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Abstract:
This study revises the non-local macroscopic pedestrian flow model proposed in [R. M. Colombo,
M. Garavello, and M. Lécureux-Mercier. A class of nonlocal models for pedestrian tra�c. Math.
Models Methods Appl. Sci., 22(4):1150023, 34, 2012] to account for anisotropic interactions and
the presence of walls or other obstacles in the walking domain. We prove the well-posedness of this
extended model and we apply high-resolution numerical schemes to illustrate the model characteristics.
In particular, numerical simulations highlight the role of di↵erent model parameters in the observed
pattern formation.
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15

1. Introduction16

1.1. Problem statement17

This paper contributes to the macroscopic modelling of crowd movements. We consider the follow-18

ing initial-boundary value problem for a non-local scalar conservation law that describes the evolution19

of the local density ⇢ of pedestrians as a function of time t and position x = (x1, x2) on a crowd20
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evolution domain ⌦ ⇢ R2:1
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:

@t⇢ + div
⇣

⇢v(⇢)⌫
�

x,I[⇢(t)](x)
�

⌘

= 0, x 2 ⌦, t � 0,
⇢(0, x) = ⇢0(x), x 2 ⌦,
⇢(t, x) = 0, x 2 @⌦.

(1.1)

Here ⌫ = (⌫1, ⌫2) is a vector field that (with slight abuse of notation) is defined as2

⌫(t, x) := ⌫
�

x,I[⇢(t)](x)
�

= µ(x) + I[⇢(t)](x), (1.2)

where µ is the (normalized) fixed smooth vector field of preferred directions (e.g. given by the regu-3

larized solution of an eikonal equation), and I[⇢(t)] is a non-local correction term that depends on the4

current density distribution. This notation indicates a functional dependence, i.e., I depends on the5

function ⇢(t) := ⇢(t, ·) as a whole.6

We assume that pedestrians move in a space surrounded by walls, and that the vector field ⌫ points
inward along the boundary @⌦ of ⌦, that is

⌫(t, x) · n(x)  0 for all x 2 @⌦, t � 0,

where n is the outward normal to ⌦. (Of course, we may assume µ(x) · n(x)  0 for all x 2 @⌦, then it7

is enough to ensure that also I[⇢(t)](x) · n(x)  0 for all x 2 @⌦.) In this case, the condition ⇢(t, x) = 08

on @⌦ corresponds to a zero-flux condition. If, for simulation reasons, we need to consider smaller9

domains and to add adsorbing conditions on the part of the boundary not corresponding to walls (and10

where the vector field points outwards), suitable modifications of the model are needed.11

If supp(⇢0) ⇢ ⌦ and ⌫(t, x) · n(x)  0 for all x 2 @⌦ and t > 0, then problem (1.1) is equivalent to12

the Cauchy problem13
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>

:

@t⇢ + div
⇣

⇢v(⇢)⌫
�

x,I[⇢(t)](x)
�

⌘

= 0, x 2 R2, t � 0,
⇢(0, x) = ⇢0(x), x 2 R2.

(1.3)

Following Colombo et al. [11], we consider a non-local interaction term of the form14

I[⇢(t)](x) = �" r(⌘ ⇤w ⇢(t))(x)
q

1 + kr(⌘ ⇤w ⇢(t))(x)k2
, " > 0, (1.4)

where ⌘ is a smooth non-negative kernel with compact support such that
!

R2 ⌘(x) dx = 1 and " < 1 is15

a model parameter. The term (1.4) models how pedestrians account for other pedestrian distribution16

close to them to correct their path. To better account for the reaction of pedestrians to densities ahead17

of them, one may consider anisotropic kernels ⌘, see e.g. [11] and [27, Appendix D]. To account for18

the presence of boundaries, and walls (or obstacles) into boundaries, unlike [13, 14], we modify the19

usual convolution product as follows:20

�

⌘ ⇤w ⇢(t)
�

(x) =
"

R2
⇢w(t, y)⌘(x � y) dy, (1.5)
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where ⇢w : R2 ! R+ is defined as1

⇢w(t, x) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

⇢(t, x) if x 2 ⌦,
Rw if x 2 B(⌦, d(supp ⌘)) \⌦,
0 elsewhere,

(1.6)

with Rw � R big enough so that ⌫(t, x) · n(x)  0 for x 2 @⌦ and t � 0. Here we denote by2

d(A) = sup
�|x � y| : x, y 2 A

 

the diameter of a set A ⇢ R2 and by3

B(⌦, `) =
(

x 2 R2 : inf
y2⌦
|x � y|  `

)

the “ball” of radius ` around ⌦. Furthermore, we define4

M :=
"

