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Abstract

We propose and analyze a new mixed finite element method for the coupling of the Stokes equa-
tions with a transport problem modelled by a scalar nonlinear convection-diffusion problem. Our
approach is based on the introduction of the Cauchy fluid stress and two vector unknowns in-
volving the gradient and the total flux of the concentration. The introduction of these further
unknowns lead to a mixed formulation in a Banach space framework in both Stokes and transport
equations, where the aforementioned stress tensor and vector unknowns, together with the velocity
and the concentration, are the main unknowns of the system. In this way, and differently from
the techniques previously developed for this and related coupled problems, no augmentation pro-
cedure needs to be incorporated now into the formulation nor into the solvability analysis. The
resulting non-augmented scheme is then written equivalently as a fixed-point equation, so that the
well-known Banach theorem, combined with Babuška-Brezzi’s theory in Banach spaces, classical
results on nonlinear monotone operators and certain regularity assumptions, are applied to prove
the unique solvability of the continuous system. As for the associated Galerkin scheme, whose
solvability is established similarly to the continuous case by using the Brouwer fixed-point the-
orem, we employ Raviart–Thomas approximations of order k ≥ 0 for the stress and total flux,
and discontinuous piecewise polynomials of degree k for the velocity, concentration, and concen-
tration gradient. With this choice of spaces, momentum is conserved in both Stokes and transport
equations if the external forces belong to the piecewise constants and concentration discrete space,
respectively, which constitutes one of the main features of our approach. Finally, we derive optimal
a priori error estimates and provide several numerical results illustrating the good performance of
the scheme and confirming the theoretical rates of convergence.
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†CI2MA and Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile,

email: gobenavides@udec.cl.
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§CI2MA and Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile,

email: ggatica@ci2ma.udec.cl.
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1 Introduction

The phenomenon of transport of a species density in an immiscible fluid, which involves three main
fields, namely the velocity of the flow, pressure and local solids concentration, has a wide range
of applications, including processes arising in chemical distillation processes, solid-liquid separation,
sedimentation-consolidation processes, aluminum production, natural and thermal convection, and so
on. In the present work we are interested in the coupled flow and transport problem determined by a
scalar nonlinear convection-diffusion equation interacting with the Stokes equations, which serves as a
prototype for certain sedimentation-consolidation processes, see, e.g. [11, 12, 31], and also models the
transport of species concentration within a viscous fluid. Indeed, diverse combinations of primal and
mixed finite element methods have been proposed lately in the literature for the numerical solution
of this and related models, whose most distinctive feature is the fact that, not only the viscosity of
the fluid, but also the diffusion coefficient and the function describing hindered settling, depend on
the solution to the transport problem, see, e.g. [1, 2, 4, 6, 7, 26]. In particular, the solvability of
our model of interest was analyzed in [1] by means of an augmented mixed formulation in the fluid
and the usual primal scheme in the transport equation, thus yielding an augmented mixed-primal
variational formulation, whose unknowns, given by the Cauchy stress, the velocity of the fluid, and the
concentration, are sought in suitable Hilbert spaces. The well-posedness of the continuous and discrete
formulations, rewritten as fixed point operator equations, are established by using classical Schauder’s
and Brouwer theorems, respectively. In addition, suitable regularity assumptions, Sobolev’s embedding
and Rellich-Kondrachov compactness theorems, are also employed in the continuous analysis.

Later on, the approach from [1] was extended in [2] to the case of a strongly coupled flow and
transport system modeled by the Brinkman problem with variable viscosity, written in terms of Cauchy
pseudo-stresses and bulk velocity of the mixture, coupled with a nonlinear advection – nonlinear
diffusion equation describing the transport of the solids volume fraction. The solvability of this model
had been previously discussed in [10] for the case of large fluid viscosity, using the technique of
parabolic regularization. In addition, the existence of solutions to a related model for chemically
reacting non-Newtonian fluid had been established in [9] as well. Regarding the analysis developed in
[2], an augmented mixed approach for the Brinkman problem and the usual primal weak form for the
transport equation are employed to derive the variational formulation of the coupled problem. In this
way, similarly as in [1], the corresponding continuous and discrete solvability analyses are performed
by combining fixed point arguments, elliptic regularity estimates, sufficiently small data assumptions
and classical results on Hilbert space frameworks [8, 19, 25]. More recently, in [6] a model describing
the flow-transport interaction in a porous-fluidic domain was analyzed employing the techniques from
[1] and [2]. In this case, the medium consists of a highly permeable material, where the flow of an
incompressible viscous fluid is governed by Brinkman equations (written in terms of vorticity, velocity
and pressure, as in [4]), and a porous medium where Darcy’s law describes fluid motion using filtration
velocity and pressure. Meanwhile, an augmented fully-mixed variational formulation for the model
from [1] was introduced and analyzed in [26]. Here, the authors apply a dual-mixed method and
augmentation procedure in both Stokes and transport equations. Furthermore, reliable and efficient
residual-based a posteriori error estimators for the models and corresponding methods studied in [1]
and [2] are derived in [3] and [5], respectively.

We point out that while augmentation procedures have played a crucial role in all the aforementioned
references, at the continuous level making possible the solvability analyses in suitable Hilbert space
frameworks, and at the discrete level allowing arbitrary finite element subspaces, it is no less true
that the introduction of additional terms into the formulation certainly leads to much more expensive
schemes because of the extra computations that need to be performed in order to set up the stiffness
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matrix and load vector of the resulting discrete system. As a consequence of this fact, in the last years
several efforts have been made aiming to avoid the introduction of augmented terms and appealing to a
Banach space framework for analyzing the continuous and discrete formulations of diverse problems in
continuum mechanics. The list of works in this direction includes, for instance, [14, 18, 16, 13, 20, 21,
17, 22], and [29], all of which, irrespective of dealing with different models, namely Poisson, Brinkman-
Forchheimer, Navier-Stokes, and Boussinesq equations, share a Banach saddle-point structure for the
resulting variational formulations. In the same direction, a Banach spaces-based analysis for the mixed-
primal formulation studied in [1] was recently developed in [7]. In particular, the authors considered
a dual-mixed formulation of the Stokes equations, where, unlike [1], the velocity of the fluid is sought
in L4, which consequently forces the Cauchy stress to live in a suitable H(div)-type Banach space,
whereas the usual primal scheme in the transport equation with concentration in H1 is considered.

According to the above bibliographic discussion, the goal of the present paper is to continue ex-
tending the applicability of the aforementioned Banach spaces framework by introducing now a new
fully-mixed formulation, without any augmentation procedure, for the coupled problem studied in
[1], [26], and [7]. The above is achieved by employing the stress-velocity mixed formulation for the
Stokes equations introduced in [7] and a three-field mixed formulation for the transport equations
based on the introduction of two additional vector unknowns relating the gradient and total flux of
concentration. In this way, similarly to [26], the aforementioned Cauchy stress, total flux, and con-
centration gradient, together with the velocity and concentration, become the resulting unknowns
of the coupled problem but, unlike [26], only Banach space-based analysis is used. Then, following
[14, 20], and [32], we combine a fixed-point argument, suitable regularity assumptions on one of the
decoupled problems, Babuška-Brezzi’s theory in Banach spaces, classical results on nonlinear mono-
tone operators, sufficiently small data assumptions, and the well known Banach fixed-point theorem
to establish existence and uniqueness of solution of the continuous problem. In particular, since the
formulation for the Stokes equation is the same one employed in [7], our present analysis certainly
makes use of the corresponding results available there. As for the numerical scheme, whose solvability
is established similarly to the continuous case by using the Brouwer fixed-point theorem, we employ
Raviart–Thomas spaces of order k ≥ 0 for approximating the Cauchy stress and the total flux, and
discontinuous piecewise polynomials of degree k for the velocity, concentration, and concentration
gradient fields. We stress that with this choice of spaces momentum is conserved in both Stokes and
transport equations if the external forces belong to piecewise constants and concentration discrete
space, respectively. Furthermore, applying an ad-hoc Strang-type lemma in Banach spaces, we are
able to derive the corresponding a priori error estimates and prove that the method is convergent with
optimal rate.

The rest of this work is organized as follows. The remainder of this section describes standard
notation and functional spaces to be employed throughout the paper. The model problem is introduced
in Section 2, and all the auxiliary variables to be employed in the setting of the formulation are defined
there. Next, in Section 3 we derive a non-augmented fully-mixed variational formulation and establish
the well-posedness of this continuous scheme by means of a fixed-point strategy and Banach’s fixed-
point theorem. The corresponding Galerkin system is introduced and analyzed in Section 4, where the
discrete analogue of the theory used in the continuous case is employed to prove existence of solution.
In Section 5, an ad-hoc Strang-type lemma in Banach spaces is utilized to derive the corresponding
a priori error estimate and the consequent rates of convergence. Finally, the performance of the
method is illustrated in Section 6 with several numerical examples in 2D and 3D, which confirm the
aforementioned rates.
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Preliminary notations

In what follows Ω ⊆ Rn, n ∈ {2, 3}, is a given bounded domain with polyhedral boundary Γ, whose
outward unit normal vector is denoted by ν. Standard notation will be adopted for Lebesgue spaces
Lp(Ω) and Sobolev spaces Ws,p(Ω) and Ws,p

0 (Ω), with s ∈ R and p > 1, whose corresponding norms,
either for the scalar, vectorial, or tensorial case, are denoted by ‖ · ‖0,p;Ω and ‖ · ‖s,p;Ω, respectively.

In particular, given a non-negative integer m, Wm,2(Ω) and Wm,2
0 (Ω) are also denoted by Hm(Ω) and

Hm
0 (Ω), and the notations of its norm and seminorm are simplified to || · ||m,Ω and | · |m,Ω, respectively.

In addition, H1/2(Γ) is the space of traces of functions of H1(Ω), H−1/2(Γ) denotes its dual, and 〈·, ·〉
stands for the corresponding duality pairing between H−1/2(Γ) and H1/2(Γ). On the other hand, given
any generic scalar functional space M, we let M and M be the corresponding vectorial and tensorial
counterparts, whereas ‖ · ‖, with no subscripts, will be employed for the norm of any element or
operator whenever there is no confusion about the space to which they belong. Furthermore, as usual
I stands for the identity tensor in Rn×n, and |·| denotes the Euclidean norm in Rn. Also, for any vector
field v = (vi)i=1,n we let ∇v and div(v) be its gradient and divergence, respectively. In addition, for
any tensor τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence operator div acting
along the rows of τ , and define the transpose, the trace, the tensor inner product, and the deviatoric
tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=

n∑
i=1

τii, τ : ζ :=

n∑
i,j=1

τijζij , and τ d := τ − 1

n
tr(τ ) I .

Finally, for any pair of normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), we provide the product space X × Y
with the natural norm ‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y for all (x, y) ∈ X × Y .

2 The model problem

The following system of partial differential equations describes the stationary state of the transport
of species in an immiscible fluid occupying the domain Ω ⊆ Rn:

σ = µ(φ)∇u− p I, −div(σ) = fφ, div(u) = 0,

p = ϑ (|∇φ|)∇φ− φu− γ(φ)k, −div(p) = g,∫
Ω
p = 0,

(2.1)

where the sought quantities are the Cauchy fluid stress σ, the local volume-average velocity of the
fluid u, the pressure p, the total (diffusive plus advective) flux for concentration p, and the local
concentration of species φ. In turn, f ∈ L2(Ω) and g ∈ L4/3(Ω) are given functions, and, as observed
from the second equation in (2.1), the driving force of the mixture depends linearly on φ. In addition,
the kinematic effective viscosity, µ; the diffusion coefficient, ϑ; and the one-dimensional flux function
describing hindered settling, γ; depend nonlinearly on φ, whereas k is a vector pointing in the direction
of gravity. Furthermore, ϑ is assumed of class C1 and we suppose that there exist positive constants
µ1, µ2, γ1, γ2, ϑ1, and ϑ2, such that

µ1 ≤ µ(s) ≤ µ2 and γ1 ≤ γ(s) ≤ γ2 ∀ s ∈ R, (2.2)

ϑ1 ≤ ϑ(s) ≤ ϑ2 and ϑ1 ≤ ϑ(s) + s ϑ′(s) ≤ ϑ2 ∀ s ≥ 0. (2.3)
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Examples of nonlinear functions ϑ that satisfy the hypothesis (2.3) are ϑ(s) := 2 + 1
1+s ∀ s ≥ 0,

which is basically of academic character, and the well-known Carreau law in fluid mechanics given by
ϑ(s) := m1 + m2(1 + s2)(m3−2)/2 ∀ s ≥ 0, with m1, m2 > 0 and m3 ∈ (0, 2). The latter is indeed
considered in the numerical results reported below in Section 6.

