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Abstract

A new model to determine the quality of three-dimensional, time-resolved MRI
velocity measurements is presented. By assuming that the true flow velocity satisfies
the incompressible Navier-Stokes equations, it is decomposed by measurements umeas

plus a corrective field w. Therefore, a non-linear problem for the corrective field. We
first introduce the continuous formulation, developing and analyzing a stabilized finite
element formulation tailored to this problem. Then, extensive numerical examples –
using synthetic and experimental data – illustrate the potential to use w for assess-
ing the quality of the measurements under the main sources of error encountered in
practice: noise and aliasing.

1 Introduction

Time-resolved 3D flow magnetic resonance imaging, also referred as 4D flow MRI, has shown
in the last years increasing potential in the assessment of cardiovascular diseases since it
offers a full coverage of the region of interest [1, 2]. This makes possible the computation of
several hemodynamic parameters which can be used as new biomarkers [2]. However, high-
quality 4D flow in subjects involves long time scans (>20 minutes) even with coarse spatio-
temporal resolutions making it challenging for everyday clinical use. In order to accelerate
the acquisition time, several strategies have been proposed such as parallel imaging [3, 4],
which accelerates the acquisition by exploiting the sensitivity of multiple receivers, and k-
space undersampling [5, 6, 7, 8], which exploits data redundancies in frequency and time.
This scan time reduction comes at the price of reducing the signal-to-noise ratio (SNR) and
the appearance of imaging artifacts. Moreover, the velocity field can only be obtained under
certain predefined velocity ranges, which depend of the setup of the magnetic gradients,

∗Both C. Bertoglio and J. Mura are joint last authors, listed in alphabetical order.
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therefore being often subject of velocity aliasing. Further artifacts may also appear due to
subject’s respiration and motion during the scan.

To the best of the authors knowledge, quality control of 4D flow is based on direct cal-
culation and inspection of the velocity data, such as peak/mean flows, mean velocities, flow
patterns and stroke volumes [9, 10, 2]. A more systematic approach is to compute the diver-
gence field of the data: assuming the blood flow is incompressible, jumps in the divergence
field may indicate the presence of artifacts. Indeed, the incompressibility assumption has
been used for denoising [11, 12, 9, 13] and as a regularization during the reconstruction
process [14, 15]. However, limitations of the divergence are that it does not allow to analyze
between each velocity component separately, and it cannot be compared against the “true”
value: every non-zero value is infinitely large compared with zero. Moreover, there exist
relevant perturbed configurations which lead to zero-divergence fields too, as the Womersley
flow in a tube with velocity aliasing in the longitudinal spatial direction.

Therefore, this work introduces an alternative quantitative approach for assessing 4D flow
quality by verifying the compatibility with respect to the linear momentum conservation part
of the Navier-Stokes, which written appropriately, includes also angular momentum and mass
conservation too.

The rest of this article is structured as follows. In Section 2, the mathematical model
will be introduced, and a numerical method will be developed and analyzed. In Section 3,
a set of relevant examples, using synthetic data, will be detailed. Numerical computations
of the new model for several types of artifacts and its comparison against the divergence of
the data is also shown. Real 4D flow MRI data results are shown in Section 4. Finally, in
Section 5 we discuss potential applications of this metric in the context of reconstruction
and processing 4D flow MRI.

2 The mathematical model

2.1 The continuous problem

We assume a physical velocity, denoted by u, which satisfies the Navier-Stokes equations in
the vessel lumen Ω:

ρ
∂u

∂t
+ ρ
(
u · ∇

)
u− µ∆u +∇p = 0 in Ω (1)

with ρ and µ the density and dynamic viscosity of the fluid, respectively. Note that, although
this being the conservation of linear momentum, the used form considers additionally the
conservation of angular momentum together with mass conservation.

Let us denote umeas the 4D Flow measurement. We assume that there exist a corrector
field w, that satisfies:

u = umeas + w in Ω (2)

∇ ·w = 0 in Ω (3)

w = 0 on ∂Ω (4)
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By writing (1) in weak form, and using relations (2)-(4), we can formulate the following
weak problem: Find (w(t), p(t)) ∈ H1

0 (Ω)× L2
0(Ω) such that∫

Ω

ρ
∂w

∂t
· v + ρ

(
(umeas + w) · ∇

)
w · v + ρ

(
w · ∇

)
umeas · v + µ∇w : ∇v− p∇ · v + q∇ ·w

= −
∫

Ω

ρ
∂umeas

∂t
· v + ρ

(
umeas · ∇

)
umeas · v + µ∇umeas : ∇v (5)

for all (v, q) ∈ H1
0 (Ω)× L2

0(Ω).
The following remarks are in order.