R2
�B(⌦,d(supp ⌘))(y) dy, (1.7)

which is finite if ⌦ is bounded (� denotes the characteristic function).5

The presence of high density values at the wall and obstacle locations included in (1.5) and (1.6) is6

intended to mimic their e↵ect on the pedestrian dynamics. Indeed, in this way the non-local correction7

term (1.4) “sees” the presence of the wall and deviates the movement from the desired trajectory, thus8

acting as a discomfort term expressing the tendency of pedestrians to stay away from obstacles.9

Remark 1. An explicit condition ensuring r(⌘ ⇤w ⇢(t))(x) · n(x) � 0 for all x 2 @⌦ (and thus ⌫(t, x) ·10

n(x)  0) is the following:11

Rw

"

⌦c
r⌘(x � y) · n(x) dy � R

"

⌦

�r⌘(x � y) · n(x)
�� dy for all x 2 @⌦,

where f (x)� := max{� f (x), 0} = �min{ f (x), 0} denotes the negative part of a function f . Indeed we
have

r�

⌘ ⇤w ⇢(t)
�

(x) · n(x) = n(x) ·
"

R2
⇢(t, y)r⌘(x � y) dy

=

"

R2
⇢(t, y)r⌘(x � y) · n(x) dy

=

"

⌦c
Rwr⌘(x � y) · n(x) dy +

"

⌦

⇢(t, y)r⌘(x � y) · n(x) dy

� Rw

"

⌦c
r⌘(x � y) · n(x) dy � R

"

⌦

(r⌘(x � y) · n(x))� dy.

1.2. Related works12

Macroscopic models of (vehicular and pedestrian) tra�c flow are based on balance laws describing13

the spatio-temporal evolution of averaged quantities such as density and mean velocity. In analogy to14
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vehicular tra�c models, macroscopic crowd motion models were introduced starting from the begin-1

ning of this century based on scalar conservation laws [15,17], gas dynamics equations [2,20], gradient2

flow methods [8, 26] and time evolving measures [28].3

More recently, models consisting in non-local conservation laws in two-space dimension were pro-4

posed by di↵erent authors [5–7, 11–14, 21]. Conservation laws with non-local flux function arise in a5

large variety of applications, such as tra�c flow [4,23,31], sedimentation [3,35], and material flows on6

conveyor belts [16]. The computation of numerical solutions for these models is challenging due to the7

high non-linearity of the system and the dependence of the flux function on the convolution product.8

In order to overcome the computational bottleneck, high order schemes have been developed for scalar9

equation [9] and systems [10] in one space dimension. For crowd dynamics models, first order finite10

volume approximations based on the Lax-Friedrichs scheme have been used in [11, 13, 14], aiming at11

demonstrating convergence properties for existence results. Here, we will consider the finite di↵erence12

weighted essentially non-oscillatory (WENO) schemes developed in [18] to achieve high-resolution13

spatial accuracy. WENO schemes [19,24,30] are widely employed for the simulation of complex flow14

fields due to their high order accuracy and good shock-capturing properties.15

1.3. Outline of the paper16

The remainder of this paper is organized as follows. In Section 2, we deal with the well-posedness17

of problem (1.3). Section 3 describes the WENO scheme used to compute approximate solutions and18

Section 4 collects three di↵erent numerical tests investigating the model characteristics. Conclusions19

and perspectives are elaborated in Section 5.20

2. Well-posedness21

We suppose that the domain ⌦ and the functions ⌫, µ and ⌘ satisfy the the following assumptions:22

(I1) The domain ⌦ ✓ R2 is a non-empty compact bounded open set with smooth boundary @⌦, so that23

the outward normal n(x) is uniquely defined for all x 2 @⌦.24

(I2) The hindrance function v 2 C2(R;R) is non-increasing, v(0) = V and v(R) = 0 for some V,R > 0.25

(I3) The vector field of preferred directions µ 2 (C2 \W1,1)(R2;R2) is such that divµ 2 (W1,1 \26

W1,1)(R2;R).27

(I4) The kernel function ⌘ 2 C3
c(R2;R+) satisfies

!

