UNIVERSIDAD DE CONCEPCIÓN

Centro de Investigación en Ingeniería Matemática (CI²MA)

Exploring a convection-diffusion-reaction model of the propagation of forest fires: computation of risk maps for heterogeneous environments

RAIMUND BÜRGER, ELVIS GAVILÁN, DANIEL INZUNZA, PEP MULET, LUIS M. VILLADA

PREPRINT 2020-22

SERIE DE PRE-PUBLICACIONES
Exploring a convection-diffusion-reaction model of the propagation of forest fires: computation of risk maps for heterogeneous environments

Raimund Bürger 1, Elvis Gavilán 2, Daniel Inzunza 1, Pep Mulet 3,* and Luis Miguel Villada 4

1 CI²MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile; rburger@ing-mat.udec.cl (R.B.); dinzunza@ing-mat.udec.cl (D.I.)
2 Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción 4070374, Chile
3 Departament de Matemàtiques, Universitat de València, Av. Vicent Andrés Estellés, E-46100 Burjassot, Spain; mulet@uv.es
4 GIMNAP-Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción 4051381, Chile and CI²MA, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile; lvillada@ubiobio.cl
* Correspondence: mulet@uv.es

Abstract: The propagation of a forest fire can be described by a convection-diffusion-reaction problem in two space dimensions, where the unknowns are the local temperature and the portion of fuel consumed as functions of spatial position and time. This model can be solved numerically in an efficient way by a linearly implicit-explicit (IMEX) method to discretize the convection and nonlinear diffusion terms combined with a Strang-type operator splitting to handle the reaction term. This method is applied to several variants of the model with variable, nonlinear diffusion functions. In addition the effect of spatial heterogeneity as described by a variable topography is studied. The variability of topography influences the local velocity and direction of wind. It is demonstrated how this variability affects the direction and speed of propagation of the wildfire and the location and size of area of fuel consumed. The possibility to solve the base model efficiently is utilized for the computation of so-called risk maps. Here the risk associated with a given position in a sub-area of the computational domain in quantified by the rapidity of consumption of a given amount of fuel by a fire starting in that position.

Keywords: Forest fire model; numerical solution; convection-diffusion-reaction problem; implicit-explicit time integration; weighted essentially non-oscillatory reconstruction; nonlinear diffusion function; topography; risk map

1. Introduction

It is the purpose of this contribution to apply a recently developed efficient numerical method [1] for the solution of a wildland fire model [2] to simulate the propagation of a wildfire in various spatially heterogeneous environments. In particular we demonstrate the use of the method for the computation of so-called risk maps that are based on solving the model under systematic variations of the initial focus of wildfire. The governing model is the system of convection-diffusion-reaction partial differential equations (PDEs)

$$\frac{\partial u}{\partial t} + \nabla \cdot (w(x,t)u) = \nabla \cdot (K(u)\nabla u) + f(u,v,x), \quad \frac{\partial v}{\partial t} = g(u,v),$$

(1)

where t is time, $x \in \Omega$ is the spatial variable where the domain $\Omega \subset \mathbb{R}^2$ represents the forest in which the fire may propagate, and $u = u(x,t)$ and $v = v(x,t)$ are the scalar unknowns. Here u is
the non-dimensionalized temperature and \(v \) the non-dimensionalized mass fraction of solid fuel. Moreover, \(K = K(u) \) is a given diffusion coefficient, and \(w \) is an advection velocity that represents wind speed. The functions \(f(u, v, x) \) and \(g(u, v) \) are the reactive part of the model. (These ingredients will be specified further below.) The complete wildfire model is described by the system (1) along with zero-flux boundary conditions

\[
(uw - K(u) \nabla u) \cdot n = 0, \quad (x, t) \in \partial \Omega \times (0, +\infty),
\]

where \(n \) is the unit normal vector to \(\partial \Omega \), and the initial conditions

\[
u(x, 0) = u_0(x), \quad v(x, 0) = v_0(x), \quad x \in \Omega.
\]

