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An a posteriori error estimate for a dual mixed method applied
to Stokes system with non null source terms

Tomás Barrios, Edwin Behrens,
Rommel Bustinza

PREPRINT 2020-27

SERIE DE PRE-PUBLICACIONES
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Abstract

In this manuscript, we focus our attention in the Stokes flow with non homogeneous source
terms, formulated in dual mixed form. For the sake of completeness, we begin recalling the corre-
sponding well-posedness at continuous and discrete levels. After that, and with the help of a quasi
Helmholtz decomposition technique, we develop a residual type a posteriori error analysis, deducing
an estimator that is reliable and locally efficient. Finally, we provide numerical experiments, which
confirm our theoretical results on the a posteriori error estimator and illustrate the performance of
the corresponding adaptive algorithm, supporting its use in practice.
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1 Introduction

Dual mixed methods applied to Stokes system have been studied in [14], where the second order
equation is rewritten as a first order system by introducing the flux as a new unknown. Then, the
scheme is available to approximate simultaneously the flux, the velocity and the pressure. Existence
and uniqueness is established using an appropriated norm, such that the discrete scheme admits the
use of conforming Raviart-Thomas elements as finite element for the flux, and piecewise constants for
the velocity and the pressure. The corresponding a posteriori error estimator has been developed in
[15]. Alternatively, another dual mixed approach for the incompressible fluid flow has been introduced
and analysed in [10]. The approach there follows the ideas developed in [9], i.e. the incompressible
fluid flow is reformulated introducing the so-called pseudostress as an additional unknown, which is
in relation with the pressure and gradient of the velocity. This allows us to eliminate the pressure,
deriving a mixed variational formulation based on the pseudostress and the velocity. We remark
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that the pseudostress is nonsymmetric and the approximation of the pressure, the velocity gradient
(and thus the vorticity), or even the stress can be algebraically obtained from the approximate value
of the pseudostress. The discrete scheme allows the use of the pair of conforming Raviart-Thomas
and discontinuous piecewise polynomial as the finite element space. The a posteriori error analysis
of the mixed pseudostress-velocity formulation of the Stokes problem has been established in [11].
Furthermore, in order to obtain more flexibility in the choice of finite element spaces, the stabilisation
of this approach has been studied in [16] (also see [17]), and additionally its corresponding extension
to quasi Newtonian flows and Brinkman model have been developed in [18] and [7], respectively.

Recently, in [3] we propose a stabilised mixed method to the Stokes system with nonhomogeneous
source terms. There, we first introduced a dual mixed formulation, and then establishing the corre-
sponding well-posedness at continuous and discrete levels, invoking the well-known Babuška-Brezzi
theory. Then, our interest in this article is to endow this approach with an a posteriori error estima-
tor. To this aim, and strongly motivated by the reduction of computational cost obtained with the
a posteriori error estimator based on Ritz projection of the error, we endow the new approach with
an a posteriori error analysis, following the ideas described in the previous work [5]. As a result, we
deduce a nonstandard residual type a posteriori error estimator consisting of five terms for elements
of the triangulation without edges on ∂Ω, and seven terms for elements having an edge on ∂Ω.

The rest of the paper is organised as follows. In Section 2, we recall the dual mixed variational for-
mulation, the Galerkin scheme and the stable pairs of finite element subspaces. Section 3 is concerned
with the a posteriori error analysis. Finally, in Section 4 we provide several numerical experiments
that support the use of our a posteriori error estimator in practice.

We end this section with some notations to be used throughout the paper. Given a Hilbert space
M , we denote by M2 and M2×2 the space of vectors and square tensors of order 2 with entries in
M , respectively. Given τ := (τij) and ζ := (ζij) ∈ R2×2, we denote τ t := (τji), tr(τ ) := τ11 + τ22

and τ : ζ :=
∑2

i,j=1 τij ζij . Moreover, we introduce the deviator of τ by τ d := τ − 1
2tr(τ )I ,

where I ∈ R2×2 denotes de identity tensor. In addition, given v := (vi) , w := (wi) ∈ R2, we
define v ⊗ w :=

(
viwj

)
∈ R2×2. We also use the standard notations for Sobolev spaces and norms.

Finally, C or c (with or without subscripts) denote generic constants, independent of the discretization
parameters, that may take different values at different occurrences.

2 The model problem and its dual mixed formulation

Let Ω be a bounded and simply connected domain in R2 with polygonal boundary Γ. Then, given the
source terms f̃ ∈ L2

0(Ω) := {q ∈ L2(Ω) :
∫

Ω q = 0}, f ∈ [L2(Ω)]2 and g ∈ [H1/2(Γ)]2, we look for
the velocity (vector field) u and the pressure (scalar field) p such that

−ν∆u + ∇p = f in Ω , div(u) = f̃ in Ω , and u = g on Γ , (1)

where ν > 0 is the fluid viscosity of the flow and the datum data f̃ and g satisfies the compatibility
condition

∫
Γ g · n = 0, with n being the unit outward normal at Γ. In addition, for uniqueness

purposes, we seek p ∈ L2
0(Ω).
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Hereafter div stands for the usual divergence operator div acting along each row of the tensor. Our
purpose is to apply dual mixed method. To this aim, we first reformulate problem (1) introducing the
pseudostress σ := ν∇u−pI in Ω as an additional unknown. Considering the condition div(u) = f̃ in Ω,
we deduce that p = ν

2 f̃ −
1
2tr(σ) in Ω, and then σ belongs to H0 := {τ ∈ H(div; Ω) :

∫
Ω tr(τ ) = 0}.

As a result, the pressure p can be eliminated from (1), which can be rewritten as the first order system:
Find (σ,u) ∈ H0 × [H1(Ω)]2 such that

1

ν
σd −∇u = −1

2
f̃I in Ω , div(σ) = −f in Ω, and u = g on Γ . (2)

We point out that in [3] we have deduced the mixed variational formulation associated to (2), which
reads as: Find (σ,u) ∈ H0 × [L2(Ω)]2 such that

a(σ, τ ) + b(τ ,u) = G(τ ) ∀ τ ∈ H0 ,

b(σ,v) = F (v) ∀ v ∈ [L2(Ω)]2 ,
(3)

where the bilinear forms a : H(div,Ω)×H(div,Ω)→ R and b : H(div,Ω)× [L2(Ω)]2 → R are defined
by

a(ρ, τ ) :=
1

ν

∫
Ω
ρd : τ d ∀ρ, τ ∈ H(div,Ω) ,

b(τ ,v) :=

∫
Ω
v · div(τ ) ∀ (τ ,v) ∈ H(div,Ω)× [L2(Ω)]2 .

In addition, the linear functionals G : H(div,Ω)→ R and F : [L2(Ω)]2 → R are given by

G(τ ) := 〈τ n, g〉 − 1

2

∫
Ω
f̃ tr(τ ) ∀ τ ∈ H(div,Ω) and F (v) := −

∫
Ω
f · v ∀v ∈ [L2(Ω)]2 ,

with 〈·, ·〉 denoting the duality paring between [H−1/2(Γ)]2 and [H1/2(Γ)]2 with respect to L2(Γ)-inner
product. We provide H(div,Ω) and [L2(Ω)]2 with their usual inner products and induced norms
||·||H(div;Ω) and ||·||[L2(Ω)]2 , respectively. Then, we define the product spaces Σ := H(div,Ω)×[L2(Ω)]2

and Σ0 := H0 × [L2(Ω)]2 ⊆ Σ, endowed with its standard norm

||(τ ,v)||Σ :=
(
||τ ||2H(div;Ω) + ||v||2[L2(Ω)]2

)1/2 ∀ (τ ,v) ∈ Σ .

We remark that the well-posedness of (3) is a consequence of Babuška-Brezzi’s theory (cf. Theorem
1 in [3]). We point out that the important details can be seen in the proof of Theorem 2.3 in [10].

Now, in order to discuss the discretization of (3) with finite element technique, we consider that
Ω is a polygonal region and let {Th}h>0 be a shape-regular family of triangulations of Ω̄ such that
Ω = ∪T ∈ThT . For each triangle T ∈ Th, hT will denote its diameter, while the mesh size ot the
triangulation is given by h := max{hT : T ∈ Th }. Moreover, given an integer ` ≥ 0 and a subset
S of R2, we denote by P`(S) the space of polynomials in two variables defined in S of total degree
at most `, and for each T ∈ Th, we define the local Raviart-Thomas space of order κ (cf. [22]),
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RT κ(T ) := [Pκ(T )]2 ⊕ Pκ(T )x ⊆ [Pκ+1(T )]2 ∀x ∈ T . Then, for k ∈ Z+
0 , we introduce the finite

element subspaces

Hσ
h :=

{
τh ∈ H(div; Ω) : τh|T ∈ [RT k(T )t]2 , ∀T ∈ Th

}
,

Hσ
0,h :=

{
τh ∈ Hσ

h :

∫
Ω

tr(τh) = 0

}
,

Hu
h :=

{
vh ∈ [L(Ω)]2 : vh|T ∈ [Pk(T )]2 , ∀T ∈ Th

}
,

Now, setting Σ0,h := Hσ
0,h × Hu

h , the corresponding discrete variational formulation of (3) reads as
follows: Find (σh,uh) ∈ Σ0,h such that

a(σh, τ ) + b(τ ,uh) = G(τ ) ∀ τ ∈ Hσ
0,h ,

b(σh,v) = F (v) ∀ v ∈ Hu
h ,

(4)

Applying a discrete version of Babuška-Brezzi’s theory, we can establish that (4) has one and only one
solution (σh,uh) ∈ Σ0,h. Moreover, there exists C > 0, independent of h, such that

||(σh,uh)||Σ ≤ C
(
||f ||[L2(Ω)]2 + ||f̃ ||L2(Ω) + ||g||[H1/2(Γ)]2

)
.

