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Abstract A novel residual a posteriori error estimator for the Oseen equations achieves ef-
ficiency and reliability by including multi-level contributions in its construction. Originates
from the Multiscale Hybrid Mixed (MHM) method, the estimator combines residuals from
the skeleton of the first-level partition of the domain, along with the contributions from
element-wise approximations. The second-level estimator is local and infers the accuracy
of multiscale basis computations as part of the MHM framework. Also, the face-degrees of
freedom of the MHM method shape the estimator and induce a new face-adaptive proce-
dure on the mesh’s skeleton only. As a result, the approach avoids re-meshing the first-level
partition, which makes the adaptive process affordable and straightforward on complex ge-
ometries. Several numerical tests assess theoretical results.
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1 Introduction

Fluid flow simulations rely on efficient numerical schemes shaped to account for large and
small scale structures of the velocity and pressure fields. Typical problems are fluid flows
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in porous media and turbulent flows, for instance. For those problems, the computational
cost involving in numerical schemes that cope with small scales of the approximate solu-
tion is costly, especially when one considers time-dependent problems in three-dimensional
geometries. For this reason, multiscale numerical methods have been attracted attention in
the last decades by their “embarrassingly” parallel nature, which turn out to be an excellent
option to leverage the new generation of massive high-performance computers.

The Multiscale Hybrid-Mixed (MHM) method is a member of the family of multiscale
finite element methods. Multiscale methods have its origin in [12] for the one-dimensional
Poisson problem, and they were further extended to higher dimensional cases in [37.38].
Overall, the multiscale methods rely on incorporating fine scales of the solutions through
basis functions, with an impact on the accuracy of coarse-scale solutions, which can be
computed on a coarse partition with precision. Other members of this family are the Het-
erogeneous Multiscale method (HMM) [24], the Variational Multiscale method (VMS) (3],
the Generalized Multiscale finite element method [25]], the Localized Orthogonal Decom-
position method (LOD) [335]], the Petrov-Galerkin Enriched method (PGEM) [6,[15/131], the
Residual Local Projection method (RELP) [29l[1615]], to mention a few. A posteriori error
estimator for some of these schemes can be reviewed in [1,[13,20,361391411143/|46.9]], and
the references therein.

Regarding the MHM method, it relies on the characterization of the exact solution as
a byproduct of the hybridization of the continuous problem on a coarse mesh (first-level
mesh). As a result, the exact fields decompose as the solutions of a series of local problems
coupled through a global problem defined on the skeleton of the first-level partition. In such
an infinite-dimensional setting, the local problems are entirely independent of one another
and account for the multiscale nature of the problem. Discretization uncouples global and
local problems, and the latter responds for the multiscale basis computation. Thereby, the
expensive part of the algorithm can be naturally solved in parallel computers. The MHM
method was initially introduced for the Darcy equation in [33]] and analyzed in [7,/42], and
extented to models based on the Stokes operator in [8] and [6].

In this work, we extend the MHM method for the Oseen equations and proposes and
analyses a new multiscale residual, a posteriori error estimator. It relies strongly on the
MHM’s structure, and as a result, the estimator splits into two-levels: First 177 accounts
for the jump of the discrete velocity on the skeleton of the first-level mesh, and then, a
second-level estimator 1), estimates the error associated to the approximation of the local
problems (multiscale basis, mostly). We prove local efficiency and reliability for the mul-
tiscale estimator following the ideas of [7,[10,32] for n; and [10] for ;. Also, it leads to
a new adaptive strategy on the mesh’s skeleton only. As a result, the algorithm of adaption
avoids re-meshing the first-level partition, which makes the adaptive process affordable and
straightforward to be used on complex geometries. Other numerical schemes share simi-
larities with the MHM method but are also essentially different in their constructions and
properties. For instance, we mention the Multiscale Mortar Method [11]], the DEM [28]], and
the HDG method [22], for the Oseen equations [19], among others. For a small list of a
posteriori error estimators for two-level method, see, for example, [47,127,/40,/45,48l/17]] and
the references therein.

The paper outlines as follows. In Section[2] we introduce the model problem, notations,
and some preliminary results. Section[3|revisits the main aspects of the MHM methodology
to propose new first- and second-level MHM methods for the Oseen equations. The main
results of this work are in Section 4} wherein one proposes and analyses a new and multi-
level a posteriori error estimator based on the MHM method. Numerical validations asses
theoretical results in Section[5] and conclusions and perspectives lie in Section 6}
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2 Model problem and preliminaries
2.1 The model

Let 2 C R?, d € {2, 3}, be a bounded open set with polygonal boundary 9. Given f €
L*(Q)? and g € H'/?(9Q)? with [, g-nds = 0, where n represents the outer normal vector
to €2, the Oseen problem consists of finding a velocity field u and scalar pressure p, such
that

—vAu+ (Vu)a+yu+Vp=f inQ,

Viu=0 inQ, 0
u=g ondQ,

where the diffusion coefficient v is a positive constant, o € W1 (2) is a convective veloc-
ity field and ¥ a given scalar function. We assume in this work that ¥ is a positive constant
and that there exists a positive constant ¥, such that, for all x € £, it holds

1
Y= 7*5V~a(X) > Yin- )

Remark 1 Observe that model (I)) may represent a step in the time discretization of the
unsteady Navier—Stokes equations, where ¥ = 1/Ar, with At the time interval length, and o
the velocity field evaluated in the previous time step.

The standard variational mixed formulation associated to (T) reads: Find u € H'(Q)¢,

withu=_gondQ, and p € L%(Q), such that

a(u,v)+b(v,p) = (f,v)a for all v € H} (2)?, 3)
0

b(u,q) = for all ¢ € L§(R).
The bilinear forms a(-,-) and b(-,-) are defined by
a(w,v) = (vVw,Wv)o + ((Vw)o,v)o + (Yw,v)a,
forallwe H(Q)?, v e H} (2)? and
b(v,q) = —(V-v,q)a,
forall v € H'(2)? and g € L3(£), where the spaces have their usual meaning. Using that
(Vua,v)o = —(u, (VW)a)a = (V- 0)u,v)a + (- n)u,v)aq, @

for all u,v € H'(Q)4, follows that the bilinear form a(-,-) can be rewritten in a skew-
symmetry form as

1 1
a(um) = (VVM7VV)Q + 5 ((VM)OQV)Q - 5 (ua (VV)O()Q + (YO uaV)Q )
forallu € H' ()4 and v € H} ().

