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Abstract. The aim of this paper is to study the numerical approximation of the displacement
formulation of the acoustic eigenvalue problem in the axisymmetric case. We show that spurious
eigenvalues appears when lowest order triangular Raviart-Thomas elements are used to discretize
the problem. We propose an alternative weak formulation of the spectral problem which allows us to
avoid this drawback. A discretization based on the same finite elements is proposed and analyzed.
Quasi-optimal order spectral convergence is proved, as well as absence of spurious modes. Numerical
experiments are reported which agree with the theoretical results.
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1. Introduction. The aim of this paper is to study the numerical approxima-
tion of a displacement formulation of the axisymmetric acoustic eigenvalue problem.
More precisely, we focus on axisymmetric solutions of the following three-dimensional
eigenvalue problem: find λ and ŭ 6= 0 such that

−∇(div ŭ) = λŭ in Ω ⊂ R3,

ŭ · n̆ = 0 on ∂Ω,

where ŭ = (ux, uy, uz)
> and n̆ is a unit normal vector. The classical weak formulation

of the previous problem reads: find (λ, ŭ) ∈ R×H0(div; Ω), such that∫
Ω

div ŭdiv v̆ = λ

∫
Ω

ŭ · v̆ ∀ v̆ ∈ H0(div; Ω),(1.1)

where H0(div; Ω) :=
{
v ∈ L2(Ω)3 : div v ∈ L2(Ω),v · n̆ = 0 on ∂Ω

}
. It is known that

this problem is well defined and it has a countable sequence of eigenpairs (λn, ŭn), n ∈
N, with λn →∞. λ = 0 is also an eigenvalue of the problem with associated eigenspace
H0(div0; Ω) := {v ∈ H0(div; Ω) : div v = 0 in Ω}. From the physical point of view
these eigenfunctions are spurious solutions of the acoustic problem.

We restrict our attention to the case where the 3D domain Ω is a volume of
revolution about the z-axis and look for solutions to (1.1) that are independent of
the angular variable θ. In such a case, in order to reduce the dimension and thereby
the computational effort, it is convenient to consider a cylindrical coordinate system
(r, θ, z). The attached difficulty usually resides in the analysis and derivation of proper
schemes to discretize axisymmetric formulations, due to the presence of singularities
on the rotation axis r = 0 associated to the factor 1/r that appears in some integrals.
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We write ŭ in cylindrical coordinates ŭ = (ŭr, ŭθ, ŭz)
T = ŭrez + ŭθeθ + ŭzez.

Since we look for solutions of (1.1) that do not depend on θ, we define D := {(r, z) ∈
(0,∞)× R : (r, 0, z) ∈ Ω} which corresponds to a half section of Ω. Moreover, we set
(in cylindrical coordinates) ũθ(r, z) := ŭθ(r, θ, z) and

ũ(r, z) := (ũr(r, z), ũz(r, z))
> with ũr(r, z) := ŭr(r, θ, z) and ũz(r, z) := ŭz(r, θ, z),

for all θ ∈ R and (r, z) ∈ D. A change of variable in (1.1) leads to the following
formulation:

Problem 1. Find (λ, ũ) ∈ R×H0
1(divaxi;D), such that∫

D

divaxi ũdivaxi ṽ r dr dz = λ

∫
D

ũ · ṽ r dr dz ∀ṽ ∈ H0
1(divaxi;D),(1.2)

where divaxi is the axisymmetric divergence operator defined for all v = (vr, vz) by

(1.3) divaxi(v) := ∂rvr +
1

r
vr + ∂zvz =

1

r
div(rv),

and H0
1(divaxi;D) is an appropriate Sobolev space, whose definition will be recalled

in Section 2.

Remark 1.1. For any function ũθ(r, z), we have that ũθeθ is divergence-free and,
hence, it is an eigenfunction of (1.1) with associated eigenvalue λ = 0. However, as
claimed above, these eigenfunctions are spurious solutions of the acoustic problem.

A similar procedure to solve an axisymmetric three-dimensional Darcy problem has
been considered in [7, 14]. In this case, the authors were able to prove that discretizing
by Raviart-Thomas (RT) elements leads to a convergent method. Moreover they
proved error estimates which have been confirmed by numerical experiments.

Following this approach, Problem 1 could be in principle discretized by the same
kind of finite elements (lowest-order RT). However, the tests we performed show that
this discretization introduces spurious eigenvalues interspersed among the actual ones
of the acoustic problem. To report numerical evidence of this behavior, we applied
this approach to a rectangular box. Figure 1 shows the eigenvalues computed in the
range [0, 4] (which contains approximations of the 4 smallest positive eigenvalues of
Problem 1) on different meshes. We also include in this figure the exact eigenvalues.
It can be clearly seen from Figure 1 that discretizing this weak formulation leads to
spurious modes.

To give a hint about why these spurious eigenvalues appear, we need to char-
acterize the eigenspace of λ = 0. In Problem 1, the infinite-dimensional eigenspace
associated with λ = 0, consists of pure rotational motions which are not physically
relevant since they do not induce gradients of pressure. However, a suitable numeri-
cal approximation should take care of them. Otherwise, spurious modes may appear
(see, for instance, [11] where spurious modes are reported in a similar fluid-structure
interaction problem). These spurious modes are non-vanishing eigenvalues of the dis-
crete problem that are approximations of λ = 0. They arise as a consequence of the
fact that, in this discretization, the eigenspace associated with λ = 0 is very small.
In fact, it is easy to check that lowest-order RT elements with a vanishing divaxi

are locally of the form ũ = (0, b)>, b ∈ R, namely, vertical translations. However,
Problem 1 has infinitely many other solutions with ur 6= 0, which are approximated
in this discretization by eigenpairs with λ > 0. Because of this, in the discretized



AXISYMMETRIC ACOUSTIC VIBRATION PROBLEM 3

0 1 2 3 4

Fig. 1: Eigenvalues computed by solving Problem 1 with lowest-order RT elements
(dots) and exact eigenvalues (squares) on four meshes with 192, 768, 3072 and 12288
triangles (from bottom to top).

problem, the eigenvalue λ = 0 is approximated by several spurious eigenvalues which
are interspersed among the physical ones.

To avoid this drawback, in this paper we propose a new variational formulation
equivalent to Problem 1 whose discretization will not introduce spurious eigenvalues.
The discretization is also based on lowest-order RT finite elements but for a different
variable u(r, z) := rũ(r, z). By using the spectral theory for non-compact operators
from [4, 5], we prove its spectral convergence and establish quasi-optimal-order error
estimates.

The outline of the paper is as follows. In Section 2, we introduce some function
spaces that will be used in the sequel. Then, in Section 3, we give an alternative weak
formulation to Problem 1 and prove that it is equivalent to the spectral problem for
a self-adjoint compact operator. This allows us to obtain a thorough characterization
of the solutions of the eigenproblem. In Section 4, we introduce a finite element
discretization. We prove quasi-optimal-order spectral convergence and absence of
spurious modes. Finally, in Section 5, we report numerical tests that allow us to asses
the convergence properties of the method and to check that it is not polluted with
spurious modes, thus confirming the theoretical results.

2. Weighted Sobolev spaces. In this section we define appropriate weighted
Sobolev spaces that will be used in the sequel and establish some of their properties.
More general results can be found in [7, 3, 12, 10, 2].

Let D ⊂ (0,∞)×R be a convex polygonal domain. Let Ω be the solid of revolution
generated by D. In order to prove optimal order of convergence for our numerical
method we will also assume the following shift property:

H.1 for all f̆ ∈ H1(Ω) that does not depend on the angular coordinate θ, the
solution q̆ ∈ H1(Ω) of

−∆q̆ = f̆ in Ω,
∂q̆

∂n̆
= 0 on ∂Ω,

satisfies q̆ ∈ H3(Ω).
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Let us emphasize that this assumption is only needed to prove quasi-optimal order
of convergence. In fact, convergence holds true without the need of this assumption.

