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Measuring the distance between epidemic growth models

Raimund Bürger, Gerardo Chowell,
Leidy Y. Lara-Diaz

PREPRINT 2020-12

SERIE DE PRE-PUBLICACIONES





MEASURING THE DISTANCE BETWEEN EPIDEMIC GROWTH MODELS
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Abstract. Phenomenological growth models provide a framework for characterizing epidemic tra-
jectories, estimating key transmission parameters, gaining insight into the contribution of various
transmission pathways, and providing long-term and short-term forecasts. Such models only require
a small number of parameters to describe epidemic growth patterns. They can be expressed by an
ordinary differential equation (ODE) of the type C′(t) = f(t; Θ) for t > 0, C(0) = C0, where t is
time, C(t) is the total size of the epidemic (the cumulative number of cases) at time t, C0 is the
initial number of cases, f is a model-specific incidence function, and Θ is a vector of parameters.
The current COVID-19 pandemic is a scenario for which such models are of obvious importance. In
[R. Bürger, G. Chowell, L.Y. Lara-Dı́az, Math. Biosci. Eng. 16 (2019) 4250–4273] it is demonstrated
that some models are better at fitting data of specific epidemic outbreaks than others even when
the models have the same number of parameters. This situation motivates the need to quantify
the distance between two models as a measure of differences in the dynamics that each model is
capable of generating. The present work contributes to a systematic study of differences between
models and how such differences may explain the ability of certain models to provide a better fit
to data than others. To this end metrics are defined that describe the differences in the dynamics
between different dynamic models. These metrics are based on a concept of distance of one growth
model from another one that quantifies how well the former fits data generated by the latter. This
concept of distance is, however, not symmetric. The procedure of calculating distances is applied
to synthetic data and real data from influenza, Ebola, and COVID-19 outbreaks.

1. Introduction

1.1. Scope. A wide variety of mathematical models have been used to study the patterns of growth
processes of populations and epidemics in humans, animals, and plants [1–14]. Here we are espe-
cially interested in dynamic growth models that provide a framework for characterizing epidemic
trajectories, estimating key transmission parameters, gaining insight into the contribution of various
transmission pathways, and providing long-term and short-term forecasts. The recent monograph
by Yan and Chowell [15] provides an introduction to the topic. We herein focus on phenomenologi-
cal models that only require a small number of parameters are commonly used to describe epidemic
growth patterns, and which can be expressed by an ordinary differential equation (ODE) of the
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type

C ′(t) :=
dC(t)

dt
= f(t; Θ), t > 0; C(0) = C0, (1.1)

where t is time, C(t) is the total size of the epidemic (the cumulative number of cases) at time t,
C0 is the initial number of cases, f is an incidence function that is specific to each growth model
under study, and Θ is a vector of parameters. Such models have been used to study the epidemics of
influenza [16–18], Ebola [19–21], Zika [22,23], and others of global interest. The current COVID-19
pandemic is a scenario for which such models are of obvious importance [24–27].

In [16] we demonstrate that some models are better at fitting data of specific epidemic outbreaks
than others even when the models have the same number of parameters. Consider, for instance,
the three-parameter so-called generalized logistic model (GLM) specified by

f(t; Θ) = rC(t)p
(
1− C(t)/K

)
, Θ = (r, p,K), (1.2)

where the parameter r > 0 indicates the growth rate (its dimension is 1/time), K is the size
of the epidemic, and p ∈ [0, 1] is a growth scaling parameter that indicates the kind of growth
(e.g., exponential vs. sub-exponential). In the comparative analysis between two models and their
generalizations [16], the GLM was able to capture the trajectories for 37 real datasets describing the
progression of epidemic outbreaks. In fact, this model showed to have the smallest error between
the data and the fit, and the estimated parameters were identifiable, that is, the average value
of each parameter was effectively a central value in the confidence intervals, where we used the
definitions and calculations introduced in [28] for the error and the confidence intervals.

Although several growth models could be considered for a given dataset, little work has been
conducted to analyze the differences between models. Here we define the distance between two
models as a measure of differences in the dynamics that each model is capable of generating. We
address questions such as whether the dynamics of the logistic growth model (LM), defined by

f(t; Θ) = rC(t)
(
1− C(t)/K

)
, Θ = (r,K), (1.3)

is more similar to that of the Gompertz model (GoM), corresponding to

f(t; Θ) = rC(t) exp(−bt), Θ = (r, b), (1.4)

where the parameter b > 0 describes the exponential decay of the growth rate r, or to that of the
Richards model (RM)

f(t; Θ) = rC(t)
(
1− (C(t)/K)p

)
, Θ = (r,K, p). (1.5)

There is a need to develop metrics that help quantify the differences in the dynamics obtained
from different models that aim to capture growth processes in the social and natural sciences.
Such metrics can be helpful to assess which models are more parsimonious than others in different
contexts. In the context of epidemic modeling, many models have been developed to investigate the
transmission dynamics and control of infectious diseases [10,14,29]. However, there has not been a
systematic study of differences between models and how differences in dynamics may explain the
ability of certain models to provide a better fit to data than others. Here we aim to make progress
in this direction by focusing on simple models that strive to capture many of the empirical patterns
found in epidemic data.

