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Abstract

In this work we present and analyse a new fully-mixed finite element method for the nonlinear
problem given by the coupling of the Darcy and heat equations. Besides the velocity, pressure, and
temperature variables of the fluid, our approach is based on the introduction of the pseudoheat flux
as a further unknown. As a consequence of it, and due to the convective term involving the velocity
and the temperature, we arrive at saddle point-type schemes in Banach spaces for both equations.
In particular, and as suggested by the solvability of a related Neumann problem to be employed in
the analysis, we need to make convenient choices of the Lebesgue and H(div)-type spaces where the
unknowns and test functions live. The resulting coupled formulation is then written equivalently
as a fixed point operator, so that the classical Banach theorem, combined with the corresponding
Babuška-Brezzi theory, the Banach-Nečas-Babuška theorem, suitable operators mapping Lebesgue
spaces into themselves, regularity assumptions, and the aforementioned Neumann problem, are em-
ployed to establish the unique solvability of the continuous formulation. Under standard hypotheses
satisfied by generic finite element subspaces, the associated Galerkin scheme is analysed similarly
and the Brouwer theorem yields existence of solution. The respective a priori error analysis is also
derived. Then, Raviart-Thomas elements of order k ≥ 0 for the pseudoheat and the velocity, and
discontinuous piecewise polynomials of degree ≤ k for the pressure and the temperature are shown
to verify those hypotheses in the 2D case. Several numerical examples illustrating the performance
and convergence of the method are reported, including an application into the equivalent problem
of miscible displacement in porous media.
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1 Introduction

In this work we are interested in the distribution of the temperature ϕ of a fluid in a porous medium
occupying a bounded and simply connected Lipschitz-continuous domain Ω in Rn, n ∈ {2, 3}, which is
modelled by the coupling of Darcy’s law with a convection diffusion equation depending on the velocity
u of the fluid. More precisely, letting Γ := ∂Ω with unit outward normal vector ν, the corresponding
system of equations is given by

µ(ϕ) u + ∇p = f in Ω , div(u) = 0 in Ω , u · ν = 0 on Γ ,

−κ∆ϕ + u · ∇ϕ = f in Ω , ϕ = 0 on Γ ,
(1.1)

where µ is the temperature-dependent coefficient (representing the porosity times the dynamic vis-
cosity, divided by the permeability, and from now on simply referred to as scaled viscosity), p is the
pressure, f represents an external vector force, κ is the positive thermal conductivity coefficient, and
f stands for an external scalar heat production (per unit volume of the porous medium). Suitable
hypotheses on the data f and f are given throughout the analysis below. In turn, concerning the scaled
viscosity µ : R → R+, we assume that this function is uniformly bounded and Lipschitz-continuous,
which means that there exist positive constants µ1, µ2, and Lµ, such that

µ1 ≤ µ(t) ≤ µ2 ∀ t ∈ R and |µ(t)− µ(t̃)| ≤ Lµ |t− t̃| ∀ t, t̃ ∈ R . (1.2)

We note that the same set of coupled equations serves as model for the miscible displacement in porous
media [58].

The coupling of the heat equation (or a general convection-diffusion equation) with diverse models
in fluid mechanics, such as Stokes, Navier-Stokes, Darcy, Darcy-Forchheimer, Brinkman-Darcy, and
others, has been extensively studied in the literature during the last decade by using a variety of
numerical methods, which include finite elements, mixed finite elements, discontinuous Galerkin, aug-
mented formulations, and several other procedures. In particular, for nonlinear transport, Boussinesq,
and heat-Darcy (or related), we refer for instance to the sets of works (and the references therein)
given by [3, 4, 14, 15, 20, 55, 54], [2, 11, 19, 23, 27, 51, 53], and [5, 9, 10, 28, 29], respectively. Re-
garding the latter model, let us first mention that the case of constant viscosity, but with the exterior
force depending on the temperature, has been analysed in [10] by using a spectral method for the
corresponding Galerkin scheme. More recently, the model described by (1.1), which assumes a non-
linear viscosity, was considered in [9], where mixed and primal formulations in the Darcy and heat
equations, respectively, were employed within a Hilbertian framework. Then, a countable basis of a
separable Sobolev space embedded in L∞(Ω), and the Galerkin method induced by it, were utilised
there to prove existence of solution, whereas under smoother exact solution and sufficiently small data,
uniqueness was also established. In addition, two finite element methods, one of them stabilised by a
suitable additional term, and which are solved using Picard successive approximations, were proposed
in [9], and optimal error estimates were derived, all of which was illustrated by several numerical ex-
amples. In turn, the a posteriori error analyses of the methods from [9] were developed in [29] (see also
[1]). Furthermore, the analysis and results from [9] were complemented in [28] by introducing a new
non-stabilised method, and by providing existence and uniqueness of solution without any restriction
on the data, but for sufficiently small meshsizes.

On the other hand, during recent years there has been an increasing development of new mixed
finite element methods arising from Banach spaces-based variational formulations to solve diverse
nonlinear models in continuum mechanics. Among the main advantages of this methodology, we first
highlight the non need of any augmentation procedure, technique commonly used within a Hilbertian
framework in many previous works (see, e.g., [3, 4, 18, 23]), which, while yielding some benefits, also
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increases the complexity of the respective continuous and discrete systems. Another advantageous
feature of the Banach framework is given by the fact that the spaces where the unknowns live are
the natural ones that arise from the application of the Cauchy-Schwarz and Hölder inequalities to
the terms, suitably tested, of the equations defining the model. From the large amount of works in
this direction, we only refer here to [7, 19, 22, 24, 36]. In particular, a dual-mixed formulation for
the Stokes equations, in which, differently from [3], the velocity lives in L4, is employed in [7] for the
coupled flow-transport problem originally studied in [3]. As a consequence, the Cauchy stress is sought
in a suitable H(div)-type Banach space, whereas the concentration unknown of the transport equation
lies in H1. In turn, following some ideas from [44, 38], the velocity and a suitable pseudostress tensor
are utilised in [16] to study a Banach spaces-based dual-mixed momentum conservative method for
the stationary Navier-Stokes problem. Related approaches have been successfully applied as well to
the Boussinesq system in [19, 22, 24], and to fluidised beds in [36].

According to the previous discussion, our goal here is to complement the recent theory on the
numerical analysis of nonlinear problems and address a new Banach spaces-based mixed finite element
formulation for (1.1). As we are interested in employing mixed formulations in both the Darcy and
heat equations, we now introduce as an auxiliary unknown the pseudoheat flux (the negative sum of
the conductive heat flux and the convective flux)

σ := κ∇ϕ − ϕu in Ω ,

which, using the incompressibility condition given by the second equation of the first row of (1.1),
implies

div(σ) = κ∆ϕ − u · ∇ϕ in Ω .

As a consequence, (1.1) can be rewritten, equivalently, as the first-order nonlinear system

µ(ϕ) u + ∇p = f in Ω , div(u) = 0 in Ω , u · ν = 0 on Γ ,

κ∇ϕ − ϕu = σ in Ω , div(σ) = −f in Ω , ϕ = 0 on Γ .
(1.3)

Note that one of the advantages of using also a mixed scheme in the heat equation is the chance of
computing another variable of physical interest, such as the gradient of temperature, by means of
the simple post-processing formula ∇ϕ = κ−1

(
σ + ϕu

)
, and that the method delivers conservative

approximations. Another important motivation behind the use of this approach will be explained later
on in Section 4.2.

The rest of the paper is organised as follows. At the end of this section we describe standard
notations and functional spaces to be utilised throughout the paper. Then, in Section 2 we lay out
further details on the governing equations and state preliminary assumptions, and proceed to derive
the continuous formulation and analyse its solvability. More precisely, we first collect some definitions
and preliminary results, establish the fully-mixed scheme arising from (1.3), and then introduce an
equivalent fixed-point strategy to address its solvability. Next, we employ the Babuška-Brezzi theory in
Banach spaces and the Banach-Babuška-Nečas theorem to prove the well-posedness of the uncoupled
Darcy and heat problems that define the fixed-point operator, and finally apply the Banach fixed-point
theorem to conclude the existence of a unique solution. The associated Galerkin scheme, posed in
terms of arbitrary finite element subspaces satisfying suitable hypotheses, is set and investigated in
Section 3. Similar analytical tools to those employed in Section 2 are employed here. They include
a discrete fixed-point strategy, the well-posedness of the respective uncoupled discrete problems, and
the application of the Brouwer theorem to conclude existence of solution. This section ends with the
corresponding a priori error analysis. Next, in Section 4 we restrict ourselves to the 2D case and define
specific finite element subspaces, basically Raviart-Thomas spaces of order k ≥ 0 for σ and u, and
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discontinuous piecewise polynomials of degree ≤ k for p and ϕ, which are shown to verify the abstract
assumptions introduced in Section 3. The latter reduce to the discrete inf-sup conditions for each one
of the bilinear forms involved in our continuous and discrete formulations. To this end, we need to
collect several preliminary results, namely approximation properties of projection and interpolation
operators, Lt-stability of the Ritz projector and of the projector on a discrete kernel, a Neumann
regularity result, and further properties of the Raviart-Thomas interpolator. This section concludes
with the rates of convergence of the Galerkin method. We highlight here that, because of the unusual,
though natural, norms of the finite element subspaces involved, the discrete inf-sup conditions that are
proved have an intrinsic value by themselves since most likely they will be useful in other models. In
this regard, we also remark that along the way we identify the only one of them whose validity is, up to
our knowledge, an open issue in 3D. Finally, several numerical examples illustrating the performance
of the method and confirming the theoretical rates of convergence, are presented in Section 5.

In what follows, given a Lipschitz-continuous domain O with boundary Γ, we adopt standard
notations for Lebesgue spaces Lt(O) and Sobolev spaces W`,t(O) and W`,t

0 (O), with ` ≥ 0 and t ∈
[1,+∞), whose corresponding norms and seminorm, either for the scalar or vectorial case, are denoted
by ‖ · ‖0,t;O, ‖ · ‖`,t;O and | · |`,t;O, respectively. Note that W0,t(O) = Lt(O), and if t = 2 we write
H`(O) instead of W`,2(O), with the corresponding norm and seminorm denoted by ‖ · ‖`,O and | · |`,O,
respectively. In addition, letting t′ be the conjugate of t, that is such that 1/t+1/t′ = 1, we denote by
W1/t′,t(Γ) the trace space of W1,t(O), and let W−1/t′,t′(Γ) be the dual of W1/t′,t(Γ) endowed with the
norms ‖ · ‖−1/t′,t′;Γ and ‖ · ‖1/t′,t;Γ, respectively. Furthermore, given a generic scalar functional space

S, we denote by S its vectorial version, examples of which are Lt(O) := [Lt(O)]n and W`,t(O) :=
[W`,t(O)]n. Finally, we employ C and c, with or without subscripts, bars, tildes or hats, to denote
generic positive constants independent of the discretisation parameters, which may take different
values at different places.

2 The continuous formulation

In this section we introduce and analyse a suitable weak formulation for (1.3). To this end, we first
collect some results that will be employed later on, first to derive the right spaces of the continuous
formulation, and then to prove some of the inf-sup conditions required along the analysis.

2.1 Preliminary results

We begin by recalling from [39] a theorem that establishes the W1,r(Ω)-solvability, with r in a suitable
range contained in (1,+∞), of the Poisson equation with Neumann boundary conditions.

Theorem 2.1 Let Ω be as stated at the beginning of Section 1, and let g ∈ Lr(Ω), g ∈ Lr(Ω), and
gN ∈W−1/r,r(Γ), with r ∈ (1,+∞), such that g and gN satisfy the compatibility condition∫

Ω
g = 〈gN , 1〉Γ , (2.1)

where 〈·, ·〉Γ stands for the duality pairing between W−1/r,r(Γ) and W1/r,s(Γ), and s ∈ (1,+∞) is the
conjugate of r, that is 1

r + 1
s = 1. Then, for each r ∈ [4/3, 4] when n = 2, and for each r ∈ [3/2, 3]

when n = 3, there exists u ∈W1,r(Ω), unique up to a constant, such that

∆u = g + div(g) in Ω ,
(
∇u− g

)
· ν = gN on Γ . (2.2)
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Moreover, there exists a constant C > 0, depending only on n, r, and Ω, such that

|u|1,r;Ω ≤ C
{
‖g‖0,r;Ω + ‖g‖0,r;Ω + ‖gN‖−1/r,r;Γ

}
. (2.3)

Proof. It follows by applying [39, Theorem 1.2] to the particular case of the Laplacian operator, and
by restricting the full ranges provided for r, which are (4/3−ε, 4+ε) and (3/2−ε, 3+ε) for n = 2 and
n = 3, respectively, with a constant ε > 0 that arises from the proof, to the present closed intervals.

�

In particular, defining for each r in the ranges specified by Theorem 2.1 the space

W̃1,r(Ω) :=
{
v ∈W1,r(Ω) :

∫
Ω
v = 0

}
, (2.4)

we deduce that there exists a unique u ∈ W̃1,r(Ω) solution of (2.2). Moreover, since ‖ · ‖1,r;Ω and

| · |1,r;Ω are equivalent in W̃1,r(Ω), which follows from the generalised Poincaré inequality (cf. [46,
Theorems 5.11.2 and 5.11.3]), the a priori estimate (2.3) becomes

‖u‖1,r;Ω ≤ Cr

{
‖g‖0,r;Ω + ‖g‖0,r;Ω + ‖gN‖−1/r,r;Γ

}
, (2.5)

with a constant Cr > 0 depending only on n, r, and Ω, as well. In addition, the corresponding weak
formulation of (2.2) reduces to: Find u ∈ W̃1,r(Ω) such that∫

Ω
∇u · ∇v =

∫
Ω

g · ∇v −
∫

Ω
g v + 〈gN , v〉Γ ∀ v ∈W1,s(Ω) . (2.6)

In this regard, we notice that actually there is no need to impose the foregoing testing against constant
functions v since, in doing so, and thanks to the compatibility condition (2.1), both sides of (2.6) are

nullified. Hence, according to the decomposition W1,s(Ω) = W̃1,s(Ω) ⊕ R, we conclude that (2.6) is
equivalent to stating∫

Ω
∇u · ∇v =

∫
Ω

g · ∇v −
∫

Ω
g v + 〈gN , v〉Γ ∀ v ∈ W̃1,s(Ω) .

Now, it is important to stress that r lies in the ranges indicated in the statement of Theorem 2.1 if
and only if s does as well, and therefore the conclusion of that theorem and the above discussion on
the respective weak formulations, remain valid if r and s are swapped.

Furthermore, given an arbitrary t ∈ (1,+∞), we define for each z ∈ Lt(Ω) the function

Jt(z) :=

{
|z|t−2 z if z 6= 0 ,

0 otherwise ,
(2.7)

and establish next the mapping properties of the resulting operators Jt.

Lemma 2.2 Let r, s ∈ (1,+∞) such that 1
r + 1

s = 1. Then, for each z ∈ Lr(Ω) there hold

zs := Jr(z) ∈ Ls(Ω) , z = Js(zs) , and (2.8a)∫
Ω

z · zs = ‖z‖r0,r;Ω = ‖zs‖s0,s;Ω = ‖z‖0,r;Ω ‖zs‖0,s;Ω , (2.8b)

so that Jr : Lr(Ω)→ Ls(Ω) and Js : Ls(Ω)→ Lr(Ω) become bijective and inverse to each other.
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Proof. It follows straightforwardly from (2.7) and simple algebraic manipulations. �

Next, we recall two integration by parts formulae that will be employed later on, for which, given
r ∈ (1,+∞), we first introduce the Banach spaces

H(divr; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lr(Ω)

}
, (2.9a)

Hr(divr; Ω) :=
{
τ ∈ Lr(Ω) : div(τ ) ∈ Lr(Ω)

}
, (2.9b)

which are endowed with the natural norms defined, respectively, as

‖τ‖divr;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,r;Ω ∀ τ ∈ H(divr; Ω) , (2.10a)

‖τ‖r,divr;Ω := ‖τ‖0,r;Ω + ‖div(τ )‖0,r;Ω ∀ τ ∈ Hr(divr; Ω) . (2.10b)

Then, proceeding as in [35, eq. (1.43), Section 1.3.4] (see also [17, Section 4.1], [22, Section 3.1]), one
can prove that for each r ≥ 2n

n+2 there holds

〈τ · ν, v〉 =

∫
Ω

{
τ · ∇v + v div(τ )

}
∀ (τ , v) ∈ H(divr; Ω)×H1(Ω) , (2.11)

where 〈·, ·〉 stands for the duality pairing between H−1/2(Γ) and H1/2(Γ). In turn, given r, s ∈ (1,+∞)
such that 1

r + 1
s = 1, there also holds (cf. [32, Corollary B. 57])

〈τ · ν, v〉Γ =

∫
Ω

{
τ · ∇v + v div(τ )

}
∀ (τ , v) ∈ Hr(divr; Ω)×W1,s(Ω) , (2.12)

where, as indicated in the statement of Theorem 2.1, 〈·, ·〉Γ stands for the duality pairing between
W−1/r,r(Γ) and W1/r,s(Γ).

On the other hand, the following lemma introduces a suitable operator mapping Ls(Ω) into itself.

