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Centro de Investigación en
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ON EXISTENCE OF ENTROPY SOLUTIONS FOR 1D NONLOCAL

CONSERVATION LAWS WITH SPACE-DISCONTINOUS FLUX

F. A. CHIARELLO AND L. M. VILLADA

Abstract. We prove the well-posedness of entropy weak solutions for a class of 1D space-discontinuous

scalar conservation laws with non-local flux, describing traffic flow on roads with rough conditions.

We approximate the problem through a Godunov-type numerical scheme and provide L∞ and BV

estimates for the approximate solutions. The limit model as the kernel support tends to zero is

numerically investigated.

1. Introduction

Models of conservation laws with nonlocal flux describe several phenomena such as slow

erosion of granular flow [3, 29], synchronization [2], sedimentation [6], crowd dynamics [16],

navigation processes [4] and traffic flow [7, 10, 13, 14]. In particular, non-local traffic models

describe the behaviour of drivers that adapt their velocity with respect to what happens to

the cars in front of them. In this type of models, the flux function depends on a downstream

convolution term between the density of vehicles and a kernel function with support on

the negative axis. See [10] for an overview about non-local traffic models and [12] for a

continuous non-local model describing the behavior of drivers on two stretches of a road

with different velocities and capacities.

We are interested in the analysis of the well-posedness and the numerical approximation

of solutions of nonlocal conservation laws with a single spatial discontinuity in the flux

(1.1)

∂tρ+ ∂xf(t, x, ρ) = 0, (t, x) ∈ (0,∞)× R,

ρ(0, x) = ρ0(x), x ∈ R,

with

f(t, x, ρ) = H(−x) ρ vl(ωη ∗ ρ) +H(x) ρ vr(ωη ∗ ρ),
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where H(x) is the Heaviside function, with which the flux f(x, t, ρ) has a discontinuous at

x = 0 if the velocity functions vl(ρ) and vr(ρ) are different. We assume that the convolution

term and the kernel function ωη satisfies

(1.2)
(ωη ∗ ρ)(t, x) =

∫ x+η

x

ρ(t, y)ωη(y − x)dy, η > 0,

with ωη ∈ C2([0, η],R+), ω′η ≤ 0, ωη(η) = 0,

and the following hypothesis hold on the velocity functions

(1.3) vs(ρ) = ksψ(ρ), s = l, r, and kl < kr, ψ ∈ C2(R), s.t. ψ′ ≤ 0.

In the traffic vehicle context ρ represents the density of vehicles on the roads, ωη is a

non-increasing kernel function whose support η is proportional to the look-ahead distance

of drivers, that are supposed to adapt their velocity with respect to the mean downstream

traffic density. The equation in (1.1) is a non-local version of the Lightill-Whitham-Richards

traffic model [19, 26, 27] with a discontinuous velocity field [15, 25].

There are many results relating to existence, uniqueness, stability and numerical approx-

imation of weak entropy solutions of local conservation laws with a spatially discontinuous

flux [1, 5, 8, 9, 15, 18, 20, 21, 22, 23, 24, 25]. Conversely, in the nonlocal case, a traveling

waves for a traffic flow model with rough road conditions was studied in [28] and recently, in

[11] the authors propose a non-local scalar space-discontinuous model to describe the traffic

flow on two consecutive roads with different speed limits and they prove the well-posedness

using the vanishing viscosity technique, under the hypothesis on the velocity functions

vs(ρ) = ks(1− ρ), s = l, r, and kl < kr.

The aim of this paper is manifold:

• we prove the well-posedness of this non-local space-discontinuous traffic model when

the maximum speed limit of the left road is less than the right one, i.e. kl < kr

for a general non-increasing speed function ψ, approximating the problem through a

Godunov-type numerical scheme and proving standard compactness estimates;

• we numerically analyze the scenario with the maximum speed limit of the left road

greater than the right one, i.e. kl > kr;

• we numerically study the limit model as the support of the kernel function tends to

0+.

Following [23], we recall the following definitions of solution.

Definition 1.1. We say that a function ρ ∈ (L1∩L∞)([0, T ]×R; [0, ρmax]) is a weak solution

of the initial value problem (1.1) if for any test function ϕ ∈ C1
c([0, T [×R;R)∫ T

0

∫
R

(ρ∂tϕ+ f(t, x, ρ)∂xϕ) dtdx+

∫
R
ρ0(x)ϕ(0, x)dx = 0.
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Definition 1.2. A function ρ ∈ (L1 ∩ L∞)([0, T ]× R; [0, ρmax]) is an entropy weak solution

of (1.1), if for all c ∈ [0, ρmax], and any test function ϕ ∈ C1
c([0, T [×R;R+)∫ T

0

∫
R
|ρ− c|ϕt + sgn (ρ− c)(f(t, x, ρ)− f(t, x, c))ϕx dx dt

−
∫ T

0

∫
R∗

sgn (ρ− c)f(t, x, c)xϕ dx dt+

∫
R
|ρ0(x)− c|ϕ(0, x)dx

+

∫ T

0

|(kr − kl)c ψ(ρ ∗ ωη)|ϕ(t, 0)dt ≥ 0.

The paper is organized as follows. In Section 2, we present a Godunov-type numerical

scheme that we use to discretize our problem. After that, in Section 3 we prove the existence

and uniqueness of weak entropy solutions with L∞ and BV bounds. Finally, in Section 4,

we show some numerical tests illustrating the behaviour of solutions and investigating the

limit model as the support of the kernel η → 0+.

2. Numerical scheme

We introduce a uniform space mesh of width ∆x and a time step ∆t, subject to a CFL

condition, to be detailed later on. The spatial domain is discretized into uniform cells

Ij = [xj−1/2, xj+1/2), where xj+1/2 = xj + ∆x/2 are the cell interfaces, and xj = j∆x the cell

centers, in particular x = 0 where the flux function changes, falls at the midpoint of the cell

I0 = [x−1/2, x1/2). We take ∆x such that η = N∆x for some N ∈ N. Let tn = n∆t be the

time mesh and λ = ∆t/∆x. We aim to construct a finite volume approximate solution ρ∆

such that ρ∆(x, t) = ρnj for (t, x) ∈ [tn, tn+1[×[xj−1/2, xj+1/2). To this end, we approximate

the initial datum ρ0 with the cell averages

ρ0
j =

1

∆x

∫ xj+1/2

xj−1/2

ρ0(x)dx,

we denote ωk := 1
∆x

∫ (k+1)∆x

k∆x
ω(y)dy for k = 0, . . . , N − 1 and set the convolution term

R(xj+1/2, t
n) = (ωη ∗ ρ∆x)(xj+1/2, t

n) ≈ ∆x
N−1∑
k=0

ωkρ
n
j+k+1.

