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Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile

JULIO CAREAGA⇤ AND STEFAN DIEHL
Centre for Mathematical Sciences, Lund University, P.O. Box 118, S-221 00 Lund, Sweden

⇤Corresponding author: julio.careaga@math.lth.se

[Received on 13 October 2020]

Reactive settling denotes the process of sedimentation of small solid particles dispersed in a viscous fluid
with simultaneous reactions between the components that constitute the solid and liquid phases. This
process is of particular importance for the simulation and control of secondary settling tanks (SSTs) in
water resource recovery facilities (WRRFs), formerly known as wastewater treatment plants. A spatially
one-dimensional model of reactive settling in an SST is formulated by combining a mechanistic model
of sedimentation with compression with a model of biokinetic reactions. In addition, the cross-sectional
area of the tank is allowed to vary as a function of height. The final model is a system of strongly degen-
erate parabolic, nonlinear partial differential equations (PDEs) that include discontinuous coefficients to
describe the feed, underflow and overflow mechanisms, as well as singular source terms that model the
feed mechanism. A finite difference scheme for the final model is derived by first deriving a method-
of-lines formulation (discrete in space, continuous in time), and then passing to a fully discrete scheme
by a time discretization. The advantage of this formulation is its compatibility with common practice
in development of software for WRRFs. The main mathematical result is an invariant-region property,
which implies that physically relevant numerical solutions are produced. Simulations of denitrification
in SSTs in wastewater treatment illustrate the model and its discretization.

Keywords: Secondary settling tank, multi-component flow, wastewater treatment, degenerate parabolic
equation, method-of-lines formulation, finite-difference method.

2000 Math Subject Classification: 65M06, 35K57, 35Q35

1. Introduction

1.1 Scope

Reactive settling denotes the combined process of sedimentation of small solid particles, each consisting
of several components, dispersed in a viscous fluid with simultaneous reactions between the solids and
soluble components in the fluid. This process is of particular importance in secondary settling tanks
(SSTs) within the activated sludge process in water resource recovery facilities (WRRFs), formerly
known as wastewater treatment plants. The primary purpose of an SST (see Figure 1) is to allow the
biomass (essentially, bacteria) to settle out from the process effluent of a bioreactor. The overflow pro-
duced by the SST should ideally be water, while most of the sediment (activated sludge) leaves the unit
through the underflow and is recycled to the bioreactor. On the other hand, significant biokinetic reac-
tions are going on in an SST, in particular denitrification, which is the conversion of nitrate (NO3) into

c� The author 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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nitrogen (N2). An excessive production of nitrogen, however, may led to bubbles that cause biomass
particles to float and leave the SST with the effluent; this situation is highly undesirable. We referto
Metcalf & Eddy (2014) and Droste & Gear (2019) for the background of wastewater treatment. Mathe-
matical models able to capture reactive settling, that is the mechanical sedimentation process in an SST
in combination with biological reactions are urgently needed to allow for the simulation of operational
scenarios.

There are two purposes of this work. One is to extend the model of reactive settling by Bürger
et al. (2018) by including dispersion (mixing effects) and tanks with a varying cross-sectional area. The
other purpose is to advance a new numerical scheme, which is the main contribution of this work. The
scheme is easy to implement and to include in commercial simulation softwares for ordinary differential
equations (ODEs), which are frequently used for the simulation of biological reactions in WRRFs and
require method-of-lines (MOL) form for the simulation of partial differential equations (PDEs).

In contrast to Bürger et al. (2018), here the main system of PDEs is formulated in terms of the
concentrations of solid particles and soluble components as unknowns instead of using percentages. By
including a cross-sectional-area function, the model can be seen as a quasi-one-dimensional approach
that allows simulation in more realistic tanks. The governing model can be stated as the following
system of convection-diffusion-reaction equations, where z 2 R is depth and t > 0 is time:

A(z)
∂CCC
∂ t

+
∂
∂ z
�
A(z)FCCC(z, t,X)CCC

�
=

∂
∂ z

✓
A(z)g(z)∂DCCC(X)

∂ z
CCC
◆
+BCCC(CCC,SSS,z, t),

A(z)
∂SSS
∂ t

+
∂
∂ z
�
A(z)FSSS(z, t,X)SSS

�
=

∂
∂ z

✓
A(z)g(z)D ∂SSS

∂ z

◆
+BSSS(CCC,SSS,z, t),

CCC =
�
C(1), . . . ,C(kCCC)

�T
, SSS =

�
S(1), . . . ,S(kSSS)

�T
, X = X(z, t) =C(1)(z, t)+ · · ·+C(kCCC)(z, t),

(1.1)

The unknowns are the vectors of solid concentrations CCC =CCC(z, t) and of concentrations of soluble com-
ponents SSS = SSS(z, t), and X denotes the total concentration of solids. The function A = A(z) is the
(variable) cross-sectional area, and g is a characteristic function which equals one inside the vessel and
zero otherwise. The scalar functions FCCC and FSSS depend discontinuously on z and non-linearly on X and
represent portions of the solid and liquid phase velocity, respectively, in different parts of the tank. The
scalar function DCCC models sediment compressibility, and D is a diagonal matrix of diffusion coefficients
for the equations of the soluble components. The terms BCCC and BSSS involve the feed and reaction terms
for the solids and soluble components, respectively. All ingredients are specified in detail in Section 2.
The model (1.1) is supplied with a suitable initial condition; no boundary conditions are required.

The main difficulties for the mathematical and numerical treatment of (1.1) arise partly from the
discontinuous dependence of FCCC, FSSS, and the diffusion terms (via the presence of g(z)) on spatial
position z, partly from the presence of singular source terms (within BCCC and BSSS), and partly from strong
type degeneracy; the function DCCC is zero for X-values on an interval of positive length. The background
of these properties is provided in Section 2.

We present a new numerical scheme for (1.1) that handles all these difficulties, and that produces
approximate solutions that satisfy certain bounds under a convenient Courant-Friedrichs-Lewy (CFL)
condition. In particular, the scheme is positivity preserving. The numerical scheme by Bürger et al.
(2018) for an equivalent model, but with constant cross-sectional area and no dispersion effect, was
based on solving within each time step first the scalar PDE for the total solids concentration X , and
then inserting the result into the discretized PDEs for the percentages of solid and liquid components.
We denote that numerical method by Method XP and the new method presented here by Method CS,
since it computes the concentrations CCC the SSS directly. Contrary to Method XP, Method CS is compatible
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FIG. 1. Illustration of an axisymmetric secondary settling tank (SST). We assume a quasi-one-dimensional model of the sedi-
mentation tank by letting the cross-sectional area A = A(z) depend on depth z. The volumetric flows of the feed Qf, effluent Qe
and underflow Qu are shown, and a volume element of the numerical method is shown. Its centre is located at depth z j and it is
bounded above and below by circular discs of areas A j�1/2 and A j+1/2.

with the practice of commercial WRRF simulation software packages that are based on method-of-lines
(spatially discretized, continuous in time) formulations for all submodels defined in terms of spatio-
temporal PDEs. This principle of simulator design is useful, for example, when simulating a WRRF
with biological reactors coupled with sedimentation tanks, for which the entire model is then a system
of coupled ordinary differential equations (ODEs) and PDEs (Diehl & Jeppsson, 1998).

1.2 Related work

References to one-dimensional PDE models for the simulation of continuous sedimentation of solid
particles in WRRFs include Anderson & Edwards (1981); Chancelier et al. (1994); Diehl (1996); De
Clercq et al. (2003); Bürger et al. (2005); and De Clercq et al. (2008). In parallel to the PDE develop-
ment, several ad hoc simulation models have been presented, of which the one by Takács et al. (1991)
has been most widely used. That model is based on the subdivision of an SST into layers between which
numerical flows are specified. The resulting simulation model is, however, not a valid numerical scheme
for a PDE model (Bürger et al., 2012).

A key difficulty within the framework of one-dimensional PDEs is the nonlinear flux function, which
also varies discontinuously with depth due to the inlet and outlets (Diehl, 1996). Another difficulty is
a nonlinear, strongly degenerate diffusion term to account for sediment compressibility (Bürger et al.,
2005). These two publications laid the foundation for the Bürger-Diehl (BD) model (Bürger et al., 2011,
2013), which has improved realism in simulations of entire WRRFs (Torfs et al., 2015; Li & Stenstrom,
2016), but above all, given the physically correct numerical solutions with discontinuities satisfying the
entropy condition. The reliability of numerical schemes to handle all the mathematical problems of the
PDE model are discussed by Bürger et al. (2012). Extensions of the one-dimensional PDE models to
include a variable cross-sectional area were made by Chancelier et al. (1994), Diehl (1997) and Bürger
et al. (2017) (see also the references cited in these works).
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The need to model biological reactions occurring in the sedimentation tank has been addressed,
for instance, by Hamilton et al. (1992); Gernaey et al. (2006); Alex et al. (2011); Flores-Alsina et al.
(2012); Ostace et al. (2012); Guerrero et al. (2013); and Li et al. (2013). A common idea has been to
use the layered simulation model by Takács et al. (1991) and to add to each layer a system of ODEs
modelling the biological reactions. Bürger et al. (2016) employed a PDE batch settling model to simulate
denitrification in an SST. The model consists of two solid and three soluble components, where the
latter are modelled by advection-diffusion equations with a constant diffusion/dispersion coefficient for
all components. Kirim et al. (2019) added the biokinetic ASM1 model (Henze et al., 2000) to the BD
model and included a varying cross-sectional area for the simulation and comparison with real data. A
PDE model and numerical scheme for continuous settling with reactions was presented by Bürger et al.
(2018) and the differences between that and the present work is described in Section 1.1.