Lemma 2.3 Let r, s ∈ (1,+∞) such that 1
r + 1

s = 1, with r (and hence s) satisfying the ranges given
by Theorem 2.1. Then there exists a linear and bounded operator Ds : Ls(Ω)→ Ls(Ω) such that

div
(
Ds(w)

)
= 0 in Ω and Ds(w) · ν = 0 on Γ ∀w ∈ Ls(Ω) . (2.13)

In addition, for each z ∈ Lr(Ω) such that div(z) = 0 in Ω and z · ν = 0 on Γ, there holds∫
Ω

z ·Ds(w) =

∫
Ω

z ·w ∀w ∈ Ls(Ω) . (2.14)

Proof. Given w ∈ Ls(Ω), we let u ∈ W̃1,s(Ω) (cf. (2.4)) be the unique solution of problem (2.2) with
g = 0, g = w, and gN = 0, that is:

∆u = div(w) in Ω ,
(
∇u−w

)
· ν = 0 on Γ ,

∫
Ω
u = 0 . (2.15)

Then, the continuous dependence result of (2.15) (cf. (2.5)) guarantees the existence of a constant
Cs > 0 such that ‖u‖1,s;Ω ≤ Cs ‖w‖0,s;Ω, and hence, defining Ds(w) := w − ∇u ∈ Ls(Ω), we have
that Ds is clearly linear and satisfies

‖Ds(w)‖0,s;Ω ≤
(
1 + Cs

)
‖w‖0,s;Ω ,

which shows that Ds is bounded. In addition, it is readily seen from (2.15) that Ds(w) satisfies the
required conditions in (2.13). Moreover, given z as indicated in the statement of the lemma, the
integration by parts formula (2.12) applied to z ∈ Hr(divr; Ω) and u ∈W1,s(Ω), yields∫

Ω
z · ∇u = −

∫
Ω
u div(z) + 〈z · ν, u〉Γ = 0 ,

whence (2.14) is obtained, thus completing the proof. �

6



2.2 The fully-mixed formulation

We begin by testing the first equation of the second row of (1.3) against a vector function τ , which
formally yields ∫

Ω
σ · τ − κ

∫
Ω
∇ϕ · τ +

∫
Ω
ϕu · τ = 0 . (2.16)

Then, using the Cauchy-Schwarz and Hölder inequalities, we find that for all ` ,  ∈ (1,+∞) such that
1
` + 1

 = 1, there holds ∣∣∣∣∫
Ω
ϕu · τ

∣∣∣∣ ≤ ‖ϕ‖0,2`;Ω ‖u‖0,2;Ω ‖τ‖0,Ω , (2.17)

which shows that the third term on the left hand side of (2.16) makes sense for ϕ ∈ L2`(Ω), u ∈ L2(Ω),
and τ ∈ L2(Ω). Then, knowing where τ lives, the first and second terms on the left hand side of
(2.16) are finite if σ ∈ L2(Ω) and ∇ϕ ∈ L2(Ω), respectively. In addition, in order to be able to apply
(2.11) to τ and ϕ, so that we obtain∫

Ω
∇ϕ · τ = −

∫
Ω
ϕdiv(τ ) + 〈τ · ν, ϕ〉 = −

∫
Ω
ϕdiv(τ ) , (2.18)

with τ ·ν ∈ H−1/2(Γ) and 〈·, ·〉 denoting the duality pairing between H−1/2(Γ) and H1/2(Γ), it suffices
to assume that div(τ ) ∈ L(2`)′(Ω), where (2`)′ := 2`

2`−1 is the conjugate of 2`, and that H1(Ω) is

continuously embedded in L2`(Ω). The later is guaranteed for 2` ∈ [1,+∞) when n = 2, which is
always satisfied, and for 2` ∈ [1, 6] when n = 3 (cf. [32, Corollary B.43]). On the other hand, since
Theorem 2.1 will be applied later on to r = 2 or r = (2)′, which will be required to establish some
continuous inf-sup conditions, we need that 2 lies in the corresponding ranges specified there, that
is 2 ≤ 4 when n = 2, and 2 ≤ 3 when n = 3 (note that the respective lower bounds are already
satisfied). Then, it is readily seen that 2 ≤ 4 (respectively 2 ≤ 3) if and only if 2` = 2

−1 ≥ 4

(respectively 2` = 2
−1 ≥ 6). Thus, from the restrictions on 2` when n = 3, we deduce that there must

hold 2` = 6, which yields 2 = 3, (2`)′ = 6/5, and (2)′ = 3/2, so that defining

ρ = 2` , % = (2`)′ , r = 2 , and s = (2)′ , (2.19)

we find that the only possible setting for the 3D case is

(ρ, %) := (6, 6/5) and (r, s) := (3, 3/2) . (2.20)

In turn, noting that 2` ≥ 4 is the only restriction on 2` when n = 2, at this point we do not consider
any particular choice and continue our analysis with a generic value for `, and hence (cf. (2.19)) for ρ,
%, r and s as well. We just observe that, being (ρ, %) and (r, s) pairs of conjugate to each other with
ρ, r > 2, there necessarily holds %, s ∈ (1, 2). In addition, it is readily seen that ρ > r when ρ > 4.
According to the above discussion, from now on we look for ϕ ∈ Lρ(Ω) and u ∈ Lr(Ω), whereas the
test function τ ∈ L2(Ω) is such that div(τ ) ∈ L%(Ω). Later on in Section 4.7, and in order to complete
our discrete analysis, we will impose a sharper range for s.

Next, replacing the resulting expression from (2.18) into (2.16), and taking into account the defini-
tion (2.9a), we arrive at∫

Ω
σ · τ + κ

∫
Ω
ϕdiv(τ ) +

∫
Ω
ϕu · τ = 0 ∀ τ ∈ H(div%; Ω) . (2.21)
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Furthermore, testing now the second equation of the second row of (1.3) against ψ ∈ Lρ(Ω), which
implicitly imposes the unknown σ to live in H(div%; Ω), assuming that the datum f ∈ L%(Ω), and
multiplying by the constant κ, we obtain

κ

∫
Ω
ψ div(σ) = −κ

∫
Ω
f ψ ∀ψ ∈ Lρ(Ω) . (2.22)

Therefore, given u ∈ Lr(Ω), and setting

H := H(div%; Ω) and Q := Lρ(Ω) , (2.23)

the weak formulation of the convection diffusion model reduces to (2.21) and (2.22), that is: Find
(σ, ϕ) ∈ H×Q such that

a(σ, τ ) + b(τ , ϕ) +

∫
Ω
ϕu · τ = 0 ∀ τ ∈ H ,

b(σ, ψ) = −κ
∫

Ω
f ψ ∀ψ ∈ Q ,

(2.24)

where a : H×H→ R and b : H×Q→ R are the bilinear forms defined by

a(ζ, τ ) :=

∫
Ω
ζ · τ ∀ (ζ, τ ) ∈ H×H , (2.25a)

b(τ , ψ) := κ

∫
Ω
ψ div(τ ) ∀ (τ , ψ) ∈ H×Q . (2.25b)

It is easily seen that a and b are bounded with respect to the usual norms of H := H(div%; Ω) (cf.
(2.10a)) and Q := Lρ(Ω), and that the corresponding boundedness constants are

‖a‖ = 1 and ‖b‖ = κ . (2.26)

On the other hand, knowing already that u must belong to Lr(Ω), and bearing in mind the incom-
pressibility and boundary conditions, we introduce appropriate trial and test spaces

X2 = Hr
0(divr; Ω) :=

{
w ∈ Hr(divr; Ω) : w · ν = 0 on Γ

}
, (2.27a)

X1 = Hs
0(divs; Ω) :=

{
v ∈ Hs(divs; Ω) : v · ν = 0 on Γ

}
, (2.27b)

which are endowed with the corresponding norms defined by (2.10b). Indeed, given ϕ ∈ Lρ(Ω), and
assuming that the datum f lies in Lr(Ω), we test the first equation of the first row of (1.3) against
v ∈ X1, so that applying (2.12) to v ∈ Hs(divs; Ω) and p ∈W1,r(Ω), we obtain∫

Ω
µ(ϕ) u · v −

∫
Ω
p div(v) =

∫
Ω

f · v ∀v ∈ X1 . (2.28)

We notice here that the resulting second term on the left hand side of (2.28) vanishes when p is
constant, and hence for sake of uniqueness of solution, the pressure unknown is sought from now on
in the space

M1 := Lr0(Ω) :=
{
q ∈ Lr(Ω) :

∫
Ω
q = 0

}
.

In connection to the above, and thanks to the decomposition Ls(Ω) = Ls0(Ω) ⊕ R and the boundary
condition satisfied by u, we realise that testing the incompressibility condition (second equation of the
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first row of (1.3)) against q ∈ Ls(Ω) is equivalent to doing it against q ∈ Ls0(Ω), so that the associated
test space is set as M2 := Ls0(Ω). Consequently, the weak formulation of Darcy’s problem reads: Find
(u, p) ∈ X2 ×M1 such that

aϕ(u,v) + b1(v, p) =

∫
Ω

f · v ∀v ∈ X1 ,

b2(u, q) = 0 ∀ q ∈M2 ,

(2.29)

where, given ψ ∈ Lρ(Ω), aψ : X2 ×X1 → R, b1 : X1 ×M1 → R and b2 : X2 ×M2 → R are the bilinear
forms defined as

aψ(w,v) :=

∫
Ω
µ(ψ) w · v ∀ (w,v) ∈ X2 ×X1 , (2.30a)

bi(v, q) := −
∫

Ω
q div(v) ∀ (v, q) ∈ Xi ×Mi , ∀ i ∈

{
1, 2
}
. (2.30b)

Similarly as for a and b, we observe that, under the assumptions on µ (cf. (1.2)), aψ is bounded
with boundedness constant ‖aψ‖ = µ2 for all ψ ∈ Lρ(Ω), and b1 and b2 are bounded as well with
‖b1‖ = ‖b2‖ = 1.

We summarise the previous discussion by stating from (2.24) and (2.29) the weak formulation of
the whole coupled problem (1.3): Find (σ, ϕ) ∈ H×Q and (u, p) ∈ X2 ×M1 such that

a(σ, τ ) + b(τ , ϕ) +

∫
Ω
ϕu · τ = 0 ∀ τ ∈ H ,

b(σ, ψ) = −κ
∫

Ω
f ψ ∀ψ ∈ Q ,

aϕ(u,v) + b1(v, p) =

∫
Ω

f · v ∀v ∈ X1 ,

b2(u, q) = 0 ∀ q ∈M2 .

(2.31)

2.3 The fixed point strategy

In this section we follow similar approaches developed in, e.g., [7, 22, 36, 37], and make use of the
variational formulations (2.24) and (2.29) to introduce a fixed-point strategy addressing the solvability
of (2.31). Indeed, we first let T̃ : Lρ(Ω) → X2 ×M1 be the operator defined for each ψ ∈ Lρ(Ω) as
T̃ (ψ) = (T̃1(ψ), T̃2(ψ)) := (ũ, p̃), where (ũ, p̃) ∈ X2 ×M1 is the unique solution (to be confirmed
below) of (2.29) with ψ instead of ϕ, that is

aψ(ũ,v) + b1(v, p̃) =

∫
Ω

f · v ∀v ∈ X1 ,

b2(ũ, q) = 0 ∀ q ∈M2 .
(2.32)

In turn, we let T̂ : Lr(Ω) → H × Q be the operator defined for each w ∈ Lr(Ω) as T̂ (w) =
(T̂1(w), T̂2(w)) := (σ̂, ϕ̂), where (σ̂, ϕ̂) ∈ H × Q is the unique solution (to be confirmed below as
well) of (2.24) with w instead of u, that is

a(σ̂, τ ) + b(τ , ϕ̂) +

∫
Ω
ϕ̂w · τ = 0 ∀ τ ∈ H ,

b(σ̂, ψ) = −κ
∫

Ω
f ψ ∀ψ ∈ Q ,

(2.33)
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Thus, defining the composite operator T : Lr(Ω)→ Lr(Ω) as

T (w) := T̃1

(
T̂2(w)

)
∀w ∈ Lr(Ω) , (2.34)

we notice that solving (2.31) is equivalent to seeking a fixed point of T , that is u ∈ Lr(Ω) such that

T (u) = u . (2.35)

We end this section by remarking that the above setting certainly requires that both operators T̃
and T̂ be well defined, that is that the uncoupled problems (2.32) and (2.33) be well-posed, which is
precisely the main goal of the following section.

2.4 Well-posedness of the uncoupled problems

2.4.1 Preliminary abstract results

In this section we recall two abstract results that will be applied in what follows. The first one is the
classical Babuška-Brezzi theorem, but in Banach spaces.

Theorem 2.4 Let H1, H2, Q1, and Q2 be real reflexive Banach spaces, and let a : H2 × H1 → R
and bi : Hi ×Qi → R, i ∈ {1, 2}, be bounded bilinear forms with boundedness constants given by ‖a‖
and ‖bi‖, i ∈ {1, 2}, respectively. In addition, for each i ∈ {1, 2}, let Ki be the kernel of the operator
induced by bi, that is

Ki :=
{
v ∈ Hi : bi(v, q) = 0 ∀ q ∈ Qi

}
.

Assume that

i) there exists α > 0 such that

sup
v∈K1
v 6=0

a(w, v)

‖v‖H1

≥ α ‖w‖H2 ∀w ∈ K2 ,

ii) there holds
sup
w∈K2

a(w, v) > 0 ∀ v ∈ K1 , v 6= 0 ,

iii) for each i ∈ {1, 2} there exists βi > 0 such that

sup
v∈Hi
v 6=0

bi(v, q)

‖v‖Hi
≥ βi ‖q‖Qi ∀ q ∈ Qi .

Then, for each (F,G) ∈ H ′1 ×Q′2 there exists a unique (u, p) ∈ H2 ×Q1 such that

a(u, v) + b1(v, p) = F (v) ∀ v ∈ H1 ,

b2(u, q) = G(q) ∀ q ∈ Q2 ,
(2.36)

and the following a priori estimates hold:

‖u‖H2 ≤
1

α
‖F‖H′1 +

1

β2

(
1 +
‖a‖
α

)
‖G‖Q′2 ,

‖p‖Q1 ≤
1

β1

(
1 +
‖a‖
α

)
‖F‖H′1 +

‖a‖
β1 β2

(
1 +
‖a‖
α

)
‖G‖Q′2 .

(2.37)

Moreover, i), ii), and iii) are also necessary conditions for the well-posedness of (2.36).
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Proof. See [8, Theorem 2.1, Corollary 2.1, Section 2.1] for details. In turn, for the particular case
given by H1 = H2, Q1 = Q2, and b1 = b2, we also refer to [32, Theorem 2.34]. �

We stress here that, instead of the pair of assumptions given by i) and ii), one could consider the
equivalent one arising after exchanging there the roles of K1 and K2 (cf. [8, eqs. (2.10) and (2.11)]).
Furthermore, it is important to remark that (2.37) is equivalent to an inf-sup condition for the bilinear
form arising after adding the left hand sides of (2.36), which means that there exists a constant C > 0,
depending only on α, β1, β2, and ‖a‖, such that

sup
(v,q)∈H1×Q2

(v,q)6=0

a(u, v) + b1(v, p) + b2(u, q)

‖(v, q)‖H1×Q2

≥ C ‖(u, p)‖H2×Q1 ∀ (u, p) ∈ H2 ×Q1 . (2.38)

The second result is given by the Banach-Nečas-Babuška Theorem (also know as the generalised
Lax-Milgram Lemma), which is stated as follows.

Theorem 2.5 Let H and Q be Banach spaces such that Q is reflexive, and let A : H ×Q −→ R be a
bounded bilinear form. Assume that

i) there exists α > 0 such that

sup
v∈Q
v 6=0

A(w, v)

‖v‖Q
≥ α ‖w‖H ∀w ∈ H ,

ii) there holds
sup
w∈H

A(w, v) > 0 ∀ v ∈ Q, v 6= 0 .

Then, for each F ∈ Q′ there exists a unique u ∈ H such that

A(u, v) = F (v) ∀ v ∈ Q , (2.39)

and the following a priori estimate holds

‖u‖H ≤
1

α
‖F‖Q′ . (2.40)

Moreover, i) and ii) are also necessary conditions for the well-posedness of (2.39).

Proof. See [32, Theorems 2.6] �

2.4.2 Well-definedness of the operator T̃

In order to prove that the operator T̃ is well-defined, we plan to employ some of the preliminary results
provided in Section 2.1, and then apply Theorem 2.4. To this end, we first let Ki, i ∈ {1, 2}, be the
kernel of the bilinear form bi (cf. (2.30b)), that is

Ki :=
{

v ∈ Xi : bi(v, q) = 0 ∀ q ∈Mi

}
,

which, according to the definitions of X1 (cf. (2.27b)), X2 (cf. (2.27a)), and bi (cf. (2.30b)), yields

K1 :=
{

v ∈ Hs
0(divs; Ω) : div(v) = 0 in Ω

}
, (2.41a)

K2 :=
{

w ∈ Hr
0(divr; Ω) : div(w) = 0 in Ω

}
. (2.41b)

Then, we have the following continuous inf-sup conditions.
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Lemma 2.6 There exists α̃ > 0 such that for each ψ ∈ Lρ(Ω) there hold

sup
v∈K1
v 6=0

aψ(w,v)

‖v‖X1

≥ α̃ ‖w‖X2 ∀w ∈ K2 , (2.42a)

and
sup
w∈K2

aψ(w,v) > 0 ∀v ∈ K1 , v 6= 0 . (2.42b)

Proof. Given ψ ∈ Lρ(Ω), we first consider w ∈ K2 (cf. (2.41b)), w 6= 0. Then, recalling that s is
the conjugate exponent of r, we let ws := Js(w) ∈ Ls(Ω) as defined in (2.7) and Lemma 2.2, which
satisfies ∫

Ω
w ·ws = ‖w‖0,r;Ω ‖ws‖0,s;Ω .

Thus, applying the lower bound for µ (cf. (1.2)) and Lemma 2.3, we find that∣∣aψ(w, Ds(ws)
)∣∣ ≥ µ1

∫
Ω

w ·Ds(ws) = µ1

∫
Ω

w ·ws = µ1 ‖w‖0,r;Ω ‖ws‖0,s;Ω ,

and hence, using that Ds(ws) ∈ K1 (cf. Lemma 2.3 and (2.41a)), we deduce that

sup
v∈K1
v 6=0

aψ(w,v)

‖v‖X1

≥
∣∣aψ(w, Ds(ws))

∣∣
‖Ds(ws)‖X1

=

∣∣aψ(w, Ds(ws))
∣∣

‖Ds(ws)‖0,s;Ω
≥ µ1

‖Ds‖
‖w‖0,r;Ω =

µ1

‖Ds‖
‖w‖X2 ,

which proves (2.42a) with α̃ = µ1
‖Ds‖ . In turn, we now take v ∈ K1 (cf. (2.41a)), v 6= 0, and let

vr := Jr(v) ∈ Lr(Ω). In this way, employing again (1.2), Lemmas 2.2 and 2.3, and the fact that
Dr(vr) ∈ K2 (cf. (2.41b)), we obtain

sup
w∈K2

aψ(w,v) ≥ µ1

∫
Ω
Dr(vr) · v = µ1

∫
Ω

vr · v = µ1 ‖v‖s0,s;Ω > 0 ,

which shows (2.42b) and finishes the proof of the lemma. �

We now establish the continuous inf-sup conditions for the bilinear forms bi, i ∈ {1, 2}.