The details can be found in Section III in [10].
Now, in order to establish the convergence of the method, we recall the following well-known

approximation operators. First, we introduce the Raviart-Thomas interpolation operator (see [8, 22]),
Πk
h : [H1(Ω)]2×2 → Hσ

h , which given τ ∈ [H1(Ω)]2×2, Πk
h(τ ) is the only element in Hσ

h such that:

∀ q ∈ [Pk(e)]2 :

∫
e

Πk
h(τ )n · q =

∫
e
τn · q , ∀e ∈ ∂Th , when k ≥ 0 , (5)

with ∂Th denoting the list of edges (counted once) induced by {∂T}T∈Th , and

∀ρ ∈ [Pk−1(T )]2×2 :

∫
T

Πk
h(τ ) : ρ =

∫
T
τ : ρ , ∀T ∈ Th , when k ≥ 1 . (6)

The operator Πk
h satisfies the following approximation properties.

Lemma 1 There exist constants c̃1, c̃2, c̃3 > 0, independent of h, such that for all T ∈ Th

∀ τ ∈ [Hm(Ω)]2×2 : ||τ −Πk
h(τ )||[L2(T )]2×2 ≤ c̃1 h

m
T |τ |[Hm(T )]2×2 1 ≤ m ≤ k + 1 (7)

and for all τ ∈ [Hm+1(Ω)]2×2 with div(τ ) ∈ [Hm(Ω)]2,

||div(τ −Πk
h(τ ))||[L2(T )]2 ≤ c̃2 h

m
T |div(τ )|[Hm(T )]2 , 0 ≤ m ≤ k + 1 (8)

and
∀ τ ∈ [H1(Ω)]2×2 : ||τn−Πk

h(τ )n||[L2(e)]2 ≤ c̃3 h
1/2
e ||τ ||[H1(T )]2×2 ∀ e ∈ ∂Th . (9)

4



Proof. See e.g. [8] or [22]. �
Moreover, the operator Πk

h can also be seen as a bounded linear operator from the larger space
[Hs(Ω)]2×2 ∩H(div; Ω) into Hσ

h , for all s ∈ (0, 1] (see, e.g. Theorem 3.16 in [20]). In this situation,
the following approximation error estimate holds: There exists C > 0, independent of the mesh size,
such that

||τ −Πk
h(τ )||[L2(T )]2×2 ≤ C hsT

{
||τ ||[Hs(T )]2×2 + ||div(τ )||[L2(T )]2

}
, ∀T ∈ Th .

Another important property reads as

div(Πk
h(τ )) = P kh (div(τ )) , (10)

with P kh : [L2(Ω)]2 → Hu
h being the L2−orthogonal projector. This is deriving from (5) and (6).

On the other hand, it is well known (see, e.g. [12]) that P kh verifies: For each v ∈ [Hm(Ω)]2, with
0 ≤ m ≤ k + 1, there exists C > 0, independent of the mesh size, such that

||v − P kh (v)||[L2(T )]2 ≤ C hmT |v|[Hm(T )]2 , ∀T ∈ Th . (11)

With the help of these operators, we are able to prove the convergence of the proposed method.
Moreover, the corresponding rate of convergence of the method for these choices of finite element
subspaces, is recalled in the next theorem.

Theorem 2 Let (σ,u) ∈ Σ0 and (σh,uh) ∈ Σ0,h be the unique solutions to problems (3) and (4),
respectively. In addition, we assume that σ ∈ [Ht(Ω)]2×2, div(σ) ∈ [Ht(Ω)]2, u ∈ [Ht(Ω)]2, for
some t ∈ (0, k + 1]. Then, there exists C > 0, independent of h, such that there holds

‖(σ,u)− (σh,uh)‖Σ ≤ C ht
(
‖σ‖[Ht(Ω)]2×2 + ‖div(σ)‖[Ht(Ω)]2 + ‖u‖[Ht(Ω)]2

)
.

Proof. The proof is a straightforward application of the very well known Babuška-Brezzi theory (cf.
Theorem II.1.1 in [19]). It relies on bounding each one of the involved errors, ||σ − σh||H(div; Ω) and

||u− uh||[L2(Ω)]2 , taking into account the properties of the Raviart-Thomas conforming operator Πk
h,

as well as the standard L2-orthogonal projection operator P kh . We omit further details. �

3 An a posteriori error analysis

In this section, we follow [5] (see also [4]) and develop an a posteriori error analysis for the discrete
scheme (4), introducing an appropriate Ritz projection of the error and invoking a non standard quasi
Helmholtz decomposition result. First, we introduce some notations and results concerning geometric
elements of the triangulation Th, as well as of the Clément operator.
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3.1 Notation and some useful results

Given T ∈ Th, we let E(T ) be the set of its edges, and let Eh be the set of all edges induced
by the triangulation Th. Then, we write Eh = EI ∪ EΓ, where EI := {e ∈ Eh : e ⊆ Ω} and
EΓ := {e ∈ Eh : e ⊆ Γ}. Also, for each edge e ∈ Eh, we fix a unit normal vector ne := (n1, n2)t, and
let te := (−n2, n1)t be the corresponding fixed unit tangential vector along e. From now on, when no
confusion arises, we simply write n and t instead of ne and te, respectively. In addition, let v and τ
be vectorial - and tensor -valued functions, respectively, that are smooth inside each element T ∈ Th.
We denote by (vT,e, τT,e) the restriction of (vT , τT ) to e. Then, given e ∈ EI , we define the jump of
v and τ at x ∈ e, by

[[v]] := vT,e − vT ′,e , [[τ ]] := τT,etT + τT ′,etT ′ ,

where T and T ′ are the two elements in Th sharing the edge e ∈ EI . On boundary edges e ∈ EΓ, we
set [[τ ]] := τT,etT , where T ∈ Th is such that ∂T ∩ e 6= ∅. The duality pairing between [H−1/2(∂T )]2

and [H1/2(∂T )]2 with respect to L2(∂T )- inner product, is denoted by 〈·, ·〉∂T . We also introduce the
broken Sobolev space H1(Th) := {v ∈ L2(Ω) : v|T ∈ H1(T ), ∀T ∈ Th}.

Finally, given a smooth scalar field v, a vector valued field v := (v1, v2)t and a tensor valued one

τ :=

(
τ11 τ12

τ21 τ22

)
, we define

curl(v) :=

(
∂v
∂x2

− ∂v
∂x1

)
, curl(v) :=

(
∂v1
∂x2

− ∂v1
∂x1

∂v2
∂x2

− ∂v2
∂x1

)
, rot(v) :=

∂v2

∂x1
− ∂v1

∂x2
,

and rot(τ ) :=

(
rot
(
(τ11, τ12)t

)
rot
(
(τ21, τ22)t

)) =

(
∂τ12
∂x1
− ∂τ11

∂x2

∂τ22
∂x1
− ∂τ21

∂x2

)
.

We will use the Clément operator Ih : H1(Ω) → Xh (cf. [13]), where Xh := {vh ∈ H1(Ω) :
vh
∣∣
T
∈ P1(T ) , ∀T ∈ Th}. A vector version of Ih, say Ih : [H1(Ω)]2 → [Xh]2, which is defined

componentwise by Ih, is also required. The following lemma establishes the local approximation
properties of Ih.

Lemma 3 There exist constants c̃4, c̃5 > 0, independent of h, such that for all v ∈ H1(Ω) there holds

||v − Ih(v)||Hm(T ) ≤ c̃4 h
1−m
T |v|H1(ω(T )) , ∀m ∈ {0, 1} ,∀T ∈ Th ,

and
||v − Ih(v)||L2(e) ≤ c̃5 h

1/2
e |v|H1(ω(e)) ∀ e ∈ Eh ,

where ω(T ) := ∪{T ′ ∈ Th : T ′ ∩ T 6= ∅}, he denotes the length of the side e ∈ Eh and ω(e) :=
∪{T ′ ∈ Th : T ′ ∩ e 6= ∅} .

6



Proof. We refer to [13]. �
The following inverse inequality will also be required.

Lemma 4 Let `,m ∈ N ∪ {0} such that ` ≤ m. Then, there exists c > 0, depending only on k, `,m
and the shape regularity of the triangulations, such that for each T ∈ Th there holds

|q|Hm(T ) ≤ c h`−mT |q|H`(T ) , ∀ q ∈ Pk(T ) . (12)

Proof. See Theorem 3.2.6 in [12]. �

3.2 Reliability of the estimator

Let (σ,u) be the unique solution to problem (3) and assume that the Galerkin scheme (4) has a unique
solution, (σh,uh). We define the Ritz projection of the error with respect to the inner product on Σ,

〈(σ,w), (τ ,v)〉Σ := (σ, τ )H(div; Ω) + (w,v)[L2(Ω)]2 ∀ (σ,w), (τ ,v) ∈ Σ ,

as the unique element (σ̄, ū) ∈ Σ such that for all (τ ,v) ∈ Σ,

〈(σ̄, ū), (τ ,v)〉Σ = A((σ − σh,u− uh), (τ ,v)) . (13)

where the global bilinear form A : Σ × Σ → R arises from the variational formulation (3) after
adding its equations, that is

A((ρ,w), (τ ,v)) := a(ρ, τ ) + b(w, τ ) + b(v,ρ) ∀(ρ,w), (τ ,v) ∈ Σ .