Additionally, we assume that µ and γ are Lipschitz continuous, that is that there exist positive
constants Lµ and Lγ such that

|µ(s)− µ(t)| ≤ Lµ |s− t| ∀ s, t ∈ R, (2.4)

and
|γ(s)− γ(t)| ≤ Lγ |s− t| ∀ s, t ∈ R. (2.5)

Finally, given uD ∈ H1/2(Γ) and φD ∈ H1/2(Γ), the following Dirichlet boundary conditions comple-
ment (2.1):

u = uD on Γ , φ = φD on Γ , (2.6)

where, due to the incompressibility of the fluid, the datum uD must satisfy the compatibility constraint∫
Γ uD · ν = 0. On the other hand, it is easy to see that the first and third equations in (2.1) are

equivalent to
1

µ(φ)
σd = ∇u and p = − 1

n
tr(σ) in Ω. (2.7)

In this way, and inspired by [20], introducing t := ∇φ in Ω as an additional unknown of the system,
(2.1)–(2.6) can be rewritten as follow

1

µ(φ)
σd = ∇u in Ω, −div(σ) = fφ in Ω,

t = ∇φ in Ω, p = ϑ(|t|) t − φu − γ(φ)k in Ω, −div(p) = g in Ω,

u = uD on Γ, φ = φD on Γ,

∫
Ω

tr(σ) = 0.

(2.8)

We stress here that the incompressibility condition is implicitly present in the first equation of (2.8),
that is in the constitutive equation relating σ and u. In addition, the uniqueness condition for
p, originally given by

∫
Ω p = 0, is now stated as

∫
Ω tr(σ) = 0, which certainly follows from the

postprocessed formula for p provided by the second expression in (2.7).

3 The continuous formulation

In this section we introduce and analyze a new fully-mixed formulation of the coupled problem (2.8).

3.1 A non-augmented fully-mixed approach

We start by recalling the well-known Poincaré inequality, which says that there exists a positive
constant cp, depending only on Ω, such that

‖ψ‖1,Ω ≤ cp |ψ|1,Ω ∀ ψ ∈ H1
0(Ω) . (3.1)

In turn, we recall that H1(Ω) is continuously embedded into L4(Ω), which is valid in Rn, n ∈ {2, 3}.
More precisely, we have the following inequality

‖ψ‖0,4;Ω ≤ c(Ω) ‖ψ‖1,Ω ∀ ψ ∈ H1(Ω), (3.2)
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with c(Ω) > 0, depending only on Ω (see, e.g., [30, Theorem 1.3.4]). Next, we proceed as in [7, Section
3.1], and introduce the Banach space:

H(div4/3; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L4/3(Ω)

}
,

endowed with the norm ‖τ‖div4/3;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,4/3;Ω. Then, we test the first and second

equations of (2.8) against τ ∈ H(div4/3; Ω) and v ∈ L4(Ω), respectively, integrate by parts the first

one, and use the identity σd : τ = σd : τ d and the Dirichlet boundary condition u = uD on Γ, to get∫
Ω

1

µ(φ)
σd : τ d +

∫
Ω

u · div(τ ) = 〈τν,uD〉 ∀ τ ∈ H(div4/3; Ω),∫
Ω

v · div(σ) = −
∫

Ω
f φ · v ∀ v ∈ L4(Ω),

(3.3)

where, as remarked in [14, eq. (2.5)] (see also [20, eq. (3.2)]), the duality 〈τν,uD〉 is well defined
in the sense that τν ∈ H−1/2(Γ) for all τ ∈ H(div4/3; Ω). At this point, and for convenience of the
subsequent analysis, we consider the decomposition (see, for instance, [13, 20]):

H(div4/3; Ω) = H0(div4/3; Ω)⊕ R I,

where

H0(div4/3; Ω) :=
{
τ ∈ H(div4/3; Ω) :

∫
Ω

tr(τ ) = 0
}
,

and notice from the last equation of (2.8) that σ must lie in H0(div4/3; Ω). In turn, in virtue of
the compatibility condition

∫
Γ uD · ν = 0, we realize that the first equation of (3.3) is implicitly

satisfied for multiples of the identity I since both sides of the equation are nullified in that case,
and hence it only suffices to impose the testing against τ ∈ H0(div4/3; Ω). Therefore, given φ in a
suitable space to be defined next, we now consider the following mixed formulation for the flow: Find
(σ,u) ∈ H0(div4/3; Ω)× L4(Ω) such that

aφ(σ, τ ) + b(τ ,u) = F(τ ) ∀ τ ∈ H0(div4/3; Ω),

b(σ,v) = Gφ(v) ∀ v ∈ L4(Ω),
(3.4)

where aφ : H(div4/3; Ω)×H(div4/3; Ω)→ R and b : H(div4/3; Ω)×L4(Ω)→ R are the bilinear forms
defined, respectively, as

aφ(σ, τ ) :=

∫
Ω

1

µ(φ)
σd : τ d and b(τ ,v) :=

∫
Ω

v · div(τ ) , (3.5)

whereas F : H(div4/3; Ω)→ R and Gφ : L4(Ω)→ R are the functionals given by

F(τ ) := 〈τν,uD〉 and G(v) := −
∫

Ω
f φ · v , (3.6)

for all σ, τ ∈ H(div4/3; Ω), for all v ∈ L4(Ω). Notice that using (2.2) in conjunction with the
Cauchy-Schwarz and Hölder inequalities, we find that∣∣aφ(σ, τ )

∣∣ ≤ 1

µ1
‖σ‖div4/3;Ω ‖τ‖div4/3;Ω and

∣∣b(τ ,v)
∣∣ ≤ ‖τ‖div4/3;Ω ‖v‖0,4;Ω , (3.7)
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for all σ, τ ∈ H(div4/3; Ω), for all v ∈ L4(Ω). In turn, considering φ ∈ L4(Ω), employing the duality

between H−1/2(Γ) and H1/2(Γ), Cauchy-Schwarz’s inequality, and similar arguments to those in [20,
Section 3.1] (see also [13, Lemma 3.5]), we readily show that there exists a positive constant ĉ(Ω),
depending only on c(Ω) (cf. (3.2)), such that∣∣F(τ )

∣∣ ≤ ĉ(Ω) ‖uD‖1/2,Γ ‖τ‖div4/3;Ω and
∣∣Gφ(v)

∣∣ ≤ ‖f‖0,Ω ‖φ‖0,4;Ω ‖v‖0,4;Ω , (3.8)

for all τ ∈ H(div4/3; Ω), for all v ∈ L4(Ω). On the other hand, for the transport equations in (2.8) we
proceed as in [20] (see also [21]). In fact, testing the third, fourth and fifth equations of (2.8) against
suitable test functions q, s, and ψ, respectively, integrating by parts the first of them, and using the
Dirichlet boundary condition φ = φD on Γ, we get∫

Ω
t · q +

∫
Ω
φ div(q) = 〈q · ν, φD〉,∫

Ω
ϑ(|t|)t · s−

∫
Ω
φu · s−

∫
Ω

p · s =

∫
Ω
γ(φ)k · s,

−
∫

Ω
ψ div(p) =

∫
Ω
g ψ,

(3.9)

for all (q, s, ψ) in spaces to be derived below. In this regard, we begin by noting from the boundedness
of ϑ (cf. (2.3)) and the fact that u ∈ L4(Ω), that the first term of the first equation of (3.9), and all
the terms of the second one, are well defined if p,q, t, s ∈ L2(Ω), and if φ, and consequently the test
function ψ, are chosen to live in L4(Ω), which is consistent with (3.8). In this way, since the latter
and the remaining terms on the left hand side of (3.9) force both div(p) and div(q) to live in L4/3(Ω),
we now introduce the Banach space

H(div4/3; Ω) :=
{

q ∈ L2(Ω) : div(q) ∈ L4/3(Ω)
}
,

endowed with the norm ‖q‖div4/3;Ω := ‖q‖0,Ω + ‖div(q)‖0,4/3;Ω. Notice that, similarly to (3.3), the

right hand side of (3.9) is well defined since q · ν belongs to H−1/2(Γ) for all q ∈ H(div4/3; Ω) and γ
is bounded (cf. (2.2)). Therefore, given u ∈ L4(Ω), we obtain the following mixed formulation for the
concentration: Find ((φ, t),p) ∈

(
L4(Ω)× L2(Ω)

)
×H(div4/3; Ω) such that

[Au(φ, t), (ψ, s)] + [B(ψ, s),p] = [Fφ, (ψ, s)] ∀ (ψ, s) ∈ L4(Ω)× L2(Ω),

[B(φ, t),q] = [G,q] ∀ q ∈ H(div4/3; Ω),
(3.10)

where, given u ∈ L4(Ω), the nonlinear operator Au :
(
L4(Ω) × L2(Ω)

)
→
(
L4(Ω) × L2(Ω)

)′
and the

linear operator B :
(
L4(Ω)× L2(Ω)

)
→ H(div4/3; Ω)′, are defined by

[Au(φ, t), (ψ, s)] :=

∫
Ω
ϑ(|t|)t · s−

∫
Ω
φu · s, [B(ψ, s),q] := −

∫
Ω

q · s−
∫

Ω
ψ div(q), (3.11)

for all (φ, t), (ψ, s) ∈
(
L4(Ω)× L2(Ω)

)
, for all q ∈ H(div4/3; Ω), whereas, given φ ∈ L4(Ω), we set

[Fφ, (ψ, s)] =

∫
Ω
γ(φ)k · s +

∫
Ω
g ψ and [G,q] := −〈q · ν, φD〉 , (3.12)

for all (ψ, s) ∈
(
L4(Ω) × L2(Ω)

)
, for all q ∈ H(div4/3; Ω). Hereafter, [·, ·] denotes the duality pairing

induced by the corresponding operators. Notice that using (2.3), and the Cauchy-Schwarz and Hölder
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inequalities, there hold ∣∣[Au(φ, t), (ψ, s)]
∣∣ ≤ (ϑ2 + ‖u‖0,4;Ω

)
‖(φ, t)‖ ‖(ψ, s)‖∣∣[B(ψ, s),q]

∣∣ ≤ ‖(ψ, s)‖ ‖q‖div4/3;Ω.
(3.13)

In turn, similarly to (3.8), employing (2.2), the duality between H−1/2(Γ) and H1/2(Γ), and the Cauchy-
Schwarz and Hölder inequalities, we readily show that there exists a positive constant c̃(Ω), depending
only on c(Ω) (cf. (3.2)), such that∣∣[Fφ, (ψ, s)]

∣∣ ≤ (γ2|Ω|1/2‖k‖+ ‖g‖0,4/3;Ω

)
‖(ψ, s)‖ and

∣∣[G,q]
∣∣ ≤ c̃(Ω) ‖φD‖1/2,Γ ‖q‖div4/3;Ω. (3.14)

In addition, we recall from [27, Theorem 3.8] that, thanks to the assumption on ϑ (cf. (2.3)), the
nonlinear component of Au given by its first term (cf. (3.11)) is strongly monotone and Lipschitz-
continuous in L2(Ω) with constants ϑ1 and ϑ̃2 := max{ϑ2, 2ϑ2 − ϑ1}, respectively, which means that∫

Ω

{
ϑ(|t|) t− ϑ(|r|) r

}
· (t− r) ≥ ϑ1 ‖t− r‖20,Ω ∀ t, r ∈ L2(Ω), and (3.15)∣∣∣∣∫

Ω

{
ϑ(|t|)t− ϑ(|r|)r

}
· s
∣∣∣∣ ≤ ϑ̃2 ‖t− r‖0,Ω ‖s‖0,Ω ∀ t, r, s ∈ L2(Ω). (3.16)

Then, the non-augmented fully-mixed formulation for (2.8) reduces to (3.4) and (3.10), that is: Find
(σ,u) ∈ H0(div4/3; Ω)× L4(Ω) and ((φ, t),p) ∈

(
L4(Ω)× L2(Ω)

)
×H(div4/3; Ω) such that

aφ(σ, τ ) + b(τ ,u) = F(τ ) ∀ τ ∈ H0(div4/3; Ω),

b(σ,v) = Gφ(v) ∀ v ∈ L4(Ω),

[Au(φ, t), (ψ, s)] + [B(ψ, s),p] = [Fφ, (ψ, s)] ∀ (ψ, s) ∈ L4(Ω)× L2(Ω),

[B(φ, t),q] = [G,q] ∀ q ∈ H(div4/3; Ω).