To address these questions we define metrics of the differences in the dynamics between different
dynamics models of the form (1.1). Here we employ simulated data for three generalized growth
models (namely GLM, GGoM and RM), and with the help of mathematical and computational
methods we calculated the fit and performance metrics in terms of which the distances are defined.
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As we will show, it turns out that the GLM is closer to the dynamics of the RM. On the other
hand, the generalized Gompertz model (GGoM) defined by

f(t; Θ) = rC(t)p exp(−bt), Θ = (r, b, p). (1.6)

is the farthest from the RM and GLM. This is because the scaling parameter (p in (1.2), (1.5)
and (1.6)) plays a more significant role in the GLM since its variation within the GLM causes more
changes in its dynamics than for the other growth models.

The concept of measuring the distance between two models, say A and B, is based on simulation
study that we introduce in the following sections.

1.2. Related work. To illustrate how models can support different features of epidemic data, we
can refer to the scaling of epidemic growth that characterizes the early growth dynamics of epi-
demics. While some epidemics spread rapidly through a population following an exponential growth
phase such as pandemic influenza or the ongoing epidemic of the novel coronavirus emerging from
China (COVID-19) [24], some outbreaks spread more slowly as a result of the mode of transmission
or the contact network through which the pathogen spreads. For instance, sexually transmitted
diseases and Ebola do not spread through the air, but require a specific type of intimate contact
to spread. In such situations the disease is expected to spread follow sub-exponential growth pat-
terns. When a model only supports exponential growth dynamics, we could expect differences
between such a model and more flexible models that can capture a range of early epidemic growth
dynamics [30].

One important step in our treatment consists in generating a fit of one of the growth models
to data that are either generated by another growth model or using real outbreak data. Since
the parametric forms of growth models are essentially non-linear, standard least-squares methods
are often not applicable. Thus, to provide these fits, we resort to the Simulated Annealing (SA)
method. This method is defined in [31] as a powerful stochastic search method applicable to a wide
range of problems that occur in a variety of disciplines including physics, engineering problems,
mathematical programming, and statics. The problem can be formulated as follows. Suppose we are
given finite-dimensional solution space S, and a function f : S → R, and we want find an optimal
configuration x∗ ∈ S such that f(x∗) = minx∈S f(x). This method has become very popular because
the algorithm can solve unconstrained and bound-constrained optimization problems, especially in
the multidimensional case when the objective function may have many local extremes and may not
be smooth. In that case, SA is advantageous because it does not require calculation of derivatives,
and thus be considered as a derivative-free method. In papers including [32, 33] this method has
been used to parameter estimation, which motivated our computation.

1.3. Outline of the paper. In the next sections we define the growth models considered in
our study as well as the numerical method for parameter estimation and the quantification of the
distance between two models. The concept of distance from one growth model to another is detailed
in Section 2. To this end we summarize in Section 2.1 properties of the models under consideration
and recall explicit solutions wherever available. Then, in Section 2.2 we outline the procedure to
measure the distance from a phenomenological growth modelB to another phenomenological growth
model A, denoted by dist(B → A), which we summarize in Algorithm 2.1. A crucial role within
this algorithm is played by the SA method (utilized to find the optimal parameters for model B
when fitting a dataset generated by model A), which is briefly discussed in Section 2.3. Next, in
Section 3 we apply the methodology to four growth models: LM, GLM, RM (with logistic growth)
and GGoM introduced in Section 1.1 considering synthetic datasets (as outlined in Section 2.2).
Specifically, we introduce in Section 3.1 the parameters and solution spaces for each of these models,
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Growth model Parameters

Logistic growth model (LM) Θ = (θ1 = r, θ2 = K); r,K > 0
Generalized Logistic growth model (GLM) Θ = (θ1 = r, θ2 = K, θ3 = p); r,K > 0, p ∈ [0, 1]
Richards model (RM) Θ = (θ1 = r, θ2 = K, θ3 = p); r,K > 0, p ∈ [0, 1]
Generalized Gompertz model (GGoM) Θ = {θ1 = r, θ2 = b, θ3 = p}; r, b > 0, p ∈ [0, 1]

Table 1. Summary of information on models and parameters.

with special emphasis on the exponent p. The specific application of the SA method is discussed
in Section 3.2. Then, in Sections 3.3 to 3.6 we present Experiments 1, 2, 3, and 4 in which we
calculate distances from the LM, RM, GLM, and GGoM to other models, respectively. In Section 4
we apply the methodology to real data of outbreaks of influenza, Ebola, and COVID-19. Some
conclusions are collected in Section 5.

2. Distance between growth models

2.1. On growth models. For the growth models summarized in Table 1, p = 0 corresponds to a
constant incidence over time, p = 1 corresponds to exponential growth, and any intermediate value
0 < p < 1 leads to a model that describes initial sub-exponential growth dynamics [30, 34–36].
Three of these models have an initial logistic growth because when p = 1 for the GLM and RM,
in other words the LM is recovered, in contrast, this is not the case for the GGoM. (The RM and
GLM show two forms of incorporating the parameter p to the LM model to obtain the generalized
growth form rCp(t).) With all these models our interest is to measure how close the logistic models
are to each other and to the GGoM, and to assess whether two or three parameters are sufficient
to recover other dynamics. We recall that these models have the following explicit solutions. The
solution of the LM (1.1), (1.3) is given by

C(t) =
KC(0) exp(rt)

K + C(0)(exp(rt)− 1)
, (2.1)

that of the GoM (1.1), (1.4) (that is, the GGoM for p = 1) by

C(t) = C(0) exp
(
(r/b)

(
1− exp(−bt)

))
, (2.2)

while for the GGoM (1.1), (1.4) we get

C(t) =
(
(1− p)(r/b)

(
1− exp(−bt)

)
+ C(0)1−p)1/(1−p)

(where 0 < p < 1). (2.3)

The solution of the RM (1.1), (1.5) is

C(t) =
KC(0) exp(rt)

(Kp + C(0)p(exp(prt)− 1))1/p
. (2.4)

As is pointed out in [16], the GLM (1.1), (1.2) does not have a solution in closed algebraic form
for general values p ∈ (0, 1). (This point is also discussed in detail in [37]; the Pütter-Bertalanffy
growth equation studied in that paper includes (1.1), (1.2) as a special case.) For the GLM we
solve the initial-value problem (1.1) numerically whenever necessary.

