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Abstract

In this paper we propose and analyze a new mixed finite element method for a station-
ary magnetohydrodynamic (MHD) model. The method is based on the utilization of a new
dual-mixed formulation recently introduced in [3] for the Navier-Stokes problem, which is
coupled with a classical primal formulation for the Maxwell equations. The latter implies
that the velocity and a pseudostress tensor relating the velocity gradient with the convec-
tive term for the hydrodynamic equations, together with the magnetic field and a Lagrange
multiplier related with the divergence-free property of the magnetic field, become the main
unknowns of the system. Then the associated Galerkin scheme can be defined by employing
Raviart–Thomas elements of degree k for the aforementioned pseudostress tensor, discontin-
uous piecewise polynomial elements of degree k for the velocity, Nédélec elements of degree
k for the magnetic field and Lagrange elements of degree k for the associated Lagrange mul-
tiplier. The analysis of the continuous and discrete problems are carried out by means of the
Lax–Milgram lemma, the Banach–Nečas–Babuška and Banach fixed-point theorems, under
a sufficiently small data assumption. In particular, the analysis for the discrete scheme can
be carried out by means of a quiasi-uniformity assumption of the mesh. We also develop an
a priori error analysis and show that the proposed finite element method is optimal conver-
gent. Finally, some numerical results illustrating the good performance of the method are
provided.
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1 Introduction

The numerical study of the dynamics of electrically conducting fluids in electromagnetic fields,
best known as Magnetohydrodynamics (MHD), is a very active area of research, and the interest
and number of scientific contributions in this discipline increase in time due to its applicability
in different scientific disciplines, such as astrophysics, engineering related to liquid metals and
controlled thermonuclear fusion. Since the mathematical model of MHD is a coupled system
where the incompressible Navier–Stokes equations are coupled with the Maxwell’s equations
through the Lorentz force and Ohm’s law, the numerical analysis community has been trying to
bring together the best of both, electromagnetism and fluid dynamics communities, to develop
better numerical methods to approximate the solution of the MHD model.

To begin the bibliographical discussion we start by mentioning one of the first works devoted
to the analysis of finite element methods (FEM) for MHD, namely [18]. There, the authors
develop the well-posedness and convergence analysis for a conforming FEM for MHD considering
inf-sup stable velocity-pressure elements for the hydrodynamic variables and standard nodal
finite elements, i.e, H1-conforming elements for the magnetic field. An extention to [18] can
be found in [15] where the authors propose a stabilized method for the three-field formulation
considered in [18]. We emphasize that in both contributions, [18] and [15], the magnetic field
is in H1(Ω)3, which is only feasible if the domain is convex. To circunvent the latter, in [19]
the authors introduce a mixed finite element method based on weighted regularization for the
incompressible MHD system which can be used even in non-convex domains (see also [7]).
Another way to circumvent this problem can be found [27] where the author imposes weakly the
divergence-free condition of the magnetic field through the introduction of a Lagrange multiplier.
By doing that, the magnetic field can be approximated by curl-conforming Nédélec elements and
the convex domain assumption is no longer required.

MHD equations admit many different variational formulations which lead to different math-
ematical properties. In [22] the authors introduce a fully-DG method for a linearized incom-
pressible MHD model problem based on the mixed method introduced in [27]. All the variables
are aproximated by discontinuous finite element spaces and, as a consequence, the approach
requires a large number of degrees of freedom. This drawback is overcome in [17] where the
authors introduce a finite element discretization and instead of using discontinuous elements
for all the unknowns, they use divergence conforming Brezzi-Douglas-Marini (BDM) elements
for the approximation the velocity and curl-conforming Nédélec elements for the magnetic field.
A different approach is presented in [23] where the authors proposed a mixed finite element
discretization for the MHD problem where the Gauss’s law for the magnetic field at discrete
level is preserved (see also [24]).

According to the above discussion, and in order to contribute toward the development and
analysis of new numerical methods to approximate the solution of MHD, in this paper we pro-
pose and analyze a new mixed finite element method for the stationary incompressible MHD
system considering constant parameters. Our method combines the mixed finite element dis-
cretization that has been developed recently for the stationary Navier–Stokes problem in [3] and
the mixed finite element method presented in [27] for the Maxwell’s equations. More precisely,
we adopt the methodology developed in [3] for the fluid equations, where the main unknowns are
the velocity and a nonlinear pseudostress tensor depending nonlinearly on the velocity through
the corresponding convective term, and in [27] for the electromagnetic unknowns. The pres-
sure is eliminated by using the incompressibility condition, and can be recovered as a simple
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postprocess of the nonlinear pseudostress tensor. Thus, the resulting main unknowns of the
system are the aforementioned pseudostress tensor, the velocity, the magnetic field and a La-
grange multiplier related with the divergence-free property of the magnetic field. As in [3], we
introduce non-standard Banach spaces for the velocity and the nonlinear pseudostress tensor,
and H(curl ) and H1 for the magnetic field and Lagrange multiplier, respectively. A fixed-point
setting resembling the approach applied in [6] is then utilized to study the well-posedness of
the continuous and discrete schemes of our problem. The analysis is based on the Lax–Milgram
lemma, the Banach–Nečas–Babuška theorem and the Banach’s fixed–point theorem under a
small data assumption. For the associated Galerkin scheme we employ Raviart-Thomas ele-
ments of degree k to approximate the nonlinear pseudostress tensor, discontinuous piecewise
polynomials of degree k for the velocity, Nédélec elements of degree k for the magnetic field
and continuous piecewise polynomials of degree k for the Lagrange multiplier. We also derive
optimal a priori error estimates of our mixed scheme. Notice that, an important advantage of
our formulation is that further variables of interest, such as the fluid pressure, the fluid vorticity
and the fluid velocity gradient, can be computed as a simple postprocess of the finite element
solutions with the same rate of convergence. In addition, similarly to [27], our analysis is carried
out without assuming that the computational domain is convex as in [18] and [15].

We have organized the contents of this paper as follows. In Section 2 we introduce some
standard notation and functional spaces. We reformulate the incompressible MHD problem as an
equivalent set of equations and derive our mixed variational formulation. Next, in Section 3, we
apply the classical Banach fixed point theorem, the Lax–Milgram lemma and the Banach–Nečas–
Babuška theorem to prove unique solvability and stability of the continuous formulation. The
corresponding Galerkin scheme is introduced and analysed by mimicking the theory developed
for the continuous problem in Section 4. In addition, we establish the corresponding Céa’s
estimate and prove optimal convergence of the method. Finally, in Section 5, we provide some
numerical results illustrating the performance of our mixed finite element method and confirming
the theoretical rates of convergence.

2 The model problem and its mixed formulation

2.1 Preliminaries

Let us denote by Ω ⊆ R3 a given bounded domain with polyhedral boundary Γ, and denote
by n the outward unit normal vector on Γ. Standard notations will be adopted for Lebesgue
spaces Lp(Ω), with p ∈ [1,∞] and Sobolev spaces W r,p(Ω) with r ≥ 0, endowed with the norms
‖ · ‖Lp(Ω) and ‖ · ‖W r,p(Ω), respectively. Note that W 0,p(Ω) = Lp(Ω) and if p = 2, we write Hr(Ω)
in place of W r,2(Ω), with the corresponding Lebesgue and Sobolev norms denoted by ‖ · ‖0,Ω
and ‖ · ‖r,Ω, respectively. We also write | · |r,Ω for the Hr-seminorm. In addition, H1/2(Γ) is the
spaces of traces of functions of H1(Ω) and H−1/2(Γ) denotes its dual. With 〈·, ·〉 we denote the
corresponding product of duality between H1/2(Γ) and H−1/2(Γ). By S and S we will denote
the corresponding vectorial and tensorial counterparts of the generic scalar functional space S,
and, in the case of product spaces, we preserve the same type of symbol as the space of objects
of higher dimensions, for example U = V×X×D or U = V ×X. In addition, we will denote
by ‖(u, v)‖ := ‖(u, v)‖U×V := ‖u‖U + ‖v‖V the norm on the product space U × V . In turn, for
any vector fields v = (vi)i=1,3 and w = (wi)i=1,3 we set the gradient, divergence, tensor product
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and curl operators, respectively, as

∇v :=

(
∂vi
∂xj

)
i,j=1,3

, div v :=
3∑
j=1

∂vj
∂xj

, v ⊗w := (viwj)i,j=1,3

and

curl v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
.

In addition, for any tensor fields τ = (τij)i,j=1,3 and ζ = (ζij)i,j=1,3, we let div τ be the
divergence operator div acting along the rows of τ , and define the transpose, the trace, the
tensor inner product, and the deviatoric tensor, respectively, as

τ t := (τ ji)i,j=1,3, tr (τ ) :=
3∑
i=1

τii, τ : ζ :=
3∑

i,j=1

τijζij , τ d := τ − 1

3
tr (τ )I,

where I is the identity tensor in R3×3. The cross product of two vectors u = (u1, u2, u3) and
v = (v1, v2, v3) in R3 is given by

u× v := (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

For simplicity, in what follows we denote

(v, w)Ω :=

∫
Ω
vw, (v,w)Ω :=

∫
Ω

v ·w, (v,w)Γ :=

∫
Γ

u · v and (τ , ζ)Ω :=

∫
Ω
τ : ζ.

Furthermore, we recall that the Hilbert spaces

H(div ; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
and

H(curl ; Ω) :=
{
v ∈ L2(Ω) : curl v ∈ L2(Ω)

}
,

with norms ‖τ‖2div ;Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω and ‖v‖2curl ;Ω := ‖v‖20,Ω + ‖curl v‖20,Ω, respectively.
Both spaces are standard in mixed problems and electromagnetism problems, respectively. We
denote by H(div 0; Ω) the subspace of H(div ; Ω) with divergence zero and in the sequel we will
make use of the tensor version of H(div ; Ω), namely

H(div ; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

whose norm will be denoted ‖ · ‖div ;Ω. In turn, given p ≥ 6
5 , in what follows we will also employ

the non-standard Banach space H(divp ,Ω) defined by

H(divp ; Ω) := {τ ∈ L2(Ω) : div τ ∈ Lp(Ω)},

endowed with the norm

‖τ‖divp ;Ω :=
(
‖τ‖20,Ω + ‖div τ‖2Lp(Ω)

)1/2
.

Also, we consider the following subspace of H(curl ; Ω)

H0(curl ; Ω) :=
{
c ∈ H(curl ; Ω) : n× c = 0 on Γ

}
.
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2.2 The stationary incompressible magneto-hydrodynamics problem

Let Ω ⊆ R3 be a bounded Lipschitz polyhedron domain. For simplicity, we assume that Ω is
simply-connected, and that its boundary is connected. Let ν, νm, u and p be the hydrodynamic
viscosity, electromagnetic viscosity, velocity and pressure, respectively, of a viscous incompress-
ible fluid occupying the region Ω, exposed to a magnetic field b. Then, the movement of the
fluid and the behavior of the magnetic field are described by the stationary incompressible
magneto-hydrodynamic equations:

−ν∆u + (u · ∇)u +∇p− k(curl b)× b = f in Ω,

kνmcurl (curl b) +∇r − kcurl (u× b) = g in Ω,

div u = 0 in Ω,

div b = 0 in Ω,

(p, 1)Ω = 0,

(2.1)

where f and g are source terms, k is the coupling number and the unknown r is the correspond-
ing Lagrange multiplier associated with the divergence constraint on the magnetic field b. In
addition, we consider the following Dirichlet boundary conditions:

u = uD on Γ, n× b = 0 on Γ and r = 0 on Γ, (2.2)

where uD is the prescribed velocity on Γ satisfying the compatibility condition∫
Γ

uD · n = 0. (2.3)

As we already mentioned before, we are interested in deriving a mixed finite element method
to approximate the solution of problem (2.1). To that end, we proceed analogously as in [3] and
write (2.1) as an equivalent set of equations by introducing the pseudostress tensor

σ := ν∇u − pI − u⊗ u in Ω. (2.4)

Notice that from the incompressibility condition div u = tr (∇u) = 0 in Ω, there hold

div (u⊗ u) = (u · ∇)u in Ω and tr (σ) = −3p− tr (u⊗ u) in Ω. (2.5)

In particular, the second equation in (2.5) allows us to write the pressure p in terms of the tensor
σ and the velocity u as

p = −1

3
(tr (σ) + tr (u⊗ u)) in Ω, (2.6)

which in turn, together to (2.4), leads us to the equation

σd = ν∇u− (u⊗ u)d in Ω.