We remark that the existence and uniqueness of (σ̄, ū) ∈ Σ is guaranteed by the Lax-Milgram
Lemma.

It is not difficult to check that the properties of the bilinear forms a(·, ·) and b(·, ·) imply that
A(·, ·) satisfies a global inf-sup condition, i.e. there exists α > 0 such that

α ||(ζ,w)||Σ ≤ sup
θ 6=(τ ,v)∈Σ0

A((ζ,w), (τ ,v))

‖(τ ,v)‖Σ
∀(ζ,w) ∈ Σ0 .

This property allows us to bound the error in terms of the solution of its Ritz projection. Indeed,
we have

α ||(σ − σh,u− uh)||Σ ≤ sup
(τ ,v)∈Σ0

A((σ − σh,u− uh), (τ ,v))

‖(τ ,v)‖Σ

≤ sup
(τ ,v)∈Σ

A((σ − σh,u− uh), (τ ,v))

‖(τ ,v)‖Σ
= ||(σ̄, ū)||Σ .

(14)

Then, according to (14), and in order to obtain a reliable a posteriori error estimates for the
discrete scheme (4), it is enough to bound from above the Ritz projection of the error. To this aim,
we establish the following technical result, which can be seen as another version of a quasi-Helmholtz
decomposition of functions in H(div; Ω).
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Lemma 5 For each τ ∈ H(div; Ω), there exist χ ∈ [H1(Ω)]2 and Φ ∈ [H1
0 (Ω)]2×2, such that

τ = curl(χ) + Φ +
1

2
d ⊗ (x1 − a, x2 − b)t , (15)

where (a, b)t is a fixed point belonging to Ω, and d := (d1, d2)t with di = 1
|Ω|
∫

Ω div(τi), i = 1, 2, with
τi denoting the i-th row of the tensor τ . In addition, there exists C > 0, such that

|χ|2[H1(Ω)]2 + ‖Φ‖2[H1(Ω)]2×2 ≤ C ‖τ‖H(div; Ω) . (16)

Proof. We first introduce the space M := {ζ ∈ H(div; Ω) : ∀ i ∈ {1, 2} :
∫

Ω div(ζti ) = 0}.
Next, for each τ ∈ H(div; Ω), we decompose div(τ ) = div(τ̃ ) + d. We remark that ∀ i ∈ {1, 2} :
‖div(τ ti )‖20,Ω = ‖div(τ̃ ti )‖20,Ω + |di|2. Then, since div(τ̃ ) ∈ [L2

0(Ω)]2, band invoking Corollary I.2.4

in [19], there exists Φ ∈ [H1
0 (Ω)]2×2 such that div(Φ) = div(τ̃ ) in Ω and ‖Φ‖1,Ω ≤ c ‖div(τ )‖0,Ω.

This implies for each i = 1, 2 that

div

(
τ ti −Φt

i −
di
2

(x1 − a, x2 − b)t
)

= 0 in Ω and

〈(
τ ti −Φt

i −
di
2

(x1 − a, x2 − b)t
)
· n, 1

〉
Γ

= 0 ,

where (a, b)t is a fixed point belonging to Ω. Hence, by Theorem I.3.1 in [19], for each i = 1, 2, there
exists a stream function χi ∈ H1(Ω) such that τ ti −Φt

i −
di
2 (x1 − a, x2 − b)t = curl(χi) in Ω. Then,

we set the vector χ := (χ1, χ2)t ∈ [H1(Ω)]2, which verifies

|χ|2[H1(Ω)]2 = || curl(χ)||2L2(Ω) =
2∑
i=1

∥∥∥∥τ ti −Φt
i −

di
2

(x1 − a, x2 − b)t
∥∥∥∥2

L2(Ω)

≤ 2
2∑
i=1

(
||τ ti ||2[L2(Ω)]2 + ||Φt

i ||2[L2(Ω)]2 +
d2
i

4
||(x1 − a, x2 − b)||2[L2(Ω)]2

)

≤ 2
2∑
i=1

(
||τ ti ||2[L2(Ω)]2 + ||Φt

i ||2[L2(Ω)]2 +
d2
i

4

(
diam(Ω)

)2 |Ω|)
≤ 2 max

{
1, c2 +

|Ω|
4

(
diam(Ω)

)2} ||τ ||2H(div; Ω) .

As a result, we establish (16), and we end the proof. �
In what follows, we introduce χh := (χ1,h, χ2,h)t, with χi,h := Ih(χi), i = 1, 2. This allows us to

define a discrete quasi Helmholtz decomposition of τ , which is given by

τh := curl(χh) + Πr
h

(
Φ
)

+
1

2
d ⊗ (x1 − a, x2 − b)t ∈ Hσ

h . (17)

Then, we observe that
τ − τh = curl(χ− χh) + Φ−Πr

h(Φ) , (18)

which yields
div(τ − τh) = div(Φ−Πr

h(Φ)) . (19)
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On the other hand, we notice that for each λ̃ ∈ R, we have A((σ − σh,u− uh), (λ̃I , 0)) = 0. Then,
since each ζh ∈ Hσ

h can be decompose as ζh = ζ̃h +λI , with ζ̃h ∈ Hσ
0,h and λ ∈ R, it is not difficult

to establish the following orthogonality relation

A((σ − σh,u− uh), (ζh,vh)) = 0 , ∀ (ζh,vh) ∈ Σh := Hσ
h ×Hu

h . (20)

This latter remark will be useful in our next aim, which consists in deriving an upper bound for
||(σ̄, ū)||Σ in terms of residuals. In order to do that, first, for each (τ ,v) ∈ Σ, we denote its induced
discrete pair by (τh, 0) ∈ Σh, where each row of τh is defined in (17). We take into account (20) with
(ζh,vh) = (τh,0) and that (σ,u) is the unique solution for problem (3) to obtain

〈(σ̄, ū), (τ ,v)〉Σ = A((σ − σh,u− uh), (τ − τh,v))

= A((σ − σh,u− uh), (τ̃ − τ̃h,v)) + A((σ − σh,u− uh), ((λ− λh)I,0))

= 〈(τ − τh)n, g〉 −
∫

Ω

(
1

2
f̃I

)
: (τ − τh)−

∫
Ω
f · v −A((σh,uh), (τ − τh,v))

− (λ− λh)

∫
Γ
g · n +

∫
Ω

(
1

2
f̃I

)
: (λ− λh)I + A((σh,uh), ((λ− λh)I,0)) ,

(21)

where in the last equality we have taken into account that τ − τh = τ̃ − τ̃h + (λ − λh)I, with
τ̃ − τ̃h ∈ H0 and (λ− λh) ∈ R. Now, recalling the assumptions on f̃ and g, we find that

A((σh,uh), ((λ− λh)I,0)) =

∫
Ω
uh · div

(
(λ− λh)I

)
= 0

− (λ− λh)

∫
Γ
g · n +

∫
Ω

(
1

2
f̃I

)
: (λ− λh)I = − (λ− λh)

(
〈g · n, 1〉 −

∫
Ω
f̃

)
= 0 ,

and then (21) reduces to

〈(σ̄, ū), (τ ,v)〉Σ = 〈(τ − τh)n, g〉 +

∫
Ω

(
− 1

2
f̃I

)
: (τ − τh)−

∫
Ω
f · v −A((σh,uh), (τ − τh,v)) .

(22)

We notice that (22) is equivalent to

〈σ̄, τ 〉H(div; Ω) = F1(τ − τh) , ∀ τ ∈ H(div; Ω) ,

〈ū,v〉[L2(Ω)]2 = F2(v) , ∀v ∈ [L2(Ω)]2 ,

where F1 : H(div; Ω)→ R and F2 : [L2(Ω)]2 → R are the bounded linear functionals defined as

F1(ρ) := 〈ρn, g〉 −
∫

Ω

(
1

2
f̃I +

1

ν
σd
h

)
: ρ −

∫
Ω
uh · div(ρ) ∀ρ ∈ H(div; Ω) ,

F2(w) := −
∫

Ω
(f + div(σh)) ·w ∀w ∈ [L2(Ω)]2 .

9



Hence, taking into account (18) and (19) we can rewrite F1(τ − τh) as follows

F1(τ − τh) = R1(Φ) + R2(χ) ,

where

R1(Φ) := 〈(Φ−Πk
h(Φ))n, g − uh〉 −

∫
Ω

(
1

ν
σd
h −∇huh +

1

2
f̃I

)
:
(
Φ−Πk

h(Φ)
)

+
∑
T ∈Th

∫
∂T∩EI

uh ·
(
Φ−Πk

h(Φ)
)
n ,

R2(χ) := −
∫

Ω

(
1

ν
σd
h +

1

2
f̃I

)
: curl(χ− χh) + 〈curl

(
χ− χh

)
n, g〉 .