Phenomenological growth models can capture epidemic growth patterns, through the relationship
between the case incidence curve and the cumulative incidence curve. The integrated version of
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(1.1), namely

C(t) = C(0) +

� t

0
f(τ ; Θ) dτ, t > 0,

can be approximated by the following formula if we assume that values of the incidence function
f(t; Θ) are given at discrete times t = tk, k = 1, . . . , n only:

C(tk) ≈ C(0) +

k∑
l=1

(tl − tl−1)f(tl; Θ), k = 1, 2, . . . , n, t0 = 0,

with tk ∈ [0, T ]. Thus, we may recover the cumulative curve t 7→ C(t) in terms of tabulated values
of the incidence function f(t; Θ), and similarly we may approximate f(tk; Θ) in terms of given
discrete values C(tk) as follows:

f(tk; Θ) ≈ C(tk)− C(tk−1)

tk − tk−1
, k = 1, 2, . . . , n, with f(t0; Θ) = C(t0). (2.5)

2.2. Measuring the distance between growth models. To determine dist(B → A), we start
by defining S parameter sets Θj , j = 1, . . . , S for model A for which we determine the incidence
curves, that is, we compute the (exact or numerical) solutions for the ODE (1.1) for model A for
each parameter set Θj , and these are our datasets to fit model B. We fit model B to each of these
curves by using the matlab function SIMULANNEALBND for Q different initial parameter sets of
model B. These initial parameter sets, in turn, are created by using the matlab function LHSDE-
SIGN that creates Q random values within a defined range. For instance, for the parameter K we
create Q = 10 values between 0 and 1000. Assume now that yti , i = 1, . . . , n, are the points or
data for each time ti of model A, and f(ti, Θ̂), are the values of fits obtained with model B, where
Θ̂ is the set of estimated parameters of model B. Then we determine the root mean square error
(RMSE)

RMSE :=

√√√√ 1

n

n∑
i=1

(
f(ti, Θ̂)− yti

)2
to compute the distance between the data curve, tabulated at t1, . . . , tn, and a fit with model B
expressed by the values f(ti, Θ̂), i = 1, . . . , n. We select the best fit with the smallest RMSE
between the Q fits for each of the S data curves (see Figure 1), and then consider the mean of the
S best values of RSME as the distance from model B to model A. Besides, we will also calculate
the sum of squared errors (SSE) given by

SSE =

n∑
i=1

(
f(ti, Θ̂)− yti

)2
,

because this metric naturally arises in the context of least-squares methods. The necessary com-
putations are summarized in Algorithm 2.1 and in Figure 2.

Algorithm 2.1 (Calculating dist(B → A)).

Input:
– Parameter sets {Θj}j=1,...,S of model A that define the incidence curves {fA(t; Θj)}j=1,...,S,
t ∈ [0, T ] (simulated data).

– Initial parameter sets {ΘB,i}i=1,...,Q of model B.
– Sampling times tk, k = 1, . . . , n at which the incidence curves (both of the simulated

data and the approximation) are evaluated.
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Fit with model B, using
each initial parameter set

{ΘB,i}Qi=1 for dataset fA(t; ΘS)

Initial parameter sets to model B,

{ΘB,i}Qi=1

Simulated Dataset gene-
rated with model A,

fA(t; ΘS)

Obtain {fB(t; Θ̂B,i,S)}Qi=1

fits, with parameter es-

timations {Θ̂B,i,S}Qi=1

To select the best fit to dataset,
calculate RMSEs for each fit
and take the smallest RMSE,
which will correspond to best
fit from model B to dataset

Figure 1. Process to fit the model B to dataset fA(t; ΘS) generated with model A.

for j = 1, . . . , S
i∗(j)← 1
for i = 1, . . . , Q

(1) Determine the vector of estimated parameters Θ̂B,i,j for the j-th data curve based
on the initial parameter vector ΘB,i by Simulated Annealing.

(2) Calculate

RMSEij =

√√√√ 1

n

n∑
k=1

(
fB(tk; Θ̂B,i,j)− fA(tk; Θj)

)2
.

(3) if RMSEij ≤ RMSEi∗(j),j then
i∗(j)← i

endif
endfor

endfor
Output: the distance from model B to model A,

dist(B → A)← 1

S

S∑
j=1

RSMEi∗(j),j .