(3.17)

3.2 A fixed point strategy

In what follows we proceed similarly to [1] (see also [2, 7]) and utilize a fixed point strategy to analyze
the solvability of (3.17). For this purpose, we first let S : L4(Ω) → H0(div4/3; Ω) × L4(Ω) be the
operator defined by:

S(φ) = (S1(φ),S2(φ)) := (σ,u) ∀ φ ∈ L4(Ω),

where (σ,u) is the unique solution (to be confirmed below) of (3.4) with the given φ. In turn, we let
S̃ : L4(Ω)× L4(Ω)→ L4(Ω)× L2(Ω)×H(div4/3; Ω) be the operator defined by

S̃(φ,u) = (S̃1(φ,u), S̃2(φ,u), S̃3(φ,u)) := (φ̃, t,p) ∀ (φ,u) ∈ L4(Ω)× L4(Ω),

where (φ̃, t,p) is the unique solution (to be confirmed below) of the problem: Find ((φ̃, t),p) ∈(
L4(Ω)× L2(Ω)

)
×H(div4/3; Ω) such that

[Au(φ̃, t), (ψ, s)] + [B(ψ, s),p] = [Fφ, (ψ, s)] ∀ (ψ, s) ∈ L4(Ω)× L2(Ω),

[B(φ̃, t),q] = [G,q] ∀ q ∈ H(div4/3; Ω),
(3.18)

with the given (φ,u). Then, we set the operator T : L4(Ω)→ L4(Ω) by

T(φ) := S̃1(φ,S2(φ)) ∀φ ∈ L4(Ω), (3.19)

and realize that solving (3.17) is equivalent to seeking a fixed point of T: Find φ ∈ L4(Ω) such that

T(φ) = φ. (3.20)
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3.3 Well-posedness of the uncoupled problems

In this section we show that the uncoupled problems (3.4) and (3.18) are well-posed, which means,
equivalently, that the operators S and S̃ are indeed well-defined. We begin with (3.4), whose proof is
almost verbatim to the one in [7, Lemma 3.3]. In fact, we first recall from [13, Lemma 3.2] (see also
[7, eq. (3.25)]) that there exists c1 > 0, depending only on Ω, such that

c1 ‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div(τ )‖20,4/3;Ω ∀ τ ∈ H0(div4/3; Ω). (3.21)

Next, we let V be the kernel of the operator induced by the bilinear form b (cf. (3.5)), that is

V :=
{
τ ∈ H0(div4/3; Ω) : div(τ ) = 0 in Ω

}
, (3.22)

and observe, similarly to [7, Lemma 3.1], thanks to the definition of aφ (cf. (3.5)) and (3.21), that aφ
is elliptic on V, that is

aφ(τ , τ ) ≥ α ‖τ‖2div4/3;Ω ∀ τ ∈ V, (3.23)

where α = c1/µ2. As a straightforward consequence of (3.23) it follows that

sup
ζ∈V

aφ(ζ, τ ) > 0 ∀ τ ∈ V \ {0}, ∀ φ ∈ L4(Ω). (3.24)

In turn, according to [13, Lemma 3.4], we know that there exists a positive constant β, depending
only on n, cp and c(Ω) (cf. (3.1), (3.2)), such that b verifies the following inf-sup condition

sup
τ∈H0(div4/3;Ω)

τ 6=0

b(τ ,v)

‖τ‖div4/3;Ω
≥ β ‖v‖0,4;Ω ∀ v ∈ L4(Ω). (3.25)

According to the previous results, we are now able to prove the well-definedness of the operator S.

Lemma 3.1. For each φ ∈ L4(Ω) there exists a unique S(φ) := (σ,u) ∈ H0(div4/3; Ω) × L4(Ω)
solution to the problem (3.4). Moreover, there exists a positive constant CS, depending only on µ1, α,
β, and ĉ(Ω) (cf. (3.8)), and hence independent of φ, such that

‖S(φ)‖ = ‖(σ,u)‖ ≤ CS

{
‖uD‖1/2,Γ + ‖f‖0,Ω‖φ‖0,4;Ω

}
∀φ ∈ L4(Ω). (3.26)

Proof. Given φ ∈ L4(Ω), we proceed as in [7, Lemma 3.3]. In fact, we first recall from (3.7) and
(3.8) that aφ, b, F, Gφ are all bounded. Then, thanks to (3.23), (3.24), and (3.25), the proof follows
from a straightforward application of the Babuška-Brezzi theory in Banach spaces (see, e.g., [24,
Theorem 2.34]) to problem (3.4). In particular, there exists a positive constant C depending only on
‖aφ‖ ≤ 1

µ1
, α, and β, such that

‖(σ,u)‖ ≤ C
{
‖F‖+ ‖Gφ‖

}
, (3.27)

which, combined with (3.8), yields (3.26) with CS = C max
{

1, ĉ(Ω)
}

.

Now we present an abstract result that will be utilized to establish the unique solvability of the
nonlinear problem (3.18), equivalently, the well-definedness of the operator S̃.

Theorem 3.2. Let H and Q be separable and reflexive Banach spaces, with H being uniformly convex,
and let a : H → H ′ be a nonlinear operator and b ∈ L(H,Q′). In turn, let V be the null space of b,
and assume that
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(i) a is Lipschitz-continuous, that is there exists L > 0 such that

‖a(u)− a(v)‖H′ ≤ L ‖u− v‖H ∀ u, v ∈ H ,

(ii) the family of operators a(· + t) : V → V ′, with t ∈ H, is uniformly strongly monotone, that is
there exists α > 0 such that

[a(u+ t)− a(v + t), u− v] ≥ α ‖u− v‖2H ∀ t ∈ H, ∀ u, v ∈ V ,

(iii) there exists β > 0 such that

sup
v∈H
v 6=0

[b(v), τ ]

‖v‖H
≥ β ‖τ‖Q ∀ τ ∈ Q.

Then, for each (F,G) ∈ H ′ ×Q′ there exists a unique (u, σ) ∈ H ×Q such that

[a(u), v] + [b(v), σ] = [F, v] ∀ v ∈ H,
[b(u), τ ] = [G, τ ] ∀ τ ∈ Q ,

and there hold

‖u‖H ≤
1

α
‖F‖H′ +

1

β

(
1 +

L

α

)
‖G‖Q′ +

1

α
‖a(0)‖H′ and

‖σ‖Q ≤
1

β

(
1 +

L

α

)
‖F‖H′ +

L

β2

(
1 +

L

α

)
‖G‖Q′ +

1

β

(
1 +

L

α

)
‖a(0)‖H′ .

(3.28)

Proof. It follows from a slight adaptation of [32, Proposition 2.3] with p = 2 (see also [15, Theorem
3.1] with p1 = p2 = 2). Further details are omitted.

Next, in order to apply Theorem 3.2 to problem (3.18), we first observe that, thanks to the uniform
convexity and separability of Lp(Ω) for p ∈ (1,+∞), all the spaces in (3.18), that is, L4(Ω), L2(Ω),
and H(div4/3; Ω), share the same properties.

We continue our analysis by proving that for each u ∈ L4(Ω), Au satisfies hypothesis (i) of Theorem
3.2.

Lemma 3.3. There holds

‖Au(φ, t)−Au(φ̃, t̃)‖ ≤
(
ϑ̃2 + ‖u‖0,4;Ω

)
‖(φ, t)− (φ̃, t̃)‖ , (3.29)

for all u ∈ L4(Ω), and for all (φ, t), (φ̃, t̃) ∈ L4(Ω)× L2(Ω).

Proof. Given u ∈ L4(Ω) and (φ, t), (φ̃, t̃), (ψ, s) ∈ L4(Ω) × L2(Ω), we start from the definition of Au

(cf. (3.11)), and then employ estimate (3.16) and Cauchy-Schwarz’s inequality, to deduce that∣∣∣[Au(φ, t)−Au(φ̃, t̃), (ψ, s)]
∣∣∣ ≤ ∣∣∣∣∫

Ω

{
ϑ(|t|) t− ϑ(|̃t|) t̃

}
· s
∣∣∣∣+

∣∣∣∣∫
Ω

(φ− φ̃) u · s
∣∣∣∣

≤ ϑ̃2 ‖t− t̃‖0,Ω ‖s‖0,Ω + ‖φ− φ̃‖0,4;Ω ‖u‖0,4;Ω ‖s‖0,Ω

≤
(
ϑ̃2 + ‖u‖0,4;Ω

)
‖(φ, t)− (φ̃, t̃)‖ ‖s‖0,Ω,

which implies (3.29) and completes the proof.
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Now, let us look at the null space of the operator B (cf. (3.11)), that is

Ṽ :=
{

(ψ, t) ∈ L4(Ω)× L2(Ω) : [B(ψ, t),q] = 0 ∀q ∈ H(div4/3; Ω)
}
,

which, proceeding similarly to [20, eq. (3.35)], reduces to

Ṽ =
{

(ψ, t) ∈ L4(Ω)× L2(Ω) : ∇ψ = t in Ω and ψ ∈ H1
0(Ω)

}
. (3.30)

The following result states that Au satisfies hypothesis (ii) of Theorem 3.2.

Lemma 3.4. There exists a constant α̃ > 0, depending only on ϑ1 (cf. (2.3)), cp ((3.1)), and c(Ω) (cf.
(3.2)), such that for each u ∈ L4(Ω) satisfying ‖u‖0,4;Ω ≤ 2 α̃, the family of operators Au(·+ (ψ, s)),

with (ψ, s) ∈ L4(Ω)× L2(Ω), is uniformly strongly monotone on Ṽ with constant α̃, that is

[Au((φ, t) + (ψ, s))−Au((φ̃, t̃) + (ψ, s)), (φ, t)− (φ̃, t̃)] ≥ α̃ ‖(φ, t)− (φ̃, t̃)‖2 (3.31)

for all (ψ, s) ∈ L4(Ω)× L2(Ω) and for all (φ, t), (φ̃, t̃) ∈ Ṽ.

Proof. Given u ∈ L4(Ω) , we let (ψ, s) ∈ L4(Ω) × L2(Ω) and (φ, t), (φ̃, t̃) ∈ Ṽ. It follows from (3.30)
that t− t̃ = ∇(φ− φ̃) in Ω and φ− φ̃ ∈ H1

0(Ω). Then, according to the definition of Au (cf. (3.11)),
and using (3.15), Poincaré’s inequality (cf. (3.1)), the continuous injection of H1(Ω) into L4(Ω) (cf.
(3.2)), and the Cauchy–Schwarz and Young inequalities, we obtain

[Au((φ, t) + (ψ, s))−Au((φ̃, t̃) + (ψ, s)), (φ, t)− (φ̃, t̃)]

=

∫
Ω

{
ϑ(t + s) (t + s)− ϑ(t̃ + s) (t̃ + s)

}
· (t− t̃)−

∫
Ω

(φ− φ̃) u · (t− t̃)

≥ ϑ1 ‖t− t̃‖20,Ω − ‖u‖0,4;Ω ‖φ− φ̃‖0,4;Ω ‖t− t̃‖0,Ω

=
ϑ1

2
‖t− t̃‖20,Ω +

ϑ1

2
|φ− φ̃|21,Ω − ‖u‖0,4;Ω ‖φ− φ̃‖0,4;Ω ‖t− t̃‖0,Ω

≥ 1

2

{
ϑ1 − ‖u‖0,4;Ω

}
‖t− t̃‖20,Ω +

1

2

{
ϑ1 c

−2
p c(Ω)−2 − ‖u‖0,4;Ω

}
‖φ− φ̃‖20,4;Ω .

(3.32)

In this way, defining

α̃ :=
ϑ1

4
min

{
1, c−2

p c(Ω)−2
}
, (3.33)

we arrive at

[Au((φ, t) + (ψ, s))−Au((φ̃, t̃) + (ψ, s)), (φ, t)− (φ̃, t̃)] ≥ 1

2

{
4 α̃ − ‖u‖0,4;Ω

}
‖(φ, t)− (φ̃, t̃)‖2 ,

from which we readily conclude the proof.

We observe here that, instead of imposing ‖u‖0,4;Ω ≤ 2 α̃, we could have considered the assumption
‖u‖0,4;Ω ≤ 4 δ α̃, with δ ∈ (0, 1). In this regard, we notice that choosing δ the closer to 1, the larger the
resulting range for ‖u‖0,4;Ω, but then the strong monotonicity constant approaches 0. Conversely, the
closer to 0, the smaller the range for ‖u‖0,4;Ω, but then the strong monotonicity constant approaches
4 α̃. Hence, our above implicit choice δ = 1

2 aims to balance both aspects.

We complete the verification of the hypotheses of Theorem 3.2, with the corresponding inf-sup
condition for the operator B, whose proof can be found in [20, Lemma 3.3].
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Lemma 3.5. There holds

sup
(ψ,s)∈L4(Ω)×L2(Ω)

(ψ,s)6=0

[B(ψ, s),q]

‖(ψ, s)‖
≥ β̃ ‖q‖div4/3;Ω ∀ q ∈ H(div4/3; Ω), (3.34)

with β̃ = 1/2.

We now establish the unique solvability of the nonlinear problem (3.18).

Lemma 3.6. Let α̃ be the constant given by (3.33). Then, for each (φ,u) ∈ L4(Ω)×L4(Ω) such that
‖u‖0,4;Ω ≤ 2 α̃, problem (3.18) has a unique solution ((φ̃, t),p) ∈

(
L4(Ω) × L2(Ω)

)
×H(div4/3; Ω).

