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Abstract

In this paper we complement the study of a new mixed finite element scheme, allowing conser-
vation of momentum and thermal energy, for the Boussinesq model describing natural convection
and derive a reliable and efficient residual-based a posteriori error estimator for the corresponding
Galerkin scheme in two and three dimensions. More precisely, by extending standard techniques
commonly used on Hilbert spaces to the case of Banach spaces, such us local estimates, suitable
Helmholtz decompositions and the local approximation properties of the Clément and Raviart–
Thomas operators, we derive the aforementioned a posteriori error estimator on arbitrary (convex
or non-convex) polygonal and polyhedral regions. In turn, inverse inequalities, the localization
technique based on bubble functions, and known results from previous works, are employed to
prove the local efficiency of the proposed a posteriori error estimator. Finally, to illustrate the
performance of the adaptive algorithm based on the proposed a posteriori error indicator and to
corroborate the theoretical results, we provide some numerical examples.
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1 Introduction

The derivation of new finite element methods for the Boussinesq model describing natural convection,
in which the steady-state equations of momentum (Navier-Stokes) and thermal energy are coupled by
means of the so called Boussinesq approximation, has become a very active research area lately (see,
e.g. [3, 2, 15, 16, 19, 18, 23, 32, 33, 34]). The above list includes Discontinuous Galerkin and stabilized
methods, mixed and augmented-mixed approaches and generalizations of the Boussinesq model with
temperature-dependent parameters.
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Now, in the recent paper [13] we have developed a new Banach spaces-based mixed finite element
method for the Boussinesq problem which allows, on the one hand, to conserve momentum and thermal
energy if the external forces belong to the velocity and temperature discrete spaces, respectively, and
on the other hand, to compute further variables of interest, such as the fluid vorticity, the fluid velocity
gradient, and the heat-flux, through a simple postprocess of the finite element solutions, in which no
numerical differentiation is applied, and hence no further sources of error arise. More precisely, we
introduce a modified pseudostress tensor depending on the pressure, and the diffusive and convective
terms of the Navier–Stokes equations for the fluid, and a vector unknown involving the temperature,
its gradient and the velocity, and derive a mixed variational formulation where the aforementioned
pseudostress tensor and vector unknown, together with the velocity and the temperature, are the main
unknowns of the system. In turn, the associated numerical scheme is defined by Raviart–Thomas
elements of order k for the pseudostress tensor and the vector unknown, and discontinuous piece-wise
polynomial elements of degree k for the velocity and temperature. With this choice of discrete spaces
the proposed Galerkin scheme becomes well posed and optimal convergent.

The aim of the present work is to complement the study started in [13] by introducing a reliable and
efficient residual-based a posteriori error estimator for the associated mixed scheme. In this direction,
we mention that the first contribution dealing with adaptive algorithms for mixed formulations of
the Boussinesq problem is [24] where the authors introduced appropriate refinement rules to recover
the quasi-optimality of the method proposed in [23] under the presence of singular behaviors near
non-convex corner points. More recently, in the contributions [20, 17] the authors proposed reliable
and efficient a posteriori error estimators for augmented mixed-based formulations of the Boussinesq
equations. In [20] the error indicator is non-local due to the presence of the H1/2-norm of a residual
term involving the temperature on the boundary, whereas in [17] the estimator turns to be fully–local
and fully–computable. However, in both cases the efficiency estimate cannot be localized due to the
presence of the convective term in some of the terms defining the error indicator. These works were
extended in [6] to the case of natural convection models with temperature-dependent viscosity. Finally,
for adaptive algorithms based on primal schemes we mention [5, 4, 29, 38].

Motivated by the discussion above, in this work we provide the a posteriori error analysis of the
mixed variational formulation introduced in [13]. One of the principal advantages of our Banach space-
based approach is that our a posteriori error estimator, besides being fully–local and fully–computable,
is locally efficient, which improves the results obtained in [20, 17]. In turn, using the associated a
posteriori error indicator we propose an adaptive algorithm which is of low computational cost, and
allows to improve the accuracy, the stability and the robustness of our fully-mixed method when being
applied to problems in which the overall approximation quality can be deteriorated by the presence
of boundary layers, singularities, or complex geometries.

The rest of this work is organized as follows. In Section 3 we recall from [13] the model problem
and its continuous and discrete mixed variational formulations. Next in Section 4 we provide some
preliminary results to be employed next to derive and analyze our a posteriori error estimator. The
kernel of the present work is given by Section 5, where we develop the a posteriori error analysis. In
Section 5.1 we employ the global continuous inf-sup condition, a suitable Helmholtz decomposition,
and the local approximation properties of the Clément and Raviart-Thomas operators, to derive a
reliable residual-based a posteriori error estimator. Then, in Section 5.2 inverse inequalities, and the
localization technique based on element-bubble and edge-bubble functions are utilized to prove the
efficiency of the estimator. Finally, numerical results confirming the reliability and efficiency of the a
posteriori error estimator, and showing the good performance of the associated adaptive algorithm,
are presented in Section 6.
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2 Preliminary notations

Let us denote by Ω ⊆ Rd, d ∈ {2, 3}, a given bounded domain with polyhedral boundary Γ. Standard
notations will be adopted for Lebesgue spaces Lp(Ω), with p ∈ [1,∞] and Sobolev spaces W r,p(Ω) with
r ≥ 0, endowed with the norms ‖ · ‖Lp(Ω) and ‖ · ‖W r,p(Ω), respectively. Note that W 0,p(Ω) = Lp(Ω)
and if p = 2, we write Hr(Ω) in place of W r,2(Ω), with the corresponding Lebesgue and Sobolev norms
denoted by ‖ · ‖0,Ω and ‖ · ‖r,Ω, respectively. We also write | · |r,Ω for the Hr-seminorm. In addition,
H1/2(Γ) is the spaces of traces of functions of H1(Ω) and H−1/2(Γ) denotes its dual. With 〈·, ·〉 we
denote the corresponding product of duality between H1/2(Γ) and H−1/2(Γ). By S and S we will
denote the corresponding vectorial and tensorial counterparts of the generic scalar functional space S.
In addition, we will denote by ‖(u, v)‖ := ‖(u, v)‖U×V := ‖u‖U + ‖v‖V the norm on the product space
U × V .

As usual I stands for the identity tensor in Rd×d, and |·| denotes the Euclidean norm in Rd. Also, for
any vector fields v = (vi)i=1,d and w = (wi)i=1,d we set the gradient, divergence, and tensor product
operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,d

, div v :=

d∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,d .

In addition, for any tensor fields τ = (τij)i,j=1,d and ζ = (ζij)i,j=1,d, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,d, tr (τ ) :=
d∑
i=1

τii, τ : ζ :=
d∑

i,j=1

τijζij and τ d := τ − 1

d
tr (τ ) I.

For simplicity, in what follows we denote

(v, w)Ω :=

∫
Ω
v w, (v,w)Ω :=

∫
Ω

v ·w, (v,w)Γ :=

∫
Γ

v ·w and (τ , ζ)Ω :=

∫
Ω
τ : ζ.

We also recall the Hilbert space

H(div ; Ω) :=
{
z ∈ L2(Ω) : div z ∈ L2(Ω)

}
,

with norm ‖z‖2div ;Ω := ‖z‖20,Ω + ‖div z‖20,Ω, and introduce the tensor version of H(div ; Ω) given by

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

whose norm will be denoted by ‖ · ‖div;Ω. Finally, given p > 2d
d+2 , in what follows we will also employ

the non-standard Banach space H(divp,Ω) defined by

H(divp; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ Lp(Ω)

}
,

endowed with the norm

‖τ‖divp;Ω :=
(
‖τ‖20,Ω + ‖div τ‖2Lp(Ω)

)1/2
.

3 The model problem and its momentum and thermal energy con-
servative formulation

In this section we recall from [13] the steady-state natural convection model, its variational formulation,
the associated Galerkin scheme, and the main results concerning the corresponding solvability analysis.
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3.1 The steady-state natural convection model

The stationary Boussinesq problem is a system of equations where the incompressible Navier–Stokes
equation:

−ν∆u + (∇u)u +∇p− θ g = 0 in Ω, div u = 0 in Ω,

u = 0 on Γ, (p, 1)Ω = 0,
(3.1)

is coupled with the convection-diffusion equation:

− κ∆ θ + u · ∇θ = 0 in Ω, θ = θD on ΓD, κ∇θ · n = 0 on ΓN. (3.2)

Here Ω is a bounded domain in Rd, d ∈ {2, 3}, with polyhedral boundary Γ. The unknowns are the
velocity u, the pressure p and the temperature θ of the fluid occupying the region Ω, and the given
data are the fluid viscosity ν > 0, the thermal conductivity κ > 0, the external force per unit mass
g ∈ L2(Ω), and the boundary temperature θD ∈ H1/2(ΓD).