2.3. Simulated Annealing method for parameter estimation. As we want know the distance
between two growth models, we need numerical methods to calculate the fits from a model B to a
model A and in some cases to determine solutions of the ODEs. Then to achieve the best fit it is
necessary to estimate parameters, for which we employ the SA method to minimize the Euclidean
distance between the curve from model A and the fit with the estimation parameters of model B.
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Select models A and B

Select S parameter sets
for model A and cal-

culate incidence curves

Select Q possible initial pa-
rameter sets for model B

Fit each time series data
curve with each initial pa-

rameter set of model B

Calculate the RMSE between
each data curve and its fits

Select the best fit with the small-
est RMSE for each data curve

Calculate the mean of
the smallest RMSEs

The distanc from Model B to
Model A is equal to this mean

Figure 2. Step by step for measure the distance between two models.

This method is used through the matlab function SIMULANNEALBND for parameter estimation,
where the goal is to minimize the function

Θ 7→ J(Θ) :=

√√√√ n∑
k=1

(
f(tk; Θ)− datatk

)2
,

where t 7→ f(t; Θ) is the incidence function of a growth model evaluated for a parameter vector Θ
that should satisfy Θ ∈ S for some admissible set S compatible with the algebraic form of f for
n different time points tk, where datatk correspond to data in time series. In our case, the values
{datatk}k=1,...,n are the datasets generated by model A, and model B will define the incidence
function f and the set S. Hence, the optimization problem at hand can be defined as follows:

find Θ̂ ∈ S such that J(Θ̂) = min
Θ∈S

J(Θ). (2.6)
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3. Application of the methodology

3.1. Parameters of specific growth models. The methodology of Section 2.2 will allow us
to determine the contribution of the scaling parameter p and to observe the closeness between
the dynamics of the models A and B, where model A ∈ {GLM,RM,GGoM} is used to generate
simulated data or data curves and model B ∈ {LM,GLM,RM,GGoM}, B 6= A, is employed to
calculate fits. To assess the contribution of the parameter p, we select a set of values of p fairly
close to 1 but leave other parameters fixed (taking into account that the parameter b of the GGoM
depends on the value of p). Then, we analyze the distance of model B to curves generated with
model A. For example, if we consider B = LM and its fits to each data curve generated with
model A, we can calculate the RMSEs and finally to have the distance from LM model to GLM,
RM and GGoM curves.

Furthermore, we also calculate the distance from GLM model to RM and GGoM curves, RM
model to GLM and GGoM curves and finally from GGoM model to GLM and RM curves. These
processes will be named Experiment 1, 2, 3, and 4, respectively.

For the experiments we consider the three parameters r, p, and K. To compare models with
equivalent parameters, we choose (as in [16, Sect. 1]) the following expressions for the parameters b
and r within the GGoM in terms of the parameter K and the initial value C(0):

r = 1− C(0)

K
, (3.1)

b =


r

log(K/C(0))
if p = 1,

r(1− p)
K1−p − C(0)1−p if 0 < p < 1,

(3.2)

where the expression for p = 1 is the limit of that for 0 < p < 1, i.e.,

r

log(K/C(0))
= lim

p→1,p<1

r(1− p)
K1−p − C(0)1−p .

Therefore, to standardize the analysis, we consider the parameter set Θ = (r, p,K) for all models
with K = 1000, C(0) = 1, r determined by (3.1), and b calculated from (3.2) in dependence of the
value of the parameter p, which is allowed to assume one of the values

p ∈ P := {1, 0.995, 0.99, 0.98, 0.95, 0.85, 0.8}.
Summarizing, we utilize the parameters

(r, p,K) = (0.999, p, 1000) with p ∈ P.

These values are used directly for the GLM and RM, while for the GGoM we employ the corres-
ponding parameters (r, p, b) = (0.999, p, b) with b = 0.1446 if p = 1 and b = 0.1421, 0.1397, 0.1349,
0.1211, 0.0824, and 0.0670 for p = 0.995, 0.99, 0.98, 0.95, 0.85, and 0.8, respectively.

These parameters, listed also in Table 2, produce the data curves shown in Figure 3. Roughly
speaking, these curves illustrate that the role of the parameter p within the GGoM and GLM is
to describe the initial growth of the incidence curve, while within the RM the initial phase of the
curves, where values of C(t) are still fairly small, is almost the same for all p-values. Furthermore,
we see that with decreasing values of p the extremal value (peak) of the incidence curves of the
GGoM and GLM decreases rapidly, while that of the RM model decreases only slowly. In addition,
the GGoM and GLM exhibit an appreciable shift of the timing of that maximum (i.e., the peak
time increases significantly with decreasing p) while this effect is not much appreciable for the RM
(with the chosen parameters). (For the GGoM and RM the respective closed formulas for C(t),
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Parameters for GGoM curves Parameters for RM curves Parameters for GLM curves

r b p r p K r p K

0.999 0.1446 1.000 0.999 1.000 1000 0.999 1.000 1000
0.999 0.1421 0.995 0.999 0.995 1000 0.999 0.995 1000
0.999 0.1397 0.990 0.999 0.990 1000 0.999 0.990 1000
0.999 0.1349 0.980 0.999 0.980 1000 0.999 0.980 1000
0.999 0.1211 0.950 0.999 0.950 1000 0.999 0.950 1000
0.999 0.0824 0.850 0.999 0.850 1000 0.999 0.850 1000
0.999 0.0670 0.800 0.999 0.800 1000 0.999 0.800 1000

Table 2. Summary of parameters for each model curves
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Figure 3. Data curves for each growth model.