For ω ⊂ D, α ∈ R and p ∈ [1,∞), let Lpα(ω) be the weighted Lebesgue space of
measurable functions v on ω bounded in the norm

‖v‖Lpα(ω) :=

(∫
ω

|v|prα dr dz
)1/p

.

We denote by Hk
1(ω) the weighted Sobolev spaces of functions in L2

1(ω), whose weak
derivatives up to order k are in L2

1(ω). The following result will be used in the sequel
(see [12, Remarque 4.1]).

Remark 2.1. There holds H1
1(D) ↪→ L2

−1+ε(D) continuously for all ε > 0.

Throughout the paper, we will use the following Hilbert spaces:

H̃1
1(D) := H1

1(D) ∩ L2
−1(D),

Ĥ2
1(D) :=

{
v ∈ H2

1(D) : ∂rv ∈ L2
−1(D)

}
,

H1(divaxi;D) :=
{
v ∈ L2

1(D)2 : divaxi v ∈ L2
1(D)

}
,

H−1(div;D) :=
{
v ∈ L2

−1(D)2 : div v ∈ L2
−1(D)

}
,

where divaxi has been defined in (1.3), with their respective norms defined by

‖v‖2H̃1
1(D) := ‖v‖2H1

1(D) + ‖v‖2L2
−1(D) ,

‖v‖2Ĥ2
1(D) := ‖v‖2H2

1(D) + ‖∂rv‖2L2
−1(D) ,

‖v‖2H1(divaxi;D) := ‖v‖2L2
1(D) + ‖divaxi v‖2L2

1(D) ,

‖v‖2H−1(div;D) := ‖v‖2L2
−1(D) + ‖div v‖2L2

−1(D) .

On the boundary, let Γ0 be the intersection of ∂D and the z -axis, namely, Γ0 :=
{(r, z) ∈ ∂D : r = 0} and Γ := ∂D \ Γ0. Finally, we define the following spaces:

H0
1(divaxi;D) := {v ∈ H1(divaxi;D) : v · n = 0 on ∂D} ,

H0
−1(div;D) := {v ∈ H−1(div;D) : v · n = 0 on ∂D} ,

K̃ :=
{
u ∈ H0

1(divaxi;D) : divaxi u = 0 in D
}
,

where n := (nr, nz) denotes the outward unit normal.
The following lemma gives a Helmholtz-like decomposition of H0

1(divaxi;D), which
will be used below.

Lemma 2.2. Let G̃ := H0
1(divaxi;D) ∩∇(H1

1(D)). Then,

H0
1(divaxi;D) := H1

1(D)⊕ G̃,

is an orthogonal decomposition in both, L2
1(D)2 and H1(divaxi;D). Moreover, for all

v ∈ H0
1(divaxi;D), if v = χ̂+ η̂ with χ̂ ∈ G̃ and η̂ ∈ K̃, then

(2.1) ‖χ̂‖H̃1
1(D)×H1

1(D) ≤ C ‖divaxi χ̂‖L2
1(D) .
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Proof. The orthogonal decomposition is a consequence of [3, Lemma 2]. Thus,
for any v ∈ H0

1(divaxi;D) we write v = χ̂ + η̂ with χ̂ = ∇p, p ∈ H1
1(D) and η̂ =

(η̂r, η̂z) ∈ K̃. We define ∀(r, θ, z) polar coordinate of a point in Ω

p̆(r, θ, z) := p(r, z), χ̆(r, θ, z) := ∇p̆(r, θ, z) = ∂rp(r, z)er + ∂zp(r, z)ez,

η̆(r, θ, z) := η̂r(r, z)er + η̂z(r, z)ez and v̆ := χ̆+ η̆.

Since v ∈ H0
1(divaxi;D) and η̂ ∈ K̃, then v̆ ∈ H0(div; Ω) and div η̆ = 0. Moreover,

p̆ ∈ H1(Ω)/R is the solution to∫
Ω

∇p̆ · ∇q̆ = −
∫

Ω

q̆ div v̆ ∀q̆ ∈ H1(Ω)/R.

From the convexity assumption on Ω we know that p̆ ∈ H2(Ω) and it satisfies (see [9,
Theorem 1.8])

‖∇p̆‖H1(Ω) ≤ C ‖div v̆‖L2(Ω) .

Therefore, estimate (2.1) follows from the previous inequality and the fact that
‖div v̆‖L2(Ω) = ‖div χ̆‖L2(Ω) =

√
2π ‖divaxi χ̂‖L2

1(D) and ‖∇p̆‖H1(Ω) = ‖χ̆‖H1(Ω) =
√

2π ‖χ̂‖H̃1
1(D)×H1

1(D), where the last equality is consequence of the isomorphism be-

tween the space of axisymmetric functions in H1(Ω)3 and H̃1
1(D)×H1

1(D) (see [2]).

Throughout the paper, C with or without subscripts will be used for positive
constants not necessarily the same at each occurrence, but always independent of r.

3. Weak formulation for the axisymmetric problem. As claimed in the
introduction, a direct discretization of Problem 1 by RT elements leads to spurious
eigenvalues. In what follows we introduce an alternative formulation which overcomes
this drawback and will lead, after discretization, to a well posed generalized eigenvalue
problem.

For the analysis of Problem 1, we consider the change of variable u := rũ which
leads to the following:

Problem 2. Find (λ,u) ∈ R×H0
−1(div;D), such that∫

D

1

r
divu div v dr dz = λ

∫
D

1

r
u · v dr dz ∀v ∈ H0

−1(div;D).(3.1)

Problems 1 and 2 are equivalent in the sense that (λ, ũ) is a solution of Problem 1 if
and only if (λ, rũ) solves Problem 2. In fact, this is an immediate consequence of the
following elementary relation:

Lemma 3.1. v ∈ H0
−1(div;D) if and only if v/r ∈ H0

1(divaxi;D). Moreover

(3.2)
∥∥∥v
r

∥∥∥
L2
1(D)

= ‖v‖L2
−1(D) and

∥∥∥divaxi

(v
r

)∥∥∥
L2
1(D)

= ‖div v‖L2
−1(D) .

In what follows we will show that the discretization of Problem 2 does not lead to
spurious modes. Thus, we focus on its analysis. With this aim we introduce the
solution operator:

T : H0
−1(div;D) −→ H0

−1(div;D),

f 7−→ Tf := w,
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with w ∈ H0
−1(div;D) such that

(3.3)∫
D

1

r
divw div v dr dz +

∫
D

1

r
w · v dr dz =

∫
D

1

r
f · v dr dz ∀v ∈ H0

−1(div;D).

The well-posedness of problem (3.3) is a direct consequence of Lax-Milgram lemma,
whence T is well-defined, self-adjoint and continuous. Note that Tu = µu, with
µ 6= 0, if and only if (λ,u) is a solution of Problem 2 with λ+ 1 = 1

µ . Moreover, since
the eigenvalues of Problem 2 are positive, then those of T satisfy 0 < µ ≤ 1.

Clearly µ = 1 is an eigenvalue of T (correspondingly, λ = 0 is an eigenvalue of
Problem 2) with associated eigenspace

(3.4) K :=
{
u ∈ H0

−1(div;D) : divu = 0 ∈ D
}
,

which is a closed subspace of H0
−1(div;D).

The following lemma provides an orthogonal decomposition of H0
−1(div;D).

Lemma 3.2. Let G := {rv : v ∈ G̃}. Then,

(3.5) H0
−1(div;D) := K ⊕G,

is an orthogonal decomposition in L2
−1(D) and H0

−1(div;D). Moreover, for all v ∈
H0
−1(div;D), if v = χ+ η with χ ∈ G and η ∈K,∥∥∥χ

r

∥∥∥
H̃1

1(D)×H1
1(D)

≤ C ‖divχ‖L2
−1(D) .(3.6)

Proof. Let u ∈ H0
−1(div;D). From Lemma 3.1 it follows that u/r ∈ H0

1(divaxi;D)
and, from Lemma 2.2 we write

u

r
= η̂ + χ̂,

where χ̂ ∈ G̃ and η̂ ∈ K̃. Let η := rη̂ and χ := rχ̂. Clearly χ belongs to G and
η ∈K, the latter because (cf. (1.3))

div(η) = div(rη̂) = r divaxi(η̂) = 0.