In this way we can define the following finite volume scheme

(2.1) ρn+1
j = ρnj − λ

(
F (xj+1/2, ρ

n
j , R

n
j+1/2)− F (xj−1/2, ρ

n
j−1, R

n
j−1/2)

)
, j ∈ Z,

where F is a modified Godunov numerical flux which is based on the scheme introduced in

[12, 17]

(2.2) F (xj+1/2, ρ, R) =

ρ vl(R) if xj+1/2 < 0,

ρ vr(R) if xj+1/2 > 0.
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3. Well-posedness

Lemma 3.1. Let hypotheses (1.3) hold. Given an initial datum such that 0 ≤ ρ0
j ≤ ρmax for

j ∈ Z, the finite volume scheme (2.1)-(2.2) is such that

0 ≤ ρn+1
j ≤ ρmax, j ∈ Z,

under the CFL condition

(3.1) ∆t ≤ min
s=l,r

{
∆x

∆xωη(0)ρmaxks‖ψ′‖L∞ + ks‖ψ‖L∞

}
.

Proof. By induction, assume that 0 ≤ ρnj ≤ ρmax for all j ∈ Z. Let us consider j 6= 0 and set

v(ρ) := ksψ(ρ) for s = l, r. In this case, we can observe that

ρn+1
j = ρnj − λ

(
ρnj v(Rn

j+1/2)− ρnj−1v(Rn
j−1/2)

)
≤ ρnj + λ

(
ρmaxv(Rn

j−1/2)− ρnj v(Rn
j+1/2)

)
≤ ρnj + λ

(
(ρmax − ρnj )v(Rn

j−1/2) + ρnj (v(Rn
j−1/2)− v(Rn

j+1/2))
)
,

Using the hypothesis (1.2) on the kernel function ωη and computing,

Rn
j−1/2 −Rn

j+1/2 = ∆x

(
N−1∑
k=0

ωkρ
n
j+k −

N−1∑
k=0

ωkρ
n
j+k+1

)

= ∆x

ω0ρ
n
j +

N−1∑
k=1

(ωk − ωk−1)ρnj+k + ωN︸︷︷︸
:=0

ρj+N − ωN−1ρ
n
j+N


= ∆x

(
ω0ρ

n
j +

N∑
k=1

(ωk − ωk−1)ρnj+k

)

≤ ∆x

(
ω0ρ

n
j +

N∑
k=1

(ωk − ωk−1)ρmax

)
= ∆xω0

(
ρnj − ρmax

)
,

we write

ρn+1
j ≤ ρnj + λ

(
(ρmax − ρnj )v(Rn

j−1/2)− ρnj v′(Rn
j )∆xω0

(
ρmax − ρnj

)
)
)
,

≤ ρnj + λ (ks‖ψ‖L∞ + ∆xω0ρmaxks‖ψ′‖L∞)
(
ρmax − ρnj

)
.

Under the CFL condition (3.1), we conclude ρn+1
j ≤ ρmax for all j ∈ Z∗.

For j = 0, recalling the hypothesis vl(ρ) ≤ vr(ρ), we obtain

ρn+1
0 = ρn0 − λ

(
ρn0vr(R

n
1/2)− ρn−1vl(R

n
−1/2)

)
≤ ρn0 + λ

(
ρmaxvl(R

n
−1/2)− ρn0vr(Rn

1/2)
)

≤ ρn0 + λ
(
ρmaxvr(R

n
−1/2)− ρn0vr(Rn

1/2)
)
,

and we proceed as before. To prove the positivity ρn+1
j ≥ 0, we observe that

ρn+1
j = ρnj − λ

(
ρnj v(Rn

j+1/2)− ρnj−1v(Rn
j−1/2)

)
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≥ ρnj
(
1− λv(Rn

j+1/2)
)

≥ 0.

This concludes the proof. �

Remark 3.1. If vl(ρ) > vr(ρ) we can compute

ρn+1
0 = ρn0 − λ

(
ρn0vr(R

n
1/2)− ρn−1vl(R

n
−1/2)

)
≤ ρn0 + λ

(
‖ρn‖L∞vl(Rn

−1/2)− ρn0vl(R1/2)± ρn0vl(Rn
−1/2)± ρn0vl(Rn

1/2)
)

≤ ρn0 + λ
(
(‖ρn‖L∞ − ρn0 )vl(R

n
−1/2) + ρn0 (vl(R

n
−1/2)− vl(Rn

1/2)) + ρn0 (vl(R
n
1/2)− vr(Rn

1/2))
)

≤ ρn0 + λ (‖vl‖L∞ + ∆xω0‖ρn‖L∞‖v′l‖L∞) (‖ρn‖L∞ − ρn0 ) + λ‖ρn‖L∞‖vl − vr‖L∞

≤ ‖ρn‖L∞(1 + λ‖vl − vr‖L∞)

≤ ρmax(1 +
(kl − kr)‖ψ‖L∞

∆xωη(0)ρmaxkl‖ψ′‖L∞ + kl‖ψ‖L∞
).

We notice that we are not able to recover an upper bound for ρnj independent from the mesh

in this case. See also [11, Remark 2.1].

Lemma 3.2 (L1 norm). Let hypotheses (1.3) hold. If ρ0 ∈ L1(R;R+) then under the CFL

condition (3.1), the approximate solution ρ∆ constructed through the finite volume scheme

(2.1)-(2.2) satisfies

(3.2) ‖ρ∆(t, ·)‖L1 = ‖ρ0‖L1 , for all t > 0.

Proof. By induction, suppose that (3.2) holds for tn = n∆t. Thanks to the positivity and

the conservative form of the numerical scheme (2.1) we have∥∥ρn+1
∥∥
L1 = ∆x

∑
j∈Z

ρn+1
j = ‖ρn‖L1 .