Model B

LM Θ = (r,K) GLM Θ = (r, p,K) RM Θ = (r, p,K) GGoM Θ = (r, b, p)

(0, 4)× (0, 1000] (0, 4)× (0, 1]× (0, 1000] (0, 4)× (0, 1]× (0, 1000] (0, 4)× (0, 1]× (0, 1]

Table 3. Initial parameter set for each model B

(2.3) and (2.4), may be utilized and differentiated to discuss all these properties in explicit form,
see [16].)

To help the fits, we generate the data curves from model A, with evaluations for every 0 < h < 1
time units to have more points or data for fit model B in each case, i.e. we select tk = kh,
k = 0, 1, 2, 3, . . . , n. For example, we use temporal meshwidth of h = 0.25 for the GLM curves.

3.2. Application of the Simulated Annealing (SA) method. The SA method will be used
to estimate parameters via the Matlab function SIMULANNEALBND. The objective function to
minimize is (2.6) for parameter vectors Θ and functions f that depend on the choice of model B in
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Model B
Model A

GLM curves RM curves GGoM curves

LM (r,K) [0.5, 1.1] × (700, 1010) [0.9, 1.1] × (900, 1010) [0.2, 0.5] × [400, 800]

[0.8, 1] × [0.2, 1] × [500, 1010),
0.99 ≤ p ≤ 1;

GLM (r, p,K) [0.5, 1.5] × [0.4, 0.85] × [800, 1010), [1.5, 1.6] × [0.5, 0.7] × [800, 1000]
0.95 ≤ p < 0.99;

[0.5, 1] × [0.4, 0.999] × [900, 1010),
0.8 ≤ p < 0.95

RM (r, p,K) [0.7, 0.99] × [0.2, 0.999] × [800, 1010) [1.8, 1.9] × [0.05, 0.08] × [800, 1000],
0.95 ≤ p ≤ 1

[1.8, 2] × [0.05, 0.08] × [800, 1010),
0.8 ≤ p ≤ 0.25

GGoM (r, b, p) (0, 3) × (0, 1] × (0, 1] (0, 3) × (0, 1] × (0, 1]

Table 4. Solution spaces for the parameter estimation with each model B and data
curves.

each case. For simplicity, the application of SIMULANNEALBND we will use the solutions from
model B, where by utilizing the equation (2.5), we could recover f in terms of C.

For example, the function f within the objective function for B = LM is calculated used the
solution C to LM model presented in (2.1), i.e. we use the explicit solution of this model, as we also
do for the RM with (formula (2.4)) and GGoM with (formulas (2.2) and (2.3) for the respective
cases p = 1 and 0 < p < 1). However, since the GLM does not have a solution in closed algebraic
form we employ the matlab ODE23S procedure to solve the initial value problem to the GLM.

Then, once the form of the algebraic model under study is given, we need to define the solution
spaces for each model which depend on the role of each parameter within each model function.
Here the quantities K, C(0), and p are fixed and the expressions for the parameters r and b are
given by (3.1) and (3.2), respectively. To search the solution spaces for each parameter, we consider
the conditions summarized in Table 1 to define the sets specified in Table 3, where we select the
initial parameter to run the SA algorithm. This algorithm provides a solution that varies from
run to run since the algorithm consists in a random process that utilizes a probability criterion to
select the optimal value. However, if we apply the SA algorithm to Q possible initial parameter
sets, then with these solutions we can reduce or limit the solution space between the maximum
and the minimum best parameters shown for the run. This new solution space helps us to control
results and improve the solution and the calculation time. This process follows the idea shown
in [32] concerning double cycle application of SA. The solution spaces that result from the fits for
each model B with each data curve are summarized in Table 4.

3.3. Experiment 1: distances from the logistic model (LM) to other models. With the
best set of initial parameters and the best parameter estimation, we have Figure 4 with the best
fits for the LM, where we can see that the LM is closer to the RM curves, since it captures this
dynamics better than for that of the other models. On the other hand, LM is further from GGoM
curves, this is due to the long time defined for GGoM data, that the LM exceeds the maximum
given by it. Similar situation occur when maximum decrease for GLM curves and the time increase.
The RMSEs calculated to measure the distance are shown in Table 5 and Figure 5. It turns out
that that when the value of p is decreased for the GLM and RM, the error increases more for the
GLM than for the RM while a different situation occurs with the GGoM, since the error decreases
when p is decreased, but this change is slower than the increase of the error for the GLM and RM.
The increase of the RMSE for data generated by the LM is expected because when p = 1, the
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Figure 4. Experiment 1: results of fits of the LM (model B) to the curves of data
generated by the GGoM (top row), GLM (middle row), and GLM (bottom row),
for the indicated values of p.

dynamics of the LM and that of these models should be the same, where in Table 6 (first row)
we can see that the parameter estimation for GLM and RM data curves with p = 1 are closer to
real parameters, i.e., to Θ = (r = 0.999, p = 1,K = 1000). Another observation about results for
parameter estimation summarized in Table 6 is that the growth rate r of the LM for data curves
generated by the GGoM is naturally smaller than the growth rate for data generated by the LM,
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Error RMSE to each fit with model B
Model B Model A p = 1 p = 0.995 p = 0.99 p = 0.98 p = 0.95 p = 0.85 p = 0.8 dist(B → A)

LM
GGoM 5.2319 5.1864 5.1430 5.1163 5.0480 4.7069 4.4697 5.1163
GLM 0.1900 0.2455 0.4625 0.8184 1.7021 2.6900 2.6570 0.8184
RM 0.0568 0.0685 0.0955 0.1706 0.4099 1.1989 1.5615 0.1706