On the other hand, from (2.4), the first equation of (2.1) and (2.5), we easily get the equilibrium
equation

−div σ − k(curl b)× b = f in Ω .
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Finally, from (2.6) we observe that the condition (p, 1)Ω = 0, ensuring the uniqueness of solution
of problem (2.1), is equivalent to

(tr (σ) + tr (u⊗ u), 1)Ω = 0.

According to the above, we rewrite equations (2.1) equivalently as follows:

σd = ν∇u− (u⊗ u)d in Ω,

−div σ − k(curl b)× b = f in Ω,

kνmcurl (curl b) +∇r − kcurl (u× b) = g in Ω,

div b = 0 in Ω,

(tr (σ), 1)Ω + (tr (u⊗ u), 1)Ω = 0,

(2.7)

along with the boundary conditions (2.2). Here the unknowns of the system are the tensor σ,
the velocity u, the magnetic field b and the Lagrange multiplier r. The pressure p can be easily
computed as a postprocess of the solution by using (2.6). In the sequel we employ the set of
equations (2.7) to derive our mixed formulation.

2.3 Derivation of the mixed variational formulation

We begin by proceeding similarly to [3] for the first and second equations of (2.7), that is, we
multiply the first equation of (2.7) by τ ∈M, integrate by parts, employ the Dirichlet boundary
condition u = uD on Γ, and test the second equation of (2.7) by v ∈ Q (M and Q will be
specified later on), to obtain

1

ν
(σd, τ d)Ω + (div τ ,u)Ω +

1

ν
(u⊗ u, τ d)Ω = 〈τn,uD〉, ∀ τ ∈M, (2.8)

and
(div σ,v)Ω + k((curl b)× b,v)Ω = −(f ,v)Ω, ∀v ∈ Q. (2.9)

Next, for the third and fourth equations of (2.7) we proceed analogously to [27], that is,
we multiply the third equation of (2.7) by d ∈ H0(curl ; Ω), integrate by parts, test the fourth
equation of (2.7) by z ∈ H1

0 (Ω) and also integrate by parts, to get

kνm(curl b, curl d)Ω + (∇r,d)Ω − k(u× b, curl d)Ω = (g,d)Ω, ∀d ∈ H0(curl ; Ω) (2.10)

and
(b,∇z)Ω = 0, ∀ z ∈ H1

0 (Ω). (2.11)

In this way, at first we are interested in finding σ ∈M, u ∈ Q, b ∈ H0(curl ; Ω) and r ∈ H1
0 (Ω)

satisfying (2.8), (2.9), (2.10) and (2.11) and the condition (tr (σ), 1)Ω = −(tr (u⊗ u), 1)Ω.
Now we turn to specify the spaces M and Q. To that end, we first let

C := {d ∈ H0(curl ; Ω) : (d,∇z)Ω = 0 ∀ z ∈ H1
0 (Ω)} = H0(curl ; Ω) ∩ H(div 0; Ω), (2.12)

and observe that, since b satisfies (2.11), then b ∈ C (see [16, Section I.2.2]). Then, since C is
continuously embedded into Hs(Ω) for some s > 1/2 (see [1, Proposition 3.7]), which in turn is
continuously embedded into L3+δ(Ω), for some δ > 0 (see [26, Theorem 1.3.4]), we obtain

‖b‖L3+δ(Ω) ≤ c1‖b‖curl ;Ω.
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Therefore, using the embedding inequality

‖v‖Lq(Ω) ≤ c2‖v‖L6(Ω) ∀ q ∈ [1, 6), (2.13)

and defininng δ∗ := 4δ
1+δ > 0, it follows that

|((curl d)×b,v)Ω| ≤ ‖curl d‖0,Ω‖b‖L3+δ(Ω)‖v‖L6−δ∗ (Ω) ≤ Cs‖d‖curl ;Ω‖b‖curl ;Ω‖v‖L6(Ω), (2.14)

for all d ∈ H(curl ; Ω) and v ∈ L6(Ω), with Cs the resulting constant from the aforementioned
embedding inequalities. In addition, if u ∈ L6(Ω) we obtain

|(u× b, curl d)Ω| ≤ ‖curl d‖0,Ω‖b‖L3+δ(Ω)‖u‖L6−δ∗ (Ω) ≤ Cs‖d‖curl ;Ω‖b‖curl ;Ω‖u‖L6(Ω), (2.15)

for all d ∈ H(curl ; Ω).
According to the above, the terms ((curl b)×b,v)Ω and (u×b, curl d)Ω in (2.9) and (2.10),

respectively, are well defined if we set Q := L6(Ω) and consequently, (div τ ,u)Ω and (divσ,v)Ω

in (2.8) and (2.9), respectively, are well defined if div τ ,divσ ∈M := H(div6/5 ; Ω).
Let us now define the space

H0(div6/5 ; Ω) := {τ ∈ H(div6/5 ; Ω) : (tr (τ ), 1)Ω = 0},

and recall that there holds

H(div6/5 ; Ω) = H0(div6/5 ; Ω) ⊕ P0(Ω)I, (2.16)

where P0(Ω) is the space of constant polynomials on Ω. More precisely, each τ ∈ H(div6/5 ; Ω)
can be decomposed uniquely as:

τ = τ 0 + c I , with τ 0 ∈ H0(div6/5 ; Ω) and c :=
1

3 |Ω|
(tr τ , 1)Ω ∈ R .

Then, if we define the tensor

σ0 := σ +
1

3|Ω|
(tr (u⊗ u), 1)ΩI, (2.17)

it can be readily seen that

(tr (σ) + tr (u⊗ u), 1)Ω = 0 if and only if σ0 ∈ H0(div6/5 ; Ω).

Moreover, owing to (2.16) and the compatibility condition (2.3), after simple computations we
realize that equation (2.8) can be rewritten in terms of σ0 equivalently as

1

ν
(σd0, τ

d)Ω + (div τ ,u)Ω +
1

ν
(u⊗ u, τ d)Ω = 〈τn,uD〉, ∀ τ ∈ H0(div6/5 ; Ω), (2.18)

whereas (2.9) becomes:

(div σ0,v)Ω + k((curl b)× b,v)Ω = −(f ,v)Ω, ∀v ∈ L6(Ω). (2.19)

Summarizing, instead of considering equations (2.8) and (2.9) in the system of equations,
from now on we consider the new equations (2.18) and (2.19). In this way, for the sake of
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simplicity we drop the subscript 0 from the new unknown σ0, and at last arrive to our variational
problem: Find (σ,u,b, r) ∈ H0(div6/5 ; Ω)× L6(Ω)×H0(curl ; Ω)×H1

0 (Ω), such that:

1

ν
(σd, τ d)Ω + (div τ ,u)Ω +

1

ν
(u⊗ u, τ d)Ω = 〈τn,uD〉 ∀ τ ∈ H0(div6/5 ; Ω),

(div σ,v)Ω + k((curl b)× b,v)Ω = −(f ,v)Ω ∀v ∈ L6(Ω),

kνm(curl b, curl d)Ω + (∇r,d)Ω − k(u× b, curl d)Ω = (g,d)Ω ∀d ∈ H0(curl ; Ω),

(b,∇z)Ω = 0 ∀ z ∈ H1
0 (Ω) .

(2.20)

Remark 2.1 Notice that, if (σ,u,b, r) is the solution of (2.20), then according to (2.6) and
(2.17), the post processing formula for the pressure p now reduces to

p = −1

3

(
tr (σ) + tr (u⊗ u)− 1

|Ω|
(tr (u⊗ u), 1)Ω

)
. (2.21)

3 Analysis of the continuous problem

3.1 Preliminaries

The well-posedness of problem (2.20) will be addressed by means of a fixed-point strategy and
a sufficiently small data assumption. To that end, and for easiness of presentation, we define
the forms af : H(div6/5 ; Ω)×H(div6/5 ; Ω)→ R, bf : H(div6/5 ; Ω)× L6(Ω)→ R, cf : L6(Ω)×
L6(Ω)×H(div6/5 ; Ω)→ R, cd : H(curl ; Ω)×C×L6(Ω)→ R, am : H(curl ; Ω)×H(curl ; Ω)→ R,
bm : H(curl ; Ω)×H1

0 (Ω)→ R and cm : L6(Ω)×C×H(curl ; Ω)→ R, as

af (σ, τ ) := 1
ν (σd, τ d)Ω, bf (τ ,v) := (div τ ,u)Ω,

cf (u; v, τ ) := 1
ν (u⊗ v, τ d)Ω, cd(b; c,v) := k((curl b)× c,v)Ω,

am(b,d) := kνm(curl b, curl d)Ω, bm(d, z) := (d,∇z)Ω,

cm(u; b,d) := −k(u× b, curl d)Ω,

(3.1)

where C is the subset of H0(curl ; Ω) defined in (2.12), the functionals F1 : H(div6/5 ; Ω) → R,
F2 : L6(Ω)→ R and F3 : H(curl ; Ω)→ R, as

F1(τ ) := 〈τn,uD〉, F2(v) := −(f ,v)Ω, F3(d) := (g,d)Ω,

and rewrite problem (2.20) in terms of these forms and functionals as follows: Find (σ,u,b, r) ∈
H0(div6/5 ; Ω)× L6(Ω)×H0(curl ; Ω)×H1

0 (Ω), such that:

af (σ, τ ) + bf (τ ,u) + cf (u; u, τ ) = F1(τ ) ∀ τ ∈ H0(div6/5 ; Ω),

bf (σ,v) + cd(b; b,v) = F2(v) ∀v ∈ L6(Ω),

am(b,d) + bm(d, r) + cm(u; b,d) = F3(d) ∀d ∈ H0(curl ; Ω),

bm(b, z) = 0 ∀ z ∈ H1
0 (Ω).

(3.2)
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In turn, recalling that the bilinear form bm satisfies the inf-sup condition (see [27, Section 2.4]
or [21, Section 5.4]):

sup
0 6=d∈H0(curl ;Ω)

bm(d, z)

‖d‖curl ;Ω
≥ βm‖z‖1,Ω ∀ z ∈ H1

0 (Ω), (3.3)

with βm > 0, analogously to [27], it is not difficult to see that (3.2) can be rewritten equiva-
lently (to be proved next in Corollary 3.7) as the following reduced problem: Find (σ,u,b) ∈
H0(div6/5 ; Ω)× L6(Ω)×C, such that:

af (σ, τ ) + bf (τ ,u) + cf (u; u, τ ) = F1(τ ) ∀ τ ∈ H0(div6/5 ; Ω),

bf (σ,v) + cd(b; b,v) = F2(v) ∀v ∈ L6(Ω),

am(b,d) + cm(u; b,d) = F3(d) ∀d ∈ C.

(3.4)

Therefore, to prove the well-posedness of (3.2) it suffices to apply our aforementioned fixed-point
strategy to the reduced problem (3.4).

