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Abstract: The propagation of a forest fire can be described by a convection-diffusion-reaction problem
in two space dimensions, where the unknowns are the local temperature and the portion of fuel
consumed as functions of spatial position and time. This model can be solved numerically in an
efficient way by a linearly implicit-explicit IMEX) method to discretize the convection and nonlinear
diffusion terms combined with a Strang-type operator splitting to handle the reaction term. This
method is applied to several variants of the model with variable, nonlinear diffusion functions. In
addition the effect of spatial heterogeneity as described by a variable topography is studied. The
variability of topography influences the local velocity and direction of wind. It is demonstrated how
this variability affects the direction and speed of propagation of the wildfire and the location and
size of area of fuel consumed. The possibility to solve the base model efficiently is utilized for the
computation of so-called risk maps. Here the risk associated with a given position in a sub-area of
the computational domain in quantified by the rapidity of consumption of a given amount of fuel by
a fire starting in that position.

Keywords: Forest fire model; numerical solution; convection-diffusion-reaction problem;
implicit-explicit time integration; weighted essentially non-oscillatory reconstruction; nonlinear
diffusion function; topography; risk map

1. Introduction

It is the purpose of this contribution to apply a recently developed efficient numerical method
[1] for the solution of a wildland fire model [2] to simulate the propagation of a wildfire in various
spatially heterogeneous environments. In particular we demonstrate the use of the method for the
computation of so-called risk maps that are based on solving the model under systematic variations of
the initial focus of wildfire. The governing model is the system of convection-diffusion-reaction partial
differential equations (PDEs)

0 0
SV (wlx Hu) = V- (Kw)Vu) + flw,0,x), 57 =g(w0), (1)
where t is time, x € Q) is the spatial variable where the domain (O C R2 represents the forest in

which the fire may propagate, and u = u(x,t) and v = v(x,t) are the scalar unknowns. Here u is
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the non-dimensionalized temperature and v the non-dimensionalized mass fraction of solid fuel.
Moreover, K = K(u) is a given diffusion coefficient, and w is an advection velocity that represents
wind speed. The functions f(u, v, x) and g(u, v) are the reactive part of the model. (These ingredients
will be specified further below.) The complete wildfire model is described by the system (1) along with
zero-flux boundary conditions

(uw — K(u)Vu) -n =0, (x,t) € 9Q x (0, +00), )
where 7 is the unit normal vector to d(), and the initial conditions
u(x,0) = up(x), ov(x,0) =vp(x), x€Q. ®)

The simulation of a wildfire by numerical solution of the initial-boundary value problem (1)-(3)
is a challenge due to the presence of a diffusion term and stiff reaction terms. As a consequence
of this property, explicit finite difference schemes are usually associated with a stability condition
(CFL condition) that enforces very small time steps for moderate to fine spatial discretizations. This
restriction can be avoided by implicit-explicit (IMEX) time discretizations that were introduced for the
present wildfire model in our previous paper [1]. These methods impose a less restrictive limitation
of the time step than explicit methods. This is achieved by carefully distinguishing between stiff and
non-stiff occurrence of the vector of unknowns in the spatially discretized equations, and choosing
the time discretization of the respective terms in a corresponding either implicit or explicit fashion.
However, IMEX methods are more general than semi-implicit methods and are based on interlacing
evaluations of the stages of particular explicit and implicit Runge-Kutta (RK) schemes [3]. We refer to
[4-9] for applications of IMEX-RK schemes in various contexts.

The paper [1] also includes a detailed description of the governing wildfire model due to Asensio
and Ferragut [2]; further references to this model and its variants include [10-13]. It is also the basis of
the spectral algorithm advanced by San Martin and Torres [14,15], but the particular nature of that
numerical method is applicable to a constant diffusion coefficient only. An alternative approach to the
description of wildfires through partial differential equations, and their numerical solution by explicit
methods is provided in [16,17].