Our aim now is to obtain upper bounds for each one of the terms F2(w), R1(Φ) and R2(χ).

Lemma 6 For any w ∈ [L2(Ω)]2, there holds

|F2(w)| ≤
( ∑
T ∈Th

‖f + div(σh)‖2[L2(T )]2

)1/2
‖w‖[L2(Ω)]2 .

Proof. The proof follows from a straightforward application of Cauchy-Schwarz inequality. �

Lemma 7 There exists C > 0, independent of h, such that

|R1(Φ)| ≤ C

( ∑
e∈EI

he ‖[[uh]]‖2[L2(e)]2 +
∑
T ∈Th

h2
T

∥∥∥∥1

ν
σd
h −∇uh +

1

2
f̃I

∥∥∥∥2

[L2(T )]2×2

+
∑
e∈EΓ

he ||g − uh||2[L2(e)]2

)1/2

‖τ‖H(div; Ω) .

Proof. It is a slight modification of Lemma 3.5 in [6]. We omit further details. �

Lemma 8 Assuming that f̃ ∈ H1(Th) and g ∈ [H1(Γ)]2, there exists C > 0, independent of h, such
that

|R2(χ)| ≤ C

( ∑
T ∈Th

h2
T

∥∥∥∥rot
(1

ν
σd
h +

1

2
f̃I
)∥∥∥∥2

[L2(T )]2
+
∑
e∈EI

he

∥∥∥∥[[1

ν
σd
h +

1

2
f̃I

]]∥∥∥∥2

L2(e)

+
∑
e∈EΓ

he

∥∥∥∥(1

ν
σd
h +

1

2
f̃I

)
t − dg

dt

∥∥∥∥2

[L2(e)]2

)1/2

‖τ‖H(div; Ω) .
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Proof. Integrating by parts, we deduce

R2(χ) =
∑
T ∈Th

−
∫
T

(
1

ν
σd
h +

1

2
f̃I

)
: curl(χ− χh) + 〈curl

(
χ− χh

)
n, g〉

=
∑
T ∈Th

{
−
∫
T

rot

(
1

ν
σd
h +

1

2
f̃I

)
· (χ− χh) +

〈
χ− χh,

(
1

ν
σd
h +

1

2
f̃I

)
t

〉
∂T

}

−
∑
e∈EΓ

∫
e

dg

dt

(
χ− χh

)
=

∑
T ∈Th

−
∫
T

rot

(
1

ν
σd
h +

1

2
f̃I

)
· (χ− χh) +

∑
e∈EI

∫
e
(χ− χh) ·

[[
1

ν
σd
h +

1

2
f̃I

]]

+
∑
e∈EΓ

∫
e
(χ− χh)

((
1

ν
σd
h +

1

2
f̃I

)
t − dg

dt

)
.

Therefore, the proof is completed applying Lemma 3, the Cauchy-Schwarz inequality, the regularity
of the mesh and (16). �

The bound of Ritz projection is exhibited in the following Lemma.

Lemma 9 Under the assumption that f̃ ∈ H1(Th) and g ∈ [H1(Γ)]2, there exists a constant C > 0,
independent of h, such that

C ||(σ̄, ū)||Σ ≤ η :=

 ∑
T ∈Th

η2
T

1/2

, (23)

where

η2
T := ||f + div(σh)||2[L2(T )]2 + h2

T

∥∥∥∥1

ν
σd
h −∇uh +

1

2
f̃I

∥∥∥∥2

[L2(T )]2×2

+ h2
T

∥∥∥∥rot

(
1

ν
σd
h +

1

2
f̃I

)∥∥∥∥2

[L2(T )]2

+
∑

e∈E(T )∩EI

{
he ‖[[uh]]‖2[L2(e)]2 + he

∥∥∥∥[[1

ν
σd
h +

1

2
f̃I

]]∥∥∥∥2

[L2(e)]2

}

+
∑

e∈E(T )∩EΓ

{
he ||g − uh||2[L2(e)]2 + he

∥∥∥∥(1

ν
σd
h +

1

2
f̃I

)
t − dg

dt

∥∥∥∥2

[L2(e)]2

}
. (24)

Proof. It follows from Cauchy-Schwarz inequality and Lemmas 6, 7 and 8. �
The following result establishes that the a posteriori error estimator η is reliable and efficient.

Theorem 10 Assuming that f̃ ∈ H1(Th) and g ∈ [H1(Γ)]2, there exists a positive constant Crel,
independent of h, such that

||(σ − σh,u− uh)||Σ ≤ Crel η . (25)
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Additionally, there exists Ceff > 0, independent of h, such that

η2
T ≤ Ceff

∑
T ′∈Th

e∈E(T )∩E(T ′)

||(σ − σh,u− uh)||T ′ + h.o.t. (26)

with ||(τ ,v)||2T := ‖τ‖2H(div;T ) + ‖v‖2[L2(T )]2, and h.o.t. is meant for eventual high order terms.

Proof. The reliability of η (first inequality) follows from (14) and Lemma 9. The efficiency of η
(second inequality) is established in the next subsection. We omit further details. �

3.3 Efficiency of the estimator

In this section, we proceeds to establish the local efficiency of the local a posteriori error estimate
(26). Since f = −div(σ) in Ω and 1

νσ
d −∇u = −1

2 f̃I in Ω, we have that

||f + div(σh)||[L2(T )]2 = ||div(σ − σh)||[L2(T )]2 .

To bound the rest of terms in (26), we require some ingredients. First, for any T ∈ Th and any
e ∈ E(T ), we introduce ψT and ψe the well known triangle-bubble and edge-bubble functions. This
means that ψT ∈ P3(T ), supp(ψT ) ⊆ T , ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T . Analogously,
ψe|T ∈ P2(T ), supp(ψe) ⊆ ωe := ∪{T ′ ∈ Th : e ∈ E(T )}, ψe = 0 on ∂ωe, and 0 ≤ ψe ≤ 1
in ωe. In addition, we recall from [23] that, given k ∈ N ∪ {0}, there exists an extension operator
L : C(e) → C(T ) that verifies ∀ p ∈ Pk(T ) : L(p) ∈ Pk(T ), and ∀ q ∈ Pk(e) : L(q)|e = q. Next
result resumes known properties of ψT , ψe and L, whose proof can be found in [23] (cf. proof of
Lemma 4.1).

Lemma 11 For any triangle T there exists positive constants c1, c2, c3 and c4, depending only on k
and the shape of T , such that for all p ∈ Pk(T ) and q ∈ Pk(e), there hold

||ψT p||2L2(T ) ≤ ||p||
2
L2(T ) ≤ c1 ||ψ1/2

T p||2L2(T ) , (27)

||ψe q||2L2(e) ≤ ||q||
2
L2(e) ≤ c2 ||ψ1/2

e q||2L2(e) , (28)

c3 he ||q||2L2(e) ≤ ||ψ
1/2
e L(q)||2L2(T ) ≤ c4 he ||q||2L2(e) . (29)

From here on, we assume that f̃ ∈ H1(Th) and g ∈ [H1(Γ)]2.

Lemma 12 There exists C1 > 0, independent of the meshsize such that for any T ∈ Th there holds

hT

∥∥∥∥ν−1σd
h − ∇uh +

1

2
f̃ I

∥∥∥∥
[L2(T )]2×2

≤ hT ν
−1 ||σd

h − σd||[L2(T )]2×2

+
√

2 ||u− uh||[L2(T )]2 + C1 hT ||f̃ − πsh(f̃)||L2(T ) . (30)
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Proof. First, for any T ∈ Th, we introduce the L2-projection of f̃ onto Ps(T ), with s ∈ Z+
0 at our

disposal. Then, after applying triangle inequality, we obtain∥∥∥∥ν−1σd
h − ∇uh +

1

2
f̃ I

∥∥∥∥
[L2(T )]2×2

≤
∥∥∥∥ν−1σd

h − ∇uh +
1

2
πsh(f̃) I

∥∥∥∥
[L2(T )]2×2

+ ||f̃ − πsh(f̃)||L2(T ) .

(31)

This motivates us to set the polynomial-wise function ρh := ν−1σd
h − ∇uh + 1

2π
s
h(f̃) I in T . Now,

invoking (27), we have

c−1
1 ||ρh||

2
[L2(T )]2×2 ≤ ||ψ1/2

T ρh||2[L2(T )]2×2 =

∫
T

(
ν−1σd

h − ∇uh +
1

2
πsh(f̃) I

)
: (ψT ρh)

=

∫
T

(
ν−1σd

h − ∇uh +
1

2
f̃ I

)
: (ψT ρh) +

1

2

∫
T

(πsh(f̃)− f̃)I : (ψT ρh) . (32)

In order to derive (30), it is enough to bound the first term on the right hand side in (32). Taking
into account that 1

2 f̃ I = ∇u− ν−1σd, and integrating by parts, it follows∫
T

(
ν−1σd

h − ∇uh +
1

2
f̃ I

)
: (ψT ρh) =

∫
T
ν−1(σd

h − σd) : (ψT ρh) +

∫
T

(∇u−∇uh) : (ψT ρh)

=

∫
T
ν−1(σd

h − σd) : (ψT ρh) −
∫
T

(u− uh) · div(ψT ρh) .