3.2 The fixed-point strategy

Here we describe the fixed-point strategy to be employed next to prove the well-posedness of
(3.4). This strategy consists firstly in rewriting (3.4) as an equivalent fixed-point equation in
terms of an operator J , and secondly in proving existence of a unique fixed point of J by means
of the classical Banach fixed-point theorem. We begin by introducing the associated fixed-point
operator. To that end we first introduce the operator Sm : L6(Ω)→ C, as

Sm(w) := b, ∀w ∈ L6(Ω),

where b is the element in C satisfying

am(b,d) + cm(w; b,d) = F3(d) ∀d ∈ C. (3.5)

In turn, we let Sf : L6(Ω)×C→ H0(div6/5 ; Ω)× L6(Ω) be the operator defined by

Sf (w, b̂) := (Sf,1(w, b̂), Sf,2(w, b̂)) = (σ,u) ∀ (w, b̂) ∈ L6(Ω)×C,

where (σ,u) is the pair in H0(div6/5 ; Ω)× L6(Ω) satisfying

af (σ, τ ) + bf (τ ,u) + cf (w; u, τ ) = F1(τ ) ∀ τ ∈ H0(div6/5 ; Ω),

bf (σ,v) = Fb̂(v) ∀v ∈ L6(Ω),
(3.6)

with
Fb̂(v) := F2(v) − cd(b̂; b̂,v), ∀v ∈ L6(Ω).

Then, we define
J : L6(Ω)→ L6(Ω), w→ J (w) := Sf,2(w, Sm(w))
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and realize that solving (3.4) is equivalent to seeking a fixed-point of J , that is: Find u ∈ L6(Ω),
such that

J (u) = u. (3.7)

Therefore, in what follows we focus on proving the existence of a unique fixed-point of J .
Before doing that, we need to prove that J is well defined. To that end, and since J is defined
in terms of Sm and Sf , it suffices to prove that both operators Sm and Sf are well-defined
separately.

3.3 Well-definiteness of Sm

It is clear that to prove the well-definiteness of operator Sm it suffices to prove the well-posedness
of problem (3.5). In order to do that, we first need to establish the stability properties of the
forms and functionals involved. We begin by recalling that the form am is continuous:

|am(b,d)| ≤ κνm‖b‖curl ;Ω‖d‖curl ;Ω ∀b,d ∈ H(curl ; Ω). (3.8)

In addition, from (2.15) we have

|cm(u; b,d)| ≤ kCs‖u‖L6(Ω)‖b‖curl ;Ω‖d‖curl ;Ω ∀u ∈ L6(Ω), b ∈ C, d ∈ H(curl ; Ω). (3.9)

In turn, recalling that there holds

‖curl d‖0,Ω ≥ αm‖d‖curl ;Ω, ∀d ∈ C, (3.10)

with αm > 0 only depending of Ω (see [25, Corollary 3.51]), it readily follows that am is elliptic
on C, that is

am(d,d) ≥ kνmα
2
m‖d‖2curl ;Ω ∀d ∈ C. (3.11)

Finally, it is clear that the functional F3 is bounded, that is

|F3(d)| ≤ ‖g‖0,Ω‖d‖curl ;Ω ∀d ∈ H(curl ; Ω) (3.12)

Now, we are in position of establishing the well-definiteness of operator Sm or equivalently,
the well-posedness of (3.5).

Lemma 3.1 Let w ∈ L6(Ω) be such that

‖w‖L6(Ω) ≤
1

2
νmCm, (3.13)

with Cm := α2
m
Cs

a positive constant independent of the physical parameters. Then, there exists a
unique b ∈ C solution to (3.5). In addition, there holds

‖b‖curl ;Ω ≤
2

kνmα2
m

‖g‖0,Ω. (3.14)

Proof. First, from (3.11) and (3.9) it is clear that for all d ∈ C, there holds

am(d,d) + cm(w; d,d) ≥ kνmα
2
m‖d‖2curl ;Ω − kCs‖w‖L6(Ω)‖d‖2curl ;Ω

≥ k
(
νmα

2
m − Cs‖w‖L6(Ω)

)
‖d‖2curl ;Ω,

10



which together to hypothesis (3.13), implies

am(d,d) + cm(w; d,d) ≥ 1

2
kνmα

2
m‖d‖2curl ;Ω, ∀d ∈ C, (3.15)

that is the bilinear form am(·, ·) + cm(w; ·, ·) is elliptic on C. In this way, the well-posedness
of (3.5) follows straightforwardly from the Lax-Milgram lemma. In addition, from (3.15) and
(3.12) it readily follows that the solution b satisfies (3.14), which concludes the proof. �

3.4 Well-definiteness of Sf

Similarly as in Section 3.3, to prove the well-definiteness of Sf in what follows we focus on
proving the well-posedness of (3.6). In this regard, we point out that most of the results here
are omitted and recall only the key properties since the desired result follows straightforwardly
from [3, Section 3.2].

We start by noticing that, analogously to [3, Lemma 3.2], that is, proceeding as in [14,
Lemma 2.3] and utilizing the Sobolev inequality

‖w‖Lq(Ω) ≤ C‖w‖1,Ω, ∀w ∈ H1(Ω), ∀ q ∈ [1, 6], (3.16)

with q = 6, it can be proved that

Cf,1‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div τ‖L6/5(Ω) ∀ τ ∈ H0(div6/5 ; Ω), (3.17)

with Cf,1 > 0 depending only on Ω, which clearly implies

af (τ , τ ) =
1

ν
‖τ d‖20,Ω ≥

Cf,1
ν
‖τ‖2div6/5 ;Ω, (3.18)

for all τ ∈ Ker(bf ) := {τ ∈ H0(div6/5 ; Ω) : bf (τ ,v) = 0 ∀v ∈ L6(Ω)}. In addition, it is easy
to see that af and bf are continuous forms, that is

|af (σ, τ )| ≤ 1

ν
‖σ‖div6/5 ;Ω‖τ‖div6/5 ;Ω, ∀σ, τ ∈ H(div6/5 ; Ω), (3.19)

and
|bf (τ ,v)| ≤ ‖σ‖div6/5 ;Ω‖v‖L6(Ω), ∀σ ∈ H(div6/5 ; Ω), ∀v ∈ L6(Ω). (3.20)

Now we establish the inf-sup condition of bf .

Lemma 3.2 There exists βf > 0 only depending on Ω, such that

sup
τ∈H0(div6/5 ;Ω)\{0}

bf (τ ,v)

‖τ‖div6/5 ;Ω
≥ βf‖v‖L6(Ω) (3.21)

for all v ∈ L6(Ω).

Proof. We proceed similarly to [3, Lemma 3.4] and [4, Lemma 2.1]. In fact, given v ∈ L6(Ω),
we let h(v) := |v|4v and observe that

(|h(v)|6/5, 1)Ω = (|v|6, 1)Ω < +∞, (3.22)
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which implies that h(v) ∈ L6/5(Ω) and ‖h(v)‖L6/5 = ‖v‖5L6(Ω). Then, proceeding analogously

to [3, Lemma 3.4] we can find τ̃ ∈ H0(div6/5 ; Ω), such that

div τ̃ = h(v) ∈ L6/5(Ω), (tr (τ̃ ), 1)Ω = 0, (3.23)

which owing to (3.16), satisfies

‖τ̃‖div6/5 ;Ω ≤ β−1
f ‖v‖

5
L6(Ω), (3.24)

with βf > 0. In this way, from (3.23), and (3.24), it follows that

sup
τ∈H0(div6/5 ;Ω)\{0}

bf (τ ,v)

‖τ‖div6/5 ;Ω
≥ βf‖v‖L6(Ω),

which concludes the proof. �

Now, let us define A :
(
H(div6/5 ; Ω)× L6(Ω)

)
×
(
H(div6/5 ; Ω)× L6(Ω)

)
→ R, as

A((σ,u), (τ ,v)) := af (σ, τ ) + bf (τ ,u) + bf (σ,v), (3.25)

for all (σ,u), (τ ,v) ∈ H(div6/5 ; Ω) × L6(Ω), and recall that thanks to (3.18)-(3.21) and [10,
Proposition 2.36], the bilinear form A satisfies:

sup
0 6=(τ ,v)∈H0(div6/5 ;Ω)×L6(Ω)

A((σ,u), (τ ,v))

‖(τ ,v)‖
≥ γf‖(σ,u)‖ , (3.26)

for all (σ,u) ∈ H0(div6/5 ; Ω)× L6(Ω), with

γf := Cf,2
min{1, νβf}
νβf + 1

(3.27)

with constants Cf,2 > 0 and βf > 0 depending only on Ω. On the other hand, using (2.13) with
q = 4, we obtain that the form cf (cf. (3.1)) satisfies

|cf (u; v, τ )| ≤
Cf,3
ν
‖u‖L6(Ω)‖v‖L6(Ω)‖τ‖div6/5 ;Ω ∀u,v ∈ L6(Ω), ∀ τ ∈ H(div6/5 ; Ω), (3.28)

wit Cf,3 > 0 depending only on Ω. In turn, from (2.14), we have that

|cd(d; b,v)| ≤ kCs‖d‖curl ;Ω‖b‖curl ;Ω‖v‖L6(Ω) ∀d ∈ H(curl ; Ω), b ∈ C, v ∈ L6(Ω), (3.29)

and in particular, for a fixed b̂ ∈ C, the latter implies that

|Fb̂(v)| ≤ (‖f‖L6/5(Ω) + kCs‖b̂‖2curl ;Ω)‖v‖L6(Ω) ∀v ∈ L6(Ω). (3.30)

In addition, analogously to the proof of [3, Lemma 3.5], considering here the Sobolev inequality
(3.16) with q = 6, for F1 we have

|F1(τ )| ≤ CΓ‖τ‖div6/5 ;Ω‖uD‖1/2,Γ ∀ τ ∈ H(div6/5 ; Ω). (3.31)

Now, in order to establish the well-posedness of (3.6), for a fix w ∈ L6(Ω) we define the bilinear
form Aw : (H(div6/5 ; Ω)× L6(Ω))× (H(div6/5 ; Ω)× L6(Ω))→ R given by

Aw((σ,u), (τ ,v)) := A((σ,u), (τ ,v)) + cf (w; u, τ ). (3.32)

For this bilinear form, from (3.26) and (3.28) we obtain the following result. For its proof we
refer to [3, Theorem 3.6].
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Lemma 3.3 Let w ∈ L6(Ω) be such that

‖w‖L6(Ω) ≤
νγf

2Cf,3
,

with γf being the constant defined in (3.27). Then, the following inf-sup conditions holds:

sup
0 6=(τ ,v)∈H0(div6/5 ;Ω)×L6(Ω)

Aw((σ,u), (τ ,v))

‖(τ ,v)‖
≥
γf
2
‖(σ,u)‖ , (3.33)

for all (σ,u) ∈ H0(div6/5 ; Ω)× L6(Ω), and

sup
(σ,u)∈H0(div6/5 ;Ω)×L6(Ω)

Aw((σ,u), (τ ,v)) > 0 ,

for all (τ ,v) ∈
(
H0(div6/5 ; Ω)× L6(Ω)

)
\{0}.

Now we are in position of establishing the well-posedness of (3.6), or equivalently, the well-
definiteness of Sf .

Lemma 3.4 Let w ∈ L6(Ω) be such that

‖w‖L6(Ω) ≤
νγf

2Cf,3
, (3.34)

with γf being the constant defined in (3.27) and let b̂ ∈ C. Then, there exists a unique (σ,u) ∈
H0(div6/5 ; Ω)× L6(Ω), solution to (3.6). In addition, there holds

‖(σ,u)‖ ≤ 2

γf

(
CΓ‖uD‖1/2,Γ + ‖f‖L6/5(Ω) + kCs‖b̂‖2curl ;Ω

)
. (3.35)

Proof. Here, we proceed as in the proof of [3, Theorem 3.6] and rewrite problem (3.6) as

Aw((σ,u), (τ ,v)) = F1(τ ) + Fb̂(v).