We herein employ a fifth-order weighted essentially non-oscillatory (WENO) finite-difference
discretization [18-20] of convective terms on Cartesian grids that can also be regarded as a second-order
fully conservative finite-volume discretization on these grids. Our preference for this technique with
respect to others, such as finite volume schemes with flux limiters (see [18,21,22] for these and many
other alternative schemes) stems from our familiarity with it. In this work, discontinuous solutions
may arise due to degenerate diffusion, as well as sharp gradients, that are dealt with in a robust
manner by the WENO reconstructions.

The remainder of the paper is organized as follows. In Section 2 the governing mathematical model
is summarized. We only introduce the model in its final, dimensionless form. Detailed derivations
of the wildfire model and its ingredients are provided in [1,2,10]. Next, in Section 3 we outline
the numerical method. Numerical results are presented in Section 4. Specifically, after introducing
preliminaries in Section 4.1, we simulate in Section 4.2 four scenarios (Scenarios 1.1 to 1.4) with different
definitions of K(u). Then, in Section 4.3 we fix the diffusion coefficient K(u) and evaluate the influence
of the topography of the terrain that affects the wind velocity w through its gradient. To this end we
simulate Scenarios 2.1 to 2.4 that differ in the topography of the terrain, in particular the steepness
of mountains. Then, based on these topographies, we proceed in Section 4.4 to the computation of
risk maps, where the specific risk associated with a point or small patch of the computational domain
is the smallness of the time needed to burn a determined fixed amount of fuel (here measured as a
percentage of the fuel initially available in (3) by a wildfire having its initial focus at that position.
Some conclusions are collected in Section 5.
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2. Summary of the Mathematical Model

We here state the model ingredients in final form, based on the assumption that the dimensional
rate r of the chemical reaction of fuel and oxidants into products is given by the Arrhenius equation
r = Aexp(—Ea/(RU)), where A is a constant, Ex denotes the activation energy, R is the universal
gas constant, and U is absolute temperature (values of parameters are specified in Section 4.1). If a
reference ambient temperature U, = U and the non-dimensional inverse of the activation energy
¢ = RUw / Ep are given, then the non-dimensional temperature is # = (U — U )/ (¢Uw ). Furthermore,
time t and the spatial coordinates x and y within x = (x,y) are understood as dimensionless
variables. Here the original dimensional quantities are non-dimensionalized by the time scale
to = (e/(greactA)) exp(1/€), where greact is @ non-dimensional reaction heat, and the length scale
lp = (tok/(0C))'/?, where k is thermal conductivity, C is specific heat, and p is the density of the fuel.

Next, we assume that the wind velocity w is given by

w(x,t) = wo(x, t)+ VT (x), 4)

where the vector field wq(x, t) is a given wind velocity that may depend on spatial position and time
(but is considered constant in our numerical experiments), and 7 (x) is the topography of the domain
[14,15]. This choice differs from that of [1], where the terrain was assumed flat, and allows us to include
spatial heterogeneity.

Furthermore, we assume that spatial propagation of heat occurs through radiation (as described
through the Stefan-Boltzmann law) as well as through natural convection. Then the diffusion function
K(u) is given by

K(u) = x(14eu)® +1, ®)

where k = 406U2, / k. Here ¢ is the Stefan-Boltzmann constant and ¢ is the length of the optical path
for radiation through the substance. (The particular functional form (5) is the one derived from first
principles in [1,2,10]. However, for illustrative purposes and since our numerical methods is able to
handle a wide range of nonlinear and even degenerate diffusion coefficients, we will also consider
alternative algebraic expressions, see Section 4.2.) The reaction term f(u, v, x) is given by

flu,v,x) =0vl(u) —au, {(u):= c(u)exp(1 —rsu) (6)

Here the function ¢(u) indicates the phase change between the endothermic (solid) and the exothermic
(gaseous) phase,

c(u) = {1 1t 2 ttpes )

0 ifu < up,

where uy, is a given non-dimensional phase change temperature, and a denotes a natural convection
coefficient. Finally, the function g(u, v) that accounts for fuel consumption takes the form