Moreover, there exists a positive constant C
S̃

, depending on α̃ and L̃, such that

‖S̃(φ,u)‖ = ‖(φ̃, t,p)‖ ≤ C
S̃

{
γ2 |Ω|1/2‖k‖+ ‖g‖0,4/3;Ω + c̃(Ω) ‖φD‖1/2,Γ

}
. (3.35)

Proof. Given (φ,u) ∈ L4(Ω)× L4(Ω) as stated, we first recall from (3.13) and (3.14) that B, Fφ and
G are all linear and bounded. In addition, Lemma 3.3 together with the hypothesis on u imply the
Lipschitz continuity of Au with constant L̃ := ϑ̃2 + 2 α̃. Thus, bearing in mind Lemmas 3.4 and 3.5,
a straightforward application of Theorem 3.2 to problem (3.18) completes the proof. In particular,
noting that Au

(
(0,0)

)
is the null functional, and recalling from Lemma 3.5 that β̃ = 1/2, the a priori

estimate (3.28) establishes the existence of a constant C
S̃
> 0, depending only on α̃ and L̃, such that

‖(φ̃, t,p)‖ ≤ C
S̃

{
‖Fφ‖+ ‖G‖

}
,

which, together with the bounds of ‖Fφ‖ and ‖G‖ (cf. (3.14)), yield (3.35) and finish the proof.

3.4 Solvability analysis of the fixed point equation

Having established in the previous section the well-posedness of the uncoupled problem (3.4) and
(3.18), which confirms that the operators S, S̃, and T are well defined, we now aim to establish the
existence of a unique fixed-point of the operator T. We begin by providing suitable conditions under
wich T maps a ball into itself.

Lemma 3.7. Given r > 0, we let W :=
{
φ ∈ L4(Ω) : ‖φ‖0,4;Ω ≤ r

}
, and assume that the data

satisfy

‖uD‖1/2,Γ + r ‖f‖0,Ω ≤
2 α̃

CS
(3.36)

and
γ2 |Ω|1/2 + ‖g‖0,4/3;Ω + c̃(Ω) ‖φD‖1/2,Γ ≤

r

C
S̃

. (3.37)

Then T(W ) ⊆W .

Proof. Given φ ∈W , we get from (3.26) that

‖S(φ)‖ ≤ CS

{
‖uD‖1/2,Γ + r ‖f‖0,Ω

}
,

and hence, thanks to the constraint (3.36), we observe that ‖S2(φ)‖0,4;Ω ≤ 2α̃, which says that the
pair

(
φ,S2(φ)

)
satisfies the hypothesis of Lemma 3.6. Then, the corresponding estimate (3.35) yields

‖T(φ)‖ = ‖S̃1

(
φ,S2(φ)

)
‖ ≤ C

S̃

{
γ2 |Ω|1/2 + ‖g‖0,4/3;Ω + c̃(Ω) ‖φD‖1/2,Γ

}
,

which, in virtue of the assumption (3.37), proves that T(φ) ∈W , thus finishing the proof.
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We now aim to prove that the operator T is Lipschitz continuous, for which, according to its
definition (cf. (3.19)), it suffices to show that both S and S̃ satisfy this property. We begin next with
the corresponding result for S, for which, inspired by [20, eq. (3.62)], we need to incorporate further
regularity on the solution of the problem defining this operator. More precisely, we assume that uD ∈
H1/2+ε(Γ) for some ε ∈ [1/2, 1) (when n = 2) or ε ∈ [3/4, 1) (when n = 3), and that for each ψ ∈ L4(Ω)
with ‖ψ‖0,4;Ω ≤ r, r > 0 given, there hold S(ψ) := (ζ,w) ∈

(
H0(div4/3; Ω) ∩Hε(Ω)

)
×Wε,4(Ω) and

‖ζ‖ε,Ω + ‖w‖ε,4;Ω ≤ C̃S(r)
{
‖uD‖1/2+ε,Γ + ‖f‖0,Ω‖ψ‖0,4;Ω

}
, (3.38)

with a positive constant C̃S(r) independent of the given ψ but depending on the upper bound r of its
L4(Ω)-norm. We notice that the reason of the indicated range for ε will be clarified in the proof of
the following lemma.

Lemma 3.8. There exists a positive constant LS, depending on µ1, Lµ, α, β and ε, such that

‖S(φ)− S(ψ)‖ ≤ LS

{
‖f‖0,Ω + ‖S1(ψ)‖ε,Ω

}
‖φ− ψ‖0,4;Ω ∀ φ, ψ ∈ L4(Ω). (3.39)

Proof. It follows from a slight modification of the proof of [7, Lemma 3.7], considering now (3.38)
with the corresponding intervals for ε. In fact, given φ, ψ ∈ L4(Ω), we first denote (σ,u) = S(φ) and
(ζ,w) = S(ψ) (cf. (3.4)). Then, using the ellipticity of aφ (cf. (3.23)), the inf-sup condition for b
(cf. (3.25)), the a priori estimate (3.27) of problem (3.4), the Lipschitz-continuity of µ (cf. (2.4)), the
Cauchy-Schwarz inequality, and some algebraic manipulations, we are able to show that there exists
a positive constant C, depending only on µ1, α, and β, such that

‖S(φ)− S(ψ)‖ ≤ C
{
Lµ ‖ζ‖0,2p;Ω ‖φ− ψ‖0,2q;Ω + ‖f‖0,Ω‖φ− ψ‖0,4;Ω

}
, (3.40)

where p, q ∈]1,+∞) are such that 1
p + 1

q = 1. Next, bearing in mind the further regularity assumption
given by (3.38), we notice that the Sobolev embedding Theorem (see, e.g., [30, Theorem 1.3.4])

establishes the continuous injection iε : Hε(Ω) → Lε
∗
(Ω), where ε∗ :=

{ 2
1−ε if n = 2,

6
3−2ε if n = 3

. Thus,

choosing p such that 2p = ε∗, it follows that ζ := S1(ψ) belongs to L2p(Ω), and hence, thanks to the
aforementioned continuity, there holds

‖ζ‖0,2p;Ω ≤ ‖iε‖ ‖ζ‖ε,Ω. (3.41)

In turn, with this choice of 2p we obtain that 2q = n/ε, and hence, using now that for the specified
range of ε the injection ĩε : L4(Ω)→ Ln/ε(Ω) is also continuous, we find that

‖φ− ψ‖0,2q;Ω = ‖φ− ψ‖0,n/ε;Ω ≤ ‖̃iε‖ ‖φ− ψ‖0,4;Ω . (3.42)

In this way, replacing (3.41) and (3.42) back into (3.40), we get (3.39) and complete the proof.

On the other hand, the continuity of S̃ is proved next.

Lemma 3.9. There exists a positive constant L
S̃

, depending on Lγ, L̃ (cf. proof of Lemma 3.6), β̃
and α̃, such that for all (φ,u), (ϕ,w) ∈ L4(Ω)× L4(Ω), with ‖u‖0,4;Ω, ‖w‖0,4;Ω ≤ 2 α̃, there holds

‖S̃(φ,u)− S̃(ϕ,w)‖ ≤ L
S̃

{
|Ω|1/4 ‖k‖ ‖φ− ϕ‖0,4;Ω + ‖S̃1(ϕ,w)‖0,4;Ω ‖u−w‖0,4;Ω

}
. (3.43)
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Proof. Let (φ,u), (ϕ,w) ∈ L4(Ω)× L4(Ω) such that ‖u‖0,4;Ω, ‖w‖0,4;Ω ≤ 2 α̃. Then, subtracting the

respective problems from (3.18) defining (φ̃, t,p) := S̃(φ,u) and (ϕ̃, r,m) := S̃(ϕ,w), we obtain

[Au(φ̃, t)−Aw(ϕ̃, r), (ψ, s)] + [B(ψ, s),p−m] = [Fφ −Fϕ, (ψ, s)],

[B
(
(φ̃, t)− (ϕ̃, r)

)
,q] = 0,

(3.44)

for all (ψ, s) ∈ L4(Ω) × L2(Ω) and for all q ∈ H(div4/3; Ω). It follows from the second equation of

(3.44) that (φ̃, t) − (ϕ̃, r) ∈ Ṽ (cf. (3.30)), and hence, applying the strong monotonicity of Au on Ṽ
(cf. (3.31) in Lemma 3.4) with (ϕ̃, r) ∈ L4(Ω)× L2(Ω), (φ̃, t)− (ϕ̃, r) ∈ Ṽ, and (0,0) ∈ Ṽ, we get

α̃ ‖(φ̃, t)− (ϕ̃, r)‖2 ≤ [Au(φ̃, t)−Au(ϕ̃, r), (φ̃, t)− (ϕ̃, r)] .

Then, adding and subtracting Aw(ϕ̃, r) in the first component on the right hand side of the foregoing
inequality, and using now the first equation of (3.44), we find that

α̃ ‖(φ̃, t)− (ϕ̃, r)‖2 ≤ [Au(φ̃, t)−Aw(ϕ̃, r)−
(
Au(ϕ̃, r)−Aw(ϕ̃, r)

)
, (φ̃, t)− (ϕ̃, r)]

= [Fφ −Fϕ, (φ̃, t)− (ϕ̃, r)]− [Au(ϕ̃, r)−Aw(ϕ̃, r), (φ̃, t)− (ϕ̃, r)] .
(3.45)

Now, according to the definitions of Fφ (cf. (3.12)) and Au (cf. (3.11)), and making use of the
Lipschitz-continuity of γ (cf. (2.5)) and the Cauchy-Schwarz inequality, we deduce that∣∣[Fφ −Fϕ, (φ̃, t)− (ϕ̃, r)]

∣∣ =

∣∣∣∣∫
Ω

{
γ(φ)− γ(ϕ)

}
k · (t− r)

∣∣∣∣
≤ Lγ ‖k‖ ‖φ− ϕ‖0,Ω ‖t− r‖0,Ω

(3.46)

and ∣∣[Au(ϕ̃, r)−Aw(ϕ̃, r), (φ̃, t)− (ϕ̃, r)]
∣∣ =

∣∣∣∣∫
Ω
ϕ̃ (u−w) · (t− r)

∣∣∣∣
≤ ‖ϕ̃‖0,4;Ω ‖u−w‖0,4;Ω ‖t− r‖0,Ω .

(3.47)

In this way, replacing (3.46) and (3.47) back into (3.45), and using that ϕ̃ = S̃1(ϕ,w), we conclude
that

‖(φ̃, t)− (ϕ̃, r)‖ ≤ 1

α̃

{
Lγ ‖k‖ ‖φ− ϕ‖0,Ω + ‖S̃1(ϕ,w)‖0,4;Ω ‖u−w‖0,4;Ω

}
. (3.48)

On the other hand, employing the inf-sup continuous of B (cf. (3.34)) and the first equation of (3.44),
we have at first instance

β̃ ‖p−m‖div4/3;Ω ≤ sup
(ψ,s)∈L4(Ω)×L2(Ω)

(ψ,s) 6=0

[B(ψ, s),p−m]

‖(ψ, s)‖

= sup
(ψ,s)∈L4(Ω)×L2(Ω)

(ψ,s)6=0

[Fφ −Fϕ, (ψ, s)]− [Au(φ̃, t)−Aw(ϕ̃, r), (ψ, s)]

‖(ψ, s)‖
.

(3.49)

Next, adding and subtracting Au(ϕ̃, r), applying the Lipschitz-continuity of Au with corresponding
constant L̃ = ϑ̃2 + 2α̃ (cf. proof of Lemma 3.6), and using the estimate (3.47) with (ψ, s) instead of
(φ̃, t)− (ϕ̃, r), we obtain∣∣[Au(φ̃, t)−Aw(ϕ̃, r), (ψ, s)]

∣∣ ≤ ∣∣[Au(φ̃, t)−Au(ϕ̃, r), (ψ, s)]
∣∣+
∣∣[Au(ϕ̃, r)−Aw(ϕ̃, r), (ψ, s)]

∣∣
≤
{
L̃ ‖(φ̃, t)− (ϕ̃, r)‖ + ‖ϕ̃‖0,4;Ω ‖u−w‖0,4;Ω

}
‖(ψ, s)‖ .

(3.50)
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In turn, using now (3.46) with (ψ, s) instead of (φ̃, t)− (ϕ̃, r) as well, we get∣∣[Fφ −Fϕ, (ψ, s)]
∣∣ ≤ Lγ ‖k‖ ‖φ− ϕ‖0,Ω ‖s‖0,Ω . (3.51)

Finally, employing the estimates (3.50) and (3.51) in (3.49), we deduce that

β̃ ‖p−m‖div4/3;Ω

≤ Lγ ‖k‖ ‖φ− ϕ‖0,Ω + ‖S̃1(ϕ,w)‖0,4;Ω ‖u−w‖0,4;Ω + L̃ ‖(φ̃, t)− (ϕ̃, r)‖ ,
(3.52)

which, together with (3.48) and the fact that |Ω|1/4 is the boundedness constant of the injection of
L4(Ω) into L2(Ω), yield (3.43) and end the proof.

As a consequence of Lemmas 3.8 and 3.9, we provide next the Lipschitz continuity of T.

Lemma 3.10. Assume that the data satisfy (3.36), and let CT := L
S̃

max
{

1, LS

}
, where LS and L

S̃
are the constants provided by Lemmas 3.8 and 3.9, respectively. Then, for all φ, ϕ ∈ L4(Ω) there holds

‖T(φ)−T(ϕ)‖0,4;Ω

≤ CT

{
|Ω|1/4 ‖k‖+ ‖T(ϕ)‖0,4;Ω

(
‖f‖0,Ω + ‖S1(ϕ)‖ε,Ω

)}
‖φ− ϕ‖0,4;Ω .