1.3 Outline of the paper

The remainder of this work is organized as follows. The governing model is developed in Section 2 in
the following steps. The model consists of two phases, solid and liquid, each of which in turn consists
of components. The assumptions underlying these components, and the reactions between them, are
specified in Section 2.1. Next, in Section 2.2, we outline the balance equations of the solid and liquid
components. To turn these balance equations into a solvable PDE model, we utilize in Section 2.3
various relations between phase velocities and given feed and discharge flows so that the unique velocity
that remains to be specified to close the model is the solid-liquid relative velocity. The latter is done
in Section 2.4, where we recall the expression known from available treatments of sedimentation with
compression (Bürger et al., 2005, 2012, 2013) that involves constitutive assumptions for the hindered
settling velocity and the effective solid stress. Combining all ingredients, we derive in Section 2.5
the model equations in final form, including explicit formulas of the quantities FCCC, FSSS, BCCC and BSSS
arising in (1.1). Properties of the final PDE system related to hyperbolicity and parabolicity are given
in Section 2.6. Section 3 is devoted to the description of the novel numerical scheme, starting with
the spatial discretization in Section 3.1, which requires the definition of numerical fluxes associated
with boundaries of computational cells (Section 3.2). These considerations lead to spatially discrete,
continuous in time MOL formulation that is described in Section 3.3. Based on the MOL formulation,
we describe in Section 3.4 a fully discrete scheme (Method CS), which is the main contribution of this
work. Then, in Section 3.5 we prove that under a suitable CFL condition the numerical solutions assume
values in a certain invariant region, that is, assume physically relevant values only and are in particular
non-negative. Numerical examples are presented in Section 4, where we simulate the denitrification
process carried out in the SSTs in wastewater treatment. Examples 1 and 2 (Sections 4.1 and 4.2)
present complete simulations with various changes of feed conditions to illustrate the spatio-temporal
dynamics of the reactive settling process. Examples 3 to 6, presented in Section 4.3, illustrate the effect
of various choices of the parameters describing the diffusion of soluble components. Some conclusions
are collected in Section 5.

2. The model

2.1 Assumptions

The solid phase consists of flocculated particles (biomass consisting of bacteria) that belong to kCCC dif-
ferent species. These species have the concentrations C(k), k = 1, . . . ,kCCC, which are collected in the
vector CCC. The liquid phase consists of water of concentration W and kSSS soluble components of concen-
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trations S(k), k = 1, . . . ,kSSS, which make up the vector SSS. The total concentrations of solid particles X and
liquid L are

X :=C(1) + · · ·+C(kCCC), L :=W +S(1) + · · ·+S(kSSS). (2.1)

All these concentrations depend on depth z and time t. The vectors CCC and SSS contain all components in a
bioreactor model.

We let Xmax denote the maximum concentration of solids and assume that the density of all solids is
the same rX > Xmax. The density of the liquid phase is assumed to be rL < rX , typically the density of
water, irrespectively of the concentrations of the soluble components. If f denotes the volume fraction
of the solid phase, then X = rX f and L = rL(1�f). Eliminating f one obtains the fundamental relation

L = rL � rX , r := rL/rX ,
X
rX

+
L
rL

= 1. (2.2)

The bound 0 6 X 6 Xmax implies the bound rL � rXmax 6 L 6 rL.
The flocculated particles, and hence all the solid components, are assumed to have the same phase

velocity vX , whereas the velocities of the soluble components are v(k), k = 1, . . . ,kSSS. The volume frac-
tions of the soluble components are f (k) := SSS(k)/rL, k = 1, . . . ,kSSS, and the liquid average velocity is

vL := f (1)v(1) + · · ·+f (kSSS)v(kSSS).

(Since all the liquid subphases have the same density, vL is both the volume and the mass average
velocity.) The concentrations of the feed inlet CCCf and SSSf are assumed to satisfy (see (2.1))

Xf =C(1)
f + · · ·+C(kCCC)

f , Lf =Wf +S(1)f + · · ·+S(kSSS)
f .

These concentrations and the volumetric flows Qf > Qu > 0 of the feed inlet and the underflow outlet
(see Figure 1) are assumed to be given functions of t. The effluent volumetric flow Qe will generally
depend on Qf, Qu and the unknown concentrations since the reactions may cause a volume change;
however, we assume that the tank is always filled and Qe > 0. The feed concentrations are assumed to
satisfy (2.2), i.e., Xf/rX +Lf/rL = 1.

The reaction terms for all particulate and soluble components are collected in the vectors RRRCCC(CCC,SSS)
and RRRSSS(CCC,SSS) of lengths kCCC and kSSS, respectively, which model the respective increase of bacteria and
soluble components. We assume that the water concentration W does not influence (or is influenced
by) any reaction. Without bacteria there is no growth; RRRCCC(000,SSS) = 000, and when there is no soluble
components, the bacteria cannot consume any such, however, concentrations of soluble components
may increase due to decay of bacteria; hence, we assume RRRSSS(CCC,000) > 000. If one sort of bacteria is not
present; no more such can vanish, i.e., the functional form of each component is chosen such that

R(k)
CCC (CCC,SSS)

��
C(k)=0 > 0. (2.3)

We define

R̃CCC(CCC,SSS) := R(1)
CCC (CCC,SSS)+ · · ·+R(kCCC)

CCC (CCC,SSS) and R̃SSS(CCC,SSS) := R(1)
SSS (CCC,SSS)+ · · ·+R(kSSS)

SSS (CCC,SSS).

Furthermore, it is assumed that there is no reaction in the effluent and underflow regions (which model
outflow pipes), and that the relative velocity between the solid and liquid phases

vX � vL =: vrel = vrel(X ,∂X/∂ z,z) (2.4)
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is given by a constitutive function of X and ∂X/∂ z. This function models hindered and compressive set-
tling inside the tank (see Section 2.4), whereas outside the tank, all components have the same velocity;
hence,

vrel := 0 for z 6�H and z > B.

For the relative motion of the soluble components within the liquid inside the vessel, we assume diffu-
sion of each component relative to the average liquid velocity:

�
v(k)� vL

�
S(k) =�d(k) ∂S(k)

∂ z
, k = 1, . . . ,kSSS, (2.5)

where d(k) > 0 are diffusion coefficients. Strictly speaking, several mechanisms are “lumped” into
the diffusion coefficient, namely Fickian (molecular) diffusion, as well as hydrodynamic dispersion
(“mixing”).

To be able to simulate the complex reality with the present model, we have to make some further
technical assumptions to be able to prove an invariant-region property:

RRRCCC(CCC,SSS)|X=Xmax
= 0, vrel(Xmax,∂X/∂ z,z) = 0. (2.6)

Simulations with realistic parameter values indicate, however, that the extreme concentrations when
these assumptions are in effect never or hardly ever occur. Conditions (2.6) state that when the maximum
concentration of biomass is reached (X = Xmax), the biomass cannot grow any more and its relative
velocity to the liquid phase is zero.

2.2 Balance equations

The balance law for each particulate and soluble/liquid component together with the fundamental rela-
tionships (2.1) and (2.2) gives kCCC + kSSS + 1 equations for the unknowns CCC, SSS and W ; see (2.7a)–(2.7c).
These equations contain also the unknown velocities vX and v(k), k = 1, . . . ,kSSS. The model is closed with
the constitutive relations (2.4) and (2.5). Hence, the model equations are the following for z 2 R:

∂
∂ t
�
A(z)CCC

�
+

∂
∂ z
�
A(z)vXCCC

�
= d (z)CCCfQf + g(z)A(z)RRRCCC, (2.7a)

∂
∂ t
�
A(z)SSS

�
+

∂
∂ z
�
A(z)DvSSS

�
= d (z)SSSfQf + g(z)A(z)RRRSSS, (2.7b)

W = rL � rX �
�
S(1) + · · ·+S(kSSS)

�
, (2.7c)

vX � vL = vrel(X ,∂X/∂ z,z), where vL = v(1) + · · ·+ v(kSSS), (2.7d)

DvSSS� vLSSS =�g(z)D ∂SSS
∂ z

, (2.7e)

where d (z) is the delta function, g(z) = c{�H<z<B}, where cI is the indicator function which equals
one if and only if I is true, vrel a constitutive function that is specified in Section 2.4, and the matrices
Dv := diag(v(1), . . . ,v(kSSS)) and D := diag(d(1), . . . ,d(kSSS)) come from the vectorized version of (2.5).

2.3 Relations between phase, bulk and relative velocities

The next step is to express the solid and liquid velocities vX and vL in terms of known variables and
eliminate Dv. To this end, we first write the average bulk velocity

q := fvX +(1�f)vL (2.8)
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as a function of the other variables. Summing all equations of (2.7a), doing the same for (2.7b), and
using (2.1), X = rX f and L = rL(1�f) (see Section 2.1) we obtain

∂
∂ t
�
A(z)rX f

�
+

∂
∂ z
�
A(z)rX fvX

�
= d (z)XfQf + g(z)A(z)R̃CCC,

∂
∂ t
�
A(z)rL(1�f)

�
+

∂
∂ z
�
A(z)rL(1�f)vL

�
= d (z)LfQf + g(z)A(z)R̃SSS.