Lemma 2.7 There exist β̃1, β̃2 > 0 such that for each i ∈ {1, 2} there holds

sup
v∈Xi
v 6=0

bi(v, q)

‖v‖Xi
≥ β̃i ‖q‖Mi ∀ q ∈Mi . (2.43)

Proof. It suffices to prove for i = 1, since the proof for i = 2 follows verbatim by exchanging the roles
of r and s. We begin by stressing that (2.7) and Lemma 2.2 are certainly valid for the corresponding
scalar version of the operator Jt, t ∈ (1,+∞), which we use next. In fact, given q ∈M1 = Lr0(Ω), we

first set qs := Jr(q) ∈ Ls(Ω) and q0
s := qs − 1

|Ω|
∫

Ω qs ∈ Ls0(Ω), and then let u ∈ W̃1,s(Ω) be the unique

solution of problem (2.2) with g = q0
s , g = 0, and gN = 0, that is:

∆u = q0
s in Ω , ∇u · ν = 0 on Γ ,

∫
Ω
u = 0 . (2.44)

Then, the continuous dependence result for (2.44) (cf. (2.5)) implies the existence of a constant
Cs > 0 such that ‖u‖1,s;Ω ≤ Cs ‖q0

s‖0,s;Ω. In turn, there also exists a constant C̃s > 0 such that
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‖q0
s‖0,s;Ω ≤ C̃s ‖qs‖0,s;Ω. Next, defining v̄ := −∇u ∈ Ls(Ω), we have that div(v̄) = − q0

s in Ω and
v̄ · ν = 0 on Γ, whence v̄ ∈ X1 (cf. (2.27b)) and

‖v̄‖X1 = ‖v̄‖s,divs;Ω ≤ (1 + Cs) ‖q0
s‖0,s;Ω ≤ (1 + Cs)C̃s ‖qs‖0,s;Ω .

In this way, using that
∫

Ω q q
0
s =

∫
Ω q qs, it follows that

sup
v∈X1
v 6=0

b1(v, q)

‖v‖X1

≥ b1(v̄, q)

‖v̄‖X1

=

∫
Ω
q qs

‖v̄‖X1

=
‖q‖0,r;Ω ‖qs‖0,s;Ω

‖v̄‖X1

≥
(
(1 + Cs)C̃s

)−1 ‖q‖0,r;Ω ,

which proves (2.43) for i = 1 with β̃1 =
(
(1 +Cs)C̃s

)−1
. As stated at the beginning of this proof, the

inf-sup condition for b2 is proved by taking now q ∈ M2 = Ls0(Ω), setting qr := Js(q) ∈ Lr(Ω) and

q0
r := qr − 1

|Ω|
∫

Ω qr ∈ Lr0(Ω), and then letting u ∈ W̃1,r(Ω) be the unique solution of problem (2.2)

with g = q0
r , g = 0, and gN = 0. We omit further details. �

Next, we let F ∈ X ′1 be the functional given by the right hand side of the first equation of (2.32),

that is F (v) :=

∫
Ω

f · v ∀v ∈ X1, which satisfies ‖F‖X′1 ≤ ‖f‖0,r;Ω. Then, we have the following

result establishing that the operator T̃ (cf. (2.32)) is well defined.

Theorem 2.8 For each ψ ∈ Lρ(Ω) there exists a unique (ũ, p̃) = T̃ (ψ) ∈ X2 ×M1 solution to (2.32).
Moreover, there hold

‖T̃1(ψ)‖X2 = ‖ũ‖X2 ≤
1

α̃
‖f‖0,r;Ω and

‖T̃2(ψ)‖M1 = ‖p̃‖M1 ≤
1

β̃1

(
1 +

µ2

α̃

)
‖f‖0,r;Ω .

(2.45)

Proof. Thanks to Lemmas 2.6 and 2.7, and bearing in mind that the bilinear forms aψ, for each
ψ ∈ Lρ(Ω), b1, and b2 are all bounded, as well as that X1, X2, M1, and M2 are all reflexive Banach
spaces, the proof reduces simply to a straightforward application of Theorem 2.4. In particular, the a
priori estimates provided by (2.45) follow from (2.37), the upper bound for ‖F‖X′1 indicated previously
and the fact that the right hand side of the second row of (2.32) is the null functional. �

2.4.3 Well-definedness of the operator T̂

In this section we use a suitable combination of Theorems 2.4 and 2.5 to prove that the operator T̂ is
well-defined. More precisely, we first apply Theorem 2.4 to a perturbation of (2.33), and then employ
Theorem 2.5 to conclude that the whole problem (2.33) is well-posed. To this end, we begin by letting
V be the null space of the operator induced by the bilinear form b, that is

V :=
{
τ ∈ H : b(τ , ψ) = 0 ∀ψ ∈ Q} ,

which, according to the definitions of b (cf. (2.25b)) and the spaces H and Q (cf. (2.23)), yields

V :=
{
τ ∈ H(div%; Ω) : div(τ ) = 0

}
.

Then, it is straightforward to see from the definitions of a (cf. (2.25a)) and the norm of H(div%; Ω)
(cf. (2.10a)) that there holds

a(τ , τ ) = ‖τ‖2div%;Ω ∀ τ ∈ V , (2.46)
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from which one easily deduces that a satisfies the assumptions i) and ii) of Theorem 2.4, the first one
with constant α̂ = 1.

Furthermore, we prove now that the bilinear form b verifies the assumption iii) of Theorem 2.4.
Indeed, while the corresponding proof is basically already available in the literature (see, e.g. [16,
Lemma 3.4], [17, Lemma 2.1], and [36, Lemma 3.5]), we provide it anyway next for sake of completeness
of the presentation.

Lemma 2.9 There exists β̂ > 0, depending only on Ω, such that

sup
τ∈H
τ 6=0

b(τ , ψ)

‖τ‖H
≥ β̂ ‖ψ‖Q ∀ψ ∈ Q . (2.47)

Proof. We begin by using again the scalar version of the operator Jt, t ∈ (1,+∞), for which (2.7)
and Lemma 2.2 are valid as well. In fact, given ψ ∈ Q := Lρ(Ω), we set ψ% := Jρ(ψ) ∈ L%(Ω), which
satisfies ∫

Ω
ψ ψ% = ‖ψ‖0,ρ:Ω ‖ψ%‖0,%:Ω . (2.48)

Then, we consider the boundary value problem

−∆w = ψ% in Ω , w = 0 on Γ , (2.49)

whose variational formulation, which follows from (2.11) applied to ∇w ∈ H(div%; Ω) and z ∈ H1
0(Ω),

becomes: Find w ∈ H1
0(Ω) such that∫

Ω
∇w · ∇z =

∫
Ω
ψ% z ∀ z ∈ H1

0(Ω) . (2.50)

We remark that, thanks to Hölder’s inequality and the continuous injection iρ : H1(Ω) → Lρ(Ω), the
right hand side of (2.50) defines a functional in H1

0(Ω)′. Consequently, a straightforward application
of the classical Lax-Milgram Lemma implies the existence of a unique w ∈ H1

0(Ω) solution to (2.50)
(equivalently to (2.49)). Moreover, it follows from (2.50) that

|w|1,Ω ≤ cP ‖iρ‖ ‖ψ%‖0,%;Ω , (2.51)

where cP is the positive constant, depending only on Ω, that establishes that ‖v‖1,Ω ≤ cP |v|1,Ω for
all v ∈ H1

0(Ω), also known as the Poincaré inequality. Then, defining τ̃ := −∇w ∈ L2(Ω), we notice
that div(τ̃ ) = ψ% in Ω, which says that actually τ̃ ∈ H(div%; Ω) (cf. (2.9a)), and then, using (2.51),
we get

‖τ̃‖div%;Ω = ‖τ̃‖0,Ω + ‖div(τ̃ )‖0,%;Ω = |w|1,Ω + ‖ψ%‖0,%;Ω ≤
(
1 + cP ‖iρ‖

)
‖ψ%‖0,%;Ω . (2.52)

In this way, employing now (2.48), we find that

sup
τ∈H
τ 6=0

b(τ , ψ)

‖τ‖H
≥ b(τ̃ , ψ)

‖τ̃‖div%;Ω
=

∫
Ω
ψ ψ%

‖τ̃‖div%;Ω
=
‖ψ‖0,ρ:Ω ‖ψ%‖0,%:Ω

‖τ̃‖div%;Ω
, (2.53)

which, together with (2.52), yields (2.47) with β̂ :=
(
1 + cP ‖iρ‖

)−1
.

�
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We now let A :
(
H × Q

)
×
(
H × Q

)
→ R be the bounded bilinear form arising from (2.33) after

adding the left hand sides of the equations, but without including the term depending on the given
w, that is

A
(
(ζ, φ), (τ , ψ)

)
:= a(ζ, τ ) + b(τ , φ) + b(ζ, ψ) (2.54)

for all (ζ, φ), (τ , ψ) ∈ H×Q. Note that the boundedness of A follows from those of a and b (cf. (2.26)).
Then, denoting by A ∈ L

(
H×Q, (H×Q)′

)
the operator induced by A, and knowing from (2.46) and

Lemma 2.9 that a and b satisfy the hypotheses of Theorem 2.4 with H1 = H2 = H, Q1 = Q2 = Q, and
b1 = b2 = b, we conclude from a straightforward application of this abstract result that A is bijective.
Moreover, it follows from (2.38) that A satisfies a global inf-sup condition on H×Q, which means that
there exists a positive constant α

T̂
, depending only on α̂, β̂, and ‖a‖, such that

sup
(τ ,ψ)∈H×Q

(τ ,ψ) 6=0

A
(
(ζ, φ), (τ , ψ)

)
‖(τ , ψ)‖H×Q

≥ α
T̂
‖(ζ, φ)‖H×Q ∀ (ζ, φ) ∈ H×Q . (2.55)

Next, we let Aw :
(
H×Q

)
×
(
H×Q

)
→ R be the bounded bilinear form that results after adding the

full left hand sides of the equations of (2.33), that is

Aw

(
(ζ, φ), (τ , ψ)

)
:= A

(
(ζ, φ), (τ , ψ)

)
+

∫
Ω
φw · τ (2.56)

for all (ζ, φ), (τ , ψ) ∈ H × Q. We remark that the boundedness of Aw follows from that of A and
the estimate (2.17). Furthermore, the formulation (2.33) can be rewritten, equivalently, as: Find
(σ̂, ϕ̂) ∈ H×Q such that

Aw

(
(σ̂, ϕ̂), (τ , ψ)

)
= G

(
(τ , ψ)

)
∀ (τ , ψ) ∈ H×Q , (2.57)

where G ∈ (H×Q)′ is defined as

G
(
(τ , ψ)

)
:= −κ

∫
Ω
f ψ ∀ (τ , ψ) ∈ H×Q . (2.58)

Then, it follows from (2.56), (2.55), and (2.17) that

sup
(τ ,ψ)∈H×Q

(τ ,ψ)6=0

Aw

(
(ζ, φ), (τ , ψ)

)
‖(τ , ψ)‖H×Q

≥ α
T̂
‖(ζ, φ)‖H×Q − ‖φ‖0,ρ;Ω ‖w‖0,r;Ω

≥
{
α
T̂
− ‖w‖0,r;Ω

}
‖(ζ, φ)‖H×Q ∀ (ζ, φ) ∈ H×Q ,

and hence, assuming that ‖w‖0,r;Ω ≤
α
T̂

2
, we arrive at

sup
(τ ,ψ)∈H×Q

(τ ,ψ) 6=0

Aw

(
(ζ, φ), (τ , ψ)

)
‖(τ , ψ)‖H×Q

≥
α
T̂

2
‖(ζ, φ)‖H×Q ∀ (ζ, φ) ∈ H×Q . (2.59)

Analogously, noting that A is symmetric, and employing again (2.55) and (2.17), we find that

sup
(ζ,φ)∈H×Q

(ζ,φ)6=0

Aw

(
(ζ, φ), (τ , ψ)

)
‖(ζ, φ)‖H×Q

≥ α
T̂
‖(τ , ψ)‖H×Q − ‖τ‖0,Ω ‖w‖0,r;Ω

≥
{
α
T̂
− ‖w‖0,r;Ω

}
‖(τ , ψ)‖H×Q ∀ (τ , ψ) ∈ H×Q ,
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from which, under the same assumption ‖w‖0,r;Ω ≤
α
T̂

2
, we obtain

sup
(ζ,φ)∈H×Q

(ζ,φ)6=0

Aw

(
(ζ, φ), (τ , ψ)

)
‖(ζ, φ)‖H×Q

≥
α
T̂

2
‖(τ , ψ)‖H×Q ∀ (τ , ψ) ∈ H×Q . (2.60)

Thanks to the foregoing analysis, we are in position to establish next that the operator T̂ (cf. (2.33))
is well-defined.

Theorem 2.10 For each w ∈ Lr(Ω) such that ‖w‖0,r;Ω ≤
α
T̂

2
, there exists a unique (σ̂, ϕ̂) = T̂ (w) ∈

H×Q solution to (2.33) (equivalently (2.57)). Moreover, there holds

‖T̂ (w)‖H×Q = ‖σ̂‖div%;Ω + ‖ϕ̂‖0,ρ;Ω ≤
2

α
T̂

|κ| ‖f‖0,%;Ω . (2.61)

Proof. It is clear from (2.59) and (2.60) that Aw satisfies the hypotheses i) and ii) of Theorem 2.5,

the first one with α =
α
T̂

2
. Hence, bearing in mind that Q := Lρ(Ω) is a reflexive Banach space, the

proof reduces to a straightforward application of the aforementioned result. In particular, the a priori
estimate (2.61) follows from (2.40) and the fact that, according to (2.58) and Hölder’s inequality, there
holds ‖G‖ ≤ |κ| ‖f‖0,%;Ω. �

2.5 Solvability analysis

Knowing that the operators T̃ , T̂ , and hence T as well, are well defined, in this section we address the
solvability of the fixed point equation (2.35). To this end, in what follows we verify the hypotheses
of the respective Banach Theorem. We begin the analysis by establishing a sufficient condition under
which T maps a closed ball of Lr(Ω) into itself. Indeed, from now on we let

S :=
{

w ∈ Lr(Ω) : ‖w‖0,r;Ω ≤
α
T̂

2

}
. (2.62)

Then we have the following result.

Lemma 2.11 Assume that

‖f‖0,r;Ω ≤
α̃ α

T̂

2
. (2.63)

Then T (S) ⊆ S.

Proof. Given w ∈ S, we know from Theorem 2.10 that T̂ (w) is well defined. Then, using the a priori
estimate for T̃1 (cf. (2.45)) we have that

‖T (w)‖0,r;Ω ≤ ‖T (w)‖X2 = ‖T̃1

(
T̂ (w)

)
‖X2 ≤

1

α̃
‖f‖0,r;Ω ,

which, according to the assumption (2.63), yields T (w) ∈ S and ends the proof. �

Next, we aim to prove the continuity of T , which will follow from similar properties for the operators
T̂ and T̃ . We begin with the corresponding result for T̂ .

Lemma 2.12 There exists a positive constant L
T̂

, depending only on α
T̂

, such that

‖T̂ (w)− T̂ (z)‖H×Q ≤ L
T̂
|κ| ‖f‖0,%;Ω ‖w − z‖0,r;Ω ∀w, z ∈ S . (2.64)
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Proof. Given w, z ∈ S, we let T̂ (w) := (σ̂, ϕ̂) ∈ H × Q and T̂ (z) := (σ̄, ϕ̄) ∈ H × Q, which satisfy
(2.33) with w itself and with w = z, respectively. Then, subtracting the corresponding first and
second equations of these systems, we obtain

a(σ̂ − σ̄, τ ) + b(τ , ϕ̂− ϕ̄) =

∫
Ω

(
ϕ̄ z− ϕ̂w

)
· τ ∀ τ ∈ H ,

and
b(σ̂ − σ̄, ψ) = 0 ∀ψ ∈ Q ,

which, together with the definitions of A (cf. (2.54)) and Aw (cf. (2.56)), yield

A
(
(σ̂, ϕ̂)− (σ̄, ϕ̄), (τ , ψ)

)
=

∫
Ω

(
ϕ̄ z− ϕ̂w

)
· τ

and

Aw

(
(σ̂, ϕ̂)− (σ̄, ϕ̄), (τ , ψ)

)
= A

(
(σ̂, ϕ̂)− (σ̄, ϕ̄), (τ , ψ)

)
+

∫
Ω

(
ϕ̂− ϕ̄

)
w · τ

=

∫
Ω
ϕ̄
(
z−w

)
· τ ∀ (τ , ψ) ∈ H×Q .

In this way, applying the global inf-sup condition (2.59) to (ζ, φ) := (σ̂, ϕ̂) − (σ̄, ϕ̄), and then em-
ploying the foregoing identity and the Cauchy-Schwarz and Hölder inequalities, the latter with ` and
j conjugate to each other so that ρ = 2` and r = 2j, we find that

α
T̂

2
‖(σ̂, ϕ̂)− (σ̄, ϕ̄)‖H×Q ≤ sup

(τ ,ψ)∈H×Q

(τ ,ψ) 6=0

Aw

(
(σ̂, ϕ̂)− (σ̄, ϕ̄), (τ , ψ)

)
‖(τ , ψ)‖H×Q

= sup
(τ ,ψ)∈H×Q

(τ ,ψ)6=0

∫
Ω
ϕ̄
(
z−w

)
· τ

‖(τ , ψ)‖H×Q
≤ ‖ϕ̄‖0,ρ;Ω ‖w − z‖0,r;Ω ,

from which, using the bound for ‖ϕ̄‖0,ρ;Ω = ‖T̂2(z)‖0,ρ;Ω provided by (2.61), we arrive at (2.64) with

L
T̂

:=
4

α2
T̂

. �

On the other hand, in order to establish a continuity property for T̃ , we need further regularity
assumptions on the solutions of the problems defining the operators T̂ and T̃ . More precisely, from
now on we suppose that there exists ε ≥ n

ρ and constants Ĉε, C̃ε > 0, such that

(RA1) for each w ∈ S there holds T̂ (w) :=
(
T̂1(w), T̂2(w)

)
∈
(
Hε(Ω) ∩H

)
×Wε,ρ(Ω), and

‖T̂1(w)‖ε,Ω + ‖T̂2(w)‖ε,ρ;Ω ≤ Ĉε |κ| ‖f‖0,%;Ω , (2.65)

(RA2) for each φ ∈Wε,ρ(Ω) there holds T̃ (φ) :=
(
T̃1(φ), T̃2(φ)

)
∈
(
Wε,r(Ω) ∩X2

)
×
(
Wε,r(Ω) ∩M1

)
,

and
‖T̃1(φ)‖ε,r;Ω + ‖T̃2(φ)‖ε,r;Ω ≤ C̃ε ‖f‖0,r;Ω . (2.66)

The exact reason of the stipulated range for ε will be clarified along the subsequent analysis.
Furthermore, we recall that the embedding theorem between fractional Sobolev spaces (cf. [33, The-
orem 6, Section 5.6], [41, Theorem 1.4.5.2, part e)]) establishes that whenever rε < n there holds
Wε,r(Ω) ⊂ Lε

∗
(Ω), with continuous injection

iε : Wε,r(Ω)→ Lε
∗
(Ω) , where ε∗ =

nr

n− rε
. (2.67)
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Note that rε < n is compatible with ε ≥ n
ρ when ρ > 4 since in this case there holds ρ > r.