RM
GGoM 0.6827 0.6804 0.7055 0.7668 0.9285 1.3375 1.4244 0.7668
GLM 0.0037 0.0381 0.0741 0.1347 0.2638 0.3397 0.3066 0.1347

GLM
GGoM 0.4712 0.4757 0.4556 0.4481 0.4284 0.3513 0.3015 0.4481

RM 0.0069 0.1536 0.0605 0.1993 0.2477 0.7268 1.6235 0.1993

GGoM
GLM 12.1578 11.6221 11.1988 10.2038 7.8028 3.4788 1.8623 10.2038
RM 12.1667 12.1529 12.0017 12.0359 11.4630 10.1060 9.3656 12.0017

Table 5. RSME for each data curve, where columns 3 to 9 correspond to the
error for the indicated value of p, and column 10 shows the mean RMSE, that is,
dist(B → A).

GGoM RM GLM

LM

0.81840.17065.1163

Figure 5. Experiment 1: illustrative diagram for the distances dist(LM→ GGoM),
dist(LM→ RM), and dist(LM→ GLM) based on data curves.

Parameter Estimation for LM

CURVES with GGoM curves with GLM curves with RM curves

with p r K r K r K
1 0.4193 621.2245 1.0017 1007.1734 1.0012 1001.6787

0.995 0.4149 617.9446 0.9836 997.3534 0.9999 998.2173
0.99 0.4105 617.1784 0.9662 992.6324 0.9989 999.1522
0.98 0.4018 610.0832 0.9310 969.1496 0.9965 996.8109
0.95 0.3756 598.7651 0.8341 941.6386 0.9888 987.6975
0.85 0.2931 554.6741 0.5643 806.5594 0.9600 959.6222
0.8 0.2550 535.9005 0.4597 754.1879 0.9433 946.7694

Table 6. Experiment 1: parameter estimation for LM with GGoM, GLM and RM
data curves.

because the GGoM has a slower increase, where for the same reason for GLM data with p = 0.8
the growth rate decreases to 0.4597.
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Figure 6. Experiment 2: results of fits of the RM (model B) to the curves of data
generated by the GGoM (top row) and the GLM (bottom row), for the indicated
values of p.

Parameter Estimation for RM

CURVES with GGoM curves with GLM curves

with p r p K r p K

1 1.9998 0.0800 954.1139 0.9990 0.9999 1000.0513
0.995 1.9999 0.0798 957.9978 0.9876 0.9732 999.5539
0.99 1.9973 0.0789 953.8977 0.9763 0.9476 999.4866
0.98 1.9912 0.0771 944.5345 0.9547 0.8976 997.8995
0.95 1.9431 0.0740 937.1508 0.9000 0.7532 1000.3445
0.85 1.8952 0.0593 892.6791 0.8000 0.4048 998.1613
0.8 1.9238 0.0500 869.3741 0.8551 0.2612 1003.6135

Table 7. Experiment 2: parameter estimation for RM with GGoM and GLM data
curves.

3.4. Experiment 2: distances from the Richards model (RM) to other models. We follow
the structure of presentation of results of Experiment 1. In Figure 6 we can observe that the RM (in
the role of model B) is closer to the GLM than to the GGoM, where the fits captures almost all the
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Figure 7. Experiment 3: results of fits of the GLM (model B) to the curves of
data generated by the GGoM (top row) and the RM (bottom row), for the indicated
values of p.

dynamics presented for the GLM data curves. Now with the RMSE calculated, we have effectively
the smallest errors for the fit to GLM data, where in Table 5 we see that the RMSE increases faster
with GGoM data than with GLM data. Besides, the RMSEs for GLM curves are less than 0.5,
evidencing relative closeness between the logistic models. Concerning the the parameter estimation
(Table 7), we have a good approximation between the parameters for GLM when p = 1, where the
estimated parameter p varies more than the growth rate r to capture the decrease of the maximum
value, evidencing a good contribution of this parameter. On the other hand the variation of the
parameter r is smaller than that of p and K when the RM is used to fit the GGoM curves.

3.5. Experiment 3: distances from the generalized logistic model (GLM) to other mo-
dels. In Figure 7, we can see a performance closer to both dynamics with GLM, where this model
captures fairly well the maximum value and the length time. Observing the RMSEs (5), we can
see that these are smalller than 1.6, as expected when we consider the fits shown in Figure 7.
Now, analyzing Table 5 we observe that the errors increase faster for RM (when p decreases) than
with GGoM, where the errors decrease slowly when p decreases. This behavior may be due to the
dynamics of the GLM, where if the maximum value decreases, the time length increases, but for the
RM data curves, the time length and maximum value are closer to each other. About parameter
estimation (see Table 8), we have that for the parameter set with the RM curves the values are
closer to parameters to GLM model with p = 1, i.e, Θ = (0.999, 1, 1000). This, because, the RM
curves vary little of the RM initial curve with p = 1. The previous result contrasts with the fit
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Parameter Estimation for GLM

CURVES with GGoM curves with RM curves

with p r p K r p K

1 1.5402 0.6744 998.0430 0.9994 0.9999 1000.1965
0.995 1.5293 0.6734 986.8504 1.0000 0.9999 999.3734
0.99 1.5054 0.6743 989.5241 1.0000 0.9991 1000.4114
0.98 1.5221 0.6670 992.3809 1.0000 0.9984 1003.5106
0.95 1.5278 0.6508 992.7939 1.0000 0.9961 992.1099
0.85 1.5204 0.5962 994.5254 1.0000 0.9876 971.7100
0.8 1.5112 0.5678 989.0751 0.9888 0.9850 915.3278