Dividing the respective equation by rX and rL and then adding them yields

∂
∂ z

(A(z)q) = d (z)Qf + g(z)A(z)R, where R :=
R̃CCC

rX
+

R̃SSS

rL
. (2.9)

Integrating (2.9) from z and B and using (2.8), we get

A(z)q(z, t) = A(B)q(B, t)�Qf(t)c{z60}�Qreac(z, t;CCC,SSS),

where

Qreac(z, t;CCC,SSS) :=
Z B

z
g(x )A(x )R

�
CCC(x , t),SSS(x , t)

�
dx ,

and A(B)q(B, t) = A(B)vL(B, t) = Qu(t), since vrel = 0 for z = B. Hence, q is expressed in terms of the
other given or unknown variables by

A(z)q(z, t) = Qu(t)�Qf(t)c{z60}�Qreac(z, t;CCC,SSS)

(however; see the remark below). Consequently, a general definition of the effluent volumetric flow is

Qe(t;CCC,SSS) :=�A(�H)q(�H, t) = Qf(t)�Qu(t)+Qreac(�H, t;CCC,SSS).

Introducing v := (1�f)vrel, one gets from (2.4) and (2.8):

vX = q+(1�f)vrel = q+ v, (2.10)

vL = q�fvrel = q�
f

1�f
v. (2.11)

The next step is to express v in terms of the other variables by constitutive assumptions.

REMARK 2.1 The dependence of Qreac on the functions CCC and SSS via an integral means that the depen-
dence is not local. This is problematic for the analysis of numerical schemes, which otherwise are
three-point schemes. In the application to wastewater treatment, the term Qreac is negligible (see Bürger
et al. (2018)). In the proof of an invariant-region property of the numerical solution, we have to set
Qreac := 0, and we assume this is the case from now on. Then q is defined via

A(z)q(z, t) = Qu(t)�Qf(t)c{z60}. (2.12)
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2.4 Constitutive functions for hindered and compressive settling

We assume that the relative velocity is given by vrel = v/(1�f) = v/(1�X/rx), where v is given by

v = v(X ,∂X/∂ z,z) = g(z)vhs(X)

✓
1�

rX s 0
e(X)

XgDr
∂X
∂ z

◆
.

Here, vhs is the hindered-settling velocity function, se the effective solids stress, Dr := rX �rL, and g
is the acceleration of gravity. Constitutive functions are needed for vhs and se. We require that vhs is
decreasing,

vhs(Xmax) = 0 (2.13)

and that the derivative s 0
e(X) of the effective solid stress function se satisfies

se(X)

(
= 0 for X 6 Xc,
> 0 for X > Xc,

(2.14)

where Xc is a critical concentration above which the particles touch each other and form a network that
can bear a certain stress.

2.5 Model equations in final form

With the functions

dCCC(X) :=
vhs(X)rX s 0

e(X)

XgDr
, DCCC(X) :=

Z X

Xc
dCCC(s)ds,

we can write (2.10) as

vX := vX (X ,∂X/∂ z,z, t) := q(z, t)+ g(z)
✓

vhs(X)�
∂DCCC(X)

∂ z

◆
. (2.15)

Notice that the properties (2.13) and (2.14) imply that

dCCC(X)

(
> 0 for Xc < X < Xmax,
= 0 for X 6 Xc and X = Xmax,

(2.16)

so the first PDE in (1.1) is strongly degenerate since it degenerates into a first-order PDE on an X-interval
of positive length (namely, on [0,Xc]). On the other hand (2.7e) and (2.11) imply

DvSSS = vLSSS� g(z)D ∂SSS
∂ z

=

✓
q�

X/rX

1�X/rX

◆
(vX �q)SSS� g(z)D ∂SSS

∂ z
=

rX q� vX X
rX �X

SSS� g(z)D ∂SSS
∂ z

.

Hence, the total mass fluxes of the balance equations (2.7a)–(2.7b) can be written as

FCCC := FCCC(CCC,X ,∂X/∂ z,z, t) := A(z)vX (X ,∂X/∂ z,z, t)CCC, (2.17)

FSSS := FSSS(SSS,X ,∂X/∂ z,z, t) := A(z)
✓

rX q� vX X
rX �X

SSS� g(z)D ∂SSS
∂ z

◆
. (2.18)
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Collecting the available results, we see that the model equations (2.7) can be written as (1.1) for

FCCC(z, t,X) = q(z, t)+ g(z)vhs(X), FSSS(z, t,X) =
rX q(z, t)� (q(z, t)+ g(z)vhs(X))X

rX �X
,

BCCC(CCC,SSS,z, t) = d (z)CCCfQf + g(z)A(z)RRRCCC, BSSS(CCC,SSS,z, t) = d (z)SSSfQf + g(z)A(z)RRRSSS,

(2.19)

supplied with Equation (2.7c) to calculate the water concentration W whenever required; note that W is
not present in (1.1), (2.19). For the development of the numerical method, however, it will be useful to
rewrite the governing PDEs in terms of the total fluxes (2.17) and (2.18). We then obtain

∂ (A(z)CCC)

∂ t
+

∂FCCC

∂ z
= d (z)CCCfQf + g(z)A(z)RRRCCC, (2.20a)

∂ (A(z)SSS)
∂ t

+
∂FSSS

∂ z
= d (z)SSSfQf + g(z)A(z)RRRSSS for z 2 R and t > 0. (2.20b)

No boundary condition is needed. The initial values are the concentrations of solid and liquid compo-
nents:

CCC0(z) =
�
C(1),0(z),C(2),0(z), . . . ,C(kCCC),0(z)

�T
, SSS0(z) =

�
S(1),0(z),S(2),0(z), . . . ,S(kSSS),0(z)

�T
, z 2 R.

Clearly, the corresponding initial total solids and water concentrations are obtained by

X0(z) =C(1),0(z)+ · · ·+C(kCCC),0(z), W 0(z) = rL � rX0(z)�
�
S(i),0(z)+ · · ·+S(kSSS),0(z)

�
.

We define the solution vector UUU(z, t) := (CCC(z, t),SSS(z, t),W (z, t)) and UUU0(z) := (CCC0(z),SSS0(z),W 0(z)). It
is presupposed that

UUU0(z) 2 W for all z 2 R, (2.21)

where we define the set

W :=
�

UUU = (CCC,SSS,W ) 2 RkCCC+kSSS+1 :

0 6C(1), . . . ,C(kCCC) 6 Xmax, 0 6C(1) + · · ·+C(kCCC) 6 Xmax, S(1), . . . ,S(kSSS) > 0
 
.

(2.22)

It will be shown that under the condition (2.21) the numerical solution assumes values in W .

2.6 Properties of the PDE system

If one assumes that X 6 Xc (cf. (2.16)) and in addition sets D= 000, then the system (1.1), or equivalently
(2.20), reduces to a first-order system of conservation laws away from source terms, and FCCC and FSSS
depend only on X (and z and t, which we do not write out now). This system is recovered if all right-hand
sides in (1.1) are set to zero. As the following proposition implies, this system is non-strictly hyperbolic,
which means that its solution for a Riemann initial datum is involved. This property is established by
examining the eigenvalues of the (kCCC + kSSS)⇥ (kCCC + kSSS) Jacobian matrix of the conservation law of the
conserved variable A(z)(CCCT,SSST)T, which is

JJJ :=

"
JJJ11 000kCCC⇥kSSS

JJJ21 JJJ22

#
,
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with the sub-matrices (in obvious notation)

JJJ11 :=
∂ (FCCC(z, t,X)CCC)

∂CCC
, JJJ21 :=

∂ (FSSS(z, t,X)SSS)
∂CCC

, JJJ22 :=
∂ (FSSS(z, t,X)SSS)

∂SSS
,

and where the kCCC ⇥kSSS block of zeros 000kCCC⇥kSSS appears since FCCC(z, t,X)CCC does not depend on SSS. Note that
the eigenvalues of (1.1) do not depend on A(z). In what follows, we fix z and t and write FCCC(X) and
Fsss(X) instead of FCCC(z, t,X) and Fsss(z, t,X).

PROPOSITION 2.1 The Jacobian matrix of the flux vector of the system (1.1) has two real eigenvalues:

l1 = q+ g f 0(X), where f (X) := vhs(X)X ,

l2 = FSSS(X) = q�
g(z) f (X)

rX �X
.

Proof. The Jacobian matrix of the flux vector is

JJJ =

"
FCCC(X)IIIkCCC +F

0

CCC(X)CCC111T
kCCC

000kCCC⇥kCCC

F
0

SSS(X)SSS111T
kSSS

FSSS(X)IIIkSSS

#
,

where IIIkCCC is the identity matrix of size kCCC⇥kCCC and 111kCCC is a column vector of length kCCC full of ones, so that
CCC111T

kCCC
represents a tensor product. The Jacobian is block lower triangular with eigenvalues those of JJJ11

and JJJ22. The latter matrix is diagonal with the single real eigenvalue l2 = FSSS of multiplicity kSSS, while
JJJ11 is the sum of a diagonal matrix and a rank-one matrix. Any eigenvector ZZZ to JJJ11 with eigenvalue l1
should satisfy

JJJ11ZZZ = l1ZZZ , FCCC(X)ZZZ +F
0

CCC(X)111T
kCCC

ZZZCCC = l1ZZZ.

Generally, F 0

CCC(X)111T
kCCC

ZZZCCC 6= 0, and then ZZZ has to be parallel to CCC, say ZZZ = aCCC, a 6= 0. Since 111T
kCCC

CCC = X ,
the corresponding eigenvalue (with multiplicity kCCC) is

l1 = FCCC(X)+F
0

CCC(X)X =
d

dX
�
FCCC(X)X

�
=

d
dX

�
(q+ gvhs(X))X

�
.