Remark 1 The left-hand-side of Problem (5) resembles the one of the incompressible Navier-
Stokes equation, up to two additional terms. Unfortunately, none of these terms are positive
(this will become clear in the analysis in the next section), hence making the analysis of the
well posedness of this continuous problem (existence, uniqueness, time-stability) an impor-
tant mathematical challenge. However, at the discrete level those properties can be ensured
by including adequate stabilization terms and constraints on the physical constants.

Remark 2 Equation (1) uses the so-called convective form of the advective term. While
alternative forms of Equation (5) could be derived starting from other forms for the advection
(e.g. conservative), the resulting discrete problem will need to be stabilized to obtain a solvable
problem, leading to the same expression for the bilinear form. There will be indeed a difference
on right-hand-side terms. There is, however, no particular reason to choose one above the
other since all formulations are consistent with perfect (i.e. divergence-free) measurements.

Remark 3 An alternative formulation for the corrector field could be formulated by defining:

∇ ·w = −∇ · umeas +
1

|Ω|

∫
∂Ω

umeas · n (6)

instead of (3), where the second term in the right-hand-side is needed in order to enforce the
compatibility with respect to the boundary condition (4). However, as it is shown in Appendix
5, this leads w to have spurious larger values than using the divergence-free model even with
perfect synthetic data and comparable in magnitude with the true velocity itself for realistic
flows.

Remark 4 Note that the so-called “STE” method for pressure reconstruction [16] corre-
sponds to this method but dropping the first four terms of the right-hand-side.

2.2 Stabilized finite element formulation

In order to aim to the clinical applicability of such data quality measure, it is crucial to use
numerical schemes that are fast to compute and robust.

We assume first that a structured medical image is segmented and a mesh of the vessel
domain created with constant element size h, using e.g. the tetrahedral mesh generator

3



reported in [17]. Denote the domain defined but that mesh Ωh, which will allow to defined
the function spaces

Vh = {w ∈ [H1
0 (Ωh)]3 : w ∈ [P1(K)]3∀K ∈ Ωh}

and
Qh = {q ∈ L2

0(Ωh) ∩H1(Ωh) : q ∈ P1(K)∀K ∈ Ωh}

For the spatial discretization, we then adopt Vh and Qh as solution spaces for w and p,
respectively, requiring to introduce additional stabilization terms for the convection and the
pressure to ensure solvability.

For the time discretization, we adopt a backward Euler method with fixed time step τ to
avoid GCL-type conditions on the meshes. In order to avoid a rootfinding problem at each
time step (which can be hard to make it converge for large time steps and large right hand
sides) the non-linear term on w will be treated semi-implicitly.

The resulting fully discrete stabilized formulation reads as follows. Given w0 = 0, find
(wk, pk) ∈ Vh ×Qh such that

Bk(wk, pk; v, q) = Lj(v, q) (7)

for all (v, q) ∈ Vh ×Qh. The bilinear form is defined as:

Bk(w, p; v, q) := Ak(w, p; v, q) + Sconv
k (w; v) + Spress

k (w, p; v, q) (8)

with

Ak(w, p; v, q) :=

∫
Ω

ρ

τ
w·v+ρ

(
(uk

meas+wk−1)·∇
)
w·v+ρ

(
w·∇

)
uk
meas·v+µ∇w : ∇v−p∇·v+q∇·w

the bilinear form associated to the non-stabilized weak form of (5), while the convection
stabilization term is given by

Sconv
k (w; v) :=

∫
Ω

ρ

2

(
∇ · (uk

meas + wk−1)
)

w · v

and the pressure stabilization term as

Spress
k (w, p; v, q) :=

δh2

µ

∫
Ωh

(
ρ
(
(uk

meas + wk−1) · ∇
)
w + ρ

(
w · ∇

)
uk
meas +∇p

)
·(

ρ
(
(uk

meas + wk−1) · ∇
)
v + ρ

(
v · ∇

)
uk
meas +∇q

)
(9)

with fk = −ρ(uk
meas−uk−1

meas)/τ − ρ
(
uk
meas · ∇

)
uk
meas and δ > 0 some user-defined parameter.

Finally, the right-hand-side is given by

Lj(v, q) :=

∫
Ω

ρ

τ
wk−1 · v + `j(v, q) (10)
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with

`j(v, q) :=

∫
Ω

fk · v− µ∇uk
meas : ∇v

+
δh2

µ

∫
Ωh

fk ·
(
ρ
(
(uk

meas + wk−1) · ∇
)
v + ρ

(
v · ∇

)
uk
meas +∇q

)
(11)

Remark 5 The stabilization term Sconv
k is in general not consistent with the solution of (5).