Then, the well-posedness of (3.6) follows straightforwardly from Lemma 3.3 and the well-known
Banach-Nečas-Babǔska theorem (cf. [10, Theorem 2.6]). Moreover, from (3.30) and (3.31) we
obtain

|F1(τ ) + Fb̂(v)| ≤
(
CΓ‖uD‖1/2,Γ + ‖f‖L6/5(Ω) + kCs‖b̂‖2curl ;Ω

)
‖(τ ,v)‖,

which clearly implies (3.35). �

3.5 Well-posedness of the continuous formulation

Recalling that problem (3.4) is equivalent to the fixed-point problem (3.7), in what follows we
apply the classical Banach fixed-point theorem to obtain the desired well-posedness of (3.4).
Before doing that, we notice that from Lemma 3.1 we have that for all w ∈ L6(Ω), such that
‖w‖L6(Ω) ≤ 1

2νmCm, there holds

‖Sm(w)‖curl ;Ω ≤
2

kνmα2
m

‖g‖0,Ω
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and from Lemma 3.4

‖Sf,2(w, b̂)‖L6(Ω) ≤ ‖Sf (w, b̂)‖ ≤ 2

γf

(
CΓ‖uD‖1/2,Γ + ‖f‖L6/5(Ω) + kCs‖b̂‖2curl ;Ω

)
for all (w, b̂) ∈ L6(Ω) × H0(curl ; Ω), with ‖w‖L6(Ω) ≤

νγf
2Cf,3

. Hence, recalling that J (w) =

Sf,2(w, Sm(w)), from the inequalities above, we deduce

‖J (w)‖L6(Ω) = ‖Sf,2(w, Sm(w))‖L6(Ω)

≤ 2

γf

(
CΓ‖uD‖1/2,Γ + ‖f‖L6/5(Ω) + kCs‖Sm(w)‖2curl ;Ω

)
≤ 2

γf

(
CΓ‖uD‖1/2,Γ + ‖f‖L6/5(Ω) +

M1

κν2
m

‖g‖20,Ω
)
,

with M1 = 4Cs
α4
m

independent of the physical parameters. Therefore, if we define the ball

K :=
{
v ∈ L6(Ω) : ‖v‖L6(Ω) ≤ µ(uD, f ,g)

}
, (3.36)

where

µ(uD, f ,g) :=
2

γf

(
CΓ‖uD‖1/2,Γ + ‖f‖L6/5(Ω) +

M1

κν2
m

‖g‖20,Ω
)
, (3.37)

and redefine J on K, that is J : K→ K, we obtain that J is well-defined provided

µ(uD, f ,g) ≤ 1

2
min

{
νγf
Cf,3

, νmCm

}
. (3.38)

This result is established next.

Lemma 3.5 Assume that the data f , g and uD satisfy (3.38). Then, given w ∈ K, there exists
a unique u ∈ K such that J (w) = u.

Proof. If w belongs to K and the data satisfies (3.38), it is clear that the hypotheses of lemmas
3.1 and 3.4 hold. Then, the result follows straightforwardly from the well-definiteness of Sm and
Sf . �

Now we turn to prove the main result if this section, namely, existence and uniqueness of
solution of problem (3.4).

Theorem 3.6 Assume that the data f , g and uD satisfy (3.38). Assume further that

2

γf

(
M2

κν3
m

‖g‖20,Ω +
Cf,3
ν
µ(uD, f ,g)

)
< 1, (3.39)

with M2 := α2
mM

2
1 > 0, independent of the physical parameters. Then, there exists a unique

(σ,u,b) ∈ H0(div6/5 ; Ω)× L6(Ω)×C solution to (3.4) . In addition, there hold

‖u‖L6(Ω) + ‖σ‖div6/5 ;Ω ≤ µ(uD, f ,g), (3.40)

and

‖b‖curl ;Ω ≤
2

kνmα2
m

‖g‖0,Ω. (3.41)
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Proof. Let w1, w2, u1, u2 ∈ K, be such that u1 = J (w1) and u2 = J (w2). From definition of
J it follows that there exist unique (σ1,u1,b1) ∈ H0(div6/5 ; Ω)×L6(Ω)×C and (σ2,u2,b2) ∈
H0(div6/5 ; Ω)× L6(Ω)×C, satisfying

af (σ1, τ ) + bf (τ ,u1) + cf (w1; u1, τ ) = F1(τ ) ∀ τ ∈ H0(div6/5 ; Ω),

bf (σ1,v) = Fb1(v) ∀v ∈ L6(Ω),

am(b1,d) + cm(w1; b1,d) = F3(d) ∀d ∈ C ,

and
af (σ2, τ ) + bf (τ ,u2) + cf (w2; u2, τ ) = F1(τ ) ∀ τ ∈ H0(div6/5 ; Ω),

bf (σ2,v) = Fb2(v) ∀v ∈ L6(Ω),

am(b2,d) + cm(w2; b2,d) = F3(d) ∀d ∈ C .

Then, subtracting both systems, and adding and subtracting suitable terms, we easily arrive at

af (σ1 − σ2, τ ) + bf (τ ,u1 − u2) + cf (w1; u1 − u2, τ ) = −cf (w1 −w2; u2, τ ) ,

bf (σ1 − σ2,v) + cd(b1; b1 − b2,v) = −cd(b1 − b2; b2,v) ,

am(b1 − b2,d) + cm(w1; b1 − b2,d) = −cm(w1 −w2; b2,d) ,

(3.42)

In turn, since w1 belongs to K, we have that the hypothesis of Lemma 3.1 holds and then the
bilinear form am(·, ·) + cm(w1; ·, ·) satisfies (3.15). Then, from the third equation of (3.42), and
using the continuity of cm (cf. (3.9)), we obtain

1
2kνmα

2
m‖b1 − b2‖2curl ;Ω ≤ am(b1 − b2,b1 − b2) + cm(w1; b1 − b2,b1 − b2)

≤ kCs‖w1 −w2‖L6(Ω)‖b2‖curl ;Ω‖b1 − b2‖curl ;Ω

which together to the fact that b2 = Sm(w2) satisfies (3.14), implies

‖b1 − b2‖curl ;Ω ≤
M1

kν2
m

‖g‖0,Ω‖w1 −w2‖L6(Ω). (3.43)

On the other hand, from the first and second equations of (3.42) and from the definition of the
bilinear form Aw (cf. (3.32)) we have

Aw1((σ1 − σ2,u1 − u2), (τ ,v)) = −cd(b1; b1 − b2,v)− cd(b1 − b2; b2,v)

−cf (w1 −w2; u2, τ ).

Therefore, since w1 satisfies (3.34), from the latter identity, and from estimates (3.28), (3.29)
and (3.33), it follows that

γf
2
‖(σ1 − σ2,u1 − u2)‖ ≤ sup

0 6=(τ ,v)∈H0(div6/5 ;Ω)×L6(Ω)

Aw((σ1 − σ2,u1 − u2), (τ ,v))

‖(τ ,v)‖

≤ κCs‖b1 − b2‖curl ;Ω (‖b1‖curl ;Ω + ‖b2‖curl ;Ω)

+
Cf,3
ν
‖w1 −w2‖L6(Ω)‖u2‖L6(Ω).
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Then, recalling that b1 and b2 satisfy (3.14) and u2 ∈ K (cf. (3.36)), using (3.43) from the
latter it follows that

‖u1 − u2‖L6(Ω) ≤
2

γf

(
M2

κν3
m

‖g‖20,Ω +
Cf,3
ν
µ(uD, f ,g)

)
‖w1 −w2‖L6(Ω), (3.44)

with M2 := α2
mM

2
1 > 0 independent of the physical parameters. In this way, from assumption

(3.39) we clearly obtain that J is a contraction mapping.
Finally, if u ∈ K is the unique fixed-point of J , it is clear that (σ,u,b) ∈ H0(div6/5 ; Ω)×

L6(Ω) × C is the unique solution of (3.4) with b = Sm(u) and (σ,u) = Sf (u, Sm(u)). Then,
estimates (3.40) and (3.41) follow from (3.35) and (3.14), respectively, which concludes the proof.
�

We end this section by establishing the well-posedness of (3.2).

Corollary 3.7 Let f ∈ L6/5(Ω), uD ∈ H1/2(Γ) and g ∈ L2(Ω) such that (3.38) and (3.39) hold.
Then, there exists a unique (σ,u ,b , r) ∈ H0(div6/5 ; Ω)×L6(Ω)×H0(curl ; Ω)×H1

0 (Ω) solution
to (3.2). In addition, (σ,u) and b satisfy (3.40) and (3.41), respectively, and for r there holds

‖r‖1,Ω ≤
1

βm

(
2

α2
m

+ 1

)
‖g‖0,Ω +

κCs
βm

µ(uD, f ,g), (3.45)

with µ(uD, f ,g) being the constant defined in (3.37)

Proof. We begin by proving the equivalence between (3.2) and (3.4). In fact, we first notice that
if (σ,u,b, r) ∈ H0(div6/5 ; Ω) × L6(Ω) ×H0(curl ; Ω) × H1

0 (Ω) is the unique solution of (3.2),
then clearly b ∈ C and (σ,u,b) satisfies (3.4). On the other hand, let (σ,u,b) be the unique
solution of (3.4) and let F ∈ H0(curl ; Ω) be the unique element in H0(curl ; Ω) (guaranteed by
the Riesz representation theorem), such that

〈F ,d〉 = F3(d)− am(b,d)− cm(u; b,d), ∀d ∈ H0(curl ; Ω),

with 〈·, ·〉 being the inner product of H0(curl ; Ω). From the third equation of (3.4) it is clear
that 〈F ,d〉 = 0 for all d ∈ C, that is F ∈ C⊥. Then, owing to the inf-sup condition (3.3), and
according to [14, Lemma 2.1-ii], we deduce that there exists a unique r ∈ H1

0 (Ω), such that

bm(d, r) = 〈F ,d〉 = F3(d)− am(b,d)− cm(u; b,d), ∀d ∈ H0(curl ; Ω),

which implies that (σ,u,b, r) is the unique solution of (3.2). Therefore, since both problems
(3.2) and (3.4) are equivalent, the well-posedness of (3.4) follows from Theorem 3.6.

Finally, for the estimate (3.45), using again the inf-sup condition (3.3), and employing esti-
mates (3.8), (3.9) and (3.12), we obtain that

βm‖r‖1,Ω ≤ sup
0 6=d∈H0(curl ;Ω)

|bm(d, r)|
‖d‖curl ;Ω

= sup
0 6=d∈H0(curl ;Ω)

|F3(d)− am(b,d)− cm(u; b,d)|
‖d‖curl ;Ω

≤ κνm‖b‖curl ;Ω + κCs‖u‖L6(Ω) + ‖g‖0,Ω,

which together to (3.40) and (3.41) implies (3.45) and concludes the proof. �
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4 Galerkin scheme

In this section we introduce the Galerkin scheme associated to problem (2.20) and study its
solvability and convergence. We mention in advance that, as we shall see in the forthcoming
subsections, the well-posedness analysis follows straightforwardly by adapting the results derived
for the continuous problem to the discrete case, reason why most of the details are omitted.

4.1 The discrete problem

Let Th be a regular family of triangulations of the polyhedral region Ω made up of tetrahedra
T in R3 of diameter hT such that Ω = ∪{T : T ∈ Th} and define h := max{hT : T ∈ Th}. Given
an integer l ≥ 0 and a subset S of R3, we denote by Pl(S) the space of polynomials of total
degree at most l defined on S, P̃l(S) the space of homogeneous polynomials of degree exactly
k on S and Ml(S) the space of polynomials p in P̃l(S) satisfying p(x) · x = 0 on S, where
x := (x1, x2, x3)t is a generic vector of R3. Hence, for each integer k ≥ 0 and for each T ∈ Th,
we define the local Raviart–Thomas and Nédélec elements of order k (see for instance [2] and
[25]), respectively by

RTk(T ) := Pk(T ) ⊕ P̃k(T )x , and Nk(T ) := Pk(T )⊕Mk+1(T ).

Then, for k ≥ 0 we define the discrete spaces:

Hh :=
{
τ h ∈ H(div ; Ω) : ctτ h|T ∈ RTk(T ), ∀ c ∈ Rn ∀T ∈ Th

}
,

Vh :=
{
vh ∈ L6(Ω) : vh|T ∈ Pk(T ), ∀T ∈ Th

}
,

Dh := {dh ∈ H0(curl ; Ω) : dh|T ∈ Nk(T ), ∀T ∈ Th} ,

Sh :=
{
zh ∈ H1

0 (Ω) : zh|T ∈ Pk+1(T ), ∀T ∈ Th
}
.