Moreover, η and χ are L2
−1(D)-orthogonal since η̂ and χ̂ are L2

1(D)-orthogonal (see
Lemma 2.2), namely, ∫

D

1

r
η · χ =

∫
D

1

r
(rη̂) · (rχ̂) = 0.

Finally, (3.6) follows from (2.1), (3.2) and the fact that χ̂ = χ/r.

We notice that T |K is not compact. In fact, T |K is the identity on the infinite-
dimensional subspaceK ⊂ H0

−1(div;D). However, we will show thatG is an invariant
subspace for T and

T̂ := T |G : G→ G

is compact. Therefore, since σ(T ) = σ(T̂ ) ∪ {1} (cf. [1]) to obtain a spectral charac-

terization of T it is enough to know the spectrum of T̂ . The following lemma shows
an additional regularity result which will be used with this aim.

Lemma 3.3. If f ∈ G, then u = T̂f ∈ G satisfies∥∥∥∥divu

r

∥∥∥∥
H1

1(D)

+
∥∥∥u
r

∥∥∥
H̃1

1(D)×H1
1(D)

≤ C ‖f‖L2
−1(D) .(3.7)

Consequently, T̂ : G→ G is compact.
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Proof. Let f ∈ G and u = T̂f ∈ G. By taking w = u in (3.3) we have that∥∥∥u
r

∥∥∥
L2
1(D)

+

∥∥∥∥divu

r

∥∥∥∥
L2
1(D)

≤ ‖f‖L2
−1(D) .(3.8)

Thus, the bound in (3.7) for u/r follows from this equation and estimate (3.6). On
the other hand, since D(D)2 ⊂ H0

−1(div;D), by integration by parts in (3.3) we obtain

∇
(

1

r
divu

)
=
u

r
− f
r
∈ G̃.(3.9)

and hence from (3.8)∥∥∥∥∇(1

r
divu

)∥∥∥∥
L2
1(D)

≤
∥∥∥u
r

∥∥∥
L2
1(D)

+ ‖f‖L2
−1(D) ≤ C ‖f‖L2

−1(D) .

Then, the estimate in (3.7) for
∥∥divu

r

∥∥
H1

1(D)
follows from the above equation and (3.8).

Next, to prove that T̂ is compact, we show that for any bounded sequence
{fn}n∈N ∈ G, the sequence {un}n∈N := {T̂fn}n∈N ∈ G contains a converging sub-

sequence. From the definition of G, un = rũn with ũn ∈ G̃, n ∈ N. Moreover, from
the definition of divaxi (cf. (1.3)) and estimate (3.7) we notice that {ũn}n∈N satisfies

‖ũ‖H̃1
1(D)×H1

1(D) + ‖divaxi ũ‖H1
1(D) ≤ C ‖fn‖L2

−1(D) .

Then {ũn}n∈N and {divaxi ũn}n∈N are bounded in H̃1
1(D) × H1

1(D) and H1
1(D), re-

spectively. On the other hand, we recall that the embedding H1
1(D) ↪→ L2

1(D) is
compact (see, [12, Lemme 4.2]). Thus, since the embedding H1(Ω)3 ↪→ L2(Ω)3 is also

compact, then the embedding H̃1
1(D) × H1

1(D) ↪→ L2
1(D)2 is compact, too. There-

fore it follows that {ũn}n∈N and {divaxi ũn}n∈N contain a converging (not relabeled)
subsequence such that ũn → ũ ∈ L2

1(D)2 and divaxi ũn → divaxi ũ ∈ L2
1(D). Hence,

there exists a converging (not relabeled) subsequence of {un}n∈N such that un → rũ
in H−1(div;D), which proves the result.

From the previous result we obtain the following spectral characterization of T .

Theorem 3.4. The spectrum of T decomposes as follows:

σ(T ) = {1} ∪ {µn}n∈N ∪ {0} .

Moreover:
• µ = 1 is an eigenvalue of T with infinite-dimensional eigenspace K;
• {µn}n∈N is a sequence of finite-multiplicity eigenvalues µn ∈ (0, 1), n ∈ N,

which converge to 0;
• µ = 0 is not an eigenvalue of T .

Proof. As claimed above µ = 1 is an eigenvalue of T with corresponding eigenspace
K and σ(T ) = σ(T̂ ) ∪ {1}. Thus, the spectralcharacterization of T is a consequence

of the compactness of T̂ . Moreover, from the relation between the eigenvalues of T
and the solution of Problem 2, it is easy to check that 0 < µn < 1. Finally, it is clear
that µ = 0 is not an eigenvalue of T̂ .
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Fig. 2: Left: Decomposition of the finite element triangulation Th. Right: Notations
used in the proof of Lemma 4.4.

4. Finite element approximation. In this section, we introduce a Galerkin
approximation of Problem 2 and prove some convergence results. We assume that
{Th}h>0 is a regular family of partitions of D into triangles T ; parameter h stands
for the mesh-size and, from now on, we assume that any generic constant denoted by
C is not only independent of r but also independent of h. We denote

T 0
h := {T ∈ Th : T ∩ Γ0 6= ∅} , T 1

h = Th \ T 0
h ,

and define the open sets D0, D1 ⊂ D such that D0 :=
⋃
T∈T 0

h
T , and D1 :=

⋃
T∈T 1

h
T .

We also define Γ1 := ∂D0 ∩ ∂D1. We assume that the meshes are such that Γ1 is
parallel to the z -axis (see Figure 2 left). For any T ∈ Th, we define rmax(T ) :=
max{r : (r, z) ∈ T} and rmin(T ) := min{r : (r, z) ∈ T}. The following inequalities
hold: for all T ∈ T 1

h ,

rmin(T ) ≥ ChT , rmax(T ) ≤ Crmin(T ).(4.1)

Moreover, clearly, rmax(T ) < ChT ∀T ∈ T 0
h .

For space discretization we use lowest-order RT elements:
(4.2)
Rh :=

{
vh ∈ H−1(div;D) : vh|T ∈ RT (T ) ∀T ∈ Th and vh|T := 0 ∀T ∈ T 0

h

}
,

where

RT (T ) :=
{
vh ∈ P1(T )2 : vh(x) = a+ bx, a ∈ R2, b ∈ R, x ∈ T

}
.

Whence, the natural approximation space for H0
−1(div;D) is

R0
h := Rh ∩H0

−1(div;D),

and the Galerkin approximation of Problem 2 reads as follows:

Problem 3. Find (λh,uh) ∈ R×R0
h, such that∫

D

1

r
divuh div vhdrdz = λ

∫
D

1

r
uh · vhdrdz ∀v ∈ R0

h.(4.3)
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We introduce the corresponding discrete solution operator:

Th : H0
−1(div;D) −→ H0

−1(div;D),

f 7−→ Thf := wh,

with wh ∈ R0
h such that

(4.4)

∫
D

1

r
divwh div vh dr dz+

∫
D

1

r
wh ·vh dr dz =

∫
D

1

r
f ·vh dr dz ∀vh ∈ R0

h.

As a consequence of Lax-Milgram Lemma, Th is well-defined, self-adjoint, continuous
and with finite range. Clearly λh is an eigenvalue of Problem 3 if an only if 1

1+λh
∈

σ(Th). To prove convergence and error estimates for the proposed Galerkin scheme we
will use the results on spectral approximation for non-compact operators from [4, 5].
With this aim, we consider the operator Th restricted to R0

h, which is an invariant
subspace of this operator.

To use the theory from [4, 5] in our case, we need to prove the following two
properties:

P1: lim
h→0

∥∥∥(T − Th) |R0
h

∥∥∥
H−1(div;D)

= 0.