�

We now prove the L1-continuity in time by following the idea introduced in [22].

For the sake of simplicity we use the following notation throughout the proof, let us define

vnj+1/2 :=

vl(Rn
j+1/2), if j ≤ −1/2,

vr(R
n
j+1/2), if j ≥ 1/2.

Lemma 3.3. Set NT = bT/∆tc. Let ρ0 ∈ BV(R; [0, ρmax]) with ‖ρ0‖L1 < +∞. Assume that

the CFL condition (3.1) holds. Then, for n = 0, ..., NT − 1

(3.3) ∆x
∑
j∈Z

|ρn+1
j − ρnj | ≤ ∆tC(T),

where

C(T) = e(2Tρmaxkr‖ψ′‖L∞ ) (‖ψ‖L∞ + ρmax ‖ψ′‖L∞ ‖ω‖L1) krTV(ρ0).
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Proof. Fix j ∈ Z, by (2.1) we have

ρn+1
j −ρnj

=ρnj − ρn−1
j − λ

(
ρnj v

n
j+1/2 ± ρn−1

j vnj+1/2 − ρn−1
j vn−1

j+1/2 − ρ
n
j−1v

n
j−1/2 ± ρn−1

j−1 v
n
j−1/2 + ρn−1

j−1 v
n−1
j−1/2

)
=ρnj − ρn−1

j − λ
(

(ρnj − ρn−1
j )vnj+1/2 + ρn−1

j (vnj+1/2 − vn−1
j+1/2)

− (ρnj−1 − ρn−1
j−1 )vnj−1/2 − ρn−1

j−1 (vnj−1/2 − vn−1
j−1/2)

)
.

Observe that

vnj+1/2 − vn−1
j+1/2 = v′(R

n−1/2
j+1/2 )(Rn

j+1/2 −Rn−1
j+1/2) = v′(R

n−1/2
j+1/2 )∆x

N−1∑
k=0

ωk(ρ
n
j+k − ρn−1

j+k ).

We write

ρn+1
j − ρnj = (1− λ(vnj+1/2 −∆xω1ρ

n−1
j−1 v

′(R
n−1/2
j−1/2 )))(ρnj − ρn−1

j )

− λv′(Rn−1/2
j+1/2 )ρn−1

j ∆x
N−1∑
k=0

ωk(ρ
n
j+k − ρn−1

j+k ) + λvnj−1/2(ρnj−1 − ρn−1
j−1 )

+ λρn−1
j−1 v

′(R
n−1/2
j−1/2 )∆x

N−1∑
k=0,k 6=1

ωk(ρ
n
j−1+k − ρn−1

j−1+k).

Thanks to the CFL condition (3.1)

1− λ(vnj+1/2 −∆xω1ρ
n−1
j−1 v

′(R
n−1/2
j−1/2 )) ≥ 0.

Taking the absolute value, we obtain

|ρn+1
j − ρnj | ≤ (1− λ(vnj+1/2 −∆xω1ρ

n−1
j−1 v

′(R
n−1/2
j−1/2 )))|ρnj − ρn−1

j |

− λv′(Rn−1/2
j+1/2 )ρn−1

j ∆x
N−1∑
k=0

ωk|ρnj+k − ρn−1
j+k |+ λvnj−1/2|ρnj−1 − ρn−1

j−1 |

− λρn−1
j−1 v

′(R
n−1/2
j−1/2 )∆x

N−1∑
k=0,k 6=1

ωk|ρnj−1+k − ρn−1
j−1+k|.

Multiplying by ∆x and summing over j, we get

∑
j∈Z

∆x|ρn+1
j − ρnj | ≤

∑
j∈Z

∆x|ρnj − ρn−1
j |

− 2λ
∑
j∈Z

∆xρn−1
j−1 v

′(R
n−1/2
j−1/2 )∆x

N−1∑
k=0,k 6=1

ωk|ρnj−1+k − ρn−1
j−1+k|

≤
∑
j∈Z

∆x|ρnj − ρn−1
j |

+ 2∆tρmax‖v′‖L∞∆x
N−1∑

k=0,k 6=1

ωk
∑
j∈Z

∆x|ρnj−1+k − ρn−1
j−1+k|
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≤

(
1 + 2∆tρmax‖v′‖L∞∆x

N−1∑
k=0

ωk

)∑
j∈Z

∆x|ρnj − ρn−1
j |.

Thus, ∑
j∈Z

∆x|ρn+1
j − ρnj | ≤ e(2n∆tρmax‖v′‖L∞ )

∑
j∈Z

∆x|ρ1
j − ρ0

j |.

On the other hand,∑
j∈Z

∆x|ρ1
j − ρ0

j | ≤ ∆t
∑
j<0

|ρ0
jvl(R

n
j+1/2)− ρ0

j−1vl(R
n
j−1/2)|+ ∆t|ρ0

−1vl(R
0
−1/2)− ρ0

0vr(R
0
1/2)|

+ ∆t
∑
j>0

|ρ0
jvr(R

0
j+1/2)− ρ0

j−1vr(R
0
j−1/2)|.

The first term of the right-hand side can be estimated as∑
j<0

|ρ0
jvl(R

0
j+1/2)− ρ0

j−1vl(R
0
j−1/2)|

≤ ‖vl‖L∞
∑
j<0

|ρ0
j − ρ0

j−1|+ ρmax ‖v′l‖L∞
∑
j<0

∣∣Rn
j+1/2 −Rn

j−1/2

∣∣
≤ ‖vl‖L∞

∑
j<0

|ρ0
j − ρ0

j−1|+ ρmax ‖v′l‖L∞
∑
j<0

N−1∑
k=0

∆xωk
∣∣ρ0
j+k+1 − ρ0

j+k

∣∣
≤ (‖vl‖L∞ + ρmax ‖v′l‖L∞ ‖ω‖L1)

∑
j<0

|ρ0
j − ρ0

j−1|.

Analogously,∑
j>0

|ρ0
jvr(R

0
j+1/2)− ρ0

j−1vr(R
0
j−1/2)| ≤ (‖vr‖L∞ + ρmax ‖v′r‖L∞ ‖ω‖L1)

∑
j>0

|ρ0
j − ρ0

j−1|.

and by hypothesis (1.3)

|ρ0
−1vl(R

0
−1/2)− ρ0

0vr(R
0
1/2)| ≤ |ρ0

−1vr(R
0
−1/2)− ρ0

0vr(R
0
1/2)|.