Table 8. Experiment 3: parameter estimation for GLM with GGoM and RM data
curves .
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Figure 8. Experiment 4: results of fits of the GGoM (model B) to the curves of
data generated by the RM (top row) and the GLM (bottom row), for the indicated
values of p.

for GGoM curves, because when the parameter p varies for GGoM curves, the maximum value
decreases and the time length increases, where with the GGoM the length time is the same when
the parameter p decreases. For this reason the parameter estimation for the GGoM curves varies
the parameter p more than others.
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Parameter estimation for GGoM

CURVES with GLM curves with RM curves

with p r b p r b p

1 2.3207 0.3237 1.0000 2.3516 0.3279 1.0000
0.995 2.3068 0.3220 1.0000 2.2635 0.3159 1.0000
0.99 2.2932 0.3201 1.0000 2.2761 0.3178 1.0000
0.98 2.1953 0.3068 1.0000 2.4303 0.3326 0.9948
0.95 1.9338 0.2712 1.0000 2.2822 0.3187 1.0000
0.85 1.2596 0.1678 0.9823 2.2986 0.3214 1.0000
0.8 1.2670 0.1500 0.9496 2.2716 0.3180 1.0000

Table 9. Experiment 4: parameter estimation for GGoM with GLM and RM data
curves.

GLM RM GGoM

LM

0.8184 0.1706 5.1163

0.1993

0.4481

0.1347

0.7668

10.2038

12.0017

Figure 9. Comparative graph for each distance and model.

3.6. Experiment 4: distances from the generalized Gompertz model (GGoM) to other
models. For this experiment, we consider the GGoM model as model B, and the models A are
RM and GLM, with the parameters summarized in Table 2. In Figure 8 we can see the fits for RM
and GLM data curves. This figure indicates that the GGoM does not capture the dynamics of the
logistic models, where the maximum values are very large for the period of time defined in these
data curves. The RMSEs in Table 5 are very large if compared with the previous experiments.
The errors decrease when the parameter p is decreased, but this situation is due to approximation
between the maximum values of the data curves and the maximum value that the GGoM can reach
with the given period of time.

Finally, the parameter estimation obtained for each fit is summarized in Table 9, where we
observe that the parameter p is almost fixed. Being for the RM curves the other parameters almost
equally fixed, this is due to the slow decrease for the maximum value. This contrasts with the
result for the GLM, where the maximum value decreases faster than for the RM. For this reason
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Influenza Ebola COVID-19
Model Interpolation No interpolation Interpolation No interpolation Interpolation No interpolation

LM 28.4864 55.5662 44.5472 90.0674 59.6479 108.9944
GLM 26.2694 49.7601 24.4430 47.8958 21.2940 45.4623

GGoM 52.7972 113.9227 51.8345 94.6347 174.9620 356.6672
RM 29.1628 55.8399 26.2160 53.3493 54.9620 109.9705

Table 10. Application to real data: RSME for different time refinements.
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Figure 10. Application to real data: bar charts for the RMSE for each real data
and refinement time.

Influenza Ebola COVID-19
Model Interpolation

LM (0.5561, 2467.9) (0.3141, 8988.2) (0.3413, 9074.6586)
GLM (0.5964, 1, 2228.8) (0.7481, 0.8546, 10989) (3.6232, 0.6869, 12963.9057)

GGoM (1.244, 0.1809, 1) (1.0000, 0.0897, 0.9487) (5.7818, 0.0989, 0.6709)
RM (0.5603, 1, 2655.7) (0.4189, 0.4273, 11057) (0.4188, 0.6302, 9196.4353)

No interpolation

LM (0.5565, 2475.9) (0.3127, 8327.7) (0.3426, 9844.7509)
GLM (0.6003, 1, 2363.1) (0.7640, 0.8515, 11212) (2.7782, 0.7213, 12316.4258)

GGoM (1.2434, 0.1800, 1) (0.8134, 0.0968, 1.0000) (5.0086, 0.1020, 0.6931)
RM (0.55451, 2392.5) (0.4326, 0.4000, 11698) (0.4133, 0.6472, 9145.3252)

Table 11. Application to real data: parameter estimation for fit with real data

the parameters r and b are varying. Summarizing, we have in Figure 9 the distances presented
among the models studied, where each arrow indicates the direction of the distance from model B
to model A.

4. Examples: application to real data

In order to see the best performance evidenced by the GLM model, when capturing the other
dynamics studied in the experiments performed, we present three examples with real data. In this
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Influenza Ebola COVID-19

0 5 10 15 20

t

0

100

200

300

400

500

C
´(

t)

0 10 20

t

0

500

1000

1500

2000

2500

3000

C
(t

)

LM

GLM

RM

GGoM

Data

0 10 20 30 40 50

t

0

100

200

300

400

500

600

700

C
´(

t)

0 10 20 30 40 50

t

0

2000

4000

6000

8000

10000

12000

14000

C
(t

)
LM

GLM

RM

GGoM

Data

0 10 20 30 40 50

t

0
100

300

500

700

900

C
´(

t)

0 10 20 30 40 50

t

0

3000

6000

9000

12000

15000

C
(t

)

