd : ζds =

∫
Ω
ζd : ζs = ‖ζd‖0,r;Ω ‖ζs‖0,s;Ω ,

and hence, noting that ‖Ds(ζs)‖X1 = ‖Ds(ζs)‖0,s;Ω, and employing the boundedness of Ds (cf. (3.12)),
we deduce that

sup
τ∈K1
τ 6=0

∫
Ω
ζd : τ d

‖τ‖X1

≥

∫
Ω
ζd :

(
Ds(ζs)

)d
‖Ds(ζs)‖X1

=
‖ζd‖0,r;Ω ‖ζs‖0,s;Ω
‖Ds(ζs)‖0,s;Ω

≥ 1

‖Ds‖
‖ζd‖0,r;Ω . (4.11)

In this way, replacing the foregoing estimate back into (4.10), we arrive at

sup
τ∈K1
τ 6=0

a(ζ, τ )

‖τ‖X1

≥
{

1

µ‖Ds‖
− C̃r

n1/r
(
nλ+ (n+ 1)µ

)} ‖ζd‖0,r;Ω , (4.12)

from which, choosing λ sufficiently large such that

C̃r

n1/r
(
nλ+ (n+ 1)µ

) <
1

2µ‖Ds‖
,

that is
λ > Ms :=

µ

n1+1/r
max

{
2‖Ds‖C̃r − n1/r(n+ 1), 0

}
,

and applying (3.16), we conclude (4.7) with α := 1

2µ‖Ds‖Ĉr
. On the other hand, given now τ ∈ K1,

τ 6= 0, we proceed analogously as above, but exchanging the roles of τ and ζ, and obtain

sup
ζ∈K2

a(ζ, τ ) ≥ sup
ζ∈K2
ζ 6=0

a(ζ, τ )

‖ζ‖X2

≥ 1

2µ‖Dr‖Ĉs
‖τ‖X1 > 0 (4.13)

for λ > Mr :=
µ

n1+1/s
max

{
2‖Dr‖C̃s − n1/s(n + 1), 0

}
, which proves (4.8). Finally, the proof is

completed by choosing M := max
{
Ms,Mr

}
.

We stress here that, constituting the bilinear form ã a key part of a, some of the arguments employed
in the proof of Lemma 4.1 allow us to establish next the inf-sup conditions required for the former.

Lemma 4.2. Assume that r and s satisfy the range specified by Theorem 3.1. Then, there exists a
positive constant α̃ such that

sup
τ∈K1
τ 6=0

ã(ζ, τ )

‖τ‖X1

≥ α ‖ζ‖X2 ∀ ζ ∈ K2 . (4.14)

In addition, there holds
sup
ζ∈K2

ã(ζ, τ ) > 0 ∀ τ ∈ K1 , τ 6= 0 . (4.15)
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Proof. It follows straightforwardly from the definition of ã (cf. (2.24)), and the inequalities (4.11),
and (3.16), that for each ζ ∈ K2, ζ 6= 0, there holds

sup
τ∈K1
τ 6=0

ã(ζ, τ )

‖τ‖X1

=
1

2µ
sup
τ∈K1
τ 6=0

∫
Ω
ζd : τ d

‖τ‖X1

≥ 1

2µ‖Ds‖Ĉr
‖ζ‖X2 , (4.16)

which yields (4.14) with α̃ := 1

2µ‖Ds‖Ĉr
. In addition, given τ ∈ K1, τ 6= 0, and proceeding analogously

to the derivation of (4.13), that is exchanging the roles of ζ and τ and using (4.16), we easily find
that

sup
ζ∈K2

ã(ζ, τ ) ≥ sup
ζ∈K2
ζ 6=0

ã(ζ, τ )

‖ζ‖X2

≥ 1

2µ‖Dr‖Ĉs
‖τ‖X1 > 0 , (4.17)

which shows (4.15) and ends the proof.

It only remains to verify the inf-sup conditions for the bilinear forms bi, i ∈ {1, 2}, which we address
in what follows.

Lemma 4.3. Assume that r and s satisfy the range specified by Theorem 3.2. Then, there exist
positive constants β1, β2 such that for each i ∈ {1, 2} there hold

sup
ζ∈Xi
ζ 6=0

bi(ζ,v)

‖ζ‖Xi
≥ βi ‖v‖Mi ∀v ∈Mi . (4.18)

Proof. Having b1 and b2 the same algebraic structure (cf. (2.17)), and being the pairs (X1,M1) and
(X2,M2) one obtained from the other by exchanging r and s, we now proceed to show (4.18) only for
i = 2 since the proof for i = 1 is completely analogous. In this way, given v ∈M2 := Ls(Ω), we let Js
be the vector version of Js (cf. (4.3)), and set vr := Js(v) ∈ Lr(Ω), for which, similarly to (4.4) and
(4.5), there hold

v = Jr(vr) , and

∫
Ω
v · vr = ‖v‖s0,s;Ω = ‖vr‖r0,r;Ω = ‖v‖0,s;Ω ‖vr‖0,r;Ω . (4.19)

Then, we let z ∈W1,r
0 (Ω) be the unique solution, guaranteed by Theorem 3.2, of the vector Poisson

equation (3.19) with f = 0 and g = vr, that is

∆z = vr in Ω, z = 0 on Γ ,

whose weak formulation is given by (3.20) and (3.21) with F (w) := −
∫

Ω
vr ·w for all w ∈W1,s

0 (Ω).