The rest of the proof relies on applying Cauchy-Schwarz inequality, the inverse inequality (12) with
` = 0,m = 1, as well as the fact that 0 ≤ ψT ≤ 1 in T . We omit further details. �

In order to bound most of the rest of terms that defined η2
T , from here on we assume that f̃ ∈ H1(Ω).

Lemma 13 There exists C2 > 0, independent of the meshsize, such that for any T ∈ Th there holds

hT

∥∥∥∥rot

(
ν−1σd

h +
1

2
f̃ I

)∥∥∥∥
[L2(T )]2

≤ C2 ν
−1 ||σd − σd

h||[L2(T )]2×2 + hT ||∇(f̃ − πsh(f̃))||[L2(T )]2 . (33)

Proof. We follow similar ideas than the given in the proof of previous Lemma. Considering πsh(f̃),
we deduce, applying triangle inequality, that∥∥∥∥rot

(
ν−1σd

h +
1

2
f̃ I

)∥∥∥∥
[L2(T )]2

≤
∥∥∥∥rot

(
ν−1σd

h +
1

2
πsh(f̃) I

)∥∥∥∥
[L2(T )]2

+ ||∇(f̃ − πsh(f̃))||[L2(T )]2 .

(34)

Then, we define the polynomial-wise function ρh := rot

(
ν−1σd

h +
1

2
πsh(f̃) I

)
. Now, applying prop-

erty (27), we deduce

c−1
1 ||ρh||

2
[L2(T )]2 ≤ ||ψ

1/2
T ρh||[L2(T )]2 =

∫
T

rot

(
ν−1σd

h +
1

2
πsh(f̃) I

)
· (ψT ρh)

=

∫
T

rot

(
ν−1σd

h +
1

2
f̃ I

)
· (ψT ρh) +

1

2

∫
T

rot((πsh(f̃)− f̃) I) · (ψT ρh) . (35)
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Since 1
2 f̃ I = ∇u− ν−1σd and rot(∇u) = 0, we first integrate by parts, and then we apply Cauchy-

Schwarz, the inverse inequality (12) with ` = 0,m = 1, as well as the fact that ψT = 0 on ∂T and
0 ≤ ψT ≤ 1 in T . As a result, we obtain∫
T

rot

(
ν−1σd

h +
1

2
f̃ I

)
· (ψT ρh) =

∫
T
ν−1rot(σd

h − σd) · (ψT ρh) =

∫
T

(σd
h − σd) : curl(ψT ρh)

≤ ν−1 ||σd
h − σd||[L2(T )]2×2 ||curl(ψT ρh)||[L2(T )]2×2

= ν−1 ||σd
h − σd||[L2(T )]2×2 ||∇(ψT ρh)||[L2(T )]2×2

≤ C ν−1 h−1
T ||σ

d
h − σd||[L2(T )]2×2 ||ψT ρh||[L2(T )]2

≤ C ν−1 h−1
T ||σ

d
h − σd||[L2(T )]2×2 ||ρh||[L2(T )]2 . (36)

Then, using (36) to bound the right hand side in (35), we obtain

c−1
1 ||ρh||[L2(T )]2 ≤ C ν−1 h−1

T ||σ
d
h − σd||[L2(T )]2×2 +

1

2
||∇(f̃ − πsh(f̃))||[L2(T )]2 . (37)

Finally, (34) yields to

hT

∥∥∥∥rot

(
ν−1σd

h +
1

2
f̃ I

)∥∥∥∥
[L2(T )]2

≤ C2

(
ν−1 ||σd

h − σd||[L2(T )]2×2 + hT ||∇(f̃ − πsh(f̃))||[L2(T )]2

)
.

�
The following result gives us a bound of the jump of uh.

Lemma 14 There exists C3 > 0, independent of the meshsize, such that for any e ∈ EI there holds

h1/2
e ||[[uh]]||[L2(e)]2 ≤ C3

(
||u− uh||[L2(ωe)]2 + ||σ − σh||[L2(ωe)]2×2

)
. (38)

Proof. Given e ∈ EI , we introduce ωe := T ∪ T ′, where T and T ′ are the elements in Th sharing e.
Next, we set wh := [[uh]] on e and ρe := ψe L(wh)⊗nT,e in ωe. Now, invoking (28), taking advantage
that [[u]] = 0 on EI , and after integrating by parts, we derive

c−1
2 ||wh||2[L2(e)]2 ≤ ||ψ

1/2
e wh||[L2(e)]2 =

∫
e
ψe L(wh) · [[uh − u]] =

∫
e

(ψe L(wh)⊗ nT,e)nT,e · [[uh − u]]

=

∫
e
ρenT,e · [[uh − u]] =

∫
ωe

(uh − u) · div(ρe) +

∫
ωe

∇h(uh − u) : ρe . (39)

Knowing that for each T ∈ ωe

∇(uh − u) = ν−1(σd
h − σd) −

(
ν−1 σd

h − ∇uh +
1

2
f̃ I

)
,

we deduce that

||∇(uh − u)||[L2(T )]2×2 ≤ ν−1 ||σd
h − σd||[L2(T )]2×2 +

∥∥∥∥ν−1 σd
h − ∇uh +

1

2
f̃ I

∥∥∥∥
[L2(T )]2×2

. (40)
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On the other hand, taking into account the inverse inequality (12) with ` = 0,m = 1, and the fact
that 0 ≤ ψe ≤ 1 in ωe, we deduce

||div(ρe)||[L2(T )]2 ≤
√

2 ||∇ρe||[L2(T )]2×2 ≤ c
√

2h−1
T ||ρe||[L2(T )]2

= c
√

2h−1
T ||ψ

1/2
e L(wh)||[L2(T )]2 ≤ c c

1/2
4

√
2h
−1/2
T ||wh||[L2(e)]2 . (41)

Using (41) and (40), we are able to bound the right hand side in (39), and deduce (38). We omit
further details. �

For the rest of the proofs, we need to invoke the well known discrete trace inequality, established
in Theorem 3.10 in [1] (cf. (2.4) in [2]). This states that there exists c5 > 0, depending only on the
shape regularity of the family of triangulations, such that for any T ∈ Th and any e ∈ E(T ), there
holds

||v||L2(e) ≤ c5

(
h−1/2
e ||v||L2(T ) + h1/2

e ||∇v||[L2(T )]2

)
, ∀ v ∈ H1(T ) . (42)

Lemma 15 There exists C4 > 0, independent of the meshsize, such that for any e ∈ EI , there holds

h1/2
e

∥∥∥∥[[ν−1σd
h +

1

2
f̃ I

]]∥∥∥∥
[L2(e)]2

≤ C4

(
ν−1||σd − σd

h||[L2(ωe)]2×2

+
∑
T ∈ωe

||πsh(f̃)− f̃ ||L2(T ) + hT ||∇(πsh(f̃)− f̃)||[L2(T )]2

)
. (43)

Proof. First, given e ∈ EI , we apply triangle inequality, and derive∥∥∥∥[[ν−1σd
h +

1

2
f̃ I

]]∥∥∥∥
[L2(e)]2

≤
∥∥∥∥[[ν−1σd

h +
1

2
πsh(f̃) I

]]∥∥∥∥
[L2(e)]2

+
1

2
||[[(f̃ − πkh(f̃)) I]]||[L2(e)]2 . (44)

This allows us to introduce wh :=

[[
ν−1σd

h +
1

2
πsh(f̃) I

]]
on e. Then, taking into account (28), we

have

c−1
2 ||wh||2[L2(e)]2 ≤ ||ψ

1/2
e wh||2[L2(e)]2 =

∫
e
ψe L(wh) ·

[[
ν−1σd

h +
1

2
πsh(f̃) I

]]
=

∫
e
ψe L(wh) ·

[[
ν−1σd

h +
1

2
f̃ I

]]
+

1

2

∫
e
ψe L(wh) · [[(πsh(f̃)− f̃) I]] . (45)

Our next aim, is to bound the right hand side in (45). We notice that ∇u ∈ H(rot; Ω), to derive∫
e
ψe L(wh) ·

[[
ν−1σd

h +
1

2
f̃ I

]]
=

∫
e
ψe L(wh) ·

[[
ν−1σd

h +
1

2
f̃ I −∇u

]]
=

∫
e
ψe L(wh) ·

(
ν−1σd

h +
1

2
f̃ I −∇u

)
tT +

∫
e
ψe L(wh) ·

(
ν−1σd

h +
1

2
f̃ I −∇u

)
tT ′

=
∑
T∈ωe

{
−
∫
T

curl(ψe L(wh)) :

(
ν−1σd

h +
1

2
f̃ I −∇u

)
+

∫
T
ψe L(wh) · rot

(
ν−1σd

h +
1

2
f̃ I

)}
= −

∫
ωe

curl(ψe L(wh)) :

(
ν−1σd

h +
1

2
f̃ I −∇u

)
+

∫
ωe

ψe L(wh) · roth

(
ν−1σd

h +
1

2
f̃ I

)
. (46)
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Then, using in addition the fact that ν−1σd
h +

1

2
f̃ I −∇u = ν−1(σd

h − σd), (46) reduces to∫
e
ψe L(wh) ·

[[
ν−1σd

h +
1

2
f̃ I

]]
= ν−1

∫
ωe

curl(ψe L(wh)) : (σd − σd
h)