Notice that Hh ⊆ H(div6/5 ; Ω). In this way, defining

Hh,0 :=

{
τ h ∈ Hh :

∫
Ω

tr (τ h) = 0

}
⊆ H0(div6/5 ; Ω),

the Galerkin scheme associated to (3.2) reads: Find (σh,uh,bh, rh) ∈ Hh,0 × Vh × Dh × Sh,
such that:

af (σh, τ h) + bf (τ h,uh) + cf (uh; uh, τ h) = F1(τ h) ∀ τ h ∈ Hh,0,

bf (σh,vh) + cd(bh; bh,vh) = F2(vh) ∀vh ∈ Vh,

am(bh,dh) + bm(dh, rh) + cm(uh; bh,dh) = F3(dh) ∀dh ∈ Dh,

bm(bh, zh) = 0 ∀ zh ∈ Sh.

(4.1)

In turn, similarly to the continuous case, from [21, Section 5.4] we recall that the bilinear form
bm satisfies the discrete inf-sup condition:

sup
0 6=dh∈Dh

bm(dh, zh)

‖dh‖curl ;Ω
≥ βm‖zh‖1,Ω ∀ zh ∈ Sh, (4.2)
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with βm > 0 being the same constant satisfying (3.3), which certainly is independent of h. Then
we define the discrete version of C, namely

Ch := {dh ∈ Dh : (dh,∇zh)Ω = 0, ∀zh ∈ Sh} , (4.3)

and introduce the discrete version of (3.4): Find (σh,uh,bh) ∈ Hh,0 ×Vh ×Ch, such that:

af (σh, τ h) + bf (τ h,uh) + cf (uh; uh, τ h) = F1(τ h) ∀ τ h ∈ Hh,0,

bf (σh,vh) + cd(bh; bh,vh) = F2(vh) ∀vh ∈ Vh,

am(bh,dh) + cm(uh; bh,dh) = F3(dh) ∀dh ∈ Ch.

(4.4)

It is not difficult to see that, owing to the discrete inf-sup condition (4.2), problems (4.1)
and (4.4) are equivalent. Then analogously to the continuous case, in what follows we focus on
analyzing (4.4) through a fixed-point strategy. To that end we introduce the operator Sm,h :
Vh → Ch, as

Sm,h(wh) := bh, ∀wh ∈ Vh,

where bh is the unique element in Ch satisfying

am(bh,dh) + cm(wh; bh,dh) = F3(dh) ∀dh ∈ Ch. (4.5)

In addition, we let Sf,h : Vh ×Ch → Hh,0 ×Vh be the operator defined by

Sf,h(wh, b̂h) := (Sf,h,1(wh, b̂h), Sf,h,2(wh, b̂h)) = (σh,uh) ∀ (wh, b̂h) ∈ Vh ×Ch,

where (σh,uh) is the pair in Hh,0 ×Vh satisfying

af (σh, τ h) + bf (τ h,uh) + cf (wh; uh, τ h) = F1(τ h) ∀ τ h ∈ Hh,0,

bf (σh,vh) = Fb̂h
(vh) ∀vh ∈ Vh ,

(4.6)

with
Fb̂h

(vh) := F2(vh) − cd(b̂h; b̂h,vh) ∀vh ∈ Vh. (4.7)

Then, the discrete fixed-point operator associated to problem (4.4) is given by

Jh : Vh → Vh, wh → Jh(wh) := Sf,h,2(wh, Sm,h(wh)).

According to the above, to prove the well-posedness of (4.4), in what follows we prove the
existence of a unique uh ∈ Vh, such that

Jh(uh) = uh. (4.8)

In the next section we address the solvability analysis of problems (4.5) and (4.6), thus
confirming that Sm,h and Sf,h, and hence Jh, are well defined, and prove the existence of a
unique uh ∈ Vh satisfying (4.8) by means of the Banach fixed-point theorem and a suitable
smallness assumption on the data.
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4.2 Solvability analysis

We begin by establishing the stability properties of the forms involved on the discrete spaces.
First, we observe that since our Galerkin scheme is based on the utilization of conforming discrete
spaces, it is clear that (3.8), (3.12), (3.19), (3.20), (3.28) and (3.31) hold on the corresponding
discrete spaces with the exact same constants. On the other hand, on Ch (cf. (4.3)) it is known
that the following estimate holds

‖curl dh‖0,Ω ≥ α̂m‖dh‖curl ;Ω, ∀dh ∈ Ch,

with α̂m > 0, independent of the mesh-size h (cf. [21, Theorem 4.7]). This estimate implies the
ellipticity of am on Ch, that is

am(dh,dh) ≥ kνmα̂
2
m‖dh‖2curl ;Ω, ∀dh ∈ Ch.

Next, to provide the discrete versions of (3.9) and (3.29) we notice that the discrete kernel of
bm, namely Ch (cf. (4.3)), is not included in its continuous counterpart C, and consequently,
we cannot employ the embedding C ⊆ Hs(Ω) for some s > 1/2. In order to overcome this
drawback, as we shall see in the following lemma, from now on we need to assume that the mesh
is quasi-uniform.

Lemma 4.1 Assume that Th is a family of quasi-uniform triangulations. Then, there exist
positive constants Ĉms and Ĉds , independent of h and the physical parameters, such that

|cm(w; b,d)| ≤ kĈms ‖w‖L6(Ω)‖b‖curl ;Ω‖d‖curl ;Ω , (4.9)

for all (w; b,d) ∈ Vh × (C + Ch)×H0(curl ; Ω) and

|cd(h; c,v)| ≤ kĈds ‖h‖curl ;Ω‖c‖curl ;Ω‖v‖L6(Ω) , (4.10)

for all (h; c,v) ∈ Dh × (C + Ch)× L6(Ω).

Proof. Let (w; b,d) ∈ Vh × Ch ×H0(curl ; Ω) and (h; c,v) ∈ Dh × Ch × L6(Ω) (notice that
(4.9) and (4.10) are direct consequences of (3.9) and (3.29), respectively, when b, c ∈ C, since
Vh ⊆ L6(Ω) and Dh ⊆ H0(curl ; Ω)). In the sequel we proceed similarly to the proof of [27,
Proposition 3.2]. To that end, we let T : Ch → C be a linear operator such that (see [21, Section
4])

curl (d) = curl (T(d)) ∀d ∈ Ch, (4.11)

satisfying
‖d−T(d)‖0,Ω ≤ Chs‖curl d‖0,Ω ∀d ∈ Ch, (4.12)

where s > 1/2 is the parameter satisfying C ⊆ Hs(Ω) (see [21, Lemma 4.5]). On the other hand,
let us recall that, owing to the quasi-uniformity of the mesh, the following inverse inequality
holds (see [8, Theorem 3.2.6])

‖ξ‖Lq(Ω) ≤ Ch
3( 1
q
− 1
p

)‖ξ‖Lp(Ω), 1 ≤ p ≤ q ≤ ∞, (4.13)

for all piecewise polynomial functions ξ and C > 0 independent of h.
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For (4.9) we add and subtract T(b) in the second component of cm, utilize the triangle
inequality, the identity (4.11) and estimates (3.9) and (3.10), to obtain

|cm(w; b,d)| ≤ |cm(w; b−T(b),d)|+ C1κ‖w‖L6(Ω)‖b‖curl ;Ω‖d‖curl ;Ω, (4.14)

with C1 > 0 independent of h and the physical parameters. To bound the remaining term
|cm(w; b − T(b),d)| we apply Hölder’s inequality, estimate (4.12) and the inverse inequality
(4.13) with q =∞ and p = 6, to obtain

|cm(w; b−T(b),d)| ≤ κ‖w‖L∞(Ω)‖b−T(b)‖0,Ω‖curl d‖0,Ω

≤ κC2h
s−1/2‖w‖L6(Ω)‖curl b‖0,Ω‖d‖curl ;Ω,

(4.15)

with C2 > 0 independent of h and the physical parameters. In this way, from (4.14) and (4.15)
and since s > 1/2 we clearly obtain (4.9).

Now, for cd we proceed similarly as for cm, that is we add and subtract T(c) in the second
component of cd and apply the triangle inequality, the identity (4.11) and estimates (3.29) and
(3.10) to get

|cd(h; c,v)| ≤ |cd(h; c−T(c),v)|+ |cd(h; T(c),v)|

≤ |cd(h; c−T(c),v)|+ C3κ‖h‖curl ;Ω‖c‖curl ;Ω‖v‖L6(Ω).
(4.16)

Then, by applying again Hölder’s inequality, estimate (4.12) and the inverse inequality (4.13)
with q = 3 and p = 2 to the term |cd(h; c−T(c),v)| we have

|cd(h; c−T(c),v)| ≤ κ‖curl h‖L3(Ω)‖c−T(c)‖0,Ω‖v‖L6(Ω)

≤ κC4h
s−1/2‖h‖curl ;Ω‖c‖curl ;Ω‖v‖L6(Ω),

which together with (4.16) and the fact that s > 1/2, imply (4.10) which concludes the proof.
�

The following result establishes the well-definiteness of Sm,h.

Lemma 4.2 Let wh ∈ Vh be such that

‖wh‖L6(Ω) ≤
1

2
νmĈm, (4.17)

with Ĉm := α̂2
m

Ĉms
a positive constant independent of mesh-size h and the physical parameters.

Then, there exists a unique bh ∈ Ch solution to (4.5), thus operator Sm,h is well-defined. In
addition, there holds

‖bh‖curl ;Ω ≤
2

kνmα̂2
m

‖g‖0,Ω.

Proof. Analogously to Lemma 3.1 we observe that estimate (4.17) implies that am(·, ·) +
cm(wh; ·, ·) is elliptic on Ch, that is

am(dh,dh) + cm(wh; dh,dh) ≥ 1

2
kνmα̂

2
m‖dh‖2curl ;Ω ∀dh ∈ Ch. (4.18)
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Then, the result follows from the Lax-Milgram lemma. �
Now we address the well-definiteness of Sf,h by adapting the results from Section 3.4 to the

discrete case. As for the continuous case, these results follow straightforwardly from [3, Section
4.2].

We start by noticing that, since div Hh ⊆ Vh, the discrete kernel of bf can be characterized
as follows

Kerh(bf ) = {τ h ∈ Hh,0 : div τ h = 0 in Ω},

and then, owing to (3.17), there holds

af (τ h, τ h) ≥
Cf,1
ν
‖τ h‖2div6/5 ;Ω ∀ τ h ∈ Kerh(bf ). (4.19)

Now, we adapt the proof of [3, Lemma 4.4] to derive the discrete version of (3.21). To that
end, we need to introduce some preliminaries results. We begin by defining the space

Z := {τ ∈ H(div6/5 ; Ω) : τ |T ∈W1,6/5(T ), ∀T ∈ Th}.

Then, we let

Πk
h : Z→ Xh := {τ ∈ H(div ; Ω) : τ |T ∈ RTk(T ), ∀T ∈ Th},

be the Raviart–Thomas interpolator operator, which is well defined on Z (see e.g. [10, Section
1.2.7]) and is characterized by the identities∫

e
(Πk

h(τ) · ν)ξ =

∫
e
(τ · ν)ξ ∀ ξ ∈ Pk(e), ∀ edge or face e of Th,

and ∫
T

Πk
h(τ) · ψ =

∫
T
τ · ψ ∀ ψ ∈ [Pk−1(T )]n, ∀ T ∈ Th (if k ≥ 1) .

In addition, it is well known (see e.g. [10, Lemma 1.41]) that the following identity holds

div (Πk
h(τ)) = Pkh(div τ) ∀ τ ∈ Z, (4.20)

where, for 1 ≤ q ≤ ∞, Pkh : Lq(Ω) → Mh := {v ∈ Lq(Ω) : v|K ∈ Pk(K) ∀K ∈ Th} is the
operator satisfying ∫

Ω
(Pkh(v)− v)zh = 0 ∀ zh ∈Mh,

and the following error estimate (see [10, Proposition 1.135, Section 1.6.3]): For each 0 ≤ t ≤ k+1
and for each w ∈Wt,q(Ω), with 1 ≤ q ≤ ∞, there holds

‖w − Pkh(w)‖Lq(Ω) ≤ Cht|w|Wt,q(Ω). (4.21)

Notice that for q = 2, Pkh coincides with the usual orthogonal projection.