However, it is indeed consistent when the measurements are perfect since in such case w = 0
and ∇ · umeas = 0. The stabilization term Spress

k is weakly consistent due to the inclusion of
h2.

2.3 Existence and uniqueness of the discrete solution

The purpose is now to determine if Problem (7) is well-posed by verifying if the Lax-Milgram
theorem is satisfied.

First, note that uk
meas ∈ [H1(Ωh)]3 for all k since the velocity values lie within a bounded

finite interval, and then they are interpolated to P1 finite elements.
Denote the space of the whole solution vector W = Vh × Qh, then we can prove the

following results.

Lemma 1 The operator ‖ · ‖W : W → R defined by

‖(v, q)‖2
W := β‖v‖2

H1(Ωh) + Spress
k (v, q; v, q)

is a norm on W = Vh ×Qh for β > 0.

Proof The first term defines a norm in Vh and the second term is a seminorm in W , so
‖ · ‖W is a seminorm in W . It remains to proof that ‖(v, q)‖W = 0 ⇒ (v, q) = 0. Indeed,
the first two terms have to be zero and therefore v = 0. Therefore, ∇q has to be a constant
and also zero-valued since q ∈ Qh. �

Lemma 2 For v,w ∈ Rd,C ∈ Rd×s the following relation holds:

w ·Cv ≤ ‖C‖∞‖w‖1‖v‖1 ≤ d‖C‖∞‖w‖2‖v‖2

with ‖‖j denoting the `j-norm in Rd.

Proof Directly from the lemma’s definition. �

Lemma 3 There exists α > 0 such that:

Bk(w, p;w, p) > ‖(w, p)‖2
W (12)

∀ (w, p) ∈ W\{0} under the condition:

ρ/τ + C−2
Ω µ/2− ρ3‖∇uk

meas‖∞ > 0 (13)
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Proof Using standard arguments, Poincaré’s inequality and Lemma 2 the following relation
holds:

Ak(w, p; w, p) + Sconv
k (w; w) =

∫
Ω

ρ

τ
‖w‖2

2 + µ‖∇w‖2
2 + ρ(w · ∇)uk

meas ·w

≥
(
ρ

τ
+

µ

2C2
Ω

)
‖w‖2

L2(Ωh) + ρ

∫
Ω

(w · ∇)uk
meas ·w +

µ

2
‖∇w‖2

L2(Ωh)

≥
(
ρ

τ
+

µ

2C2
Ω

− ρ3‖∇uk
meas‖∞

)
‖w‖2

L2(Ωh) +
µ

2
‖∇w‖2

L2(Ωh)

≥ β‖w‖2
H1(Ωh)

with
β = min(ρ/τ + C−2

Ω µ/2− ρ3‖∇uk
meas‖∞,

µ

2
) > 0

under condition (13). By adding the remaining term Spress
k (w, p; w, p), relation (12) follows

directly from the definition of the norm. �

Lemma 4 There exists a constant M > 0 such that:

|Bk(w, p; v, q)| ≤M‖(w, p)‖W‖(v, q)‖W

for all (w, p), (v, q) ∈ W .

Proof Since

|Bk(w, p; v, q)| ≤ |Ak(w, p; v, q)|+ |Sconv
k (w; v)|+ |Spress

k (w, p; v, q)|

Using Cauchy-Schwarz inequality and adding the missing norm terms in w we obtain

|Spress
k (w, p; v, q)| ≤ ‖(w, p)‖W‖(v, q)‖W

For the other terms, we can integrate the convective term by parts (hence canceling out
the convective stabilization) and the pressure and divergence terms. Proceeding then using
Cauchy-Schwarz:

|Ak(w, p; v, q) + Sconv
k (w; v)| ≤

(ρ
τ

+ ρ‖∇uk
meas‖∞

)
‖w‖L2(Ωh)‖v‖L2(Ωh)

+ρ‖uk
meas + wk−1‖∞‖w‖L2(Ωh)‖∇v‖L2(Ωh)

+µ‖∇w‖L2‖∇v‖L2 + ‖∇p‖L2(Ωh)‖v‖L2(Ωh) + ‖∇q‖L2(Ωh)‖w‖L2(Ωh)

≤
(
ρ

τβ
+
ρ

β
‖∇uk

meas‖∞ +
ρ

β
‖uk

meas + wk−1‖∞ +
µ

β

)
‖(w, p)‖W‖(v, q)‖W

+
1√
β
‖∇p‖L2(Ωh)‖(v, q)‖W +

1√
β
‖∇q‖L2(Ωh)‖(w, p)‖W
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And to end the proof we need to bound the pressure gradient:

‖∇p‖L2(Ωh) ≤ ‖ρ
(
(uk

meas + wk−1) · ∇
)
w + ρ

(
w · ∇

)
uk
meas +∇p‖L2(Ωh)

+‖ρ
(
(uk

meas + wk−1) · ∇
)
w + ρ

(
w · ∇

)
uk
meas‖L2(Ωh)

≤
√

µ

δh2
‖(w, p)‖W + ‖ρ(uk

meas + wk−1)‖L2(Ωh)‖∇w‖L2(Ωh) + ‖ρ∇uk
meas‖L2(Ωh)‖w‖L2(Ωh)

≤
(√

µ

δh2
+

1√
β
‖ρ(uk

meas + wk−1)‖L2(Ωh) +
1√
β
‖ρ∇uk

meas‖L2(Ωh)

)
‖(w, p)‖W

�

Lemma 5 There exists a constant C > 0 such that:

|Lj(v, q)| ≤ C‖(v, q)‖W

Proof We proceed using Cauchy-Schwarz inequality and adding the reminder terms to obtain
the W -norm:

‖Lj(v, q)‖ ≤
ρ

τ
‖wk−1‖L2(Ωh)‖v‖L2(Ωh) + |`j(v, q)|

≤ ρ

τ
√
β
‖wk−1‖L2(Ωh)‖(v, q)‖W + |`j(v, q)|

The last term can be bounded as:

|`j(v, q)| ≤ ‖fk‖L2(Ωh)‖v‖L2(Ωh) + µ‖∇uk
meas‖L2(Ωh)‖v‖L2(Ωh)

+

√
δ
h2

µ
‖fk‖L2(Ωh)

√
δ
h2

µ
‖
(
ρ
(
(uk

meas + wk−1) · ∇
)
v + ρ

(
v · ∇

)
uk
meas +∇q

)
‖L2(Ωh)

≤

(
1

β
‖fk‖L2(Ωh) +

µ

β
‖∇uk

meas‖L2(Ωh) +

√
δ
h2

µ
‖fk‖L2(Ωh)

)
‖(v, q)‖W

�

Theorem 1 There exists a unique solution in W of Problem (7) under condition (13) for
all k > 0.

Proof Since w0 = 0 ∈ [H1(Ω)]3, the bilinear and linear forms fulfill the requirements of the
Lax-Milgram Theorem (i.e. Lemmas 3–5) for k ≥ 1. �

2.4 Time stability of the discrete solution

We can furthermore prove the following energy balance:
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Theorem 2 For (wk, pk) solution of Problem (7), with `j(v, q) = 0 it holds

‖wk‖2
L2(Ω) ≤ ‖wk−1‖2

L2(Ω) (14)

under the condition
µ ≥ C2

Ω3ρ‖∇uk
meas‖∞ (15)

Proof Testing (7) with v = wk and q = pk and using similar arguments as in Lemma 3, it
is obtained

ρ

2τ
‖wk‖2

L2(Ωh) −
ρ

2τ
‖wk−1‖2

L2(Ωh) = −µ‖∇wk‖2
L2(Ωh) −

∫
Ω

(
ρ
(
wk · ∇

)
uk
meas

)
·wk

− ρ

2τ
‖wk −wk−1‖2

L2(Ωh) − S
press
k (wk, pk; wk, pk)

where the two first terms in the right-hand-side come from the continuous problem, and
the two last terms are dissipative due to the numerical scheme. Bounding the former using
Poincaré’s inequality and the later by zero we obtain

ρ

2τ
‖wk‖2

L2(Ωh) −
ρ

2τ
‖wk−1‖2

L2(Ωh) ≤ (−µC−2
Ω + 3ρ‖∇uk

meas‖∞)‖wk‖2
L2(Ωh)

what combined with condition (15) leads to relation (14) �

3 Numerical experiments using synthetic data

3.1 General procedure

All testcases were created in the following way:

• A reference flow v is created using a finite element solver setup, that will be detailed
later for each of the examples, on an unstructured mesh with a fine time step.

• In order to simulate a realistic imaging setup, a box mesh with the desired image
resolution is created around the computational mesh where the reference simulation
was performed. The velocity field from the reference simulation was interpolated to
that box mesh, such that vH = IH(v), with IH an usual piecewise linear Lagrangian
interpolation.

• Then, the degrees-of-freedom of vH are arranged as multidimensional array, which
will serve to create the images. One array is created for each of the three velocity
components, denoted by V1,V2,V3.