Remark 2 Assumption (2) implies the coercivity of a(-,-) in H} ()9, which combined with
the classical inf-sup condition in b(-, ), leads to the existence and unique solution for (3).
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2.2 Hybridization

Now we head to the definition of an equivalent hybrid form of (3. To this end, we introduce
a regular family {Jy }p~¢ of triangulations of Q, composed of elements K, with diameter
Hg, and we set H := max {Hkg : K €  }. Hereafter, we shall use the terminology usually
employed for three-dimensional domains, with the restriction to two-dimensional problems
being straightforward. We denote by & the set of all faces (edges) F of elements K € Iy
and by &) the set of inner faces. To each face F of &y, we associate a normal n taking
care to ensure this is directed outward on dQ. For each K € 9y we further denote by nX
the outward normal on dK, and let nX := nX|r for each F C dK. We denote by F;(F) a
partition of F € &y, by Hy the size of F € T (F) and H = max {Hj : F € T (F)}.
The following spaces will be used in the sequel

V:=H (T :={ve’(Q)! : v|x e H'(K)? forallK € Ty},
H(div;Q) := {t € L*()?*¢ : divt € L*(Q)"},

A= {GnK|aK eHV2(9K)! forallKe Ty : o€ H(div;g)},

0:=1*(Q).

We define an inner product on V by

1
(u,v)y := d—z(u,v)g + Y (Vu,Vv)x forallu,veV,
Q KE?H

where d, is the diameter of Q, (-,-)p the L? inner product in L?(D), D C Q. We equip the
spaces H(div;Q) and V with the following norms,

1/2
1/2
2 rd |v~o|a,,<]} wd vl = (v,

[0l aiv :—{ Y o

Ke <7H

respectively. For the space A, we use the quotient norm, i.e.,

= inf v
lleella ceHl(I:iiv;Q) llolaiv ©)

onK= on 0K, Ke Ty

We denote by (-,-) 7, and (-,-)5 4, the following

(W7V)9H = Z (WaV)K and (”7V)BA7H = Z <,LL,V>9K,
Ke Ty Ke Iy

where w,v € Vand u € A, and (-, -) gk is the duality pair between H~'/2(dK)¢ and H'/2(9K)?.
We recall from Lemma 8.3 in [[7] that the norm (E]) is equivalent to a dual norm, namely,

V2 (U,v)a7
- llplla <sup A
2 vev HVHV

<|ju|la forall ue€A. 6)

Above and hereafter, we lighten the notation and understand the supremum to be taken over
sets excluding the zero function, even though this is not specifically indicated.
We introduce the norm ||(-,)||vx¢ for the product space V x Q, by

1/2
17 @)lIvxo = {IIVIIS + gl }
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with [|¢lo := ||q]l0.q- Finally, for each K € Z, we define the local spaces V(K) := H'(K)¢
and Q(K) := L?*(K), with the follows norms

- 1/2
Ivliv) -={da? Il + VIR }

l9llo) =lallox
2 ) 1/2
10 Dllviy o) ={ MR + gl b

forall v € V(K) and g € O(K).
Now, we consider the definition for the jump over a face F = dKT™NdK~ € & of a
function v € V as follows:

D] = g )lr = (lk-)lFs

and the average by
1
3 =5 (v +vle- )
We update the notation a(-,-) and b(-,-) by extending them to the space V as follows

a(w,v) := Z ag(w,v),

KeJy

with
1 1
ag(w,v) := (VVu,Vv)g + 3 ((Vu)a,v)g — 3 (u, (Vv)a)k + (You,v)g @)

and

b(V,L]) = Z bK(Vvq) with bK(Vvq) = _(V'V,l])](,
KGyH

forallw,veV,qge Q.
We consider the following hybrid formulation of problem @): Find (u,p,A,p) € V x
O x A xR such that
a(u,v) +b(v,p) +(A,v)oz, = (f,v)g forallveV,
b(u,q)+(p,q)o =0 forallge Q,

(Hu)azy = (H,8)9q forall €A,
(E,p)a =0 forall & €R.

®

In formulation (8), the velocity and pressure belong a priori to a larger space than the so-
lutions of the original problem (B). Note that the third equation in () imposes H (Q)-
conformity on the velocity, and the fourth the mean value of the pressure equal zero. Con-
cerning the solvability of problem (8) we have the following result

Theorem 1 The function (u,p) € H'(2)? x L3(Q), with u = g on 9, is the unique solu-
tion of @) if and only if (u,p,A,p) € VX Q x A X R is the unique solution of (8). Moreover,
it holds p = 0 and

A= ((—vVu+pI)nK+ % (u®(x)nK) forallK € Ty, ©)]

JK

where Lis the d X d identity tensor.
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Proof Let (u, p) be the solution of (3, and define the functional .# : V— R by

y(v) = (fa V)gH - (VV“’ VV)yH - %((VM)(X, V)yH + % (uv (VV)(X);]H - (’YOW V),%l + (V : va)ﬁyv

for all v € V. It is clear that .% is continuous and vanishes on H} (£2)¢. From Lemma 1 in
[44], there exists a unique A € A such that % (v) = (4,v),4, for all v € V, thus the first
equation in (B) holds. Now integrating by parts we get

Y vl = X, |(F0)k— (V9T 5 (Vo 5 a (FW)a)s — ()i + (V0. )i
KeJy KeJy

1
= Y, ((-vVutphn® + S (@ a)n®,v)ox,
Ke Ty

for all v € V, and then (@) holds.

On the other hand, since that (V- u,q) 7, = (V-u,q)qo = 0 for all ¢ € L3(22), Lemma
5 in [8]] guarantees that there exists a unique p € R such that (V-u,q) 5, = (p,q)q for all
g € Q and so the second equation of (8) holds. Now, using Gauss’s Theorem, we get,

HPH(Z)‘.Q = Z (u'nKvp)aK = (”"%P)aﬂ = (g'nap)aﬂ'

KE?H

By the compatibility condition, we have that (g-n,p)so = 0 and then p = 0. Next, take
g € H(div; ), and define u = gn® on 9K for all K € Fy. Using integration by parts we
have

(woz, = Y, (an® o =Y (la]. {uB)r+ (Ha} [ul)F = (1,8)00.

KeJy Feéy

this prove the third equation of (). The fourth equation is true since p € L3(2) and & € R.
This way we conclude that (#, p,A,p) € V x Q x A x R satisfies (8) with p =0, and

1
A= |(=vVu+pI)nX + 3 (u®a)nK] forall K € Jp.

JK

Reciprocally, let (#,p,A,0) € Vx Q x A x R the unique solution of (8). From the fourth
equation of (8) we have that p € L3(Q). Let u, € H'(2)? such that u, = g on dQ. Then,
u—1ug € V and using the third equation of (8) we have that (1, u —ug)y4, =0forall p € A.
This way, from Lemma 1 in [44], u —u, € H} ()¢ and then u € H'(Q)¢ with u = g on
9. From the second equation of (8) and considering g € L3(Q) we get b(u,q) = 0. Finally,
using Lemma 1 of [44] and the first equation of @) we have that

a(uav)_'_b(vvq) = (f,V)yH,

for all v € H} ()%, where we used (A,v), 7, = 0. Therefore, (u, p) solves (3). Uniqueness
of (8) follows from the uniqueness of (3). O
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2.3 Standard results at local level

For the discrete analysis, we select two local finite dimensional spaces V;(K) C V(K) and
0O1(K) C Q(K), whose functions are defined over a shape-regular partition of K, denoted by
{75} =» where h is the characteristic length of 7%, Particularly, hereafter we adopt the
following polynomial spaces

Vi(K) = {vh e VIK)NCUK) 2 vy | € P(7)? forall T e %K}, (10)
and
O(K) = {gn € O(K)NC*(K) : qn|z € Py(7) forall T € FX}, (11)

where Pg(7) is the space of polynomial functions in T € .ZX, with total degree less than or
equal to s, s > 1. Thus we define the global finite dimensional spaces as

V= @ Vi(K) and Qj:= @ On(K).