We are now in position of proving a continuity property for the first component T̃1 of T̃ , which,
together with the estimate given by Lemma 2.12, will allow us later on to show that the fixed point
operator T is Lipschitz continuous.

Lemma 2.13 There exists a positive constant L
T̃

, depending only on α̃, Lµ, ‖iε‖, C̃ε, |Ω|, n, ε, and
ρ, such that

‖T̃1(ψ)− T̃1(φ)‖X2 ≤ L
T̃
‖f‖0,r;Ω ‖ψ − φ‖0,ρ;Ω ∀ψ, φ ∈Wε,ρ(Ω) . (2.68)

Proof. Given ψ, φ ∈ Wε,ρ(Ω), we proceed similarly to the proof of Lemma 2.12 and let T̃ (ψ) :=
(ũ, p̃) ∈ X2 ×M1 and T̃ (φ) := (ū, p̄) ∈ X2 ×M1, which satisfy (2.32) with ψ itself and with ψ = φ,
respectively. Then, from the corresponding second equations of these systems we have that both ũ
and ū, and hence ũ− ū as well, belong to K2. In this way, applying the inf-sup condition (2.42a) to
the present ψ and to w = ũ− ū, we get

α̃ ‖ũ− ū‖X2 ≤ sup
v∈K1
v 6=0

aψ(ũ− ū,v)

‖v‖X1

, (2.69)

where, according to the respective first equations and the definition of aψ (cf. (2.30a)), we have

aψ(ũ− ū,v) =

∫
Ω

f · v − aψ(ū,v) = aφ(ū,v)− aψ(ū,v)

=

∫
Ω

{
µ(φ)− µ(ψ)

}
ū · v ∀v ∈ K1 .

(2.70)

Then, employing the Lipschitz-continuity of µ (cf. (1.2)), and applying Hölder’s inequality, first with
(r, s), and then with an arbitrary pair of conjugates to each other denoted by (`, j), we obtain from
(2.70) ∣∣aψ(ũ− ū,v)

∣∣ ≤ Lµ

∫
Ω
|ψ − φ| ‖ū‖ ‖v‖ ≤ Lµ ‖ψ − φ‖0,rj;Ω ‖ū‖0,r`;Ω ‖v‖0,s;Ω , (2.71)

which, replaced back into (2.69), gives

α̃ ‖ũ− ū‖X2 ≤ Lµ ‖ψ − φ‖0,rj;Ω ‖ū‖0,r`;Ω . (2.72)

Next, choosing ` such that r` = ε∗ (cf. (2.67)), we get ` = n
n−rε , which yields rj = r`

`−1 = n
ε , and

hence, recalling that ū = T̃1(φ), it follows from the foregoing inequality, the boundedness of iε (cf.
(2.67)), and the regularity estimate (2.66), that

α̃ ‖ũ− ū‖X2 ≤ Lµ ‖ψ − φ‖0,n/ε;Ω ‖T̃1(φ)‖0,ε∗;Ω ≤ Lµ ‖iε‖ ‖ψ − φ‖0,n/ε;Ω ‖T̃1(φ)‖ε,r;Ω

≤ Lµ ‖iε‖ C̃ε ‖f‖0,r;Ω ‖ψ − φ‖0,n/ε;Ω .
(2.73)

Finally, in order to bound ‖ψ − φ‖0,n/ε;Ω in terms of ‖ψ − φ‖0,ρ;Ω, it suffices to require that n
ε ≤ ρ,

that is ε ≥ n
ρ , which is precisely our assumption on ε for (RA1) and (RA2). Thus, a simple algebraic

computation shows that ‖ψ − φ‖0,n/ε;Ω ≤ |Ω|
ερ−n
ρn ‖ψ − φ‖0,ρ;Ω, which, together with (2.73), leads to

the required inequality (2.68) with L
T̃

:= α̃−1 Lµ ‖iε‖ C̃ε |Ω|
ερ−n
ρn . �
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We remark here that, while it is not necessary for the rest of our analysis, it is also possible to prove
the Lipschitz-continuity of T̃2. To this end, it suffices to apply the inf-sup condition for b1 (cf. (2.43)),
the first equation of the problem defining T̃ (cf. (2.32)), and Lemma 2.13.

Having proved Lemmas 2.12 and 2.13, we are able to establish now the Lipschitz-continuity of our
fixed point operator T in the closed ball S of Lr(Ω) (cf. (2.62)).

Lemma 2.14 There exists a positive constant LT , depending only on L
T̃

and L
T̂

, such that

‖T (w)− T (z)‖0,r;Ω ≤ LT ‖f‖0,r;Ω |κ| ‖f‖0,%;Ω ‖w − z‖0,r;Ω ∀w, z ∈ S . (2.74)

Proof. Given w, z ∈ S, we first observe, thanks to the regularity of T̂ (cf. (RA1)), that T̂2(w)
and T̂2(z) belong to Wε,ρ(Ω). Then, according to the definition of T (cf. (2.34)), and employing the
Lipschitz-continuity of T̃1 (cf. Lemma 2.13) and T̂2 (cf. Lemma 2.12), we deduce that

‖T (w)− T (z)‖0,r;Ω = ‖T̃1

(
T̂2(w)

)
− T̃1

(
T̂2(z)

)
‖0,r;Ω

≤ L
T̃
‖f‖0,r;Ω ‖T̂2(w)− T̂2(z)‖0,ρ;Ω

≤ L
T̃
‖f‖0,r;Ω LT̂ |κ| ‖f‖0,%;Ω ‖w − z‖0,r;Ω ,

which yields (2.74) with LT := L
T̃
L
T̂

. �

Consequently, the main result of this section is stated as follows.

Theorem 2.15 Assume (RA1), (RA2), and that the data satisfy

‖f‖0,r;Ω ≤
α̃ α

T̂

2
and LT ‖f‖0,r;Ω |κ| ‖f‖0,%;Ω < 1 . (2.75)

Then, our coupled problem (2.31) has a unique solution (σ, ϕ) ∈ H × Q and (u, p) ∈ X2 ×M1 with
u ∈ S ∩X2. Moreover, there hold

‖(σ, ϕ)‖H×Q ≤
2

α
T̂

|κ| ‖f‖0,%;Ω , ‖u‖X2 ≤
1

α̃
‖f‖0,r;Ω ,

and ‖p‖M1 ≤
1

β̃1

(
1 +

µ2

α̃

)
‖f‖0,r;Ω .

(2.76)

Proof. We begin by recalling from Lemma 2.11 that the first assumption in (2.75) guarantees that T
maps S into itself. Hence, in virtue of the equivalence between (2.31) and (2.35), and bearing in mind
the Lipschitz-continuity of T (cf. Lemma 2.14) and the second hypothesis in (2.75), a straightforward
application of the Banach fixed point Theorem implies the existence of a unique solution of (2.31)
with u ∈ S. In addition, the fact that (u, p) = T̃ (ϕ) and (σ, ϕ) = T̂ (u), together with the a priori
estimates provided by (2.45) and (2.61), yield (2.76) and conclude the proof. �

3 The Galerkin scheme

In order to approximate the solution of our fully-mixed variational formulation (2.31), we now proceed
to introduce and analyse an associated Galerkin scheme. Analogue tools and techniques to those used
in Section 2 will be employed here. We begin by considering arbitrary finite element subspaces Hh ⊆ H,
Qh ⊆ Q, X2,h ⊆ X2, M2,h ⊆ M2, X1,h ⊆ X1, and M1,h ⊆ M1, whose specific choices satisfying all

19



the required stability conditions will be introduced later on in Section 4. Then, the Galerkin scheme
associated with (2.31) reads: Find (σh, ϕh) ∈ Hh ×Qh and (uh, ph) ∈ X2,h ×M1,h such that

a(σh, τ h) + b(τ h, ϕh) +

∫
Ω
ϕh uh · τ h = 0 ∀ τ h ∈ Hh ,

b(σh, ψh) = −κ
∫

Ω
f ψh ∀ψh ∈ Qh ,

aϕh(uh,vh) + b1(vh, ph) =

∫
Ω

f · vh ∀vh ∈ X1,h ,

b2(uh, qh) = 0 ∀ qh ∈M2,h .

(3.1)

3.1 The discrete fixed point strategy

Here we adopt the discrete analogue of the continuous approach applied in Section 2.3 to analyse the
solvability of (3.1). Thus, we now let T̃h : Qh → X2,h×M1,h be the operator defined for each ψh ∈ Qh

as T̃h(ψh) = (T̃1,h(ψh), T̃2,h(ψh)) := (ũh, p̃h), where (ũh, p̃h) ∈ X2,h ×M1,h is the unique solution (to
be confirmed below) of the last two equations of (3.1) with ψh instead of ϕh, that is

aψh(ũh,vh) + b1(vh, p̃h) =

∫
Ω

f · vh ∀vh ∈ X1,h ,

b2(ũh, qh) = 0 ∀ qh ∈M2,h .
(3.2)

In addition, we also let T̂h : X2,h → Hh×Qh be the operator defined for each wh ∈ X2,h as T̂h(wh) =

(T̂1,h(wh), T̂2,h(wh)) := (σ̂h, ϕ̂h), where (σ̂h, ϕ̂h) ∈ Hh × Qh is the unique solution (to be confirmed
below as well) of the first two equations of (3.1) with wh instead of uh, that is

a(σ̂h, τ h) + b(τ h, ϕ̂h) +

∫
Ω
ϕ̂h wh · τ h = 0 ∀ τ h ∈ Hh ,

b(σ̂h, ψh) = −κ
∫

Ω
f ψh ∀ψh ∈ Qh ,

(3.3)

In this way, we now introduce the operator Th : X2,h → X2,h as

Th(wh) := T̃1,h

(
T̂2,h(wh)

)
∀wh ∈ X2,h , (3.4)

and realise that solving (3.1) is equivalent to seeking a fixed point of Th, that is uh ∈ X2,h such that

Th(uh) = uh . (3.5)

3.2 Well-posedness of the operators T̃h and T̂h

In this section we apply the discrete versions of Theorems 2.4 and 2.5 to prove that problems (3.2)
and (3.3) are well-posed, equivalently that the discrete operators T̃h and T̂h are well-defined. To this
end, we need to introduce certain hypotheses concerning the arbitrary spaces Hh, Qh, X2,h, M2,h,
X1,h, and M1,h, and the discrete kernels associated with the bilinear forms b1, b2, and b, respectively,
that is

K1,h :=
{

vh ∈ X1,h : b1(vh, qh) = 0 ∀ qh ∈M1,h

}
, (3.6a)

K2,h :=
{

wh ∈ X2,h : b2(wh, qh) = 0 ∀ qh ∈M2,h

}
, (3.6b)

20



Vh :=
{
τ h ∈ Hh : b(τ h, ψh) = 0 ∀ψh ∈ Qh} . (3.6c)

Specific finite element subspaces verifying the conditions to be described in what follows will be defined
later on in Section 4.2. More precisely, from now on we assume the following:

(H.1) there exists a constant α̃d > 0, independent of h, such that for each ψh ∈ Qh there hold

sup
vh∈K1,h

vh 6=0

aψh(wh,vh)

‖vh‖X1

≥ α̃d ‖wh‖X2 ∀wh ∈ K2,h ,

and
sup

wh∈K2,h

aψh(wh,vh) > 0 ∀vh ∈ K1,h , vh 6= 0 ,

(H.2) there exist constants β̃1,d, β̃2,d > 0, independent of h, such that for each i ∈ {1, 2} there holds

sup
vh∈Xi,h
vh 6=0

bi(vh, qh)

‖vh‖Xi
≥ β̃i,d ‖qh‖Mi ∀ qh ∈Mi,h ,

(H.3) there holds div(Hh) ⊆ Qh,

(H.4) there exists β̂d > 0, independent of h, such that

sup
τh∈Hh
τh 6=0

b(τ h, ψh)

‖τ h‖H
≥ β̂d ‖ψh‖Q ∀ψh ∈ Qh .

Then, as a straightforward consequence of (H.1) and (H.2), we can establish the following result.

Theorem 3.1 For each ψh ∈ Qh there exists a unique (ũh, p̃h) = T̃ (ψh) ∈ X2,h ×M1,h solution to
(3.2). Moreover, there hold

‖T̃1,h(ψh)‖X2 = ‖ũh‖X2 ≤
1

α̃d
‖f‖0,r;Ω and

‖T̃2,h(ψh)‖M1 = ‖p̃h‖M1 ≤
1

β̃1,d

(
1 +

µ2

α̃d

)
‖f‖0,r;Ω .

(3.7)

Proof. Thanks to (H.1) and (H.2), the proof reduces to a straightforward application of the discrete
version of Theorem 2.4 (see, e.g. [8, Corollary 2.2]). In particular, the a priori estimates in (3.7)
follow from the discrete analogue of (2.37) (see, e.g. [8, eqs. (2.24), (2.25)]), the upper bound for
‖F‖X′1 provided right before the statement of Theorem 2.8, and the fact that the right hand side of
the second row of (3.2) is the null functional. �

Next, according to (H.3), it readily follows from (3.6c) that

Vh :=
{
τ h ∈ Hh : div(τ h) = 0

}
,

which yields the discrete analogue of (2.46), that is

a(τ h, τ h) = ‖τ h‖2div%;Ω ∀ τ h ∈ Vh ,
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and hence the assumptions i) and ii) of the discrete version of Theorem 2.4 (see, e.g. [8, eqs. (2.19),
(2.20)]) are satisfied, the first of them with the constant α̂d = 1. In this way, this fact together with
(H.4) guarantee the global inf-sup condition for A (cf. (2.54)) when restricted to Hh×Qh, equivalently
the discrete analogue of (2.55), which means the existence of a positive constant α̂

T̂ ,d
, depending only

on α̂d, β̂d, and ‖a‖, such that

sup
(τh,ψh)∈Hh×Qh

(τh,ψh)6=0

A
(
(ζh, φh), (τ h, ψh)

)
‖(τ h, ψh)‖H×Q

≥ α
T̂ ,d
‖(ζh, φh)‖H×Q ∀ (ζh, φh) ∈ Hh ×Qh . (3.8)

Moreover, proceeding analogously to the analysis developed after (2.55) in Section 2.4.3, we find that

for each wh ∈ X2,h such that ‖wh‖0,r;Ω ≤
α
T̂ ,d

2
, there holds

sup
(τh,ψh)∈Hh×Qh

(τh,ψh) 6=0

Awh

(
(ζh, φh), (τ h, ψh)

)
‖(τ h, ψh)‖H×Q

≥
α
T̂ ,d

2
‖(ζh, φh)‖H×Q ∀ (ζh, φh) ∈ Hh ×Qh . (3.9)

In this way, we conclude that the operator T̂h (cf. (3.3)) is well-defined.

Theorem 3.2 For each wh ∈ X2,h such that ‖wh‖0,r;Ω ≤
α
T̂ ,d

2
, there exists a unique (σ̂h, ϕ̂h) =

T̂h(wh) ∈ Hh ×Qh solution to (3.3), equivalently

Awh

(
(σ̂h, ϕ̂h), (τ h, ψh)

)
= G

(
(τ h, ψh)

)
∀ (τ h, ψh) ∈ Hh ×Qh .

Moreover, there holds

‖T̂h(wh)‖H×Q = ‖σ̂h‖div%;Ω + ‖ϕ̂h‖0,ρ;Ω ≤
2

α
T̂ ,d

|κ| ‖f‖0,%;Ω . (3.10)

Proof. Similarly to the proof of Theorem 2.10, it follows from the fact that Awh satisfies the hypotheses
of the discrete version of Theorem 2.5 (see, e.g. [32, Theorem 2.22]). Indeed, the latter reduces
equivalently to fulfil only the corresponding inf-sup condition i), which is precisely (3.9) in this case.
We omit further details. �

3.3 Discrete solvability analysis

Having established that the discrete operators T̃h, T̂h, and hence Th, are all well defined, we now
address the solvability of the corresponding fixed point equation (3.5). For this purpose, we first let

Sh :=
{

wh ∈ X2,h : ‖wh‖0,r;Ω ≤
α
T̂ ,d

2

}
, (3.11)

and provide a sufficient condition under which Th maps Sh into itself. More precisely, we have the
following result.

Lemma 3.3 Assume that

‖f‖0,r;Ω ≤
α̃d αT̂ ,d

2
. (3.12)

Then Th(Sh) ⊆ Sh.
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Proof. It proceeds analogously to the proof of Lemma 2.11, noting now from (3.11) and Theorem 3.2
that T̂h(wh) is well defined for each wh ∈ Sh, and using the a priori estimate for T̃1,h (cf. (3.7)) and
the assumption (3.12). �

Next, we look at the continuity properties of T̂h and T̃h, and hence at that of Th. In fact, we first
observe that, proceeding analogously to the proof of Lemma 2.12, but now using the discrete inf-sup
condition (3.8) and the a priori bound (3.10), we find that

‖T̂h(wh)− T̂h(zh)‖H×Q ≤ L
T̂ ,d
|κ| ‖f‖0,%;Ω ‖wh − zh‖0,r;Ω ∀wh, zh ∈ Sh , (3.13)

where L
T̂ ,d

=
4

α2
T̂ ,d

. In turn, for the continuity of T̃1,h we basically follow the same reasoning of the

proof of Lemma 2.13, except that, not being the regularity assumptions (RA1) and (RA2) applicable
in the present context, we only employ the Lrj−Lr`−Ls argument from (2.71), but with different values
for j and `, to estimate the discrete version of (2.70). More precisely, we apply the aforementioned
tool with j and ` conjugate to each other such that rj = ρ. As a consequence, given ψh, φh ∈ Qh,
and denoting T̃h(ψh) := (ũh, p̃h) ∈ X2,h ×M1,h and T̃h(φh) := (ūh, p̄h) ∈ X2,h ×M1,h, the discrete
analogue of (2.72) becomes

α̃d ‖ũh − ūh‖X2 ≤ Lµ ‖ψh − φh‖0,ρ;Ω ‖ūh‖0,r`;Ω ,

which, denoting L
T̃ ,d

:=
Lµ
α̃d

, yields

‖T̃1,h(ψh)− T̃1,h(φh)‖X2 ≤ L
T̃ ,d
‖T̃1,h(φh)‖0,r`;Ω ‖ψh − φh‖0,ρ;Ω ∀ψh, φh ∈ Qh . (3.14)

In this way, bearing in mind (3.13) and (3.14), it follows from the definition of Th (cf. (3.4)) that

‖Th(wh)− Th(zh)‖0,r;Ω ≤ LT,d |κ| ‖f‖0,%;Ω ‖Th(zh)‖0,r`;Ω ‖wh − zh‖0,r;Ω ∀wh, zh ∈ Sh , (3.15)

with LT,d := L
T̃ ,d

L
T̂ ,d

. We stress here that (3.15) proves continuity of Th, but, due to the lack of

control of the term ‖Th(zh)‖0,r`;Ω, it does not necessarily yield neither Lipschitz-continuity and hence
nor contractivity of this operator. As a consequence, we are only able to conclude existence of a fixed
point of Th.