P2: for each eigenfunction u of T associated with λ 6= 1,

lim
h→0

inf
vh∈R0

h

‖u− vh‖H−1(div;D) = 0.

To prove property P1, we will establish some preliminary results. Let IRh be
the classical Raviart-Thomas interpolant in H(div, D) (see [15]), we introduce Ih :
H−1(div;D)∩H1(D)→ R0

h such that Ihu is defined differently in the triangles in T 0
h

and T 1
h . On the former, we just define Ihu = 0. On the latter, Ihu is the classical RT

interpolant modified in such a way that Ihu ∈ H(div, D). With this aim, the degrees
of freedom associated with the edges ` lying on Γ1 are defined as Ihu|` · n = 0.

Next, we give an estimate for IRh u− Ihu in the H−1(div;D)-norm which will be
used in the sequel. With this aim the consider the following lemma.

Lemma 4.1. Let f ∈ G and u = T̂f ∈ G then, there exists q ∈ (2, 6) such that

(4.5)
∥∥∥∇(ur

r

)∥∥∥
Lq1(D)

+
∥∥∥∇(uz

r

)∥∥∥
Lq1(D)

≤ C ‖f‖L2
−1(D) .

Additionally, if H.1 holds true, then∥∥∥u
r

∥∥∥
H2

1(D)×Ĥ2
1(D)

≤ C ‖f‖L2
−1(D) .(4.6)

Proof. Let f ∈ G and u = T̂f ∈ G then, from Lemma 3.3 and the definition of
G it follows that there exists ũ = u/r ∈ G̃ such that (divu)/r = divaxi ũ ∈ H1

1(D)
and

(4.7) ‖divaxi ũ‖H1
1(D) ≤ C ‖f‖L2

−1(D) .

By proceeding as in Lemma 2.2 we write ũ = ∇p, p ∈ H1
1(D) and define for every

point in Ω with polar coordinate (r, θ, z)

p̆(r, θ, z) := p(r, z), ŭ(r, θ, z) := ∇p̆(r, θ, z) = ∂rp(r, z)er + ∂zp(r, z)ez
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where p̆ ∈ H1(Ω)/R is the solution to∫
Ω

∇p̆ · ∇q̆ = −
∫

Ω

q̆ div ŭ ∀q̆ ∈ H1(Ω)/R.

Since div ŭ(r, θ, z) = divaxi ũ(r, z), from (4.7) it follows that div ŭ ∈ H1(Ω) and

(4.8) ‖div ŭ‖H1(Ω) =
√

2π ‖divaxi ũ‖H1
1(D) ≤ C ‖f‖L2

−1(D) .

Therefore, from the convexity of Ω and additional regularity results for the Laplacian
it follows that there exists s ∈ (0, 1) such that p̆ ∈ H2+s(Ω) and

‖p̆‖H2+s(Ω) ≤ C ‖div ŭ‖H1(Ω) .

We notice that ŭ = ∇p̆ ∈ H1+s(Ω)3 and thus ∇ŭr,∇ŭz ∈ Hs(Ω)3. On the other
hand, since the embedding Hs(Ω) ↪→ Lq(Ω) is continuous for q = 6/(3 − 2s) ∈ (2, 6)
(see [6, Theorem 6.7]), from the previous estimate and (4.8) we obtain that

‖∇ŭr‖Lq(Ω) + ‖∇ŭz‖Lq(Ω) ≤ C
(
‖∇ŭr‖Hs(Ω) + ‖∇ŭz‖Hs(Ω)

)
≤ C ‖ŭ‖H1+s(Ω) ≤ C ‖f‖L2

−1(D) .

Estimate (4.5) follows from the previous inequality and the relation between ŭ, ũ and
u. Finally, if H.1 holds true, then p̆ ∈ H3(Ω) and

‖∇p̆‖H2(Ω) ≤ C ‖div ŭ‖H1(Ω) .

Therefore, estimate (4.6) follows from the previous bound, (4.8) and the fact that
‖∇p̆‖2,Ω = ‖ŭ‖2,Ω ≥ C ‖ũ‖H2

1(D)×Ĥ2
1(D), where the last inequality is a consequence of

the isomorphism between the space of axisymmetric functions in H2(Ω)3 and H2
1(D)×

Ĥ2
1(D) (see [2]).

Lemma 4.2. There exists C > 0 such that, for each f ∈ G and u := Tf

(4.9)
∑
T∈T 1

h

∥∥IRh u− Ihu∥∥2

L2
−1(T )

≤ Ch2 ‖f‖2L2
−1(D) .

Moreover for some q ∈ (2, 6)

(4.10)
∑
T∈T 1

h

∥∥div(IRh u− Ihu)
∥∥2

L2
−1(T )

≤ Ch2−4/q ‖f‖2L2
−1(D) .

Additionally, if H.1 holds true then, for all ε > 0, there exist C > 0 such that

(4.11)
∑
T∈T 1

h

∥∥div(IRh u− Ihu)
∥∥2

L2
−1(T )

≤ Ch2−2ε ‖f‖2L2
−1(D) .

Proof. Let T ah the set of triangles in T 1
h with an edge ` lying on Γ1. We notice

that IRh u− Ihu = 0 for all T ∈ T 1
h \ T ah and thus∑

T∈T 1
h

∥∥IRh u− Ihu∥∥2

L2
−1(T )

=
∑
T∈T ah

∥∥IRh u− Ihu∥∥2

L2
−1(T )

.
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Let ϕ` be the standard basis function of lowest-order RT elements associated with
edge `, and T ∈ T ah such that Γ1 ∩ T = `. Then

∥∥IRh u− Ihu∥∥2

L2
−1(T )

=

(
1

|`|

∫
`

|u · n|
)2

‖ϕ`‖
2
L2
−1(T ) ,(4.12)

∥∥div(IRh u− Ihu)
∥∥2

L2
−1(T )

=

(
1

|`|

∫
`

|u · n|
)2

‖divϕ`‖
2
L2
−1(T ) .(4.13)

It is straightforward to bound the norms of the basis functions as follows:

‖ϕ`‖
2
L2
−1(T ) =

∫
T

1

r
ϕ2
` ≤

1

rmin(T )

∫
T

ϕ2
` ≤

2|T |
3hT

≤ ChT ,(4.14)

‖divϕ`‖
2
L2
−1(T ) =

∫
T

1

r
(divϕ`)

2 ≤ 1

rmin(T )

∫
T

(divϕ`)
2 ≤ C

hT
.(4.15)

On the other hand, from the assumption on Γ1, Cauchy-Schwarz inequality and a
suitable trace theorem (see [3, Lemma 4]) we have

(4.16)
1

|`|

∫
`

|u ·n| ≤ C
(∫

`

r
∣∣∣ur
r

∣∣∣2)1/2

≤ C
{
h
−1/2
T`

∥∥∥ur
r

∥∥∥
L2
1(T`)

+ h
1/2
T`

∣∣∣ur
r

∣∣∣
H1

1(T`)

}
,

here T` ∈ T 0
h is such that Γ1 ∩ T` = `. From (4.12), (4.14) and the previous estimates

we obtain∑
T∈T 1

h

∥∥IRh u− Ihu∥∥2

L2
−1(T )

≤Ch
∑
`⊂Γ1

(∫
`

|u · n|
|`|

)2

≤C
(∥∥∥ur

r

∥∥∥2

L2
1(D0)

+ h2
∣∣∣ur
r

∣∣∣2
H1

1(D0)

)
.

Since f ∈ G, u ∈ G, too, we have that ur/r ∈ H̃1
1(D) and thus vanishes on Γ0. Then

(4.9) follows from a Poincaré-like inequality and Lemma 3.3:∑
T∈T 1

h

∥∥IRh u− Ihu∥∥2

L2
−1(T )

≤Ch2
∣∣∣ur
r

∣∣∣2
H1

1(D0)
≤ Ch2

∥∥∥u
r

∥∥∥2

H̃1
1(D)×H1

1(D)
≤ Ch2 ‖f‖2L2

−1(D) .