KeJy KeJy
The set of faces { of ﬂhK is denoted by
&K =g usk,

where &F is the set of internal faces and &F = &K\ 6K, i.e., 6K are the faces of 7 € FK
which belong to dK. Also, for each 7 € ZX and { € &K, we denote by .#(7) the set of
nodes of 7, #({) the set of nodes of {, &(7) the set of edges of 7 and then we define

o = U 7, O = U 7, B = U 7.

{es(r) NN ()£ N (NN (220
In the rest of this work, we will use the following notation

a=b<=a<Cb,
a>b<=a>Cbh,
a~b<=a=<banda*> b,

where the positive constant C is independent of any mesh size.

Also, we will use standard bubble functions and some of the results associated with
them. For simplicity, we consider the case with d = 2, but the same kind of results are valid
with d = 3.

For all T € ZX, we define the element bubble function bX by

by =27 J] Ao
xeN (1)

where A, corresponds to the barycentric coordinates associated to node x. Let T be the stan-
dard reference element with vertices 7i; = (1,0), /i, = (0,1) and 7i3 = (0,0) and define the
edge bubble function by

bE = 4)51,

IS



8 Rodolfo Araya et al.

where £ := {(»,0) : v € [0,1]}. For { € & assume that 0y = 11U and G ; be the (ori-
entation preserving) affine transformation defined in Figure 1| such that G¢ ;(%) = 7; and

A

G i(8) = £, with i = 1,2. We define the bubble function associated with ¢ by

- man

S oG, ont, i=1.2,
"o on Q\ay.

(0,1)
/
G
— e >
(0,0 ¢ (1,0)

Fig. 1 Affine transformation Gy ;,i = 1,2 withd = 2.

Let IT:= {(x,0) : x € R} and let Q : R> — IT be the orthogonal projection from R to

A

I1. We introduce the lifting operator ﬁzj :Pu(8) — Pr(%) given by
SA»—>IS§(§) =500.
Let 7; C w;. We define the lifting operator Py - : Pt (&) — Pi(7;) by
Py o (s) = P;(s0 G )0 Gy .
Using these notations, we can define a lifting operator Py : P({) — Pr(w¢) by

PC,T1 (s) in T s

s € Pr(§) — Pr(s) = {pg (5) in 1,

for s = (s1,52) € Pr(£)?, we define Plg(s) by

PE(s) = (Pg(s1),Pr(s2)).-
The next result can be prove using scaling argument.

Theorem 2 Let K € J5 and bX and blg be the bubbles functions corresponding to T € ZLK
and § € é”hK , respectively . Then

vallge = (BFvasv)e < |vallg e

[vallg.c = 105 vallo,c +helbEvil iz < [vallo,z,
vallo.e = ®Fvisva)e = Ivallg ¢

e 1wl + e BE vl e < vl

forall v, € IP’n(ZlK), n>0.
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Proof See Theorem 2.2 and Theorem 2.4 in [4]]. O
Lemma 1 We have that

V3.7 = Hr {Hg? V5. + Vi }
forallK € Ty, F C dK and v € V(K).
Proof See Theorem 3.10 in [2] or (10.3.8) in [18]. O
Theorem 3 For all g € Q(K), we have that

bK(V7('Z)
vev(x) IVllvix)

= llgllow)-

Proof See Theorem 2.1 in [[10]. O

For each K € 7, we denote by %h’( :V(K) — Vf , the Clément interpolation operator,
where
VK .= {vh eCK) vy eP()!, VT € Z,K}

Forall T € ZEK andall § € & K this operator satisfies the following estimates (see [21]], [26]])
1655 ()llo.c < [IV]]o.a.»

v =% )llo.c < helv]1.6., (12)
1/2
v =K W)llog <11 @y

for all v € V(K).

3 The MHM method

In this section, we present the MHM method as a consequence of a characterization of the
exact solution in terms of a local-global system equivalent to ().

3.1 Characterizing the exact solution

The goal of the Multiscale Hybrid-Mixed approach is to take advantage of the local nature
of problem (8), by decomposing it into independent local problems coupled with a face-
based global problem. Using these ideas, the hybrid formulation (B) is equivalently to: Find
(u,p,A,p) € VX QxA xR such that

(U, 1)o7, = (U,8)9q forallueA, 13
(&,p)o=0 forall§ eR,
a(u,v)+b(v,p)+(A,v)az = (f,v)g, forallveV, 1
b(u,q)+(p,q9)o =0 forallge Q.
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Note that system (T4) can be localized in each K € F by testing (13)-(T4) with (v,q, i, &) =
(vlk,qlk,0,0). This gives us
a]((l/l,V) +b[((vvp) = 7<)’7v>3K + (f> V)K forallv e V(K)>
bK(”vq):_(pzq)K fOI'quEQ(K)

Also from (T3), (u,p) can be computed in terms of A and p . Specifically, owing to the
linearity of problem (T3)), the exact solution decompose as follows

u=u*+u +uP and p=p*+p+pP, (16)

(15)

where the functions used in (I6) are given by:
- (u*,p*) € V x Q such that u* |k and p* [ satisfy

ax (Wt ,w) +bg(w, p*) = —(A,w)yx forallwe V(K),
{ bx(*,q) =0 forall g€ Q(K); a7
- (u/,p’) € V x Q such that u/ | and p/ | satisfy
ag (' ,w) +bg(w,p’) = (f,w)x forallwe V(K),
{ br(u’,q) =0 forall g€ Q(K); (18)
— (uP,pP) € V x O such that uf |k and pP |k satisfy
ag (P ,w) +bg(w,p?) =0 forallwe V(K),
{ bi(P q) = —(p.q)x forall ¢ € Q(K). 4

Next, testing (I3) with (v,q,u,&) = (0,0,1,&) and using (T6), we obtain the following
global problem: Find (A,p) € A x R such that

{(/vt,u’l +uP)azy = (1:8)aa — (u))azy, HEA
&Pt +pP)a=—(5p)a, VEER,

forallgy € A and € € R.