Finally, ∑
j∈Z

∆x|ρ1
j − ρ0

j | ≤ ∆t (‖ψ‖L∞ + ρmax ‖ψ′‖L∞ ‖ω‖L1) krTV(ρ0).

This completes the proof. �

3.1. Spatial BV estimates.

Lemma 3.4. Let ρ0 ∈ L∞ ∩BV(R; [0, ρmax]). Assume that the CFL condition (3.1) holds.

For any interval [a, b] ⊂ R such that 0 /∈ [a, b], fix q > 0 such that 2q < min{|a| , |b|} and

q > ∆x. Then, for any n = 1, ..., NT − 1 the following estimate holds:∑
j∈Jb

a

∣∣ρnj+1 − ρnj
∣∣ ≤ e2KT

(
TV(ρ0) + 2

C(T )

q
+K2T

)
,

with Jba = {j ∈ Z : a ≤ xj ≤ b}.
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Proof. Let

M∆ =
{
j ∈ Z : xj−1/2 ∈ [a− q −∆x, a]

}
, N∆ =

{
j ∈ Z : xj+1/2 ∈ [b, b+ q + ∆x]

}
.

By the assumptions on q, observe that there are at least 2 elements in each of the sets above,

i.e. |M∆| , |N∆| ≥ 2. Moreover, |M∆|∆x ≥ q and |N∆|∆x ≥ q. By Lemma 3.3 there exists

a constant C(T ) such that

(3.4) ∆x

NT−1∑
n=0

∑
j∈Z

|ρn+1
j − ρnj | ≤ C(T ),

with C(T ) as in Lemma 3.3. When restricting the sum over j in the set M∆, respectively

N∆, it follows that

(3.5) ∆x

NT−1∑
n=0

∑
j∈M∆

|ρn+1
j − ρnj | ≤ C(T ), ∆x

NT−1∑
n=0

∑
j∈N∆

|ρn+1
j − ρnj | ≤ C(T ).

Let us choose ja ∈M∆ and jb with jb + 1 ∈ N∆ such that

NT−1∑
n=0

|ρn+1
ja
− ρnja | = min

j∈M∆

NT−1∑
n=0

|ρn+1
j − ρnj |,

NT−1∑
n=0

|ρn+1
jb+1
− ρnjb+1

| = min
j∈N∆

NT−1∑
n=0

|ρn+1
j − ρnj |.

Thus,

NT−1∑
n=0

|ρn+1
ja
− ρnja| ≤

C

|M∆|∆x
≤ C(T )

q
,

NT−1∑
n=0

|ρn+1
jb+1
− ρnjb+1

| ≤ C

|N∆|∆x
≤ C(T )

q
.

We observe that

(3.6)

jb∑
j=ja

∣∣ρn+1
j+1 − ρn+1

j

∣∣ =
∣∣ρn+1
ja+1 − ρn+1

ja

∣∣+

jb−1∑
j=ja+1

∣∣ρn+1
j+1 − ρn+1

j

∣∣+
∣∣ρn+1
jb+1 − ρn+1

jb

∣∣ .
Let us focus on the central sum on the right-hand side of (3.6).

We write

ρn+1
j+1 − ρn+1

j = Anj − λBnj ,

with

Anj := (1− λvnj+3/2)(ρnj+1 − ρnj ) + λvnj+1/2(ρnj − ρnj−1),

Bnj := ρnj (vnj+3/2 − vnj+1/2)− ρnj−1(vnj+1/2 − vnj−1/2).

Taking the absolute value and summing,

jb−1∑
j=ja+1

|Anj | ≤
jb−1∑

j=ja+1

|ρnj+1 − ρnj |+ λvnja+3/2|ρnja+1 − ρnja| − λv
n
jb+1/2|ρnjb − ρ

n
jb−1|.
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On the other hand,

Bnj =ρj(v
n
j+3/2 − vnj+1/2)− ρj−1(vnj+1/2 − vnj−1/2)

=ρjv
′(R̃n

j+1)
(
Rn
j+3/2 −Rn

j+1/2

)
− ρj−1v

′(R̃n
j )
(
Rn
j+1/2 −Rn

j−1/2

)
=ρjv

′(R̃n
j+1)

(
Rn
j+3/2 −Rn

j+1/2

)
± ρj−1v

′(R̃n
j+1)

(
Rn
j+3/2 −Rn

j+1/2

)
− ρj−1v

′(R̃n
j )
(
Rn
j+1/2 −Rn

j−1/2

)
=(ρj − ρj−1)v′(R̃n

j+1)
(
Rn
j+3/2 −Rn

j+1/2

)
+ ρj−1v

′(R̃n
j+1)

(
Rn
j+3/2 − 2Rn

j+1/2 +Rn
j−1/2

)
+ ρj−1v

′′(R̄n
j+1/2)

(
Rn
j+1/2 −Rn

j−1/2

) (
R̃n
j+1 − R̃n

j

)
,

where R̃n
j ∈ I(Rn

j−1/2, R
n
j+1/2) and R̄n

j+1/2 ∈ I(R̃n
j , R̃

n
j+1).

By the assumptions (1.3) on the kernel function and defining ωN := 0, we get

(3.7)

∣∣Rn
j+1/2 −Rn

j−1/2

∣∣ =

∣∣∣∣∣∆x
N−1∑
k=0

ωk(ρ
n
j+k+1 − ρnj+k)

∣∣∣∣∣
= ∆x

∣∣∣∣∣−ω0ρ
n
j +

N−1∑
k=0

(ωk−1 − ωk)ρnj+k + ωN−1ρ
n
j+N

∣∣∣∣∣
≤ ∆x (ωη(0)ρmax + ‖ω′‖L∞ ‖ρ‖L1) .

and

|Rn
j+3/2 − 2Rn

j+1/2 +Rn
j−1/2| =

∣∣∣∣∣∆x
(
N−1∑
k=0

ωkρ
n
j+k+2 − 2

N−1∑
k=0

ωkρ
n
j+k+1 +

N−1∑
k=0

ωkρ
n
j+k

)∣∣∣∣∣
=

∣∣∣∣∣∆x
(
N−2∑
k=1

(ωk−1 − 2ωk + ωk+1)ρnj+k+1

+ ωN−1(ρnj+N+1 − ρnj+N) + ρnj+N(ωN−2 − ωN−1)