The following lemma establishes the local approximation properties of Πk
h. See, for instance,

[3, Lemma 4.2].
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Lemma 4.3 There exists C1 > 0, independent of h, such that for each τ ∈ Wl+1,6/5(T ) with
0 ≤ l ≤ k, and for each 0 ≤ m ≤ l + 1, there holds

|τ −Πk
h(τ)|Wm,6/5(T ) ≤ C1

hl+2
T

ρm+1
T

|τ |Wl+1,6/5(T ), (4.22)

where hT is the diameter of T , that is hT = maxx,y∈T ‖x − y‖, and ρT is the diameter of the
largest sphere contained in T . Moreover, there exists C2 > 0, independent of h, such that for
each τ ∈W1,6/5(T ), with div τ ∈Wl+1,6/5(T ) and 0 ≤ l ≤ k, and for each 0 ≤ m ≤ l+ 1, there
holds

|div τ − div (Πk
h(τ))|Wm,6/5(T ) ≤ C2

hl+1
T

ρmT
|div τ |Wl+1,6/5(T ). (4.23)

Owing to the regularity of the mesh and from estimates (4.22) and (4.23), it is not difficult see
that the following global estimate holds

‖τ − Πk
h(τ)‖0,Ω + ‖div τ − div (Πh(τ))‖L6/5(Ω) ≤ ch

l+1
{
|τ |Hl+1(Ω) + |div τ |Wl+1,6/5(Ω)

}
, (4.24)

for all 0 ≤ l ≤ k + 1, and for all τ ∈ Hl+1(Ω) with div τ ∈Wl+1,6/5(Ω).

In the sequel, it will be employed a tensor version of Πk
h, say Πk

h : Zp → Xh which is defined
row–wise by Πk

h, and a vector version of Pkh , say Pk
h, defined element–wise by Pkh . Obviously,

both Πk
h and Pk

h also satisfy the properties described above

Remark 4.4 Notice that from the regularity of the mesh and from (4.22) with m = 0 and
m = 1, one can easily obtain, respectively, that

‖τ −Πk
h(τ)‖L6/5(T ) ≤ C1

hl+2
T

ρT
|τ |Wl+1,6/5(T ) ≤ Ĉ1h

l+1
T |τ |Wl+1,6/5(T )

and

|τ −Πk
h(τ)|W1,6/5(T ) ≤ C2

hl+2
T

ρ2
T

|τ |Wl+1,6/5(T ) ≤ Ĉ2h
l
T |τ |Wl+1,6/5(T ),

which combined with [10, Lemma 1.101] and the continuity of the embedding from W1,6/5 into
L2 on the reference triangle (see the proof of [5, Lemma 5.4]), yield

‖τ −Πk
h(τ)‖0,T ≤ C|τ |W1,6/5(T ) ∀ τ ∈W1,6/5(T ). (4.25)

Now we are in position of establishing the discrete inf-sup condition of bf .

Lemma 4.5 There exists β̂f > 0, independent of h, such that

sup
τh∈Hh,0\{0}

bf (τ h,vh)

‖τ h‖div6/5 ;Ω
≥ β̂f‖vh‖L6(Ω) ∀vh ∈ Vh, (4.26)
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Proof. In what follows we proceed similarly to the proof of [4, Lemma 3.3] and [3, Lemma 4.4].
In fact, given vh ∈ Vh, we set

g(vh) :=

{
|vh|4vh in Ω,

0 in B\Ω,

where B ⊆ R3 is a open ball containing Ω. Then, since g(vh) ∈ L6/5(B), it follows that there

exists a unique weak solution z ∈W2,6/5(B) ∩W
1,6/5
0 (B) of the boundary value problem

−∆z = g(vh) in B and z = 0 on ∂B,

which satisfies

‖z‖W2,6/5(Ω) ≤ C‖g(vh)‖L6/5(B) = C‖|vh|4vh‖L6/5(Ω) = C‖vh‖5L6(Ω), (4.27)

with C > 0 (see e.g. [13]).
Hence, we set τ̂ = −∇z|Ω ∈W1,6/5(Ω), and observe from (4.27) that

‖τ̂‖W1,6/5(Ω) ≤ C‖vh‖
5
L6(Ω), (4.28)

which together with the continuity of the embedding from W1,6/5(Ω) into L2(Ω), implies

‖τ̂‖0,Ω ≤ C‖vh‖5L6(Ω). (4.29)

Then, we define τ̂ h = Πk
h(τ̂ )− 1

3|Ω|

(
tr (Πk

h(τ̂ )), 1
)

Ω
I ∈ Hh,0 and observe from (4.20), that

div τ̂ h = Pk
h(div τ̂ ) = Pk

h(|vh|4vh). (4.30)

In turn, utilizing the triangle inequality and estimates (4.25) and (4.29), we obtain

‖τ̂ h‖0,Ω ≤
∥∥∥∥τ̂ − 1

3|Ω|
(tr (τ̂ ), 1)Ω I− τ̂ h

∥∥∥∥
0,Ω

+

∥∥∥∥τ̂ − 1

3|Ω|
(tr (τ̂ ), 1)Ω I

∥∥∥∥
0,Ω

=

∥∥∥∥τ̂ −Πk
h(τ̂ )− 1

3|Ω|

(
tr
(
τ̂ −Πk

h(τ̂ )
)
, 1
)

Ω
I
∥∥∥∥

0,Ω

+

∥∥∥∥τ̂ − 1

3|Ω|
(tr (τ̂ ), 1)Ω I

∥∥∥∥
0,Ω

≤
∥∥∥τ̂ −Πk

h(τ̂ )
∥∥∥

0,Ω
+ ‖τ̂‖0,Ω

≤ c1

∑
T∈Th

|τ̂ |2W1,6/5(T )


1/2

+ c2‖vh‖5L6(Ω),

≤ c1|τ̂ |W1,6/5(Ω) + c2‖vh‖5L6(Ω),

which together with (4.28), imply

‖τ̂ h‖0,Ω ≤ C‖vh‖5L6(Ω). (4.31)

Hence, using the fact that Pk
h is a continuous operator, from (4.30) and (4.31), we easily obtain

‖τ̂ h‖div6/5 ;Ω =
{
‖τ̂ h‖20,Ω + ‖div (τ̂ h)‖2

L6/5(Ω)

}1/2 ≤ ĉ‖vh‖5L6(Ω), (4.32)
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with ĉ > 0 independent of h.
Therefore, from (4.30) and (4.32), we obtain

sup
τh∈Hh,0\{0}

bf (τ h,vh)

‖τ h‖div6/5 ;Ω
≥

bf (τ̂ h,vh)

‖τ̂ h‖div6/5 ;Ω
≥ 1

ĉ

(|vh|4vh,vh)Ω

‖vh‖5L6(Ω)

≥ 1

ĉ

‖vh‖6L6(Ω)

‖vh‖5L6(Ω)

=
1

ĉ
‖vh‖L6(Ω),

which concludes the proof with β̂f =
1

ĉ
. �

Owing to estimates (4.19) and (4.26) we obtain ([3, Theorem 3.6]) that the bilinear form A
defined in (3.25) also satisfies the discrete inf-sup condition

sup
06=(τh,vh)∈Hh,0×Vh

A((σh,uh), (τ h,vh))

‖(τ h,vh)‖
≥ γ̂f‖(σh,uh)‖ , (4.33)

for all (σh,uh) ∈ Hh,0 ×Vh, with

γ̂f := Ĉf,2
min{1, νβ̂f}
νβ̂f + 1

(4.34)

with constants Ĉf,2 > 0 and β̂f > 0 independent of h and the physical parameters.

Making use of estimate (4.33) it can be easily proved the following result whose proof can
be obtained by applying the same steps given in the proof of [3, Theorem 3.6].

Lemma 4.6 Let wh ∈ Vh be such that

‖wh‖L6(Ω) ≤
νγ̂f

2Cf,3
, (4.35)

with γ̂f being the constant defined in (4.34). Then, the bilinear form Awh defined in (3.32)
satisfies the following inf-sup condition:

sup
0 6=(τh,vh)∈Hh,0×Vh

Awh((σh,uh), (τ h,vh))

‖(τ h,vh)‖
≥
γ̂f
2
‖(σh,uh)‖, (4.36)

for all (σh,uh) ∈ Hh,0 ×Vh.

Finally, for a fixed b̂h ∈ Ch from (4.10) we have that Fb̂h
(cf. (4.7)) is continuous on Vh,

that is
|Fb̂h

(vh)| ≤ (‖f‖L6/5(Ω) + kĈds ‖b̂h‖2curl ;Ω)‖vh‖L6(Ω) ∀vh ∈ Vh.

Now we are in position of establishing the well-posedness of (4.6), or equivalently, the well-
definiteness of Sf,h.

Lemma 4.7 Let wh ∈ Vh be such that (4.35) holds and let b̂h ∈ Ch. Then, there exists a
unique (σh,uh) ∈ Hh,0 ×Vh, solution to (4.6). In addition, there holds

‖(σh,uh)‖ ≤ 2

γ̂f

(
CΓ‖uD‖1/2,Γ + ‖f‖L6/5(Ω) + kĈds ‖b̂h‖2curl ;Ω

)
.
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Proof. Employing Lemma 4.6, the fact that for finite dimensional linear problems, surjectivity
and injectivity are equivalent, and the well-known Banach–Nečas–Babǔska theorem, (cf. [10,
Theorem 2.6]) we obtain the desired result. The rest of the arguments are omitted since they
are analogous to those given in the proof of Lemma 3.4. �

Now, analogously to the continuous case we define the set (see Section 3.5)

Kh :=
{
vh ∈ Vh : ‖vh‖L6(Ω) ≤ µ̂(uD, f ,g)

}
,

where

µ̂(uD, f ,g) :=
2

γ̂f

(
CΓ‖uD‖1/2,Γ + ‖f‖L6/5(Ω) +

M̂1

κν2
m

‖g‖20,Ω

)
, (4.37)

with M̂1 = 4Ĉms
α̂4
m

and γ̂f > 0 given in (4.34), both independent of h and the physical parameters,

and redefine Jh on Kh, that is Jh : Kh → Kh.
Now we establish discrete counterpart of Lemma 3.5 providing the well-definiteness of Jh on

Kh.

Lemma 4.8 Assume that the data f , g and uD satisfy

µ̂(uD, f ,g) ≤ 1

2
min

{
νγ̂f
Cf,3

, νmĈm

}
. (4.38)

Then, given wh ∈ Kh, there exists a unique uh ∈ Kh such that Jh(wh) = uh.

Now we state the main result of this section, namely, the well-posedness of (4.4). Its proof
is omitted since it can be obtained repeating the same steps in the proof of Theorem 3.6.

Theorem 4.9 Let f ∈ L6/5(Ω), uD ∈ H1/2(Γ) and g ∈ L2(Ω) such that (4.38) holds. Assume
further that

2

γ̂f

(
M̂2

kν3
m

‖g‖20,Ω +
Cf,3
ν
µ̂(uD, f ,g)

)
< 1, (4.39)

with M̂2 > 0 independent of h and the physical parameters. Then, there exists a unique
(σh,uh,bh) ∈ Hh,0 ×Vh ×Ch solution to (4.4). In addition, there hold

‖uh‖L6(Ω) + ‖σh‖div6/5 ;Ω ≤ µ̂(uD, f ,g) , (4.40)

and

‖bh‖curl ;Ω ≤
2

kνmα̂2
m

‖g‖0,Ω. (4.41)

We end this section by establishing the well-posedness of (4.1), whose proof is omitted since
it follows analogously to the proof of Corollary 3.7.