Remark 3 Following [8], it is possible to prove that p = 0, and therefore (T6) reduces to

(20)

w=u"+u' and p:p’lerf. 20
We define a local bilinear form Bk given by

Bk ((w,r),(v,9)) := ak(w,v) + bk (v,r) — bk (w,q), (22)
with (w,r),(v,q) € V(K) x Q(K), and naturally we denote
B((er)v (Vvq)) = Z BK((er)v (Vvq))'
KeﬂH
Theorem 4 We have that local problems (U)-(19) are well-posed, and it holds

BK((er)7 (Vvq))
lw,7)llvik) <o) = sup T T T,
(v,q)EV(K)xQ(K) ”(Va‘I)HV(K)xQ(K)
Proof Thanks to Theorem we have an inf-sup condition for bg(+,-), and using the ellip-
ticity of ak (-, ), give in (7), the result follows. O

Remark 4 From (7)) the coercivity of ak(-,) over V(K) holds. Then, using Theorem 3] and
the inf-sup condition the well-posedness of (I7)—(20) follows. Next, using Theorem [4] and
the Riesz Representation Theorem, the bilinear form B satisfies a global inf—sup condition
with a constant independent of H and /4, and only depending on dg, and d, respectively.
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3.2 The method

The characterization of the exact solution (u, p) in terms of the global-local system (T7)—
(20) yield the MHM method. Consider a finite dimensional space Ay of A such that

Ao C Ay CANL* (&),

with
Ag = {O'nK|p ePy(F)! forall F C 0K, K€ Ty : © eH(div;Q)},

where Py (F) is the space of constant polynomial defined on F. In this work, we search for
approximating Lagrange multipliers in the space spanned by piecewise polynomial func-
tions, i.€.,

A=A = {u €A ulp e PF), F e Ty(F), forall F C 9K, K € 9,,}7

where IP;(F) is the space of piecewise polynomial functions on F of degree less than or equal
[ > 0. Unlike the usual interpolation choice [44], the functions in Ay may be discontinuous
on faces F € &y. Such a choice preserves the conformity of the MHM method and turns out
to be central to maintaining the quality of the approximation when coefficients jump across
faces. This will be explored in the numerical section.

Specifically, the solution of (20) is approximated by (Ay,prn) € Ay x R, which is the
solution to the one-level MHM method

{(:U’H7M)LH +upH)39H = (nuHag)BQ - (“Hauf)a,%p 23)

(&n P + PP g = —(En,pT ),

for all uy € Ay and &y € R, where ¥ u/ uPH and pressures p*#, p/ pPr solve (T7)-
(T9). Thus, the one level solution (ug, py) is given through the expressions

up = u/lH + I/tf +MPH and PH = le _|_pf _|_pPH
Note that to make the one level MHM method effective, we need to solve local problems
(T7)—(19), exactly, which is, en general, not possible. To overcome this, we introduce the
two-level MHM method which consists of: Find (Ag,pu) € Ay x R such that

A
{(ﬂHMhH )57, = (W 8)aa — (e 1)) 7 o

A
(&, 0y + P = —(En,p]) e,

for all (Uy,&n) € Ax x R. In this work, we adopt a stabilized finite element method [14]
to approximate the solution of the local problems (T7)-(T9) computing the approximated
velocities u;}” , u;: , ule and pressures pfl” , p;j , pZH )

As such, the two-level discrete solution (ug 5, pr ») is given through the expressions

A A
Uup o= " +u£+u§” and  pypi=p,? +p£+p5fl.

Such a choice makes the appealing option of using equal-order nodal pairs of inter-
polation spaces for the velocity and the pressure variables (i.e. k = n in (I0) and (TI)) as
the second-level solver. For completeness, we recall (see [[14] for details) that this scheme
consists of: Find (u, p) € Vi (K) x Qp(K) such that

By ((u,p), (v,q)) = Fg(v,q) forall (v,q) € V4(K) x Qn(K), (25)
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where
B};((u,p),(v,q)) ::BK((”7P)7(V7q))+ Z KT(V'M7V'V)T
e gk
- Z Or(—vAu+ (Vu)a+yu+Vp,—vAv— (Vv)a+yv—Vgq)e,
e gk
and

F¢(v,q) == Fx(v,q) — Z O:(f,—vAv—(Vv)a+vv—Vq),.
e 7K

The stabilization parameters are given by

hZ
Kz = ||Ot||ooc e min{1,Pe2}, and &;:= , (26
1= [| @l he min{l, Pz} © yh2 max {1, Pel}+ 3 max{1,Pe2} (20)

where the local Péclet numbers are defined by

4v

0|0 Pz
Peli= —— d P2::7mT|| .
“ YhZm, an “r 4v
and my :=min {1,C;} with
Cehz |AV][5. < |VV[[5, forallv € Vi(K). (27)

Here C; is a constant that depends only on d and the polynomial degree chosen for the
velocity (see [30]).

Owing to definitions 23)—27), the local solutions in (T7)—(T9) are approximated, in
each K € Jy, by the solutions of the following discrete problems:

- Find (uh ,ph ") € Vi (K) x Qp(K) such that
A A
BSK((“hH7th)7(V7q)) :_<A’H7V>9K for all (V7q) EVh(K) XQh(K); (28)
- Find (uh7ph) € V,(K) x On(K) such that
By (4}, p}), (v,q)) = Fi(v,q) forall (v,q) € V,(K) x O4(K); 29)
- Find (uh 7ph ) € Vi (K) x Qi (K) such that
B (", "), (v,q)) = (pu,q)x  for all (v,q) € Vi(K) x On(K). (30
Remark 5 As in the continuous case, in the discrete case we can prove that py = 0, follow-
ing the same ideas from [8]] and hence the solutions of the one-level and two-level MHM

methods, can be characterized as follows

ugy =u* + 4/ and PH = le —i—pf7 31)
Up :zuﬁ” +u£ and ppyj = pﬁH +p‘,7;. (32)
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4 A multiscale a posteriori error estimator

In this section, we define a two—level residual error estimator. Let 1; be the first—level a
posteriori error estimator, given by

m :—{ Y ¥ niF}l/z,

Ke Iy FCoK
where
nl,F = 1/27 5
Hp
with

_% [[uHﬁh]] ) Fe 6007
RF =
g—unp, F €&\

Recalling that, {%K } o 18 aregular family of triangulations of K € Iy, we define residuals
over each 7 € K and { € &K, respectively, as follows:

RY := (VAug p — (Vup )0t — Yup o — Vpun+ f)|c,
and

8 1
ﬂ ont T +thn§+ (uH,h®a)n§ﬂ on¢ € &K,
RE .=
¢ Uy 1
Ay —v—=- It +thn§ (uHh®OC)n§ on(§ € &K.
s

Its global version reads

1/2

Mmi:=14 Y, (ZIREIG. )+ Z helREG: ¢ (33)

e gk gesk

and, thus, the global second—level estimator is defined by

1 1/2
nzizﬁ{ Yy rl22,K:| :

KE?H

where [ is the polynomial degree on faces. Summing up first and second level contributions,
the global a posteriori error estimator 1) reads

n:=n+n. (34)
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4.1 Technical results

In this subsection, we introduce some technical results that will be useful to establish our
main results. First, we present a residual functional which can be characterized in terms of
local residuals on each 7 € 7K and { € &K.