According to the above, the main result of this section is established as follows.

Theorem 3.4 Assume that ‖f‖0,r;Ω ≤
α̃d αT̂ ,d

2
. Then, the Galerkin scheme (3.1) has at least one

solution (σh, ϕh) ∈ Hh ×Qh and (uh, ph) ∈ X2,h ×M1,h with uh ∈ Sh. Moreover, there hold

‖(σh, ϕh)‖H×Q ≤
2

α
T̂ ,d

|κ| ‖f‖0,%;Ω , ‖uh‖X2 ≤
1

α̃d
‖f‖0,r;Ω ,

and ‖ph‖M1 ≤
1

β̃1,d

(
1 +

µ2

α̃d

)
‖f‖0,r;Ω .

(3.16)

Proof. We first notice from Lemma 3.3 that the assumption on ‖f‖0,r;Ω guarantees that Th maps
Sh into itself. Then, the aforementioned continuity of Th, the equivalence between (3.1) and (3.5),
and a straightforward application of the Brouwer Theorem (cf. [21, Theorem 9.9-2]) implies the
existence of at least one solution of (3.1) with uh ∈ Sh. Finally, recalling that (uh, ph) = T̃h(ϕh) and
(σh, ϕh) = T̂h(uh), and thanks to the a priori estimates (3.7) and (3.10), we obtain (3.16). �
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3.4 A priori error analysis

In this section we derive an a priori error estimate for the Galerkin scheme (3.1) with arbitrary
finite element subspaces satisfying the hypotheses introduced in Section 3.2. More precisely, we are
interested in establishing a Céa estimate for the error

‖σ − σh‖H + ‖ϕ− ϕh‖Q + ‖u− uh‖X2 + ‖p− ph‖M1 ,

where
(
(σ, ϕ), (u, p)

)
∈
(
H×Q

)
×
(
X2×M1

)
is the unique solution of (2.31) with u ∈ S (cf. (2.62)),

and
(
(σh, ϕh), (uh, ph)

)
∈
(
Hh ×Qh

)
×
(
X2,h ×M1,h

)
is a solution of (3.1) with uh ∈ Sh (cf. (3.11)).

To this end, and in order to employ corresponding Strang estimates, we rewrite (2.31) and (3.1) as
the pairs given by a continuous formulation and its associated discrete one, that is

a(σ, τ ) + b(τ , ϕ) = Fϕ,u(τ ) ∀ τ ∈ H ,

b(σ, ψ) = −κ
∫

Ω
f ψ ∀ψ ∈ Q ,

a(σh, τ h) + b(τ h, ϕh) = Fϕh,uh(τ ) ∀ τ h ∈ Hh ,

b(σh, ψh) = −κ
∫

Ω
f ψh ∀ψh ∈ Qh ,

(3.17)

where

Fϕ,u(τ ) := −
∫

Ω
ϕu · τ ∀ τ ∈ H , and Fϕh,uh(τ h) := −

∫
Ω
ϕh uh · τ h ∀ τ h ∈ Hh ,

and

aϕ(u,v) + b1(v, p) =

∫
Ω

f · v ∀v ∈ X1 ,

b2(u, q) = 0 ∀ q ∈M2 ,

aϕh(uh,vh) + b1(vh, ph) =

∫
Ω

f · vh ∀vh ∈ X1,h ,

b2(uh, qh) = 0 ∀ qh ∈M2,h .

(3.18)

In what follows, given a subspace Zh of a generic Banach space (Z, ‖ · ‖Z), we set for each z ∈ Z

dist(z, Zh) := inf
zh∈Zh

‖z − zh‖Z .

Then, applying the Strang a priori error estimate from [8, Proposition 2.1, Corollary 2.3, and
Theorem 2.3] (see also [22, Lemma 6.1]) to the context given by (3.17), we deduce that there exists a
positive constant ĈS, depending only on α̂d = 1, β̂d, ‖a‖ = 1, and ‖b‖ = |κ|, such that

‖σ − σh‖H + ‖ϕ− ϕh‖Q ≤ ĈS

{
dist(σ,Hh) + dist(ϕ,Qh) + ‖Fϕ,u −Fϕh,uh‖H′h

}
. (3.19)

Next, adding and subtracting ϕhu, applying the Cauchy-Schwarz and Hölder inequalities, similarly as
done in the last part of the proof of Lemma 2.12, and then employing the a priori estimates for ‖ϕ‖Q
(cf. (2.76)) and ‖uh‖X2 (cf. (3.16)), we obtain

‖Fϕ,u −Fϕh,uh‖H′h = sup
τh∈Hh
τh 6=0

∫
Ω

{
(ϕh − ϕ) uh + ϕ (uh − u)

}
· τ h

‖τ h‖H

≤ ‖uh‖0,r;Ω ‖ϕ− ϕh‖0,ρ;Ω + ‖ϕ‖0,ρ;Ω ‖u− uh‖0,r;Ω

≤ 1

α̃d
‖f‖0,r;Ω ‖ϕ− ϕh‖0,ρ;Ω +

2

α
T̂

|κ| ‖f‖0,%;Ω ‖u− uh‖0,r;Ω ,
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which, replaced back into (3.19), yields

‖σ − σh‖H + ‖ϕ− ϕh‖Q ≤ ĈS

{
dist(σ,Hh) + dist(ϕ,Qh)

}
+
ĈS

α̃d
‖f‖0,r;Ω ‖ϕ− ϕh‖0,ρ;Ω +

2ĈS

α
T̂

|κ| ‖f‖0,%;Ω ‖u− uh‖0,r;Ω .
(3.20)

In turn, applying again the Strang a priori error estimate from [8, Proposition 2.1, Corollary 2.3, and
Theorem 2.3], but now to the context given by (3.18), and performing some algebraic manipulations
in the consistency term determined by aϕ − aϕh , we find that there exists a positive constant C̃S,

depending only on α̃d, β̃1,d, β̃2,d, ‖aϕ‖ = ‖aϕh‖ = µ2, and ‖b1‖ = ‖b2‖ = 1, such that

‖u− uh‖X2 + ‖p− ph‖M1 ≤ C̃S

{
dist(u, X2,h) + dist(p,M1,h) + ‖(aϕ − aϕh)(u, ·)‖X′1,h

}
. (3.21)

Then, proceeding as in the last part of the proof of Lemma 2.13 (cf. (2.73)), and using in particular
the regularity estimate (2.66), we get

‖(aϕ − aϕh)(u, ·)‖X′1,h = sup
vh∈X1,h

vh 6=0

∫
Ω

(
µ(ϕ)− µ(ϕh)

)
u · vh

‖vh‖X1

≤ L̃S ‖f‖0,r;Ω ‖ϕ− ϕh‖0,ρ;Ω , (3.22)

where L̃S := Lµ ‖iε‖ C̃ε |Ω|
ερ−n
ρn . In this way, replacing (3.22) back into (3.21), we arrive at

‖u− uh‖X2 + ‖p− ph‖M1 ≤ C̃S

{
dist(u, X2,h) + dist(p,M1,h)

}
+ C̃S L̃S ‖f‖0,r;Ω ‖ϕ− ϕh‖0,ρ;Ω .

(3.23)

Thus, bounding ‖u−uh‖0,r;Ω in (3.20) by the right hand side of (3.23), the former inequality becomes

‖σ − σh‖H + ‖ϕ− ϕh‖Q ≤ ĈS

{
dist(σ,Hh) + dist(ϕ,Qh)

}
+ Ĉ1,S

{
dist(u, X2,h) + dist(p,M1,h)

}
+
{
Ĉ2,S ‖f‖0,r;Ω + Ĉ3,S |κ| ‖f‖0,%;Ω ‖f‖0,r;Ω

}
‖ϕ− ϕh‖0,ρ;Ω ,

(3.24)

where

Ĉ1,S :=
2ĈSC̃S

α
T̂

|κ| ‖f‖0,%;Ω , Ĉ2,S :=
ĈS

α̃d
, and Ĉ3,S :=

2ĈSC̃SL̃S

α
T̂

.

According to the previous analysis, we are now in a position to establish the announced Céa estimate.

Theorem 3.5 In addition to the hypotheses of Theorems 2.15 and 3.4, assume that

Ĉ2,S ‖f‖0,r;Ω + Ĉ3,S |κ| ‖f‖0,%;Ω ‖f‖0,r;Ω ≤
1

2
(3.25)

Then, there exists a constant C > 0, depending only on ĈS, C̃S, L̃S, α
T̂

, |κ|, ‖f‖0,%;Ω, and ‖f‖0,r;Ω,
such that

‖σ − σh‖H + ‖ϕ− ϕh‖Q + ‖u− uh‖X2 + ‖p− ph‖M1

≤ C
{

dist(σ,Hh) + dist(ϕ,Qh) + dist(u, X2,h) + dist(p,M1,h)
}
.

Proof. It suffices to employ the assumption (3.25) in (3.24), and then combine the resulting estimate
with (3.23). �
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4 Specific finite element subspaces

In this section we restrict ourselves to the 2D case and define specific finite element subspaces

Hh ⊆ H , Qh ⊆ Q , X2,h ⊆ X2 , M2,h ⊆M2 , X1,h ⊆ X1 , and M1,h ⊆M1 ,

satisfying the abstract assumptions (H.1), (H.2), (H.3), and (H.4) that were introduced in Section
3.2 for the well-posedness of our Galerkin scheme.

4.1 Preliminaries

We first let
{
Th
}
h>0

be a regular family of triangulations of Ω̄, which are made of triangles K of

diameters hK , and define the meshsize h := max
{
hK : K ∈ Th

}
, which also serves as the index of

Th. Next, given an integer k ≥ 0 and K ∈ Th, we let Pk(K) be the space of polynomials of degree ≤ k
defined on K with vector version denoted by Pk(K). In addition, we let RTk(K) := Pk(K)⊕Pk(K) x
be the local Raviart-Thomas space of order k defined on K, where x stands for a generic vector in
R2. In turn, we let Pk(Th) and RTk(Th) be the corresponding global versions of Pk(K) and RTk(K),
respectively, that is

Pk(Th) :=
{
qh ∈ L2(Ω) : qh|K ∈ Pk(K) ∀K ∈ Th

}
,

and
RTk(Th) :=

{
τ h ∈ H(div; Ω) : τ h|K ∈ RTk(K) ∀K ∈ Th

}
.

Note that there also hold Pk(Th) ⊆ Lt(Ω), RTk(Th) ⊆ H(divt; Ω) (cf. (2.9a)), and RTk(Th) ⊆
Ht(divt; Ω) (cf. (2.9b)), for all t ∈ [1,+∞], which is implicitly employed below in Section 4.2 to
define our specific finite element subspaces. Before doing that, in what follows we provide some useful
properties concerning Pk(Th) and RTk(Th). To this end, we now introduce for each t ∈ (1,+∞) the
space

Ht :=
{
τ ∈ Ht(divt; Ω) ∪H(divt; Ω) : τ |K ∈W1,t(K) ∀K ∈ Th

}
,

and let Πk
h : Ht −→ RTk(Th) be the global Raviart-Thomas interpolation operator (cf. [12, Section

2.5], [35, Section 3.4]). Then, we recall recall from [12, Proposition 2.5.2 and eq. (2.5.27)] (see also
[35, Lemma 3.7]) the commuting diagram property

div
(
Πk
h(τ )

)
= Pkh

(
div(τ )

)
∀ τ ∈ Ht , (4.1)

where Pkh : L1(Ω) −→ Pk(Th) is the usual orthogonal projector with respect to the L2(Ω)-inner
product, that is, given w ∈ L1(Ω), Pkh(w) is the unique element in Pk(Th) satisfying∫

Ω
Pkh(w) qh =

∫
Ω
w qh ∀ qh ∈ Pk(Th) .

Similarly, letting Γh be the set of edges e ⊂ Γ that are induced by Th, and denoting by Pk(Γh) the
subspace of L2(Γ) given by the piecewise polynomials of degree ≤ k on each e ∈ Γh, the following
property also holds (cf. [12, eq. (2.5.10) in Example 2.5.3], [35, eq. (3.36) in Lemma 3.18])

Πk
h(τ ) · ν = Qkh(τ · ν) on Γ ∀ τ ∈ Ht , (4.2)

where Qkh : L1(Γ) −→ Pk(Γh) is the orthogonal projector with respect to the L2(Γ)-inner product. On
the other hand, employing the Wm,t version of the Deny-Lions Lemma (cf. [32, Lemma B.67]) with
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integer m ≥ 0 and t ∈ (1,+∞), the associated scaling estimates (cf. [32, Lemma 1.101]), and the
regularity of

{
Th
}
h>0

, we deduce the existence of constants C1, C2 > 0, independent of h, such that
for integers ` and m verifying 0 ≤ ` ≤ k + 1 and 0 ≤ m ≤ `, there hold

|w − Pkh(w)|m,t;Ω ≤ C1 h
`−m |w|`,t;Ω ∀w ∈W`,t(Ω) , (4.3a)

and

|div(τ )− div
(
Πk
h(τ )

)
|m,t;Ω ≤ C1 h

`−m |div(τ )|`,t;Ω ∀ τ ∈W1,t(Ω) with div(τ ) ∈W`,t(Ω) , (4.3b)

whereas for integers ` and m verifying 1 ≤ ` ≤ k + 1 and 0 ≤ m ≤ `, there holds

|τ −Πk
h(τ )|m,t;Ω ≤ C2 h

`−m |τ |`,t;Ω ∀ τ ∈W`,t(Ω) . (4.3c)

In particular, note that (4.3b) actually follows from (4.1) and a straightforward application of (4.3a)
to w = div(τ ). In addition, we remark that (4.3a) is first derived for 1 ≤ ` ≤ k + 1, and then using
only the scaling estimates one proves the stability of Pkh , that is the existence of a constant c > 0,
independent of h, such that

‖Pkh(w)‖0,t;Ω ≤ c ‖w‖0,t;Ω ∀w ∈ Lt(Ω) . (4.4)

In turn, employing the triangle inequality and (4.3c) with ` = 1 and m = 0, we readily deduce the
existence of a constant C > 0, independent of h, such that

‖Πk
h(τ )|0,t;Ω ≤ C ‖τ‖1,t;Ω ∀ τ ∈W1,t(Ω) . (4.5)

Furthermore, taking in particular (m, t) = (0, 2) in (4.3c) and m = 0 in (4.3b), we readily find that
there exists a constant C3 > 0, independent of h, such that for 1 ≤ ` ≤ k + 1 there holds

‖τ −Πk
h(τ )‖divt;Ω ≤ C3 h

`
{
|τ |`,Ω + |div(τ )|`,t;Ω

}
(4.6)

for all τ ∈ H`(Ω) with div(τ ) ∈W`,t(Ω). In turn, taking now m = 0 in (4.3c) and (4.3b), we deduce
the existence of a constant C4 > 0, independent of h, such that for 1 ≤ ` ≤ k + 1 there holds

‖τ −Πk
h(τ )‖t,divt;Ω ≤ C4 h

`
{
|τ |`,t;Ω + |div(τ )|`,t;Ω

}
(4.7)

for all τ ∈W`,t(Ω) with div(τ ) ∈W`,t(Ω).

4.2 The finite element subspaces

Our specific finite element subspaces are defined as

Hh := H(div%; Ω) ∩RTk(Th) =
{
τ h ∈ H(div%; Ω) : τ h|K ∈ RTk(K) ∀K ∈ Th

}
, (4.8a)

Qh := Lρ(Ω) ∩ Pk(Th) =
{
ψh ∈ Lρ(Ω) : ψh|K ∈ Pk(K) ∀K ∈ Th

}
, (4.8b)

X2,h := X2 ∩RTk(Th) =
{

wh ∈ Hr
0(divr; Ω) : wh|K ∈ RTk(K) ∀K ∈ Th

}
, (4.8c)

M2,h := Ls0(Ω) ∩ Pk(Th) =
{
qh ∈ Ls0(Ω) : qh|K ∈ Pk(K) ∀K ∈ Th

}
, (4.8d)

X1,h := X1 ∩RTk(Th) =
{

vh ∈ Hs
0(divs; Ω) : vh|K ∈ RTk(K) ∀K ∈ Th

}
, (4.8e)
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M1,h := Lr0(Ω) ∩ Pk(Th) =
{
qh ∈ Lr0(Ω) : qh|K ∈ Pk(K) ∀K ∈ Th

}
. (4.8f)

Regarding the above definitions, we first observe that div(Hh) ⊆ Qh, which confirms the verification of
the hypothesis (H.3). In turn, while the pairs (Hh,Qh), (X2,h,M2,h) and (X1,h,M1,h) are topologically
different, we stress that they do coincide algebraically. This fact implies that the stiffness matrices
associated to the bilinear forms b, b1, and b2 are exactly the same, except for the constant factor
κ of b, and that those of a and aϕ differ only by the factor µ(ϕ). The above, being certainly very
relevant from the computational point of view, constitutes another advantage of having used a mixed
formulation in the heat equation as well.

Furthermore, it is also clear that div
(
Xi,h

)
⊆ Mi,h for all i ∈ {1, 2}. As a consequence, the

corresponding discrete kernels of the bilinear forms b1 and b2 (cf. (3.6a), (3.6b)) coincide as well, and
it is easily seen that they become the space

Kkh :=
{

vh ∈ RTk(Th) : vh · ν = 0 on Γ and div(vh) = 0 in Ω
}
. (4.9)

In this way, we now let Θk
h : L1(Ω) −→ Kkh be the L2(Ω)-orthogonal projector, that is, given w ∈ L1(Ω),

Θk
h(w) is the unique element in Kkh satisfying∫

Ω
Θk
h(w) · vh =

∫
Ω

w · vh ∀vh ∈ Kkh . (4.10)

This operator plays a key role in what follows. Indeed, in order to prove one of the inf-sup conditions
required by our discrete analysis, we need to establish a particular stability estimate for Θk

h in terms
of ‖ · ‖0,t;Ω, with t ∈ (1,+∞). This result is provided later on in Section 4.4, for which we collect first
some related estimates for the Ritz projection.