Now, in order to derive our approach (see [13, Section 2] for details), we begin by introducing the
tensor and vector variables

σ := ν∇u− (u⊗ u)− p I and ρ := κ∇θ − θ u in Ω ,

and utilize the incompressibility condition div u = tr (∇u) = 0 in Ω to rewrite the systems (3.1) and
(3.2), respectively as the following equivalent first-order set of equations (see [10] and [20] for details):

1

ν
σd +

1

ν
(u⊗ u)d = ∇u in Ω, divσ + θ g = 0 in Ω,

p = −1

d
tr (σ + u⊗ u) in Ω, u = 0 on Γ, (tr (σ + u⊗ u), 1)Ω = 0,

(3.3)

and
κ−1ρ+ κ−1θ u = ∇θ in Ω, div ρ = 0 in Ω,

θ = θD on ΓD, ρ · n = 0 on ΓN.
(3.4)

Notice that the third equation in (3.3) has allowed us to eliminate the pressure p from the system
and provides a formula for its approximation through a post-processing procedure, whereas the last
equation takes care of the requirement that (p, 1)Ω = 0.

3.2 The continuous weak formulation and its well posedness

In this section, we recall from [13, Section 2] the weak formulation of the problem given by (3.3)–(3.4).
To that end, we define the spaces

X := H(div4/3; Ω), M := L4(Ω),

H :=
{
η ∈ H(div4/3 ; Ω) : η · n = 0 on ΓN

}
, Q := L4(Ω),

and
X0 :=

{
τ ∈ H(div4/3 ; Ω) : (tr (τ ), 1)Ω = 0

}
,

and observe that the following decomposition holds:

X = X0 ⊕ P0(Ω)I,
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where P0(Ω) is the space of constant polynomials on Ω.

The derivation of the weak formulation proposed in [13] for the problem given by (3.3)–(3.4) relies on
the previous orthogonal decomposition. In fact, it can be proved that the uniqueness condition given by
the last equation in (3.3) allows us to only look for the X0−component of the tensor σ (cf. [10, Lemma
3.1]). Therefore, the variational formulation of (3.3)–(3.4) reads: Find (σ,u,ρ, θ) ∈ X0×M×H×Q,
such that:

aF(σ, τ ) + bF(τ ,u) + cF(u; u, τ ) = 0 ∀ τ ∈ X0,

bF(σ,v) + dF(θ,v) = 0 ∀v ∈M,

aT(ρ,η) + bT(η, θ) + cT(u; θ,η) = FT(η) ∀η ∈ H,

bT(ρ, ψ) = 0 ∀ψ ∈ Q,

(3.5)

where, the bounded forms aF : X × X → R, bF : X ×M → R, cF : M ×M × X → R, dF : Q ×M →
R, aT : H×H→ R, bT : H×Q→ R, and cT : M×Q×H→ R are defined as:

aF(σ, τ ) :=
1

ν
(σd, τ d)Ω, bF(τ ,v) := (v,divτ )Ω,

cF(w; u, τ ) :=
1

ν
((w ⊗ u)d, τ )Ω, dF(θ,v) := (θ g,v)Ω,

aT(ρ,η) := κ−1(ρ,η)Ω, bT(η, ψ) := (ψ,div η)Ω,

cT(w; θ,η) := κ−1(θw,η)Ω,

(3.6)

and the functional FT ∈ H′:
FT(η) := 〈η · n, θD〉ΓD

. (3.7)

This problem is analyzed throughout [13, Section 3], and the well-posedness comes as a result of a
fixed-point strategy. In particular, we recall from [13] the following inf-sup conditions: Given u ∈M

such that ‖u‖M ≤
λ

2
, with λ := min{ν γF, κ γT}, there holds

sup
(τ ,v)∈X0×M

(τ ,v)6=0

∣∣aF(ζ, τ ) + bF(τ , z) + bF(ζ,v) + cF(u; z, τ )
∣∣

‖(τ ,v)‖
≥ γF

2
‖(ζ, z)‖ ∀ (ζ, z) ∈ X0 ×M, (3.8)

and

sup
(η,ψ)∈H×Q

(η,ψ)6=0

∣∣aT(ς,η) + bT(η, ϕ) + bT(ς, ψ) + cT(u;ϕ,η)
∣∣

‖(η, ψ)‖
≥ γT

2
‖(ς, ϕ)‖ ∀ (ς, ϕ) ∈ H×Q, (3.9)

with

γF := C
min{1, νβF}
νβF + 1

and γT :=
κβ2

T

κ2 β2
T + 4κβT + 2

, (3.10)

where C, βF and βT are positive constants independent of the physical parameters. In particular, βF
and βT are the constants related with the inf-sup conditions of the bilinear forms bF and bT, respectively
(cf. [10, Lemma 3.4] and [13, Lemma 3.1]).

In turn, the following result taken from [13] establishes the well-posedness of (3.5).
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Theorem 3.1 Let define λ := min
{
ν γF, κ γT

}
and assume that

16CF
λ γF γT

‖g‖0,Ω‖θD‖1/2,ΓD
< 1,

where CF is the bounding constant of FT, and γF and γT are the constants defined in (3.10). Then,
the coupled problem (3.5) has a unique solution (σ,u,ρ, θ) ∈ X0 ×M×H×Q. Moreover, there hold

‖(σ,u)‖ ≤ 4CF
γF γT

‖g‖0,Ω‖θD‖1/2,ΓD
and ‖(ρ, θ)‖ ≤ 2CF

γT
‖θD‖1/2,ΓD

. (3.11)

Proof. See [13, Theorem 3.2] for details. �

We now provide the converse of the derivation of (3.5).

Theorem 3.2 Let (σ,u,ρ, θ) ∈ X0×M×H×Q be the unique solution of the variational formulation

(3.5). Then,
1

ν
σd +

1

ν
(u ⊗ u)d = ∇u in Ω, u ∈ H1(Ω), divσ + θ g = 0 in Ω, u = 0 on Γ,

κ−1ρ+ κ−1θ u = ∇θ in Ω, θ ∈ H1(Ω), div ρ = 0 in Ω, θ = θD on ΓD and ρ · n = 0 on ΓN.

Proof. First, it is clear that the identities divσ + θ g = 0 in Ω and div ρ = 0 in Ω follow from the
second and fourth equations of (3.5), respectively. The derivation of the rest of the identities follows
from the first and third equations of (3.5), considering suitable test functions and integrating by parts
backwardly. We omit further details. �

3.3 The discrete coupled system and its well-posedness

Let us begin by considering {Th}h>0 a family of regular triangulations of Ω made by triangles T (when
d = 2) or tetrahedra (when d = 3) of diameter hT and define the meshsize h := max

{
hT : T ∈ Th

}
.

Given an integer l ≥ 0 and a subset S of Rd, we denote by Pl(S) the space of polynomials of total
degree at most l defined on S. Hence, for each integer k ≥ 0 and for each T ∈ Th, we define the local
Raviart–Thomas space of order k as (see, for instance [8]):

RTk(T ) := [Pk(T )]d ⊕ P̃k(T )x,

where x := (x1, . . . , xd)
t is a generic vector of Rd and P̃k(T ) is the space of polynomials of total degree

equal to k defined on T . In this way, we define the finite element subspaces:

Xh :=
{
τ h ∈ X : ctτ h|T ∈ RTk(T ) ∀ c ∈ Rd ∀T ∈ Th

}
,

Mh :=
{
vh ∈M : vh|T ∈ [Pk(T )]d ∀T ∈ Th

}
,

Hh :=
{
ηh ∈ H : ηh|T ∈ RTk(T ) ∀T ∈ Th

}
,

Qh := {φh ∈ Q : φh|T ∈ Pk(T ) ∀T ∈ Th} .

(3.12)

Then defining the subspace Xh,0 := Xh ∩ X0, the Galerkin scheme associated to problem (3.5) reads:
Find (σh,uh,ρh, θh) ∈ Xh,0 ×Mh ×Hh ×Qh such that:

aF(σh, τ h) + bF(τ h,uh) + cF(uh; uh, τ h) = 0 ∀ τ h ∈ Xh,0

bF(σh,vh) + dF(θh,vh) = 0 ∀vh ∈Mh

aT(ρh,ηh) + bT(ηh, θh) + cT(uh; θh,ηh) = FT(ηh) ∀ηh ∈ Hh

bT(ρh, ψh) = 0 ∀ψh ∈ Qh,

(3.13)
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where the forms aF, bF, cF, dF, aT, bT, cT and the functional FT are defined in (3.6) and (3.7), respectively.

The following results, taken from [13, Theorem 4.1 and Theorem 5.2], provides the well-posedness
of (3.13) and the corresponding theorical rate of convergence.