E0

8(u,0) = ———{(u). ®)

freact

3. Numerical Method

We assume (for simplicity) a quadratic domain Q = [0, L]?> and denote by u = u(x,t) and
v = v(x,t) the solution of (1). We define a Cartesian grid with nodes x; = (x,-,y]-), i,j=1,...,M,
with x; = y; = (i — 1/2)h, h = L/ M, and we define the index vector i = (i,j) € M := {1,..., M}2.
The unit vectors e; = (1,0) and e; = (0, 1) are used to refer to neighboring grid points, for instance
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Xite, = (Xit1, yj) and Xy, = (x4, y]‘+1). We define u as a solution computed at an instant ¢ in the
grid points, where u;(t) = u(x;,t), and analogous notation is used for v. For simplicity we denote
K; = K(u;). We may then approximate (1), (5)—(8) in semi-discrete form (that is, in discrete in space
but continuous in time form) by the system of ordinary differential equations (ODEs)

du/dt =C(u) + D(uw)u — Au+ol(u), do/dt = —(&/qreact)0l(11). 9)

Here the terms C(u) and D(u)u represent the spatial discretizations of the convective and diffusive
terms arising in the first PDE in (1). Their entries are given by C(u) = (C(u);)iepm, D(u)u =
((D(#)u)i)icm, where

2
1, A
Clu)i = - 1:21 H(fz+§el - 17%61)’
Z 1
(D(wyu), =) AL ((Ki + Ki—¢, ) ti—e, — (Ki—¢; + 2K 4 Kipe, )uti + (Ki 4 Kipe, ) hite,),
=1
where fl +le is the numerical flux corresponding to the fifth-order WENO spatial discretization of the

convective term V - (wu) [25].
To summarize the strategy to convert (9) into a fully discrete method, let us consider first the ODE
system that results from (1), (5)—(8) by omitting heat transport and diffusion terms, namely

du/dt =ovf(u), dov/dt = —(¢/greact)vq(1t). (10)

We discretize (10) implicitly in time for v and explicitly for u. The resulting scheme can be written as

n
W= AR (o ot — v .
g( ) 1+ At(e/Qreact)g(un)

(11)

In order to evaluate (11) in each iteration step, we first compute the value of "1 then this value is
used to compute u" 1. Now, we associate with (11) the solution operator §»; defined by

lpAt(un/ vn) — (un+1, vn-&-l)'
The remaining part of the system (9), namely the system of ordinary differential equations
du/dt = C(u) +D(u)u — Au, (12)

is discretized by a linearly implicit IMEX-RK method. Full technical details of this procedure are
provided in [1], and are similar to treatments of related convection-diffusion problems [4-7]. To explain
the main idea, let us recall that in principle Runge-Kutta (RK) ODE solvers could be applied to solve
(9) numerically. For instance, strong stability preserving (SSP) explicit RK schemes are a popular class
of time integrators associated with a favorable stability constraint on the time step At [4-8,23-25].
Alternatively, once could employ implicit-explicit Runge-Kutta (IMEX-RK) methods (see [23-25]), for
which only the diffusion term is treated implicitly. In this case the stability condition on At is less
restrictive than for explicit discretizations, but a large system of nonlinear algebraic equations must
be solved in each time step. This shortcoming of IMEX-RK methods is avoided by the methodology
proposed in [4,5] that is based on linearly implicit-explicit RK schemes, and which is applied here to
the discretization of (1). The idea is to distinguish in the terms arising in (9) between stiff and non-stiff
dependence on the solution vectors # and v. One then chooses the time discretization by an implicit
and an explicit RK scheme for the terms involving stiff and non-stiff dependence, respectively. In the
product D(u)u, the dependence on u within D(u) is considered non-stiff, while that of the factor u is
considered stiff. On the other hand, in the product v{(u), the term {(u) is considered non-stiff, while
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the term v is considered stiff. Based on this distinction, the resulting linearly implicit IMEX-RK method
for (12) is defined by a pair of RK schemes, namely an explicit one (ERK scheme) and a diagonally
implicit one (DIRK scheme) that handle the non-stiff and stiff dependencies, respectively, and one
alternates between evaluations of the stages of the ERK scheme and solving linear systems to to
evaluate those of DIRK scheme. The details of this procedure are outlined in [1], and we employ here
the same coefficients, namely the IMEX-RK scheme H-LDIRK3(2,2,2) defined by a pair of particular
two-stage ERK and DIRK schemes [4,6]. The resulting discretization of (12) over a time step of length At
can be written as

(PAt(unr vn) — (un+1’ U”),

where #"1 is the approximation of (12) by the IMEX-RK method. Then the complete Strang splitting
method (cf. [21,28]) to solve (9) is formulated as

(w1, o) = PYat/2 © Par O Paryo(u”,v").