+

∫
ωe

ψe L(wh) · roth

(
ν−1σd

h +
1

2
f̃ I

)
. (47)

Now, for all T ∈ ωe, we have that

||curl(ψe L(wh))||[L2(T )]2×2 = ||∇(ψe L(wh))||[L2(T )]2×2 ≤ c h−1
T ||ψe L(wh)||[L2(T )]2

≤ c h−1
T ||ψ

1/2
e L(wh)||[L2(T )]2 ≤ c c4 h

−1/2
T ||wh||[L2(e)]2 , (48)

where we have applied inverse inequality (12) with ` = 0,m = 1, and taken into account the fact that

0 ≤ ψ
1/2
e ≤ 1 in ωe, as well as property (28). Moreover, we also derive that

||ψe L(wh)||[L2(T )]2 ≤ c4 h
1/2
T ||wh||[L2(e)]2 , (49)

which helps us to obtain∫
e
ψe L(wh) · [[(πsh(f̃)− f̃) I]] ≤ ||wh||[L2(e)]2 ||[[(πsh(f̃)− f̃) I]]||[L2(e)]2 . (50)

Inequalities (48), (49), and (50), together with (33), allow us to deduce from (45) that

||wh||[L2(e)]2 ≤ C
∑
T ∈ωe

h
−1/2
T ν−1||σd − σd

h||[L2(T )]2×2 + ||πsh(f̃)− f̃ ||L2(e) .

Then, it follows from (44), taking into account (42), that

h1/2
e

∥∥∥∥[[ν−1σd
h +

1

2
f̃ I

]]∥∥∥∥
[L2(e)]2

≤ C4

(
ν−1||σd − σd

h||[L2(ωe)]2×2

+
∑
T ∈ωe

||πsh(f̃)− f̃ ||L2(T ) + hT ||∇(πsh(f̃)− f̃)||[L2(T )]2

)
,

and we end the proof. �
Next, invoking again the discrete trace inequality (42), and noticing that u = g on Γ, we are able

to establish.

Lemma 16 There exists C5 > 0, independent of the mesh size, such that for any e ∈ EΓ, an edge of
Te ∈ Th, there holds

h1/2
e ||g − uh||[L2(e)]2 ≤ C5

(
||u− uh||[L2(Te)]2 + hTe ν

−1 ||σd
h − σd||[L2(Te)]2×2 + hTe ||f̃ − πsh(f̃)||L2(Te)

)
.

(51)

16



Proof. Let e ∈ EΓ, and Te ∈ Th the triangle having e as an edge. Since u = g on e, we have, after
applying (42), that

C−1 h1/2
e ||g − uh||[L2(e)]2 ≤ ||u− uh||[L2(Te)]2 + hTe ||∇u−∇uh||[L2(Te)]2×2

≤ ||u− uh||[L2(Te)]2 + hTe ν
−1 ||σd

h − σd||[L2(Te)]2×2

+ hTe

∥∥∥∥ν−1 σd
h −∇uh +

1

2
f̃ I

∥∥∥∥
[L2(Te)]2×2

,

where we have invoked (40) in the last bounding. The result is obtained once we use (30). We omit
further details. �

Lemma 17 Assuming in addition that g ∈ [H1(Γ)]2 is piecewise polynomial, then there exists C6 > 0,
independent of the mesh size, such that for any e ∈ EΓ, an edge of Te ∈ Th, there holds

h1/2
e

∥∥∥∥(1

ν
σd
h +

1

2
f̃ I

)
t − dg

dt

∥∥∥∥
[L2(e)]2

≤ C6

(
ν−1||σd − σd

h||[L2(Te)]2×2 + ||f̃ − πsh(f̃)||L2(Te) (52)

+ hT ||∇
(
f̃ − πsh(f̃)

)
||[L2(Te)]2

)
. (53)

Proof. Let e ∈ EΓ. By triangle inequality, we have∥∥∥∥(1

ν
σd
h +

1

2
f̃ I

)
t − dg

dt

∥∥∥∥
[L2(e)]2

≤
∥∥∥∥(1

ν
σd
h +

1

2
πsh(f̃) I

)
t − dg

dt

∥∥∥∥
[L2(e)]2

+
1

2
||
(
f̃ − πsh(f̃)

)
t||[L2(e)]2 .

(54)

Now, we introduce wh :=

(
1

ν
σd
h +

1

2
πsh(f̃) I

)
t − dg

dt
on e. Invoking (28), we obtain

c−1
2 ||wh||2[L2(e)]2 ≤ ||ψ

1/2
e wh||2[L2(e)]2 =

∫
e
ψewh ·

((
1

ν
σd
h +

1

2
πsh(f̃) I

)
t − dg

dt

)

=

∫
e
ψewh ·

((
1

ν
σd
h +

1

2
f̃ I

)
t − dg

dt

)
+

1

2

∫
e
ψewh ·

(
πsh(f̃)− f̃

)
t . (55)

Next, noticing that
dg

dt
=
(
∇u
)
t on Γ

∫
e
ψewh ·

((
1

ν
σd
h +

1

2
f̃ I

)
t − dg

dt

)
=

∫
∂Te

ψe L(wh) ·
(

1

ν
σd
h +

1

2
f̃ I −∇u

)
t

= −
∫
Te

curl
(
ψe L(wh)

)
:

(
ν−1σd

h +
1

2
f̃ I −∇u

)
+

∫
Te

ψe L(wh) · rot

(
ν−1σd

h +
1

2
f̃ I

)
. (56)

17



Since ν−1σd
h +

1

2
f̃ I − ∇u = ν−1

(
σd
h − σd

)
, we derive, after integrating by parts

∫
Te

curl
(
ψe L(wh)

)
:

(
ν−1σd

h +
1

2
f̃ I −∇u

)
= ν−1

∫
Te

curl
(
ψe L(wh)

)
:
(
σd
h − σd

)
.

Replacing the latter back in (56), (55) reduces to

c−1
2 ||wh||2[L2(e)]2 ≤ ν−1

∫
Te

curl
(
ψe L(wh)

)
:
(
σd − σd

h

)
+

∫
Te

ψe L(wh) · rot

(
ν−1σd

h +
1

2
f̃ I

)
+

1

2

∫
e
ψewh ·

(
πsh(f̃)− f̃

)
t .

Then, applying Cauchy-Schwarz inequality, inverse inequality (12) with ` = 0,m = 1, property (29)
and the fact that 0 ≤ ψe ≤ 1 in Te, we obtain

c−1
2 ||wh||[L2(e)]2 ≤ C

(
ν−1h

−1/2
Te
||σd − σd

h||[L2(Te)]2×2 + h1/2
e

∥∥∥∥rot

(
ν−1σd

h +
1

2
f̃ I

)∥∥∥∥
[L2(Te)]2

+ ||πsh(f̃)− f̃ ||L2(e)

)
. (57)

Finally, applying (57) to bound (54), and after invoking (33), we conclude (53) and end the proof. �

4 Numerical experiments

We begin this section by remarking that, for implementation purposes, the null media condition
required by the basis of Hσ

0,h can be circumvented by imposing this requirement through a Lagrange
multiplier. More precisely, we solve the following auxiliary discrete scheme: Find (σh,uh, ϕh) ∈
Σh := Hσ

h ×Hu
h × R such that

A((σh,uh), (τh,vh)) + ϕh

∫
Ω

tr(τh) = G̃(τh,vh) ,

ψh

∫
Ω

tr(σh) = 0 ,

(58)

for all (τh,vh, ψh) ∈ Σh. A standard argument establishes the equivalence between the variational
problems (4) and (58). For more details see, for example, Theorem 6.1 in [7].

In what follows, we approximate σh by elements of H(div; Ω) that locally belongs to [RT0]2 (row-
wise), while uh is looking in [P0(Th)]2.

Then, we introduce DOF as the total number of degrees of freedom (unknowns) of (58) i.e.
DOF := 2 × (Number of edges of Th) + 2 × card(Th) + 1, which leads asymptotically to 4 unknowns
per triangle. This reflects the low computational cost of our scheme, almost the same than the required
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when considering the P1−isoP1 approximation spaces for the standard velocity-pressure formulation,
whose degrees of freedom are asymptotically 4.5 (unknowns) per triangle. In addition, by setting
ph := ν

2 π
1
h(f̃) − 1

2tr(σh), we obtain a reasonable piecewise linear approximation of the pressure

p = ν
2 f̃ −

1
2tr(σ).

Hereafter, the individual and total errors are denoted as follows

e(u) := ‖u− uh‖[L2(Ω)]2 , e(σ) := ‖σ − σh‖H(div,Ω) ,

e :=
(

[e(u)]2 + [e(σ)]2
)1/2

, e(p) := ‖p− ph‖L2(Ω) ,

where (σ,u) ∈ H0 × [H1(Ω)]2 and (σh,uh) ∈ Hσ
0,h ×Hu

h are the unique solutions of the continuous
and discrete formulations, respectively. In addition, if e and ẽ stand for the errors at two consecutive
triangulations with N and Ñ degrees of freedom, respectively, then the experimental rate of conver-

gence is given by r := −2
log(e/ẽ)

log(N/Ñ)
. The definitions of r(u), r(σ), and r(p) are defined analogously.