Theorem 3.3 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B. Let
define λ̂ := min

{
ν γ̂F, κ γ̂T

}
and assume that

16CF

λ̂ γ̂F γ̂T
‖g‖0,Ω‖θD‖1/2,ΓD

< 1,

where CF is the bounding constant of FT, and γ̂F and γ̂T are the discrete version of γF and γT respectively
(cf. (3.10)), given by

γ̂F := C
min{1, νβ̂F}
νβ̂F + 1

and γ̂T :=
κ β̂2

T

κ2 β̂2
T + 4κ β̂T + 2

, (3.14)

where C is a positive constant independent of the physical parameters, and β̂F and β̂T are the constants
related with the discrete inf-sup conditions of the bilinear forms bF and bT, respectively. Then, the
coupled problem (3.13) has a unique solution (σh,uh,ρh, θh) ∈ Xh,0×Mh×Hh×Qh. Moreover, there
hold

‖(σh,uh)‖ ≤ 4CF
γ̂F γ̂T

‖g‖0,Ω‖θD‖1/2,ΓD
and ‖(ρh, θh)‖ ≤ 2CF

γ̂T
‖θD‖1/2,ΓD

. (3.15)

Theorem 3.4 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B. Let
define λ̃ := min

{
ν γF, κ γ̂T

}
and assume further that

16CF

λ̃ γ̂F γT
‖g‖0,Ω ‖θD‖1/2,ΓD

≤ 1

2
,

where CF is the bounding constant of FT, and γF, γT and γ̂F, γ̂T given in (3.10) and (3.14), respectively.
Let (σ,u,ρ, θ) ∈ X0×M×H×Q and (σh,uh,ρh, θh) ∈ Xh,0×Mh×Hh×Qh be the unique solutions of
the continuous and discrete problems (3.5) and (3.13), respectively. Assume further that σ ∈ Hl+1(Ω),
divσ ∈ Wl+1,4/3(Ω), u ∈ Wl+1,4(Ω), ρ ∈ Hl+1(Ω), divρ ∈ Wl+1,4/3(Ω) and θ ∈ Wl+1,4(Ω), for
0 ≤ l ≤ k. Then there exists Crate > 0, independent of h, but depending on the domain, ν, κ, ‖g‖0,Ω,
and the datum θD, such that

‖(σ,u)− (σh,uh)‖+ ‖(ρ, θ)− (ρh, θh)‖ ≤ Crate h
l+1
{
‖σ‖l+1,Ω + ‖divσ‖Wl+1,4/3(Ω)

+ ‖u‖Wl+1,4(Ω) + ‖ρ‖l+1,Ω + ‖divρ‖Wl+1,4/3(Ω) + ‖θ‖Wl+1,4(Ω)

}
.

4 Preliminaries for the a posteriori error analysis

We start by introducing a few useful notations for describing local information on elements and edges
or faces depending on wether d = 2 or d = 3, respectively. Let Eh be the set of edges or faces of Th,
whose corresponding diameters are denoted by he, and define

Eh(Ω) :=
{
e ∈ Eh : e ⊆ Ω

}
and Eh(Γ) :=

{
e ∈ Eh : e ⊆ Γ

}
.

For each T ∈ Th, we let Eh,T be the set of edges or faces of T , and denote

Eh,T (Ω) =
{
e ⊆ ∂T : e ∈ Eh(Ω)

}
and Eh,T (Γ) =

{
e ⊆ ∂T : e ∈ Eh(Γ)

}
.
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We also define the unit normal vector ne on each edge or face by

ne := (n1, . . . , nd)
t ∀ e ∈ Eh .

Hence, when d = 2 we can define the tangential vector se by

se := (−n2, n1)t ∀ e ∈ Eh .

However, when no confusion arises, we will simply write n and s instead of ne and se, respectively.

The usual jump operator [[·]] across internal edges or faces are defined for piecewise continuous
matrix, vector, or scalar-valued functions ζ, by

[[ζ]] = (ζ
∣∣
T+

)
∣∣
e
− (ζ

∣∣
T−

)
∣∣
e

with e = ∂T+ ∩ ∂T−,

where T+ and T− are the elements of Th having e as a common edge or face. Finally, for sufficiently
smooth scalar ψ, vector v := (v1, . . . , vd)

t, and tensor fields τ := (τij)1≤i,j≤d, we let

curl (ψ) :=
(
− ∂ψ

∂x2
,
∂ψ

∂x1

)t
, for d = 2,

curl (v) =


∂v2

∂x1
− ∂v1

∂x2
, for d = 2,

∇× v , for d = 3,

curl (τ ) =



(
curl (τ 1)
curl (τ 2)

)
, for d = 2,curl (τ 1)

curl (τ 2)
curl (τ 3)

 , for d = 3,

γ∗(v) =

 v · s , for d = 2,

v × n , for d = 3,
and γ∗(τ ) =


τs , for d = 2,τ 1 × n
τ 2 × n
τ 3 × n

 , for d = 3,

where τ i is the i-th row of τ and the derivatives involved are taken in the distributional sense.

Let us now recall the main properties of the Raviart–Thomas interpolator (see e.g. [22]) and the
Clément operator (see e.g. [14]) onto the space of continuous piecewise linear functions. Given p > 1,
let us define the space

Zp :=
{
τ ∈ H(div p; Ω) : τ |T ∈W1,p(T ), ∀T ∈ Th

}
,

and let
Πk
h : Zp → Xh :=

{
τ ∈ H(div ; Ω) : τ |T ∈ RTk(T ), ∀T ∈ Th

}
,

be the Raviart–Thomas interpolation operator, which is well defined in Zp (see e.g. [22, Section 1.2.7])
and is characterized by the identities

(Πk
h(τ) · n, ξ)e = (τ · n, ξ)e ∀ ξ ∈ Pk(e), ∀ edge or face e of Th, (4.1)

and
(Πk

h(τ), ψ)T = (τ, ψ)T ∀ψ ∈ [Pk−1(T )]d, ∀ T ∈ Th (if k ≥ 1) .

Notice that, since Πk
h(τ) · ne ∈ Pk(e), from (4.1) we have that

Πk
h(τ) · ne = Pke (τ · ne) ,
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where, for 1 ≤ r ≤ ∞, Pke : Lr(e)→ Pk(e) is the operator satisfying∫
e
(Pke (v)− v)zh = 0 ∀ zh ∈ Pk(e),

Notice that for r = 2, Pke coincides with the usual orthogonal projection. In addition, it is well known
(see, e.g., [22, Lemma 1.41]) that the following identity holds

div (Πk
h(τ)) = Pkh(div τ) ∀ τ ∈ Zp,

where, given 1 ≤ r ≤ ∞, Pkh : Lr(Ω)→ Mh :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th

}
is the operator

satisfying ∫
Ω

(Pkh(v)− v)zh = 0 ∀ zh ∈ Mh.

The following lemma establishes the local approximation properties of Πk
h.

Lemma 4.1 Let p > 1. Then, there exists c1 > 0, independent of h, such that for each τ ∈Wl+1,p(T )
with 0 ≤ l ≤ k, and for each 0 ≤ m ≤ l + 1, there holds

|τ −Πk
h(τ)|Wm,p(T ) ≤ c1

hl+2
T

ρm+1
T

|τ |Wl+1,p(T ),

where ρT is the diameter of the largest sphere contained in T . Moreover, there exists c2 > 0, inde-
pendent of h, such that for each τ ∈ W1,p(T ), with div τ ∈ Wl+1,p(T ) and 0 ≤ l ≤ k, and for each
0 ≤ m ≤ l + 1, there holds

|div τ − div (Πk
h(τ))|Wm,p(T ) ≤ c2

hl+1
T

ρmT
|div τ |Wl+1,p(T ).

Proof. See [10, Lemma 4.1] for details. �

The following lemma extends the estimate of the normal component of the interpolation error,
originally given for Hilbert spaces (see, for instance [26, Lemma 3.18]), to the Lp case.

Lemma 4.2 Let p > 1, T ∈ Th and e ∈ Eh,T . Then, there exists C > 0, independent of h, such that

‖τ · n−Πk
h(τ) · n‖Lp(e) ≤ C h1−1/p

e |τ |W1,p(T ) ∀ τ ∈W1,p(T ). (4.2)

Proof. See [9, Lemma 4.2] for details. �

Now, we consider the space H1
h =

{
vh ∈ C(Ω̄) : vh

∣∣
T
∈ P1(T ) ∀T ∈ Th

}
and denote by

Ih : H1(Ω) → H1
h the Clément interpolation operator. The local approximation properties of this

operator are established in the following lemma (see [14]):

Lemma 4.3 There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there
holds

‖v − Ihv‖0,T ≤ c1 hT |v|1,∆(T ) ∀T ∈ Th,

and
‖v − Ihv‖0,e ≤ c2 h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh,

where ∆(T ) and ∆(e) are the unions of all elements intersecting T and e, respectively.
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In what follows, we denote by Πk
h : Zp → Xh the tensor version of Πk

h, which is defined row-wise by
Πk
h and by Ih : H1(Ω)→ H1

h the corresponding vectorial version of Ih which is defined componentwise
by Ih.

We end this section by establishing a suitable Helmholtz decomposition for

H :=
{
η ∈ H(div4/3 ; Ω) : η · n = 0 on ΓN

}
.

Lemma 4.4 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B, and let
p > 1. Then, for each η ∈ H there exist

a) ξ ∈W1,p(Ω) and w ∈ H1
ΓN

(Ω) such that η = ξ + curlw when d = 2,

b) ξ ∈W1,p(Ω) and w ∈ H1
ΓN

(Ω) such that η = ξ + curl w when d = 3,

where H1
ΓN

(Ω) :=
{
w ∈ H1(Ω) : w = 0 on ΓN

}
. In addition, we have that

‖ξ‖W1,p(Ω) + ‖w‖1,Ω ≤ CHel ‖η‖divp;Ω and ‖ξ‖W1,p(Ω) + ‖w‖1,Ω ≤ CHel ‖η‖divp;Ω, (4.3)

for d = 2 and d = 3, respectively, where CHel is a positive constant independent of all the foregoing
variables.