• Phase-contrast MRI (PC-MRI) acquisitions were simulated from the velocity data for
each array Vj. For 4D flow, four magnetization complex arrays are usually measured:
three flow-sensitive magnetization arrays Mj = m0 exp (iφ0 + iπVj/venc), i = 1, 2, 3,
and a flow-compensated magnetization, M0 = m0 exp(iφ0), which does not depend

8



on the velocity. In all these experiments, the value of φ0 is assumed constant in space
and time and equal to 7.5 · 10−2 rad , and m0 assumed constant and equal to 0.5 on
the non-zero velocity voxels and also constant and equal to 0.1 for the rest. The venc
parameter is a predefined velocity which enforces all the velocities being in the interval
(−venc, venc) [18]. The resulting velocity-to-noise ratio (VNR) is then proportional
to the venc, therefore the venc should be chosen as small as possible, what commonly
leads to velocity wraps in 4D flow images.

• In order to study the performance of the method in realistic MRI applications, we
perturbed the magnetizations and consequently the reconstructed velocity adding noise
and aliasing (varying the venc):

– Additive gaussian noise was added into Kj, j = 0, . . . , 3, being Kj the discrete
Fourier transform (DFT) of Mj, which is in fact the quantity measured by the
scanner.

– Aliasing was explored setting the venc parameter lower than the maximum true
velocity. Therefore, when the velocity exceeds the venc (in absolute value), the
reconstructed velocity will be wrapped.

• The perturbed velocity is recovered by:

Ṽj =
venc

π
atan(M̃j/M̃0)

with / representing an element-wise division of the arrays and M̃j corresponding to
the magenization reconstructed using the perturbed measurements of Kj.

• An image mask is created from the reference simulation on the box mesh. Then, a
new semi-structured tetrahedral mesh following the aortic shape is created using the
algorithm reported in [17]. The velocity is then defined as a P1 finite element field on
such mesh in order to visualize the results and to quantify the errors to the reference
solution, which is also interpolated to the semi-structured mesh.

• The aforementioned procedure is repeat for every dataset. Problem (7) was solved
using such interpolated, perturbed velocity in the right-hand-side as uk

meas, with j =
0, . . . , N . For the pressure stabilization term a δ = 10−4 parameter was used. For
visualization of every step see Figure 1.

3.2 Synthetic Womersley flow

We consider a Womersley flow in a cylinder of length H = 5 cm and radius R = 1 cm, driven
by an oscillatory pressure drop of amplitude δp = 2000 barye and frequency ω = 1 Hz.
The physical parameters of the fluid were: density ρ = 1.0 gr/cm3 and dynamic viscosity
µ = 0.035 P , resulting in a Womersley number of α = R

√
ωρ/µ = 13.3. The solution was
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(a) v (b) vH

(c) reference

(d) only noise

(e) only aliasing

(f) noise + aliasing

Figure 1: Generation of measurements for the Womersley testcase. a) Velocity profile in the
unstructured mesh. b) Resulting velocity after interpolation into the mask, together with
the generated mesh. c)-f) Profiles of the perturbed velocity: c) reference, d) only aliasing,
e) only noise and f) noise and aliasing.

obtained solving a Stokes problem with a backwards Euler scheme in the time derivative,
using a monolithic P1/P1 finite element method implemented in FEniCS [19]. A PSPG
stabilization term was added with a parameter δ = 10−4. For boundary condition, a non-
slip condition for the velocity was used at the walls, with a Dirichlet condition at the inlet
for the pressure. The mesh was built with unstructured elements consisting of 229, 379
tetrahedrons and 39, 556 vertices. Finally, the total simulation time was Tf = 1 s with a
timestep of dt = 0.01 s. From this reference simulation, the velocity measurements were
perturbed following the procedure detailed in Section 3.1 using a measurement mask with
voxel size of 2×2×2 mm3 and measurement time step of 0.03 s. A gaussian noise was added
into the k-space resulting in a noise in the velocity with variance 2.87% of the maximum
velocity. Two vencs were chosen in order to be the 120% and 80% of the maximum velocity,
resulting in the values of 204 and 136 cm/s respectively. The resulting measurement are
shown in Figure 1.