(3.53)

Proof. We begin by observing (as we did in the proof of Lemma 3.7) that, given φ, ϕ ∈ L4(Ω),
the hypothesis (3.36) on the data guarantees that the pairs (φ,S2(φ)) and (ϕ,S2(ϕ)) satisfy the
hypothesis of Lemma 3.6, whence T(φ) := S̃1(φ,S2(φ)) and T(ϕ) := S̃1(ϕ,S2(ϕ)) are indeed well
defined. Having said this, (3.53) follows from straightforward applications of the Lipschitz-continuity
estimates provided by Lemmas 3.8 and 3.9.

We are now in position to establish the main result concerning the solvability of (3.17).

Theorem 3.11. Given r > 0, we let W :=
{
φ ∈ L4(Ω) : ‖φ‖0,4;Ω ≤ r

}
, and assume that the data

satisfy (3.36), (3.37), and the further condition

LT := CT

{
|Ω|1/4 ‖k‖+ r

((
1 + r C̃S(r)

)
‖f‖0,Ω + C̃S(r) ‖uD‖1/2+ε,Γ

)}
< 1 , (3.54)

where C̃S(r) is given by (3.38). Then, the fully-mixed formulation (3.17) has a unique solution (σ,u) ∈
H0(div4/3; Ω)× L4(Ω) and ((φ, t),p) ∈

(
L4(Ω)× L2(Ω)

)
×H(div4/3; Ω) with φ ∈W , and there holds

‖(φ, t,p)‖ ≤ C
S̃

{
γ2 |Ω|1/2 ‖k‖+ ‖g‖0,4/3;Ω + c̃(Ω) ‖φD‖1/2,Γ

}
(3.55)

and
‖(σ,u)‖ ≤ CS

{
‖uD‖1/2,Γ + ‖f‖0,Ω ‖φ‖0,4;Ω

}
. (3.56)

Proof. The proof follows similar ideas to those in [1, Theorem 3.13]. Indeed, we first recall from
Lemma 3.7 that the assumptions (3.36) and (3.37) guarantee that T (W ) ⊆ W , and hence, for each
ϕ ∈ W we have that both ‖ϕ‖0,4;Ω and ‖T(ϕ)‖0,4;Ω are bounded by r. Thus, it follows from (3.38)

that ‖S1(ϕ)‖ε,Ω ≤ C̃S(r)
{
‖uD‖1/2+ε,Γ + r ‖f‖0,Ω

}
, so that replacing these estimates into (3.53), we

arrive at
‖T(φ)−T(ϕ)‖0,4;Ω ≤ LT ‖φ− ϕ‖0,4;Ω ∀ φ, ϕ ∈W .

Therefore, according to the equivalence between (3.17) and (3.20), and noting from (3.54) that T
becomes a contraction, the existence of a unique solution of (3.17) is obtained from a straightforward
application of the Banach fixed-point theorem (see, e.g., [19, Theorem 3.7-1]). Moreover, the estimates
(3.55) and (3.56) follow from (3.35) and (3.26), respectively, which complete the proof.
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4 The discrete formulation

In this section we introduce the Galerkin scheme associated with (3.17) and study its solvability and
convergence.

4.1 A fully-mixed finite element method

We first let
{
Th
}
h>0

be a regular family of triangulations of Ω by triangles K (respectively tetrahedra

K in R3), and set h := max
{
hK : K ∈ Th

}
. In turn, given an integer l ≥ 0 and a subset S of

Rn, we denote by Pl(S) the space of polynomials of total degree at most l defined on S. Hence, for
each integer k ≥ 0 and for each K ∈ Th, we define the local Raviart–Thomas space of order k as
RTk(K) := Pk(K)⊕ P̃k(K) x, where, according to the convention in Section 1, Pk(K) := [Pk(K)]n,
P̃k(K) is the space of polynomials of total degree equal to k defined on T , and x := (x1, . . . , xn)t is a
generic vector of Rn. In this way, introducing the finite element subspaces:

Hσ
h :=

{
τ h ∈ H0(div4/3; Ω) : ct τ h|K ∈ RTk(K) ∀ c ∈ Rn , ∀ K ∈ Th

}
,

Hu
h :=

{
vh ∈ L4(Ω) : vh|K ∈ Pk(K) ∀ K ∈ Th

}
,

Hφ
h :=

{
ψh ∈ L4(Ω) : ψh|K ∈ Pk(K) ∀ K ∈ Th

}
,

Ht
h :=

{
sh ∈ L2(Ω) : sh|K ∈ Pk(K) ∀ K ∈ Th

}
,

Hp
h :=

{
qh ∈ H(div4/3; Ω) : qh|K ∈ RTk(K) ∀ K ∈ Th

}
,

(4.1)

the Galerkin scheme for (3.17) reads: Find (σh,uh) ∈ Hσ
h ×Hu

h and ((φh, th),ph) ∈
(
Hφ
h×Ht

h

)
×Hp

h ,
such that

aφh(σh, τ h) + b(τ h,uh) = F(τ h) ∀ τ h ∈ Hσ
h ,

b(σh,vh) = Gφh(vh) ∀ vh ∈ Hu
h ,

[Auh(φh, th), (ψh, sh)] + [B(ψh, sh),ph] = [Fφh , (ψh, sh)] ∀ (ψh, sh) ∈ Hφ
h ×Ht

h,

[B(φh, th),qh] = [G,qh] ∀ qh ∈ Hp
h ,

(4.2)

where aφh , b, F, Gφh , Auh , B, Fφh , and G are defined in (3.5), (3.6), (3.11), and (3.12), respectively,
with φ = φh and u = uh.

4.2 A discrete fixed-point strategy

In what follows we reformulate (4.2) by adopting the discrete analogue of the fixed point strategy

developed in Section 3.2. Hence, we now let Sh : Hφ
h → Hσ

h ×Hu
h be the operator defined by

Sh(φh) = (S1,h(φh),S2,h(φh)) := (σh,uh) ∀ φh ∈ Hφ
h,

where (σh,uh) ∈ Hσ
h ×Hu

h is the unique solution of the first two equations of (4.2) with the given

φh ∈ Hφ
h, that is

aφh(σh, τ h) + b(τ h,uh) = F(τ h) ∀ τ h ∈ Hσ
h ,

b(σh,vh) = Gφh(vh) ∀ vh ∈ Hu
h ,

(4.3)
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In turn, we let S̃h : Hφ
h ×Hu

h → Hφ
h ×Ht

h ×Hp
h be the operator defined by

S̃h(φh,uh) = (S̃1,h(φh,uh), S̃2,h(φh,uh), S̃3,h(φh,uh)) := (φ̃h, th,ph) ∀ (φh,uh) ∈ Hφ
h ×Hu

h ,

where (φ̃h, th,ph) ∈ Hφ
h ×Ht

h ×Hp
h is the unique solution of the last two equations of (4.2) with the

given (φh,uh) ∈ Hφ
h ×Hu

h , that is:

[Auh(φ̃h, th), (ψh, sh)] + [B(ψh, sh),ph] = [Fφh , (ψh, sh)] ∀ (ψh, sh) ∈ Hφ
h ×Ht

h,

[B(φ̃h, th),qh] = [G,qh] ∀ qh ∈ Hp
h ,

(4.4)

Finally, we define the operator Th : Hφ
h → Hφ

h by

Th(φh) := S̃1,h(φh,S2,h(φh)) ∀ φ ∈ Hφ
h , (4.5)

and realize that (4.2) is equivalent to seeking a fixed point of Th: Find φh ∈ Hφ
h such that

Th(φh) = φh. (4.6)

Certainly, all the above makes sense if we guarantee that the discrete problems (4.3) and (4.4) are
well-posed, which is addressed in the first part of the following section.

4.3 Solvability analysis of the discrete fixed-point equation

We begin by showing that the discrete operator Sh is well-defined. To this end, we now let Vh be the
discrete kernel of b, that is

Vh :=
{
τ h ∈ Hσ

h : b(τ h,vh) = 0 ∀ vh ∈ Hu
h

}
,

which, using from (4.1) that div(Hσ
h ) ⊆ Hu

h , becomes

Vh :=
{
τ h ∈ Hσ

h : div(τ h) = 0 in Ω
}
.

It follows that Vh ⊆ V (cf. (3.22)), and hence, similarly to (3.23) we deduce the ellipticity of aφh on
Vh with the same constant α = c1/µ2, that is,

aφh(τ h, τ h) ≥ α ‖τ h‖2div4/3;Ω ∀ τ h ∈ Vh, (4.7)

which certainly implies that the bilinear form aφh satisfies the corresponding hypothesis required by
the discrete Babuška-Brezzi theory in Banach spaces (cf. [24, Proposition 2.42]). Besides the already
proved boundedness of the linear functionals involved (cf. (3.8)), the requirements of this abstract
result are completed with the discrete inf-sup condition for the bilinear form b, whose proof can be
found in [20, Lemma 5.5, Section 5.4].

sup
τh∈Hσ

h
τh 6=0

b(τ h,vh)

‖τ h‖div4/3;Ω
≥ βd ‖vh‖0,4;Ω ∀ vh ∈ Hu

h . (4.8)

We are now in position to establish next the discrete analogue of Lemma 3.1.
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Lemma 4.1. For each φh ∈ Hφ
h there exists a unique Sh(φh) := (σh,uh) ∈ Hσ

h ×Hu
h solution to the

problem (4.3). Moreover, there exists a positive constant CS,d, depending only on µ1, α, βd and ĉ(Ω)
(cf. (3.8)), and hence independent of φh, such that

‖Sh(φh)‖ = ‖(σh,uh)‖ ≤ CS,d

{
‖uD‖1/2,Γ + ‖f‖0,Ω ‖φh‖0,4;Ω

}
∀ φh ∈ Hφ

h . (4.9)

Proof. It follows from (4.7), (4.8), and a direct application of the discrete Babuška-Brezzi theory in
Banach spaces (cf. [24, Proposition 2.42]). In particular, the corresponding a priori estimate reduces
to

‖Sh(φh)‖ = ‖(σh,uh)‖ ≤ Ĉ
{
‖F|Hσ

h
‖+ ‖Gφh |Hu

h
‖
}
, (4.10)

with a positive constant Ĉ depending only on µ1, α, and βd. Then, using (3.8) to bound the discrete

norms ‖F|Hσ
h
‖ := sup

τh∈Hσ
h

τh 6=0

|F(τ h)|
‖τ h‖div4/3;Ω

and ‖Gφh |Hu
h
‖ := sup

vh∈Hu
h

vh 6=0

|Gφh(vh)|
‖vh‖0,4;Ω

, and replacing the resulting

estimates back into (4.10), we get (4.9) with CS,d := Ĉ max{1, ĉ(Ω)}.

Next, we aim to prove that (4.4) is well posed, or equivalently that S̃h is well defined. Indeed, we
remark in advance that the respective proof, being the discrete analogue of the one of Lemma 3.6,
makes use again of the abstract result given by Theorem 3.2. Hence, we first set the null space of the
operator B (cf. (3.11)) restricted to Hφ

h ×Ht
h, which is given by

Ṽh =
{

(ψh, rh) ∈ Hφ
h ×Ht

h : [B(ψh, rh),q] :=

∫
Ω

rh · qh +

∫
Ω
ψh div(qh) = 0 ∀ qh ∈ Hp

h

}
. (4.11)

Then, following the approach from [20, Section 5], we now prove the discrete inf-sup condition for B
and an intermediate result that will be used to show later on the strong monotonicity of Auh on Ṽh
(cf. (4.11)).

Lemma 4.2. There exist positive constants β̃d and C̃d, independent of h, such that

sup
(ψh,rh)∈Hφh×H

t
h

(ψh,rh)6=0

[B(ψh, rh),qh]

‖(ψh, rh)‖
≥ β̃d ‖qh‖div4/3;Ω ∀ qh ∈ Hp

h , (4.12)

and
‖rh‖0,Ω ≥ C̃d ‖ψh‖0,4;Ω ∀ (ψh, rh) ∈ Ṽh. (4.13)

Proof. We begin with the introduction of the discrete space Z0,h defined by

Z0,h :=
{

qh ∈ Hp
h : [B(ψh,0),qh] =

∫
Ω
ψh div(qh) = 0 ∀ ψh ∈ Hφ

h

}
,

which, using from (4.1) that div(Hp
h) ⊆ Hφ

h, becomes

Z0,h =
{

qh ∈ Hp
h : div(qh) = 0 in Ω

}
.