Once again we refer to [1] for details on the numerical method.

4. Numerical Results

4.1. Preliminaries

The values of parameters used in all examples are the universal gas constant R =
1.987207 cal/ (K mol), an ambient temperature of U, = 303K, an activation energy Ep =
20kcal/mol = 83.68 k] /mol which yields ¢ = 0.02980905 ~ 0.03, and A = 10°s71 [26]. The mean
magnitudes of other constants, for the numerical examples in [2], and which we adopt for our numerical
experiments, are

p=100kgm=3, C=1kkg 'K}, k=1Wm 'K (13)

Furthermore, Asensio and Ferragut [2] choose the heat of combustion H in such a way that one can
assume Greact = 1. Utilizing the parameters (13), we then get

to = % exp(1/0.03) = 8986.8s, Iy = (0.089868 m?)'/2 = 0.2998 m
(see the formulas in Section 2). In the numerical examples we keep /1 constant and small, such
that « = 1073. The inverse of the conductivity coefficient is chosen as ¥ = 0.1, and we choose
non-dimensional wind velocities in a different way in each example.
At the moment we do not have access to the specific value of Upc. However, we may estimate the
maximal temperature umay that is attainable. To this end, we examine the ODE system (10), this means

du/dt = —(greact/€)dov/dt.

On the other hand, the second equation in (10) implies that dv/dt < 0, while v(t) > 0if v(0) > 0.
Thus we conclude that

u(t) = _(qreact/s)v(t) + (Qreact/s)v(o) + M(O) < (Qreact/?«)v(o) + M(O) =: Umax-

For instance, assume that at some point in the spatial domain we impose the initial temperature
such that #(0) = 30, which corresponds to U = (1 + 30¢)Us = 1.9Us = 570K. This assumption
implies that umax = (1/¢€) + 30 = 63.3, or equivalently, a maximum temperature (in absolute value)
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Figure 1. Scenarios 1.1 to 1.4: diffusion coefficients K(u).
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Figure 2. Scenarios 1.1 to 1.4: three-dimensional plots of simulated temperature and two-dimensional
plots of simulated burnt fuel, at simulated time T = 12. The red and blue parts correspond to areas
with g = 0.9 and vy = 0, respectively. The small white square indicates the location of the initial fire
focus. The percentages represent the portion of burnt fuel of the total fuel initially available in (2.

of Umax = (1 + elmax)Ueo = 870K. In light of this calculation we will choose either upe = 0 or
0 <upe < 1(0) < Umax, where 1u(0) is the dimensionless temperature at the point where the fire starts.

In all numerical examples we employ the method introduced as S-LIMEX in [1] and assume a
spatial domain Q = [0, L]? with L = 200. The spatial discretization is chosen as Ax = Ay = 1, so that
the computational domain () is subdivided into 200 x 200 cells.

4.2. Scenarios 1.1 to 1.4: Numerical Experiments with Various Diffusion Coefficients

In this group of scenarios we explore the influence of the dynamics of the combustion model. To
this end we fix the initial distribution of temperature and that of fuel, and assume that the terrain is
flat and homogeneous, but vary the diffusion function K(u) to illustrate the effect of different model
assumptions. We assume that the initial distribution of fuel is constant, as well as that the topography
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Figure 3. Topographies for 7 (x,y) given by (15) with h; = hy = 9 and (left) x; = 0, y; = 150,
1 = 10000, xo = 150, y» = 150, 2 = 300 (topography 7; for Scenario 2.2), (middle) x; = 150, y; = 50,
¥1 = 1000, x, = 50, yo = 150, 7 = 1000 (topography 7, for Scenario 2.3), (right) x; = 150, y; = 75,
r1 = 3000, x, = 50, y» = 150, 72 = 2000 (topography 73 for Scenario 2.4), shown in each case as
three-dimensional plots (top) and as contour maps (bottom).

is flat. Specifically, the initial datum for temperature corresponds to an initial focus on a small square
subdomain, i.e., we set

21 for (x,y) € [34,46]%,
u fr—
0 0 elsewhere

along with
vo(x,y) =09 forall (x,y) € Q.