The simulation of a wildfire by numerical solution of the initial-boundary value problem (1)–(3) is a challenge due to the presence of a diffusion term and stiff reaction terms. As a consequence of this property, explicit finite difference schemes are usually associated with a stability condition (CFL condition) that enforces very small time steps for moderate to fine spatial discretizations. This restriction can be avoided by implicit-explicit (IMEX) time discretizations that were introduced for the present wildfire model in our previous paper [1]. These methods impose a less restrictive limitation of the time step than explicit methods. This is achieved by carefully distinguishing between stiff and non-stiff occurrence of the vector of unknowns in the spatially discretized equations, and choosing the time discretization of the respective terms in a corresponding either implicit or explicit fashion. However, IMEX methods are more general than semi-implicit methods and are based on interlacing evaluations of the stages of particular explicit and implicit Runge-Kutta (RK) schemes [3]. We refer to [4–9] for applications of IMEX-RK schemes in various contexts.

The paper [1] also includes a detailed description of the governing wildfire model due to Asensio and Ferragut [2]; further references to this model and its variants include [10–13]. It is also the basis of the spectral algorithm advanced by San Martin and Torres [14,15], but the particular nature of that numerical method is applicable to a constant diffusion coefficient only. An alternative approach to the description of wildfires through partial differential equations, and their numerical solution by explicit methods is provided in [16,17].

We herein employ a fifth-order weighted essentially non-oscillatory (WENO) finite-difference discretization [18–20] of convective terms on Cartesian grids that can also be regarded as a second-order fully conservative finite-volume discretization on these grids. Our preference for this technique with respect to others, such as finite volume schemes with flux limiters (see [18,21,22] for these and many other alternative schemes) stems from our familiarity with it. In this work, discontinuous solutions may arise due to degenerate diffusion, as well as sharp gradients, that are dealt with in a robust manner by the WENO reconstructions.

The remainder of the paper is organized as follows. In Section 2 the governing mathematical model is summarized. We only introduce the model in its final, dimensionless form. Detailed derivations of the wildfire model and its ingredients are provided in [1,2,10]. Next, in Section 3 we outline the numerical method. Numerical results are presented in Section 4. Specifically, after introducing preliminaries in Section 4.1, we simulate in Section 4.2 four scenarios (Scenarios 1.1 to 1.4) with different definitions of \(K(u) \). Then, in Section 4.3 we fix the diffusion coefficient \(K(u) \) and evaluate the influence of the topography of the terrain that affects the wind velocity \(w \) through its gradient. To this end we simulate Scenarios 2.1 to 2.4 that differ in the topography of the terrain, in particular the steepness of mountains. Then, based on these topographies, we proceed in Section 4.4 to the computation of risk maps, where the specific risk associated with a point or small patch of the computational domain is the smallness of the time needed to burn a determined fixed amount of fuel (here measured as a percentage of the fuel initially available in \(\Omega \)) by a wildfire having its initial focus at that position. Some conclusions are collected in Section 5.
2. Summary of the Mathematical Model

We here state the model ingredients in final form, based on the assumption that the dimensional rate r of the chemical reaction of fuel and oxidants into products is given by the Arrhenius equation

$$ r = A \exp(-E_A/(RT)) $$

where A is a constant, E_A denotes the activation energy, R is the universal gas constant, and U is absolute temperature (values of parameters are specified in Section 4.1). If a reference ambient temperature $U_{\text{ref}} = U_\infty$ and the non-dimensional inverse of the activation energy $\varepsilon = RU_\infty/E_A$ are given, then the non-dimensional temperature is $u = (U - U_\infty)/(\varepsilon U_\infty)$. Furthermore, time t and the spatial coordinates x and y within $x = (x,y)$ are understood as dimensionless variables. Here the original dimensional quantities are non-dimensionalized by the time scale $t_0 = (\varepsilon/(\bar{q}_{\text{react}} A)) \exp(1/\varepsilon)$, where \bar{q}_{react} is a non-dimensional reaction heat, and the length scale $l_0 = (\varepsilon k/(\rho C))^1/2$, where k is thermal conductivity, C is specific heat, and ρ is the density of the fuel.

Next, we assume that the wind velocity \mathbf{w} is given by

$$ \mathbf{w}(x,t) = \mathbf{w}_0(x,t) + \nabla T(x), $$

where the vector field $\mathbf{w}_0(x,t)$ is a given wind velocity that may depend on spatial position and time (but is considered constant in our numerical experiments), and $T(x)$ is the topography of the domain $[14,15]$. This choice differs from that of [1], where the terrain was assumed flat, and allows us to include spatial heterogeneity.