+ω0(ρnj − ρnj+1) + ρnj+1(ω1 − ω0)
)∣∣

=

∣∣∣∣∣∆x
(
N−1∑
k=1

(ωk−1 − 2ωk + ωk+1)ρnj+k+1

+
1

∆x
(ωN−1−ωN︸︷︷︸

:=0

)ρnj+N+1∆x

+ω0(ρnj − ρnj+1) + ∆xρnj+1

ω1 − ω0

∆x

)∣∣∣∣
≤ (∆x)2 ‖ω′′‖L∞ ‖ρ‖L1 + 2(∆x)2ρmax ‖ω′‖L∞ + ∆xω0|ρj − ρj+1|.
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Now, we compute,
∣∣∣R̃n

j+1 − R̃n
j

∣∣∣ ,∣∣∣R̃n
j+1 − R̃n

j

∣∣∣ =
∣∣θRn

j+3/2 + (1− θ)Rn
j+1/2 − µRn

j+1/2 − (1− µ)Rn
j−1/2

∣∣ ≤ 3∆x‖ω′‖L∞‖ρ‖L1 ,

for some θ, µ ∈ [0, 1]. We end up with∣∣Bnj ∣∣ ≤∆x(ωη(0)ρmax + ‖ω′‖L∞‖ρ‖L1) ‖v′‖L∞
∣∣ρnj − ρnj−1

∣∣
+ (∆x)2 (‖ω′′‖L∞ ‖ρ‖L1 ‖v′‖L∞ + 2ρmax ‖ω′‖L∞ ‖v

′‖L∞)
∣∣ρnj−1

∣∣
+ ∆xωη(0) ‖v′‖L∞ ρmax

∣∣ρnj+1 − ρnj
∣∣

+ 3(∆x)2 (‖ω′‖L∞‖ρ‖L1 + ωη(0)ρmax)
2 ‖v′′‖L∞

∣∣ρnj−1

∣∣ .
Summing,

λ

jb−1∑
j=ja+1

|Bnj | ≤ ∆t(ωη(0)ρmax + ‖ω′‖L∞‖ρ‖L1) ‖v′‖L∞)

jb−1∑
j=ja+1

∣∣ρnj − ρnj−1

∣∣
+∆t∆x (‖ω′′‖L∞ ‖ρ‖L1 ‖v′‖L∞ + 2ρmax ‖ω′‖L∞ ‖v

′‖L∞)

jb−1∑
j=ja+1

∣∣ρnj−1

∣∣
+∆tωη(0) ‖v′‖L∞ ρmax

jb−1∑
j=ja+1

∣∣ρnj+1 − ρnj
∣∣

+3∆t∆x (‖ω′‖L∞‖ρ‖L1 + ωη(0)ρmax)
2 ‖v′′‖L∞

jb−1∑
j=ja+1

∣∣ρnj−1

∣∣
≤ ∆tK

jb−1∑
j=ja+1

∣∣ρnj − ρnj−1

∣∣+ ∆t∆xK1

jb−1∑
j=ja+1

∣∣ρnj−1

∣∣+ ∆tK2

jb−1∑
j=ja+1

∣∣ρnj+1 − ρnj
∣∣ ,

where K = (ωη(0)ρmax + ‖ω′‖L∞‖ρ‖L1) ‖v′‖L∞ ,

K1 = (‖ω′′‖L∞ ‖ρ‖L1 ‖v′‖L∞ + 2ρmax ‖ω′‖L∞ ‖v
′‖L∞)+3 (‖ω′‖L∞‖ρ‖L1 + ωη(0)ρmax)

2 ‖v′′‖L∞ ,

and K2 = ωη(0) ‖v′‖L∞ ρmax.

We are left with the boundary terms in (3.6). For j = ja, we have

ρn+1
ja+1 − ρn+1

ja
=ρnja+1 − λvnj+3/2(ρnja+1 − ρnja) + λρnja(vnj+3/2 − vnj+1/2)− ρn+1

ja
± ρnja

=(1− λvnj+3/2)ρnja+1 + λvnj+3/2ρ
n
ja + λρnja(vnj+3/2 − vnj+1/2)− ρn+1

ja
± ρnja

=(1− λvnj+3/2)(ρnja+1 − ρnja)

+ λρnja(vnj+3/2 − vnj+1/2)

+ ρnja − ρ
n+1
ja

.

Proceed similarly for j = jb

ρn+1
jb+1 − ρn+1

jb
=ρn+1

jb+1 − ρnjb + λvnjb+1/2(ρnjb − ρ
n
jb−1)− λρnjb−1(vnjb+1/2 − vnjb−1/2)± ρnjb+1

=ρn+1
jb+1 − ρnjb+1

+ ρnjb+1 − ρnjb
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+ λvnjb+1/2(ρnjb − ρ
n
jb−1)

− λρnjb−1(vnjb+1/2 − vnjb−1/2).

Collecting the terms, taking the absolute value and summing over j

jb∑
j=ja

∣∣ρn+1
j+1 − ρn+1

j

∣∣ =
∣∣ρn+1
ja+1 − ρn+1

ja

∣∣+

jb−1∑
j=ja+1

∣∣ρn+1
j+1 − ρn+1

j

∣∣+
∣∣ρn+1
jb+1 − ρn+1

jb

∣∣
≤
∣∣ρn+1
ja+1 − ρn+1

ja

∣∣+

jb−1∑
j=ja+1

(|Anj |+ λ
∣∣Bnj ∣∣) +

∣∣ρn+1
jb+1 − ρn+1

jb

∣∣
≤(1− λvnja+3/2)