Figure 2 shows the corrector w at the time of peak velocity together with the mea-
surements umeas for the four measurements sets. Furthermore, L2-norm per mesh element of
∇·umeas is shown for comparison. As expected, in the case without noise, the divergence field
shows no sensitivity to aliasing (since the aliased Womersley flow also has zero divergence),
while w, and in particularly the longitudinal component is clearly perturbed by aliasing.
For the noisy cases, the values of w are further perturbed, while the behavior with/without
aliasing was hold. Moreover, the difference field δu = utrue − umeas is shown for comparison
with the corrector. In this way, a perfect corrected case will be when δu = w. From the fig-
ures, in both aliased cases w shows a major difference respect to δu, being the discontinuity
due to aliasing unfeasible to reconstruct by the method, as expected since w ∈ [H1(Ω)]3.
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(a) reference

(e) umeas

(i) umeas

(m) umeas

(b) w

(f) w

(j) w

(n) w

(c) δu

(g) δu

(k) δu

(o) δu

(d) div(umeas)

(h) div(umeas)

(l) div(umeas)

(p) div(umeas)

Figure 2: Fields for the Womersley flow. Figures are as follows with its case: (a)-(d) non-
perturbed, (e)-(h) only aliasing, (i)-(l) only noise and (m)-(p) noise and aliasing.
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Nevertheless, in the aliasing free case w and δu are substantially closer.
Figure 3 presents the time evolution of the L2(Ωh)-norms of the same quantities. The

norms of the corrector components were normalized by the venc in order to be dimensionless
and by the square root of the domain’s volume. The divergence of the measurements was
arbitrary rescaled for visualizing it together with the other curves. For the reference case,
δu is zero by definition while w is not. This comes from the fact that reference and corrector
computations are performed with different numerical schemes (mesh and discretization).

In the case of a pure noise perturbation, the transversal components of w are smaller
than the corresponding ones of δu. In contrast, the z-component increases over time. This
occurs probably because, since the corrector does not exactly compensate for the errors in
the data in a certain time step due to the restriction in the function space, this induces a
larger error in the next time steps.

The latter seems however not to be the case for aliased measurements. In that scenario,
all components of w jump at the moment that aliasing appears, being the one aligned with
the (aliased) flow, considerably more sensitive. In contrast, the divergence is less sensitive to
aliasing, only when noise is present this seems to contribute to its detection. Note also that
w needs some time to decrease after aliasing disappears from the data due to the “memory”
induced by the time derivative.

3.3 Synthetic aortic flow

In order to test the corrector under a more complex scenario, synthetic data was generated in
a drawn-aortic mesh with a mild coartation in the descending aorta and consist of 2,752,064
tetrahedrons and 510,755 vertices. An incompressible Navier-Stokes problem was solved
with a monolithic formulation with Temam and PSPG stabilizations. For the PSPG term,
a δ = 10−2 parameter was used. Additionally, blackflow stabilization was added in every
outlet of the system. The boundary conditions were set as: (1) A Dirichlet condition at the
inflow Γinlet, (2) Non-slip condition at the walls Γwall and (3) a three-element Windkessel
(Rp, C,Rd) condition for the rest of the outlets Γw,i. In this way, ∂Ω = Γinlet∪Γwall∪4

j=1 Γw,i.
The constants were tuned by hand in order to have a standard physiological flow regime.
For the numerical values of these boundary parameters see Table 1. The simulation was
performed with a total time of Tf = 0.8 s with a timestep of dt = 0.001 s. The physical
properties of the fluid were: density ρ = 1.119 gr/cm3 and dynamic viscosity µ = 0.035 P .
Afterwards, and identical procedure as in the previous section was applied to the resulting
measurements, adding a gaussian noise in the k-space resulting in a noise in the velocity with
a variance of 3.8% of the maximum velocity. Moreover two vencs as the 120% and 70% of
the maximum velocity were chosen, resulting in the values of 194 and 113 cm/s respectively.
The velocity field and its interpolation are shown in Figure 4.

Results for the corrector method applied to the perturbed measurements are shown in
Figure 5. For the non-perturbed case, the corrector grows in zones with high velocities. As
before, for the pure noise case, the corrector shows better agrees with δu. High values at
the walls cannot be reproduced because of the chosen homogeneous Dirichlet condition.

In the pure aliased case, the corrector field grows when the aliasing occurs, but not
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(a) reference case (b) only noise

(c) only aliasing (d) noise + aliasing

Figure 3: Normalized L2(Ωh) norms of the components of w (continous line), δu (dashed
lines), and divergence of the measurements over time.

Γw,1 Γw,2 Γw,3 Γw,4

Rp (dyn · s · cm−5) 250 250 250 10
Rd (dyn · s · cm−5) 1 · 10−4 1 · 10−4 1 · 10−4 1 · 10−2

C (dyn−1 · cm5) 8 · 103 8 · 103 8 · 103 1 · 103

Table 1: Numerical values of the three-element Windkessel parameters for every outlet.
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Figure 4: (a) Boundary conditions in the drawn aorta. (b) Velocity field in the reference
mesh at the peak systole. (c) Interpolated velocity in the voxel-type mesh

as much as δu as it was the case in the Womersley flow example. Also, now a coupling
among the components of the corrector field appears. For the case with noise and aliasing,
a combination of the two behaviors is evident. In contrast, the divergence field shows only
little sensitivity to aliasing and exhibit a overall increase in the presence of noise.