Furthermore, we assume that spatial propagation of heat occurs through radiation (as described through the Stefan-Boltzmann law) as well as through natural convection. Then the diffusion function $K(u)$ is given by

$$ K(u) = \kappa(1 + \varepsilon u)^3 + 1, $$

where $\kappa = 4\pi\delta U_\infty^2/k$. Here σ is the Stefan–Boltzmann constant and δ is the length of the optical path for radiation through the substance. (The particular functional form (5) is the one derived from first principles in [1,2,10].) However, for illustrative purposes and since our numerical methods is able to handle a wide range of nonlinear and even degenerate diffusion coefficients, we will also consider alternative algebraic expressions, see Section 4.2.) The reaction term $f(u,v,x)$ is given by

$$ f(u,v,x) = v\zeta(u) - a u, \quad \zeta(u) := c(u) \exp\left(\frac{u}{1 + \varepsilon u}\right). $$

Here the function $c(u)$ indicates the phase change between the endothermic (solid) and the exothermic (gaseous) phase,

$$ c(u) = \begin{cases} 1 & \text{if } u \geq u_{pc}, \\ 0 & \text{if } u < u_{pc}, \end{cases} $$

where u_{pc} is a given non-dimensional phase change temperature, and a denotes a natural convection coefficient. Finally, the function $g(u,v)$ that accounts for fuel consumption takes the form

$$ g(u,v) = -\frac{\varepsilon v}{\bar{q}_{\text{react}}} \zeta(u). $$

3. Numerical Method

We assume (for simplicity) a quadratic domain $\Omega = [0,L]^2$ and denote by $u = u(x,t)$ and $v = v(x,t)$ the solution of (1). We define a Cartesian grid with nodes $x_i = (x_i,y_i), i,j = 1,\ldots,M$, with $x_i = y_j = (i-1/2)h, h = L/M$, and we define the index vector $i = (i,j) \in M := \{1,\ldots,M\}^2$. The unit vectors $e_1 = (1,0)$ and $e_2 = (0,1)$ are used to refer to neighboring grid points, for instance...
We discretize (10) implicitly in time for \(v \) which only the diffusion term is treated implicitly. In this case the stability condition on \(\Delta t \) is less restrictive than for explicit discretizations, but a large system of nonlinear algebraic equations must be solved in each time step. This shortcoming of IMEX-RK methods is avoided by the methodology proposed in [4,5] that is based on linearly implicit-explicit RK schemes, and which is applied here to the discretization of (1). The idea is to distinguish in the terms arising in (9) between stiff and non-stiff dependence on the solution vectors \(u \) and \(v \). One then chooses the time discretization by an implicit and explicit RK scheme for the terms involving stiff and non-stiff dependence, respectively. In the product \(D(u)u \), the dependence on \(u \) within \(D(u) \) is considered non-stiff, while that of the factor \(u \) is considered stiff. On the other hand, in the product \(v \xi(u) \), the term \(\xi(u) \) is considered non-stiff, while
the term \(v \) is considered stiff. Based on this distinction, the resulting linearly implicit IMEX-RK method for (12) is defined by a pair of RK schemes, namely an explicit one (ERK scheme) and a diagonally implicit one (DIRK scheme) that handle the non-stiff and stiff dependencies, respectively, and one alternates between evaluations of the stages of the ERK scheme and solving linear systems to to evaluate those of DIRK scheme. The details of this procedure are outlined in [1], and we employ here the same coefficients, namely the IMEX-RK scheme H-LDIRK3(2,2,2) defined by a pair of particular two-stage ERK and DIRK schemes [4,6]. The resulting discretization of (12) over a time step of length \(\Delta t \) can be written as

\[
\varphi_{\Delta t}(u^n, v^n) = (u^{n+1}, v^n),
\]

where \(u^{n+1} \) is the approximation of (12) by the IMEX-RK method. Then the complete Strang splitting method (cf. [21,28]) to solve (9) is formulated as

\[
(u^{n+1}, v^{n+1}) = \psi_{\Delta t/2} \circ \varphi_{\Delta t} \circ \psi_{\Delta t/2}(u^n, v^n).
\]

Once again we refer to [1] for details on the numerical method.