In the next examples, we concentrate in the iterative process to approximate the exact solution using
an adaptive algorithm in the mesh refinement based on an estimator ηT . This algorithm reads as
follows following (see [24]):

1. Start with a coarse mesh Th.

2. Solve the Galerkin scheme (58) for the current mesh Th.

3. Compute ηT (cf. (24)) for each T ∈ Th.

4. Consider stopping criterion and decide to finish or go to the next step.

5. Use Blue-green procedure to refine each element T ′ ∈ Th such that

ηT ′ ≥
1

2
max{ηT : T ∈ Th} .

6. Define the resulting mesh as the new Th and go to step 2.

4.1 Example 1: Laminar flow, with smooth divergence free solution

In order to exhibit the robustness of our scheme with respect to the viscosity parameter ν, we consider
the two-dimensional analytical solution of the Navier-Stokes equations derived by Kovasznay in [21],
where the velocity, the pressure and the domain are given by:

u(x, y) :=

(
1− eλx cos(2πy)
λ
2π eλx sin(2πy)

)
, p(x, y) := −1

2
e2λx − p0 , Ω := (−1/2, 3/2)× (0, 2), (59)

where the constant p0 is chosen to ensure p ∈ L2
0(Ω), while the parameter λ is setting as:

λ := − 8π2

ν−1 +
√
ν−2 + 16π2

.
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We emphasize that here f̃ = div(u) = 0 in Ω and the solution is smooth. Then, we present the
results just for uniform refinement, ranging the viscosity from 1 to 10−4, i.e. for moderate values of
the viscosity. Tables 1, 2 and 3 report the convergence histories as well as the respective rates of
convergence of individual errors and the total one, considering a sequence of uniform refinements, for
ν = 1, ν = 10−2 and ν = 10−4, respectively. Figure 1, in log-log scale, summarizes these results. In
each case, we notice that the scheme is convergent, with the expected optimal rate of convergence
O(h), in agreement with Theorem 2. We also notice that the index of efficiency e/η remains bounded,
for each one of the values considered for ν.

4.2 Example 2: Non smooth benchmark solution

Here, we take the problem from [24], which is defined in Ω :=
{

(x1, x2) ∈ R2 : x2
1 + x2

2 < 1
}
\ [0, 1]×

[−1, 0]. The data of this problem is given such that the exact solution, in polar coordinates, is

u(r, θ) :=

(
rλ[(1 + λ) sin(θ)ψ(θ) + cos(θ)ψ′(θ)]

rλ[−(1 + λ) cos(θ)ψ(θ) + sin(θ)ψ′(θ)]

)
+

(
r2 cos2(θ)

r2 sin2(θ)

)
, and

p(r, θ) :=− rλ−1

1− λ
[(1 + λ2)ψ′(θ) + ψ′′′(θ)] ,

with

ψ(θ) :=
1

1 + λ
sin((1 + λ)θ) cos(λω) − cos((1 + λ)θ)

− 1

1− λ
sin((1− λ)θ) cos(λω) + cos((1− λ)θ) ,

λ := 0.54448373678246 , ω :=
3

2
π .

We remark that

∫
Ω
p = 0 and f̃ 6= 0 in Ω. Moreover, in this case the exact solution (u, p) lives in

[H1+λ(Ω)]2 ×Hλ(Ω). The history of convergence of the method is displayed in Table 4, considering
sequences of uniform and adaptive refined meshes generated according to the proposed Algorithm.
We notice that due to the low regularity of the exact solution, the total error, when applying uniform
refinement, behaves as O(hλ), which is in agreement with Theorem 2. On the other hand, when
performing the adaptive refinement algorithm, based on our a posteriori error estimator η, the quality
of approximation is improved, recovering the optimal rate of convergence, as it can be seen in Table 4
and Figure 2 (in log-log scale). In addition, this adaptive procedure is able to identify the singularity
of u and p at origin. This is shown in Figure 4, which contains some of the adapted meshes obtained
in this process. Concerning the index of efficiency, we observe that their values are bounded, when
considering uniformly refined meshes and the sequence of meshes obtained by applying the adaptive
refinement algorithm. These let us to state that our a posteriori error estimator η, is reliable and
locally efficient, as stated in Theorem 10.
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4.3 Example 3: Another non smooth solution

We now specify the data of our third example. We set Ω := {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1} \ ([0, 1]×
[−1, 0]), and consider the data f̃ , f and g such that the exact solution (u, p) is given by

u(x1, x2) :=
1

8π ν

{
− ln(s)

(
1
0

)
+

1

s2

(
(x1 − 2)2

(x1 − 2)(x2 − 2)

)}
+

(
x2

1

x2
2

)
p(r̃, θ) := r̃2/3 sin

(
2

3
θ

)
− 3

2π
,

where s :=
√

(x1 − 2)2 + (x2 − 2)2, and the pressure p is given in polar coordinates (r̃, θ). We
pointwise that in this case, f̃ = div(u) = 2(x1 + x2), and the exact pressure p lives in H1+2/3(Ω),
since their derivatives are singular at (0, 0). In Table 5 we report the convergence history of the
method, considering uniform and adaptive refinements. Under the sequence of uniform refinement
meshes, we notice that the corresponding rate of convergence behaves as O(h0.75), due to the lack of
regularity of exact solution. This is still in agreement with Theorem 2. Moreover, we observe that the
L2-norm of the error of the pressure behaves as O(h), which is better than expected. Now, when we
consider a sequence of adaptive refinement meshes in the proposed Adaptive Refinement Algorithm,
based on η, we improve the quality of the approximation, recovering the optimal rate of convergence
O(h), as can be seen in Table 5 and in Figure 3. In addition, the index of efficiency computed for
uniform and adaptive refinement, are bounded, confirming the validity of Theorem 10. Some adapted
meshes, generated by this adaptive procedure, are displayed in Figure 5.

dof e(u) r(u) e(σ) r(σ) e(p) r(p) e r e/η

337 0.647e+1 —- 0.315e+3 —- 0.273e+2 —- 0.317e+3 —- 0.8819
1313 0.285e+1 1.2060 0.203e+3 0.6452 0.167e+2 0.7190 0.204e+3 0.6459 0.8238
5185 0.135e+1 1.0860 0.111e+3 0.8831 0.883e+1 0.9325 0.111e+3 0.8835 0.7895
20609 0.663e+0 1.0328 0.568e+2 0.9699 0.442e+1 1.0032 0.570e+2 0.9701 0.7684
82177 0.329e+0 1.0110 0.286e+2 0.9934 0.219e+1 1.0173 0.287e+2 0.9936 0.7570
328193 0.164e+0 1.0035 0.143e+2 0.9990 0.108e+1 1.0132 0.143e+2 0.9990 0.7513
1311745 0.822e-1 1.0012 0.716e+1 1.0000 0.540e+0 1.0070 0.718e+1 1.0001 0.7485
5244929 0.411e-1 1.0004 0.358e+1 1.0002 0.269e+0 1.0030 0.359e+1 1.0002 0.7472

Table 1: History of convergence and corresponding rates of convergence, Example 1, ν = 1.0 (uniform
refinement)

5 Conclusion and final comments

In this paper, we have developed an a posteriori error analysis for the Stokes problem with non homo-
geneous source terms (in particular with f̃ 6= 0 in Ω). The system is approximated by a conforming
dual mixed technique, which is based on the so-called pseudostress-velocity formulation (see [3]). This
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dof e(u) r(u) e(σ) r(σ) e(p) r(p) e r e/η

337 0.104e+1 —- 0.303e+0 —- 0.533e-1 —- 0.108e+1 —– 0.0438
1313 0.414e+0 1.3532 0.149e+0 1.0452 0.242e-1 1.1607 0.441e+0 1.3234 0.0275
5185 0.186e+0 1.1667 0.743e-1 1.0086 0.113e-1 1.1110 0.200e+0 1.1467 0.0222
20609 0.894e-1 1.0605 0.372e-1 1.0049 0.540e-2 1.0671 0.970e-1 1.0526 0.0204
82177 0.442e-1 1.0184 0.186e-1 1.0027 0.265e-2 1.0306 0.480e-1 1.0161 0.0198
328193 0.220e-1 1.0054 0.929e-2 1.0013 0.132e-2 1.0116 0.239e-1 1.0048 0.0196
1311745 0.110e-1 1.0016 0.464e-2 1.0006 0.656e-3 1.0041 0.120e-1 1.0015 0.0195
5244929 0.550e-2 1.0006 0.232e-2 1.0003 0.328e-3 1.0014 0.598e-2 1.0005 0.0195

Table 2: History of convergence and corresponding rates of convergence, Example 1, ν = 0.01 (uniform
refinement)

dof e(u) r(u) e(σ) r(σ) e(p) r(p) e r e/η

337 0.125e+1 —- 0.349e-2 —- 0.666e-3 —- 0.125e+1 —- 0.0409
1313 0.487e+0 1.3799 0.171e-2 1.0459 0.297e-3 1.1873 0.487e+0 1.3799 0.0250
5185 0.216e+0 1.1881 0.855e-3 1.0098 0.137e-3 1.1235 0.216e+0 1.1881 0.0197
20609 0.103e+0 1.0692 0.428e-3 1.0052 0.657e-4 1.0678 0.103e+0 1.0692 0.0179
82177 0.509e-1 1.0209 0.214e-3 1.0027 0.323e-4 1.0285 0.509e-1 1.0209 0.0174
328193 0.254e-1 1.0060 0.107e-3 1.0013 0.160e-4 1.0102 0.254e-1 1.0060 0.0172
1311745 0.127e-1 1.0018 0.534e-4 1.0006 0.800e-5 1.0035 0.127e-1 1.0018 0.0171
5244929 0.633e-2 1.0006 0.267e-4 1.0003 0.400e-5 1.0012 0.633e-2 1.0006 0.0171