4 Numerical examples using real 4D flow MRI data

4.1 Experimental phantom

A realistic thoracic aortic phantom was scanned using a clinical 1.5 T MR scanner (Philips
Achieva, Best, The Netherlands) with a four-element phased-array body coil. The phantom
was made of flexible silicone and a 11 mm orifice coartation made of Technyl was placed in
the descending aorta (for further details of the setup and the phantom see [20, 21]). A blood
mimicking fluid made with 60 % water and 40 % glycerol (Orica Chemicals, Watkins, CO)
was used in the system. The fluid results in a density of 1.119 g/cm3, dynamic viscosity
of 0.0483 P and T1 value of 900 ms, which are typical parameters for human blood. The
acquision was performed with a venc of 350 cm/s and using a cartesian sampling sequence
with no k-space undersampling involved. In MRI, the noise level of the image increases when
decreasing the spatial resolution and other artifacts appear close to the boundaries known
as partial volume effect. Therefore, three isotropic voxel sizes (coarse: 2.5mm, mid: 2.0mm
and 1.5mm) were acquired in order to investigate the results of the corrector field.

Figure 6 shows the 4D flow measurements with their corrector field w at the moment of
peak systole. First, as expected w increases with more artifacts coming from the reduced
voxel size. Also the corrected velocity, i.e. umeas + w, was added in order to see the impact
of the corrector field for every scenario. High spurious velocity voxels near the boundary are
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(a) reference

(e) umeas

(i) umeas

(m) umeas

(b) w

(f) w

(j) w

(n) w

(c) δu

(g) δu

(k) δu

(o) δu

(d) div(umeas)

(h) div(umeas)

(l) div(umeas)

(p) div(umeas)

Figure 5: Fields for the aortic flow. Figures are as follows with its case: (a)-(d) non-
perturbed, (e)-(h) only aliasing, (i)-(l) only noise and (m)-(p) noise and aliasing.
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mostly due partial volume effects. Due to the homogeneous Dirichlet boundary condition’s
choice at the walls, w cannot correct these voxels since it vanishes at the boundary.

Note also that for all three resolutions the corrector tends to grow in zones with high
velocities, as in the jets in the ascending and descending aorta, and in zones with turbulent
flow, e.g behind the jet in the ascending aorta. Therefore, the addition of the corrector into
the measurements shows an smoother effect at the turbulent part in the ascending aorta at
the coarctation.

5 Conclusion

We presented a new mathematical model – including its discretization – with the potential of
quantifying the deviation of the data from a perfect physical velocity. The model is derived
from the consistency of the data with the Navier-Stokes equations. The vectorial nature of
the estimator has been shown potential in the detectability of artifacts and in the denoising
of the measurements in a postprocessing step.

Synthetic data experiments show advantages of the field in the detectability on typical
artifacts affecting 4D flow MRI such as noise and aliasing. The main advantage of this
quality estimator is its vectorial nature, opening the space to a more detailed analysis than a
scalar field such as the divergence of the measurements. With real 4D flow MRI, we showed
how the corrector value increases when decreasing data quality. In this scenario, this method
offers a way to reduce the noise level adding the corrective field as a postprocessing filter.

The method also indicates zones were the data could be misrepresenting the blood flow,
which is valuable information specially when further flow quantification needs to be pro-
cessed. These zones are in this work, where turbulence could be present in the blood flow,
being the results in agreement with others studies that have shown limitations on the 4D
flow acquisition on those regimes.

Still, we evidence some limitations of the current approach which may be subject of future
works. For instance, the corrector field can not completely capture strong discontinuities in
the measurements, i.e. in aliasing-contaminated measurements, mainly due to the regularity
of the solution imposed by the solution spaces required in the model. Nevertheless, for noise-
contaminated measurements, the corrector could be used for reducing the noise, which was
confirmed in the real data. This could be the first application of this new model in a clinical
environment.
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(a) umeas

(d) umeas

(g) umeas

(b) w

(e) w

(h) w

(c) umeas + w

(f) umeas + w

(i) umeas + w

Figure 6: Measurements, corrector fields and corrected velocities for all the cases. The
resolutions are as follows: (a)-(c) coarse, (d)-(f) mid and (g)-(i) fine.
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Appendix A

In this part we want give a brief but concluding compared analysis of both formulations for
∇ ·w, namely model A:

∇ ·wA = 0, (16)

which is the one used throughout the manuscript and model B, coming from solving Equation
(7) but with an additional right-hand-side for the divergence coming from the constraint
∇ · u = 0, i.e.:

∇ ·wB = −∇ · umeas +
1

|Ω|

∫
∂Ω

umeas · n. (17)

Note that as it was explained in Remark 2, the linear momentum conservation used in model
A already contains the assumption that ∇ · u = 0.