4. Numerical Results

4.1. Preliminaries

The values of parameters used in all examples are the universal gas constant \(R = 1.987207 \text{cal}/(\text{K mol}) \), an ambient temperature of \(U_\infty = 303 \text{K} \), an activation energy \(E_A = 20 \text{kcal/mol} = 83.68 \text{kJ/mol} \) which yields \(\varepsilon = 0.02980905 \approx 0.03 \), and \(A = 10^9 \text{s}^{-1} \) [26]. The mean magnitudes of other constants, for the numerical examples in [2], and which we adopt for our numerical experiments, are

\[
\rho = 100 \text{kg m}^{-3}, \quad C = 1 \text{kJ kg}^{-1} \text{K}^{-1}, \quad k = 1 \text{W m}^{-1} \text{K}^{-1}. \tag{13}
\]

Furthermore, Asensio and Ferragut [2] choose the heat of combustion \(H \) in such a way that one can assume \(\dot{q}_{\text{react}} = 1 \). Utilizing the parameters (13), we then get

\[
l_0 = \frac{0.03}{10^9 \text{s}^{-1}} \exp(1/0.03) = 8986.8 \text{s}, \quad l_0 = (0.089868 \text{m}^2)^{1/2} = 0.2998 \text{m}.
\]

(see the formulas in Section 2). In the numerical examples we keep \(h \) constant and small, such that \(\alpha = 10^{-3} \). The inverse of the conductivity coefficient is chosen as \(\kappa = 0.1 \), and we choose non-dimensional wind velocities in a different way in each example.

At the moment we do not have access to the specific value of \(U_{\text{pc}} \). However, we may estimate the maximal temperature \(u_{\text{max}} \) that is attainable. To this end, we examine the ODE system (10), this means

\[
du/dt = -(\dot{q}_{\text{react}}/\varepsilon)dv/dt.
\]

On the other hand, the second equation in (10) implies that \(dv/dt \leq 0 \), while \(v(t) \geq 0 \) if \(v(0) \geq 0 \). Thus we conclude that

\[
u(t) = -(\dot{q}_{\text{react}}/\varepsilon)v(t) + (\dot{q}_{\text{react}}/\varepsilon)v(0) + u(0) \leq (\dot{q}_{\text{react}}/\varepsilon)v(0) + u(0) =: u_{\text{max}}.
\]

For instance, assume that at some point in the spatial domain we impose the initial temperature such that \(u(0) = 30 \), which corresponds to \(U = (1 + 30\varepsilon)U_\infty = 1.9U_\infty = 570 \text{K} \). This assumption implies that \(u_{\text{max}} = (1/\varepsilon) + 30 = 63.3 \), or equivalently, a maximum temperature (in absolute value)
of $U_{\text{max}} = (1 + \varepsilon u_{\text{max}})U_{\infty} = 870$ K. In light of this calculation we will choose either $u_{\text{pc}} = 0$ or $0 < u_{\text{pc}} \leq u(0) < u_{\text{max}}$, where $u(0)$ is the dimensionless temperature at the point where the fire starts.

In all numerical examples we employ the method introduced as S-LIMEX in [1] and assume a spatial domain $\Omega = [0, L]^2$ with $L = 200$. The spatial discretization is chosen as $\Delta x = \Delta y = 1$, so that the computational domain Ω is subdivided into 200×200 cells.

4.2. Scenarios 1.1 to 1.4: Numerical Experiments with Various Diffusion Coefficients

In this group of scenarios we explore the influence of the dynamics of the combustion model. To this end we fix the initial distribution of temperature and that of fuel, and assume that the terrain is flat and homogeneous, but vary the diffusion function $K(u)$ to illustrate the effect of different model assumptions. We assume that the initial distribution of fuel is constant, as well as that the topography
is flat. Specifically, the initial datum for temperature corresponds to an initial focus on a small square subdomain, i.e., we set

$$u_0 = \begin{cases}
21 & \text{for } (x, y) \in [34, 46]^2, \\
0 & \text{elsewhere}
\end{cases}$$

along with

$$v_0(x, y) = 0.9 \quad \text{for all } (x, y) \in \Omega.$$

With these initial data we simulate a base case and three variants of it. The base case, Scenario 1.1, is based on using the same remaining parameters and model functions as in [1], namely $K(u)$ defined by (5) with $\kappa = 0.1$ and $\varepsilon = 0.035$, $f(u, v, x)$ given by (6) with $c(u)$ defined through (7) with $u_{pc} = 20$ and $\alpha \equiv 10^{-3}$, and $g(u, v)$ given by (8) with $q_{\text{react}} = 1$.