4.3 Lt(Ω)-stability of the Ritz projection

Given an integer k ≥ 0, we now let Pk+1,c(Th) be the space of continuous piecewise polynomials of
degree ≤ k + 1, that is

Pk+1,c(Th) :=
{
φh ∈ H1

0(Ω) : φh|K ∈ Pk+1(K) ∀K ∈ Th
}
,

and consider the Ritz projection Rkh : H1
0(Ω) −→ Pk+1,c(Th) associated with the Poisson equation

under homogeneous Dirichlet boundary conditions. In other words, given φ ∈ H1
0(Ω), Rkh(φ) is the

unique element in Pk+1,c(Th) satisfying∫
Ω
∇Rkh(φ) · ∇φh =

∫
Ω
∇φ · ∇φh ∀φh ∈ Pk+1,c(Th) , (4.11)

and hence
‖∇Rkh(φ)‖0,Ω ≤ ‖∇φ‖0,Ω . (4.12)

Note that the fact that Pk+1,c(Th) is contained in W1,t(Ω) for all t ∈ [1,+∞], guarantees that Rkh
is actually well-defined in each one of these spaces as well. In this regard, we stress that stability
estimates as (4.12), but measured with respect to ‖ · ‖0,t;Ω, t 6= 2, though less known, are also available
in the literature. One of the first results in this direction goes back to [52, Theorem], where the
aforementioned estimate is established for k = 0 and t ∈ [2,+∞] in the 2D case. More precisely, if
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Ω is a convex polygonal region of R2, then for each t ∈ [2,+∞] there exists a positive constant C0
t ,

independent of h, such that

‖∇R0
h(φ)‖0,t;Ω ≤ C0

t ‖∇φ‖0,t;Ω ∀φ ∈W1,t
0 (Ω) . (4.13)

Actually, this result is provided in [52, Theorem] in terms of ‖R0
h(φ)‖1,t;Ω and ‖φ‖1,t;Ω, which, due to

the equivalence between ‖ · ‖1,t;Ω and | · |1,t;Ω in W1,t
0 (Ω), becomes (4.13). In addition, employing a

duality argument (as explained for instance in [13, Section 8.5]), it is not difficult to show that (4.13)
is also valid for t ∈ (1, 2]. In turn, for the corresponding extension of all the above to any integer
k ≥ 1, we refer to [13, Theorem 8.5.3], whose proof, based on a suitable regularity assumption (cf.
[13, eqs. (8.1.2) and (8.1.3)]), follows basically the same technique from [52]. However, whereas the
aforementioned hypothesis is satisfied for an arbitrary convex polygonal region in R2, it requires a
maximum interior angle condition in R3. This difficulty is overcome in [42, eqs. (1.2) and (1.3)] by
employing arguments based on Green’s functions, which yields the respective stability for t = +∞
(see also [48]). In this way, the interpolation of the latter with (4.12) implies the result for t ∈ [2,+∞],
and the same duality argument from [13, Section 8.5] allows to extend it to t ∈ (1, 2]. Summarising,
thanks to the analysis and results from [13], [42], and [52], we know that, given an integer k ≥ 0 and
a convex polygonal (resp. polyhedral) region Ω of R2 (resp. R3), for each t ∈ (1,+∞] there exists a
positive constant Ckt , independent of h, such that

‖∇Rkh(φ)‖0,t;Ω ≤ Ckt ‖∇φ‖0,t;Ω ∀φ ∈W1,t
0 (Ω) . (4.14)

For further results on the stability of Rkh in convex polygonal regions of R2, we refer for instance to
the recent works [47] and [49], which consider the cases of mixed boundary conditions and graded
meshes, respectively.

On the other hand, in the case of arbitrary polygonal domains Ω in R2, not necessarily convex, one
easily proves, starting from [56, eq. (0.7), Theorem 2], that, given an integer k ≥ 0, there exists a
positive constant C̄k∞, independent of h, such that

‖∇Rkh(φ)‖0,∞;Ω ≤ C̄k∞
{
− log(h)

}r(k) ‖∇φ‖0,∞;Ω ∀φ ∈W1,∞
0 (Ω) , (4.15)

where r(k) =

{
1 if k = 0
0 if k ≥ 1

. Then, interpolating (4.15) with (4.12) we find that for each t ∈

[2,+∞] there exists a positive constant C̄kt , independent of h, such that

‖∇Rkh(φ)‖0,t;Ω ≤ C̄kt
{
− log(h)

}r(k)(1−2/t) ‖∇φ‖0,t;Ω ∀φ ∈W1,t
0 (Ω) . (4.16)

Moreover, applying again the duality argument from [13, Section 8.5], we deduce that for each t ∈ (1, 2]
there exists a positive constant C̄kt , independent of h, such that

‖∇Rkh(φ)‖0,t;Ω ≤ C̄kt
{
− log(h)

}r(k)(−1+2/t) ‖∇φ‖0,t;Ω ∀φ ∈W1,t
0 (Ω) , (4.17)

so that we summarise (4.16) and (4.17) by simply stating that for each t ∈ (1,+∞] there exists a
positive constant C̄kt , independent of h, such that

‖∇Rkh(φ)‖0,t;Ω ≤ C̄kt
{
− log(h)

}r(k)|1−2/t| ‖∇φ‖0,t;Ω ∀φ ∈W1,t
0 (Ω) . (4.18)
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4.4 Lt(Ω)-stability of Θk
h

In this section we first characterise the kernel Kkh in terms of Pk+1,c(Th), and then establish for each
t ∈ (1,+∞) the Lt(Ω)-stability of Θk

h when restricted to the space

H̃t
0(divt; Ω) :=

{
v ∈ Ht

0(divt; Ω) : div(v) = 0 in Ω
}
.

More precisely, these results are given by the following two lemmas, whose proofs follow very closely
those of [31, Lemma 2.1] and [31, Theorem 3.1], respectively.

Lemma 4.1 There holds
Kkh = curl

(
Pk+1,c(Th)

)
. (4.19)

Proof. Let vh ∈ Kkh, that is vh ∈ RTk(Th), div(vh) = 0 in Ω, and vh · ν = 0 on Γ. It follows (see,
e.g. [35, proof of Theorem 3.3]) that vh|K ∈ Pk(K) for all K ∈ Th. In addition, since Ω is simply
connected, we deduce from [40, Theorem I.3.1] and the null normal trace of vh on Γ that there exists
φ ∈ H1

0(Ω) such that vh = curl(φ). Hence, for each K ∈ Th there holds curl(φ)|K = vh|K ∈ Pk(K),
which implies that φ|K ∈ Pk+1(K). In this way, φ ∈ Pk+1,c(Th), and therefore vh ∈ curl

(
Pk+1,c(Th)

)
.

Conversely, let vh ∈ curl
(
Pk+1,c(Th)

)
, that is vh = curl(φh) with φh ∈ Pk+1,c(Th). It follows that

vh|K = curl(φh)|K ∈ Pk(K) ⊆ RTk(K) for all K ∈ Th, and certainly div(vh) = 0 in Ω and vh · ν = 0
on Γ, which shows that vh ∈ Kkh. �

Lemma 4.2 Given t ∈ (1,+∞) and an integer k ≥ 0, there holds

‖Θk
h(w)‖0,t;Ω ≤ ckt ‖w‖0,t;Ω ∀w ∈ H̃t

0(divt; Ω) , (4.20)

where

ckt :=



Ckt if Ω is convex ,

C̄kt
{
− log(h)

}|1−2/t|
if Ω is non-convex and k = 0 ,

C̄kt if Ω is non-convex and k ≥ 1 .

(4.21)

Proof. Given t ∈ (1,+∞), an integer k ≥ 0, and w ∈ H̃t
0(divt; Ω), we employ again [40, Theorem

I.3.1] and the fact that the normal trace of w vanishes on Γ, to deduce that there exists ϕ ∈W1,t
0 (Ω)

such that w = curl(ϕ) in Ω. In turn, according to the identity (4.19) (cf. Lemma 4.1), there exists
ϕh ∈ Pk+1,c(Th) such that Θk

k(w) = curl(ϕh), and hence the characterisation (4.10) of Θk
h(w) becomes∫

Ω
curl(ϕh) · curl(φh) =

∫
Ω

curl(ϕ) · curl(φh) ∀φh ∈ Pk+1,c(Th) , (4.22)

where (4.19) has also been utilised to replace the test functions vh of (4.10) by curl(φh), with φh ∈
Pk+1,c(Th). Next, it is readily seen that, due to the relation between curl and ∇ in the 2D case, (4.22)
can be rewritten as ∫

Ω
∇ϕh · ∇φh =

∫
Ω
∇ϕ · ∇φh ∀φh ∈ Pk+1,c(Th) , (4.23)

which, invoking (4.11), says that ϕh = Rkh(ϕ). In this way, bearing in mind again the aforementioned
relation, it follows that

‖Θk
h(w)‖0,t;Ω = ‖curl(ϕh)‖0,t;Ω = ‖∇ϕh‖0,t;Ω = ‖∇Rkh(ϕ)‖0,t;Ω (4.24)
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and
‖w‖0,t;Ω = ‖curl(ϕ)‖0,t;Ω = ‖∇ϕ‖0,t;Ω , (4.25)

so that these identities, together with (4.14) and (4.18), yield (4.20) - (4.21) and complete the proof.

�

At this point we remark that in 3D, (4.22) and (4.23) do not coincide, and the second equalities of
the identities (4.24) and (4.25) do not hold either, which stops us of extending the proof of Lemma
4.2 to an eventual three-dimensional version. Indeed, up to our knowledge, the respective stability
estimate (4.20) remains as an open problem in this case, which explains that the discrete inf-sup
condition for aψh , to be established below in Lemma 4.6 by making use of (4.20), only holds in 2D. In
other words, this latter fact is actually the only reason why the present Section 4 has been restricted
to a two-dimensional domain Ω since all the other discrete inf-sup conditions that are required for the
discrete analysis, can be proved to be valid in both dimensions.

4.5 A Neumann regularity result on non-convex domains

We now let Ω be a non-convex polygonal region of R2, and establish, with δ > 0 and t ∈ (1,+∞),
a W1+δ,t(Ω)-regularity result for the Poisson problem with source term in Lt0(Ω) and homogeneous

Neumann boundary conditions. More precisely, defining H̃1(Ω) :=
{
v ∈ H1(Ω) :

∫
Ω v = 0

}
, and

letting N : H̃1(Ω)′ −→ H̃1(Ω) be the bounded linear operator that assigns to f ∈ H̃1(Ω)′ the unique
solution uf ∈ H̃1(Ω) of the problem∫

Ω
∇uf · ∇v = f(v) ∀ v ∈ H̃1(Ω) ,

we are interested in providing conditions under which there exists δ > 0 such that N can also be
continuously defined from Lt0(Ω) into W1+δ,t(Ω). Note that this means that for each q ∈ Lt0(Ω) there

exists a unique weak solution u ∈W1+δ,t(Ω) ∩ W̃1,t(Ω) of the boundary value problem

∆u = q in Ω , ∇u · ν = 0 on Γ ,

∫
Ω
u = 0 ,

which satisfies
‖u‖1+δ,t;Ω ≤ ‖N‖‖q‖0,t;Ω .

In order to prove this regularity result we basically follow [26] and make use of [25, Corollary (23.5)],
which says that N is continuous from Hs−1(Ω) to Hs+1(Ω) for each s ∈ [0, πω ), where ω stands for the
largest interior corner angle of Ω. Indeed, we have the following result.

Lemma 4.3 Assume that t ∈ (1,+∞) is such that

π

ω
> 1− 2

t
if t ≥ 2 , (4.26)

and set

δ0 :=


min

{
1,
π

ω
+

2

t
− 1

}
if t ≥ 2 ,

min

{
2− 2

t
,
π

ω

}
if t ∈ (1, 2) .

(4.27)

Then N : Lt0(Ω) −→W1+δ,t(Ω) is continuous for each δ ∈ (0, δ0).
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Proof. Let us first assume that t ≥ 2. Then the continuous embeddings i0 : Lt0(Ω) −→ L2(Ω) and
is : L2(Ω) −→ Hs−1(Ω), for s ≤ 1, are straightforward. In addition, employing the aforementioned
regularity result for N , and noting that for the non-convex domain Ω there holds π

ω ≤ 1, we deduce the
continuity of N : Lt0(Ω) −→ Hs+1(Ω) for each s ∈ [0, πω ), which is depicted by the following sequence

Lt0(Ω)
i0−→ L2(Ω)

is−→ Hs−1(Ω)
N−→ Hs+1(Ω) .

In turn, according to the embedding between fractional Sobolev spaces (cf. [33, Theorem 6, Section
5.6], [41, Theorem 1.4.5.2, part e)]), we know that iδ : Hs+1(Ω) −→W1+δ,t(Ω) is continuous if

s = 1 + δ − 2

t
and s ≥ δ .

The former holds for some δ > 0 if s > 1 − 2
t , whereas the later is guaranteed by the former and

the fact that t ≥ 2. Hence, bearing in mind our hypothesis on t, the feasible range for s becomes the
interval (1− 2

t ,
π
ω ), equivalently δ := s−

(
1− 2

t

)
∈ (0, πω + 2

t − 1), which, together with the fact that
δ ≤ s ≤ 1, yields δ ∈ (0, δ0), and hence the required continuity of N follows from the diagram

Lt0(Ω)
N−→ Hs+1(Ω)

iδ−→W1+δ,t(Ω) .

Furthermore, given t ∈ (1, 2), we employ again [33, Theorem 6, Section 5.6] (see also [41, Theorem
1.4.5.2, part e)]) to observe that the injection is : Lt0(Ω) −→ H−s(Ω) is continuous if s ≥ 2

t − 1,
that is 1 − s ≤ 2 − 2

t . In turn, N : H−s(Ω) −→ H2−s(Ω) is continuous if 1 − s ∈ [0, πω ), whereas
H2−s(Ω) is continuously embedded in H1+t(Ω) if 2 − s ≥ 1 + δ, that is 1 − s ≥ δ. Hence, noticing
from the present range of t that H1+t(Ω) is continuously embedded in W1+δ,t(Ω), we conclude that
iδ : H2−s(Ω) −→W1+δ,t(Ω) is continuous as well. In this way, the announced continuity of N follows
from the above constraints on 1− s and δ, and the sequence

Lt0(Ω)
is−→ H−s(Ω)

N−→ H2−s(Ω)
iδ−→W1+δ,t(Ω) .

�

4.6 Further properties of the Raviart-Thomas interpolators

In this section we establish additional stability and approximation properties of the local and global
Raviart-Thomas interpolation operators. To this end, we now denote the reference triangle of Th
by K̂, so that, given K ∈ Th, we let FK : K̂ −→ K be the bijective affine mapping defined by
FK(x) := BK x + bK ∀x ∈ K̂, with BK ∈ R2×2 invertible and bK ∈ R2. Next, given an integer

k ≥ 0 and a side F̂ of ∂K̂, we let dk and
{
ϕ̂
`,F̂

}dk
`=1

be the dimension and a basis of Pk(F̂ ), respectively.

Similarly, when k ≥ 1, we let rk be the dimension of Pk−1(K̂) and denote by
{
ψ̂`
}rk
`=1

a corresponding

basis. Then, for each τ̂ ∈W1,t(K̂), with t ∈ (1,+∞), we formally define the F̂ -moments for k ≥ 0 as

m
`,F̂

(τ̂ ) :=

∫
F̂
τ̂ · ν ϕ̂

`,F̂
∀ ` ∈

{
1, 2, . . . , dk

}
, (4.28)

whereas the K̂-moments for k ≥ 1 are given by

m
`,K̂

(τ̂ ) :=

∫
K̂
τ̂ · ψ̂` ∀ ` ∈

{
1, 2, . . . , rk

}
.
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In addition, gathering all the F̂ and K̂ moments in the set of linear functionals m̂j , j ∈
{

1, 2, . . . , Nk

}
,

with Nk := 3 dk + rk, for each i ∈
{

1, 2, . . . , Nk

}
we let τ̂ i be the unique function in RTk(K̂) such that

m̂j(τ̂ i) = δij ∀ j ∈
{

1, 2, . . . , Nk

}
,

and introduce the reference Raviart-Thomas interpolation operator Πk
K̂

: W1,t(K̂) −→ RTk(K̂) as

Πk
K̂

(τ̂ ) :=

Nk∑
j=1

m̂j(τ̂ ) τ̂ j ∀ τ̂ ∈W1,t(K̂) . (4.29)

Proceeding analogously, one defines on each K ∈ Th the local Raviart-Thomas interpolation operator
Πk
K : W1,t(K) −→ RTk(K), which is related to Πk

K̂
through the identity

Πk
K̂

(τ̂ ) = Π̂k
K(τ) := |det(BK)|B−1

K Πk
K(τ ) ◦ FK ∀ τ ∈W1,t(K) ,

where ̂ denotes from now on the Piola transformation.

The stability and approximation properties of Πk
K , measured with respect to Wm,t(K)-norms, with

integer m ≥ 0 and t ∈ (1,+∞), are well-known for sufficiently smooth functions (see, e.g. Section 4.1
for the corresponding global versions of them). Here we are interested in establishing similar estimates
measured in Lt(K)-norms, but for less smooth functions. For this purpose, we need the result provided
by the following lemma.

Lemma 4.4 Let t ∈ (1,+∞), t 6= 2, and δ ∈ [0, 1] such that δ >
1

t
if t ∈ (1, 2) ,

δ ≥ 0 if t ∈ (2,+∞) .

(4.30)

Then, there exists a constant Ĉ > 0, independent of h, such that

‖Πk
K̂

(τ̂ )‖
0,t;K̂

≤ Ĉ
{
‖τ̂‖

δ,t;K̂
+ ‖div(τ̂ )‖

0,t;K̂

}
∀ τ̂ ∈Wδ,t(K̂) ∩Ht(divt; K̂) . (4.31)

Proof. We first realise that the moments m̂j , j ∈
{

1, 2, . . . , Nk

}
, are well-defined and constitute

bounded linear functionals in Wδ,t(K̂) ∩ Ht(divt; K̂). In fact, the above is straightforward for the
K̂-moments since m

`,K̂
is clearly linear for each ` ∈

{
1, 2, . . . , rk

}
, and, thanks to Hölder’s inequality,

there holds
|m

`,K̂
(τ̂ )| ≤ ‖τ̂‖

0,t;K̂
‖ψ̂`‖0,t′;K̂ ∀ τ̂ ∈Wδ,t(K̂) ∩Ht(divt; K̂) , (4.32)

where t′ is the conjugate of t. In turn, for the case of the F̂ -moments, which are all linear as well,
we separate the analysis according to (4.30). If t ∈ (1, 2) and δ > 1

t , then the trace theorem (cf.