∣∣ρnja+1 − ρnja
∣∣+ λρnja

∣∣vnja+3/2 − vnja+1/2

∣∣+
∣∣ρnja − ρn+1

ja

∣∣
+

jb−1∑
j=ja+1

|ρnj+1 − ρnj |+ λvnja+3/2|ρnja+1 − ρnja| − λv
n
jb+1/2|ρnjb − ρ

n
jb−1|

+ ∆tK
jb−1∑

j=ja+1

∣∣ρnj − ρnj−1

∣∣+ ∆t∆xK1

jb−1∑
j=ja+1

∣∣ρnj−1

∣∣+ ∆tK2

jb−1∑
j=ja+1

∣∣ρnj+1 − ρnj
∣∣

+
∣∣ρn+1
jb+1 − ρnjb+1

∣∣+
∣∣ρnjb+1 − ρnjb

∣∣
+ λvnjb+1/2

∣∣ρnjb − ρnjb−1

∣∣+ λρnjb−1

∣∣vnjb+1/2 − vnjb−1/2

∣∣
=
∣∣ρnja − ρn+1

ja

∣∣+

jb∑
j=ja

|ρnj+1 − ρnj |

+ λρnja
∣∣vnja+3/2 − vnja+1/2

∣∣+
∣∣ρn+1
jb+1 − ρnjb+1

∣∣
+ ∆tK

jb−1∑
j=ja+1

∣∣ρnj − ρnj−1

∣∣+ ∆t∆xK1

jb−1∑
j=ja+1

∣∣ρnj−1

∣∣+ ∆tK2

jb−1∑
j=ja+1

∣∣ρnj+1 − ρnj
∣∣

+ λρnjb−1

∣∣vnjb+1/2 − vnjb−1/2

∣∣
≤
∣∣ρnja − ρn+1

ja

∣∣+ (1 + 2∆tK)

jb∑
j=ja

|ρnj+1 − ρnj |+
∣∣ρn+1
jb+1 − ρnjb+1

∣∣+ ∆tK3,

where K3 = 2ρmaxK + ‖ρ‖L1 K1. By a standard iterative procedure we can deduce, for

1 ≤ n < NT − 1,

jb∑
j=ja

∣∣ρn+1
j+1 − ρn+1

j

∣∣ ≤ e2KT

(
jb∑

j=ja

|ρ0
j+1 − ρ0

j |+ 2
C(T )

q
+K3T

)
.

This concludes the proof because [a, b] ⊆ [xja , xjb+1]. �

3.2. Discrete Entropy Inequality. Next we show that the approximate solution obtained

by the scheme (2.1) fulfills a discrete entropy inequality. Let us define

Gj+1/2(u) = uvnj+1/2, F cj+1/2(u) := Gj+1/2(u ∨ c)−Gj+1/2(u ∧ c)

with a ∨ b = max{a, b} and a ∧ b = min{a, b}.
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Lemma 3.5. Let ρnj for j ∈ Z and n ∈ N given by (2.1), and let the CFL condition (3.1)

and the hypothesis (1.3) hold. Then we have∣∣ρn+1
j − c

∣∣− ∣∣ρnj − c∣∣
+ λ(F cj+1/2(ρnj )−F cj−1/2(ρnj−1)) + λ sgn(ρn+1

j − c)c(vnj+1/2 − vnj−1/2) ≤ 0(3.8)

for all j ∈ Z, n ∈ N and c ∈ [0, ρmax].

Proof. For a complete proof see [17, Section 3.4].

�

3.3. Convergence to entropy solution.

Theorem 3.1. Let ρ0 ∈ BV∩L∞(R, [0, ρmax]). Let ∆x→ 0 with λ = ∆t
∆x

constant and satis-

fying the CFL condition (3.1). The sequence of approximate solution ρ∆ constructed through

finite volume scheme (2.1)-(2.2) converges in L1
loc to a function in L∞([0, T ] × R; [0, ρmax])

such that ‖ρ‖L1 = ‖ρ0‖L1 .

Proof. Lemma 3.1 ensures that the sequence of approximate solutions ρ∆ is bounded in L∞.

Lemma 3.3 proves the L1−continuity in time of the sequence ρ∆, while Lemma 3.4 guarantees

a bound on the spatial total variation in any interval [a, b] not containing x = 0. Applying

standard compactness results we have that for any interval [a, b] not containing x = 0, there

exists a subsequence, still denoted by ρ∆ converging in L1([0, T ]× [a, b]; [0, ρmax]). Let us take

a countable set of intervals [ai, bi] such that ∪i[ai, bi] = R∗, using a standard diagonal process,

we can extract a subsequence, still denoted by ρ∆, converging in L1
loc([0, T ] × R; [0, ρmax])

and almost everywhere in [0, T ]× R, to a function ρ ∈ L∞([0, T ]× R; [0, ρmax]). �

Lemma 3.6. Let ρ(t, x) be a weak solution constructed as the limit of approximations ρ∆

generated by the Godunov scheme (2.1) and let c ∈ [0, ρmax]. Let ϕ ∈ D(R∗ × [0, T )). Then

the following entropy inequality is satisfied:

(3.9)

∫ T

0

∫
R
(|ρ− c|ϕtdxdt

+

∫ T

0

∫
R

sgn(ρ− c)(f(t, x, ρ)− f(t, x, c))ϕx dxdt

−
∫ T

0

∫
R

sgn(ρ− c)∂xf(t, x, c)ϕ dxdt

+

∫ ∞
−∞
|ρ0(x)− c|ϕ(0, x)dx ≥ 0.

Proof. Let ϕ be a test function of the type described in the statement of the lemma and set

ϕnj = ϕ(tn, xj). Let us denote ∆−pj = pj − pj−1. We multiply the cell entropy inequality

(3.8) by ϕnj ∆x, and then sum by parts to get

∆x∆t
∑
n≥0

∑
j∈Z

∣∣ρn+1
j − c

∣∣ (ϕn+1
j − ϕnj )/∆t+ ∆x

∑
j

∣∣ρ0
j − c

∣∣ϕ0
j(3.10)
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+ ∆x∆t
∑
n≥0

∑
j∈Z

F cj−1/2∆−ϕ
n
j /∆x(3.11)

−∆x∆t
∑
n≥0

∑
j∈Z

sgn(ρn+1
j − c)c∆−vj+1/2 ϕ

n
j /∆x ≥ 0.(3.12)

By Lebesgue’s dominated convergence theorem as ∆ := (∆x,∆t)→ 0,

(3.10)→
∫ T

0

∫
R
|ρ− c|ϕtdxdt+

∫ ∞
−∞
|ρ0(x)− c|ϕ(0, x)dx,

and

(3.11)→
∫ T

0

∫
R

sgn(ρ− c)(f(t, x, ρ)− f(t, x, c))ϕx dxdt.