It follows that ‖F‖−1,r ≤ ‖vr‖0,r;Ω, and thus the continuous dependence result (3.22) yields

‖z‖1,r;Ω ≤ c̄r ‖vr‖0,r;Ω . (4.20)

Next, we observe that div
(
∇z
)

= vr in Ω, which proves that ∇z ∈ Hr(divr; Ω), and let ζ̂ be the

Hr
0(divr; Ω)-component (cf. (2.8)) of ∇z. In this way, utilizing (4.20) and noting that div(ζ̂) = vr,

we deduce that

‖ζ̂‖X2 = ‖ζ̂‖0,r;Ω + ‖div(ζ̂)‖0,r;Ω ≤ |z|1,r;Ω + ‖vr‖0,r;Ω ≤
(
1 + c̄r

)
‖vr‖0,r;Ω .
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Finally, bearing in mind the definition of b2 (cf. (2.17)), and employing (4.19) and the foregoing
inequality, we conclude that

sup
ζ∈X2
ζ 6=0

b2(ζ,v)

‖ζ‖X2

≥ b2(ζ̂,v)

‖ζ̂‖X2

=

∫
Ω
v · vr

‖ζ̂‖X2

≥ 1(
1 + c̄r

) ‖v‖0,s;Ω , (4.21)

which gives (4.18) for i = 2 with β2 :=
(
1 + c̄r

)−1
.

Regarding the assumptions on r and its conjugate s, we remark here that
[

2n
n+1 ,

2n
n−1

]
constitutes

the largest subset of
(

2n
n+1 − δ,

2n
n−1 + δ

)
guaranteeing that both indexes lie simultaneously within it.

We are now in position to establish below the announced well-posedness of (2.14) and (2.23).

Theorem 4.2. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, which is star
shaped with respect to a ball, and let r, s ∈ (1,+∞) conjugate to each other such that they satisfy
the range specified by Theorem 3.1 (which coincides with that of Theorem 3.2). Then, there exists a
positive constant M such that for each λ > M and for each pair (f ,uD) ∈ Lr(Ω)×W1/s,r(Γ), there
exists a unique solution (σ,u) ∈ X2 ×M1 := Hr

0(divr; Ω)× Lr(Ω) to (2.14). Moreover, there exists a
positive constant C, independent of the data and the solution, such that

‖σ‖r,divr;Ω + ‖u‖0,r;Ω ≤ C
{
‖f‖0r;Ω + ‖uD‖1/s,r;Γ

}
.

Proof. It follows from Lemmas 4.1 and 4.3, along with a straightforward application of Theorem
4.1.

Theorem 4.3. Let Ω be a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, which is star
shaped with respect to a ball, and let r, s ∈ (1,+∞) conjugate to each other such that they satisfy
the range specified by Theorem 3.2 (which coincides with that of Theorem 3.1). Then, for each pair
(f ,uD) ∈ Lr(Ω)×W1/s,r(Γ), there exists a unique solution (σ,u) ∈ X2×M1 := Hr

0(divr; Ω)×Lr(Ω)
to (2.23). Moreover, there exists a positive constant C, independent of the data and the solution, such
that

‖σ‖r,divr;Ω + ‖u‖0,r;Ω ≤ C
{
‖f‖0r;Ω + ‖uD‖1/s,r;Γ

}
.

Proof. It follows from Lemmas 4.2 and 4.3, along with a straightforward application of Theorem
4.1.

We end the paper by announcing that the extension of the present analysis to the discrete setting
of a Banach spaces-based mixed formulation for the stress-assisted diffusion problem studied in [15]
and [16], will be reported in a separate work.
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2021-01 Cristóbal Bertoglio, Cristian Cárcamo, Jereḿıas Garay, Hernán Mella,
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Sensitivity and identifiability analysis for a model of COVID-19 in Chile

2021-07 Gabriel N. Gatica, Antonio Marquez, Salim Meddahi: A virtual marriage a
la mode: some recent results on the coupling of VEM and BEM

2021-08 Veronica Anaya, Ruben Caraballo, Bryan Gomez-Vargas, David Mora,
Ricardo Ruiz-Baier: Velocity-vorticity-pressure formulation for the Oseen problem
with variable viscosity

2021-09 Felisia A. Chiarello, Luis M. Villada: On existence of entropy solutions for
1D nonlocal conservation laws with space-discontinous flux
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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