We have thus found all the eigenvalues. (If F 0

CCC(X) = 0, then JJJ11 is diagonal with the single real eigen-
value FCCC(X) = FCCC(X)+F

0

CCC(X)X = l1. Similarly, if CCC = 000, then X = 0 and JJJ11 is diagonal with the
single real eigenvalue FCCC(0) = FCCC(0)+F

0

CCC(0)0 = l1|X=0.) ⇤
To see that the eigenvalues are not distinct, we may calculate, for instance,

l1|X=0 = q+ g f 0(0)> q = l2|X=0 ,

l1|X=Xmax
= q+ g f 0(Xmax)6 q = l2|X=Xmax

.

Thus, there is some X 2 (0,Xmax] for which l1 = l2.

REMARK 2.2 Finally, let us briefly comment on the diffusive parts of the PDEs in (1.1). In order not to
complicate the argument, let us assume that A = const., so we may divide the PDEs by A. Furthermore,
assume that g(z) = 1. In this case the diffusion term in the first equation can be written as

∂
∂ z

✓
∂DCCC(X)

∂ z
CCC
◆
=

∂
∂ z

✓
dCCC(X)

∂X
∂ z

CCC
◆
=

∂
∂ z

✓
dCCC(X)

✓
111T

kCCC

∂CCC
∂ z

◆
CCC
◆
=

∂
∂ z

✓
DDD(CCC)

∂CCC
∂ z

◆
(2.23)
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with the kCCC ⇥ kCCC diffusion matrix DDD(CCC) = dCCC(X)CCC111T
kCCC

= dCCC
�
111T

kCCC
CCC
�
CCC111T

kCCC
. Assume now that Xc < X <

Xmax. Then DDD(CCC) is a rank-one matrix whose only nonzero eigenvalue equals

µ = µ(CCC) = dCCC
�
111T

kCCC
CCC
�
111T

kCCC
CCC = dCCC(X)X ,

with CCC (or a multiple of it) being the corresponding eigenvector. Since µ(CCC) > 0, the matrix DDD(CCC)
is positive semidefinite, and therefore the corresponding system of PDEs is parabolic in the sense of
Petrovsky (or simply parabolic) (Friedman, 1964; Ladyženskaja et al., 1968; Èı̆del’man, 1969; Taylor,
1997). Furthermore, if CCC is a vector such that C(i) > 0 for i = 1, . . . ,kC, then DDD(CCC) is a full matrix
with no zero entries, so in principle the model involves cross diffusion (that is, the diffusive flux of any
species C(i) does not only depend on ∂C(i)/∂ z, but on ∂C(m)/∂ z for all m = 1, . . . ,kCCC).

For the particular case kCCC = 1 and kSSS = 0 and if no reactions take place (RRRCCC and RRRSSS are set to
zero), the model reduces to the well-known mechanistic Bürger-Diehl (BD) model of sedimentation
with compression. In this case we may identify C :=C(1) =CCC and X . Calculations similar to (2.23) then
reveal that the nonlinear diffusion term in the first PDE of (1.1) satisfies

∂DCCC(X)

∂ z
X = dCCC

∂X
∂ z

X =
vhs(X)rX s 0

e(X)

XgDr
∂X
∂ z

X =
vhs(X)rX s 0

e(X)

gDr
∂X
∂ z

,

which is the diffusion term accounting for sediment compressibility within the BD model (Bürger et al.,
2012, 2013; Bürger et al., 2018). The agreement of the convection term (FSSS(z, t,X)X , in this case) and
of the terms describing the feed source with those of the BD model is easily verified. Furthermore, in
this case the water concentration is W = rL � rX (see (2.7c)).

3. Numerical scheme

3.1 Spatial discretization

We divide the tank into N internal computational cells, or layers, so that each layer has the depth Dz =
(B+H)/N. The location of layer j is such that its midpoint has the coordinate z j, hence the layer is
the interval [z j�1/2,z j+1/2]. The top layer 1 in the clarification zone is thus the interval [z1/2,z3/2] =
[�H,�H +Dz], and the bottom location is z = zN+1/2 = B. We define jf := dH/Dze, which is equal
to the smallest integer larger than or equal to H/Dz. Then the feed inlet (z = 0) is located in layer jf
(henceforth, the “feed layer”). We add a layer to both the top and bottom to extract the correct effluent
and underflow concentrations, respectively.

The average values of the unknowns in each layer j are denoted by CCC j =CCC j(t), SSS j = SSS j(t), and
Wj =Wj(t). The unknown output functions at the effluent and underflow are defined as CCCe(t) :=CCC0(t),
CCCu(t) :=CCCN+1(t), etc. Two outer variables appear in the formulas for the numerical scheme; however,
their values are irrelevant, so we may set CCC�1 := 000, CCCN+2 := 000, and analogously for other variables. The
computational domain is given by N + 2 intervals and one needs to define numerical fluxes for N + 3
layer boundaries.

To approximate the cross-sectional area and the corresponding cell volumes we define

A j+1/2 :=
1

Dz

Z z j

z j�1
A(x )dx and A j :=

1
Dz

Z z j+1/2

z j�1/2

A(x )dx .

In case A is continuous one can use A j+1/2 := A(z j+1/2) as an alternative.
The unknwons are approximated by piecewise constant functions in each layer, i.e.,

C(k)(z, t) =C(k)
j for z 2 (z j�1/2,z j+1/2].
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We let g j+1/2 := g(z j+1/2) and define the approximate volume average velocity q j+1/2 := q(z j+1/2, t) in
accordance with (2.12) with Qreac ⌘ 0:

A j+1/2q j+1/2 := Qu(t)� g f
j+1/2Qf(t), where g f

j+1/2 := c{ j< jf}.

3.2 Numerical fluxes

The flux FCCC given by (2.17) is discretized over the cell boundary z = z j+1/2 in an upwind or downwind
fashion depending on the sign of the total velocity vX . The flux FSSS in (2.18) is handled in a similar
way depending on the sign of rX q� vX X . The diffusion term is discretized in a standard way. We
start by approximating the velocity vX , which contains three terms. The first term is straightforward;
q j+1/2(t) := q(z j+1/2, t), and for the third term we use central finite differences, i.e.

JCCC
j+1/2 = JCCC

j+1/2(Xj,Xj+1) :=
DCCC(Xj+1)�DCCC(Xj)

Dz
.

For the numerical implementation of DCCC(Xj), we refer to Bürger et al. (2011) (see Algorithm 2 and 3
therein). For the second term in (2.15), vhs(Xj+1)⇡ vhs(X(z j+1/2, t)) is chosen with the following moti-
vation. When q = 0, DCCC = 0 and there is only one component of CCC, the flux (2.17) is FCCC = A(z)vX X =
A(z)vhs(X)X and a working numerical flux that gives a monotone numerical scheme is A(z)vhs(Xj+1)Xj;
see Bürger et al. (2008). Thus, the velocity (2.15) between cells j and j+1 is approximated by

vX
j+1/2 = vX

j+1/2(Xj,Xj+1, t) := q j+1/2 + g j+1/2
�
vhs(Xj+1)� JCCC

j+1/2
�
.

In the case q = 0, DCCC = 0 and there is only one component of CCC, our choice of upwind total flux would
be A(z)FX

j+1/2 where

FX
j+1/2 := FX

j+1/2(Xj,Xj+1, t) := (vX X) j+1/2 := vX ,�
j+1/2Xj+1 + vX ,+

j+1/2Xj, (3.1)

where we use the notation a� := min{a,0} and a+ := max{a,0}. A key point in obtaining a working
numerical scheme is that this flux is used in the approximation of the flux FSSS in (2.18). Summarizing,
we approximate the fluxes of (2.20) by

FCCC
j+1/2 := A j+1/2

�
vX ,�

j+1/2CCC j+1 + vX ,+
j+1/2CCC j

�
,

FSSS
j+1/2 := A j+1/2

✓ (rX q j+1/2 �FX
j+1/2)

�SSS j+1

rX �Xj+1
+

(rX q j+1/2 �FX
j+1/2)

+SSS j

rX �Xj
� g j+1/2D

SSS j+1 �SSS j

Dz

◆
.

Note that the numerical flux vector FCCC
j+1/2 is a function of (CCC j,CCC j+1, t) while FSSS

j+1/2 depends on
(SSS j,SSS j+1,Xj,Xj+1, t). Moreover, the term FX

j+1/2 in (3.1) results from summing up the components of
the vector FCCC

j+1/2.

3.3 Method of lines (MOL) formulation

We introduce the notation [DF ] j := F j+1/2 �F j�1/2 for the flux difference associated with cell j and
let d j, jf denote the Kronecker delta, which is 1 if j = jf and zero otherwise. The conservation of mass for
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each layer, corresponding to (2.20a)–(2.20b), gives the following MOL equations (for j = 0, . . . ,N+1):

dCCC j

dt
=�

[DFCCC] j

A jDz
+d j, jf

CCCfQf

A jDz
+ g jRRRC, j,

dSSS j

dt
=�

[DFSSS] j

A jDz
+d j, jf

SSSfQf

A jDz
+ g jRRRS, j,

(3.2)

The approximate water concentrations can be calculated after the entire simulation via

Wj = rL � rXj �
�
S(1)j + · · ·+S(kSSS)

j
�
.