Now let us study the sum (3.12) and we have

(3.12) =

−∆x∆t
∑
n≥0

∑
j∈Z
j≤−1

sgn(ρn+1
j − c)c∆−vj+1/2 ϕ

n
j /∆x(3.13)

−∆x∆t
∑
n≥0

∑
j∈Z
j≥1

sgn(ρn+1
j − c)c∆−vj+1/2 ϕ

n
j /∆x(3.14)

−∆x∆t
∑
n≥0

sgn(ρn+1
0 − c)c∆−v1/2 ϕ

n
0/∆x(3.15)

The support of the test function ϕ does not include the discontinuity flux point 0, for this

reason we consider ϕ0 = 0 according to our discretization. The sum (3.15) is equal to zero

because ϕ0 = 0. Finally,

(3.13)+(3.14)→ −
∫ T

0

∫ 0

−∞
sgn(ρ−c)∂xf(t, x, c)ϕ dxdt−

∫ T

0

∫ ∞
0

sgn(ρ−c)∂xf(t, x, c)ϕ dxdt.

�

Lemma 3.7. Let ρ(t, x) be a weak solution constructed as the limit of approximations ρ∆

generated by the scheme (2.1) and let c ∈ [0, ρmax]. Let ϕ ∈ C1
c(R × [0, T )). Then the

following entropy inequality is satisfied:∫ T

0

∫
R
|ρ− c|ϕt + sgn (ρ− c)(f(t, x, ρ)− f(t, x, c)) ∂xϕ dx dt

+

∫ T

0

∫
R∗
|∂xf(t, x, c)|ϕ dx dt+

∫
R
|ρ0(x)− c|ϕ(0, x)dx

+

∫ T

0

|(kr − kl)c ψ(ρ ∗ ωη)|ϕ(t, 0)dt ≥ 0.

Proof. Let ϕ be a test function of the type described in the statement of the lemma and set

ϕnj = ϕ(tn, xj). There exist T > 0 and R > 0 such that ϕ(t, x) = 0 for t > T and |x| > R.

Our starting point is the following cell entropy inequality which is a consequence of (3.8).

(3.16)
∣∣ρn+1
j − c

∣∣ ≤ ∣∣ρnj − c∣∣− λ∆−F cj+1/2 + λ
∣∣c∆−vnj+1/2

∣∣
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We multiply (3.16) by ϕnj ∆x, and then sum by parts to get

∆x∆t
∑
n≥0

∑
j∈Z

∣∣ρn+1
j − c

∣∣(ϕn+1
j − ϕnj )/∆t+ ∆x

∑
j

∣∣ρ0
j − c

∣∣ϕ0
j(3.17)

+ ∆x∆t
∑
n≥0

∑
j∈Z

F cj−1/2(∆−ϕ
n
j /∆x)(3.18)

+ ∆x∆t
∑
n≥0

∑
j∈Z

∣∣c∆−vnj+1/2

∣∣φnj /∆x ≥ 0.(3.19)

By Lebesgue’s dominated convergence theorem as ∆ := (∆x,∆t)→ 0,

(3.17)→
∫ T

0

∫
R
|ρ− c|ϕtdxdt+

∫ ∞
−∞
|ρ0(x)− c|ϕ(0, x)dx.

Following the same standard arguments as in Lemma 3.6, the sum (3.18) converges to∫ T

0

∫
R

sgn (ρ− c)(f(t, x, ρ)− f(t, x, c)) ∂xϕ dx dt.

Now we can rewrite the sum (3.19)

∆x∆t
∑
n≥0

∑
j∈Z
j≤−1

∣∣c∆−vnj+1/2

∣∣ϕnj /∆x(3.20)

+ ∆x∆t
∑
n≥0

∑
j∈Z
j≥1

∣∣c∆−vnj+1/2

∣∣ϕnj /∆x(3.21)

+ ∆t
∑
n≥0

∣∣c∆−vn1/2∣∣ϕn0 .(3.22)

At this point, we can observe that as ∆ := (∆x,∆t)→ 0

(3.20) + (3.21)→
∫ T

0

∫
R\{0}

|f(t, x, c)x|ϕ dx dt

(3.22)→
∫ T

0

|(kr − kl)c ψ(ρ ∗ ωη)|ϕ(t, 0)dt.

�

Theorem 3.2. Let ρ(t, x) be a weak solution constructed as the limit of approximations

ρ∆ generated by the scheme (2.1) and let c ∈ [0, ρmax]. Then ρ(t, x) is an entropy solution

satisfying the Definition 1.2.

Proof. Let 0 ≤ ϕ ∈ C1
c([0, T )× R). We set ϕnj = ϕ(tn, xj). For ε > 0, define the set

σε0 = {(t, x) ∈ [0, T )× R|x ∈ (−ε, ε), t ∈ [0, T )}.

For each sufficiently small ε > 0 we can write the test function ϕ as a sum of two test

functions, one having support away from the set Σ := σε0 and the other with support in Σ.

We take test functions ψε, αε ∈ C1
c([0, T )× R) such that

ϕ(t, x) = ψε(t, x) + αε(t, x), 0 ≤ ψε(t, x) ≤ ϕ(t, x), 0 ≤ αε(t, x) ≤ ϕ(t, x),
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where ψε has support located around the jump in 0

supp(ψε) ⊆ σε0,

ψε(t, 0) = ϕ(t, 0),

and αε vanishes around the jump, i.e.

supp(αε) ⊆ [0, T )× R∗.

We can take this decomposition in such way that

(3.23) αε → ϕ in L1([0, T )× R), ψε → 0 in L1([0, T )× R)

as ε → 0. By applying Lemma 3.6 with the test function αε and Lemma 3.7 with ψε, and

summing the two entropy inequalities, using ϕ = ψε +αε along with ψε(0, t) = ϕ(0, t) to get∫ T

0

∫
R
(|ρ− c|ϕtdxdt

+

∫ T

0

∫
R

sgn(ρ− c)(f(t, x, ρ)− f(t, x, c))ϕxdxdt

−
∫ T

0

∫
R

sgn(ρ− c)f(t, x, c)xα
εdxdt

+

∫ T

0

∫
R∗
|f(t, x, c))x|ψεdxdt

+

∫ T

0

|(kr − kl)c ψ(ρ ∗ ωη)|ϕ(t, 0)dt

+

∫ ∞
−∞
|ρ0(x)− c|φ(0, x)dx ≥ 0.