Next, by using the abstract equivalence result provided by [20, Lemma 5.1] with the setting X = Hφ
h,

Y = Y1 = Ht
h, Y2 = {0}, V = Ṽh, Z = Hp

h , and Z0 = Z0,h, where X, Y , Y1 Y2, V , Z, and Z0
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corresponds to the notation employed there, we deduce that (4.12) and (4.13) are jointly equivalent
to the existence of positive constants β̃1 and β̃2, independent of h, such that there hold

sup
qh∈Hp

h
qh 6=0

[B(ψh,0),qh]

‖qh‖div4/3;Ω
= sup

qh∈Hp
h

qh 6=0

∫
Ω
ψh div(qh)

‖qh‖div4/3;Ω
≥ β̃1 ‖ψh‖0,4;Ω ∀ ψh ∈ Hφ

h (4.14)

and

sup
rh∈Ht

h
rh 6=0

[B(0, rh),qh]

‖rh‖0,Ω
= sup

rh∈Ht
h

rh 6=0

∫
Ω

rh · qh

‖rh‖0,Ω
≥ β̃2 ‖qh‖div4/3;Ω ∀ qh ∈ Z0,h . (4.15)

Therefore, since (4.14) and (4.15) have already been proved in [20, Section 5.5], this proof is concluded.

We now establish the discrete strong monotonicity and Lipschitz-continuity properties of Auh .

Lemma 4.3. There exists a constant α̃d > 0, depending only on ϑ1 (cf. (2.3)) and C̃d (cf. (4.13)), such
that for each uh ∈ Hu

h satisfying ‖uh‖0,4;Ω ≤ 2α̃d, the family of operators Auh(·+(ψh, sh)) : Ṽh → Ṽ′h,

with (ψh, sh) ∈ Hφ
h ×Ht

h, is uniformly strongly monotone on Ṽh with constant α̃d, that is

[Auh((φh, th)+(ψh, sh))−Auh((φ̃h, t̃h)+(ψh, sh)), (φh, th)−(φ̃h, t̃h)] ≥ α̃d‖(φh, th)−(φ̃h, t̃h)‖2 (4.16)

for all (ψh, sh) ∈ Hφ
h×Ht

h and for all (φh, th), (φ̃h, t̃h) ∈ Ṽh. In addition, the operator Auh : Hφ
h×Ht

h →(
Hφ
h ×Ht

h

)′
is Lipschitz-continuous with constant L̃d := ϑ̃2 + 2α̃d.

Proof. Given uh ∈ Hu
h , we let (ψh, sh) ∈ Hφ

h × Ht
h, and (φh, th), (φ̃h, t̃h) ∈ Ṽh. Then, proceeding

similarly to the derivation of (3.32) (cf. proof of Lemma 3.4), we arrive at

[Auh((φh, th) + (ψh, sh))−Auh((φ̃h, t̃h) + (ψh, sh)), (φh, th)− (φ̃h, t̃h)]

≥ ϑ1

2
‖th − t̃h‖20,Ω +

ϑ1

2
‖th − t̃h‖20,Ω − ‖uh‖0,4;Ω ‖φh − φ̃h‖0,4;Ω ‖th − t̃h‖0,Ω .

(4.17)

Thus, applying now (4.13) to (φh − φ̃h, th − t̃h) ∈ Ṽh, which yields ‖th − t̃h‖20,Ω ≥ C̃2
d ‖φh − φ̃h‖20,4;Ω,

and defining

α̃d :=
ϑ1

4
min

{
1, C̃2

d

}
, (4.18)

we deduce from (4.17) that

[Auh((φh, th) + (ψh, sh))−Auh((φ̃h, t̃h) + (ψh, sh)), (φh, th)− (φ̃h, t̃h)]

≥ 1

2

{
ϑ1 − ‖uh‖0,4;Ω

}
‖th − t̃h‖20,Ω +

1

2

{
ϑ1 C̃

2
d − ‖uh‖0,4;Ω

}
‖φh − φ̃h‖20,4;Ω

≥ 1

2

{
4 α̃d − ‖uh‖0,4;Ω

}
‖(φh, th)− (φ̃h, t̃h)‖2 ,

(4.19)

from which, assuming that ‖uh‖0,4;Ω ≤ 2α̃d, it follows (4.16). Furthermore, we now observe that for

all (φh, th), (φ̃h, t̃h) ∈ Hφ
h ×Ht

h there holds

‖Auh(φh, th)−Auh(φ̃h, t̃h)‖(
Hφh×H

t
h

)′ ≤ ‖Auh(φh, th)−Auh(φ̃h, t̃h)‖ ,
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where the latter is the norm of
(
L4(Ω)×L2(Ω)

)′
, and hence, (3.29) (cf. Lemma 3.3) and the specified

bound on ‖uh‖0,4;Ω, imply the required Lipschitz-continuity property of Auh .

We are now in position of establishing the discrete analogue of Lemma 3.6.

Lemma 4.4. Let α̃d be the constant given by (4.18). Then, for each (φh,uh) ∈ Hφ
h ×Hu

h such that

‖uh‖0,4;Ω ≤ 2 α̃d, problem (4.4) has a unique solution ((φ̃h, th),ph) ∈
(
Hφ
h ×Ht

h

)
×Hp

h . Moreover,

there exists a positive constant C
S̃,d

, depending only on β̃d, α̃d, and L̃d, such that

‖S̃h(φh,uh)‖ = ‖(φ̃h, th,ph)‖ ≤ C
S̃,d

{
γ2 |Ω|1/2‖k‖+ ‖g‖0,4/3;Ω + c̃(Ω) ‖φD‖1/2,Γ

}
. (4.20)

Proof. According to Lemma 4.3 and the discrete inf-sup condition for B provided by (4.12) (cf. Lemma
4.2), the proof follows from a direct application of Theorem 3.2 to the discrete setting represented by
(4.4). In particular, the a priori bound (4.20) is consequence of the abstract estimate (3.28) applied
to (4.4), and the bounds for Fφh and G given by (3.14).

In order to address the solvability of the fixed point equation (4.6), which is equivalent to our
discrete system (4.2), we begin by recalling next the Brouwer Theorem (cf. [19, Theorem 9.9-2]).

Theorem 4.5. Let W be a compact and convex subset of a finite dimensional Banach space X, and
let T : W →W be a continuous mapping. Then T has at least one fixed point.

Thus, in what follows we proceed to show that Th satisfies the hypotheses of Theorem 4.5. Firstly,
we establish the discrete version of Lemma 3.7.

Lemma 4.6. Given r > 0, we let Wh :=
{
φh ∈ Hφ

h : ‖φh‖0,4;Ω ≤ r
}

, and assume that the data

satisfy

‖uD‖1/2,Γ + r ‖f‖0,Ω ≤
2 α̃d
CS,d

(4.21)

and
γ2 |Ω|1/2 + ‖g‖0,4/3;Ω + c̃(Ω) ‖φD‖1/2,Γ ≤

r

C
S̃,d

. (4.22)

Then Th(Wh) ⊆ Wh.

Proof. Similarly to the proof of Lemma 3.7, it is a direct consequence of Lemmas 4.1 and 4.4.

The discrete analogue of Lemma 3.8 is provided now. We stress here that, instead of the regularity
assumption employed in the proof of that result, which actually is not needed nor could be applied in
the present discrete case, we simple utilize a L4 – L4 – L2 argument.

Lemma 4.7. There exists a positive constant LS,d, depending on µ1, Lµ, α, and βd, such that

‖Sh(φh)− Sh(ψh)‖ ≤ LS,d

{
‖f‖0,Ω + ‖S1,h(ψh)‖0,4;Ω

}
‖φh − ψh‖0,4;Ω ∀ φh, ψh ∈ Hφ

h . (4.23)

Proof. It follows from [7, Lemma 4.6] with the same constant LS,d. We omit further details.

The discrete analogue of Lemma 3.9, which establishes the continuity of S̃h, reads as follows.
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Lemma 4.8. There exists a positive constant L
S̃,d

, depending on Lγ, L̃d (cf. Lemma 4.3), β̃d, and

α̃d, such that for all (φh,uh), (ϕh,wh) ∈ Hφ
h ×Hu

h , with ‖uh‖0,4;Ω, ‖wh‖0,4;Ω ≤ 2 α̃d, there holds

‖S̃h(φh,uh)− S̃h(ϕh,wh)‖

≤ L
S̃,d

{
|Ω|1/4 ‖k‖ ‖φh − ϕh‖0,4;Ω + ‖S̃1,h(ϕh,wh)‖0,4;Ω ‖uh −wh‖0,4;Ω

}
.

(4.24)

Proof. It proceeds analogously to the proof of Lemma 3.9 by using now the strong monotonicity and
Lipschitz-continuity of Auh (cf. Lemma 4.3), the Lipschitz-continuity of γ (cf. (2.5)), and the discrete
inf-sup condition for B (cf. (4.12) in Lemma 4.2). We omit further details.

The continuity of the discrete fixed-point operator Th is proved next.

Lemma 4.9. Assume that the data satisfy (4.21), and let CT,d := L
S̃,d

max
{

1, LS,d

}
, where LS,d and

L
S̃,d

are the constants provided by Lemmas 4.7 and 4.8, respectively. Then, for all φh, ϕh ∈ Hφ
h there

holds

‖Th(φh)−Th(ϕh)‖0,4;Ω

≤ CT,d

{
|Ω|1/4 ‖k‖+ ‖Th(ϕh)‖0,4;Ω

(
‖f‖0,Ω + ‖S1,h(ϕh)‖0,4;Ω

)}
‖φh − ϕh‖0,4;Ω .

(4.25)

Proof. Analogously to the proof of Lemma 3.10, we first observe that, given φh, ϕh ∈ Hφ
h, the assump-

tion (4.21) guarantees that (φh,S2,h(φh)) and (ϕh,S2,h(ϕh)) verify the hypothesis of Lemma 4.4. In

this way, Th(φh) := S̃1,h(φh,S2,h(φh)) and Th(ϕh) := S̃1,h(ϕh,S2,h(ϕh)) are well defined, and hence,
direct applications of the estimates provided by Lemmas 4.7 and 4.8, lead to (4.25) and conclude the
proof.

We stress here that, while ‖Th(ϕh)‖0,4;Ω can be certainly bounded by r in (4.25), the lack of a
bound independent of h for the expression ‖S1,h(ϕh)‖0,4;Ω that also appears there, stops us of deriving
a controllable Lipschitz-continuity constant for Th. This is the reason why we are not able to apply
the Banach fixed-point theorem to Th, but only the Brouwer one (cf. Theorem 4.5) as we state next.

Theorem 4.10. Given r > 0, we let Wh :=
{
φh ∈ Hφ

h : ‖φh‖1,Ω ≤ r
}

, and assume that the data

satisfy (4.21) and (4.22). Then the Galerkin scheme (4.2) has at least one solution (σh,uh) ∈ Hσ
h×Hu

h

and ((φh, th),ph) ∈
(
Hφ
h ×Ht

h

)
×Hp

h with φh ∈Wh, and there holds

‖(φh, th,ph)‖ ≤ C
S̃,d

{
γ2 |Ω|1/2‖k‖+ ‖g‖0,4/3;Ω + c̃(Ω) ‖φD‖1/2,Γ

}
(4.26)

and
‖(σh,uh)‖ ≤ CS,d

{
‖uD‖1/2,Γ + ‖f‖0,Ω ‖φh‖0,4;Ω

}
. (4.27)

Proof. Thanks to the equivalence between (4.2) and (4.6), the existence of solution follows from
Lemmas 4.6 and 4.9, and a direct application of Theorem 4.5. In addition, the a priori estimates
(4.26) and (4.27) are consequences of (4.20) and (4.9), respectively.

We end this section by stressing that our Galerkin scheme provides exact conservation of momentum
when f is piecewise constant and g belongs to the concentration discrete space Hφ

h. In fact, using
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again that div
(
Hσ
h

)
⊆ Hu

h and div
(
Hp
h

)
⊆ Hφ

h, and observing in this case that f φh ∈ Hu
h , we deduce

from the second and fourth equations of (4.2), respectively, that

div(σh) + f φh = 0 in Ω and div(ph) + g = 0 in Ω. (4.28)

Nevertheless, when f is not piecewise constant or g does not belongs to Hφ
h, the corresponding identity

of (4.28) can be obtained in an approximate sense only by replacing f φh or g, respectively, by Pk(f φh)
or Pk(g), where Pk is the L2(Ω)-orthogonal projection onto discontinuous piecewise polynomials of
degree k and Pk is its vectorial version. The verification of the present conservation of momentum is
illustrated below in Section 6, where we use that for k = 0 there holds Pk(f φh) = Pk(f)φh.

5 A priori error analysis

In this section we derive the Céa estimate for our Galerkin scheme (4.2) with the finite element
subspaces given by (4.1) (cf. Section 4.1), and then use the approximation properties of the latter
to establish the corresponding rates of convergence. In what follows, (σ,u) ∈ H0(div4/3; Ω)× L4(Ω)
and ((φ, t),p) ∈

(
L4(Ω) × L2(Ω)

)
× H(div4/3; Ω), with φ ∈ W , is the solution of (3.17), whereas

(σh,uh) ∈ Hσ
h ×Hu

h and ((φh, th),ph) ∈
(
Hφ
h ×Ht

h

)
×Hp

h , with φh ∈ Wh, is a solution of (4.2). In
this way, our goal is to obtain an a priori estimate for the error

‖(σ,u)− (σh,uh)‖+ ‖(φ, t,p)− (φh, th,ph)‖.