To prove (4.10) we proceed as above but we apply (4.13) and (4.15) instead of (4.12)
and (4.14), respectively

(4.17)
∑
T∈T 1

h

∥∥div(IRh u− Ihu)
∥∥2

L2
−1(T )

≤ Ch−1
∑
l⊂Γ1

(∫
l

1

|l|
|u · n|

)2

≤
∣∣∣ur
r

∣∣∣2
H1

1(D0)
.

To estimate the last term of the previous equation we recall that there exists s ∈ (0, 1)
such that |∇(ur/r)| ∈ Lq1(D), for q = 6/(3− 2s) ∈ (2, 6) (cf. Lemma 4.1). Moreover,

we notice that r|∇(ur/r)|2 can be written as r|∇(ur/r)|2 = r
2
q |∇(ur/r)|2r1− 2

q where

r
2
q |∇(ur/r)|2 ∈ L

q
2 (D) and r1− 2

q ∈ Lq
∗
(D), here q∗ is such that 1/q∗+2/q = 1. Thus,

from Hölder inequality we obtain

∣∣∣ur
r

∣∣∣2
H1

1(D0)
≤
(∫

D0

r
∣∣∣∇(ur

r

)∣∣∣q) 2
q
(∫

D0

r

) 1
q∗

≤ Ch2− 4
q

∥∥∥∇(ur
r

)∥∥∥2

Lq1(D)
.

Hence, (4.10) follows from the previous inequalities and Lemma 4.1 (cf. (4.5)).
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On the other hand, when H.1 holds true, from Lemma 4.1 (cf. (4.6)) it follows
that ∇(ur/r) ∈ H1

1(D)2. Then, the last term of (4.17) can be bounded by applying
Remark 2.1 as follows∣∣∣ur

r

∣∣∣2
H1

1(D0)
≤ Ch2−2ε

∥∥∥∇(ur
r

)∥∥∥2

L2
−1+2ε(D)

≤ Ch2−2ε
∥∥∥u
r

∥∥∥2

H2
1(D)

,

for all ε > 0. Therefore (4.11) follows from (4.17) the previous inequality and
Lemma 4.1 (cf. (4.6)).

Remark 4.3. Constant C in (4.11) depends on ε. Therefore, from now on, when-
ever (4.11) is used, the generic constant C will denote a constant independent of r
and h but depending on ε.

Next we notice that µh = 1 is an eigenvalue of Th with associated eigenspace

Kh :=
{
vh ∈ R0

h : div vh = 0
}
⊂K,

so that Th restricted to Kh is the identity, too. Let Gh := K
⊥Rh

h . We also notice
that Gh 6⊂ G. However, the following lemma shows that the divergence-free terms in
the Helmholtz decomposition of Gh are asymptotically negligible.

Lemma 4.4. For fh ∈ Gh, there exist χ ∈ G and η ∈ K such that fh = χ + η
and there hold:

a) χ
r ∈ H̃1

1(D)×H1
1(D) and

∥∥χ
r

∥∥
H̃1

1(D)×H1
1(D)

≤ C ‖div fh‖L2
−1(D),

b) ‖η‖L2
−1(D) ≤ Ch1−ε ‖div fh‖L2

−1(D) for all ε > 0.

Proof. Since fh ∈ Gh ⊂ H0
−1(div;D), the decomposition fh = χ+η follows from

Lemma 3.2. Moreover,∥∥∥χ
r

∥∥∥
H̃1

1(D)×H1
1(D)

≤ C ‖divχ‖L2
−1(D) = C ‖div fh‖L2

−1(D) ,

where the first inequality follows from (3.6). Thus we conclude (a). To prove (b) we
first notice that fh = 0 in D0 (cf. (4.2)), then

‖η‖2L2
−1(D) =

∫
D

1

r
η · (fh − χ) =

∫
D0

1

r
η · χ+

∫
D1

1

r
η · (fh − χ) .

We add and subtract the classical RT interpolant IRh and write η = fh − χ

‖η‖2L2
−1(D) =−

∫
D0

1

r
η · χ+

∫
D1

1

r
η ·
(
fh − IRh χ

)
+

∫
D1

1

r
η ·
(
IRh χ− χ

)
=−

∫
D0

1

r
η · χ−

∫
D1

1

r
χ ·
(
fh − IRh χ

)
+

∫
D1

1

r
fh ·

(
fh − IRh χ

)
+

∫
D1

1

r
η ·
(
IRh χ− χ

)
= I1 + I2 + I3 + I4.(4.18)

Now we estimate each term separately. We begin with the term I1 by using the
Cauchy-Schwarz and Young inequalities,

I1 ≤ ‖χ‖L2
−1(D0) ‖η‖L2

−1(D0) ≤
3

2
‖χ‖2L2

−1(D0) +
1

6
‖η‖2L2

−1(D) .

The first term on the right-hand side can be estimated by using Remark 2.1 and
recalling that χr/r belongs to L2

−1(D) (cf. (3.6)):
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‖χ‖21/r,D0
≤
∑
T∈T 0

h

(
r2
max(T )

∫
T

1

r

∣∣∣χr
r

∣∣∣2 + r2−2ε
max(T )

∫
T

1

r1−2ε

∣∣∣χz
r

∣∣∣2)

≤ Ch2
∥∥∥χr
r

∥∥∥2

L2
−1(D)

+ Ch2−2ε
∥∥∥χz
r

∥∥∥2

L2
−1+2ε(D)

≤ Ch2−2ε
∥∥∥χ
r

∥∥∥2

H̃1
1(D)×H1

1(D)
,(4.19)

for all ε > 0. Then, from the two previous inequalities we have

I1 ≤ Ch2−2ε
∥∥∥χ
r

∥∥∥2

H̃1
1(D)×H1

1(D)
+

1

6
‖η‖2L2

−1(D) .(4.20)

To deal with I2 we notice that divχ = div fh and recall that (see, [8, Lemma 3.7])

(4.21) div
(
IRh χ

)
= Ph (divχ) = Ph (div fh) = div fh in D,

where Ph is the L2-projection onto the space of piecewise constant functions. We note
that although div

(
fh − IRh χ

)
= 0 and χ belongs to G, the term I2 does not vanishes

because IRh χ /∈ R0
h and thus (fh − IRh χ) /∈Kh.

Since χ · n = 0 on ∂D and χ = r ∇q with q ∈ H1
1(D) then, by integration by

parts we obtain
(4.22)

I2 = −
∫
D1

∇q ·
(
fh − IRh χ

)
=

∫
D1

q div
(
fh − IRh χ

)
−
∫
∂D1

IRh χ·nq = −
∫

Γ1

IRh χ·nq.

To estimate the last term in the previous equation we recall that div fh = 0 in D0

thus, from (4.21), div IRh χ = 0 in D0, too. Therefore, by integration by parts again,
we have

(4.23)

∫
Γ1

IRh χ·nq =

∫
D0

∇q·IRh χ+

∫
D0

q div IRh χ =

∫
D0

χ

r
·(IRh χ−χ)+‖χ‖2L2

−1(D0) .

By applying standard error estimates for the RT interpolant it follows that
(4.24)∫

D0

χ

r
· (IRh χ− χ) ≤

∥∥∥χ
r

∥∥∥
L2(D0)

∥∥χ− IRh χ∥∥L2(D0)
≤ Ch

∥∥∥χ
r

∥∥∥
L2(D0)

‖∇χ‖L2(D0) .

Since ∇χ = r∇(χ/r) + (χr, 0)> it is straightforward to write

(4.25) ‖∇χ‖L2(D0) ≤
∥∥∥r∇(χ

r

)∥∥∥
L2(D0)

+ ‖χr‖L2(D0) ≤ Ch
1/2
∥∥∥χ
r

∥∥∥
H̃1

1(D)×H1
1(D)

.