Proof. In what follows we prove the result for the two-dimensional case. The three-dimensional case
can be treated similarly by extending [25, Theorem 3.1] to the Lp case.

We proceed as in the proof of [7, Lemma 3.9]. In fact, given η ∈ H, we let z ∈ W1,p(B) be the
unique weak solution of the boundary value problem:

∆z =


div η in Ω

−1

|B \ Ω|

∫
Ω

div η in B \ Ω
, ∇z · n = 0 on ∂B,

∫
Ω
z = 0.

Since, B is a convex domain, it is well known that z ∈W2,p(B) (see [35, Theorem 1.1]) and

‖z‖W2,p(B) ≤ c ‖div η‖Lp(Ω),

where c > 0 is independent of z. We let ξ = (∇z)|Ω ∈W1,p(Ω), and observe that div ξ = ∆z = div η
in Ω, ξ · n = 0 on ∂B (which certainly yields ξ · n = 0 on ΓN) and

‖ξ‖W1,p(Ω) ≤ c ‖div η‖Lp(Ω). (4.4)

On the other hand, let ε := η − ξ. Clearly, ε is a divergence-free vector in Ω, and owing to the
continuous embedding W1,p(Ω) into L2(Ω) (see, for instance, [22, Theorem B.46]) and (4.4) we have
that ε ∈ L2(Ω) and

‖ε‖0,Ω ≤ ĉ
(
‖η‖0,Ω + ‖ξ‖W1,p(Ω)

)
≤ c̃ ‖η‖divp;Ω.

In this way, as a consequense of [28, Chapter I, Theorem 3.1], given ε ∈ L2(Ω) satisfying div ε = 0 in
Ω, and Ω connected, there exists w ∈ H1(Ω), such that ε = curlw in Ω, that is,

η − ξ = curlw in Ω. (4.5)
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In turn, noting that 0 = (η−ξ)·n = (curlw)·n = ∇w·s on ΓN, we deduce that w is constant on ΓN, and
therefore w can be chosen so that w ∈ H1

ΓN
(Ω), which proves the Helmholtz decomposition for d = 2. In

turn, the equivalence between ‖w‖1,Ω and |w|1,Ω, which is result of the generalized Poincaré inequality
(see, for instance, [22, Theorem B.63]), together with (4.4), (4.5) and the continuous embedding from
W1,p(Ω) into L2(Ω), yield

‖w‖1,Ω ≤ c |w|1,Ω = c ‖curlw‖0,Ω ≤ c (‖η‖0,Ω + ‖ξ‖W1,p(Ω)) ≤ c ‖η‖divp;Ω. (4.6)

Then, it is clear that (4.4) and (4.6) imply (4.3) and conclude the proof. �

5 A posteriori error analysis

In this section we derive a reliable and efficient residual-based a posteriori error estimator for the
Galerkin scheme (3.13).

In what follows we assume that the hypothesis of Theorems 3.1 and 3.3 hold, and let (σ,u,ρ, θ) ∈
X0×M×H×Q and (σh,uh,ρh, θh) ∈ Xh,0×Mh×Hh×Qh be the unique solutions of the continuous
and discrete problems (3.5) and (3.13), respectively. Then, our global a posteriori error estimator is
defined by:

Θ =

{ ∑
T∈Th

Θ2
T

}1/2

+

{ ∑
T∈Th

(
‖θhg + divσh‖

4/3

L4/3(T )
+ ‖divρh‖

4/3

L4/3(T )

)}3/4

, (5.1)

where, for each T ∈ Th, the local error indicator is defined as follows:

Θ2
T := h

2−d/2
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))d

∥∥∥∥2

0,T

+ h2
T

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))d

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))d

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))d

)∥∥∥∥2

0,e

+h
2−d/2
T

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥2

0,T

+ h2
T

∥∥∥∥curl

(
1

κ
(ρh + θhuh)

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (ΓD)

h1/2
e ‖θD − θh‖2L4(e)

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

κ
(ρh + θhuh)

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (ΓD)

he

∥∥∥∥γ∗(1

κ
(ρh + θhuh)−∇θD

)∥∥∥∥2

0,e

.

(5.2)

The main goal of the present section is to establish, under suitable assumptions, the existence
of positive constants Crel and Ceff , independent of the meshsizes and the continuous and discrete
solutions, such that

Ceff Θ + h.o.t. ≤ ‖(σ,u)− (σh,uh)‖+ ‖(ρ, θ)− (ρh, θh)‖ ≤ Crel Θ + h.o.t. , (5.3)

where h.o.t. is a generic expression denoting one or several terms of higher order. The upper and
lower bounds in (5.3), which are known as the reliability and efficiency of Θ, are derived below in
Sections 5.1 and 5.2, respectively.
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5.1 Reliability of the a posteriori error estimator

The main result of this section is stated in the following theorem.

Theorem 5.1 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B. Let
define λ := min

{
ν γ̂F, κ γT

}
and assume further that

16CF

λ γF γ̂T
‖g‖0,Ω ‖θD‖1/2,ΓD

≤ 1

2
, (5.4)

where CF is the bounding constant of FT, and γF, γT and γ̂F, γ̂T are given in (3.10) and (3.14), respec-
tively. Then, there exist Crel > 0, independent of h, such that

‖(σ,u)− (σh,uh)‖+ ‖(ρ, θ)− (ρh, θh)‖ ≤ Crel Θ. (5.5)

We begin the derivation of (5.5) with the next preliminary lemma.

Lemma 5.1 Assume that there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B. Assume
further that the datum θD satisfies (5.4). Finally let (σ,u,ρ, θ) ∈ X0×M×H×Q and (σh,uh,ρh, θh) ∈
Xh,0 ×Mh ×Hh ×Qh be the unique solutions of problems (3.5) and (3.13), respectively. Then, there
exists a constant C > 0, independent of h, such that

‖(σ,u)− (σh,uh)‖+‖(ρ, θ)− (ρh, θh)‖ ≤ C

(
sup

(τ ,v)∈X0×M
(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ sup
(η,ψ)∈H×Q

(η,ψ)6=0

|RT(η, ψ)|
‖(η, ψ)‖

)
, (5.6)

where RF : X0 ×M→ R and RT : H×Q→ R are the residual functionals given by

RF(τ ,v) = −aF(σh, τ )− bF(τ ,uh)− bF(σh,v)− cF(uh; uh, τ )− dF(θh,v)

for all (τ ,v) ∈ X0 ×M, and

RT(η, ψ) = FT(η)− aT(ρh,η)− bT(η, θh)− bT(ρh, ψ)− cT(uh; θh,η)

for all (η, ψ) ∈ H×Q.

Proof. First, using the inf-sup condition (3.8) for the error (ζ, z) = (σ−σh,u−uh), adding and sub-
stracting cF(uh; uh, τ )+dF(θh,v), and using the first and second equations of (3.5) and the continuity
of the forms cF and dF given by (see [13, Section 3])∣∣cF(w; v, τ )

∣∣ ≤ 1

ν
‖w‖M‖v‖M‖τ‖X,

∣∣dF(θ,v)
∣∣ ≤ ‖g‖0,Ω‖θ‖Q‖v‖M,

we deduce that

γF
2
‖(σ − σh,u− uh)‖ ≤ sup

(τ ,v)∈X0×M
(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ sup
v∈M
v 6=0

|dF(θ − θh,v)|
‖v‖M

+ sup
τ∈X0
τ 6=0

|cF(u− uh; uh, τ )|
‖τ‖X

≤ sup
(τ ,v)∈X0×M

(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ ‖g‖0,Ω‖θ − θh‖Q +
1

ν
‖uh‖M ‖u− uh‖M.
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Then, observing that the estimate (5.4) implies

8CF
ν γF γ̂F γ̂T

‖g‖0,Ω ‖θD‖1/2,ΓD
≤ 1

2
, (5.7)

and since ‖uh‖M ≤ ‖(σh,uh)‖, from (5.7) and the first estimate in (3.15), we obtain

γF
4
‖(σ − σh,u− uh)‖ ≤ sup

(τ ,v)∈X0×M
(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ ‖g‖0,Ω‖θ − θh‖Q. (5.8)

Similarly, from the inf-sup condition (3.9), with (ς, ϕ) = (ρ − ρh, θ − θh), the third and fourth
equations of (3.5), adding and substracting cT(uh; θh,η), and using the continuity of cT given by (see
[13, Section 3]) ∣∣cT(w;ψ,η)

∣∣ ≤ 1

κ
‖w‖M‖ψ‖Q‖η‖H,

we deduce that

γT
2
‖(ρ− ρh, θ − θh)‖ ≤ sup

(η,ψ)∈H×Q
(η,ψ)6=0

|RT(η, ψ)|
‖(η, ψ)‖

+ sup
η∈H
η 6=0

|cT(u− uh; θh,η)|
‖η‖H

≤ sup
(η,ψ)∈H×Q

(η,ψ)6=0

|RT(η, ψ)|
‖(η, ψ)‖

+
1

κ
‖θh‖Q ‖u− uh‖M.