R2 ⌘(x) dx = 1.28

Solutions of problem (1.3) are intended in the following sense.29

Definition 1. [11, Def. 2.1] For any T > 0 and ⇢0 2 L1(R2, [0,R]) such that supp ⇢0 ⇢ ⌦, a function30

⇢ 2 C0([0,T ],L1(R2; [0,R]) is said to be a weak entropy solution to (1.3), or equivalently to (1.1), if it31

is a Kružkov entropy solution to the Cauchy problem32

8

>

>

<

>

>

:

@t⇢ + div (⇢v(⇢)⌫(t, x)) = 0 in R2,

⇢(0, x) = ⇢0(x) in R2,
(2.1)
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i.e. for all  2 R and all test functions � 2 C1c (] �1,T [⇥R2;R+) there holds
Z T

0

Z

R2

n

|⇢ � |@t� + sgn(⇢ � )�⇢v(⇢) � v()
�

⌫(t, x) · r�
o

dx dt

�
Z T

0

Z

R2
v() div ⌫(t, x) sgn(⇢ � )� dx dt +

Z

R2
|⇢0(x) � |�(0, x) dx � 0.

(2.2)

Indeed, by mass conservation, we have that supp ⇢(t, ·) ⇢ ⌦ for all t > 0, and therefore ⇢(t, x) = 0
for a.e. x 2 ⌦c, see [11, Proposition 3.1]. Therefore, by abuse of notation, ⇢ 2 L1([0,T ] ⇥ ⌦;R) can
be seen as a Kružkov semi-entropy solution in the sense of [34, Def. 1]: namely, from (2.2) we have

0 
Z T

0

Z

⌦

n

(⇢ � )±@t� + sgn±(⇢ � )�⇢v(⇢) � v()
�

⌫(t, x) · r�
o

dx dt

�
Z T

0

Z

⌦

v() div ⌫(t, x) sgn±(⇢ � )� dx dt +
Z

⌦

�

⇢0(x) � �±�(0, x) dx


Z T

0

Z

⌦

n

(⇢ � )±@t� + sgn±(⇢ � )�⇢v(⇢) � v()
�

⌫(t, x) · r�
o

dx dt

�
Z T

0

Z

⌦

v() div ⌫(t, x) sgn±(⇢ � )� dx dt +
Z

⌦

�

⇢0(x) � �±�(0, x) dx

+ k f 0(⇢)⌫kL1([0,T ]⇥⌦⇥[0,R])

Z T

0

Z

@⌦

(�)±�(t, x) dx dt,

where f (⇢) := ⇢v(⇢), s+ = max{s, 0}, s� = max{�s, 0}, sgn+(s) = sgn(s+) and sgn�(s) = � sgn(s�).1

If ⇢ 2 (L1 \ BV)([0,T ] ⇥ ⌦;R), then the classical definition introduced by Bardos, Le Roux and
Nédélec [1] holds:

Z T

0

Z

⌦

n

|⇢ � |@t� + sgn(⇢ � )�⇢v(⇢) � v()
�

⌫(t, x) · r�
o

dx dt

�
Z T

0

Z

⌦

v() div ⌫(t, x) sgn(⇢ � )� dx dt +
Z

⌦

|⇢0(x) � |�(0, x) dx

+

Z T

0

Z

@⌦

sgn()
⇣

tr ⇢(t, x)v
�

tr ⇢(t, x)
� � v()

⌘

⌫(t, x) · n(x)�(t, x) dx dt � 0,

where tr ⇢ denotes the trace of ⇢ at the boundary @⌦.2

We refer the reader to [29] for a discussion on the di↵erent notions of admissible solutions for scalar3

multi-dimensional initial-boundary value Problems and their equivalence.4

Under hypotheses (I1)–(I4), the non-local term I defined by (1.4)-(1.5)-(1.6) satisfies the following
estimates for " as in (1.4), Rw as in (1.6) and M as in (1.7):

kI[⇢]kL1  "Rwkr⌘kL1 , (2.3)
kI[⇢]kL1  "RwMkr⌘kL1 , (2.4)

kdivI[⇢]kL1  "Rw
�k�⌘kL1 + Rwkdiv ⌘kL1kr div ⌘kL1

�

, (2.5)
kdivI[⇢]kL1  "RwM

�k�⌘kL1 + Rwkdiv ⌘kL1kr div ⌘kL1
�

, (2.6)

kr divI[⇢]kL1  "R2
wMkr⌘kW2,1

h

1 + Rwkr⌘kL1

⇣

2 + Rwkr⌘kL1 + 3Rwkdiv ⌘k2L1

⌘i

. (2.7)