3.4 Explicit fully discrete scheme

Let tn, n = 0,1, . . . ,T , denote the discrete time points and D t the time step that should satisfy a certain
CFL condition depending on the chosen time-integration method. For explicit schemes, the right-hand
sides of equations (3.2) are evaluated at time tn. The value of a variable at time tn is denoted by an upper
index, e.g., CCCn

j . The main restriction of the time step (for small Dz) is due to the second-order spatial
derivatives in the compression term (Bürger et al., 2005, 2012). For explicit Euler, the time derivatives
in (3.2) are approximated by

dCCC j

dt
(tn)⇡

CCCn+1
j �CCCn

j

D t
.

We set

Qn
f :=

1
D t

Z tn+1

tn
Qf(t)dt

and similarly for the time-dependent reaction terms. Then we obtain the explicit scheme

CCCn+1
j =CCCn

j +
D t

A jDz
�
�[DFCCC]nj +d j, jfCCC

n
f Qn

f + g jA jDzRRRn
CCC, j
�
, (3.3a)

SSSn+1
j = SSSn

j +
D t

A jDz
�
�[DFSSS]nj +d j, jfSSS

n
f Qn

f + g jA jDzRRRn
SSS, j
�
. (3.3b)

To establish some boundedness properties of Method CS, we introduce the CFL condition

D t max{b1,b2}6 1, (CFL)

where the b -values depend on Dz, Dz2 and the constitutive functions by

b1 :=
kQfk•,T

AminDz
+

M1

Dz
�
kv0hsk•Xmax + vhs(0)

�
+

M2

Dz2

�
kdCCCk•Xmax +DCCC(Xmax)

�
+max{MCCC,M̃CCC},

b2 :=
rX +Xmax

rX �Xmax

kQfk•,T

AminDz
+

XmaxM1

rX �Xmax

kvhsk•
Dz

+
XmaxM2

rX �Xmax

DCCC(Xmax)

Dz2 + d̃
M2

Dz2 +MSSS,

and the constants are given by

MCCC := sup
UUU2W ,

16k6kCCC

�����
∂R(k)

CCC

∂C(k)

����� , M̃CCC := sup
UUU2W ,

16k6kCCC

�����
∂ R̃(k)

CCC

∂C(k)

����� , MSSS := sup
UUU2W ,

16k6kSSS

�����
∂R(k)

SSS

∂S(k)

����� ,
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kxk• := max
06X6Xmax

|x (X)|, kQk•,T := max
06t6T

Qf(t), d̃ = max{d(k) : k = 1, . . . ,kSSS},

where x represents vhs,v0hs or dCCC, and

M1 := max
j=1,...,N

⇢
A j+1/2

A j
,

A j�1/2

A j

�
, M2 := max

j=1,...,N

⇢
A j+1/2 +A j�1/2

A j

�
.

It is interesting to compare the eigenvalues of the flux Jacobian computed in Proposition 2.1 and the
maximum speed given by condition (CFL) in the case all diffusion and source terms are zero and if the
area-dependent constant M1 = 1 (corresponding to A(z)⌘ constant):

max |l1|= max
��q+ g(z)

�
v0hs(X)X + vhs(X)

���6 kQfk•,T

Amin
+kv0hsk•Xmax + vhs(0)6 b1Dz,

max |l2|= max
����q�

g(z) f (X)

rX �X

����6
kQfk•,T

Amin
+

kvhsk•Xmax

rX �Xmax
< b2Dz.

Note that the eigenvalues do not depend on A(z), whereas the CFL condition for a numerical scheme
may via M1. (We need not have that the signal speeds of the PDE are bounded by the CFL speed; a
finite difference scheme for the linear heat equation has bounded CFL speed, but the PDE has infinity
signal speed.)

3.5 Properties of the explicit numerical scheme

The aim is to show that the numerical solution stays in the set W , see (2.22).

THEOREM 3.1 If UUUn
j := (CCCn

j ,SSS
n
j ,W n

j ) 2 W for all j, then under the condition (CFL), the scheme (3.3)
implies UUUn+1

j 2 W for all j.

We show this by proving that each scalar right-hand side of (2.20) is a monotone function of the
concentrations in the cells j�1, j and j+1. In the proofs below we use the estimate

��JCCC
j+1/2

��=
g j+1/2

Dz

����
Z Xj+1

Xj
dCCC(s)ds

����6
1

Dz

Z Xmax

Xc
dCCC(s)ds =

DCCC(Xmax)

Dz
. (3.4)

It is convenient to define

Qn
j+1/2 := A j+1/2qn

j+1/2 =

(
Qn

u �Qn
f if j < jf,

Qn
u if j > jf.

LEMMA 3.1 If (CCCn
j ,SSS

n
j ,W n

j ) 2 W for all j and (CFL) holds, then 0 6CCCn+1
j 6 Xmax for all j.

Proof. We denote by H
(k)
CCC (CCCn

j�1,CCC
n
j ,CCC

n
j+1) the right-hand side of component k 2 {1, . . . ,kCCC} of (3.3a).

We show that H(k)
CCC is a monotone function of each of its arguments by proving that

∂H(k)
CCC

∂C(`),n
j�1

> 0,
∂H(k)

CCC

∂C(`),n
j

> 0,
∂H(k)

CCC

∂C(`),n
j+1

> 0, `= 1, . . . ,kCCC. (3.5)
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We start with the most complicated case ` = k. The case ` 6= k will only have fewer terms in the
estimations that will follow. To avoid too heavy notation, we write Cn

j instead of C(k),n
j , etc. With this

convention, we first write out the following expression (of component k) of (3.3a):

[DFCCC]nj = DFn
C, j+1/2 �DFn

C, j�1/2

= A j+1/2
�
vX ,n,�

j+1/2Cn
j+1 + vX ,n,+

j+1/2Cn
j
�
�A j�1/2

�
vX ,n,�

j�1/2Cn
j + vX ,n,+

j�1/2Cn
j�1

�

= A j+1/2vX ,n,�
j+1/2Cn

j+1 +
�
A j+1/2vX ,n,+

j+1/2 �A j�1/2vX ,n,�
j�1/2

�
Cn

j �A j�1/2vX ,n,+
j�1/2Cn

j�1.

We use the shorter notation

mn
CCC, j+1/2 := c

{vX ,n
j+1/260}(Ag) j+1/2, pn

CCC, j+1/2 := c
{vX ,n

j+1/2>0}(Ag) j+1/2, (3.6)

so that mn
CCC, j+1/2 + pn

CCC, j+1/2 = (Ag) j+1/2. We calculate

A j+1/2
∂vX ,n,�

j+1/2

∂Cn
j

= A j+1/2
∂

∂Cn
j

min
�

vX ,n
j+1/2,0

 
= A j+1/2c

{vX ,n
j+1/260}

∂vX ,n
j+1/2

∂Cn
j

= mn
CCC, j+1/2

✓
�

∂JCCC
j+1/2

∂Xn
j

◆
= mn

CCC, j+1/2
D0

CCC(X
n
j )

Dz
= mn

CCC, j+1/2
dCCC(Xn

j )

Dz
> 0,

A j+1/2
∂vX ,n,�

j+1/2

∂Cn
j+1

= c
{vX ,n

j+1/260}A j+1/2g j+1/2

✓
v0hs(X

n
j+1)�

∂JCCC
j+1/2

∂Xn
j+1

◆

= mn
CCC, j+1/2

✓
v0hs(X

n
j+1)�

dCCC(Xn
j+1)

Dz

◆
6 0.

Similarly, we get

A j+1/2
∂vX ,n,+

j+1/2

∂Cn
j

= A j+1/2
∂

∂Cn
j

max
�

vX ,n
j+1/2,0

 
= pn

CCC, j+1/2
dCCC(Xn

j )

Dz
> 0,

A j+1/2
∂vX ,n,+

j+1/2

∂Cn
j+1

= pn
CCC, j+1/2

✓
v0hs(X

n
j+1)�

dCCC(Xn
j+1)

Dz

◆
6 0.

Now we differentiate HCCC to obtain

∂HCCC

∂Cn
j�1

=�
D t

A jDz
∂ [DFCCC]nj

∂Cn
j�1

=�
A j�1/2D t

A jDz

✓
�

∂vX ,n,�
j�1/2

∂Cn
j�1

Cn
j �

∂vX ,n,+
j�1/2

∂Cn
j�1

Cn
j�1 � vX ,n,+

j�1/2

◆
> 0,

∂HCCC

∂Cn
j+1

=�
D t

A jDz
∂ [DFCCC]nj

∂Cn
j+1

=�
A j+1/2D t

A jDz

✓∂vX ,n,�
j+1/2

∂Cn
j+1

Cn
j+1 + vX ,n,�

j+1/2 +
∂vX ,n,+

j+1/2

∂Cn
j+1

Cn
j

◆
> 0.

With the help of the signs of the derivatives above, we estimate

∂ [DFCCC]nj
∂Cn

j
= A j+1/2

∂vX ,n,�
j+1/2

∂Cn
j

Cn
j+1 +

✓
A j+1/2

∂vX ,n,+
j+1/2

∂Cn
j

�A j�1/2
∂vX ,n,�

j�1/2

∂Cn
j

◆
Cn

j
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+A j+1/2vX ,n,+
j+1/2 �A j�1/2vX ,n,�

j�1/2 �A j�1/2
∂vX ,n,+

j�1/2

∂Cn
j

Cn
j�1

6
✓

A j+1/2
∂vX ,n,�

j+1/2

∂Cn
j

+A j+1/2
∂vX ,n,+

j+1/2

∂Cn
j

�A j�1/2
∂vX ,n,�

j�1/2

∂Cn
j

�A j�1/2
∂vX ,n,+

j�1/2

∂Cn
j

◆
Xmax

+A j+1/2vX ,n,+
j+1/2 �A j�1/2vX ,n,�

j�1/2

=: T1Xmax +T2,

where we estimate

T1 = (Ag) j+1/2
dCCC(Xn

j )

Dz
� (Ag) j�1/2

✓
v0hs(X

n
j )�

dCCC(Xn
j )

Dz

◆

6 A j

✓
M1kv0hsk• +M2

dCCC(Xn
j )

Dz

◆
6 A j

✓
M1kv0hsk• +M2

kdCCCk•
Dz

◆
.