(5.9)

Next, since ‖u− uh‖M ≤ ‖(σ − σh,u− uh)‖ and ‖θh‖Q ≤ ‖(ρh, θh)‖, combining (5.8) and (5.9), and
using the second inequality in (3.15), it is not difficult to see that there exist positive constants c1, c2,
independent of h, such that

‖(ρ− ρh, θ − θh)‖ ≤ c1 sup
(τ ,v)∈X0×M

(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ c2 sup
(η,ψ)∈H×Q

(η,ψ) 6=0

|RT(η, ψ)|
‖(η, ψ)‖

+
16CF
κγTγFγ̂T

‖g‖0,Ω‖θD‖1/2,ΓD
‖θ − θh‖Q

which combined with (5.4) implies

‖(ρ− ρh, θ − θh)‖ ≤ ĉ1 sup
(τ ,v)∈X0×M

(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ ĉ2 sup
(η,ψ)∈H×Q

(η,ψ)6=0

|RT(η, ψ)|
‖(η, ψ)‖

, (5.10)

with ĉ1, ĉ2 > 0, independent of h. In turn, from (5.8), (5.10) and estimate ‖θ−θh‖Q ≤ ‖(ρ−ρh, θ−θh)‖
we easily deduce that

‖(σ − σh,u− uh)‖ ≤ ĉ3 sup
(τ ,v)∈X0×M

(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ ĉ4 sup
(η,ψ)∈H×Q

(η,ψ) 6=0

|RT(η, ψ)|
‖(η, ψ)‖

. (5.11)

with ĉ3, ĉ4 > 0, independent of h. In this way, estimate (5.6) follows from (5.10) and (5.11). �

Now, according to the definition of the forms aF, bF, cF, dF, aT, bF and cT (c.f. (3.6)), we find that,
for any (τ ,v) ∈ X0 ×M and (η, ψ) ∈ H×Q, there holds

RF(τ ,v) = RF,1(τ ) +RF,2(v) and RT(η, ψ) = RT,1(η) +RT,2(ψ)
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where

RF,1(τ ) = −1

ν
(σd

h, τ
d)Ω − (uh,divτ )Ω −

1

ν

(
(uh ⊗ uh)d, τ

)
Ω
, (5.12)

RF,2(v) = −(θhg,v)Ω − (v,divσh)Ω, (5.13)

RT,1(η) = 〈η · n, θD〉ΓD
− 1

κ
(ρh,η)Ω − (θh,div η)Ω −

1

κ
(θhuh,η)Ω (5.14)

and
RT,2(ψ) = −(ψ,divρh)Ω. (5.15)

Hence, the supremum in (5.6) can be bounded in terms of RF,1, RF,2, RT,1 and RT,2 as follows

‖(σ,u)− (σh,uh)‖+ ‖(ρ, θ)− (ρh, θh)‖ ≤ C
{
‖RF,1‖X′0 + ‖RF,2‖M′ + ‖RT,1‖H′ + ‖RT,2‖Q′

}
.

In this way, we have transformed (5.6) into an estimate involving global inf-sup conditions on X0,
M, H and Q, separately.

Throughout the rest of this section, we provide suitable upper bounds for RF,1, RF,2, RT,1 and RT,2.
We begin by establishing the corresponding estimates for RF,2 and RT,2 (cf. (5.13) and (5.15) ), which
follow from a straightforward application of the Hölder inequality.

Lemma 5.2 There holds

‖RF,2‖M′ ≤

{ ∑
T∈Th

‖θhg + divσh‖
4/3

L4/3(T )

}3/4

and ‖RT,2‖Q′ ≤

{ ∑
T∈Th

‖divρh‖
4/3

L4/3(T )

}3/4

. (5.16)

Note that from (5.16) and the inequality ap + bp ≤ 21−p(a+ b)p, for all a, b ≥ 0 and 0 < p ≤ 1, we
have that there exists C1 > 0 such that

‖RF,2‖M′ + ‖RT,2‖Q′ ≤ C1

{ ∑
T∈Th

(
‖θhg + divσh‖

4/3

L4/3(T )
+ ‖divρh‖

4/3

L4/3(T )

)}3/4

.

In turn, after a slight modification of the proof of [9, Lemma 5.6] is it not dificult to see that the
following estimate for RF,1 (cf. (5.12)) holds.

Lemma 5.3 There exists C2 > 0, independent of h, such that

‖RF,1‖X′0 ≤ C2

{ ∑
T∈Th

Θ2
1,T

}1/2

,

where

Θ2
1,T := h

2−d/2
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))d

∥∥∥∥2

0,T

+ h2
T

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))d

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))d

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))d

)∥∥∥∥2

0,e

.

Our next goal is to bound the remaining term ‖RT,1‖H′ . To do that we need to introduce the
following two technical results.
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Lemma 5.4 There exists C3 > 0, independent of h, such that for each ξ ∈W1,4/3(Ω) there holds

∣∣RT,1(ξ −Πk
h(ξ))

∣∣ ≤ C3

∑
T∈Th

Θ2
2,T


1/2

‖ξ‖W1,4/3(Ω), (5.17)

where

Θ2
2,T := h

2−d/2
T

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥2

0,T

+
∑

e∈Eh,T (ΓD)

h1/2
e ‖θD − θh‖2L4(e) . (5.18)

Proof. We recall from the definition of RT,1 (cf. (5.14)) that

RT,1(ξ −Πk
h(ξ)) = 〈 (ξ −Πk

h(ξ))n, θD 〉ΓD
− 1

κ

(
ρh, ξ −Πk

h(ξ)
)

Ω

−
(
θh, div (ξ −Πk

h(ξ))
)

Ω
− 1

κ

(
θhuh, ξ −Πk

h(ξ)
)
.

Then, similarly to [9, Lemma 5.3], applying a local integration by parts to the third term above, using
(4.1) and the fact that θD ∈ L2(ΓD), we obtain

RT,1(ξ −Πk
h(ξ)) =

∑
T∈Th

(
∇θh −

1

κ
(ρh + θhuh), (ξ −Πk

h(ξ))

)
T

+
∑

e∈Eh(ΓD)

(
(ξ −Πk

h(ξ))n, θD − θh
)
e
.

In turn, using the Hölder and Cauchy-Schwarz inequalities, the interpolation property (4.2) with
p = 4/3, and the fact that there exists a positive constant C > 0 independent of the mesh, such that

‖τ − Πk
h(τ)‖0,T ≤ C h

1−d/4
T |τ |W1,4/3(T ) ∀ τ ∈W1,4/3(T ) ,

whose proof follows from Lemma 4.1 and [10, Remark 4.2], we deduce that∣∣RT,1(ξ −Πk
h(ξ))

∣∣ ≤ ∑
T∈Th

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥
0,T

C h
1−d/4
T |ξ|W1,4/3(T )

+
∑

e∈Eh(ΓD)

‖θD − θh‖L4(e) C h
1/4
e |ξ|W1,4/3(Te),

with Te being the element containg e. Next, by using the Cauchy-Schwarz and subadditivity inequal-
ities and the fact that we are considering regular meshes, we obtain

∣∣RT,1(ξ −Πk
h(ξ))

∣∣ ≤ Ĉ


( ∑
T∈Th

h
2−d/2
T

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥2

0,T

)1/2( ∑
T∈Th

|ξ|4/3
W1,4/3(T )

)3/4

+

( ∑
e∈Eh(ΓD)

h1/2
e ‖θD − θh‖2L4(e)

)1/2( ∑
e∈Eh(ΓD)

|ξ|4/3
W1,4/3(Te)

)3/4
 ,

which clearly implies (5.17) and completes the proof. �

Lemma 5.5 Assume that θD ∈ H1(ΓD) and let

Θ2
3,T := h2

T

∥∥∥∥curl

(
1

κ
(ρh + θhuh)

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

κ
(ρh + θhuh)

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (ΓD)

he

∥∥∥∥γ∗(1

κ
(ρh + θhuh)−∇θD

)∥∥∥∥2

0,e

.

(5.19)
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a) Let w ∈ H1
ΓN

(Ω) and d = 2. Then, there exists C4 > 0, independent of h, such that

∣∣RT,1 (curl (w − Ihw))
∣∣ ≤ C4

∑
T∈Th

Θ2
3,T


1/2

‖w‖1,Ω (5.20)

b) Let w ∈ H1
ΓN

(Ω) and d = 3. Then, there exists Ĉ4 > 0, independent of h, such that

∣∣RT,1 (curl (w − Ihw))
∣∣ ≤ Ĉ4

∑
T∈Th

Θ2
3,T


1/2

‖w‖1,Ω.

Proof. In what follows we prove the result for the two-dimensional case since for the three dimensional
case follows analogously.

We proceed as in [9, Lemma 5.5]. In fact, given w ∈ H1(Ω), we first notice from the definition of
RT,1 in (5.14) that there holds

RT,1(curl (w − Ihw)) = 〈curl (w − Ihw) · n, θD〉ΓD
− 1

κ
(ρh + θhuh, curl (w − Ihw))Ω .