[41, Theorem 1.5.1.2]) establishes that τ̂ |
∂K̂
∈ Wδ− 1

t
,t(∂K̂) for all τ̂ ∈ Wδ,t(K̂). Hence, given

` ∈
{

1, 2, . . . , dk
}

, it follows from Hölder’s inequality, the continuous embedding of Wδ− 1
t
,t(∂K̂) into

Lt(∂K̂), and the trace inequality for Wδ,t(K̂), that

|m
`,F̂

(τ̂ )| ≤ ‖τ̂‖
0,t;F̂
‖ϕ̂

`,F̂
‖

0,t′;F̂ ≤ ‖τ̂‖0,t;∂K̂ ‖ϕ̂`,F̂ ‖0,t′;F̂

≤ C ‖τ̂‖
δ− 1

t
,t;∂K̂

‖ϕ̂
`,F̂
‖

0,t′;F̂ ≤ C ‖τ̂‖
δ,t;K̂
‖ϕ̂

`,F̂
‖

0,t′;F̂ .
(4.33)
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Next, we take t ∈ (2,+∞) and δ ≥ 0, so that, in particular, t′ ∈ (1, 2). Then, given ` ∈
{

1, 2, . . . , dk
}

,

and noticing that certainly ϕ̂
`,F̂
∈ W

1
t
,t′(F̂ ), it follows from [41, Theorem 1.5.2.3, part (a)] that its

extension by zero to ∂K̂\F̂ , say ϕ̂0
`,F̂

, belongs to W
1
t
,t′(∂K̂), and therefore we can redefine m

`,F̂
(cf.

(4.28)) as
m
`,F̂

(τ̂ ) := 〈τ̂ · ν, ϕ̂0
`,F̂
〉
∂K̂

∀ τ̂ ∈ Ht(divt; K̂) , (4.34)

where 〈·, ·〉
∂K̂

denotes the duality pairing between W− 1
t
,t(∂K̂) and W

1
t
,t′(∂K̂). Moreover, applying

now [41, Theorem 1.5.1.3], we deduce the existence of v̂
`,F̂
∈W1,t′(K̂) such that v̂

`,F̂
|
∂K̂

= ϕ̂0
`,F̂

and

‖v̂
`,F̂
‖

1,t′;K̂ ≤ c ‖ϕ̂0
`,F̂
‖ 1
t
,t′;∂K̂ . (4.35)

In this way, starting from (4.34), and then employing the integration by parts formula (2.12), the
Hölder inequality, and the trace estimate (4.35), we find that

|m
`,F̂

(τ̂ )| = |〈τ̂ · ν, ϕ̂0
`,F̂
〉
∂K̂
| = |〈τ̂ · ν, v̂

`,F̂
〉
∂K̂
| =

∣∣∣ ∫
K̂

{
τ̂ · ∇v̂

`,F̂
+ v̂

`,F̂
div(τ̂ )

}∣∣∣
≤ C ‖τ̂‖

t,divt;K̂
‖v̂
`,F̂
‖

1,t′;K̂ ≤ C ‖τ̂‖
t,divt;K̂

‖ϕ̂0
`,F̂
‖ 1
t
,t′;∂K̂ .

(4.36)

Finally, given τ̂ ∈Wδ,t(K̂) ∩Ht(divt; K̂), we have from (4.29)

‖Πk
K̂

(τ̂ )‖
0,t;K̂

≤
Nk∑
j=1

|m̂j(τ̂ )| ‖τ̂ j‖0,t;K̂ ,

which, together with the bounds (4.32), (4.33), and (4.36), and the fact that ‖τ̂‖
0,t;K̂

≤ ‖τ̂‖
δ,t;K̂

,

yield the required estimate (4.31) with Ĉ depending on the sets
{
‖ψ̂`‖0,t′;K̂

}rk
`=1

,
{
‖τ̂ j‖0,t;K̂

}Nk
j=1

,{
‖ϕ̂

`,F̂
‖

0,t′;F̂

}dk
`=1

, and
{
‖ϕ̂0

`,F̂
‖ 1
t
,t′;∂K̂

}dk
`=1

, for all the sides F̂ ⊂ ∂K̂. �

Having proved Lemma 4.4, we now establish an approximation property of Πk
K . More precisely, we

have the following result.

Lemma 4.5 Assume that t and δ are as stated in Lemma 4.4. Then, there exists a constant C > 0,
independent of h, such that for each K ∈ Th there holds

‖τ −Πk
K(τ )‖0,t;K ≤ C hδK

{
|τ |δ,t;K + ‖div(τ )‖0,t;K

}
∀ τ ∈Wδ,t(K) ∩Ht(divt;K) . (4.37)

Proof. It proceeds analogously to the proof of [35, Lemma 3.19], using now the estimate (4.31), and
employing the Deny-Lions Lemma for fractional Sobolev spaces (cf. [30, Theorem 6.1]), and the scaling
properties of the corresponding semi-norms (cf. [43, Lemmas 2.8 and 2.9]). We omit further details.

�

As a straightforward consequence of the triangle inequality, (4.37), and the fact that both, ‖ · ‖0,t;K
and | · |δ,t;K , are bounded by ‖ · ‖δ,t;K, we readily deduce the existence of a constant c > 0, independent
of h, such that for each K ∈ Th there holds

‖Πk
K(τ )‖0,t;K ≤ c

{
‖τ‖δ,t;K + hδK ‖div(τ )‖0,t;K

}
∀ τ ∈Wδ,t(K) ∩Ht(divt;K) . (4.38)
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Finally, it is not difficult to see that the global versions of (4.37) and (4.38) become

‖τ −Πk
h(τ )‖0,t;Ω ≤ Ct h

δ
{
|τ |δ,t;Ω + ‖div(τ )‖0,t;Ω

}
∀ τ ∈Wδ,t(Ω) ∩Ht(divt; Ω) , (4.39a)

‖Πk
h(τ )‖0,t;Ω ≤ ct

{
‖τ‖δ,t;Ω + hδ ‖div(τ )‖0,t;Ω

}
∀ τ ∈Wδ,t(Ω) ∩Ht(divt; Ω) , (4.39b)

respectively, with constants Ct, ct > 0, independent of h, but depending on t.

4.7 The discrete inf-sup conditions for T̃h and T̂h

In this section we verify that the specific finite element subspaces that were introduced in Section
4.2 verify the assumptions (H.1), (H.2), and (H.4). In other words, in what follows we provide the
discrete analogues of Lemmas 2.6, 2.7, and 2.9, for which we suitably adapt their respective proofs to
the present context. We begin with the discrete inf-sup condition for aψh , where ψh is taken in Qh.

Lemma 4.6 For each ψh ∈ Qh there hold

sup
vh∈K

k
h

vh 6=0

aψh(wh,vh)

‖vh‖X1

≥ α̃d ‖wh‖X2 ∀wh ∈ Kkh , (4.40)

with α̃d := µ1/(c
k
s ‖Ds‖) (cf. (1.2), Lemmas 2.3 and 4.2), and

sup
wh∈Kkh

aψh(wh,vh) > 0 ∀vh ∈ Kkh , vh 6= 0 . (4.41)

Proof. Given ψh ∈ Qh, we consider wh ∈ Kkh, wh 6= 0, define (cf. (2.7)) wh,s := Jr(wh) ∈ Ls(Ω), and
let ṽh := Θk

h

(
Ds(wh,s)

)
∈ Kkh. Then, thanks to (4.10), (2.14) (cf. Lemma 2.3), and Lemma 2.2, we

observe that ∫
Ω

wh · ṽh =

∫
Ω

wh ·Ds(wh,s) =

∫
Ω

wh ·wh,s = ‖wh‖0,r;Ω ‖wh,s‖0,s;Ω , (4.42)

from which it follows that necessarily ṽh 6= 0. Furthermore, the stability estimate (4.20) (cf. Lemma
4.2) and the boundedness of Ds (cf. Lemma 2.3) yield

‖ṽh‖0,s;Ω ≤ cks ‖Ds‖ ‖wh,s‖0,s;Ω . (4.43)

Thus, employing the lower bound for µ (cf. (1.2)), (4.42), and (4.43), we find that

sup
vh∈K

k
h

vh 6=0

aψh(wh,vh)

‖vh‖X1

≥
∣∣aψh(wh, ṽh)

∣∣
‖ṽh‖0,s;Ω

≥ µ1

∫
Ω

wh · ṽh

‖ṽh‖0,s;Ω
≥ µ1

cks ‖Ds‖
‖wh‖0,r;Ω ,

which yields (4.40) with the indicated constant α̃d. Similarly, given vh ∈ Kkh, vh 6= 0, we define (cf.
(2.7)) vh,r := Js(vh) ∈ Lr(Ω), set w̃h := Θk

h

(
Dr(vh,r)

)
∈ Kkh, and utilise again (1.2), (4.10), (2.14),

and Lemma 2.2, to deduce that

sup
wh∈Kkh

aψh(wh,vh) ≥ aψh(w̃h,vh) ≥ µ1

∫
Ω

w̃h · vh

= µ1

∫
Ω
Dr(vh,r) · vh = µ1 ‖vh‖s0,s;Ω > 0 ,
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which proves (4.41) and concludes the proof. �

We stress here that, only when Ω is non-convex and k = 0 is utilised, the discrete inf-sup constant
α̃d depends on the meshsize h, though in a very inoffensive manner. In fact, it is clear from (4.21) (cf.

Lemma 4.2) that in that case α̃d = µ1/
(
C̄ks
{
− log(h)

}|1−2/s| ‖Ds‖
)
, where the h-dependent term given

by
{
− log(h)

}|1−2/s|
grows very slowly as h→ 0, and hence it actually remains reasonably bounded for

very small values of h. In particular, taking for instance s = 8
5 (in Lemma 4.7 below we show that any

s ∈ (3
2 , 2) is a feasible choice) and h ≥ 10−30, then there holds

{
− log(h)

}|1−2/s|
=
{
− log(h)

}1/4
< 3.

It is also important to highlight at this point that the proof of Lemma 4.6 induces a discrete
version of the operator Ds provided by Lemma 2.3. In fact, it suffices to define Ds,h : Ls(Ω) → Kkh
by Ds,h(w) := Θk

h

(
Ds(w)

)
for all w ∈ Ls(Ω), which satisfies

∫
Ω wh · Ds,h(w) =

∫
Ω wh · w for all

wh ∈ X2,h such that div(wh) = 0 in Ω and wh · ν = 0 on Γ.

The discrete inf-sup conditions for the bilinear forms bi, i ∈ {1, 2}, are provided next.

Lemma 4.7 There exist β̃1,d, β̃2,d > 0, independent of h, such that for each i ∈ {1, 2} there holds

sup
vh∈Xi,h
vh 6=0

bi(vh, qh)

‖vh‖Xi
≥ β̃i,d ‖qh‖Mi ∀ qh ∈Mi,h . (4.44)

Proof. We prove first for i = 1. In this way, given qh ∈ M1,h, we set qh,s := Jr(qh) ∈ Ls(Ω) and

q0
h,s := qh,s − 1

|Ω|
∫

Ω qh,s ∈ Ls0(Ω), and let u ∈ W̃1,s(Ω) be the unique solution of (2.2) with g = q0
h,s,

g = 0, and gN = 0, that is

∆u = q0
h,s in Ω , ∇u · ν = 0 on Γ ,

∫
Ω
u = 0 . (4.45)

If Ω is convex, then we deduce from [45, Theorem 1.1] that actually u ∈W2,s(Ω) ∩ W̃1,s(Ω) and that
there exists a positive constant C(s) such that

‖u‖2,s;Ω ≤ C(s) ‖q0
h,s‖0,s;Ω . (4.46)

Then, defining v̄ := −∇u ∈W1,s(Ω), we have v̄ · ν = 0 on Γ, div(v̄) = −q0
h,s in Ω, and, using (4.46),

‖v̄‖1,s;Ω ≤ ‖u‖2,s;Ω ≤ C(s) ‖q0
h,s‖0,s;Ω . (4.47)

Thus, letting v̄h := Πk
h(v̄) and employing the identities satisfied by the Raviart-Thomas interpolator

Πk
h (cf. (4.2), (4.1)), we observe that v̄h · ν = Πk

h(v̄) · ν = Qkh(v̄ · ν) = 0 on Γ, which proves that
v̄h ∈ X1,h, and

div(v̄h) = div
(
Πk
h(v̄)

)
= Pkh(div(v̄)

)
= Pkh(−q0

h,s) in Ω . (4.48)

In addition, applying the stability estimates of Πk
h (cf. (4.5)) and Pkh (cf. (4.4)), and thanks to (4.47)

and (4.48), we find that

‖v̄h‖0,s;Ω = ‖Πk
h(v̄)‖0,s;Ω ≤ C ‖v̄‖1,s;Ω ≤ C̃ ‖q0

h,s‖0,s;Ω , (4.49a)

‖div(v̄h)‖0,s;Ω = ‖Pkh(q0
h,s)‖0,s;Ω ≤ c ‖q0

h,s‖0,s;Ω , (4.49b)

from which it follows that (cf. (2.10b))

‖v̄h‖X1 = ‖v̄h‖0,s;Ω + ‖div(v̄h)‖0,s;Ω ≤ C̄ ‖q0
h,s‖0,s;Ω ≤ C̄ C̃s ‖qh,s‖0,s;Ω , (4.50)
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where C, c, C̄, and C̃s are positive constants independent of h, the latter being specified within the
proof of Lemma 2.7. In this way, bearing in mind (4.48) again, the fact that

∫
Ω qh q

0
h,s =

∫
Ω qh qh,s,

the scalar version of (2.8b), and the estimate (4.50), we obtain

sup
vh∈X1,h

vh 6=0

b1(vh, qh)

‖vh‖X1

≥
−
∫

Ω
qh div(v̄h)

‖v̄h‖X1

=

∫
Ω
qh Pkh(q0

h,s)

‖v̄h‖X1

=

∫
Ω
qh qh,s

‖v̄h‖X1

=
‖qh‖0,r;Ω ‖qh,s‖0,s;Ω

‖v̄h‖X1

≥ 1

C̄ C̃s
‖qh‖0,r;Ω ,

(4.51)

which yields (4.44), for i = 1 and a convex polygonal domain Ω, with β̃1,d = 1

C̄ C̃s
.

In turn, if Ω is non-convex, and bearing in mind that s ∈ (1, 2), we observe from Lemma 4.3

(cf. (4.27)) that the solution u of (4.45) belongs to W1+δ,s(Ω) ∩ W̃1,s(Ω) for all δ ∈ (0, δ0), with
δ0 = min

{
2− 2

s ,
π
ω

}
, and that there exists a positive constant C(s, δ) such that

‖u‖1+δ,s;Ω ≤ C(s, δ) ‖q0
h,s‖0,s;Ω . (4.52)

Thus, defining v̄ := −∇u ∈Wδ,s(Ω), we have v̄ · ν = 0 on Γ, div(v̄) = −q0
h,s in Ω, and, using (4.52),

‖v̄‖δ,s;Ω ≤ C(s, δ) ‖q0
h,s‖0,s;Ω . (4.53)

Next, proceeding as in the convex case, we define v̄h := Πk
h(v̄) and realise again that v̄h ∈ X1,h

and that div(v̄h) = Pkh(−q0
h,s). Now, in order to apply (4.39b) to t = s and τ = v̄, which requires,

according to Lemma 4.4 (cf. (4.30)), that δ > 1
s , we need to impose that δ0 >

1
s , or equivalently

2− 2
s >

1
s and π

ω >
1
s , that is s > 3

2 and ω < sπ. In this way, under these assumptions on s and the
maximum interior angle ω of Ω, and thanks to (4.39b) and (4.53), we get

‖v̄h‖0,s;Ω = ‖Πk
h(v̄)‖0,s;Ω ≤ cs

{
‖v̄‖δ,s;Ω + hδ ‖div(v̄)‖0,s;Ω

}
≤ cs(1 + C(s, δ)) ‖q0

h,s‖0,s;Ω ,

where we have simply bounded hδ by 1. The foregoing inequality together with (4.49b) yield the
bound for ‖v̄h‖X1 in terms of ‖qh,s‖0,s;Ω (cf. (4.50)), and then the rest of the derivation of the discrete
inf-sup condition for b1 follows as (4.51).

On the other hand, for i = 2 we consider qh ∈ M2,h, set qh,r := Js(qh) ∈ Lr(Ω) and q0
h,r :=

qh,r − 1
|Ω|
∫

Ω qh,r ∈ Lr0(Ω), and let u ∈ W̃1,r(Ω) be the unique solution of

∆u = q0
h,r in Ω , ∇u · ν = 0 on Γ ,

∫
Ω
u = 0 , (4.54)

so that in the convex case the proof is almost verbatim to the one for i = 1.

In turn, if Ω is non-convex, the fact that π
ω > 1

2 > 1 − 2
r when s > 3

2 (equivalently, when r < 3)
allows us to apply Lemma 4.3 to t = r without further restrictions. In this way, we conclude that the
solution u of (4.54) belongs to W1+δ,r(Ω) ∩ W̃1,r(Ω) for all δ ∈ (0, δ0), and it satisfies the analogue of
(4.52). Note that the hypothesis of Lemma 4.4 (cf. (4.30)) is clearly verified in this case as well. The
rest of the proof proceeds as for the non-convex case of i = 1. We omit further details. �

It is important to remark here, as noticed within the previous proof, that in the case of a non-convex
Ω, the discrete inf-sup condition for b1, and hence our whole discrete analysis, is restricted to s > 3

2
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and to those polygonal regions with largest interior angle ω < sπ. Nevertheless, as illustrated by the
numerical results reported later on in Section 5, which even consider s = 3

2 and domains with ω ≥ sπ,
the above constraints seem to be only technical issues of the analysis rather than limitations of the
applicability of the method.

We end this section with the discrete analogue of Lemma 2.9. Indeed, while this result is a simple
modification of [22, eq. (5.64)], which in turn corresponds essentially to the vector version of [22,
Lemma 5.5], in what follows we provide its full proof for sake of completeness of our analysis. Moreover,
irrespective of the fact that ρ and its conjugate % are now subject in 2D to the restriction ρ > 4,
we prove the aforementioned inequality assuming arbitrary ρ ∈ (2,+∞) and % ∈ (1, 2) such that
1/ρ+ 1/% = 1. To this end, we first invoke [22, Lemma 5.4] (with local choices there given by p = %,
` = 0, and n = 2) to deduce that there exists a constant C0 > 0, independent of h, such that

‖τ −Πk
h(τ )‖0,Ω ≤ C0 h

2(1−1/%) |τ |1,%;Ω ∀ τ ∈W1,%(Ω) . (4.55)

The announced discrete inf-sup condition for our bilinear form b is proved next.