With these initial data we simulate a base case and three variants of it. The base case, Scenario 1.1,
is based on using the same remaining parameters and model functions as in [1], namely K(u) defined
by (5) with x = 0.1 and & = 0.035, f(u, v, x) given by (6) with c(u) defined through (7) with up. = 20
and a = 1073, and g(u, v) given by (8) with greact = 1.

We are interested in comparing results with those obtained for alternative definitions of the
diffusion coefficient K(u). To this end, we repeat the simulation in Scenario 1.2 with the same
parameters with the exception that « is five times larger, i.e., x = 0.5. Next, to motivate two alternative
choices of the function u — K(u), we recall first that the maximum temperature umax can be estimated
from the ODE version of (1), (5)—(8), that is (10). The result is that when we solve (10) for t > 0
starting from u(0) and v(0), then u(t) < tmax := (Greact/€)v(0) + u(0). If we assume that in our case
the relevant values are v(0) = 1 and u(0) = 40, then umax = 1/0.035 + 40 ~ 68.57 =: u},,. Thus,
K(u) assumes values between K(0) = 1.1 and K(u},,,) = 4.9304. If we wish to compare results with
those obtained for a constant diffusivity (as stipulated in [14]) DAu instead of V - (K(u)Vu), then a
reasonable value of the diffusion coefficient D for comparison should be

1 Umax*
D— / K(s)ds =1+ ((1+ eufun)* — 1) ~ 2.3816.
0

Ulnax 4eu

max
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Figure 4. Scenarios 2.1 and 2.2: simulation of the propagation of a forest fire on a flat domain (first and
second row) and on a domain with topography 7; (third and fourth row), at indicated simulated times.
Here and in Figure 5, the first and third row show temperature and the second and fourth row show
fuel, and small white square indicates the location of the initial wildfire.

Finally, we introduce the possibility of a degenerating diffusion coefficient, that is we allow that
K(u) = 0 for isolated values of u or even a u-interval of positive length. For instance, we may assume
that the mechanisms of heat transfer are active only wherever u exceeds a critical value u;. Applying
this idea to the diffusion function K(u) of Scenario 1.1, that is (5), we obtain

(14)

k(14eu)® +1 foru > e,
0 for u < ugit.

For Scenario 1.4, we utilize (14) with ¢t = upe = 20.

Figure 1 shows a plot of the diffusion functions for Scenarios 1.1 to 1.4, and Figure 2 displays the
corresponding numerical results. Roughly speaking, Scenario 1.2 predicts a wildfire that has consumed
a larger portion of fuel, and has travelled a larger distance, than that of Scenario 1.1. Far from the
reaction front the maximum temperature in the combustion zone is slightly smaller. With a constant
diffusion coefficient (Scenario 1.3) we obtain a less wide shape of the burnt area (in comparison with
Scenario 1.1), and a smaller value of the burnt portion of fuel. Finally, as is to be expected with a
strongly degenerating diffusion coefficient, the lateral flanks of the temperature surface of Scenario 1.4
are steeper than for all other scenarios.