Recalling that θD ∈ H1(ΓD), now we apply the following integration by parts on the boundary ΓD

given by (see, for instance, [21, Lemma 3.5, eq. (3.34)])

〈curl (w − Ihw) · n, θD〉ΓD
= 〈∇θD · s, w − Ihw〉ΓD

= 〈γ∗(∇θD), w − Ihw〉ΓD
,

which together with a local integration by parts, the fact that w|ΓN
= Ihw|ΓN

= 0 and noting that
γ∗(∇θD) ∈ L2(ΓD), allow us to deduce that

RT,1(curl (w − Ihw)) = −
∑
T∈Th

(
curl

(
1

κ
(ρh + θhuh)

)
, w − Ihw

)
T

+
∑

e∈Eh(Ω)

([[
γ∗

(
1

κ
(ρh + θhuh)

)]]
, w − Ihw

)
e

+
∑

e∈Eh(ΓD)

(
γ∗

(
1

κ
(ρh + θhuh)−∇θD

)
, w − Ihw

)
e

.

Hence, applying Cauchy-Schwarz inequality and the approximation properties of the Clément inter-
polant (cf. Lemma 4.3), we obtain∣∣RT,1(curl (w − Ihw))

∣∣
≤ Ĉ


( ∑
T∈Th

h2
T

∥∥∥∥curl

(
1

κ
(ρh + θhuh)

)∥∥∥∥2

0,T

)1/2( ∑
T∈Th

‖w‖21,∆(T )

)1/2

+

( ∑
e∈Eh(Ω)

he

∥∥∥∥[[γ∗(1

κ
(ρh + θhuh)

)]]∥∥∥∥2

0,e

)1/2( ∑
e∈Eh(Ω)

‖w‖21,∆(e)

)1/2

+

( ∑
e∈Eh(ΓD)

he

∥∥∥∥γ∗(1

κ
(ρh + θhuh)−∇θD

)∥∥∥∥2

0,e

)1/2( ∑
e∈Eh(ΓD)

‖w‖21,∆(e)

)1/2
 .
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Therefore, as a direct consequence of the previous estimate and the fact that the number of triangles
of the macro-elements ∆(T ) and ∆(e) are uniformly bounded, we get (5.20) concluding the proof. �

The following lemma establishes the estimate for RT,1.

Lemma 5.6 There exists C5 > 0, independent of h, such that

‖RT,1‖X′0 ≤ C5

{ ∑
T∈Th

(Θ2
2,T + Θ2

3,T )

}1/2

,

with Θ2,T and Θ3,T defined as in (5.18) and (5.19) respectively.

Proof. For simplicity, we prove the result for the two-dimensional case. The three dimensional case
follows analogously.

Let η ∈ H. It follows from Lemma 4.4 that there exist ξ ∈W1,4/3(Ω) and w ∈ H1
ΓN

(Ω), such that
η = ξ + curlw and

‖ξ‖W1,4/3(Ω) + ‖w‖1,Ω ≤ CHel ‖η‖H. (5.21)

Notice from the Galerkin scheme (3.13) that RT,1(ηh) = 0 for all ηh ∈ Hh. Hence,

RT,1(η) = RT,1(η − ηh) ∀ηh ∈ Hh.

In particular, for ηh defined as
ηh = Πk

hξ + curl (Ihw),

whence
RT,1(η) = RT,1(ξ −Πk

hξ) +RT,1(curl (w − Ihw)).

Hence, the proof follows from Lemmas 5.4 and 5.5, and estimate (5.21). �

We end this section by observing that the reliability estimate (5.5) is a direct consequence of
Lemmas 5.1, 5.2, 5.3 and 5.6.

5.2 Efficiency of the a posteriori error estimator

The main result of this section is stated as follows.

Theorem 5.2 There exists Ceff > 0, independent of h, such that

Ceff Θ ≤ ‖(σ,u)− (σh,uh)‖+ ‖(ρ, θ)− (ρh, θh)‖+ h.o.t, (5.22)

where h.o.t. stands for one or several terms of higher order.

We remark in advance that the proof of (5.22) makes frequent use of the identities provided by
Theorem 3.2. We begin with the estimates for the zero order terms appearing in the definition of ΘT

(cf. (5.2)).

Lemma 5.7 For all T ∈ Th there holds

‖θhg + divσh‖L4/3(T ) ≤ ‖σ − σh‖div4/3;T + ‖g‖0,Ω ‖θ − θh‖L4(T )

and
‖divρh‖L4/3(T ) ≤ ‖ρ− ρh‖div 4/3;T .
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Proof. It suffices to recall, as established in Theorem 3.2, that divσ+ θ g = 0 and div ρ = 0 in Ω. �

In order to derive the upper bounds for the remaining terms defining the global a posteriori error
estimator Θ (cf. (5.1)), we use results from [11], inverse inequalities, and the localization technique
based on element-bubble and edge-bubble functions. To this end, we now introduce further notations
and preliminary results. Given T ∈ Th and e ∈ Eh,T , we let φT and φe be the usual element-bubble
and edge-bubble functions, respectively (see [37] for details). In particular φT satisfies φT ∈ P3(T ),
suppφT ⊆ T , φT = 0 on ∂T , and 0 ≤ φT ≤ 1 in T . Similarly, φe|T ∈ P2(T ), suppφe ⊆ ωe :=
∪{T ′ ∈ Th : e ∈ Eh,T ′}, φe = 0 on ∂T \ e and 0 ≤ φT ≤ 1 in ωe. We also recall from [36] that, given
k ∈ N ∪ {0}, there exists an extension operator L : C(e) → C(ωe) that satisfies L(p) ∈ Pk(T ) and
L(p)|e = p ∀ p ∈ Pk(e). A corresponding vector version of L, that is the componentwise application
of L, is denoted by L. Additional properties of φT , φe and L are collected in the following lemma.

Lemma 5.8 Given k ∈ N ∪ {0}, there exist positive constants c1, c2, c3 and c4, depending only on k
and the shape regularity of the triangulations (minimum angle condition), such that, for each triangle
T and e ∈ Eh, there hold

‖φT q‖20,T ≤ ‖q‖20,T ≤ c1‖φ1/2
T q‖20,T ∀q ∈ Pk(T ), (5.23)

‖φeL(p)‖20,e ≤ ‖p‖20,e ≤ c2‖φ1/2
e p‖20,e ∀p ∈ Pk(e)

and
c3 h

1/2
e ‖p‖0,e ≤ ‖φ1/2

e L(p)‖0,T ≤ c4 h
1/2
e ‖p‖0,e ∀p ∈ Pk(e).

Proof. See Lemma 1.3 in [36]. �

In addition, given k ∈ N∪{0}, T ∈ Th and e ∈ Eh, in what follows we will make use of the following
inverse inequalities (see [22, Lemma 1.138]): There exist c1, c2 > 0, independent of the meshsize, such
that

‖v‖W1,4/3(T ) ≤ c1 h
−1+d/4
T ‖v‖0,T ∀ v ∈ Pk(T ), (5.24)

‖v‖L4(e) ≤ c2 h
(1−d)/4
e ‖v‖0,e ∀ v ∈ Pk(e). (5.25)

Finally, we recall a discrete trace inequality, which establishes the existence of a positive constant c,
depending only on the shape regularity of the triangulations, such that for each T ∈ Th and e ∈ Eh,T ,
there holds

‖v‖20,e ≤ c
(
h−1
e ‖v‖20,T + he|v|21,T

)
∀ v ∈ H1(T ). (5.26)

For the proof of inequality (5.26) we refer to Theorem 3.10 in [1].

The corresponding bounds for the remaining terms defining Θ1,T are stated in the following lemmas.

Lemma 5.9 There exists C1 > 0, independent of h, such that

h
1−d/4
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))d

∥∥∥∥
0,T

≤ C1

{(
1 + h

1−d/4
T

)
‖u− uh‖L4(T ) + h

1−d/4
T

∥∥σ − σh∥∥0,T

}
∀T ∈ Th.

Proof. See Lemma 5.10 in [9]. �
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Lemma 5.10 There exist C2 > 0, C3 > 0 and C4 > 0, independent of h, such that

hT

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))d

)∥∥∥∥
0,T

≤ C2

{
‖u− uh‖L4(T ) + ‖σ − σh‖0,T

}
for all T ∈ Th,

h1/2
e

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))d

)]]∥∥∥∥
0,e

≤ C3

{
‖u− uh‖L4(ωe) + ‖σ − σh‖0,ωe

}
for all e ∈ Eh(Ω), and

h1/2
e

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))d

)∥∥∥∥
0,e

≤ C4

{
‖u− uh‖L4(Te) + ‖σ − σh‖0,Te

}
for all e ∈ Eh(Γ), where Te is the element to which the boundary edge or boundary face e belongs.

Proof. It follow from Lemma 5.12 in [9] with uD = 0 on Γ. �

Now, we aim to provide upper bounds for the terms defining Θ2,T .

Lemma 5.11 There exists C5 > 0, independent of h, such that

h
1−d/4
T

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥
0,T

≤ C5

{(
1 + h

1−d/4
T

)
‖θ − θh‖L4(T ) + h

1−d/4
T

∥∥ρ− ρh∥∥0,T
+ h

1−d/4
T ‖u− uh‖L4(T )

}
,

(5.27)

for all T ∈ Th.

Proof. We proceed as in [9, Lemma 5.10]. In fact, given T ∈ Th, we define χT := ∇θh−
1

κ
(ρh + θhuh)

in T . Then, applying (5.23) to ‖χT ‖0,T , recalling the identity ∇θ =
1

κ
(ρ + θu) in Ω (cf. Theorem

3.2), integrating by parts and using that φT = 0 on ∂T , we deduce

‖χT ‖20,T ≤ ‖φ
1/2
T χT ‖20,T

= (div(φTχT ), θ − θh)T +
1

κ
(φTχT , (ρ− ρh) + (θu− θhuh))T .