Mathematical Biosciences and Engineering Volume x, Issue x, xxx–xxx
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Moreover, for any r1, r2 2 L1(⌦; [0; R]) there hold

kI[r1] � I(r2)kL1  "
⇣

1 + R2
wkr⌘k2L1

⌘

kr⌘kL1kr1 � r2kL1 , (2.8)

kI[r1] � I(r2)kL1  "
⇣

1 + R2
wkr⌘k2L1

⌘

kr⌘kL1kr1 � r2kL1 , (2.9)

kdiv(I[r1] � I(r2))kL1  "kr1 � r2kL1kr⌘kW1,1

⇣

1 + 8R2
wkr⌘k2W1,1 + 3R4

wkr⌘k4W1,1

⌘

, (2.10)

see [11, Proof of Lemma 3.1].1

Recalling that f (⇢) = ⇢v(⇢) and following [11, Theorem 2.1], we have the following well-posedness2

result.3

Theorem 1. Let (I1)–(I3) hold and ⇢0 2 (L1 \ BV)(R2; [0,R]) with supp ⇢0 ⇢ ⌦. Then there exists
a unique weak entropy solution ⇢ 2 C0(R+; L1(R2; [0,R])) to (1.3) with supp ⇢(t, ·) ⇢ ⌦ for t > 0.
Moreover, ⇢ satisfies the following estimates

k⇢(t, ·)kL1 = k⇢0kL1 for a.e. t > 0,

TV
�

⇢(t, ·)�  TV(⇢0)eK t + ⇡teK tk f kL1([0,R])
�kr divµkL1 +CM(Rw)

�

, (2.11)

where we define

K := 5k f 0kL1([0,R])
�krµkL1 + "Rw

�k�⌘kL1 + Rwkdiv ⌘kL1kr div ⌘kL1
��

,

CM(Rw) := "R2
wMkr⌘kW2,1

h

1 + Rwkr⌘kL1

⇣

2 + Rwkr⌘kL1 + 3Rwkdiv ⌘k2L1

⌘i

.

Stability with respect to ⇢0, v and µ also holds from [11, Theorem 2.2].4

Proof of Theorem 1. Following [11], we have to check that we fit the required hypotheses. First of all,5

given any r 2 C0([0,T ]; L1(⌦; [0,R])), we verify that the scalar conservation law6

@t⇢ + div
�

⇢v(⇢)w(t, x)
�

= 0 in R2,

with w(t, x) = µ(x) + I[r(t)](x), satisfies the assumptions of [22, Theorem 5 and Sec. 5.4], and7

therefore admits a weak entropy solution ⇢ 2 L1(R+; L1(⌦; [0,R])) (see [11, Lemma 2.1]). Setting8

'(t, x, ⇢) = f (⇢)w(t, x), it is easy to check that ', @⇢', @2
xi,⇢
', @2

xi,x j
' 2 C0([0,T ] ⇥ R2 ⇥ [0,R]), @⇢' 29

L1([0,T ] ⇥ R2 ⇥ [0,R]) and div' 2 L1([0,T ] ⇥ R2 ⇥ [0,R]), thanks to (I2), (I3) and (I4). Moreover,10

by (2.6), we have that11

kdiv w(t, ·)kL1  kdivµkL1 + "RwM
�k�⌘kL1 + Rwkdiv ⌘kL1kr div ⌘kL1

�

< +1,

which guarantees that ⇢ 2 C0(R+; L1(⌦; [0,R])). Moreover, by (2.5),12

�

�

�r@⇢'
�

�

�

L1  k f
0kL1([0,R])

�krµkL1 + "Rw
�k�⌘kL1 + Rwkdiv ⌘kL1kr div ⌘kL1

��

,

and by (2.7)13

kr div(µ + I[r(t)])kL1  kr divµkL1 +CM(Rw).

Therefore, by [25, Theorem 2.2], we get (2.11).14

Estimates (2.8)–(2.10) ensure that the same fixed point argument used in [11, Proof of Theorem15

2.1] can be applied to prove the existence and uniqueness of solutions to (1.3). ⇤16

17
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3. High-resolution numerical schemes1

3.1. Notation and semi-discrete formulation2

We take ⌦ = [xmin
1 , x

max
1 ] ⇥ [xmin

2 , x
max
2 ] and denote by ⇢ : [0,1[⇥⌦! [0,R] and

f = f
�

t, x, ⇢, (⌘ ⇤w ⇢)
�

:= ⇢v(⇢)⌫
�

x,I[⇢(t)](x)
�

the solution and the flux function of problem (1.1)-(1.3). We use a uniform Cartesian grid with nodes3