From (4.22)-(4.25), (4.19), by estimating the term ‖χ/r‖L2(D0) as in (4.19) it follows
that
(4.26)

I2 ≤ ‖χ‖2L2
−1(D0) + Ch3/2

∥∥∥χ
r

∥∥∥
L2(D0)

∥∥∥χ
r

∥∥∥
H̃1

1(D)×H1
1(D)

≤ Ch2−2ε
∥∥∥χ
r

∥∥∥2

H̃1
1(D)×H1

1(D)
,

for all ε > 0. To estimate I3 we first recall that

div
(
fh − IRh χ

)
= 0 in D(

fh − IRh χ
)
· n = 0 on ∂D.(4.27)
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From [13] it follows that fh − IRh χ belongs to curl(L0
h) where L0

h is defined by:

L0
h :=

{
ψh ∈ H1

0(D) : ψh|T ∈ P1(T ) ∀T ∈ Th
}
.

Let {φj}Nj=1 be the nodal basis of L0
h and {xj}Nj=1 the set of inner vertices of the

triangulation. Recall that φj(xi) = δij for i, j = 1, · · · , N . We order these basis
functions so that the first N1 of them correspond to vertices on the boundary Γ1.
Then, there exist αi, i = 1, . . . , N such that

(4.28) fh − IRh χ =

N∑
j=1

αi curlφi =

N1∑
i=1

αi curlφi +

N∑
i=N1+1

αi curlφi.

We notice that curlφj ∈ Kh for j = N1 + 1, · · · , N . Since fh ∈ Gh, these curlφj
are orthogonal to fh in L2

−1(D). Therefore I3 can be rewritten as follows

I3 =

∫
D1

1

r
fh ·

N1∑
i=1

αi curlφi +

N∑
i=N1+1

αi

∫
D

1

r
fh · curlφi =

N1∑
i=1

∫
D1

1

r
fh · αi curlφi.

To estimate the right-hand side of the previous equation we apply Cauchy-Schwarz and
Young inequalities, the decomposition fh = χ+η and the fact that ‖curlφi‖L2(D1) ≤
C for all i = 1, · · · , N1 with a constant C which only depends on the regularity of the
meshes

I3 ≤
1

12

N1∑
i=1

∫
D1∩suppφi

1

r
|fh|2 +

C

h

N1∑
i=1

∫
D1∩suppφi

|αi curlφi|2

≤ 1

6
‖χ‖2L2

−1(D0∪Dφ) +
1

6
‖η‖2L2

−1(D) +
C

h

N1∑
i=1

|αi|2,(4.29)

where Dφ := D1 ∩ {∪N1
i=1supp(φi)} (see Figure 2 right). Next, we write αi, i =

1, · · · , N1 in terms of χ. With this aim we consider a set of edges {e1, . . . , eN1
} in

T 0
h such that for i = 1, . . . , N1, xi is an endpoint of ei while the other endpoint yi

is on Γ0 (see Figure 2 right). We also define {n1, . . . ,nN1} a set of normal vectors
associated with edges {e1, . . . , eN1

}. We multiply (4.28) by ni and integrate over ei,
i = 1, . . . , N1. Then, since fh vanishes in T 0

h and, from the properties of the RT
interpolant we have

N∑
j=1

αj

∫
ei

curlφj · ni =

∫
ei

(
fh − IRh χ

)
· ni =

∫
ei

−IRh χ · ni = ∓
∫
ei

χ · ni.

For j = 1, . . . , N and i = 1, . . . , N1,
∫
ei

curlφj · ni = ±(φj(xi) − φj(yi)) = ±δij .
Thus, from the previous equality we obtain

|αi| =
∣∣∣∣∫
ei

χ · ni
∣∣∣∣ i = 1, · · · , N1.

We use the previous equality to estimate the last term of (4.29). Let Ti ∈ T 0
h be

such that ei is an edge of Ti, i = 1, · · · , N1 (see Figure 2 right), by proceeding as in
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Lemma 4.2 (cf. (4.16)) and (4.19) it follows that

1

h

N1∑
i=1

|αi|2 ≤
1

h

N1∑
i=1

(∫
ei

|χ · ni|
)2

≤ C

h

N1∑
i=1

h2

∫
ei

∣∣∣χ
r

∣∣∣2 r
≤ Ch

N1∑
i=1

{
h−1
Ti

∥∥∥χ
r

∥∥∥2

L2
1(Ti)

+ hTi

∣∣∣χ
r

∣∣∣2
H1

1(Ti)

}
≤ Ch

(
h−1

∥∥∥χ
r

∥∥∥2

L2
1(D0)

+ h
∣∣∣χ
r

∣∣∣2
H1

1(D0)

)
≤ Ch2−2ε

∥∥∥χ
r

∥∥∥2

H̃1
1(D)×H1

1(D)
,

for all ε > 0. We bound I3 from (4.29) and the previous inequality

I3 ≤
1

6
‖χ‖2L2

−1(D0∪Dφ) +
1

6
‖η‖2L2

−1(D) + Ch2−2ε
∥∥∥χ
r

∥∥∥2

H̃1
1(D)×H1

1(D)

≤ 1

6
‖η‖2L2

−1(D) + Ch2−2ε
∥∥∥χ
r

∥∥∥2

H̃1
1(D)×H1

1(D)
,(4.30)

where we have estimated the first term on the right-hand side of (4.29) by proceeding
as in (4.19). Finally we estimate the term I4 of (4.18). By using Cauchy-Schwarz and
Young inequalities we obtain

I4 ≤ ‖χ− Ihχ‖L2
−1(D1) ‖η‖L2

−1(D1) ≤
3

2

∑
T∈T 1

h

∫
T

1

r
|χ− IRh χ|2 +

1

6
‖η‖2L2

−1(D) .

To bound the first term on the right-hand side of the previous equation, we use
standard error estimates for the RT interpolant, the fact that χr/r belongs to L2

−1(D)
(cf. (3.6)) and property (4.1):∑

T∈T 1
h

∫
T

1

r
|χ− IRh χ|2 ≤

∑
T∈T 1

h

C

rmin(T )
h2
T

∫
T

|∇χ|2

≤
∑
T∈T 1

h

C

rmin(T )
h2
T

{∫
T

∣∣∣r∇(χ
r

)∣∣∣2 +

∫
T

∣∣∣χr
r

∣∣∣2}

≤
∑
T∈T 1

h

C rmax(T )

rmin(T )
h2
T

{∫
T

r
∣∣∣∇(χ

r

)∣∣∣2 +

∫
T

1

r

∣∣∣χr
r

∣∣∣2} .(4.31)

Then, from the two previous estimates we obtain

(4.32) I4 ≤ Ch2
∥∥∥χ
r

∥∥∥2

H̃1
1(D)×H1

1(D)
+

1

6
‖η‖2L2

−1(D) .

Therefore, from (4.18), (4.20),(4.26), (4.30) and (4.32) it follows that

‖η‖2L2
−1(D) ≤ Ch

2−2ε
∥∥∥χ
r

∥∥∥2

H̃1
1(D)×H1

1(D)
+

1

2
‖η‖2L2

−1(D) ,

for all ε > 0. Estimate (b) is consequence of the previous inequality and (a).
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Now we are ready to prove the following result, from which we will derive property
P1.

Lemma 4.5. There exists C > 0 such that, for all fh ∈ Gh,

‖(T − Th)fh‖H−1(div;D) ≤ Ch
1−2/q ‖fh‖H−1(div;D) ,

for some q ∈ (2, 6).

Proof. Given fh ∈ Gh, let χ ∈ G and η ∈K be as in Lemma 4.4. Let w := Tχ
and wh := Thχ. The following Cea estimate follows immediately from the definitions
of T and Th:

‖w −wh‖H−1(div;D) ≤ C inf
vh∈R0

h

‖w − vh‖H−1(div;D) .

Then, by setting vh := Ihw it follows that

(4.33) ‖w −wh‖H−1(div;D) ≤ C
(
‖w − Ihw‖L2

−1(D) + ‖div(w − Ihw)‖L2
−1(D)

)
.