Next, using the Hölder and Cauchy–Schwarz inequalities, the estimates (5.24) and (5.23), we obtain

‖χT ‖20,T ≤ |φTχT |W1,4/3(T )‖θ − θh‖L4(T ) +
1

κ
‖φTχT ‖0,T ‖ρ− ρh + θu− θhuh‖0,T

≤ C h−1+d/4
T ‖χT ‖0,T ‖θ − θh‖L4(T ) +

1

κ
‖χT ‖0,T

(∥∥ρ− ρh∥∥0,T
+
∥∥θu− θhuh∥∥0,T

)
,

which implies

‖χT ‖0,T ≤ C h
−1+d/4
T ‖θ − θh‖L4(T ) +

1

κ

(∥∥ρ− ρh∥∥0,T
+
∥∥θu− θhuh∥∥0,T

)
. (5.28)
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In turn, adding and subtracting θuh (it also works with θhu), using the Cauchy–Schwarz inequality
and the fact that ‖θ‖L4(Ω) and ‖uh‖L4(Ω) are bounded by data and constants, all of them independent
of h (cf. (3.11) and (3.15)), we deduce that∥∥θu− θhuh∥∥0,T

=
∥∥θ(u− uh) + (θ − θh)uh

∥∥
0,T

≤ ‖θ‖L4(T )‖u− uh‖L4(T ) + ‖uh‖L4(T )‖θ − θh‖L4(T )

≤ C
(
‖u− uh‖L4(T ) + ‖θ − θh‖L4(T )

)
,

(5.29)

with C > 0 independent of h. Finally, replacing back (5.29) into (5.28) we derive (5.27) and conclude
the proof. �

Lemma 5.12 Suppose that θD is piecewise polinomial. Then, there exists C2 > 0, independent of h,
such that

h1/4
e ‖θD−θh‖L4(e) ≤ C6

{(
1+h

1−d/4
T

)
‖θ−θh‖L4(T )+h

1−d/4
T ‖ρ−ρh‖0,T +h

1−d/4
T ‖u−uh‖L4(T )

}
(5.30)

for all e ∈ Eh,T (ΓD).

Proof. We proceed as in [9, Lemma 5.11]. In fact, given e ∈ Eh(ΓD) an edge or face of an element
depending on whether d = 2 or d = 3, respectively. From (5.25), it follows that

‖θD − θh‖L4(e) ≤ C h(1−d)/4
e ‖θD − θh‖0,e. (5.31)

Hence, from (5.31) and (5.26), we deduce that

‖θD − θh‖L4(e) ≤ C
{
h(−1−d)/4
e ‖θ − θh‖0,T + h(3−d)/4

e |θ − θh|1,T
}
. (5.32)

Next, we focus on estimating the right-hand side of (5.32). To that end, we use first the Cauchy-
Schwarz inequality and the fact that for regular triangulations |T | ∼= hdT , to deduce that there exists
c > 0, independent of h, such that

‖θ − θh‖0,T ≤ c h
d/4
T ‖θ − θh‖L4(T ). (5.33)

In turn, using the identity ∇θ =
1

κ
(ρ+ θu) in Ω (cf. Theorem 3.2) and some algebraic computations,

we deduce that

|θ − θh|1,T =

∥∥∥∥1

κ
(ρ− ρh) +

1

κ
(θu− θhuh) +

1

κ
(ρh + θhuh)−∇θh

∥∥∥∥
0,T

≤ 1

κ

(∥∥ρ− ρh‖0,T +
∥∥θu− θhuh∥∥0,T

)
+

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥
0,T

which together with (5.28) and (5.29), yields,

|θ − θh|1,T ≤ C
{(

1 + h
−1+d/4
T

)
‖θ − θh‖L4(T ) + ‖ρ− ρh‖0,T + ‖u− uh‖L4(T )

}
. (5.34)

Therefore, (5.30) follows from estimates (5.32), (5.33) and (5.34), and the fact that he ≤ hT . �
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Lemma 5.13 There exist C7 > 0 and C8 > 0, independent of h, such that

hT

∥∥∥∥curl

(
1

κ
(ρh + θhuh)

)∥∥∥∥
0,T

≤ C7

{
‖u− uh‖L4(T ) + ‖ρ− ρh‖0,T + ‖θ − θh‖L4(T )

}
(5.35)

for all T ∈ Th and

h1/2
e

∥∥∥∥[[γ∗(1

κ
(ρh + θhuh)

)]]∥∥∥∥
0,e

≤ C8

{
‖u− uh‖L4(ωe) + ‖ρ− ρh‖0,ωe + ‖θ − θh‖L4(ωe)

}
(5.36)

for all e ∈ Eh(Ω).

Additionally, if θD is piecewise polynomial, there exists C9 > 0, independent of h, such that

h1/2
e

∥∥∥∥γ∗(1

κ
(ρh + θhuh)−∇θD

)∥∥∥∥
0,e

≤ C9

{
‖u− uh‖L4(Te) + ‖ρ− ρh‖0,Te + ‖θ − θh‖L4(Te)

}
(5.37)

for all e ∈ Eh(Γ), where Te is the element to which the boundary edge or boundary face e belongs.

Proof. For the two-dimensional case, the derivation of the first two inequalities, follows as in [17,
Lemma 3.11], that is, it suffices to use Lemmas 6.1 and 6.2 in [11]. Indeed, from there we have that
for each piecewise polynomial ηh in Th and for each η ∈ L2(Ω) with curl (η) = 0 in Ω, there exists
C > 0, independent of h, satisfying

hT ‖curl (ηh)‖0,T ≤ C ‖η − ηh‖0,T and h1/2
e ‖[[γ∗(ηh)]]‖0,e ≤ C ‖η − ηh‖0,ωe .

Thus, taking η :=
1

κ
(ρ + θu) = ∇θ and ηh :=

1

κ
(ρh + θhuh), and using the estimate (5.29) we can

obtain (5.35) and (5.36). In turn, these same arguments combined with [21, Lemma 3.26] allows us to
deduce the inequality (5.37). Further details are omitted.

On the other hand, the proof for the three-dimensional case follows from a slight modification of
the proofs of Lemmas 4.9, 4.10, and 4.13 in [27]. �

We remark that, for simplicity, the derivation of (5.30) in Lemma 5.12 and (5.37) in Lemma 5.13
has required θD to be piecewise polynomial. However, if θD is sufficiently smooth, and proceeding
similarly as in [12, Section 6.2], higher order terms given by the errors arising from suitable polynomial
approximations would appear in (5.30) and (5.37), which explains the eventual h.o.t in (5.22).

We end this section by remarking that the efficiency of Θ (cf. (5.22)) in Theorem 5.2 is now a
straightforward consequence of Lemmas 5.7 and 5.9–5.13. In turn, we emphasize that the resulting
positive constant denoted by Ceff is independent of h.

6 Numerical results

This section serves to illustrate the performance and accuracy of the proposed mixed finite element
scheme (3.13) along with the reliability and efficiency properties of the a posteriori error estimator Θ
(cf. (5.1)) derived in Section 5. In what follows, we refer to the corresponding sets of finite elements
subspaces generated by k = 0 and k = 1, as simply RT0−P0−RT0−P0 and RT1−P1−RT1−P1,
respectively. Our implementation is based on a FreeFem++ code [30]. Regarding the implementation
of the Newton iterative method associated to (3.13) (see [13, Section 6] for details), the iterations are
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terminated once the relative error of the entire coefficient vectors between two consecutive iterates,
say coeffm and coeffm+1, is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖`2
‖coeffm+1‖`2

≤ tol,

where ‖ · ‖`2 is the standard `2-norm in RN , with N denoting the total number of degrees of freedom
defining the finite element subspaces Xh, Mh, Hh and Qh stated in Section 3.3, and tol is a fixed
tolerance chosen as tol = 1E− 06. As usual, the individual errors are denoted by:

e(σ) := ‖σ − σh‖X, e(u) := ‖u− uh‖M, e(p) := ‖p− ph‖0,Ω,

e(ρ) := ‖ρ− ρh‖H, e(θ) := ‖θ − θh‖Q,

where the pressure p is approximate through the post-processing formula (cf. [13, eq. (5.16)]):

ph = −1

d

(
tr (σh) + tr (uh ⊗ uh)− 1

|Ω|
(tr (uh ⊗ uh), 1)Ω

)
.

We stress here that we are able to recover other variables of physical interest such as the stress tensor,
the vorticity, the velocity gradient and the heat-flux vector by a post-processing procedure (see [13,
Section 5.3] for details). However, for the sake of simplicity, in the numerical essays below we will
focus only on the formula suggested for the pressure field. Then, the global error and the effectivity
index associated to the global estimator Θ are denoted, respectively, by

e(~t) := e(σ) + e(u) + e(ρ) + e(θ) and eff(Θ) :=
e(~t)

Θ
.

Moreover, using the fact that cN−1/d ≤ h ≤ C N−1/d, the experimental rate of convergence of any of
the above quantities will be computed as

r(�) := −d log(e(�)/e′(�))
log(N/N ′)

for each � ∈
{
σ,u,ρ, θ, p,~t

}
,

where N and N ′ denote the total degrees of freedom associated to two consecutive triangulations with
errors e(�) and e′(�).