(xi
1, x

j
2), i = 1, . . . ,M1 and j = 1, . . . ,M2 such that xi

1 = (i � 1/2)h, x j
2 = ( j � 1/2)h, h = (xmax

1 �4

xmin
1 )/M1 = (xmax

2 � xmin
2 )/M2. This corresponds to M1 ⇥ M2 grid points xi := (xi

1, x
j
2), where i = (i, j) 25

M := {1, . . . ,M1}⇥ {1, . . . ,M2} ⇢ N2, and as in [8] we utilize two-dimensional unit vectors e1 := (1, 0)6

and e2 := (0, 1) to address neighbouring grid points xi+e1 = (xi+1
1 , x

j
2) and xi+e2 = (xi

1, x
j+1
2 ).7

We define u : [0,1)! RM1⇥M2 as a solution computed at an instant t in the grid points where

ui(t) = ⇢(t, xi), fi = f
⇣

t, xi, ⇢(t, xi),
�

⌘ ⇤w ⇢(t)
�

(xi)
⌘

for i 2M.

In Section 3.2 we will discuss the discretization of the convolution product. Using this notation, we8

may approximate the solution of (1.1)–(1.3) in semi-discrete form (that is, discrete in space but con-9

tinuous in time) by a system of ODEs10

du
dt
= C(u) (3.1)

where C(u) represents the spatial discretization of the convective term with entries given by C(u) =
(C(u)i)i2M with

C(u)i = �
2

X

l=1

1
h

⇣

f̂i+ 1
2 el
� f̂i� 1

2 el

⌘

, (3.2)

where f̂i+ 1
2 e1

and f̂i+ 1
2 e2

are the numerical fluxes, which in this paper will be a fifth-order version. To
this end, we require the summands for l = 1 and l = 2 in (3.2) to be of the same order of approximation
to @ f /@x1 and @ f /@x2, respectively, at x = xi. For upwinding and stability, a flux function f (⇢) is split
as follows:

f (⇢) = f +(⇢) + f �(⇢), with
d f +(⇢)

d⇢
� 0 and

d f �(⇢)
d⇢

 0. (3.3)

Then each component is approximated separately using its own “wind direction” with respect to el.
The simple Lax-Friedrichs flux splitting

f ±(⇢) =
1
2
�

f (⇢) ± ↵⇢�

with a suitable viscosity coe�cient ↵ > 0 is used in this paper. We herein use

↵k = max
⇢

�

�

�@⇢
�

⇢v(⇢)
�

�

�

� sup
x2⌦
|⌫k(x)|, k = 1, 2,

in direction ek, k = 1, 2. The numerical fluxes are split accordingly, i.e.,11

f̂i+ 1
2 ek
= R+� f +i+(�r:r)ek

�

+ R�� f �i+(�r+1:r+1)ek

�

, k = 1, 2, (3.4)

Mathematical Biosciences and Engineering Volume x, Issue x, xxx–xxx
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where R± denotes (2r�1)th-order WENO upwind biased reconstructions for r = 2, 3, 4, see [19,24,30].1

Ghost cells are needed to compute numerical fluxes near the boundary. To handle these cases we2

use the boundary condition in (1.1) and set ui = 0 if i <M and as the vector field ⌫ points inward along3

@⌦, i.e. ⌫ · n(x)  0 for x 2 @⌦, we set4

f̂i+ 1
2 el
=

8

>

>

<

>

>

:

R+� fi+(�r:r)el

�

if xi 2 {xmin
1 } ⇥ [xmin

2 , x
max
2 ] [ [xmin

1 , x
max
2 ] ⇥ {xmin

2 },
R�� fi+(�r:r)el

�

if xi 2 {xmax
1 } ⇥ [xmax

2 , x
max
2 ] [ [xmin

1 , x
max
1 ] ⇥ {xmax

2 }.
(3.5)

For evacuation problems, to not deal with extended domains, we have to handle a vector field ⌫ which
points outward at the exit door D ⇢ @⌦, i.e. ⌫ · n(x) > 0 for x 2 D. In this case, we set

f̂i+ 1
2 el
= R+� fi+(�r:r)el

�

for xi 2 D.