Since Ihw vanishes in D0, to estimate the first term on the right-hand side of the
previous equation we decompose D into D0 and D1, and then we add and subtract
the classical RT interpolant IRh :

‖w − Ihw‖L2
−1(D) ≤ C

(
‖w‖L2

−1(D0) +
∥∥w − IRh w∥∥L2

−1(D1)
+
∥∥Ihw − IRh w∥∥L2

−1(D1)

)
.

(4.34)

We estimate the first and second term on the right-hand side of the previous equation
by proceeding as in Lemma 4.4 (cf. (4.19) and (4.31), respectively)

‖w‖L2
−1(D0) ≤ Ch

1−ε
∥∥∥w
r

∥∥∥
H̃1

1(D)×H1
1(D)

,
∥∥w − IRh w∥∥L2

−1(D1)
≤ Ch

∥∥∥w
r

∥∥∥
H̃1

1(D)×H1
1(D)

for all ε > 0. Thus, from the previous inequalities, by applying Lemma 4.2 (cf. (4.9))
to estimate the last term of (4.34), we obtain
(4.35)

‖w − Ihw‖L2
−1(D) ≤ C

(
h1−ε

∥∥∥w
r

∥∥∥
H̃1

1(D)×H1
1(D)

+ h ‖χ‖L2
−1(D)

)
≤ Ch1−ε ‖χ‖L2

−1(D)

for all ε > 0, where the last inequality is a consequence of Lemma 3.3. Similarly, we
decompose the last term in (4.33) as follows:

(4.36) ‖div(w − Ihw)‖L2
−1(D)

≤ C
(
‖divw‖L2

−1(D0) +
∥∥div(Ihw − IRh w)

∥∥
L2
−1(D1)

+
∥∥div(w − IRh w)

∥∥
L2
−1(D1)

)
.

To estimate each term of the previous equation, we proceed as above. Since
(divw)/r ∈ H1

1(D) (see Lemma 3.3), the first term can be estimated by proceeding as
in Lemma 4.4 (cf. (4.19)), whereas for the second term we apply Lemma 4.2 (4.10):

‖divw‖L2
−1(D0) ≤ Ch

1−ε
∥∥∥∥divw

r

∥∥∥∥
H1

1(D)

,∥∥div(w − IRh w)
∥∥

L2
−1(D1)

≤ Ch1−2/q ‖χ‖L2
−1(D) ,

(4.37)
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for all ε > 0 and for some q ∈ (2, 6). Next, the last term in (4.36) is bounded by using
standard error estimates of the RT interpolant as follows
(4.38)∥∥div(w − IRh w)

∥∥2

L2
−1(D1)

=
∑
T∈T 1

h

∫
T

1

r
|div(w − IRh w)|2 ≤

∑
T∈T 1

h

Ch2
T

rmin(T )

∫
T

|∇divw|2.

To estimate the last term of the previous equation we proceed as in Lemma 4.4
(cf. (4.31)):

∑
T∈T 1

h

Ch2
T

rmin(T )

∫
T

|∇divw|2 ≤
∑
T∈T 1

h

Ch2
T

rmin(T )

{∫
T

∣∣∣∣r∇(divw

r

)∣∣∣∣2 +

∫
T

∣∣∣∣divw

r

∣∣∣∣2
}

≤
∑
T∈T 1

h

Ch2
T rmax(T )

rmin(T )

∫
T

r

∣∣∣∣∇(divw

r

)∣∣∣∣2 +
∑
T∈T 1

h

Ch
2(1−ε)
T

∫
T

1

r1−2ε

∣∣∣∣divw

r

∣∣∣∣2

≤
∑
T∈T 1

h

Ch2
T

∥∥∥∥divw

r

∥∥∥∥2

H1
1(T )

+
∑
T∈T 1

h

Ch
2(1−ε)
T

∫
T

1

r1−2ε

∣∣∣∣divw

r

∣∣∣∣2 ,
(4.39)

for all ε > 0. We apply Remark 2.1 to estimate the last term of the previous inequality

(4.40)
∑
T∈T 1

h

Ch
2(1−ε)
T

∫
T

1

r1−2ε

∣∣∣∣divw

r

∣∣∣∣2 ≤ Ch2(1−ε)
∥∥∥∥divw

r

∥∥∥∥2

H1
1(D)

.

Hence, from (4.38)-(4.40) we obtain that, for all ε > 0,∥∥div(w − IRh w)
∥∥

L2
−1(D1)

≤ Ch1−ε
∥∥∥∥divw

r

∥∥∥∥
H1

1(D)

.

Next we return to (4.36) and using (4.37), the previous inequality and Lemma 3.3 we
write

(4.41) ‖div(w − Ihw)‖L2
−1(D) ≤ Ch

1−2/q ‖χ‖L2
−1(D) for some q ∈ (2, 6).

Now we are in a position to end the proof. From (4.33), (4.35), (4.41), and the fact
that K ⊥ G in L2

−1(D), we have

‖(T − Th)χ‖H−1(div;D) = ‖w −wh‖H−1(div;D)

≤ Ch1−2/q ‖χ‖L2
−1(D) ≤ Ch

1−2/q ‖fh‖H−1(div;D) ,

for some q ∈ (2, 6). On the other hand, for η ∈ K, since Tη = η and Thη is the
Galerkin projection of η onto R0

h, by using Lemma 4.4 (b) we obtain

‖(T − Th)η‖H−1(div;D) ≤ ‖η‖H−1(div;D) = ‖η‖L2
−1(D) ≤ Ch

1−ε ‖fh‖H−1(div;D) ,

for all ε > 0. Therefore, from the two previous estimates it follows that

‖(T − Th)fh‖H−1(div;D) ≤ ‖(T − Th)χ‖H−1(div;D) + ‖(T − Th)η‖H−1(div;D)

≤ Ch1−2/q ‖fh‖H−1(div;D) ,

for some q ∈ (2, 6) and we conclude the proof.
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Property P1 clearly follows from the previous lemma and the fact that T and Th
coincide on Kh. As a first consequence, we have the next result (see, [4, Theorem 1]).

Theorem 4.6. Let J ⊂ R be an open set containing σ(T ). Then, there exists
h0 > 0 such that σ(Th) ⊂ J ∀h < h0.

As a consequence of the above theorem, we know that the proposed numerical method
does not introduce spurious modes, as it happens instead when the same elements are
used to approximate Problem 1 (see Section 1).

To prove P2 we notice that any eigenvector v of T satisfies; v/r ∈ H̃1
1(D)×H1

1(D)
and (div v)/r ∈ H1

1(D), which implies that Ihv is well defined and belongs to R0
h.

Thus, property P2 follows by proceeding as in Lemma 4.5 (cf. (4.33)).
Now, we are in a position to write the main result of this paper related to the

convergence of the proposed scheme.

Theorem 4.7. Let µ ∈ σ(T ) be an eigenvalue of finite-multiplicity m. Let E be
the corresponding eigenspace. There exists h0 > 0 such that, for all h < h0, σ(Th)

contains exactly m eigenvalues µ
(1)
h , . . . , µ

(m)
h (repeated according to their respective

multiplicities) such that

µ
(i)
h −→

h→0
µ, i = 1, . . . ,m.

Let Eh be the direct sum of the corresponding eigenspaces. Let

γh := δ
(
E,R0

h

)
:= sup

v∈E
‖v‖H−1(div;D)=1

inf
vh∈R0

h

‖v − vh‖H−1(div;D)

and

δ̂ (E,Eh) := max {δ (E,Eh) , δ (Eh,E)} .

Then,

δ̂ (E,Eh) ≤ Cγh,

and

max
1≤i≤m

∣∣∣µ− µ(i)
h

∣∣∣ ≤ Cγ2
h.

Proof. Since we have already proved that properties P1 and P2 hold true, the
results are direct consequences of [4, Section 2] and Theorems 1 and 3 from [5].

To conclude spectral convergence we only need an appropriate estimate for the term
γh. In the following theorem we will prove two of them. The first one is valid under
more general conditions but it leads to a sub-optimal order of convergence. For the
second one we need to assume H.1 but it leads quasi-optimal error estimates.