Corollary 4.10 Let f ∈ L6/5(Ω), uD ∈ H1/2(Γ) and g ∈ L2(Ω) such that (4.38) and (4.39)
hold. Then, there exists a unique (σh,uh,bh, rh) ∈ Hh,0 ×Vh ×Dh × Sh solution to (4.1) . In
addition, (σh,uh) and bh satisfy (4.40) and (4.41), respectively, and for rh there holds

‖rh‖1,Ω ≤
1

βm

(
2

α̂2
m

+ 1

)
‖g‖0,Ω +

kĈms
βm

µ̂(uD, f ,g),

with µ̂(uD, f ,g) being the constant defined in (4.37).
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4.3 Cea’s estimates

In this section we aim to provide the convergence analysis of the Galerkin scheme (4.1). To do
that we introduce first some notations and useful results to be used next.

In order to simplify the subsequent analysis, we define

eσ := σ − σh, eu := u− uh, eb := b− bh er := r − rh, (4.42)

and for any (τ̂ h, v̂h, d̂h, ŝh) ∈ Hh,0 ×Vh ×Ch × Sh, we write

eσ = ξσ + χσ, eu = ξu + χu, eb = ξb + χb, er = ξr + χr, (4.43)

where
ξσ := σ − τ̂ h, χσ := τ̂ h − σh, ξu := u− v̂h, χu := v̂h − uh,

ξb := b− d̂h, χb := d̂h − bh, ξr := r − ẑh, χr := ẑh − rh.

In turn we recall that owing to the inf-sup condition (4.2), the following inequality holds (see
for instance [14, Theorem 2.6])

inf
dh∈Ch

‖b− dh‖curl ;Ω ≤ C inf
dh∈Dh

‖b− dh‖curl ;Ω, (4.44)

with C > 0 independent of h and the physical parameters.

The corresponding Cea’s estimate is established in the following theorem.

Theorem 4.11 Let f ∈ L6/5(Ω), uD ∈ H1/2(Γ) and g ∈ L2(Ω) be such that (3.38), (3.39),
(4.38) and (4.39) holds. Assume further that

2Cf,3
νγ̂f

µ(uD, f ,g) +
M̂3

γ̂fkν3
m

‖g‖20,Ω < 1 (4.45)

with µ(uD, f ,g) being the positive constant defined in (3.37) and M̂3 > 0 independent of h and
the physical parameters. Let (σ,u,b, r) ∈ H0(div6/5 ; Ω) × L6(Ω) ×H0(curl ; Ω) × H1

0 (Ω) and
(σh,uh,bh, rh) ∈ Hh,0 × Vh × Dh × Sh be the unique solutions of problems (3.2) and (4.1),
respectively. Then, there exist positive constants C1, C2, independent of h, such that

‖eσ‖div6/5 ;Ω + ‖eu‖L6(Ω) + ‖eb‖curl ;Ω + ‖er‖1,Ω ≤ C1

{
inf

τh∈Hh,0
‖σ − τ h‖div6/5 ;Ω (4.46)

+ inf
vh∈Vh

‖u− vh‖L6(Ω) + inf
dh∈×Dh

‖b− dh‖curl ;Ω + inf
zh∈Sh

‖r − zh‖1,Ω
}
.

Proof. We begin observing by that assumptions (3.38), (3.39), (4.38) and (4.39) allow us to
conclude that continuous and discrete problems (3.2) and (4.1) are well-posed. Now, we subtract
(3.2) and (4.1) and obtain the Galerkin orthogonality property

af (eσ, τ h) + bf (τ h, eu) + [cf (u; u, τ h)− cf (uh; uh, τ h)] = 0 ∀ τ h ∈ Hh,0,

bf (eσ,vh) + [cd(b; b,vh)− cd(bh; bh,vh)] = 0 ∀vh ∈ Vh,

am(eb,dh) + bm(dh, er) + [cm(u; b,dh)− cm(uh; bh,dh)] = 0 ∀dh ∈ Dh,

bm(eb, zh) = 0 ∀ zh ∈ Sh.

(4.47)
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For the first two equations of (4.47) we add and subtract suitable terms and make use of
(4.43) and the definition of Aw (cf. (3.32)) to arrive at

Auh((χσ,χu), (τ h,vh)) = G1(τ h) + G2(vh) ∀ τ h ∈ Hh,0, vh ∈ Vh, (4.48)

where

G1(τ h) = −af (ξσ, τ h)− bf (τ h, ξu)− cf (uh; ξu, τ h)− cf (ξu; u, τ h)− cf (χu; u, τ h) ,

G2(vh) = −bf (ξσ,vh)− [cd(b; b,vh)− cd(bh; bh,vh)] .

Similarly, for the third and fourth equations of (4.47) we add and subtract suitable terms and
make use of (4.43) to easily obtain

am(χb,dh) + bm(dh, χr) + cm(uh;χb,dh) = G3(dh) ∀dh ∈ Dh,

bm(χb, zh) = −bm(ξb, zh) ∀ zh ∈ Sh,
(4.49)

with

G3(dh) = −am(ξb,dh)− bm(dh, ξr)− cm(uh; ξb,dh)− cm(ξu; b,dh)− cm(χu; b,dh).

In particular, since χb ∈ Ch, from the first equation of (4.49) we have

am(χb,dh) + cm(uh;χb,dh) = G3(dh) ∀dh ∈ Ch. (4.50)

Then, using that uh ∈ Kh and employing assumption (4.38) we observe that uh satisfies (4.17),
thus the bilinear form am(·, ·) + cm(uh; ·, ·) satisfies (4.18), which together with (4.50) imply

‖χb‖curl ;Ω ≤
2

kνmα̂2
m

‖G3‖C′h . (4.51)

In turn, noticing now that the fact that uh ∈ Kh together with (4.38) also imply that uh satisfies
(4.35), we make use of (4.36) and combine it with (4.48) to obtain

‖(χσ,χu)‖ ≤ 2

γ̂f

(
‖G1‖H′h,0 + ‖G2‖V′h

)
.

Now we turn to estimate the norm of the functionals G1, G2 and G3. First, for G3 we utilize
the continuity of am and bm and estimates (3.9) and (4.9) to obtain

‖G3‖C′h ≤ κ
(
νm + Ĉms ‖uh‖L6(Ω)

)
‖ξb‖curl ;Ω + ‖ξr‖1,Ω

+κCs‖b‖curl ;Ω‖ξu‖L6(Ω) + κCs‖b‖curl ;Ω‖χu‖L6(Ω),

which together to (3.41) and (4.40), implies

‖G3‖C′h ≤ C
(
‖ξb‖curl ;Ω + ‖ξr‖1,Ω + ‖ξu‖L6(Ω)

)
+

2Cs
νmα2

m

‖g‖0,Ω‖χu‖L6(Ω), (4.52)

with C > 0 independent of h. Similarly, for G1 we make use of the continuity of af , bf and cf
to obtain

‖G1‖H′h,0 ≤ C
(
‖ξσ‖div6/5 ;Ω + ‖ξu‖L6(Ω)

)
+
Cf,3
ν
µ(uD, f ,g)‖χu‖L6(Ω), (4.53)
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with C > 0 independent of h. Finally, for G2 we first notice that after adding and subtracting
suitable terms there holds

G2(vh) = −bf (ξσ,vh)− cd(ξb; b,vh)− cd(bh; ξb,vh)− cd(χb; b,vh)− cd(bh;χb,vh),

and then, we apply the continuity of bf and estimates (3.29) and (4.10) to obtain

‖G2‖V′h ≤ ‖ξσ‖div6/5 ;Ω + C̃ (‖b‖curl ;Ω + ‖bh‖curl ;Ω) (‖ξb‖curl ;Ω + ‖χb‖curl ;Ω) ,

with C̃ > 0 independent of h, which together to (3.41) and (4.41) imply

‖G2‖V′h ≤ C(‖ξσ‖div6/5 ;Ω + ‖ξb‖curl ;Ω) +
2C̃

κνmα2
mα̂

2
m

(α2
m + α̂2

m)‖g‖0,Ω‖χb‖curl ;Ω. (4.54)

In this way, from estimates (4.51)–(4.54) it follows that

‖χb‖curl ;Ω ≤ C
(
‖ξb‖curl ;Ω + ‖ξr‖1,Ω + ‖ξu‖L6(Ω)

)
+

c1

κν2
m

‖g‖0,Ω‖χu‖L6(Ω) (4.55)

with c1 = 4Cs
α̂mα2

m
and

‖χσ‖div6/5 ;Ω + ‖χu‖L6(Ω) ≤ C
(
‖ξσ‖div6/5 ;Ω + ‖ξb‖curl ;Ω + ‖ξu‖L6(Ω)

)
+

2Cf,3
γ̂fν

µ(uD, f ,g)‖χu‖L6(Ω) +
c2

γ̂fκνm
‖g‖0,Ω‖χb‖curl ;Ω,

with c2 = 4C̃
α̂mα2

m
, which combined yield

‖χσ‖div6/5 ;Ω + ‖χu‖L6(Ω) ≤ C
(
‖ξσ‖div6/5 ;Ω + ‖ξb‖curl ;Ω + ‖ξu‖L6(Ω) + ‖ξr‖1,Ω

)
(4.56)

+

(
2Cf,3
γ̂fν

µ(uD, f ,g) +
M̂3

γ̂fκ2ν3
m

‖g‖20,Ω

)
‖χu‖L6(Ω)

with M̂3 = c1c2. Therefore, from (4.55), (4.56) and assumption (4.45) it readily follows that

‖χσ‖div6/5 ;Ω + ‖χu‖L6(Ω) + ‖χb‖curl ;Ω ≤ C
(
‖ξσ‖div6/5 ;Ω + ‖ξb‖curl ;Ω + ‖ξu‖L6(Ω) + ‖ξr‖1,Ω

)
,

(4.57)
which together with (4.43) implies

‖eσ‖div6/5 ;Ω + ‖eu‖L6(Ω) + ‖eb‖curl ;Ω ≤ C
(
‖ξσ‖div6/5 ;Ω + ‖ξb‖curl ;Ω + ‖ξu‖L6(Ω) + ‖ξr‖1,Ω

)
.

(4.58)
On the other hand, to estimate ‖er‖1,Ω we observe that from first equation of (4.49) we have
that

bm(dh, χr) = − am(χb,dh) − cm(uh;χb,dh) + G3(dh) ∀dh ∈ Dh,

which combined with the inf-sup condition (4.2), the continuity of am and cm, and estimates
(4.40), (4.52) and (4.57), yields

βm‖χr‖1,Ω ≤ sup
0 6=dh∈Dh

bm(dh, χr)

‖dh‖curl ;Ω

= sup
0 6=dh∈Dh

−am(χb,dh)− cm(uh; ξb,dh) +G3(dh)

‖dh‖curl ;Ω

≤ C
(
‖ξσ‖div6/5 ;Ω + ‖ξb‖curl ;Ω + ‖ξu‖L6(Ω) + ‖ξr‖1,Ω

)
,
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thus

‖er‖1,Ω ≤ ‖χr‖1,Ω + ‖ξr‖1,Ω ≤ C
(
‖ξσ‖div6/5 ;Ω + ‖ξb‖curl ;Ω + ‖ξu‖L6(Ω) + ‖ξr‖1,Ω

)
. (4.59)

We end the proof by noticing that estimate (4.46) follows from (4.58), (4.59), (4.44) and the
fact that (τ̂ h, v̂h, d̂h, ẑh) ∈ Hh,0 ×Vh ×Ch × Sh is arbitrary. �

4.4 Rates of convergence

In order to establish the rate of convergence of our Galerkin scheme (4.1) we first recall the
approximation properties of the discrete spaces involved:

inf
τh∈Hh,0

‖σ − τ h‖div6/5 ;Ω ≤ Chk+1
(
‖σ‖k+1,Ω + ‖divσ‖Wk+1,6/5(Ω)

)
, (4.60)

for all σ ∈ Hk+1(Ω), such that divσ ∈Wk+1,6/5(Ω),

inf
vh∈Vh

‖u− vh‖L6(Ω) ≤ Chk+1‖u‖Wk+1,6(Ω), (4.61)

for all u ∈Wk+1,6(Ω),

inf
dh∈×Dh

‖b− dh‖curl ;Ω ≤ Chk+1(‖b‖k+1,Ω + ‖curl b‖k+1,Ω), (4.62)

for all b ∈ Hk+1(Ω), such that curl b ∈ Hk+1(Ω), and

inf
zh∈Sh

‖r − zh‖1,Ω ≤ Chk+1‖r‖k+2,Ω, (4.63)

for all r ∈ Hk+2(Ω). For (4.60) we refer to [3, eq. (4.8)], which is consequence of [10, Lemma
B.67, Lemma 1.101] and [14, Section 3.4.4], for (4.61) we refer to [10, Proposition 1.134, Section
1.6.3], whereas for (4.62) and (4.63) we refer the reader to [25, Theorem 5.41] and [10, Proposition
1.134, Section 1.6.3] respectively.