For more details about the implementation of high-order finite di↵erence WENO schemes for crowd5

dynamics see [8, 18].6

3.2. Discretization of the convolution term7

In order to evaluate the non-local term in (1.4), we take into account that r(⌘ ⇤w ⇢) = r⌘ ⇤w ⇢,
where the convolution term ⇤w is defined by (1.5). The corresponding convolutions (@⌘/@x1) ⇤w ⇢ and
(@⌘/@x2) ⇤w ⇢ are calculated approximately on the discrete grid via a quadrature formula, in our cases a
composite Simpson rule. Since supp(⌘) ⇢ [�rh, rh]⇥ [�rh, rh], for any r 2 N, any convolution product
is given by

�

⌘ ⇤ ⇢(t)�(xi) ⇡
r

X

p=�r

r
X

q=�r

h2cpcq⇢(t, xi�p)⌘(xp),

where cp and cq are the coe�cients in the quadrature rule and p = (p, q). This formula for u = (ui) 28

RMx⇥My and for the convolution product (1.5) can be written as9

(⌘ ⇤w u)(xi) =
r

X

p=�r

r
X

q=�r

h2cpcquw,i�p⌘(xp), (3.6)

where uw,i is a discrete version of the function (1.6) defined by10

uw,i =

8

>

>

>

>

>

<

>

>

>

>

>

:

ui if i 2M,
Rw if xi 2 B(⌦, d(supp ⌘)) \⌦,
0 elsewhere.

(3.7)

Clearly, the discrete convolution (3.7) causes a computational bottleneck. This is a classical problem11

in scientific computing that is e↵ectively handled by fast convolution algorithms, mainly based on Fast12

Fourier Transforms [33] (see also [6, 7]).13

3.3. Time discretization14

Finally, the semi-discrete scheme (3.1) is discretized by a third-order TVD Runge-Kutta time dis-
cretization method [24] that can be specified as follows. Assume that un is the vector of approximate
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Figure 1. Example 1: vector fields used in the simulations: (a) vector field given by unit
vectors tangent to the geodesics to the exit door, used for model (1.4); (b) vector field (a) plus
a discomfort vector field with maximal intensity along the walls, used for model [13, 14].

solutions at t = tn. Then the approximate values un+1 associated with tn+1 = tn + �t are calculated by

u(1) = un + �tC(un),

u(2) =
3
4

un +
1
4

u(1) +
1
4
�tC(u(1)),

un+1 =
1
3

un +
2
3

u(2) +
2
3
�tC(u(2)).

(3.8)

The combined space and time discretizations define a fully discrete scheme.1

4. Numerical simulations2

We aim at investigating the e↵ects of the non-local operator (1.4)–(1.6) form the crowd dynamics
modelling point of view. To this end, in the following numerical examples, we solve numerically (1.3)-
(1.6) for t 2 [0,T ] and x 2 ⌦ by using the high-resolution numerical scheme described in Section 3. In
particular, we consider FD-WENO5 with fifth-order of accuracy. For each iteration, the time step �t
in (3.8) is determined by the formula

�t
h

max{↵1,↵2} =
1
2

Ccfl.

In all numerical test we have used Ccfl = 0.2.3

4.1. Example 1: Comparison with Colombo and Rossi [13, 14].4

In contrast to (1.5)–(1.6), the model proposed in [13,14] uses the following definition of the convo-5

lution product in the non-local term (1.4)6

(⌘ ⇤⌦ ⇢(t))(x) =
1

z(x)

"

⌦

⇢(t, y)⌘(x � y) dy, where z(x) :=
"

⌦

⌘(x � y) dy. (4.1)

We remark that the model in [13, 14] also displays non-locality in the speed, but this prevents a global7

maximum principle from holding. Therefore, here we keep the speed dependence on the density local.8
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0 0.1 0.2 0.40.3 0.5 0.6 0.7 0.8 0.9 1

Figure 2. Example 1: numerical approximation with parameters (4.2) with kernel support
l = 0.45 and Rw = 1.5 at (top) T = 1, (middle) T = 3 and (bottom) T = 6. The left and right
columns correspond to local convolution ⌘⇤w ⇢ (see (1.5)), and global convolution ⌘⇤⌦ ⇢ (see
(4.1)), respectively. The color bar also applies to Figures 3, 6, 7, 8, 9, and 10.

We consider the evacuation problem proposed in [14, Section 2.1], where ⌦ = R \ (C1 [ C2) is1

composed by a room R = [0, 8] ⇥ [�2, 2] with two symmetric columns C1 = ]4.5, 7[⇥ ]0.8, 1.5[ and2

C2 = ]4.5, 7[⇥ ]�1.5,�0.8[ that guide the evacuation through the exit door set at D = {8}⇥ ]�0.8, 0.8[.3

The functions and parameters are chosen as4

v(⇢) = 2 min{1,max{0, (1 � ⇢)}}, ⇢0(x) = 0.9�[0.5,3]⇥[�1.8,1.8](x),

" = 0.6, Rw = 1.5 ⌘(x) = 315
128⇡l18 (l4 � kxk4)4�[0,l](x),

(4.2)

where �[0,l](x) denotes the characteristic function. The fixed vector field µ(x) is given by the unit5

vector tangent to the geodesic from x to the exit door, see Figure 1(a). Since the non-local term6

defined by (4.1) does not guarantee that the resulting direction of motion points inside the domain7