We are interested in comparing results with those obtained for alternative definitions of the diffusion coefficient $K(u)$. To this end, we repeat the simulation in Scenario 1.2 with the same parameters with the exception that κ is five times larger, i.e., $\kappa = 0.5$. Next, to motivate two alternative choices of the function $u \mapsto K(u)$, we recall first that the maximum temperature u_{max} can be estimated from the ODE version of (1), (5)–(8), that is (10). The result is that when we solve (10) for $t > 0$ starting from $u(0)$ and $v(0)$, then $u(t) \leq u_{\text{max}} := (q_{\text{react}}/\varepsilon)v(0) + u(0)$. If we assume that in our case the relevant values are $v(0) = 1$ and $u(0) = 40$, then $u_{\text{max}} = 1/0.035 + 40 \approx 68.57 =: u_{\text{max}}^\ast$. Thus, $K(u)$ assumes values between $K(0) = 1.1$ and $K(u_{\text{max}}^\ast) = 4.9304$. If we wish to compare results with those obtained for a constant diffusivity (as stipulated in [14]) $D \Delta u$ instead of $\nabla \cdot (K(u)\nabla u)$, then a reasonable value of the diffusion coefficient D for comparison should be

$$D = \frac{1}{u_{\text{max}}^\ast} \int_0^{u_{\text{max}}^\ast} K(s) \, ds = 1 + \frac{\kappa}{4\varepsilon u_{\text{max}}^\ast} ((1 + \varepsilon u_{\text{max}}^\ast)^4 - 1) \approx 2.3816.$$
Finally, we introduce the possibility of a degenerating diffusion coefficient, that is we allow that $K(u) = 0$ for isolated values of u or even a u-interval of positive length. For instance, we may assume that the mechanisms of heat transfer are active only wherever u exceeds a critical value u_{crit}. Applying this idea to the diffusion function $K(u)$ of Scenario 1.1, that is (5), we obtain

$$K(u) = \begin{cases} \kappa(1 + \epsilon u)^2 + 1 & \text{for } u > u_{\text{crit}}, \\ 0 & \text{for } u \leq u_{\text{crit}}. \end{cases}$$ (14)

For Scenario 1.4, we utilize (14) with $u_{\text{crit}} = u_{pc} = 20$.

Figure 1 shows a plot of the diffusion functions for Scenarios 1.1 to 1.4, and Figure 2 displays the corresponding numerical results. Roughly speaking, Scenario 1.2 predicts a wildfire that has consumed a larger portion of fuel, and has travelled a larger distance, than that of Scenario 1.1. Far from the reaction front the maximum temperature in the combustion zone is slightly smaller. With a constant diffusion coefficient (Scenario 1.3) we obtain a less wide shape of the burnt area (in comparison with Scenario 1.1), and a smaller value of the burnt portion of fuel. Finally, as is to be expected with a strongly degenerating diffusion coefficient, the lateral flanks of the temperature surface of Scenario 1.4 are steeper than for all other scenarios.

4.3. Scenarios 2.1 to 2.4: Effect of the Variability of Topography

In Scenarios 2.1 to 2.4 we study the net effect of terrain topography on the dynamics of wildfire propagation. To this end, we fix the diffusion function $K(u)$ as given by (5), and choose all other
We choose the parameters as in Scenario 1.1 as well, but assume various cases for the topography function \(T(x) = T(x, y) \). To this end, and following [14], we define a shape function
\[
s(x, y; \gamma) := \exp\left(-\frac{x^2 + y^2}{\gamma}\right) \text{ with a parameter } \gamma > 0
\]
that describes a peak of height one centered at the origin. We assume that there are two peaks in the domain of variable height, as expressed by
\[
\mathcal{T}(x, y) = h_1 s(x - x_1, y - y_1, \gamma_1) + h_2 s(x - x_2, y - y_2, \gamma_2).
\]
(15)