Lemma 2 Let (up ;, pu ) be the solution from two-level MHM method given by (32). De-
fine the local residual functional R, : V(K) — R, by

Ru(v) := (f,v)k — (An,v)ox — ak (U n,v) — b (PH 1, V),
forallv € V(K). Then,

Ri()= Y (REw)et ¥ (RE.Y)

e gk Cesk
forallv e V(K).

Proof Using the identity @) on each t € ZX, equations (T7) and (I8), and integrating by
parts, we have that

Ru(v) = —(Au,v)ok + (f,v)k — (VVup p,v)k — %((VMH,h)OC,V)K

1
+ E(MH,ha (W)a)k — (Your p,v)k +(V-v, pri)k
1
—(AuVox+ Y, [(f:v)f — (VVup p,v)e — 5((V”H.,h)a7v)r
e 7K

—_

+ = (ug , (VV) &)z — (Yous j,v) + (V- VvPH,h)f]

[\

A’Ha K+ Z |:f7v)T VAuHJHV)’L'

e gk

2 ! !
( aulffh ’ >af —((Vup p)a,v)r — 5((V O UR b, V)T + 5((06 0O )up V) ar

— ((y— %(V . a)> uH7h,v) - (Voa ., v)e+ (PN, V)ar]
B Z (|[ aquththnc l(a ng)uyh]], >

Cesk
1 duy 1
+) H=Va & T +PHh"g (Ol nPum v )+ Y, (R
Cesk e 7K
= Z (Rra")f+ Z (Rga")g»
e gk tesk
which conclude the proof. a

The following result gives us a bound for the norm of the difference between the one- and
two-level MHM solutions (uy, py) and (ug j, pu ), respectively. As expected, such esti-
mates depend on the approximation property of the second level solver.
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Lemma 3 Let (uy,pr) and (up p, pay), be given in (1) and (32), respectively. Then

| (urr — urg s P — P IViK) < 0(K) = M2.Ks

forall K € Ty.
Proof Let (e",eP) := (up — upy p, prr — pr,p)- From (I7), (18), @2), and Lemmal]2} we have

BK((euvep)7 (V,q)) = BK((MvaH)v (V7Q)) _BK((”H,hva.h)v (V7Q))
=—(AuV)ox + (f,v)k —Bx((un n, pr 1), (v,q))
=Ry (v) + bk (un 1,q)
- L |®)e- G|+ T @ 69

e gk Cesk

forallv € V(K) and g € Q(K). For K € Fy, letv;, := €K (v) with v € V(K). Then, replacing
v by v—vj, in (33) and using Cauchy—Schwarz inequality, we get

B ((e",€),(v=vn:q))

<y HR[T(”O,THV_vhHOJ_'—HV'MH.,h||0.,‘EHQ||0ﬁTj|+ Y IREloclv=rallog  (36)
e gk Cegk

On other hand, using (22), (28) and 29), and taking (v,q) = (v;,,0), we get
Bk ((e",€”), (v, 0))
= ag (ug — up p,v) +bg (Vi P — PH )
= ag (up,v) + bk (v, prr) — [ak (up py vir) + bk (Vi P 1) |
= — (A widax + (Fvn)k = [ax @™, vi) + b (v, P
+aK(u£th) +bK(Vh:p£)]
= Y Sc(vAuyp— (Vup p) ot — Yup p— Vpp+ f,—VAvy — (Vvp) o+ i)

e
+ Z Ke(Voup 5,V ovin)e
e 7K
= Z é}(Rf,—vAvh—(Vvh)ot—&—yvh)f—l—KT(V-uH,h,V-vh)T}. (37)
w7k

h:  h
From the definition of &; in 2], it is possible to show that §; < min{ 1 2Tv’ Haﬂ } thus
using (Z7) we get
8|l — vAv, — (Vi) o+ yvallo.c
<G Seh ! [Vvnlloe + Scll e [ Villo e + 8| vallo <

_ Y
< Ck lhrHVVhH(),r+h1:||VVh||0,r+ WhrHVhHO,T

= hrHVhHl,r- (38)
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Now, using the fact that k; < ||&||/17, and an inverse inequality, we get

Ke(Vuppn, Vevi)or < %e||Voupp

l0,2[[V - vallor < \/EHO‘HwhrHV'”Hﬁ lo2[[Vvallo.c
=V -ug pllozlvalloz (39)

Finally, using (36)—(39), the properties (12), Cauchy-Schwarz inequality and mesh regular-
ity, we arrive at

BK((eu7ep)7 (VJQ))
= BK((euvep)v (V - thq)) +BK((euvep)7 (tho))

) U%MJW—mmﬁvammwww]+z|mﬂMW—wmg
e gk Cesk
Y Veumaloclviloet X helRS foellvalliz
reﬂh’{ reﬂhK
1/2
< X [elRSlocbli,+ 1 wnaloclaloe] + X, 0221 lochvra
= tesk
Y Veumaloclvaloct X helRS focllvallie
TE:ZIK Te‘?hK
12
Iy {h%HRfHaT%—nv-uHﬁ|3ﬁ-+ y hguRguag} <
235 =t
1/2
y Dvﬁﬁ%—+uq|&f—+nv|if LY e,
e gk tesk
=Mk (v, 9)llvik) <o)
Finally, applying Theorem 4 we get the desired result. ad

Remark 6 Note that testing 28) with (v,q) = (0,1|k), we get

V~L¢’1H:O7
AL

and using the analogous equation for the one-level MHM method we can prove that

/V.MH:O.
K

The next result establishes an estimate for the error on first-level pressure in terms of the
first-level velocity error and the second-level estimator.