For the term T2, we use that �a� = (�a)+ and (a+ b)+ 6 a+ + b+, so that �(a+ b)� 6 �a� � b�,
and (3.4) to obtain

T2 = A j+1/2vX ,n,+
j+1/2 �A j�1/2vX ,n,�

j�1/2

6 A j+1/2
�
qn,+

j+1/2 + g j+1/2
�
vhs(Xn

j+1)+
�
� JC,n

j+1/2

�+��
�A j�1/2

�
qn,�

j�1/2 +(g) j�1/2
�
�JC,n

j�1/2

���

6 Qn,+
j+1/2 �Qn,�

j�1/2 +(Ag) j+1/2
�
vhs(0)+

�
� JC,n

j+1/2

�+�
+(Ag) j�1/2JC,n,+

j�1/2

6 Qn
u +Qn

e +A j+1/2vhs(0)+(A j+1/2 +A j�1/2)
DCCC(Xmax)

Dz

6 A j

✓
kQfk•,T

Amin
+M1vhs(0)+M2

DCCC(Xmax)

Dz

◆
.

The condition (CFL) now implies

∂HCCC

∂Cn
j
= 1�

D t
A jDz

∂ [DFCCC]nj
∂Cn

j
+D t g j

∂Rn
CCC, j

∂Cn
j

> 1�D t
✓✓

M1kv0hsk•
Dz

+M2
kdCCCk•

Dz2

◆
Xmax

+
kQfk•,T

AminDz
+

M1vhs(0)
Dz

+M2
DCCC(Xmax)

Dz2 +MCCC

◆
> 0.

The derivatives (3.5) in the case ` 6= k are obtained as above; however, with T2 ⌘ 0. For a given vec-
tor CCCn

j with Xn
j =C(1),n

j + · · ·+C(kCCC),n
j 6 Xmax we let C̄CCn

j denote any vector that satisfies C(k),n
j 6 C̄(k),n

j ,
k = 1, . . . ,kCCC, and C̄(1),n

j + · · ·+C̄(kCCC),n
j = Xmax. The monotonicity in each variable of H

(k)
CCC and the

assumptions (2.3) and (2.6) are now used to obtain, for j 6= jf,

0 =H
(k)
CCC (000,000,000)6Cn+1

j =H
(k)
CCC
�
CCCn

j�1,CCC
n
j ,CCC

n
j+1

�
6H

(k)
CCC
�
C̄CCn

j�1,C̄CC
n
j ,C̄CC

n
j+1

�
= Xmax,

and for the case when j = jf, we have

0 6 D t
A jfDz

CfQf =H
(k)
CCC (000,000,000)6C(k),n+1

j =H
(k)
CCC
�
CCCn

jf�1,CCC
n
jf ,CCC

n
jf+1

�
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6H
(k)
CCC
�
C̄CCn

j�1,C̄CC
n
j ,C̄CC

n
j+1

�
= Xmax �

D t
A jfDz

�
QuXmax � (Qu �Qf)Xmax �CfQf

�

= Xmax �
D t

A jfDz
Qf(Xmax �Cf)6 Xmax,

which proves the bound of C(k),n
j . ⇤

LEMMA 3.2 If (CCCn
j ,SSS

n
j ,W n

j ) 2 W for all j and (CFL) holds, then 0 6 Xn+1
j 6 Xmax for all j.

Proof. Summing all components of (3.3a) yields the update formula

Xn+1
j = Xn

j +
D t

A jDz
�
�[DY ]nj +d j, jfX

n
f Qn

f + g jA jDzR̃n
CCC, j
�

(3.7)

or the total solids concentration X , where

Y n
j := A j+1/2vX ,�

j+1/2Xj+1 +A j+1/2vX ,+
j+1/2Xj.

Since (3.7) is similar to one component of (3.3a), this lemma can be proved by following the proof of
Lemma 3.1 with C(k),n

j replaced by Xn
j , R(k),n

CCC, j replaced by R̃(k),n
CCC, j , and hence, MCCC replaced by M̃CCC. ⇤

LEMMA 3.3 If (CCCn
j ,SSS

n
j ,W n

j ) 2 W for all j and (CFL) holds, then

S(1),n+1
j > 0, . . . ,S(kSSS),n+1

j > 0 for all j.

Proof. Let us denote by H
(k)
SSS (SSSn

j�1,SSS
n
j ,SSS

n
j+1) component k 2 {1, . . . ,kSSS} of the right-hand side of (3.3b).

To show that H(k)
SSS is a monotone function of each scalar argument we prove

∂H(k)
SSS

∂S(`),ni

> 0, i = j�1, j, j+1, `= 1, . . . ,kSSS.

We start with ` = k, do not write out the superscript (k) and define mn
SSS, j+1/2 and pn

SSS, j+1/2 in analogy
with (3.6). We introduce X̃n

j := rX �Xn
j > 0 and the flux

FL,n
j+1/2(Xj,Xj+1) := rX q j+1/2 �FX ,n

j+1/2.

Component k of (3.3b) contains the expression

[DFSSS]nj = A j+1/2FL,n,�
j+1/2

Sn
j+1

X̃n
j+1

+
�
A j+1/2FL,n,+

j+1/2 �A j�1/2FL,n,�
j�1/2

� Sn
j

X̃n
j
�A j�1/2FL,n,+

j�1/2

Sn
j�1

X̃n
j�1

�d
✓
(Ag) j+1/2

Sn
j+1 �Sn

j

Dz
� (Ag) j�1/2

Sn
j �Sn

j�1

Dz

◆
.

Since FL,n
j+1/2 does not depend on SSS, we obtain

∂HSSS

∂Sn
j�1

=�
D t

A jDz
∂ [DFSSS]nj

∂Sn
j�1

=
A j�1/2D t

A jDz

FL,n,+
j�1/2

X̃n
j�1

+d
D t(Ag) j�1/2

A jDz2 > 0,

∂HSSS

∂Sn
j+1

=�
D t

A jDz
∂ [DFSSS]nj

∂Sn
j+1

=�
A j+1/2D t

A jDz

FL,n,�
j+1/2

X̃n
j+1

+d
D t(Ag) j+1/2

A jDz2 > 0.
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Now we estimate the following, using (a+b)+ 6 a++b+, �(a+b)� 6 (�a)+ +(�b)+:

∂ [DFSSS]nj
∂Sn

j
= A j+1/2

FL,n,+
j+1/2

X̃n
j

�A j�1/2
FL,n,�

j�1/2

X̃n
j

+d
(Ag) j+1/2 +(Ag) j�1/2

Dz

6
A j+1/2rX

X̃n
j

qn,+
j+1/2 +

A j�1/2rX

X̃n
j

(�qn
j�1/2)

+ +
A j+1/2Xn

j+1

X̃n
j

�
(�qn

j+1/2)
+ + g j+1/2JC,n,+

j+1/2

�

+
A j�1/2Xn

j

X̃n
j

�
qn,+

j�1/2 + g j�1/2(vhs(Xn
j ))

+ + g j�1/2(�JC,n
j+1/2)

+
�
+dA j

M2

Dz

6 rX

rX �Xmax

�
Qn,+

j+1/2 +(�Qn
j�1/2)

+
�
+

Xmax

rX �Xmax

�
(�Qn

j+1/2)
+ +Qn,+

j�1/2

�

+A j

✓
XmaxM1

rX �Xmax
kvhsk• +

XmaxM2

rX �Xmax

DCCC(Xmax)

Dz
+d

M2

Dz

◆

6 A j

✓
rX +Xmax

rX �Xmax

kQfk•,T

Amin
+

XmaxM1

rX �Xmax
kvhsk• +

XmaxM2

rX �Xmax

DCCC(Xmax)

Dz
+d

M2

Dz

◆

The condition (CFL) now implies

∂HSSS

∂Sn
j
= 1�

D t
A jDz

∂ [DFSSS]nj
∂Sn

j
+D t g j

∂Rn
S, j

∂Sn
j

> 1�D t
✓
(rX +Xmax)kQfk•,T

(rX �Xmax)AminDz
+

XmaxM1kvhsk•
(rX �Xmax)Dz

+
XmaxM2DCCC(Xmax)

(rX �Xmax)Dz2 + d̃
M2

Dz2 +MSSS

◆
> 0,

where d̃ := max{d(1), . . . ,d(kSSS)}. Sine H
(k)
SSS is monotone in each variable, it follows for j 6= jf that

0 =H
(k)
SSS (000,000,000)6H

(k)
SSS
�
SSSn

j�1,SSS
n
j ,SSS

n
j+1

�
= Sn+1

j ,

and for the case j = jf, we have

0 6 D t
A jf Dz

SfQf =H
(k)
SSS (000,000,000)6H

(k)
SSS
�
SSSn

jf�1,SSS
n
jf ,SSS

n
jf+1

�
= Sn+1

jf .