We choose the parameters \(h_1 = h_2 = 9 \) and three alternative choices of the parameters \(x_i, y_i \) and \(\gamma_i, i = 1, 2 \), in Scenarios 2.1 to 2.4, respectively, which are specified in the caption of Figure 3 that illustrates the variants of topography functions. We choose the constant vector \(\mathbf{w}_0 = (2.5, 2.5) \) of velocity of the wind which blows in the north-east direction (that is, in the direction of increasing \(x \)- and \(y \)-coordinates). The initial condition of temperature and fuel are
\[
u_0(x, y) = 0.6 \chi_{\Omega}(x, y).
\]

We display the numerical approximation obtained at simulated times \(T = 5, 10, 15, 20, \) and \(25 \). We display the evolutions of the temperature and fuel over a flat domain and topography \(\mathcal{T}_1 \) in Figure 4, and show the analogous results for topographies \(\mathcal{T}_2 \) and \(\mathcal{T}_3 \) in Figure 5. In the cases \(\mathcal{T}_1, \mathcal{T}_2 \) and \(\mathcal{T}_3 \) the topography acts as repulsion, which moves away the propagation fires (Figure 4 third and fourth row) or centers the propagation on the diagonal of the domain (Figure 5 first and second row) respectively.
Figure 6. Scenario 3.1: principle of construction of a risk map for a flat domain. Here and in Scenarios 3.2 to 3.4, the propagation of a wildfire is simulated starting from an array of $5 \times 5 = 25$ initial fire foci, marked by small white squares. For each initial position the simulation is stopped when 5% of the initially available fuel is burnt. The corresponding times T_{risk} are mapped in Figure 13. (For the present flat case, the shapes of the temperature and fuel distributions are always the same in relation to the initial fire; instead of displaying 2×25 identical results, we only show the ‘corner’ cases of the 5×5 initial positions.)

4.4. Scenarios 3.1 to 3.4: Risk Maps

An analysis that is interesting when studying the effects of topography on the source of fire in a forest fire is the elaboration of the so-called risk maps, which we present in this section. To do this we consider four cases here, the first corresponds to the absence of the variable T where we are in the presence of a perfectly flat terrain and three other cases which correspond to each of the topographies T_1, T_2 and T_3 of the previous section. Each of the risk maps constructed corresponds to square initial ignitions of length 12 placed on

$$D_{ij} := \{ (x,y) \in \Omega \mid |x - (55 + 10i)| \leq 6, \ |y - (55 + 10j)| \leq 6 \}, \ i,j = 1, \ldots, 5, \quad (16)$$

which yields a total number of 25 initial foci.

The risk maps indicate the different values obtained for the time T_{risk} when the focus of the fire takes to consume 5% of the total fuel available in the domain, so a short time corresponds to a high risk and a long time corresponds to a low risk. In each of the four cases (of a flat domain and a domain with one of the topographies T_1, T_2 and T_3) the ignitions are located in the south-west of the original domain. Specifically, to assign a value of T_{risk} to each of the patches of size 10×10

$$D^0_{ij} := \{ (x,y) \in \Omega \mid |x - (55 + 10i)| \leq 5, \ |y - (55 + 10j)| \leq 5 \}, \ i,j = 1, \ldots, 5,$$

we simulate the wildfire model starting from the initial condition

$$u_0(x,y) = 21 \chi_{D_{ij}}(x,y), \quad v_0(x,y) = 0.6,$$

where D_{ij} is specified (16) and the velocity is given by $w = w_0$ in the flat case, $w = w_0 + \nabla T_i, i = 1, 2, 3$ for the non-flat topographies, and $w_0 = (2.5, 2.5)$. The result is in each case a risk map for the domain $[60, 110] \times [60, 110]$, with a (fairly coarse) resolution of 25 patches of size 10×10.

In the case of flat terrain the propagation of fire and burnt fuel always have the same spatio-temporal evolution but shifted according to the location of the initial focus (Figure 6) and 5% of the total available fuel is consumed, the time in the 25 foci is identical and it corresponds to
Figure 7. Scenario 3.2: simulation of temperature of a wildfire from $5 \times 5 = 25$ initial fire foci, marked by small white squares, on a domain with topography \mathcal{T}_1. Here and in Figures 8 to 12, for each initial position the simulation is stopped, and the numerical solutions for u and v are portrayed, when 5% of the initially available fuel is burnt. The corresponding simulated time determines T_{risk} for each initial position.