Lemma 4 Let A € A and Ay € Ay be the solutions of problems 20) and @23) respectively.
Then, we have

A

Ip* = Pl = [ =y + 1.
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1
Proof Letw:= -x € H! (.Q) then V-w=1and Vw = fI Then, using the first equation
from (T7), (28), and the Remark [} we have

/Kp’lde = aK(uAH7W) +(Au,w)ok

= (VWi Vw)g + %((VI/LH)OC,W)K - %(u’“’, (Vw) o)k + (Hou W)k + (A, w)ax
_ g/ly.uxﬂdwr%((wxﬁ)a?w),(_%(MH,(Vw)a)KJr(}’ou’l”,W)KJr(leW)aK
- 2./,(V.u2”dx+ %((vulH)a,w)K - %(ul”v(vw)a)ﬁ (tou™ )i+ (At w) ok

1 1
= (VV”;}HNW)K + E(WM}LH)OC,W)K ~3 (Wt (Vw) o)k + (o uH ,w)k + (A, w)ak

1 1
= 5 (Vag™ Yot w)i + 3 (" (V) )k — (o™ w)g + (V- w. p )i
+ Y Se(—vAu + (Vi Yoyt Vit —(Yw)or+ yw)e
e K

1 1
= X eV Ve whe ot S (Ve w)g — 3 (M (Vw)o)g + (ot w)k
e gk

= [ a3 (T g w) = 3 = (Twi -+ (0 =) Wi

+ Z O ( vauh +(Vz,tf;H)OtJrjlufl“"JerzL ,—(Vw)a+yw)¢ Z ke (V- ”h 7V-w)e.

e gk e gk
(40)
Moreover, using similar arguments as above, we can prove that
1 ! Lo —ul (v T
[ = [ phax 3 (V6 — o) o= 36— (Tw)@he+ O (! ) wix
+ ) & —vAuh+(Vuh)oc+yuh+Vph—f,—(Vw)a—i—YW)c— Y (Vo) Vow)e.
TGZIK ‘L'G:ZTK
(41)

Note that from the definition of w we have that ||w||;  is a constant depending only on
the domain € and the dimension d. Now, from the second equation of 0), @0), (#I) and
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Lemma3] we get

/Q(pl_ph)dx_,(;% (/Kp’ldx—/l(pl”dx) :KGZ% (—/Kpfdx—/[(px”do
— Z (_/Kpﬁdx_%(V(”f_”i)a’w)K"‘%(M'f—uiy(VW)a)K—(Yo(uf—ui),w)K

= Y Sc(—vAul + (Vul)o+ yu, +Vpl — f—(Vw)a+mw)e+ Y ke(V-ul,Vow)e

e Tk e gk
Y Y PR S VR Y Loan oy B Py
Kph X ( (u uj, )Oc,w)K—l— (u ", (Vw)a)g — (o (u u, "), w)k
AH AH AH AH AH
— Z Oc(—vAw + (Vuy ")+ yu, # +Vpr ', —(Vw)a+yw): + Z Ke(V-u,#,V-w)y
e gk re gk

1 1
=Y (**V(MH —up )W)k + 5 (up —ug p, (VW) 0k — (Yo (un — um n),w)k
KeJy 2

+ Y &(VAupp— (Vug p)ot = Yurp—Vpan—fr—(Vw)a+yw)e+ Y ke(Vougp, V-w)e

7K K
€7, €7,

=Y <|MH —up pl1 k|| ook [Wllox + e — ur pllo.x W &l ook + 1130 leo 1 — rr pllo.x [[W]lo.x

KeJy

Hlafex Y 5lRs]

oclwhie+y Z Sc|IRE lo.zlwll1z+ Z kel |V - um o Wiz
e gk e gk e gk
<Y <|MH—MH,h|1,K|OC||w,K|W|1,K+|uH—uH.,h lo.x [wl1 k[l 0|k

KeIy

12 12
2 2
+\|7’o||w,K||MH—MH,hH0,KHW|\1,K+Hal\wx( y 6r||R'§||o_T) ( y 61|w\1.f)

7K 7K
€7, €7,

12 1/2 1/2 1/2
+y( y &nR'fné_f) ( y afuwué,f) +( y KTHV-uH,hné,T) ( y mnwu%,f)

7K 7K 7K 7K
€7, €7, €, €7,

=Y (IMH =t |1kl Ol g W& + e = v pllo.g W]kl [0 loo g A 190 oo i Nz = s o (W11
KeJy

1/2 1/2 1/2
+( y 6f||R’§||%A,T) |w\u<+( y &HR’;H&T) |\w|\1,1<+( y KTHV-uH.,hna,) Il

K 7K K
€7, €7, €7,

=M. (42)

Now, define 1 := A — Ay and p* := p* — p*#_ Using the orthogonal decomposition p* =
1
P+ po, where p € L3(Q) and py := @/ pH, there exists w € H} (2)? (see [23]) with
Q
V- =pin Q and |w|; o < C||pllo.q, where C > 0 is independent of H and h. From (T7),
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it holds
a(u”a W) +b(ﬂ/,p”) = 7(:“'7"’{})9;1 =0. (43)

Hence, using (42)) and {3)), we have that
IP*115 = (P, )2 = (P*. Pl + (1", po)a = (P*,V-W)a + (", po)a
= =b(W,p") +(p", po) e = a(u, W)+ (p", po)a

= V(Tul, VR)g + 5 (V) B)g — 5 (uh, (VH)a)g + (1, W) + (¥, o)

=t 1,010 + w10l al
+[lp*[lo.2 I Pollo.e

= (" llv +llpollo.2)lIP* llo

= ([l lv +m2) lp* [l o,

w2 [Wllo.e + [t lo,el|lle.a W10 + Vw10 lW]1.0

we conclude that
17" llo = [lu*{lv +mn2,

and the result follows. u

Lemma 5 Let u* and u*! be the solutions of @0) and @23), respectively. Then we have
[ =y <.

Proof Let i := A — Ay. We notice from and (22)), that

—(u,uM)oz, = Y, Br((u',pH), (', p*)) =Y v(Vit, Vi g+ 90wt ut ) > Cr[u |5

KGyH KG?H
(44)
Now, combining () and (T7), we find that
- Z BK((MNJJH),(V,O))
\/5 K€<7H
—llufla <sup
2 vev [[vllv
- Z [aK(u”,V)—FbK(V,p“)]
KEyH
= sup
vev [vllv
= (v +1p"Ml0),
and using Lemma[d] we get
llla = llutllv + . (45)

According to Lemma 4.2 in [[10]], there exists y € V satisfying

(“’7%)3y]—] = (:uvg>a!2 - (/Ja”H,h)a,%, for allﬂ € A7

and
lxllv =m.



20 Rodolfo Araya et al.

Then, using this result, [8), (32), @#4), @3) and Lemma 3] we obtain

Cillu!|ly < —(w,ut)g 7, = —(u* —ut) 5 5,
= —(ut +u = (W i)y 7,
=—(1,8)90 + (1,u™ +ul); 7,
=— (.80 + (L umn)az, + (W, un — U n)g 7
=—(WX)azy + (Wun —ur n)o 7,
< el Clzllv + llua — ug allv)
< Gulla(m+m)
< G ([lullv+m2) (i +m2)
<Gl |v+Cn?