4.3. Scenarios 2.1 to 2.4 : Effect of the Variability of Topography

In Scenarios 2.1 to 2.4 we study the net effect of terrain topography on the dynamics of wildfire
propagation. To this end, we fix the diffusion function K(u) as given by (5), and choose all other
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Figure 5. Scenarios 2.3 and 2.4: simulation of the propagation of a forest fire on domains with
topographies 7; (first and second row) and 73 (third and fourth row).

parameters as in Scenario 1.1 as well, but assume various cases for the topography function 7 (x) =
T (x,y). To this end, and following [14], we define a shape function

s(x,y;7) == exp(—(x* +y*)/v) witha parameter v > 0

that describes a peak of height one centered at the origin. We assume that there are two peaks in the
domain of variable height, as expressed by

T(x,y) =hs(x —x1,y —y1,71) + has(x — x2,y — y2,72)- (15)

We choose the parameters i1 = hy = 9 and three alternative choices of the parameters x;, y; and
%i, i = 1,2, in Scenarios 2.1 to 2.4, respectively, which are specified in the caption of Figure 3 that
illustrates the variants of topography functions. We choose the constant vector wy = (2.5,2.5) of
velocity of the wind which blows in the north-east direction (that is, in the direction of increasing x-
and y-coordinates). The initial condition of temperature and fuel are

uo(x,y) = 21x 19 2 (%, y),  v0(x,y) = 0.6x0(x,y)-

We display the numerical approximation obtained at simulated times T = 5, 10, 15, 20, and 25. We
display the evolutions of the temperature and fuel over a flat domain and topography 77 in Figure 4,
and show the analogous results for topographies 7> and 73 in Figure 5. In the cases 77, 7> and 73 the
topography acts as repulsion, which moves away the propagation fires (Figure 4 third and fourth row)
or centers the propagation on the diagonal of the domain (Figure 5 first and second row) respectively.
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Figure 6. Scenario 3.1: principle of construction of a risk map for a flat domain. Here and in Scenarios
3.2 to 3.4, the propagation of a wildfire is simulated starting from an array of 5 x 5 = 25 initial fire foci,
marked by small white squares. For each initial position the simulation is stopped when 5% of the
initially available fuel is burnt. The corresponding times T;q are mapped in Figure 13. (For the present
flat case, the shapes of the temperature and fuel distributions are the always the same in relation to the
initial fire; instead of displaying 2 x 25 identical results, we only show the ‘corner’ cases of the 5 x 5
initial positions.)

4.4. Scenarios 3.1 to 3.4: Risk Maps

An analysis that is interesting when studying the effects of topography on the source of fire in a
forest fire is the elaboration of the so-called risk maps, which we present in this section. To do this we
consider four cases here, the first corresponds to the absence of the variable 7 where we are in the
presence of a perfectly flat terrain and three other cases which correspond to each of the topographies
T1, T and T3 of the previous section. Each of the risk maps constructed corresponds to square initial
ignitions of length 12 placed on

Dj == {(x,y) € Q| |x— (55+10)| <6, |y—(55+10j)| <6}, ij=1,...,5 (16)

which yields a total number of 25 initial foci.

The risk maps indicate the different values obtained for the time Ty, when the focus of the fire
takes to consume 5% of the total fuel available in the domain, so a short time corresponds to a high
risk and a long time corresponds to a low risk. In each of the four cases (of a flat domain and a domain
with one of the topographies 77, 7 and 73) the ignitions are located in the south-west of the original
domain. Specifically, to assign a value of T to each of the patches of size 10 x 10

Dg- ={(xy) €eQ||x—(55+10i)| <5, |y—(55+10j)| <5}, ij=1,...,5
we simulate the wildfire model starting from the initial condition

up(x,y) = 21xp,(x,y), vo(x,y) =06,

where D;; is specified (16) and the velocity is given by w = wy in the flat case, w = wo + V7;,i =1,2,3
for the non-flat topographies, and wp = (2.5,2.5). The result is in each case a risk map for the domain
[60,110] x [60,110], with a (fairly coarse) resolution of 25 patches of size 10 x 10.

In the case of flat terrain the propagation of fire and burnt fuel always have the same
spatio-temporal evolution but shifted according to the location of the initial focus (Figure 6) and
5% of the total available fuel is consumed, the time in the 25 foci is identical and it corresponds to
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Figure 7. Scenario 3.2: simulation of temperature of a wildfire from 5 x 5 = 25 initial fire foci, marked
by small white squares, on a domain with topography 77. Here and in Figures 8 to 12, for each initial
position the simulation is stopped, and the numerical solutions for # and v are portrayed, when 5% of
the initially available fuel is burnt. The corresponding simulated time determines Ty for each initial
position.