Table 3: History of convergence and corresponding rates of convergence, Example 1, ν = 0.0001
(uniform refinement)

approach is an extension of the classical one, previously introduced in [10, 11], where the study is
done assuming the classical incompressibility condition div(u) = 0 in Ω. The analysis developed
here requires a nonstandard quasi-Helmholtz decomposition in H(div; Ω) (cf. Lemma 5). Moreover,
assuming a reasonable additional regularity of the exact solution (for example, u ∈ [H1+s(Ω)]2, for
some s > 1/2), we derive a reliable a posteriori error estimate (cf. (25)). In addition, introducing a
suitable approximation of the datum f̃ , and assuming that g is a continuous piecewise polynomial on
Γ, we are able to establish the local efficiency of the estimator (cf. (26)), up to the presence of an
oscillation term of f̃ , which is expected to be a high order term when it is smooth enough.

Furthermore, numerical examples show that our scheme converges and is robust for moderate
values of the viscosity ν (cf. Example 1). In addition, when the exact solution is non smooth (cf.
Examples 2 and 3), the proposed Adaptive Refinement Algorithm, based on η (cf. Theorem 10), is able
to localize the singularities of the solution (see Figures 4 and 5 for Examples 2 and 3, respectively).
As a consequence, we notice that the quality of approximation is improved, recovering the optimal
rate of convergence of the method. Moreover, the index of efficiency in each case remains bounded,
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dof e(u) r(u) e(σ) r(σ) e(p) r(p) e r e/η

1015 0.263e+0 —- 0.254e+1 —- 0.155e+1 —– 0.299e+1 —- 0.6090
3989 0.133e+0 0.9974 0.158e+1 0.6910 0.918e+0 0.7666 0.183e+1 0.7126 0.5316
15817 0.665e-1 1.0064 0.102e+1 0.6317 0.572e+0 0.6875 0.117e+1 0.6468 0.4975
62993 0.331e-1 1.0077 0.681e+0 0.5907 0.371e+0 0.6250 0.776e+0 0.5997 0.4821
251425 0.165e-1 1.0072 0.459e+0 0.5680 0.247e+0 0.5870 0.522e+0 0.5729 0.4749
1004609 0.822e-2 1.0064 0.313e+0 0.5562 0.167e+0 0.5661 0.354e+0 0.5587 0.4716

dof e(u) r(u) e(σ) r(σ) e(p) r(p) e r e/η

1015 0.263e+0 —- 0.254e+1 —- 0.155e+1 —- 0.299e+1 —- 0.6090
1209 0.236e+0 1.2306 0.183e+1 3.7699 0.107e+1 4.2005 0.213e+1 3.8577 0.4882
1373 0.233e+0 0.2437 0.148e+1 3.2987 0.847e+0 3.7315 0.172e+1 3.3601 0.4194
1903 0.216e+0 0.4523 0.117e+1 1.4644 0.644e+0 1.6840 0.135e+1 1.4940 0.3735
2769 0.199e+0 0.4299 0.927e+0 1.2204 0.492e+0 1.4288 0.107e+1 1.2426 0.3288
4937 0.154e+0 0.8856 0.713e+0 0.9073 0.364e+0 1.0469 0.815e+0 0.9353 0.3113
7925 0.118e+0 1.1421 0.542e+0 1.1622 0.265e+0 1.3362 0.614e+0 1.1950 0.2952
10417 0.107e+0 0.6723 0.457e+0 1.2428 0.217e+0 1.4777 0.517e+0 1.2626 0.2781
16573 0.879e-1 0.8646 0.367e+0 0.9406 0.170e+0 1.0481 0.414e+0 0.9557 0.2694
26823 0.671e-1 1.1216 0.287e+0 1.0250 0.130e+0 1.1192 0.322e+0 1.0448 0.2646
36225 0.585e-1 0.9092 0.242e+0 1.1319 0.108e+0 1.2437 0.271e+0 1.1398 0.2584
53423 0.493e-1 0.8795 0.200e+0 0.9798 0.876e-1 1.0578 0.224e+0 0.9872 0.2528
81727 0.402e-1 0.9608 0.164e+0 0.9421 0.712e-1 0.9802 0.183e+0 0.9488 0.2516
120813 0.322e-1 1.1429 0.134e+0 1.0394 0.577e-1 1.0731 0.149e+0 1.0494 0.2497
173047 0.271e-1 0.9627 0.111e+0 1.0404 0.475e-1 1.0764 0.124e+0 1.0421 0.2472
251237 0.229e-1 0.8861 0.924e-1 0.9767 0.395e-1 0.9973 0.103e+0 0.9753 0.2456
375075 0.185e-1 1.0629 0.761e-1 0.9679 0.325e-1 0.9780 0.848e-1 0.9740 0.2452
556483 0.150e-1 1.0618 0.623e-1 1.0214 0.265e-1 1.0277 0.693e-1 1.0242 0.2451
785543 0.128e-1 0.9505 0.521e-1 1.0308 0.221e-1 1.0495 0.580e-1 1.0297 0.2429

Table 4: History of convergence and corresponding rates of convergence, Example 2 with ν = 1.0
(uniform and adaptive refinements)

showing that our a posteriori error estimator is reliable and locally efficient, despite the fact that in
all these examples the datum g is not piecewise polynomial on Γ, as required by Theorem 10. This
gives us numerical evidence that this requirement could be circumvented to derive a similar result as
Theorem 10. We leave this for a future work.
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23



dof e(u) r(u) e(σ) r(σ) e(p) r(p) e r e/η

15817 0.196e-1 —- 0.557e-1 —- 0.160e-1 —- 0.612e-1 —- 0.2523
62993 0.982e-2 1.0021 0.311e-1 0.8438 0.789e-2 1.0198 0.336e-1 0.8695 0.2747
251425 0.491e-2 1.0013 0.178e-1 0.8033 0.393e-2 1.0065 0.189e-1 0.8283 0.3073
1004609 0.246e-2 1.0007 0.105e-1 0.7675 0.196e-2 1.0022 0.109e-1 0.7900 0.3513
4016257 0.123e-2 1.0004 0.629e-2 0.7380 0.982e-3 1.0008 0.648e-2 0.7565 0.4074

dof e(u) r(u) e(σ) r(σ) e(p) r(p) e r e/η

15817 0.196e-1 —- 0.557e-1 —- 0.160e-1 —- 0.612e-1 —- 0.2523
16259 0.194e-1 0.9891 0.505e-1 7.1475 0.158e-1 0.8608 0.563e-1 6.0074 0.2343
34919 0.138e-1 0.8833 0.381e-1 0.7351 0.122e-1 0.6747 0.423e-1 0.7468 0.2386
59423 0.104e-1 1.0790 0.280e-1 1.1612 0.883e-2 1.2142 0.311e-1 1.1566 0.2384
71625 0.957e-2 0.8624 0.252e-1 1.1242 0.808e-2 0.9448 0.281e-1 1.0799 0.2318
145943 0.688e-2 0.9285 0.190e-1 0.7999 0.614e-2 0.7727 0.211e-1 0.8119 0.2339
239707 0.524e-2 1.0931 0.143e-1 1.1299 0.455e-2 1.2072 0.159e-1 1.1324 0.2345
308913 0.473e-2 0.8144 0.125e-1 1.0789 0.401e-2 0.9918 0.139e-1 1.0422 0.2280
589989 0.345e-2 0.9701 0.958e-2 0.8212 0.309e-2 0.8085 0.106e-1 0.8366 0.2311
971111 0.264e-2 1.0785 0.725e-2 1.1193 0.230e-2 1.1819 0.805e-2 1.1201 0.2315
1280317 0.235e-2 0.8351 0.623e-2 1.0966 0.199e-2 1.0369 0.695e-2 1.0627 0.2253
2374931 0.173e-2 0.9923 0.481e-2 0.8364 0.154e-2 0.8338 0.534e-2 0.8533 0.2288
3914411 0.133e-2 1.0699 0.364e-2 1.1153 0.115e-2 1.1617 0.404e-2 1.1143 0.2291

Table 5: History of convergence and corresponding rates of convergence, Example 3 with ν = 1.0
(uniform and adaptive refinements)

Concepción (Chile), and by Dirección de Investigación de la Universidad Católica de la Sant́ısima
Concepción (Chile), through Incentivo Mensual program. All authors have contributed equally in this
article.
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entes: A posteriori error analysis of a momentum conservative Banach-spaces based
mixed-FEM for the Navier-Stokes problem

2020-25 Raimund Bürger, Julio Careaga, Stefan Diehl: A method-of-lines formulation
for a model of reactive settling in tanks with varying cross-sectional area

2020-26 Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis M. Villada:
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