In order to assess both models, we compute a corrector field using an aortic flow simulated
data as measurements (for details see Section 3.3) without any noise, only reinterpolating
the reference simulation onto the box mesh. The resulting corrector fields were compared
against δu = u−umeas, with umeas generated from three noise levels in the k-space σ1, σ2, σ3,
leading to standard deviations in the velocity data of 2.2, 3.9, 6.9% of the maximum absolute
value of the velocity, respectively.

Figure 7a shows the evolution of normalized L2(Ω) norms for the noise level as well as
the corrector fields for both divergence models. All the noise levels start from a high level
value since at the beginning of the cardiac cycle, the noise is large in comparison to the
true velocity. It can also be seen that the corrector using model B is about 4 times larger
than with model A used in the rest of the manuscript. The corrector with model B is then
of the order of measurements error with 6.9% of standard deviation. Figures 7b-7e show
the perturbed measurements for every noise level. Figures 7f and 7g present the corrector
fields obtained using the reference solution for model A and model B, respectively. Both
models appear to be significantly different in particular near the coarctation, being model
A substantially smaller than model B and in particular model B developing a sort of jet of
magnitude close to the actual reference velocity field. Also in the regions more far from the
coarctation, the corrector with model model B also has larger values than with model A.
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Székely, and Aymen Laadhari. A robust comparison approach of velocity data between

19



mri and cfd based on divergence-free space projection. In 2015 IEEE 12th International
Symposium on Biomedical Imaging (ISBI), pages 1393–1397. IEEE, 2015.

[10] Thekla H Oechtering, Malte M Sieren, Peter Hunold, Anja Hennemuth, Markus
Huellebrand, Michael Scharfschwerdt, Doreen Richardt, Hans-Hinrich Sievers, Jörg
Barkhausen, and Alex Frydrychowicz. Time-resolved 3-dimensional magnetic resonance
phase contrast imaging (4d flow mri) reveals altered blood flow patterns in the ascending
aorta of patients with valve-sparing aortic root replacement. The Journal of thoracic
and cardiovascular surgery, 159(3):798–810, 2020.

[11] Joaquin Mura, A Matias Pino, Julio Sotelo, Israel Valverde, Cristian Tejos, Marcelo E
Andia, Pablo Irarrazaval, and Sergio Uribe. Enhancing the velocity data from 4d flow mr
images by reducing its divergence. IEEE transactions on medical imaging, 35(10):2353–
2364, 2016.

[12] Julia Busch, Daniel Giese, Lukas Wissmann, and Sebastian Kozerke. Reconstruction of
divergence-free velocity fields from cine 3d phase-contrast flow measurements. Magnetic
resonance in medicine, 69(1):200–210, 2013.

[13] Frank Ong, Martin Uecker, Umar Tariq, Albert Hsiao, Marcus T Alley, Shreyas S
Vasanawala, and Michael Lustig. Robust 4d flow denoising using divergence-free wavelet
transform. Magnetic resonance in medicine, 73(2):828–842, 2015.

[14] Claudio Santelli, Michael Loecher, Julia Busch, Oliver Wieben, Tobias Schaeffter, and
Sebastian Kozerke. Accelerating 4d flow mri by exploiting vector field divergence regu-
larization. Magnetic resonance in medicine, 75(1):115–125, 2016.

[15] Emrah Bostan, Orestis Vardoulis, Davide Piccini, Pouya Dehghani Tafti, Nikolaos Ster-
giopulos, and Michael Unser. Spatio-temporal regularization of flow-fields. In 2013 IEEE
10th International Symposium on Biomedical Imaging, pages 836–839. IEEE, 2013.
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2020-29 Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes: A posteriori
error analysis of a momentum and thermal energy conservative mixed-FEM for the
Boussinesq equations

2020-30 Reinaldo Campos-Vargas, Claudia Fuentealba, Ignacia Hernández, Ma-
arten Hertog, Claudio Meneses, Diego Paredes, Romina Pedreschi, Vir-
gilio Uarrota: Can metabolites at harvest be used as physiological markers for mod-
elling the softening behaviour of Chilean “Hass” avocados destined to local and distant
markets?
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