⇤

4. Numerical examples

We use the same model for denitrification as Bürger et al. (2016) with two solid components: ordinary
heterotrophic organisms XOHO and undegradable organics XU; and three soluble components: nitrate
SNO3, readily biodegradable substrate SS and nitrogen SN2, then the simulated variables are

CCC = (XOHO,XU)
T (kCCC = 2), SSS = (SNO3 ,SS,SN2)

T (kSSS = 3).

The reaction terms for the solid and liquid phases used for all numerical examples are given by

RRRCCC = XOHOZ(X)

✓
µ(SSS)�b

fPb

◆
, RRRSSS = XOHO

0

@
�Ȳ µ(SSS)

(1� fp)b�µ(SSS)/Y
Ȳ µ(SSS)

1

A , Ȳ =
1�Y
2.86Y
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where Y = 0.67 is a yield factor, b = 6.94 ⇥ 10�6 s�1 is the decay rate of heterotrophic organisms
and fP = 0.2 is the portion of these that decays to undegradable organics. The continuous func-
tion Z(X) should be equal to one for most concentration and satisfies Z(Xmax) = 0, so that the technical
assumption (2.3) is satisfied. The function Z(X) should not influence the condition (CFL) and we have
used Xmax = 30kg/m3, a value our simulated solutions never reaches, despite we have simulated with
Z(X)⌘ 1. Moreover,

µ(SSS) = µmax
SNO3

KNO3 +SNO3

SS

KS +SS

is the specific growth rate function with µmax = 5.56⇥ 10�5 s�1, and saturation parameters KNO3 =
5⇥10�4 kg/m3 and KS = 0.02kg/m3. Adding the components of the reaction terms we get

R̃CCC = R(1)
CCC +R(2)

CCC =
�
µ(SSS)� (1� fP)b

�
XOHOZ(X), R̃SSS = R(1)

SSS +R(2)
SSS +R(3)

SSS = R(2)
SSS .

The constitutive functions used in all simulations are

vhs(X) :=
v0

1+(X/X̄)h , se(X) = ac{X>Xc}(X �Xc),

with the constants v0 = 1.76⇥10�3 m/s, X̄ = 3.87kg/m3, h = 3.58, Xc = 5kg/m3 and a = 0.2m2/s2.
Other parameters are rX = 1050kg/m3, rL = 998kg/m3 and g = 9.81m/s2. The feed concentrations
of soluble components in all examples are SSSf = (6.00⇥10�3,9.00⇥10�4,0)T kg/m3, which are chosen
constant with respect to time.

4.1 Example 1

In this example, we compare the new Method CS with Method XP of Bürger et al. (2018). Since the
latter method only handles a constant cross-sectional area, we choose A= 400m2. The depth parameters
are H = 1m and B = 3m. The bulk flows are given by

Qf(t) =

8
><

>:

450m3/h if 0h 6 t < 2h,
130m3/h if 2h 6 t < 4h,
65m3/h if t > 4h,

Qu(t) =

8
>>><

>>>:

30m3/h if 0h 6 t < 2h,
100m3/h if 2h 6 t < 4h,
35m3/h if 4h 6 t < 7h,
50m3/h if t > 7h,

and Qe according to Qe(t) = Qf(t)�Qu(t). The solids feed concentrations are taken as

CCCf(t) = Xf(t)
✓

5/7
2/7

◆
, where Xf(t) =

8
>>><

>>>:

1.0kg/m3 if 0h 6 t < 2h,
0.5kg/m3 if 2h 6 t < 4h,
3.0kg/m3 if 4h 6 t < 7h,
4.0kg/m3 if t > 7h,

and the initial conditions have been chosen as

CCC0(z) = X0(z)
✓

5/7
2/7

◆
, where X0(z) =

(
0m if z < 0.5m,
3.8z+1.6m if z > 0.5m,
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FIG. 2. Example 1: Reference solution with N = 4096 and T = 20h. The solution has been projected onto a coarse grid.

SSS0(z) =

(
(0.006,0,0)T if z < 0.5m,
(0,0.12(z�0.5),0.006)T if z > 0.5m.

Here and in the next examples, the initial condition for all variables is taken constant outside the vessel.
The value at the respective boundary is extended, i.e., we set CCC0(z) =CCC0(�H) for z 6�H and CCC0(z) =
CCC0(B) for z > B and analogously for SSS0.

We have computed a reference solution with N = Nref := 4096 for a simulated time of T = 9h with
Method CS, see Figure 2. The approximate numerical error erel

N (t) of an approximate solution (with
respect to the reference solution) at a simulated time point t and the estimated rate of convergence q(t)
for two N-values are defined as follows:

erel
N (t) :=

kCCC

Â
k=1

kC(k)
N �C(k)

Nref
(·, t)kL1(�H,B)

kC(k)
Nref

(·, t)kL1(�H,B)

+
kSSS

Â
k=1

kS(k)N �S(k)Nref
(·, t)kL1(�H,B)

kS(k)Nref
(·, t)kL1(�H,B)

, (4.1)
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Table 1. Example 1: Errors erel
N (4.1), approximate order of convergence q (4.2) and CPU times at simulated times 3,6 and 9

hours. The errors have been computed with the reference solution obtained by Method CS with N = 4096.

Method CS Method XP
t = 3h

N erel
N (t) q(t) CPU [s] erel

N (t) q(t) CPU [s]
16 0.7239 — 0.2047 0.5868 — 0.2577
32 0.4042 0.8407 0.3675 0.3413 0.7819 0.4687
64 0.2471 0.7100 0.6834 0.2086 0.7101 0.8867
128 0.1487 0.7326 1.3370 0.1271 0.7154 1.7144
256 0.0868 0.7763 2.6357 0.0747 0.7664 3.3940
512 0.0481 0.8514 6.6872 0.0415 0.8462 6.9696

t = 6h
16 1.1278 — 0.3939 0.8704 — 0.5137
32 0.6411 0.8149 0.7164 0.5116 0.7668 0.9316
64 0.3840 0.7396 1.3411 0.3074 0.7347 1.7577
128 0.2304 0.7369 2.6078 0.1843 0.7382 3.3995
256 0.1319 0.8049 5.1365 0.1052 0.8087 6.6752
512 0.0710 0.8934 12.9595 0.0563 0.9015 13.5693

t = 9h
16 0.8363 — 0.5929 0.6182 — 0.7721
32 0.4675 0.8390 1.0663 0.3599 0.7803 1.3779
64 0.2735 0.7738 2.0404 0.2056 0.8078 2.6182
128 0.1535 0.8331 3.9169 0.1131 0.8626 5.0563
256 0.0829 0.8895 7.7370 0.0593 0.9308 10.0362
512 0.0425 0.9624 19.5205 0.0289 1.0350 20.4181

q(t) :=�
log(erel

N1
(t)/erel

N2
(t))

log(N1/N2)
, (4.2)

Table 1 shows these estimations in this example. As expected, both methods have order of convergence
close to one. The errors produced by Method XP are only slightly smaller than those of Method CS and
the CPU times are about the same for both methods. In Figure 3 (first row), we compare some numerical
solutions for XOHO and SN2 at a fixed time point and for different N. In the second row of Figure 3, we
visualize the convergence of numerical solutions to the reference solution, all with Method CS.

4.2 Example 2

Here and in Examples 3 to 5, we use a non-constant function A = A(z) that describes the axisymmetric,
non-cylindrical tank in Figure 4 (cf. vessel V7 in Bürger et al. (2017)), where H = 1m and B = 4m. In
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FIG. 3. Example 1: First row: comparison of XOHO (left) and SN2 (right) obtained with Methods XP and CS at simulated time
T = 9h with N = 128. Second row: convergence of the Method CS at T = 9h. The reference solutions are shown in solid black.

this example we use different feed and underflow bulk flows than in the previous example:

Qf(t) =

8
><

>:

100m3/h if 0h 6 t < 4h,
150m3/h if 4h 6 t < 6h,
250m3/h if t > 6h,

Qu(t) =

8
>>><

>>>:

10m3/h if 0h 6 t < 4h,
100m3/h if 4h 6 t < 6h,
50m3/h if 6h 6 t < 9h,
5m3/h if t > 9h.

The solids feed concentrations are given by

CCCf(t) = Xf(t)
✓

5/7
2/7

◆
, where Xf(t) =

8
>>><

>>>:

4.0kg/m3 if 0h 6 t < 2h,
2.0kg/m3 if 2h 6 t < 4h,
5.0kg/m3 if 4h 6 t < 7h,
6.0kg/m3 if t > 7h.

The initial condition for the solids is chosen as the step function

CCC0(z) = c{z>0.5}

✓
20/7
8/7

◆
,
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FIG. 4. Schematic of half of the vertical cross-sectional area of the axisymmetric vessel used in Examples 2 to 5. The dash-dotted
line represents the axis of rotation.

and for the soluble components we use the same initial condition as in Example 1. As the simulation in
Figure 5 shows, the numerical scheme handles the discontinuous cross-sectional area function without
any problem.

4.3 Examples 3–5

In this group of examples we explore the inclusion of the last ingredient of our model and numerical
scheme, namely the diffusion terms in the equation for SSS. We use the same cross-sectional area, bulk
flows and feed concentrations for the solid and liquid phases as in Example 2, also the same initial
condition for CCC. For the soluble components we consider

S0
NO3

(z) = 0.006c{z60.5}, S0
S(z) = 0.12(z�0.5)c{z>0.5}, S0

N2
=

8
><

>:

0 if z < 0.5m,
0.003 if 0.5m 6 z < 1.5m,
0.006 if z > 1.5m.