$T_{\text{risk}} = 6.45$ and the risk map obtained which can be seen in the top left plots of Figure 13 corresponds to a high-risk scenario (but the risk is the same for each 10×10 patch).

For the topography \mathcal{T}_2, all the values obtained for the time in which 5% of fuel consumed is reached are less than $T_{\text{risk}} = 6.45$ being the minimum value $T_{\text{risk}} = 5.47$ that is reached on $[100, 110]^2$ and the maximum value $T_{\text{risk}} = 6.11$ that is reached on $[60, 70] \times [100, 110]$. The evolution of temperature and fuel can be seen in Figures 7 and 8 and the risk map obtained which is displayed on the top right of Figure 13 corresponds to a high risk scenario similar to the case of flat a terrain.

In the case of topography \mathcal{T}_3, the majority of values are very much over than $T_{\text{risk}} = 6.45$ being the minimum value $T_{\text{risk}} = 5.91$ that is reached on $[60, 70] \times [100, 110]$ and the maximum value $T_{\text{risk}} = 14.07$ that is reached on $[80, 90]^2$. The evolution of temperature and fuel can be seen in Figures 9 and 10 and the risk map obtained which can be seen in the bottom left part of Figure 13 corresponds to a low risk scenario.

For \mathcal{T}_5 topography, the majority of values are over than $T_{\text{risk}} = 6.45$ being the minimum value $T_{\text{risk}} = 5.78$ that is attained on $[90, 100] \times [60, 70]$ and the maximum value $T_{\text{risk}} = 9.97$ that is reached on $[80, 90] \times [100, 110]$. The evolution of temperature and fuel can be seen in Figures 11 and 12 and
we were able to show how the terrain affects the spread of the forest fire, acting as an element that manages to increase fuel consumption (Scenarios 2.2 and 2.4) but also as an element that manages to vary the direction of fire spread acting as a repulsion (Scenario 2.3) which pushes it toward areas far from its initial trajectory (Scenario 2.2). On the other hand, due to the shapes of the landscape, in two of these cases it is possible to capture how the elevation of the ground manages to accelerate the spread of fire (see [27, Appendix B]).
Finally, the possibility to solve the base model efficiently may be used as a tool to elaborate wildfire risk maps.

Author Contributions: Conceptualization, R.B. and E.G.; Data curation, D.I., P.M. and L.M.V.; Formal analysis, R.B., D.I., P.M. and L.M.V.; Investigation, R.B. and E.G.; Methodology, R.B., E.G., D.I., P.M. and L.M.V.; Software, R.B., E.G., D.I., P.M. and L.M.V.; Supervision, R.B.; Validation, E.G., D.I., P.M. and L.M.V.; Visualization, E.G.; Writing—original draft, R.B.; Writing—review & editing, E.G. All authors have read and agreed to the published version of the manuscript.