(⌫(t, x) ·n(x)  0 for x 2 @⌦, t � 0), we need to add to µ a (fixed) discomfort vector field with maximal8

intensity along the walls as in [13, 14], resulting in the vector field showed in Figure 1(b).9
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Figure 3. Example 1: numerical approximation with parameters (4.2) with kernel support
l = 0.9 and Rw = 1.5 at (top) T = 1, (middle) T = 3 and (bottom) T = 6. The left and right
columns correspond to local convolution ⌘⇤w ⇢ (see (1.5)), and global convolution ⌘⇤⌦ ⇢ (see
(4.1)), respectively.

We display numerical approximations computed with FD-WENO5 scheme with h = 1/80 at times1

T = 1, 3 and 6 for two kernel supports (l = 0.45 in Figure 2 and l = 0.9 in Figure 3). We observe that2

the non-local correction term (1.4) allows pedestrians to “see” the presence of the wall and obstacles,3

and to deviate the movement from the desired trajectory. For l = 0.45, we can observe that pedestrians4

can pass between the obstacles and the wall, as in the Colombo-Rossi model, however this e↵ect is5

less remarkable for larger kernel supports like l = 0.9. Indeed, comparing Figures 2 and 3, we can6

see that a larger kernel support corresponds to a wider discomfort e↵ect, impacting the velocity vector7

field on larger portions of the walkable domain. More generally, qualitative di↵erences between the8

two models depend on the parameter choices of Rw and the discomfort vector field. Nevertheless, we9

remark that our definition of the convolution (1.5)-(1.6) qualitatively captures the discomfort due to10

the presence of walls and obstacles delimiting the walking domain.11

Figure 4 shows the impact of the magnitude of the convolution radius l on the evacuation time for12

both models. We can observe that our model is much sensible to changes in the convolution support13

since, as previously mentioned, this a↵ects heavily the resulting velocity field near obstacles and walls.14
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Figure 4. Example 1: time evolution of the mass inside the room and evacuation time for the
set of parameters (4.2) with kernel support l = 0.45, 0.9 and Rw = 1.5.

4.2. Example 2: Comparison between isotropic and anisotropic kernels (lane formation).1

In this section, we consider that pedestrians have a limited vision field oriented in a given direction.
We study a simple example of evacuation of a rectangular room ⌦ = [0, 8] ⇥ [�3, 3], where the vector
field µ(x) = (1, 0) is fixed constantly oriented towards the right of the domain. We investigate the
influence of a conic convolution kernel on the evacuation dynamics and the pattern formation. We take
the kernel function ⌘(x) given in (4.2) and cut a conic section ⌘(x)�S(x,l,↵,�)(x) of angle 2↵ oriented to
direction �(x) which is described by the region

S(x, l,↵,�) =
(

y 2 R2 : ky � xk  l,
(y � x) · �(x)
ky � xkk�(x)k � cos↵

)

(see Figure 5), then we smooth and normalize it. Other parameters are taken as

v(⇢) = 6 min{1,max{0, (1 � ⇢)}}, " = 0.6, l = 0.9, ⇢0(x) = 0.9�[0.5,4]⇥[�1,1](x).

We compare the dynamics given by di↵erent kernel orientations and di↵erent angle amplitudes. Be-2

sides the circular symmetric kernel ⌘ (i.e. ↵ = ⇡), we consider3

• �(x) = (�1, 0), corresponding to forward interaction (by central symmetry of the convolution4

product), and ↵ = ⇡/2, ⇡/4;5

• �(x) = (1, 0), corresponding to backward interaction, and ↵ = ⇡/4;6

• �(x) = (0,�1), modeling pedestrian reacting to the presence of other individuals (or obstacles) on7

their left, and ↵ = ⇡/4;8

• �(x) = (�1,�1), for forward-left interactions, and ↵ = ⇡/4.9

The corresponding convolution kernels are depicted in Figure 5. In Figures 6–8, we display numerical10

approximations and the corresponding vector fields of preferred directions computed with FD-WENO511
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Figure 5. Example 2: anisotropic kernels ⌘�S(x,l,↵,�) for di↵erent interaction orientations: (a)
symmetric, (b) wide forward, (c) narrow forward, (d) backward, (e) left, (d) forward left.

scheme with h = 1/80 at times T = 0.1, T = 0.2 and T = 0.4. We observe that symmetric and1

half-circular downstream interaction kernels lead to similar patterns consisting of horizontal lanes (see2