We begin our analysis by establishing next an ad-hoc Strang-type estimate. Hereafter, given a
subspace Xh of a generic Banach space (X, ‖ · ‖X), we set as usual dist (x,Xh) := inf

xh∈Xh
‖x − xh‖X

for all x ∈ X.

Lemma 5.1. Let H and Q be separable and reflexive Banach spaces, with H being uniformly convex,
and let a : H → H ′ be a nonlinear operator and b ∈ L(H,Q′), such that a and b satisfy the hypotheses
of Theorem 3.2 with respective constants L, α and β. Furthermore, let {Hh}h>0 and {Qh}h>0 be
sequences of finite dimensional subspaces of H and Q, respectively, and for each h > 0 consider a
nonlinear operator ah : H → H ′, such that ah|Hh : Hh → H ′h and b|Hh : Hh → Q′h satisfy the
hypotheses of Theorem 3.2 as well with constants Ld, αd, and βd, all of them independent of h. In
turn, given F ∈ H ′, G ∈ Q′, and sequences of functionals {Fh}h>0 and {Gh}h>0, with Fh ∈ H ′h and
Gh ∈ Q′h for each h > 0, we let (σ, u) ∈ H × Q and (σh, uh) ∈ Hh × Qh be the unique solutions,
respectively, to problems

[a(σ), τ ] + [b(τ), u] = [F, τ ] ∀ τ ∈ H,
[b(σ), v] = [G, v] ∀ v ∈ Q,

(5.1)

and
[ah(σh), τh] + [b(τh), uh] = [Fh, τh] ∀ τh ∈ Hh,

[b(σh), vh] = [Gh, vh] ∀ vh ∈ Qh.
(5.2)

Then, there exist positive constants CS,i, i ∈ {1, 2, 3}, depending only on L, αd, βd, Ld, and ‖b‖, such
that

‖σ − σh‖H + ‖u− uh‖Q ≤ CS,1 dist
(
σ,Hh

)
+ CS,2 dist

(
u,Qh

)
+ CS,3

{
‖F − Fh‖H′h + ‖G−Gh‖Q′h + ‖a(σ)− ah(σ)‖H′h

}
.
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Proof. It is basically a suitable modification of the proof of [20, Lemma 6.1] (see also [7, Lemma 5.2]),
which in turn, is a modification of [25, Theorem 2.6]. We omit further details and just stress that the
continuity bound and inf-sup condition of the respective linear operator ah from [20, Lemma 6.1] are
now replaced by the corresponding Lipschitz continuity bound and strong monotonicity property of
the present nonlinear operator ah, respectively.

In order to apply Lemma 5.1, we now observe that the problems (3.17) and (4.2) can be rewritten
as two pairs of corresponding continuous and discrete formulations of the type defined by (5.1) and
(5.2), namely

aφ(σ, τ ) + b(τ ,u) = F(τ ) ∀ τ ∈ H0(div4/3; Ω),

b(σ,v) = Gφ(v) ∀ v ∈ L4(Ω),

aφh(σh, τ h) + b(τ h,uh) = F(τ h) ∀ τ h ∈ Hσ
h ,

b(σh,vh) = Gφh(vh) ∀ vh ∈ Hu
h ,

(5.3)

and

[Au(φ, t), (ψ, s)] + [B(ψ, s),p] = [Fφ, (ψ, s)] ∀ (ψ, s) ∈ L4(Ω)× L2(Ω),

[B(φ, t),q] = [G,q] ∀ q ∈ H(div4/3; Ω),

[Auh(φh, th), (ψh, sh)] + [B(ψh, sh),ph] = [Fφh , (ψh, sh)] ∀ (ψh, sh) ∈ Hφ
h ×Ht

h,

[B(φh, th),qh] = [G,qh] ∀ qh ∈ Hp
h .

(5.4)

The following lemma provides a preliminary estimate for the error ‖(σ,u)− (σh,uh)‖.

Lemma 5.2. There exists a constant ĈST > 0, depending only on µ1, α, βd, and ε, such that

‖(σ,u)− (σh,uh)‖ ≤ ĈST

{
dist (σ,Hσ

h ) + dist (u,Hu
h)

+
(
Lµ ‖σ‖ε,Ω + ‖f‖0,Ω

)
‖φ− φh‖0,4;Ω

}
.

(5.5)

Proof. It proceeds similarly to the proof of [7, Lemma 5.4]. Indeed, we first observe that, with

φ ∈ L4(Ω) and φh ∈ Hφ
h given, the continuous and discrete systems of (5.3) satisfy the hypotheses of

Theorem 3.2, with constants L = Ld = 1
µ1

, ‖b‖ ≤ 1, α = αd, β, and βd (cf. (3.7), (3.23), (3.25),
(4.7), and (4.8)). Hence, applying Lemma 5.1 to the context given by (5.3), we deduce the existence
of a constant CST > 0, depending only on µ1, α, and βd, such that

‖(σ,u)− (σh,uh)‖ ≤ CST

{
dist (σ,Hσ

h ) + dist (u,Hu
h)

+ ‖Gφ −Gφh‖(Hu
h

)′ + ‖Aφ(σ)−Aφh(σ)‖(Hσ
h )′

}
,

(5.6)

where Aφ and Aφh , both belonging to L
(
H0(div4/3; Ω),H0(div4/3; Ω)′

)
, are the operators induced by

aφ and aφh , respectively. Thus, we readily get

∣∣Gφ(vh)−Gφh(vh)
∣∣ =

∣∣∣∣∫
Ω
f (φ− φh) · vh

∣∣∣∣ ≤ ‖f‖0,Ω ‖φ− φh‖0,4;Ω ‖vh‖0,4;Ω ,
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which yields
‖Gφ −Gφh‖(Hu

h

)′ ≤ ‖f‖0,Ω ‖φ− φh‖0,4;Ω . (5.7)

In turn, invoking again the continuous injections iε : Hε(Ω) → Lε
∗
(Ω) and ĩε : L4(Ω) → Ln/ε(Ω)

specified in the proof of Lemma 3.8, using the Lipschitz-continuity of µ (cf. (2.4)), choosing p and q
as indicated in the proof of that lemma, and employing the Cauchy-Schwarz and Hölder inequalities,
we find that for each τ h ∈ Hσ

h there holds

|aφ(σ, τ h)− aφh(σ, τ h)| =
∣∣∣ ∫

Ω

{µ(φ)− µ(φh)

µ(φ)µ(φh)

}
σd : τ dh

∣∣∣
≤ Lµ

µ2
1

‖σ‖0,2p;Ω ‖φ− φh‖0,2q;Ω ‖τ h‖0,Ω

≤ Lµ
µ2

1

‖iε‖ ‖̃iε‖ ‖σ‖ε,Ω ‖φ− φh‖0,4;Ω ‖τ h‖0,Ω ,

which implies

‖Aφ(σ)−Aφh(σ)‖(Hσ
h )′ ≤

Lµ
µ2

1

‖iε‖ ‖̃iε‖ ‖σ‖ε,Ω ‖φ− φh‖0,4;Ω . (5.8)

Finally, replacing (5.7) and (5.8) back into (5.6), we obtain (5.5) and finish the proof.

Next, we have the following result estimating ‖(φ, t,p)− (φh, th,ph)‖.

Lemma 5.3. There exists a constant C̃ST > 0, depending only on L̃, L̃d, α̃d, and β̃d, such that

‖(φ, t,p)− (φh, th,ph)‖ ≤ C̃ST

{
dist

(
(φ, t),Hφ

h ×Ht
h

)
+ dist

(
p,Hp

h

)
+ Lγ |Ω|1/4 ‖k‖ ‖φ− φh‖0,4;Ω + ‖φ‖0,4;Ω ‖u− uh‖0,4;Ω

}
.

(5.9)

Proof. We begin by observing that, with u ∈ L4(Ω) and uh ∈ Hu
h given, which verify ‖u‖0,4;Ω ≤ 2 α̃

and ‖uh‖0,4;Ω ≤ 2 α̃d, the continuous and discrete systems of (5.4) satisfy the hypotheses of Theorem

3.2, with constants L̃, α̃, β̃ = 1
2 , L̃d, α̃d, and β̃d (cf. proof of Lemma 3.6, (3.33), 3.34, and Lemmas

4.2 and 4.3). Therefore, applying Lemma 5.1 to the context given by (5.4), we deduce the existence
of a constant C̃ST > 0, depending only on L̃, L̃d, α̃d, and β̃d, such that

‖(φ, t,p)− (φh, th,ph)‖ ≤ C̃ST

{
dist

(
(φ, t),Hφ

h ×Ht
h

)
+ dist

(
p,Hp

h

)
+ ‖Fφ −Fφh‖(Hφh×Ht

h)′
+ ‖Au(φ, t)−Auh(φ, t)‖

(Hφh×H
t
h)′

}
.

(5.10)

Then, proceeding exactly as we did in (3.46) and (3.47), that is employing the Lipschitz-continuity of γ
(cf. (2.5)) and the Cauchy-Schwarz inequality, and additionally recalling that |Ω|1/4 is the boundedness

constant of the injection of L4(Ω) into L2(Ω), we find that for each (ψh, sh) ∈ Hφ
h ×Ht

h there holds∣∣[Fφ −Fϕ, (ψh, sh)]
∣∣ ≤ Lγ |Ω|1/4 ‖k‖ ‖φ− ϕ‖0,4;Ω ‖sh‖0,Ω ,

and ∣∣[Au(φ, t)−Auh(φ, t), (ψh, sh)]
∣∣ ≤ ‖φ‖0,4;Ω ‖u− uh‖0,4;Ω ‖sh‖0,Ω ,

which yield, respectively,

‖Fφ −Fφh‖(Hφh×Ht
h)′
≤ Lγ |Ω|1/4 ‖k‖ ‖φ− φh‖0,4;Ω , (5.11)
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and
‖Au(φ, t)−Auh(φ, t)‖

(Hφh×H
t
h)′
≤ ‖φ‖0,4;Ω ‖u− uh‖0,4;Ω . (5.12)

In this way, replacing (5.11) and (5.12) back into (5.10), we obtain (5.9) and conclude the proof.

The required Céa estimate will now follow from (3.38), (5.5) and (5.9). In fact, using from (3.38)
that

‖σ‖ε,Ω ≤ C̃S(r)
{
‖uD‖1/2+ε,Γ + ‖f‖0,Ω ‖φ‖0,4;Ω

}
, (5.13)

incorporating the resulting bound for ‖u−uh‖0,4;Ω provided by (5.5) into (5.9), recalling that ‖φ‖0,4;Ω

is bounded by r, and performing some algebraic manipulations, we deduce that

‖(φ, t,p)− (φh, th,ph)‖

≤
{
C1 ‖k‖ + (C2 + r C3) ‖f‖0,Ω + C3 ‖uD‖1/2+ε,Γ

}
‖φ− φh‖0,4;Ω

+ C0

{
dist

(
(σ,u),Hσ

h ×Hu
h

)
+ dist

(
(φ, t),Hφ

h ×Ht
h

)
+ dist

(
p,Hp

h

)}
,

(5.14)

where Ci, i ∈
{

1, 2, 3
}

, are the positive constants defined by

C1 := C̃ST Lγ |Ω|1/4 , C2 := ĈST C̃ST r , C3 := ĈST C̃ST Lµ C̃S(r) r ,

and C0 is another positive constant, which depends on ĈST, C̃ST, and r.

Thus, imposing the term that multiplies ‖φ− φh‖0,4;Ω in (5.14) to be sufficiently small, say ≤ 1/2,
we derive the a priori error estimate for ‖(φ, t,p)− (φh, th,ph)‖, which, employed then to bound the
last term on the right-hand side of (5.5) in conjunction with (5.13), provides the corresponding upper
bound for ‖(σ,u)− (σh,uh)‖. More precisely, we have proved the following result.

Theorem 5.4. Assume that the data k, f and uD are sufficiently small so that

C1 ‖k‖ + (C2 + r C3) ‖f‖0,Ω + C3 ‖uD‖1/2+ε,Γ ≤
1

2
. (5.15)

Then, there exist a positive constant C̃0, which depends only on parameters and other constants, all
them independent of h, such that

‖(σ,u)− (σh,uh)‖ + ‖(φ, t,p)− (φh, th,ph)‖

≤ C̃0

{
dist

(
(σ,u),Hσ

h ×Hu
h

)
+ dist

(
(φ, t),Hφ

h ×Ht
h

)
+ dist

(
p,Hp

h

)}
.

(5.16)

We recall next the approximation properties of the subspaces defined by (4.1), which follow from in-
terpolation estimates of Sobolev spaces and the approximation properties of the orthogonal projectors
and the interpolation operators involved in their definitions (see, e.g. [8], [14], [20], [24], [25]).

(APσ
h ): there exists C > 0, independent of h, such that for each l ∈ (0, k + 1], and for each τ ∈

Hl(Ω) ∩ H0(div4/3; Ω) with div(τ ) ∈Wl,4/3(Ω), there holds

dist
(
τ ,Hσ

h

)
:= inf

τh∈Hσ
h

‖τ − τ h‖div4/3;Ω ≤ C hl
{
‖τ‖l,Ω + ‖div(τ )‖l,4/3;Ω

}
.