The examples to be considered in this section are described next. In all of them, for the sake of
simplicity, we consider the thermal conductivity κ = 1 and the viscosity of the fluid ν = 1. In addition,
the condition of zero-average pressure (translated in terms of the trace of σh) is imposed through a
real Lagrange multiplier.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error estimator Θ,
whereas Examples 2 and 3 are utilized to illustrate the behavior of the associated adaptive algorithm
in 2D and 3D domains, respectively, which applies the following procedure from [37]:

(1) Start with a coarse mesh Th.

(2) Solve the Newton iterative method associated to (3.13) for the current mesh Th.

(3) Compute the local indicator Θ̂T for each T ∈ Th, where

Θ̂T := ΘT + ‖θhg + divσh‖L4/3(T ) + ‖divρh‖L4/3(T ), (cf. (5.2))
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(4) Check the stopping criterion and decide whether to finish or go to next step.

(5) Generate an adapted mesh through a variable metric/Delaunay automatic meshing algorithm
(see [31, Section 9.1.9]).

(6) Define resulting mesh as current mesh Th, and go to step (2).

At this point we mention that, should non-zero source terms appear in the right-hand side of the
second equations of (3.3) and (3.4), say fm and fe, respectively, some terms in the a posteriori error
estimator must be modified. More precisely, the quantities

‖θhg + divσh‖L4/3(T ) and ‖divρh‖L4/3(T )

must be replaced by

‖θhg + divσh − fm‖L4/3(T ) and ‖divρh − fe‖L4/3(T ),

whose estimation from below and above follows in a straightforward manner.

Example 1: Accuracy assessment with a smooth solution

In our first example, we concentrate on the accuracy of the mixed method (3.13). The domain is the
square Ω = (0, 1) × (0, 1), the boundary Γ = ΓD ∪ ΓN, with ΓN = [0, 1] × {1} and ΓD = Γ \ ΓN. We
consider the external force g = (0,−1)t, and the terms on the right-hand side are adjusted so that a
manufactured solution of (3.3)–(3.4) is given by the smooth functions

u(x, y) :=

(
x2(x− 1)2 sin(y)

2x(x− 1)(2x− 1) cos(y)

)
, p(x, y) := cos(πx)eπy

and θ(x, y) :=
1

2
sin(πx) cos2

(π
2

(y + 1)
)
.

Tables 6.1 and 6.2 show the convergence history for a sequence of quasi-uniform mesh refinements,
including the average number of Newton iterations. The results illustrate that the optimal rates of
convergence O(h) and O(h2) provided by Theorem 3.4 are attained for k = 0, 1. In addition, we also
compute the global a posteriori error indicator Θ (cf. (5.1)), and measure its reliability and efficiency
with the effectivity index. Notice that the estimator remain always bounded.

Example 2: Adaptivity in a 2D L-shape domain

Our second example is aimed at testing the features of adaptive mesh refinement after the a posteriori
error estimator Θ (cf. (5.1)). We consider a L-shape contraction domain Ω := (−1, 1)2 \ (0, 1)2, the
boundary Γ = ΓD ∪ ΓN, with ΓN = [−1, 0] × {1} and ΓD = Γ \ ΓN. The external force is chosen as
g = (0,−1)t, and the terms on the right-hand side are adjusted so that the exact solution is given by
the functions

u(x, y) :=

(
− cos(πx) sin(πy)
sin(πx) cos(πy)

)
, p(x, y) :=

1− x
(x− 0.02)2 + (y − 0.02)2

− p0

and θ(x, y) :=
1

y + 1.1
,
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where p0 ∈ R is a constant chosen in such a way (p, 1)Ω = 0. Notice that the pressure and temperature
exhibit high gradients near the origin and the line y = −1.1, respectively.

Tables 6.3–6.6 along with Figure 6.1, summarizes the convergence history of the method applied to a
sequence of quasi-uniformly and adaptively refined triangulation of the domain. Suboptimal rates are
observed in the first case, whereas adaptive refinement according to the a posteriori error indicator Θ
yield optimal convergence and stable effectivity indexes. Notice how the adaptive algorithms improves
the efficiency of the method by delivering quality solutions at a lower computational cost, to the point
that it is possible to get a better one (in terms of e(~t)) with approximately only the 1.8% of the degrees
of freedom of the last quasi-uniform mesh for the mixed scheme in both cases k = 0 and k = 1. In
addition, and similarly to [10, Remark 4.6], we observe that our Galerkin scheme (3.13) satisfies
the properties θhg + divσh = Pk

h(fm) and divρh = Pkh(fe) in Ω, where Pkh is the L2(Ω)-orthogonal
projection onto discontinuous piecewise polynomials of degree k and Pk

h is its vectorial version. In this
way, using the fact that neither fm nor fe live in Mh and Qh (cf. (3.12)), respectively, we illustrate the
conservation of momentum and thermal energy in an approximate sense by computing the `∞-norm
for Fm := θhg + divσh − Pk

h(fm) and Te := divρh − Pkh(fe), with k = 0, 1. As expected, these values
are close to zero.

On the other hand, approximate solutions builded using the RT1 − P1 − RT1 − P1 scheme with
811, 911 degree of freedom (33, 717 triangles), via the indicator Θ, are shown in Figure 6.3. In parti-
cular, we observe that computed pressure and temperature exhibit high gradients near the contraction
region and at the bottom boundary of the L-shape domain, respectively. In turn, examples of some
adapted meshes generates using Θ for k = 0 and k = 1 are collected in Figure 6.2. We can observe
a clear clustering of elements around the vertex (0, 0) and the line y = −1.1, which illustrate again
how the method is able to identify the regions in which the accuracy of the numerical approximation
is deteriorated.

Example 3: Adaptivity in a 3D L-shape domain

Finally, in our third example we turn to the testing of the scheme and the adaptive algorithm in a
three-dimensional scenario. More precisely, we consider the 3D L-shape domain Ω := (−0.5, 0.5) ×
(0, 0.5) × (−0.5, 0.5) \ (0, 0.5)3, the boundary Γ = ΓD ∪ ΓN, with ΓN = {−0.5} × [0, 0.5] × [−0.5, 0.5]
and ΓD = Γ \ΓN. We consider the external force g = (0, 0,−1)t, and the terms on the right-hand side
are adjusted so that the exact solution is given by the functions

u(x, y, z) :=

 sin(πx) cos(πy) cos(πz)
−2 cos(πx) sin(πy) cos(πz)

cos(πx) cos(πy) sin(πz)

 , p(x, y, z) :=
10z

(x− 0.005)2 + (y − 0.005)2
− p0

and θ(x, y, z) := cos(πy) sin(π(x+ z)),

where p0 ∈ R is a constant chosen in such a way (p, 1)Ω = 0. Notice that the pressure exhibit high
gradients near the contraction region of the 3D L-shape domain. The latter is illustrated in Figure 6.4
where the initial mesh and the last two adapted meshes according to the indicator Θ for k = 0 show
a clear clustering of elements in the contraction region as we expected. Moreover, in Figure 6.5 we
compare the exact magnitude of the velocity, the temperature field and the pressure field with their
approximate counterparts after four mesh adaptive refinement steps. There we can observe that the
approximate solution captures satisfactorily the behavior of the exact solution.
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N e(σ) r(σ) e(u) r(u) e(ρ) r(ρ) e(θ) r(θ)

294 6.55e+00 – 1.17e-01 – 6.02e-01 – 6.58e-02 –
1173 3.12e+00 1.071 4.44e-02 1.402 2.99e-01 1.011 3.58e-02 0.879
4701 1.50e+00 1.058 1.67e-02 1.411 1.42e-01 1.073 1.59e-02 1.167

18312 7.75e-01 0.970 7.76e-03 1.124 7.01e-02 1.038 7.86e-03 1.040
72729 3.82e-01 1.025 3.92e-03 0.990 3.53e-02 0.993 4.02e-03 0.971

293163 1.91e-01 0.996 1.88e-03 1.053 1.74e-02 1.015 1.97e-03 1.023

e(p) r(p) e(~t) r(~t) Θ eff(Θ) iter

1.61e+00 – 7.34e+00 – 1.25e+01 0.586 4
6.83e-01 1.237 3.50e+00 1.069 6.51e+00 0.538 4
2.97e-01 1.202 1.67e+00 1.065 3.37e+00 0.500 4
1.50e-01 1.003 8.61e-01 0.978 1.78e+00 0.483 4
7.09e-02 1.088 4.26e-01 1.021 8.99e-01 0.474 4
3.52e-02 1.006 2.12e-01 0.999 4.61e-01 0.461 4

Table 6.1: Example 1: RT0 −P0 −RT0 − P0 scheme with quasi-uniform refinement.

Figure 6.1: Example 2: Log-log plot of e(~t) vs. N for quasi-uniform/adaptative refinements for
k = 0 and k = 1 (left and right plots, respectively).
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[33] R. Oyarzúa and M. Serón, A divergence-conforming DG-mixed finite element method for the
stationary Boussinesq problem. J. Sci. Comput. 85 (2020), no. 1, Paper No. 14, 36 pp.
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