Theorem 4.8. Let γh be as in Theorem 4.7. Then, there exist q ∈ (2, 6) and
C > 0 such that

(4.42) γh ≤ Ch1−2/q.

Moreover, if H.1 holds true, then for all ε > 0, there exists C > 0 such that

(4.43) γh ≤ Ch1−ε.
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Proof. Let v ∈ E be such that ‖v‖H−1(div;D) = 1. Since Tv = µv, from Lemma 3.3
it follows that ∥∥∥v

r

∥∥∥
H̃1

1(D)×H1
1(D)

+

∥∥∥∥div v

r

∥∥∥∥
H1

1(D)

≤ C

µ
‖v‖L2

−1(D) ≤
C

µ
.

Since v ∈ E ⊂ H0
−1(div;D), we have that v/r ∈ H̃1

1(D) × H1
1(D) and (div v)/r ∈

H1
1(D), then Ihv is well defined and belongs to R0

h. Therefore, by proceeding as in
Lemma 4.5, we obtain

δ (E,Rh) ≤ sup
v∈E

‖v‖H−1(div;D)=1

‖v − Ihv‖H−1(div;D)

≤ Ch1−ε

(∥∥∥v
r

∥∥∥
H̃1

1(D)×H1
1(D)

+

∥∥∥∥div v

r

∥∥∥∥
H1

1(D)

)
+ C

∥∥IRh v − Ihv∥∥H−1(div,D1),
(4.44)

for all ε > 0. Estimate (4.42) follows from the previous equations and Lemma 4.2
(cf. (4.9) and (4.10)):

δ (E,Rh) ≤ C

µ
h1−ε‖v‖L2

−1(D) +
C

µ
h1−2/q‖v‖L2

−1(D) ≤
C

µ
h1−2/q,

for some q ∈ (2, 6). On the other hand, if H.1 holds true, then by applying Lemma 4.2
(cf. (4.9) and (4.11)) to estimate the last term on the right-hand side of (4.44) we
obtain

δ (E,Rh) ≤ C

µ
h1−ε ‖v‖L2

−1(D) ≤
C

µ
h1−ε.

Thus, we end the proof.

5. Numerical experiments. We have developed a Matlab code based on
lowest-order RT elements to solve Problem 3. We report in this section some numerical
experiments which agree with the theoretical results proved in the previous sections.

5.1. Validation. As a first numerical test, we have solved a particular problem
with a known analytical solution, which allow us to validate the numerical imple-
mentation and to check the performance and convergence properties of the scheme.
The domain Ω is a cylinder with radius 1 and height 3. On the other hand, we
notice that the eigenvalues of (1.1) correspond to those of the Helmholtz equation
with Neumann boundary conditions. By separation of variables it can be shown
that the four lowest positive eigenvalues related with axisymmetric solutions are:
λ1 = π/3, λ2 = 2π/3, λ3 = π and λ4 = 3.831705. All these eigenvalues have multi-
plicity one. Then, from Theorem 4.7 it follows that, for h small enough, there exist
eigenvalues λh,i, i = 1, . . . , 4, solution to Problem 3 such that

λh,i −→
h→0

λi, i = 1, . . . , 4.

The code has been used on several meshes Th with different levels of refinement;
we identify each mesh by its respective mesh size h. Table 1 shows the computed
eigenvalues for different meshes, the exact eigenvalue and the computed orders of
convergence.
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Table 1: Convergence of the eigenvalues in the rectangle with regular meshes of size
h.

h λh,1 λh,2 λh,3 λh,4

0.125000 1.042919 2.086140 3.129950 3.937973
0.020833 1.047058 2.094126 3.141215 3.835302
0.011364 1.047154 2.094311 3.141474 3.832830
0.007813 1.047176 2.094354 3.141534 3.832252
0.005952 1.047185 2.094371 3.141558 3.832030
0.004808 1.047189 2.094379 3.141570 3.831920
0.004032 1.047192 2.094383 3.141576 3.831859

λex 1.047197 2.094395 3.141592 3.831705

Rates 1.912658 1.911716 1.910318 1.906234

0                     0.35                 0                     

Fig. 3: From left to right: Analytical and computed displacement fields ũ for the
eigenfunction corresponding to λ1 and λ4, respectively.

For such a domain, assumption H.1 holds true, so that the theoretical result
predict an order of convergence O(h2(1−ε)), for all ε > 0. It can be seen from the last
row of Table 1 that the obtained results confirm the theoretical one. We report in
Figure 3 the analytical and the computed displacement fields for the eigenfunctions
corresponding to the first and the fourth smallest eigenvalues. We chose the latter,
because it is the first one in which the radial component does not vanish.

It can be seen from Figure 3 that the error concentrates in the vicinity of the
symmetry axis. This seems quite reasonable, because of the constraint u = 0 in D0

imposed on the discrete space (cf. (4.2)). However, in spite of this fact, Table 1 clearly
shows that this constraint does not pervert the convergence of the method.

5.2. Eigenvalues in a non-convex domain. For this test we have chosen an
L-shaped domain D := (0, 1)×(0, 3)\{[0.5, 1)× [1, 3)}. We have used uniform meshes
as those shown in Figure 4. We report in Table 2 the four lowest eigenvalues computed
by solving Problem 3. The table includes estimated orders of convergence, as well as
more accurate values of the eigenvalues obtained by means of a least-square fitting of
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Fig. 4: Coarse initial mesh for the L-shape domain.

Table 2: Convergence of the eigenvalues in the L-shape domain with regular meshes
of size h.

h λh,1 λh,2 λh,3 λh,4

0.006667 0.834722 2.115595 3.141505 3.575267
0.005882 0.834746 2.115646 3.141524 3.575313
0.005263 0.834764 2.115684 3.141537 3.575348
0.004762 0.834778 2.115714 3.141547 3.575376
0.004348 0.834789 2.115737 3.141554 3.575399
0.004000 0.834797 2.115755 3.141560 3.575418

λ̂i,ex 0.834858 2.115891 3.141593 3.575590

Rates 1.569000 1.520800 1.909800 1.230400

the model: λh,i = λ̂i,ex + Cht.
In this case, the eigenfunctions corresponding to the first second and fourth low-

est positive eigenvalues present a singularity at the reentrant corner. Instead, the
eigenfunction corresponding to the third eigenvalue, which can be analytically com-
puted, is smooth. All these agree with the results computed in Table 2. Moreover,
the singular character of the eigenfunctions can be observed from Figures 5-8.

6. Conclusions. We have proposed a finite element method to solve a displace-
ment formulation of the axisymmetric acoustic eigenvalue problem. We have shown
that, in contrast to the Cartesian setting, spurious eigenvalues appear when lowest-
order triangular RT elements are used to discretize the problem. Although this type
of elements has been used in different axisymmetric problems, this behavior has not
been documented. We have proposed an alternative weak formulation of the spectral
problem which allowed us to avoid this drawback. The discretization is also based on
lowest-order RT finite elements but for a different variable u(r, z) := rũ(r, z). Spec-
tral convergence and quasi-optimal-order error estimates have been proved by using
the spectral theory for non-compact operators from [4, 5]. We have reported several
illustrative numerical examples that allowed us to asses the convergence properties of
the method and to check that it is not polluted with spurious modes. Notice that
the techniques proposed in this article can be applied to other axisymmetric problems
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-3.71          -1.85         0.00342 0              2.19           4.37

Fig. 5: Computed displacement field ũ = (ũr, ũz) for the eigenfunction corresponding
to λh,1. From left to right: ũ, ũr and ũz.

-3.7              -1.84          0.0166 -2.55            0.815             4.18

Fig. 6: Computed displacement field ũ = (ũr, ũz) for the eigenfunction corresponding
to λh,2. From left to right: ũ, ũr and ũz.

such as elastoacoustic transient problems appearing in several settings, for instance,
propagation of noise or seismic waves.
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