Owing to the approximation properties listed above we can easily obtain the aforementioned
theoretical rate of convergence associated to the Galerkin scheme (4.1)

Theorem 4.12 Assume that the hypotheses of Theorem 4.11 hold. Let (σ,u,b, r) ∈ H0(div6/5 ;
Ω) × L6(Ω) ×H0(curl ; Ω) ×H1

0 (Ω) and (σh,uh,bh, rh) ∈ Hh,0 ×Mh ×Dh × Sh be the unique
solutions of (3.2) and (4.1), respectively and assume further that σ ∈ Hk+1(Ω) with divσ ∈
Wk+1,6/5(Ω), u ∈ Wk+1,6(Ω), b ∈ Hk+1(Ω) with curl b ∈ Hk+1(Ω) and r ∈ Hk+2(Ω). Then
there exists C > 0, independent of h, such that

‖eσ‖div6/5 ;Ω + ‖eu‖L6(Ω) + ‖eb‖curl ;Ω + ‖er‖1,Ω ≤ Chl+1
(
‖σ‖k+1,Ω + ‖divσ‖Wk+1,6/5(Ω)

+ ‖u‖Wk+1,6(Ω) + ‖b‖k+1,Ω + ‖curl b‖k+1,Ω + ‖r‖k+2,Ω

)
.

Proof. The result is a straightforward application of Theorem 4.11, and estimates (4.60)-(4.63).
�
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4.5 Computing further variables of interest

Besides the variables approximated by the Galerkin scheme (4.1), with our approach we can also
approximate further variables of interest. In fact, according to Remark 2.1 we first recall that
at the continuous level the pressure can be recovered through the post-processed formula (2.21)
and consequently we propose to approximate the pressure in terms if σh and uh by:

ph = −1

3

(
tr (σh) + tr (uh ⊗ uh)− 1

|Ω|
(tr (uh ⊗ uh), 1)Ω

)
. (4.64)

In addition, noticing that the vorticity ω := 1
2(∇u−∇ut), the stress σ̃ := ν(∇u + (∇u)t)− pI

and the velocity gradient G = ∇u can be rewritten in terms of σ and u as follows

σ̃ = σd + (u⊗ u)d + σt + u⊗ u− 1

3|Ω|
(tr (u⊗ u), 1)ΩI,

G =
1

ν
(σd + (u⊗ u)d) and ω =

1

2ν
(σ − σt),

we propose the following discrete formulas for these quantities:

σ̃h = σdh + (uh ⊗ uh)d + σth + uh ⊗ uh −
1

3|Ω|
(tr (uh ⊗ uh), 1)ΩI,

Gh =
1

ν
(σdh + (uh ⊗ uh)d) and ωh =

1

2ν
(σh − σth).

(4.65)

The following result establishes the theoretical rates of convergence for the aforementioned
variables.

Corollary 4.13 Assume that hypotheses of Theorem 4.11 hold. Let (σ,u,b, r) ∈ H0(div6/5 ; Ω)
×L6(Ω)×H0(curl ; Ω)×H1

0 (Ω) and (σh,uh,bh, rh) ∈ Hh,0×Mh×Dh×Sh be the unique solutions
of (3.2) and (4.1), respectively and assume further that σ ∈ Hk+1(Ω) with divσ ∈Wk+1,6/5(Ω),
u ∈ Wk+1,6(Ω), b ∈ Hk+1(Ω) with curl b ∈ Hk+1(Ω) and r ∈ Hk+2(Ω). Finally, let ph, σ̃h,
Gh and ωh given by (4.64) and (4.65). Then there exists C̃ > 0, independent of h, such that

‖p− ph‖0,Ω + ‖σ̃ − σ̃h‖0,Ω + ‖G−Gh‖0,Ω + ‖ω − ωh‖0,Ω ≤ C̃hk+1
(
‖σ‖k+1,Ω

+‖divσ‖Wk+1,6/5(Ω) + ‖b‖k+1,Ω + ‖curl b‖k+1,Ω + ‖u‖Wk+1,6(Ω) + ‖r‖k+2,Ω

)
.

Proof. Recalling that u ∈ K and uh ∈ Kh, and employing (2.13) with q = 4, it is not difficult
to see that

‖u⊗ u− uh ⊗ uh‖0,Ω ≤ C(‖u‖L4(Ω) + ‖uh‖L4(Ω))‖u− uh‖L4(Ω) ≤ C‖u− uh‖L6(Ω), (4.66)

with C > 0, independent of h. Then, using (4.66), the result follows from Theorem 4.12. We
omit further details. �

5 Numerical results

In this section we report two numerical examples that will show the performance of our finite
element scheme. Our implementation is based on a FreeFem++ code (see [20]), in conjunction
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with the direct linear solver UMFPACK (see [9]). Regarding the resolution of the non-linear
problem, we utilize the algorithm utilized to define the fixed-point operator Jh. More precisely,
starting with u0

h ∈ Vh (to be specified on each example), we propose the following iterative
process: for each i = 1, 2, . . . , solve

am(bih,dh) + bm(dh, r
i
h) + cm(u

(i−1)
h ; bih,dh) = F3(dh) ∀dh ∈ Dh,

bm(bih, zh) = 0 ∀ zh ∈ Sh,
(5.1)

and
af (σih, τ h) + bf (τ h,u

i
h) + cf (u

(i−1)
h ; uih, τ h) = F1(τ h) ∀ τ h ∈ Hh,0,

bf (σih,vh) = Fbih
(vh) ∀vh ∈ Vh .

(5.2)

The iterations are terminated once the relative error of the entire coefficient vectors between
two consecutive iterates is sufficiently small, that is,

|coeffm+1 − coeffm|
|coeffm+1|

≤ tol,

where | · | is the standard euclidean norm RN , with N denoting the total number of degrees of
freedom defining the finite element subspaces Hh, Vh, Dh and Sh.

We now introduce some additional notations. Let us denote the experimental rates of con-
vergence as

R(σ) :=
log(eσ/e

′
σ)

log(h/h′)
, R(u) :=

log(eu/e
′
u)

log(h/h′)
, R(b) :=

log(eb/e
′
b)

log(h/h′)
, R(r) :=

log(er/e
′
r)

log(h/h′)
,

R(p) :=
log(ep/ep)

log(h/h′)
, R(ω) :=

log(eω/e
′
ω)

log(h/h′)
, R(G) :=

log(eG/e
′
G)

log(h/h′)
, R(σ̃) :=

log(eσ̃/e
′
σ̃)

log(h/h′)
,

where eσ, eu, eb and er are defined in (4.42),

ep := p− ph, eω := ω − ωh, eG := G−Gh eσ̃ := σ̃ − σ̃h, (5.3)

and h and h′ denote two consecutive meshsizes with errors e and e′ (or e and e′).
In our first example we illustrate the performance of our Galerkin scheme (4.1). Here, we

choose the domain Ω := (0, 1)× (0, 0.5)× (0, 0.5), te parameters ν = k = 1 and νm = 1000, the
initial guess u0

h = 0, and take f and g and uD so that the exact solution is given by

u(x) :=

 −x1(x2 − x3)(x2 + x3)
x2(x1 − x3)(x1 + x3)
−x3(x1 − x2)(x1 + x2)

 ,

p(x) := x2x3(x1 − 0.5) ,

b(x) := curl
(
x2

1(x2 − 0.5)2x2
3 cos(πx3)2(1, 1, 1)t

)
,

r(x) := x1x2x3(x2 − 0.5)(x3 − 0.5)(x1 − 1.0).

In Table 5.1, we summarize the convergence history for Example 3 considering a sequence
of regular triangulations. We observe there that the rates of convergence O(h) predicted by
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Iter. h eσ R(σ) eu R(u) eb R(b) er R(r)

3 0.1768 0.0616 – 0.0210 – 0.0290 – 7.6573e-04 –
3 0.0884 0.0312 0.9799 0.0105 0.9919 0.0148 0.9692 3.9522e-04 0.9542
3 0.0589 0.0208 1.0000 0.0070 0.9976 0.0099 0.9915 2.6508e-04 0.9851
3 0.0442 0.0156 1.0037 0.0053 0.9988 0.0074 0.9963 1.9924e-04 0.9926
3 0.0354 0.0125 1.0043 0.0042 0.9993 0.0060 0.9981 1.5955e-04 0.9956

ep R(p) eω R(ω) eG R(G) eσ̃ R(σ̃)

0.0088 – 0.0550 – 0.0730 – 0.0967 –
0.0041 1.0992 0.0263 1.0677 0.0366 0.9948 0.0515 0.9093
0.0025 1.2391 0.0173 1.0332 0.0245 0.9915 0.0350 0.9508
0.0017 1.2618 0.0129 1.0197 0.0184 0.9917 0.0265 0.9662
0.0013 1.2525 0.0103 1.0130 0.0148 0.9924 0.0213 0.9741

Table 5.1: Example 1: Number of iterations, meshsizes, errors, rates of convergence, for the
RT0 − P0 −N0 − P1 approximation of the MHD problem, with ν = k = 1 and νm = 1000.

Theorem 4.12 and Corollary 4.13 are attained for the unknowns and for all the post-processed
variables. Next, In Figure 5.1 we display some streamlines of uh, isosurfaces of ph and the
magnitud of the magnetic field bh (from top to the bottom to the right) and we compare them
with their exact counterparts (to the left). There we observe that the mixed finite element
method provides accurate approximations to the unknowns.

Finally, in our second example we test our method in a non-convex domain. In fact, we
consider the Fichera’s corner domain Ω := (−1, 1)3\[0, 1)3, where, due to the regularity of the
Neumann problem (see [11, 12]), there holds H0(curl ; Ω) ∩ H(div 0; Ω) ⊆ Hs(Ω) for s ∈ (1

2 ,
2
3).

Here we set ν = κ = νm = 1, consider the initial guess as u0
h = 0, and take f and g and uD so

that the exact solution is given by

u(x) :=

 −x1(x2 − x3)(x2 + x3)
x2(x1 − x3)(x1 + x3)
−x3(x1 − x2)(x1 + x2)

 ,

p(x) := x1x2x3 − Cp ,

b(x) := curl
(
sin2(πx) sin2(πy) sin2(πz)(1, 1, 1)t

)
,

r(x) := sin(πx1) sin(πx2) sin(πx3),

where Cp is chosen in such a way
∫

Ω p = 0. Next, in Table 5.2 we observe that the rates of
convergence predicted by Theorem 4.12 and Corollary 4.13 are attained for all the variables.
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Figure 5.1: Example 1: Some streamlines of uh, isosurfaces of ph and the magnitud of the
magnetic field bh (from top to the bottom to the right) and their exact counterparts (to the
left).
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2

MA)

PRE-PUBLICACIONES 2020

2020-02 Gonzalo A. Benavides, Leonardo E. Figueroa: Orthogonal polynomial projec-
tion error in Dunkl-Sobolev norms in the ball

2020-03 Rodolfo Araya, Abner Poza, Frederic Valentin: An adaptative multiscale
hybrid-mixed method for the Oseen equations
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