Funding: RB is supported by CRHIAM, project ANID/FONDAP/15130015 and Fondecyt project 1170473. DI acknowledges CONICYT scholarship CONICYT-PCHA/Doctorado Nacional/2014-21140362. PM is supported by Spanish MINECO project MTM2017-83942-P and Conicyt (Chile), project PAI-MEC, folio 80150006. LMV is supported by Fondecyt project 1181511. RB, DI and LMV are also supported by CONICYT/PIA/Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal AFB170001, and by the INRIA Associated Team “Efficient numerical schemes for non-local transport phenomena” (NOLOCO; 2018–2020).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
Figure 10. Scenario 3.3: simulation of fuel of a wildfire from $5 \times 5 = 25$ initial fire foci, marked by small white squares, on a domain with topography T_2.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFL</td>
<td>Courant–Friedrichs–Lewy</td>
</tr>
<tr>
<td>CPU</td>
<td>central processing unit</td>
</tr>
<tr>
<td>DIRK</td>
<td>diagonally implicit Runge–Kutta</td>
</tr>
<tr>
<td>ERK</td>
<td>explicit Runge–Kutta</td>
</tr>
<tr>
<td>H-LDIRK3(2,2,2)</td>
<td>acronym of particular IMEX-RK scheme</td>
</tr>
<tr>
<td>IMEX</td>
<td>implicit-explicit</td>
</tr>
<tr>
<td>IMEX-RK</td>
<td>implicit-explicit Runge–Kutta</td>
</tr>
<tr>
<td>LI-IMEX</td>
<td>linearly implicit-explicit</td>
</tr>
<tr>
<td>NI-IMEX</td>
<td>nonlinearly implicit-explicit</td>
</tr>
<tr>
<td>ODE</td>
<td>ordinary differential equation</td>
</tr>
<tr>
<td>PDE</td>
<td>partial differential equation</td>
</tr>
<tr>
<td>RK</td>
<td>Runge–Kutta</td>
</tr>
<tr>
<td>S-LIMEX</td>
<td>Strang-type splitting scheme</td>
</tr>
<tr>
<td>SSP</td>
<td>strong stability-preserving</td>
</tr>
<tr>
<td>WENO</td>
<td>weighted essentially non-oscillatory</td>
</tr>
</tbody>
</table>
Figure 11. Scenario 3.4: simulation of temperature of a wildfire from $5 \times 5 = 25$ initial fire foci, marked by small white squares, on a domain with topography T_3.

References

Figure 12. Scenario 3.4: simulation of fuel of a wildfire from $5 \times 5 = 25$ initial fire foci, marked by small white squares, on a domain with topography T_3.

Figure 13. Scenarios 3.1 to 3.4: risk maps for the subdomain \([60, 110] \times [60, 110]\) under the assumption of a flat domain (Scenario 3.1, top left) and domains with topography \(T_1\), \(T_2\), and \(T_3\) (Scenarios 3.2 to 3.4, top right, bottom left, and bottom right), visualizing for each patch of size 10 \(\times\) 10 the final time \(T_{\text{risk}}\). A low value of \(T_{\text{risk}}\) implies a high risk.

27. Bennett, M.; Fitzgerald; S.A.; Parker, B.; Main, M.L.; Perleberg, A.; Schnepf, C.; Mahoney, R.L. Reduce the risk of fire on your forest property; Oregon State University, Corvallis, Oregon, United States, 2010.

Gabriel N. Gatica, Antonio Marquez, Salim Meddahi: A mixed finite element method with reduced symmetry for the standard model in linear viscoelasticity

Raimund Bürger, Gerardo Chowell, Leidy Y. Lara-Diaz: Measuring the distance between epidemic growth models

Jessika Camaño, Carlos García, Ricardo Oyarzúa: Analysis of a new mixed-FEM for stationary incompressible magneto-hydrodynamics

Raimund Bürger, Paola Goatin, Daniel Inzunza, Luis M. Villada: A non-local pedestrian flow model accounting for anisotropic interactions and walking domain boundaries

Felipe Lepe, David Mora, Gonzalo Rivera, Iván Velásquez: A virtual element method for the Steklov eigenvalue problem allowing small edges

José Querales, Rodolfo Rodríguez, Pablo Venegas: Numerical approximation of the displacement formulation of the axisymmetric acoustic vibration problem

David Mora, Iván Velásquez: Virtual elements for the transmission eigenvalue problem on polytopal meshes

Gabriel N. Gatica, George C. Hsiao, Salim Meddahi: Further developments on boundary-field equation methods for nonlinear transmission problems

Nicolas Barnafi, Gabriel N. Gatica, Daniel E. Hurtado, Willian Miranda, Ricardo Ruiz-Baier: New primal and dual-mixed finite element methods for stable image registration with singular regularization

Raimund Bürger, Elvis Gavilán, Daniel Inzunza, Pep Mulet, Luis M. Villada: Exploring a convection-diffusion-reaction model of the propagation of forest fires: computation of risk maps for heterogeneous environments

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: DIRECTOR, CENTRO DE INVESTIGACIÓN EN INGENIERÍA MATEMÁTICA, UNIVERSIDAD DE CONCEPCIÓN, CASILLA 160-C, CONCEPCIÓN, CHILE, Tel.: 41-2661324, o bien, visitar la página web del centro: http://www.ci2ma.udec.cl