. . . . . 0 1 . C .
Now, using the inequality (#4) and the inequality ab < —a®+—b* with § > —2, we arrive

2 20 2C
at
[ut]lv = 7.
O
Theorem 5
[ (u—ur,p—pu)llvco 2 1. (46)
Proof Using Lemmas[d]and 3} the result follows.
4.2 Local efficiency and reliability analysis
Before to state the main result of this work, we need first an auxiliary result
Theorem 6 Let K € . For each t© € X there holds
el RE o« < [hfuu — s loe+ (1 o)l — r e + 1l — pyﬁhno.f} R

and
\V-ugplloe = |u—umpliz.

Furthermore, for each § € K we have

1/2
WPIRElog = X [l unals+lu—nslos+ o= pa

TE(Dé

O,T:|a

and for all § € &K there holds

1/2
WPIRElog = X [lu=nalnc = waalos + 1= puslos| 413 =2l _y . 49

‘L'G(Oé’
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Proof We define bX := bXRK and b¥ := blg P’g (R Ig ). Using integration by parts and Theorem
[2l we arrive at
(RX b5, = (vAuH‘h — (Vug )0t —Yuppn —Vpu, —I—f,bf)r
= (VA (upp— ) = (Vg p — )0t — Vg p— 1) =V (ps—p), by ),

T HO.T

<V
+Vd|[p—prpllocb¥]1
< (<1+h;1> | ||o,r+h;1up—pﬂ,h||o,f)HR?

and then
el RE 0. < [hfuu—uﬂhnoﬁ(l+hr>|u—uyh|1T+||p thM

Again, by Theorem|2|, we obtain that

HV uHh”()‘;_(V u]—]h,b V. MHh)
= (Veup D5V ug ) o
3% (“H.h*u)7brv'u1-17h)g

=
= ‘MH,h

and therefore
\V-umplloe = lugn—uliz.
Let{ € éoOK . From Lernma and Theorem we find that

(RE. D) =Ru(bF)— Y. (RE,bE)s

52[

’L'G(OC

—MH,h|17‘r||bI§<H0,T+

082+ IRE o268 M

—1/2 1/2 1/2
<y [hf Plu—ugplie+hyu— g plloc+hy | —ug o+

TE(DC
1
2l1p— pnllos+hY HRKHOT}HR o,

thus using Theorem@ and the regularity of the second level meshes, we get

2 RE oz = Y {(thnu—umﬁ(l+h1>nu—uH,huo.f+Hp—pH_,hnoﬁf}
TE(J)g

Netx, let § € é”bK . Using Theoremand the regularity of the partition Z:K , We arrive at

= Z {|M —upplic+|u—upp

TE(D{

168 1112 < \/he+hz " |RE Hog*h HR llo.c-
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Now consider

() o) = ¥, (artun) +b:00p)).

K
€9,

where a;(+,-) = ag(:, )’ and b (-,-) = bk (-, )‘ . Using again Lemma Theorem @7,
(T3) and the regularity otg the meshes of the secofld level, it holds

(RE,bE); = Ra(bE) — Y. (R, bE)e

‘L'Ewg
= ag (u—u p,bF) +bx (bF,p— prp) + (A = 2w, bE Jox — ) (RE,b%)x
TGCDC

=Y (ar(u — g 1, 0§ ) + b (bF . p— pri) — (Rf,blg)r) + (A —An,bE)ak

TE(DC

12

< ¥ ( i RS o +1A =y 05 o

TECOg
=¥ ( )i RS+ 12 Ry o 1R o

Tng
thus we get (@g). O

To present the main result we need to define the following discrete norm for the velocity

1/2
21,112 2
IVIIv.0r 1—{ Y [Hy |V||O‘K+V|1,K]} ;

Kecor

forall F € &y.

We are now in position to establish the results that show the efficiency and reliatibity of
the error estimator 1.

Theorem 7 (Main Result) Lez (u, p) € V x Q the continuous solution of MHM method and
(up i, Pui) € Vi X Oy the discrete solution of two-level MHM method, given in (]Zfb and
(B2), and with A and Ay solutions of 20) and 24) respectively. Then

| (e — gz s p = Pr 1) Vo 2 M.

Moreover, given F € &y, we have

Mr = —uwpl|v,or

and
Mk 2w =, p = P p) vy o) + 114 = Aull_1 5k (49)

forall K € Fy.

Proof Letus (uy, py) be the solution of the one-level MHM method given in (31). Applying
Lemma 3] {#6) and the triangular inequality, we get

| —u o p — PER) Vi < | —um, p— pr)|lvxo + |(ue — ue p, PH — PHR) [V 21
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On the other hand, since R € L*>(F)¢, then
, 1 1
IRell6F = 5 (R [u—wes])r < 5 IREllo.e || [u— e a] o
and by Lemmal[I] we arrive to

12
12 _ 12
IRFlloF < Hy! )y <HK2H”*MHJ1||(2),K+|M*MH,h\%J<) < Hy u—up
Kewrp

V.0 -
Finally, using the definition of 12 x and Theorem [6] we arrive at

1/2
k= Y [hellRElloc+ [V umalloc] + Y h*IRE[lo.c
e gk fesk

< [l wmalo + o=l 4 U= palon| 412 2]y o
== p = Pr ) vy + 1A = Arll_1 5k
which finishes the proof. O

Remark 7 Tf we assume that A € L?(9 .7y ), then it is easy to prove that we can modify
as follows

1/2
Mok 2 [ —up n,p = prn) vk« o) + 12 = Aallo ok

and then the right-hand side is fully computable if the exact solution is available.

5 Numerical validation

This section presents numerical validations, using three different examples, to demonstrate
the reliability and efficiency of our a posteriori error estimator. We validate an adaptive
refinement algorithm procedure based on refining faces, which keeps the topology of the
first-level mesh untouched.

For all F € &y, we define

1/2
Rrllo7
. 2 . . H Fllo,F
mei=q X Mg T Y Tk, With mypi= o (50)
FeTy(F) Keop Hy;
Thus the adaptive algorithm that uses (50) is the following
Algorithm 1 Adaptivity by faces procedure
Require: 6 € (0,1) and a coarse first-level mesh 7.
1: Solve the discrete problems (24) and 28)—(29) on the current mesh.
2: For each F € &y, compute the local error indicator 1 in (30).
3: Given F € &y such that np > Gllrnax Nr, refine F € J5(F) such that 1, = }nz?x) n 5 andif N p <
€éu 1 ’

Z N2,k also refine the second—level meshes th for K € wF.
Keop
4: If the stop criterion is not satisfied, repeat the algorithm.
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Using the procedure given in the Algorithm 1, the first-level mesh does not change, and
only the local problem associated with elements “touched” by the estimator needs to be
revisited. Thereby, only a few extra entries must be computed and assembled into the global
system in each adaption step. This algorithm is particularly attractive for use in real three—
dimensional problems since it dramatically decreases the computational cost involved in the
adaptive procedure and avoids three-dimensional global re—meshing.