For Example 3 we set all diffusion coefficients to zero, in Example 4 we let d(1) = d(2) = 0m2/s and
d(3) = 3⇥ 10�6 m2/s, and for Example 5 we have d(1) = 10�5 m2/s, d(2) = 5⇥ 10�5 m2/s and d(3) =
3⇥10�6 m2/s.

Figure 6 shows the SNO3 and SN2 components for Examples 3 (first row) to 5 (third row), where
we can observe the effect of different diffusion coefficients. As expected, the inclusion of diffusion
in the third component SN2 (second row, Ex. 4) smoothes out the solution without diffusion (first row,
Ex. 3). Nevertheless, the influence of this diffusion on the other components is not very accentuated.
The inclusion of diffusion in all soluble components (third row, Ex. 5) shows the effect of cross diffusion
with a wave created near the discontinuity at z = 0.5m in the solution of SN2.

5. Conclusions

The main novelty and advantage of the new numerical method (Method CS) is its formulation in method-
of-lines (MOL) form. This property makes it possible to implement Method CS within commercial
simulators together with other submodels of WRRFs, which are mostly posed in ODE form. In fact,
Method CS only contains easily implemented explicit formulas, in contrast to previously published
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FIG. 5. Example 2: Numerical simulation with N = 100 until T = 20h.

methods (Bürger et al., 2016; Bürger et al., 2018) that involve the Godunov numerical flux, which on the
other hand is expected to yield slightly more accurate solutions. Other advantages of the present model
in comparison with previous efforts (Bürger et al., 2016; Bürger et al., 2018) include the incorporation
of diffusion or dispersion of each soluble component within the liquid and the variation of the cross-
sectional area A(z) with depth. The cross-sectional area may even vary discontinuously, which may be
useful for the appropriate description of the feed inlet. Thus, the model may handle realistic rotationally
symmetrical shapes of SSTs.

A reformulation of the equivalent (for constant A and without diffusion) model of Bürger et al.
(2018) made it possible to derive the MOL equations (3.2). For the fully discrete scheme (3.3), we have
proved an invariant-region property under the condition (CFL); see Theorem 3.1. This means positivity
of all concentrations and boundedness above of the solids concentrations; however, we have not been
able to bound the substrate concentrations from above.
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FIG. 6. Examples 3–5: The soluble components SNO3 (first column) and SN2 (second column) obtained with N = 100 until T = 3h.
First row: no diffusion; second row: diffusion only in SN2 ; third row: diffusion in all three soluble components.

With respect to the numerical results, we mention that Example 1 demonstrates that there is no
substantial difference in performance between Method CS and the previous Method XP (Bürger et al.,
2018), which are both of first order; see Table 1. This holds for discretizations that are normally used
(roughly, Dz > 0.01m, which for a tank of height 4 m corresponds to N 6 400 cells). The similar CPU
times in Table 1 can be explained by the plot of the respective CFL conditions for the two methods;
see Figure 7. For small Dz that figure reveals the expected parabolic behaviour of D t as a function of
Dz. For Dz ⇡ 0.005m (N ⇡ 800), Method XP is the faster one. The reason for the almost constant
values (D t ⇡ 0.2s) for large Dz is the reaction terms contribution in the CFL conditions. Example 2
shows that the numerical scheme can handle non-constant cross-sectional area functions even having
discontinuities. Example 3 exhibits the versatility of soluble diffusion effects, which includes cross
diffusion between the soluble components.

Future research related to the present model should be conducted in at least three directions. One
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FIG. 7. Graphs of the time step D t as function of Dz given by the respective CFL conditions of Method XP (dashed green) and
Method CS (solid blue). For larger Dz, the graphs are approximately constant.

of them is related to the well-posedness (existence, uniqueness, and continuous dependence on data
of solution) of the underlying mathematical model. Specifically, while the well-posedness of general
hyperbolic systems and in particular strongly degenerate parabolic systems is essentially unavailable,
an effort should be made to analyze whether the well-posedness of the present model can possibly be
reduced to that of a single degenerate parabolic equation for X plus first-order transport equation for the
solid concentrations, akin to the formulation that led to Method XP (see the Appendix). In particular,
it remains to elaborate an analytical counterpart, based on PDE theory, of the invariant region principle
(Lemmas 3.1 to 3.3) established herein for discrete solutions.

With respect to numerical schemes, we mention that Method CS has been developed under the aspect
of ease of implementation, preference of an MOL formulation, and satisfaction of a (partial) invariant-
region principle. The options of improving the method to make it computationally more efficient have
not yet been explored. As a monotone scheme including a first-order time discretization, the method is
only first-order accurate and could be upgraded to formal second or higher order accuracy by standard
techniques such as monotone upstream centered (MUSCL-type) variable extrapolation or high-order
weighted essentially non-oscillatory (WENO) reconstructions in combination, for instance, with strong
stability-preserving (SSP) Runge-Kutta time schemes for time integration. All these techniques are
treated, for instance, by Hesthaven (2018). Another potential improvement could be to treat certain
contributions, for example the discretizations of diffusive terms, in the MOL formulation (3.2) implicit
in time, in the spirit of implicit-explicit (IMEX) schemes for time-dependent PDE (see, e.g., Boscarino
et al. (2015) and references cited in that work). However, such partitioned schemes are not compatible
with the preferred MOL form. In addition, while these schemes are devised to achieve a less restrictive
CFL condition (allowing larger time steps), a real gain in CPU is achieved only for such problems where
the strongest time step restriction comes from the discretization of diffusive terms. However, Figure 7
indicates that for the present model discretized by Methods CS or XP, such gains are likely to accrue for
very fine discretizations only.

Finally, we comment that it would be very desirable to compare the present model with experimen-
tal evidence and to calibrate the material specific functions, such as vhs and se, properly to make the
model usable for prediction, control and simulation of real-world scenarios. However, while data for the
non-reactive model of sedimentation with compression are available (see, e.g., De Clercq et al. (2003);
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De Clercq et al. (2008)) and the reaction kinetics come from standardized models in wastewater treat-
ment (Metcalf & Eddy, 2014), information that combines both ingredients is scarce but includes recent
work by Kirim et al. (2019).
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Appendix. Method XP

For easy of reference, we here summarize Method XP developed by Bürger et al. (2018). We use the
same notation as in Section 3 when there is no ambiguity, but also functions and constants defined in
Section 2. Let j =�1, . . . ,N +1, Dz and the nodes z j, z j+1/2 taken as in Section 3.

The total concentrations are denoted by Xj and L j in both methods, while in Method XP we define
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the percentage vectors PPPX , j 2RkCCC and PPPL, j 2RkSSS of the subcomponents of the solid and liquid phases in
the cell j, respectively. Note that here the dimension of PPPL, j is kSSS, which means that we do not include
the percentage of water. The concentrations of the subcomponents are then computed by CCC j = PPPX , jXj
and SSS j = PPPL, jL j.

Method XP uses Godunov’s numerical flux of the unimodal flux function f (X) := Xvhs(X):

G j(Xj,Xj+1) := min
�

f (min{Xj, X̂}), f (max{Xj+1, X̂})
 
,

and the function

D(X) :=
rX

gDr

Z X

Xc
vhs(s)s 0

e(s)ds.

For the appoximation of the cell boundary fluxes, we define

F̃X , j+1/2 := q+j+1/2Xj +q�j+1/2Xj+1 + g j+1/2G j(Xj,Xj+1/2)� g j+1/2
�
D(Xj+1)�D(Xj)

�
/Dz,

F̃L, j+1/2 := rLq j+1/2 � rF̃X , j+1/2,

(PPPEF̃E) j+1/2 := F̃+
E, j+1/2PPPE, j + F̃�

E, j+1/2PPPE, j+1, E 2 {X ,L}.

With

Y n
X , j := PPPn

X , jX
n
j +

D t
Dz

�
�[D(PPPn

X F̃n
X )] j +d j, jfCCC

n
f qn

f
�
+D t g jRRRn

CCC, j,

Y n
L, j := PPPn

L, jL
n
j +

D t
Dz

�
�[D(PPPn

LF̃n
L )] j +d j, jfSSS

n
f qn

f
�
+D t g jRRRn

SSS, j,

the marching formulas are given by

Xn+1
j = Xn

j +
D t
Dz

�
�[D F̃n

X ] j +d j, jf X
n
f qn

f
�
+D tg jR̃n

C, j,

PPPn+1
X , j =

(
PPPn

X , j if Xn+1
j = 0,

Y n
X , j/Xn+1

j if Xn+1
j > 0,

Ln+1
j = rL � rXn+1

j ,

PPPn+1
L, j =Y n

L, j/Ln+1
j .

The CFL condition is given by

D t
✓
kqk•
Dz

+max{bX ,bPPPX ,bPPPL}

◆
6 1,

where

bX :=
k f 0k•

Dz
+

kD0
k•

Dz2 + M̃CCC + rM̃SSS, bPPPX := bX � (M̃CCC + rM̃SSS)+MCCC,

bPPPL :=
✓
k fk•

Dz
+

D(Xmax)

Dz2

◆
/(rX �Xmax)+MCCC, M̃SSS := sup

U 2W
16k6kSSS

�����
∂ R̃(k)

CCC

∂S(k)

����� .

The norm and constants presented here are defined in Subsection 3.4.
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bral: Banach spaces-based analysis of a fully-mixed finite element method for the
steady-state model of fluidized beds

2020-24 Jessika Camaño, Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fu-
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