Figure 6), while narrower angles ↵ lead to vertical patterns, both for forward and backward interactions3

(displayed in Figure 7). Finally, lateral interactions mostly lead to diagonal waves (Fig. 8).4

4.3. Example 3: Room evacuation with and without obstacles5

In this section, we consider the problem of evacuating people in a room through a door. In partic-
ular, we are interested in studying the impact of the presence of obstacles in front of the door on the
evacuation time. This problem has already been discussed by several authors, see for example [14, 32]
and references therein. In these works, the authors infer that, in some cases, the location and size of the
obstacles may speed up the population to the exit. For this example, we consider the walking domain
available to pedestrians is ⌦ = R \Ci, i = 1, 2, 3, where the room R = [0, 8]⇥ [�3, 3] contains obstacles
Ci. The door D, the functions v and ⌘, and the parameter " and Rw are the same as in (4.2). The initial
condition is a linear combination of characteristic functions with values 0.9 in [0.5, 2] ⇥ [�2.2, 0], 0.6
in [0.5, 2.2] ⇥ [0, 2.2], 0.5 in [2, 4] ⇥ [�2.2, 0] and 0.8 in [2.2, 4] ⇥ [0, 2.2] (see Fig. 9). The obstacles
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Figure 6. Example 2: evacuation dynamics and vector field for (left) the angle 2↵ with
↵ = ⇡ (see Figure 5 (a)), (right) ↵ = ⇡/2 and the kernel orientation �(x) = (�1, 0) (as in
Figure 5 (b)), at simulated times (top) T = 0.1, (middle) T = 0.2 and (bottom) T = 0.4.

and parameter l for the three di↵erent scenarios considered are

C1 = ?,

C2 = ] 7, 7.8 [ ⇥ ( ]�1.8, 1.3 [ [ ] 1.3, 1.8 [ ) ,
C3 = ] 5, 6 [ ⇥ ]�0.25, 0.25 [ ,

l = 1.

(4.3)

The numerical solutions for the three scenarios at three di↵erent times is displayed in Figure 10, where1

we have used the FD-WENO5 scheme to computed the approximate solutions.2

Figure 11 shows the time evolution of the mass inside the room. We observe that in case C1 the3

evacuation time is higher in comparison to cases C2 and C3, where the evacuation time is lower, espe-4

cially for case C3. This is confirmed by Figure 10, which shows the evacuation of the populations at5

times T = 6, 20 and 34, for the cases C1, C2 and C3 respectively.6
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Figure 7. Example 2: evacuation dynamics and vector field for angle 2↵ for ↵ = ⇡/4 and the
kernel orientation (left) �(x) = (�1, 0) (see Figure 5 (c)), (right) �(x) = (1, 0) (see Figure 5
(d)), at simulated times (top) T = 0.1, (middle) T = 0.2 and (bottom) T = 0.4.

5. Conclusion1

In this work, we have proposed and studied a non-local macroscopic pedestrian flow model account-2

ing for the presence of walls and obstacles limiting the walking domain. In particular, the proposed3

model is able to capture pedestrians’ discomfort near obstacles and walls. Under suitable regularity4

assumptions, the model turns out to be well-posed. Moreover, we analyzed the impact of di↵erent5

anisotropic kernels on the formation of patterns in the solutions.6

High resolution numerical schemes of WENO type allow to perform accurate simulations, bypassing7

the computational bottleneck given by the dependence of the flux function on integral terms.8

Future research should focus on multi-population models accounting for groups with di↵erent char-9

acteristics and/or destinations, and on the theoretical analysis of the observed pattern formation.10
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Figure 8. Example 2: evacuation dynamics and vector field for angle 2↵ for ↵ = ⇡/4 and the
kernel orientation (left) �(x) = (0,�1) (see Figure 5 (e)), (right) �(x) = (�1, 1) (see Figure 5
(f)), at simulated times (top) T = 0.1, (middle) T = 0.2 and (bottom) T = 0.4.

Acknowledgements1

This research was supported by the INRIA Associated Team “E�cient numerical schemes for non-2

local transport phenomena” (NOLOCO; 2018–2020). RB is supported by Fondecyt project 11704733

and CRHIAM, project ANID/FONDAP/15130015. LMV is supported by Fondecyt project 1181511.4

RB, DI and LMV are also supported by CONICYT/PIA/Concurso Apoyo a Centros Cientı́ficos y5

Tecnológicos de Excelencia con Financiamiento Basal AFB170001.6

References7
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