5.1 A smooth solution

The domain is Q := (0,1) x (0,1), vi=1,y:=1, a :=
conditions are chosen such that the exact solution is given by

(%, %ﬁ), f and the boundary

1

px,y) = (x—y)°——

up(x,y):= —256x2(x—1)2y(y—1)(2y—1), T

uz(x,y) = —ul(y,x),

Using a uniform refinement in the first level mesh, with one element at the second level
mesh, and polynomial degrees, on the faces, A;, [ =0, 1, 2, Table shows the convergence
of the a posteriori error estimators 71, 1> and the effectivity index, E defined by

_ n
[ (u— UH n, P —PH,h)||V><Q7

E:

where 7 is given in (34). Observe that the effectivity index stays close to 1 in all scenarios.

[ 1H [ N —wrr,p—pui)llveo | m [ m [ E |
0.25 0.8472405 x 10T 0.6778663 x 102 | 0.9707391 x 10~T [ 1.225775
0.125 0.9915863 x 1072 0.9197585x 1073 | 0.1084051 x 10~! | 1.186005

2 | 0.0625 0.1208512 x 102 0.1213830 x 1073 | 0.1300599 x 1072 | 1.176639E
0.03125 0.1497330 x 1073 0.1572163 x 10~* | 0.1604838 x 1073 | 1.176798
0.015625 | 0.1865182x 10~* 0.2006059 x 107> | 0.1997001 x 10~* | 1.178227
0.25 0.3228006 0.8209395 x 10~T | 0.3214077 1.250003
0.125 0.7916980 x 10~ 0.2200528 x 10~' | 0.8110115x 10~! 1.302346

1| 0.0625 0.1960050 x 10! 0.5795234 x 1072 | 0.1957939 x 1072 | 1.294591
0.03125 0.4904711 x 1072 0.1499087 x 1072 | 0.4759787 x 1072 | 1.276094
0.015625 | 0.1228986 x 1072 0.3820426 x 1073 | 0.1169730 x 1072 | 1.262644
0.25 0.2585779 x 10 0.1103852 x 10 0.1311145 % 10 0.9339536
0.125 0.1314891 x 10 0.6038400 0.6121682 x 10 0.9247977

0 | 0.0625 0.6590541 0.3207728 0.3056109 0.9504282
0.03125 0.3296247 0.1652682 0.1529013 0.9652478
0.015625 | 0.1648197 0.8381923 x 107! | 0.7646742 x 10~" | 0.9724971

Table 1 Exact error, a posteriori error estimators and effectivity index for ug j, € IP’%, pup€P3and Ay € Ay,

1=0,1,2.

Figures [4] 3] and 2] validate the convergence orders for the MHM method. The expected
orders O(H'™1),1=0,1,2, in the || - ||y« norm, for the error estimator 7 are also observed.
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5.2 Boundary layer solution

We consider the domain Q := (0,1) x (0,1), v:i= 1072, y =1, a := ( ! ,%) f and the

S

boundary conditions are chosen such that the exact solution is given by:

1—e/V 1—eY g 1

M](X,y) ::y_ma uZ(xay) ::x_m7 p()@y) = (X—y) E

The solutions #; and u, exhibit boundary layers at y =1 and x = 1, respectively. A structured
mesh of 64 elements in the first level is used. In all the calculations ug 5, € IP’%, pu» € P3 and
Aun € Ay Figure [5|shows the adaptivity procedure by faces (Algorithm 1) and isovalues
of vertical component of velocity. The red dots in the mesh of the first level represent faces
where more basis functions have been added to improve the approximation of A;. In the
second level a structured mesh, that coincides with 7 (F), F € dK, K € Jp, is used.

The adaptive algorithm associated to the multiscale estimator induces an anisotropic
adaptation on faces due to the sharp boundary layers. Also observe that the solution is im-
proved without changing the topology of the coarse first level mesh.
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5.3 Solution with an inner layer

Let Q:=(0,1)%, v:=1073, y:=0and o := (1,0). We consider ¢ (x,y) := x*>(1 —x)?y*(1 —
y)? (1 —tanh(75 — 150x)), f and the boundary conditions are chosen such that the exact

solution is 5 5
o _(9¢ 99 o6 L
u.—curl(p—(ay, 8x)’ pi=(x—y) T

This solution presents an inner layer around x = 1/2. For this case, we choose a first level
mesh which is not aligned to advection. In Figure [6] we present the adaptive procedure by
faces for this test case. The red dots near the inner layer indicate the faces where basis func-
tions were added to the subspace A ;. In the second level a structured mesh, that coincides
with 5 (F), F € 0K, K € Ty, is used.
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Fig. 6 Adaptivity procedure by faces at iterations 0, 5, 10, 20, 30 and 50 (from top-right to bottom—left).

Figure [7] shows the isolines of the absolute value of the velocity at iterations 0, 5, 10,
20, 30 and 50 of the adaptive procedure. Here we set ug € IF’%, pas €P3and Ay, € Ay
Observe the great improvements in the solution by just adding a few extra dof at the right
location induced by the multiscale estimator
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Fig. 7 Isolines of the absolute value of the velocity field at iterations 0, 5, 10, 20, 30 and 50. Here ug j, € IP’%,
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The improvements to the computed solution in the final adapted mesh can be seen in
Figure 8] where we show the profile of the components of the velocity near the inner layer
in horizontal cuts. We notice that the adapted scheme captures the inner layer correctly by
comparing it with the exact solution.

0.025 0.05
final adaptativa final adaptative ——
exact —— N exact ——
o
0.02
005
0.015
01
s 001 > 015
02
0.005
025
0
03
-0.005 035
0 01 02 03 04 05 08 0 02 04 06 08 1
X X

Fig. 8 Tangential velocity profiles at y = 0.25 (left) and normal velocity profiles at y = 0.5 in iteration final
of the adaptive process. Here ug ; € IP’% and Agj € Aj.
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6 Conclusions

This work proposed an extension of the MHM method to the Oseen equations based on pre-
vious works for the Stokes model [8] and for the advection-diffusion equation [34]. Owing
to the MHM'’s structure, we also introduced and analyzed a new residual a posteriori error
estimator for which we showed that local efficiency and reliability hold with respect to nat-
ural norms. The estimator is multi-level and then it is able to account for different scales,
and then handle the solutions of singularly perturbed problems as the ones in the Oseen
equations under advective or reactive regimes. From theoretical view-point, the dependence
of constants (in the equivalence estimates) with respect to the physical parameters as well as
to the degree of polynomial interpolation on faces deserves further investigation. Numerical
verifications performed in this work pointed towards the robustness of the estimator in terms
of those dependencies, but the precise proof stays an open problem. The natural extension
of the proposed methodology to the non-linear Navier-Stokes equations is currently under
investigation.
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