Lemma 4.8 There exists β̂d > 0, independent of h, such that

sup
τh∈Hh
τh 6=0

b(τ h, ψh)

‖τ h‖H
≥ β̂d ‖ψh‖Q ∀ψh ∈ Qh . (4.56)

Proof. Given ψh ∈ Qh, we let O be a convex domain contaning Ω̄, and set

g :=

{
|ψh|ρ−2 ψh in Ω ,

0 in O\Ω̄ ,

which is easily seen to belong to L%(O), with ‖g‖0,%;O = ‖g‖0,%;Ω = ‖ψh‖ρ−1
0,ρ;Ω. It follows from [34,

Corollary 1] that there exists a unique z ∈W2,%(O) ∩W1,%
0 (O) solution of

∆z = g in O , z = 0 on ∂O , (4.57)

and there exists a constant Creg > 0, depending only on O, such that

‖z‖2,%;O ≤ Creg ‖g‖0,%;Ω = Creg ‖ψh‖ρ−1
0,ρ;Ω . (4.58)

Next, we let ζ := ∇z|Ω ∈W1,%(Ω) and notice from (4.57) and (4.58) that

div(ζ) = |ψh|ρ−2 ψh in Ω and ‖ζ‖1,%;Ω ≤ Creg ‖ψh‖ρ−1
0,ρ;Ω . (4.59)

Thus, defining ζh := Πk
h(ζ) ∈ Hh, applying (4.55) with ` = 1, n = 2, and % ∈ (1,+∞), and employing

the continuous injection i% of W1,%(Ω) into L2(Ω), and the inequality from (4.59), we deduce that

‖ζh‖0,Ω ≤ ‖ζ −Πk
h(ζ)‖0,Ω + ‖ζ‖0,Ω ≤ C0 h

2(1−1/%) |ζ|1,%;Ω + ‖i%‖ ‖ζ‖1,%;Ω

≤ (C0 + ‖i%‖) ‖ζ‖1,%;Ω ≤ (C0 + ‖i%‖)Creg ‖ψh‖ρ−1
0,ρ;Ω ,

(4.60)

where h2(1−1/%) has been simply bounded by 1. In turn, we have

div(ζh) = Pkh
(
div(ζ)

)
= Pkh(|ψh|ρ−2 ψh) ,
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so that proceeding exactly as for the derivation of (4.49b), we find that

‖div(ζh)‖0,%;Ω ≤ Ĉ ‖|ψh|ρ−2 ψh‖0,%;Ω = Ĉ ‖ψh‖ρ−1
0,ρ;Ω ,

which, together with (4.60), give

‖ζh‖div%;Ω ≤
(
(C0 + ‖i%‖)Creg + Ĉ

)
‖ψh‖ρ−1

0,ρ;Ω . (4.61)

Finally, bounding below with ζh and using the orthogonality property of Pkh , we conclude that

sup
τh∈Hh
τh 6=0

b(τ h, ψh)

‖τ h‖H
≥ b(ζh, ψh)

‖ζh‖H
=

κ

∫
Ω
ψh Pkh(|ψh|ρ−2 ψh)

‖ζh‖div%;Ω
=

κ‖ψh‖ρ0,ρ;Ω

‖ζh‖div%;Ω
,

from which, making use of (4.61), we arrive at (4.56) with β̂d = κ
(
(C0 + ‖i%‖)Creg + Ĉ

)−1
. �

4.8 The rates of convergence

In this section we provide the rates of convergence of our Galerkin scheme (3.1) with the specific finite
element subspaces introduced in Section 4.2. For this purpose, we first collect the approximation
properties of Hh, Qh, X2,h, and M1,h (cf. Section 4.2), which follow from (4.3a) (for m = 0 and
t = ρ, r), (4.6) (for t = %), (4.7) (for t = r), and interpolation estimates of Sobolev spaces. More
precisely, we have:

(APσ
h ) there exists C > 0, independent of h, such that for each ` ∈ [1, k+ 1], and for each τ ∈ H`(Ω)

with div(τ ) ∈W`,%(Ω), there holds

dist(τ ,Hh) := inf
τh∈Hh

‖τ − τ h‖div%;Ω ≤ C h`
{
‖τ‖`,Ω + ‖div(τ )‖`,%;Ω

}
.

(APϕ
h) there exists C > 0, independent of h, such that for each ` ∈ [0, k+1], and for each ψ ∈W`,ρ(Ω),

there holds
dist(ψ,Qh) := inf

ψh∈Qh
‖ψ − ψh‖0,ρ;Ω ≤ C h` ‖ψ‖`,ρ;Ω .

(APu
h) there exists C > 0, independent of h, such that for each ` ∈ [1, k+1], and for each v ∈W`,r(Ω)

with div(v) ∈W`,r(Ω), there holds

dist(v, X2,h) := inf
vh∈X2,h

‖v − vh‖r,divr;Ω ≤ C h`
{
‖v‖`,r;Ω + ‖div(v)‖`,r;Ω

}
.

(APp
h) there exists C > 0, independent of h, such that for each ` ∈ [0, k+1], and for each q ∈W`,r(Ω),

there holds
dist(q,M1,h) := inf

qh∈M1,h

‖q − qh‖0,r;Ω ≤ C h` ‖q‖`,r;Ω .

Hence, we can state the following main theorem.
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Theorem 4.9 Let
(
(σ, ϕ), (u, p)

)
∈
(
H × Q

)
×
(
X2 × M1

)
be the unique solution of (2.31) with

u ∈ S (cf. (2.62)), and let
(
(σh, ϕh), (uh, ph)

)
∈
(
Hh × Qh

)
×
(
X2,h ×M1,h

)
be a solution of (3.1)

with uh ∈ Sh (cf. (3.11)), whose existences are guaranteed by Theorems 2.15 and 3.4, respectively.
Assume that (3.25) (cf. Theorem 3.5) holds, and that there exists ` ∈ [1, k + 1] such that σ ∈ H`(Ω),
div(σ) ∈W`,%(Ω), ϕ ∈W`,ρ(Ω), u ∈W`,r(Ω), div(u) ∈W`,r(Ω), and p ∈W`,r(Ω). Then, there exists
a constant C > 0, independent of h, such that

‖σ − σh‖H + ‖ϕ− ϕh‖Q + ‖u− uh‖X2 + ‖p− ph‖M1

≤ C h`
{
‖σ‖`,Ω + ‖div(σ)‖`,%;Ω + ‖ϕ‖`,ρ;Ω + ‖u‖`,r;Ω + ‖div(u)‖`,r;Ω + ‖p‖`,r;Ω

}
.

(4.62)

Proof. It follows straightforwardly from Theorem 3.5 and the above approximation properties. �

5 Numerical results

We now address the numerical verification of the convergence properties of the proposed scheme (as
stated in Section 4.8), as well as the usability of this new method in problems of applicative interest. In
all results reported in this section the linear systems emanating from the Newton-Raphson linearisation
have been solved with the unsymmetric multifrontal direct method for sparse matrices (UMFPACK).

The condition of zero-average for pressure needed in (4.8d) and (4.8f) is imposed through a real
Lagrange multiplier.

5.1 Test 1: accuracy verification on different domains

The choice of s and the geometry of the underlying domain play key roles in the discrete analysis of
the method. More precisely, as pointed out after the proof of Lemma 4.7, the theoretical estimates
require in 2D that s be greater than 3

2 and the largest interior angle ω be less than sπ; and the proofs
of stability do not extend readily to 3D domains, as discussed after the proof of Lemma 4.2. In this
example we explore these aspects numerically by considering s = 3

2 and s = 8
5 , that is (cf. (2.19))

(ρ, %, r, s) = (6, 6/5, 3, 3/2) and (ρ, %, r, s) = (8, 8/7, 8/3, 8/5) , (5.1)

respectively, and using as domains a square ΩS, an L-shaped domain ΩL (having an inner angle of
3π/2), a domain with an inner angle larger than 8π/5, ΩV, and the unit cube ΩC. Following a
manufactured solution approach, first we construct a sequence of successively refined unstructured
partitions of the given domain (with h tending to zero), and consider the following closed-form syn-
thetic solutions to (1.3) (in all of which we use the specification for temperature-dependent scaled
viscosity µ(ϕ) = µ0 + 1

2µ0ϕ(µ1 − ϕ))

in ΩS := (−π, π)2 : ϕ = 0.5(x2
1 + x2

2)− 0.25 sin(x1) cos(x2), κ = 0.1, µ0 = 0.5, µ1 = 10,

u =
1

10

(
cos(x1) sin(x2)
− sin(x1) cos(x2)

)
, p =

1

10
sin(x1x2)e−0.1x1x2 , σ = κ∇ϕ− ϕu;

in ΩL := (−1, 1)2 \ (0, 1)2 : ϕ = 1 + sin(x1) sin(x2), κ = 0.05, µ0 = 0.1, µ1 = 5,

u =

(
cos(x1) sin(x2)
− sin(x1) cos(x2)

)
, p = x4

1 − x4
2, σ = κ∇ϕ− ϕu;
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Figure 5.1: Test 1. Error history for pseudoheat flux, temperature, velocity, and pressure, showing
convergence of the mixed finite element method on the domains ΩS (top left and top right), ΩL (bottom
left), ΩV (bottom centre), and ΩC (bottom right).

in ΩV := (0, 1)2 \∆((
1

2
,
1

2
), (1,

1

3
), (1,

2

3
)), ϕ = 1 +

3

4
cos(

π

4
x1x2), κ = 0.01, µ0 = 0.05, µ1 = 3,

u =

(
sin2(πx1) sin2(πx2) cos(πx2)
−1

3 sin(2πx1) sin3(πx2)

)
, p = sin(x1x2) cos(x1x2), σ = κ∇ϕ− ϕu;

in ΩC := (0, 1)3 : ϕ =
1

2
(x2

1 + x2
2 + x2

3)− 1

4
sin(x1) cos(x2) cos(x3), κ = 0.1, µ0 = 1, µ1 = 10,

u =

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 , p = sin(x1x2x3)e−0.1x1x2x3 , σ = κ∇ϕ− ϕu.

Source terms (and for the cases that require it, also the non-homogeneous boundary conditions for the
normal trace of velocity that are prescribed essentially, and for temperature ϕD which are prescribed
weakly by adding the contribution −κ〈τ · ν, ϕD〉Γ) are imposed using these exact solutions.

The finite element spaces are specified as in (4.8). In addition to RT elements composing (4.8a),
(4.8c), (4.8e), we have also tested the convergence with BDM elements, and no substantial differences
are observed. We therefore refer only to RT-based families in the plots below.

In Figure 5.1 we collectively show the error history for each case, including computed errors on
each refinement level, for two different polynomial degrees k = 0, 1, and separating each individual
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Figure 5.2: Test 2. Porous enclosure heated from the side, with Ra = 1500. Approximate pseudoheat
flux and line integral contour, temperature, velocity magnitude with line integral contour, and pressure
distribution at t = 0.5.

contribution to the total error

e(σ) := ‖σ − σh‖H, e(ϕ) := ‖ϕ− ϕh‖Q, e(u) := ‖u− uh‖X2 , e(p) := ‖p− ph‖M1 .

And these errors are computed in the norms that use the values from (5.1). For ΩS we use the two
sets of values, whereas for ΩL,ΩV,ΩC we use the second set of values (with s = 8/5).

The plotted accuracy trends in the top-left panel demonstrate numerically the optimal convergence
order anticipated by Theorem 4.9, and a similar conclusion is drawn when testing the accuracy in the
domains for which the analysis does not carry over. As usual, a local error decay rate can be obtained,
for a generic pair of individual errors e, ê generated by the mixed method on meshes associated with
meshsizes h and ĥ, as rate = log

(
e(·)/ê(·)

)
[log(h/ĥ)]−1, and then an average value can be taken for

each error history. Alternatively, one can visually compare the convergence against the optimal values
in the solid lines of each panel. For instance, for the 3D domain ΩC we can infer a slightly higher
convergence for pressure (of about O(h1.45)). For all these runs, the maximum number of iterations
required over the course of the Newton-Raphson loop (which is terminated once the nonlinear residual
discrete norm drops below a relative tolerance of 10−6) was 5.

5.2 Test 2: application to buoyancy-driven flow in porous media

In order to study an application into heat and fluid flow in non-isothermal porous media, we extend the
model to the classical pseudo-steady case, by adding the rate of change of temperature to the left-hand
side of the thermal energy conservation equation: ∂tϕ+ u · ∇ϕ− κ∆ϕ = f (or −∂tϕ+ div(σ) = −f
in the context of (1.3)). After non-dimensionalisation, the system regime can be fully described
by the Rayleigh number Ra (combining the effects of gravity, permeability, characteristic length,
viscosity, and thermal conductivity), and the temperature-dependent viscosity is µ(ϕ) = exp(ϕ). The
momentum equation has an additional term on the right-hand side, depending on temperature (due to

the Boussinesq approximation relating density and temperature), f = ϕ

(
0
1

)
. The test configuration

and parameter values are taken from [50], where a square porous layer is held between differentially
heated sidewalls. The four walls are impermeable, resulting in the condition u · ν = 0 everywhere
on the boundary, and therefore a Lagrange multiplier is used to enforce pressure uniqueness. The
temperature boundary conditions adopted for this test are of mixed type, and they differ from those
in (1.1): on the left and right sidewalls, normalised temperatures of ϕ = 1 and ϕ = 0 are imposed,
respectively; whereas on the top and bottom walls we set σ · ν = 0. The fully-discrete problem
resulting from a simple backward Euler time discretisation with constant time step, adopts a form
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Figure 5.3: Test 3A. Evolution of the concentration in viscous fingering at t = 5, 10, 15 s (left panels),
and snapshots of total flux, velocity, and pressure at the final time (right column).

similar to (3.1). The computational domain is the unit square, discretised into a uniform mesh of 40K
triangles, and for the lowest-order scheme the method has 320801 DoFs. We use a constant time step
∆t = 0.01 and prescribe a Rayleigh number of 1500, and the approximate solutions on the enclosure
heated from the left side, after 50 time steps are shown in Figure 5.2.

5.3 Test 3: applications to Darcian miscible displacement and viscous fingering

To conclude we note that if ϕ is understood as a species concentration rather than temperature, then
equations (1.1) can be used to describe flow displacement in Hele-Shaw cells (see, e.g., [6, 57]) where
one injects water into another viscous fluid of different viscosity (and with viscosity ratio of r = 2).
Starting from the initial distribution of concentration ϕ(x1, x2, 0) = ϕ2

2

[
1 + erf

(
x1−0.01
4×10−4

)]
, eventually

the existing fluid is displaced and so-called viscous fingering instabilities are formed (for this there
is no need to prescribe a random perturbation, as the unstructured mesh is sufficient to onset the
required instabilities near the initial interface between the two fluids). The computational domain is
the channel Ω = (0, 0.08) × (0, 0.02) m2. The field ϕ is now interpreted as concentration of the fluid
to be displaced (and measured in mol/m3). The left side of the domain is the inlet boundary where
we impose u · ν = −0.001m/s as inlet velocity and ϕ = 0 as inlet concentration (since the second
fluid, water, is being injected from that segment). On the horizontal walls of the channel we impose
u · ν = σ · ν = 0 and on the outlet (the right end of the channel) we set p = 0 and zero diffusive flux
(implying that [σ + ϕu] · ν = 0). The model parameters are (see, e.g., [6, 58])

κ = 4× 10−8 m2/s, lporo = 0.5, lmob = 2, lvisc = 1 mPa·s, lperm = 10−6 m2,

ϕ2 = 6500 mol/m3, µ(ϕ) =
lvisc

lperm
exp(lmovϕ/ϕ2),

and they represent diffusivity, porosity, log-mobility ratio, viscosity of the displacing fluid, permeability
of the porous medium, reference concentration of the displaced solute, and concentration-dependent
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Figure 5.4: Test 3B. Evolution of the concentration in miscible displacement in porous media at
adimensional times t = 10, 30, 90 (top), and snapshots of total flux, velocity, and pressure at the final
time (bottom).

Arrhenius viscosity law (scaled with permeability), respectively. We use an unstructured mesh of
37745 triangles, set a constant timestep of ∆t = 0.01 s and run the simulations until t = 10 s.

Next we conduct a very similar test but the displaced fluid is water and a fluid with higher viscosity
is injected. The domain is an annular region (of radii 0.2 and 5, in adimensional units) with many
holes of random location and size. The inlet and outlet are the inner and outer circles, respectively.
We prescribe an inlet velocity u · ν = −1 and inlet concentration ϕ = 1, on the outlet we set zero
pressure p = 0 and zero diffusive flux [σ+ϕu]·ν = 0, and on the remainder of the boundaries the fluids
are allowed to slip, and zero total flux is imposed σ · ν = 0. The set of equations is in dimensionless
form, depending on the Péclet number Pe= 750, from which κ = 1/Pe, and the scaled viscosity follows
a quarter-power mixing rule µ(ϕ) = 1 + (ϕ+ 1.18(1−ϕ))−4. The mesh has 34683 triangular elements,
the timestep is ∆t = 0.5 and the computation is evolved until t = 100.

The results of both tests are collected in Figures 5.3-5.4, showing snapshots of concentration at
different times, as well as examples of total fluxes, velocities and pressures at the final time. And we
emphasize that a key benefit offered by the proposed mixed-mixed formulation is the conservativity
of the resulting scheme.

44



Acknowledgements. We are very thankful to Professor Dr. Ricardo Durán for pointing to and
clarifying most of the results on the stability of the Ritz projector that are collected in Section 4.3. In
addition, we also express our deep gratitude to Professor Dr. Monique Dauge for providing through
[25] and [26] most details regarding the regularity result discussed in Section 4.5.

References

[1] K. Allali, A priori and a posteriori error estimates for Boussinesq equations. Int. J. Numer.
Anal. Model. 2 (2005), no. 2, 179–196.

[2] J.A. Almonacid and G.N. Gatica, A fully-mixed finite element method for the n-dimensional
Boussinesq problem with temperature-dependent parameters. Comput. Methods Appl. Math. 20
(2020), no. 2, 187–213.
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2020-29 Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes: A posteriori
error analysis of a momentum and thermal energy conservative mixed-FEM for the
Boussinesq equations

2020-30 Reinaldo Campos-Vargas, Claudia Fuentealba, Ignacia Hernández, Ma-
arten Hertog, Claudio Meneses, Diego Paredes, Romina Pedreschi, Vir-
gilio Uarrota: Can metabolites at harvest be used as physiological markers for mod-
elling the softening behaviour of Chilean “Hass” avocados destined to local and distant
markets?
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