Thanks to (3.23), we can complete the proof by sending ε→ 0. �

3.4. L1-Stability and uniqueness.

Theorem 3.3. Assume the hypothesis (1.3). If ρ and ρ̃ are two entropy solutions of (1.1)

in the sense of Definition (1.2) , the following inequality holds

(3.24) ‖ρ(t, ·)− ρ̃(t, ·)‖L1(R) ≤ eK(T )t ‖ρ(0, ·)− ρ̃(0, ·)‖L1(R) ,

for almost every 0 < t < T and some suitable constant K(T ) > 0.

Proof. For a complete proof see [11, Section 4]. �

4. Numerical tests

In the following numerical tests, we solve (1.1) numerically in the intervals x ∈ [−2, 2] and

t ∈ [0, T ]. We propose two tests in order to illustrate the dynamics of the model (1.1) and

compare with the local cases, by using the Godunov-type scheme for different discretizations.
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Figure 1. Numerical approximation at time t ∈ [0, 0.8]. (a) Example 1 Case

vl(ρ) < vr(ρ). (b) Example 2 Case vl(ρ) > vr(ρ). Note that in the right figure the

maximal density exceeds 1 but it is still visualized by the dark red color.

For each integration, we set ∆t to satisfy the CFL condition (3.1).

For the tests we consider ωη(x) = 3 (η−x)2

η3 for 0 ≤ x ≤ η, and absorbing boundary

conditions. The reference solution is computed according to the scheme (2.1)-(2.2) and

∆x = 1/3200.

4.1. Example 1 Case vl(ρ) < vr(ρ). We consider the initial condition

ρ0(x) =

0.7 x ∈ [−1.2, 0.8]

0.2 otherwise

and velocity functions vl(ρ) = (1−ρ) and vr(ρ) = 2(1−ρ) which satisfy the hypothesis (1.3).

In Fig 1 we show the evolution of ρ∆(·, t) for t ∈ [0, 0.8] with ∆x = 1/400 and we can notice

a shock emerging at position x = 0 due to the discontinuity in the flux function. In Fig

2 we display numerical approximation at simulation time T = 0.7 and compare numerical

approximations for ∆x = 1/100 and ∆x = 1/400 with respect to the reference solution. The

L1-error for different ∆x is computed in Table 1.

Example 1 Example 2

∆x L1-error E.O.A. L1-error E.O.A.
1

100
2.7e− 2 − 1.9e− 2 −

1
200

1.4e− 2 0.9 1.1e− 2 0.8
1

400
6.5e− 3 1.0 5.8e− 3 0.9

1
800

2.9e− 3 1.1 2.9e− 3 1.0
1

1600
1.0e− 3 1.5 1.2e− 3 1.3

Table 1. Examples 1 and 2. L1-error and Experimental Order of Accuracy.
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Figure 2. Example 1. Case vl(ρ) < vr(ρ). (a) Numerical approximation at time

T = 0.7 and comparison with the reference solution. (b) Zooming in a specific area.
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Figure 3. Example 2. Case vl(ρ) > vr(ρ). (a) Numerical approximation at time

T = 0.1 (b) Zooming in a specific area.

4.2. Example 2: Case vl(ρ) > vr(ρ). In this example, we consider the same parameters

as in Example 1 with kl = 2 > 1 = kr, this means that the velocity function doesn’t satisfies

the hypothesis (1.3). In this case, the result of Lemma 3.1 is not valid. In Figs 3 we can

observe that solution at time T = 0.1 is greater than 1 even when initial condition satisfies

ρ0 ∈ [0, 1]. Furthermore, we can observe that the approximate solution seems to converge,

at least numerically, to a function that does not satisfy Lemma 3.1, see Table 1.

4.3. Example 3: Limit η → 0+. In this example, we investigate the numerical convergence

of the approximate solution computed with the numerical scheme (2.1)-(2.2) to the solution

of the local conservation law with discontinuous flux under hypothesis (1.3), as the support

of the kernel function ωη tends to 0+. In particular, we consider an approximation at T = 0.7

with fixed ∆x = 1/1600 and η = {0.1, 0.05, 0.01, 0.005}. To evaluate the convergence, we

compute the L1 distance between the approximate solution of the non-local problem with a
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Figure 4. Example 3. Limit η → 0+, numerical approximations at final time

T = 0.7 with ∆x = 1/3200.

η 0.1 0.05 0.01 0.005

L1 distance 9.6e-2 6.1e-2 1.6e-2 7.8e-3

Table 2. Example 3. L1 distance between the approximate solutions to the

nonlocal problem and the local problem for different values of η at T = 0.7 with

∆x = 1/1600.

given η and the results of the classical Godunov scheme for the corresponding local problem.

In Table 2, we can observe than the L1 distance goes to zero when η → 0+. The results are

illustrated in Fig 4.

5. Conclusions and discussions

In this paper, we studied a nonlocal conservation law whose flux function is of the form

H(−x)ρvl(ωη ∗ ρ) + H(x)ρvr(ωη ∗ ρ), with a single spatial discontinuity at x = 0 and the

velocity functions satisfies the hypothesis (1.3). We approximated the problem through a

Godunov-type numerical scheme, which is a general version of the scheme proposed in [17],

and provided L∞ and BV estimates for the approximate solutions. Numerical simulations

illustrate the dynamics of the studied model and corroborate the convergence of the numerical

scheme. The limit model as the kernel support tends to zero is numerically investigated. In

the case kl < kr we have proved the well-possedness, i.e., existence and uniqueness of a weak

entropy solution. On the contrary, in the case kr < kl, we are not able to prove L∞ and

BV bounds, and we can see that the solution exceeds 1 from the numerical tests. For this

reason, this case is not suitable to describe traffic flow scenarios. In a future work, we would

like to consider more general velocity functions allowing the fluxes to cross, like in the local

discontinuous cases, see [22, 23, 24].
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