LM

GLM

RM

GGoM

Data

Figure 11. Application to raw data: fits to influenza, Ebola and COVID-19 data.
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Figure 12. Application to interpolated data: fits to influenza, Ebola and COVID-
19 data.

case, we consider the data of weekly cases of influenza in Chile (24 data points in total) produced
between autumn and winter of 2009 [38], Ebola (51 data points in total) in Sierra Leona dating from
2014 [39] and recent outbreak of COVID-19 [40] presented in various provinces of China (excluding
Hubei province) (52 data points in total). Since we consider real data, for the application of the
procedure of Section 3 we replace model A by real data but keep employing the same methodology
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of Section 3 with model B, where we also create a refinement of the real data by interpolation
from the cumulative curve C, achieving for these examples twice the original number of points.
From the RMSEs calculated and registered in Table 10 and the bar chart of Figure 10 we observe
that the RMSEs for the non-interpolated data are close to the double from the RMSEs for the
interpolated data, where effectively GLM meets be the best model with the smaller RMSE to the
three examples.

From the figures of the fits, with and without interpolation (see Figures 11 and 12) for three
examples, we can observe that the refinement from real data does not have a great impact on the
performance of the GGoM (red), but this model for early growth in Ebola case produces a better fit
than other models. For the fits made with the LM, we can observe that for the case of influenza the
refinement leaves the fit similar to a fit without interpolation where for this case, the LM is better
than the RM. A different situation occurs for the Ebola and COVID-19 cases where for Ebola the
maximum value for the incidence curve increases and the cumulative curve increases close to real
cumulative curve, though this is not better than the fits by the GLM and the RM. For COVID-19
the LM decreases the maximum value for the incidence curve and the cumulative curve decreases
close to the cumulative curve of the RM, although this is not better than the fits by the GLM
and RM. Now if we observe the fits with the RM and the GLM, we see that their fits though very
similar for Ebola data, the GLM fits are better where the RMSE is smaller. On the other hand,
with influenza data, we can see that for RM and GLM models, the fits to real data, the curve with
GLM is above the RM curve, staying in the middle the LM curve, and the situation changes when
the data are interpolated, where the RM curve turns out to be above the GLM and LM curves,
but the GLM produces the best fit with the smallest RMSE. In the case of the COVID-19, the
fits with the GLM with and without interpolated data are very close. A different situation occurs
with the RM where the fits to the interpolated and non-interpolated data are below the data and
therefore with RMSEs bigger than the RMSEs for GLM. Furthermore, Table 11 indicates that for
the parameter estimation the values are very close between the real data and interpolated data,
where for the LM this shows smaller variations and the GGoM model shows more variations with
Ebola data.

Finally, an important observation in these examples is that besides being closer to the other
dynamics, the GLM also captures better real data due the advantageous contribution of the growth
scaling parameter p. This fact is also demonstrated in [16]. However, this same parameter p can
have another nature in the RM, where there are studies with p > 1, for example, the papers [41,42],
where we recall that in [16] it was stated that the parameter p as growth scaling parameter does not
achieve to capture the sub-exponential growth which very important to studies of early epidemic
growth. Then if we consider the case p > 1 the RM, we can see that this model captures the
dynamics of influenza data better than the GLM, as is evidenced in Figure 13 and Table 12,.

With respect to the parameter p in [42] we comment that this parameter has another nature
in the Richards model, different from a scaling parameter, where in this position could allow the
shape of upper part of the cumulative curve to be independent of the shape of the lower part,
i.e., measures the extent of deviation from the S-shaped dynamics of the classical logistic growth
model. Besides, as the parameter p tends to zero, the RM curve tends towards the Gompertz
growth curve in the sense dC/dt = rC(t) ln(K/C(t)). There are other studies on different forms
to generalize growth models, as [41] which shows for case of logistic growth, different to our idea
of generalized growth model with rC(t)p, being p a scaling parameter. Therefore future work will
study the distances between other generalized growth models.
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Incidence curve C′(t) Cumulative curve C(t)

Figure 13. Application to real data: fits with Richards Model (p > 1) for influenza
data.

Influenza Ebola COVID-19
Results Interpolation

RMSE 17.2332 26.2223 46, 9405
Parameter
Estimation (0.4883, 3, 1993.2) (0.4173, 0.4308, 11036) (0.4551, 0.5408, 9895.1873)

No interpolation

RMSE 28.7735 51.6678 100, 3531
Parameter
Estimation (0.49, 2.6641, 2068.1) (0.4228, 0.4191, 11182) (0.4350, 0.5877, 9556.1028)

Table 12. Application to real data: results for different time refinements and real
data for RM model with p > 1.

5. Conclusions

Overall methodology applied to these five models for three different types of growth curves, we
can say that the GLM model is closer to the other models and the GGoM model is the most
distant. Besides, the parameter p contributes significantly for the logistic models GLM and RM
since the approximation achieved with the LM is substantially improved with this extra parameter.
In contrast with GGoM result, where the parameter estimation show that p ≈ 1 in most fits, i.e.,
GGoM is being reduced to GoM with parameters Θ = (r, b) with p = 1.
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A fully-mixed formulation for the steady double-diffusive convection system based upon
Brinkman–Forchheimer equations

2020-02 Gonzalo A. Benavides, Leonardo E. Figueroa: Orthogonal polynomial projec-
tion error in Dunkl-Sobolev norms in the ball

2020-03 Rodolfo Araya, Abner Poza, Frederic Valentin: An adaptative multiscale
hybrid-mixed method for the Oseen equations
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