Tisk = 6.45 and the risk map obtained which can be seen in the top left plots of Figure 13 corresponds
to a high-risk scenario (but the risk is the same for each 10 x 10 patch).

For the topography 73, all the values obtained for the time in which 5% of fuel consumed is reached
are less than Tyg = 6.45 being the minimum value Tyg = 5.47 that is reached on [100,110]? and the
maximum value Ty = 6.11 that is reached on [60, 70] x [100,110]. The evolution of temperature and
fuel can be seen in Figures 7 and 8 and the risk map obtained which is displayed on the top right of
Figure 13 corresponds to a high risk scenario similar to the case of flat a terrain.

In the case of topography 75, the majority of values are very much over than Ty = 6.45 being
the minimum value Tq = 5.91 that is reached on [60,70] x [100,110] and the maximum value
Tyisk = 14.07 that is reached on [80,90]2. The evolution of temperature and fuel can be seen in Figures 9
and 10 and the risk map obtained which can be seen in the bottom left part of Figure 13 corresponds to
a low risk scenario.

For 73 topography, the majority of values are over than T, = 6.45 being the minimum value
Tysk = 5.78 that is attained on [90,100] x [60,70] and the maximum value Ty = 9.97 that is reached
on [80,90] x [100,110]. The evolution of temperature and fuel can be seen in Figures 11 and 12 and
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Figure 8. Scenario 3.2: simulation of fuel of a wildfire from 5 x 5 = 25 initial fire foci, marked by small
white squares, on a domain with topography 77.

the risk map obtained which can be seen in the bottom right part of Figure 13 corresponds to an
intermediate risk scenario.

5. Conclusions

In the present work we analysed the wildland fire model in [11] to simulate the propagation of a
wildfire in various spatially heterogeneous environment. In particular, we focus on variable, nonlinear
diffusion functions to explore the dynamics of the combustion model and a variable topography
function to analyse the effects of the spatial heterogeneity. This model was solved numerically in an
efficient way by the numerical method proposed in [1].

Several diffusion functions are explored (Scenarios 1.1 to 1.4) to arrive at the conclusion that these
functions are strongly related to the shape of the burned area. Considering three different topographies,
we were able to show how the terrain affects the spread of the forest fire, acting as an element that
manages to increase fuel consumption (Scenarios 2.2 and 2.4) but also as an element that manages
to vary the direction of fire spread acting as a repulsion (Scenario 2.3) which pushes it toward areas
far from its initial trajectory (Scenario 2.2). On the other hand, due to the shapes of the landscape, in
two of these cases it is possible to capture how the elevation of the ground manages to accelerate the
spread of fire (see [27, Appendix B]).



13 of 17

60
/ / 50
' 4 4 o
O o o o 10
20
10
0
: 60
5 / / dO
o 4 4 o
o D o o o 30
20
10
0
60
/ 50
0 / / ” 40
O | o o ) 30
20
10
0
60
50
V4 /7 2 V. o I
o o o o o 30
20
10
0
60
50
40
30
20
10

50 100 100 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

A

A

0
200

ow

15
100
5

o

0
200

<

A

150
100

5

o

0

[e=]

Figure 9. Scenario 3.3: simulation of temperature of a wildfire from 5 x 5 = 25 initial fire foci, marked
by small white squares, on a domain with topography 75.

Finally, the possibility to solve the base model efficiently may be used as a tool to elaborate
wildfire risk maps.
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CFL
CPU
DIRK
ERK

H-LDIRK3(2,2,2)

IMEX
IMEX-RK
LI-IMEX
NI-IMEX
ODE
PDE

RK
S-LIMEX
SSP
WENO

Courant-Friedrichs-Lewy

central processing unit

diagonally implicit Runge-Kutta

explicit Runge-Kutta

implicit-explicit
implicit-explicit Runge—Kutta

linearly implicit-explicit
nonlinearly implicit-explicit

ordinary differential equation

partial differential equation
Runge-Kutta

Strang-type splitting scheme
strong stability-preserving

acronym of particular IMEX-RK scheme

weighted essentially non-oscillatory
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