(APu
h): there exists C > 0, independent of h, such that for each l ∈ [0, k+1], and for each v ∈Wl,4(Ω)

there holds
dist

(
v,Hu

h

)
:= inf

vh∈Hu
h

‖v − vh‖0,4;Ω ≤ C hl ‖v‖l,4;Ω.
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(APφ
h): there exists C > 0, independent of h, such that for each l ∈ [0, k+1], and for each ψ ∈Wl,4(Ω)

there holds
dist

(
ψ,Hφ

h

)
:= inf

ψh∈Hφh

‖ψ − ψh‖0,4;Ω ≤ C hl ‖ψ‖l,4;Ω.

(APt
h): there exists C > 0, independent of h, such that for each l ∈ [0, k+ 1], and for each s ∈ Hl(Ω)

there holds
dist

(
s,Ht

h

)
:= inf

sh∈Ht
h

‖s− sh‖0,Ω ≤ C hl ‖s‖l,Ω.

(APp
h): there exists C > 0, independent of h, such that for each l ∈ (0, k + 1], and for each q ∈

Hl(Ω) ∩H(div4/3; Ω) with div(q) ∈Wl,4/3(Ω), there holds

dist
(
q,Hp

h

)
:= inf

qh∈Hp
h

‖q− qh‖div4/3;Ω ≤ C hl
{
‖q‖l,Ω + ‖div(q)‖l,4/3;Ω

}
.

Finally, we conclude this section with the rates of convergence of our Galerkin scheme (4.2).

Theorem 5.5. In addition to the hypotheses of Theorems 3.11, 4.10, and 5.4, assume that there exists
l ∈ (0, k + 1] such that σ ∈ Hl(Ω) ∩ H0(div4/3; Ω), div(σ) ∈ Wl,4/3(Ω), u ∈ Wl,4(Ω), φ ∈ Wl,4(Ω),

t ∈ Hl(Ω), p ∈ Hl(Ω) ∩H(div4/3; Ω) and div(p) ∈ Wl,4/3(Ω). Then, there exists a positive constant
C, independent of h, such that

‖(σ,u)− (σh,uh)‖ + ‖(φ, t,p)− (φh, th,ph)‖ ≤ C hl
{
‖σ‖l,Ω + ‖div(σ)‖l,4/3;Ω

+ ‖u‖l,4;Ω + ‖φ‖l,4;Ω + ‖t‖l,Ω + ‖p‖l,Ω + ‖div(p)‖l,4/3;Ω

}
.

(5.17)

Proof. The result follows from a direct application of Theorem 5.4 and the approximation properties
of the finite element subspaces. Further details are omitted.

6 Numerical results

In this section we present three examples illustrating the performance of our non-augmented and
momentum-conserving fully-mixed finite element method (4.2) on a set of quasi-uniform triangulations
of the respective domains, and considering the finite element subspaces defined by (4.1) (cf. Section
4.1). In what follows, we refer to the corresponding sets of finite element subspaces generated by k = 0
and k = 1, as simply RT0 −P0 − P0 −P0 −RT0 and RT1 −P1 − P1 −P1 −RT1, respectively. Our
implementation is based on a FreeFem++ code [28], in conjuntion with the direct linear solver UMFPACK

[23]. The way we solve the fixed-point problem (4.6) is explained as follows. Given an initial guess φ
(0)
h

for the concentration (usually the null function), we first solve the linear system (4.3) with the given

φh := φ
(0)
h , whose solution is denoted (σ

(1)
h ,u

(1)
h ). Next, we look at the nonlinear system (4.4) with the

given (uh, φh) = (u
(1)
h , φ

(0)
h ), so that, starting from a null initial guess, we perform just one Newton

iteration to obtain (φ
(1)
h , t

(1)
h ,p

(1)
h ) as an approximate solution of it. Then, the process continues with

φ
(m)
h for each m ≥ 1. In this way, for a fixed tolerance tol = 1E−6, the above iterations are terminated,

which yields the number of Newton iterations reported in the tables below, once the relative error of
the entire coefficient vectors between two consecutive iterates, say coeffm and coeffm+1, is sufficiently
small, i.e.,

‖coeffm+1 − coeffm‖
‖coeffm+1‖

≤ tol ,
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where ‖ ·‖ stands for the usual Euclidean norm in RDOF, with DOF denoting the total number of degrees

of freedom defining the finite element subspaces Hσ
h , Hu

h , Hφ
h, Ht

h, and Hp
h (cf. (4.1)).

We now introduce some additional notation. The individual errors are denoted by:

e(σ) := ‖σ − σh‖div4/3;Ω, e(u) := ‖u− uh‖0,4;Ω, e(p) := ‖p− ph‖0,Ω,

e(φ) := ‖φ− φh‖0,4;Ω, e(t) := ‖t− th‖0,Ω, e(p) := ‖p− ph‖div4/3;Ω,

where ph stands for the post-processed pressure suggested by the second formula of (2.7), that is

ph = − 1

n
tr(σh) . (6.1)

It follows that

‖p− ph‖0,Ω =
1

n
‖tr(σ − σh)‖0,Ω ≤

1√
n
‖σ − σh‖div4/3;Ω ,

which shows that the rate of convergence for p is at least the one for σ, which is indeed confirmed
below by the numerical results reported.

Next, as usual, for each � ∈
{
σ,u, p, φ, t,p

}
we let r(�) be the experimental rate of convergence

given by

r(�) :=
log(e(�)/ê(�))

log(h/ĥ)
,

where h and ĥ denote two consecutive meshsizes with errors e and ê, respectively.

The examples to be considered in this section are described next. In all of them, for the sake of
simplicity, we take k = (0,−1), and similarly to [1, 26, 7], we choose the coefficients µ, γ, and ϑ,
respectively, as:

µ(φ) = (1− c φ)−2, γ(φ) = c φ (1− c φ)2, and ϑ(|t|) = m1 +m2 (1 + |t|2)m3/2−1 ,

where c = m1 = m2 = 1/2 and m3 = 3/2. In addition, the mean value of tr(σh) over Ω is fixed via a
Lagrange multiplier strategy (adding one row and one column to the matrix system that solves (4.3)
for σh and uh).

Example 1: Two-dimensional smooth exact solution

In this first example, we illustrate the accuracy of our method in 2D by considering a manufactured
exact solution defined on Ω := (0, 1)2. More precisely, the source terms f and g in (2.8) are adjusted
in such a way that φ, t, u, and σ, are given by the smooth functions

φ(x1, x2) = 15− 15 exp(−x1(x1 − 1)x2(x2 − 1)), t = ∇φ,

u(x1, x2) =

(
sin(2πx1) cos(2πx2)

− cos(2πx1) sin(2πx2)

)
, and σ = µ(φ)∇u− (x2

1 − x2
2) I .

Notice that φ vanishes at Γ and uD is imposed accordingly to the exact solution. Tables 6.1–6.2 show
the convergence history for a sequence of quasi-uniform mesh refinements, including the number of
Newton iterations. Notice that we are able not only to approximate the original unknowns but also
the pressure field through the formula (6.1). The results confirm that the optimal rates of convergence
O(hk+1), provided by Theorem 5.5 are attained for k = 0, 1. The Newton method exhibits a behavior
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independent of the meshsize, converging in six iterations in all cases. In Figure 6.1 we display the
solution obtained with the fully-mixed RT1 − P1 − P1 − P1 − RT1 approximation with meshsize
h = 0.0135 and 41, 146 triangle elements (actually representing 1, 235, 964 DOF). In addition, in the
case k = 0, and since both f and g are not piecewise constant, we observe, as explained at the end
of Section 4, that our Galerkin scheme provides conservation of momentum in an approximate sense.
We illustrate this fact in Table 6.3, where the computed `∞-norm for both div(σh) + P0(f)φh and
div(ph) + P0(g), are displayed. As expected, these values are certainly close to zero.

Example 2: Three-dimensional smooth exact solution

In our second example, we consider the cube domain Ω = (0, 1)3. We consider the external force
f = (0, 0,−9.81)t, and the terms on the right-hand side are adjusted so that the exact solution is
given by the functions

φ(x1, x2, x3) = 15− 15 exp(x(x− 1)y(y − 1)z(z − 1)) , t = ∇φ,

u(x1, x2, x3) =

 sin(πx) cos(πy) cos(πz)

−2 cos(πx) sin(πy) cos(πz)

cos(πx) cos(πy) sin(πz),

 , and σ = µ(φ)∇u− (x1 − 0.5)3 sin(x3 + x2) I .

The model problem is then complemented with the appropriate Dirichlet boundary conditions. The
numerical solutions are shown in Figure 6.2, which were built using the fully-mixed RT0 − P0 −
P0 −P0 −RT0 approximation with meshsize h = 0.0544 and 105, 456 tetrahedral elements (actually
representing 1, 598, 064 DOF). The convergence history for a set of quasi-uniform mesh refinements
using k = 0 is shown in Table 6.4. Again, the mixed finite element method converges optimally with
order O(h), as it was proved by Theorem 5.5.

Example 3: Fluid flow in a two-dimensional inverted L-shaped domain

In our last example we study the behavior of the model for fluid flow in an inverted L-shaped domain
given by Ω = (0, 2) × (−1, 1) \ (0, 1) × (−1, 0) with boundary Γ, and whose input, upper and lower
parts are given by Γin = {0} × (0, 1), Γtop = (0, 2) × {1} and Γbottom = (1, 2) × {−1}, respectively.
The right-hand side data are chosen as f = (0,−9.81) and g = 0, and the boundary conditions are

u = (−10x2 (x2 − 1), 0) on Γin, u = 0 on Γtop, σν = 0 on Γ \ Γin ∪ Γtop

φ = 0.5 on Γbottom, φ = 0 on Γtop, p · ν = 0 on Γ \ Γbottom ∪ Γtop .

In particular, the first one corresponds to inflow driven through a parabolic fluid velocity on part of
the left boundary of the domain. We stress that slight modifications allow to extend our analysis
to these new boundary conditions. Here, since the analytical solution is unknown, we construct the
convergence history by considering a solution calculated with 111, 506 triangle elements (representing
1, 060, 843 DOF) as the exact solution, and employing the RT0−P0−P0−P0−RT0 approximation on a
sequence of quasi-uniform triangulations. In Table 6.5 we show that the mixed finite element method
converges optimally with order O(h). In addition, similarly to Example 1, but now using the fact that
f and g are constant data, we compute the `∞-norm for both div(σh) + fφh and div(ph) + g, whose
values displayed in Table 6.6 are close to zero, which illustrates again that this method conserves
momentum. On the other hand, in Figure 6.3 we display the computed magnitude of the velocity,
concentration field, first Cauchy stress component, and first total flux component, respectively. As
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expected, the flow start moving from left to right and then is driven into the bottom of the domain due
to the effect of gravity force imposed by the source term f . In turn, the concentration is zero on the
top of the domain and goes increasing towards the bottom of the inverted L-shaped domain. Finally,
we observe that the first components of both the Cauchy stress and total flux satisfy homogeneous
boundary conditions on the corresponding sides of the boundary.

DOF h e(σ) r(σ) e(u) r(u) e(p) r(p)

1492 0.1964 3.51E+01 – 2.13E-01 – 1.42E+00 –
3340 0.1267 2.52E+01 0.7620 1.42E-01 0.9297 8.79E-01 1.0964
9164 0.0776 1.65E+01 0.8644 8.49E-02 1.0469 4.99E-01 1.1525

29913 0.0448 9.67E+00 0.9702 4.69E-02 1.0834 2.42E-01 1.3182
104490 0.0244 5.59E+00 0.9021 2.49E-02 1.0431 1.24E-01 1.1011
391679 0.0135 3.18E+00 0.9551 1.29E-02 1.1050 6.38E-02 1.1243

e(φ) r(φ) e(t) r(t) e(p) r(p) iter

7.74E-02 – 3.67E-01 – 7.57E-01 – 6
5.08E-02 0.9601 2.40E-01 0.9729 5.17E-01 0.8708 6
3.24E-02 0.9187 1.42E-01 1.0645 3.07E-01 1.0624 6
1.69E-02 1.1815 7.81E-02 1.0914 1.66E-01 1.1147 6
9.22E-03 1.0017 4.22E-02 1.0141 9.00E-02 1.1026 6
4.79E-03 1.1059 2.17E-02 1.1221 4.64E-02 1.1166 6

Table 6.1: Example 1, Number of degrees of freedom, meshsizes, errors, rates of convergence, and
Newton iteration count for the fully-mixed RT0 −P0 − P0 −P0 −RT0 approximation.
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Figure 6.1: Example 1, RT1 − P1 − P1 − P1 − RT1 approximation of Cauchy stress components,
magnitude of the velocity, and pressure field (top plots); total flux components, magnitude of the
concentration gradient and concentration field (bottom plots).
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Concepción, Chile, (2020).
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Figure 6.2: Example 2, RT0 − P0 − P0 − P0 − RT0 approximation of Cauchy stress components,
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