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Abstract

A virtual element discretisation for the numerical approximation of the three-field formulation of
linear poroelasticity introduced in [R. Oyarzúa and R. Ruiz-Baier, Locking-free finite element methods
for poroelasticity, SIAM J. Numer. Anal. 54 (2016) 2951–2973] is proposed. The treatment is extended to
include also the transient case. Appropriate poroelasticity projector operators are introduced and they
assist in deriving energy bounds for the time-dependent discrete problem. Under standard assump-
tions on the computational domain, optimal a priori error estimates are established. Furthermore, the
accuracy of the method is verified numerically through a set of computational tests.

Keywords: Biot equations, virtual element schemes, time-dependent problems, error analysis.

Mathematics subject classifications (2000): 65M60, 74F10, 35K57, 74L15.

1 Introduction

The equations of linear poroelasticity describe the interaction between interstitial fluid flowing through
deformable porous media. This problem, often referred to as Biot’s consolidation, has wide range of
applications in diverse areas including biomechanics, groundwater management, oil extraction, earth-
quake engineering, or material sciences [6, 31–33, 39, 41].

A variety of numerical methods has been used to generate approximate solutions to the Biot con-
solidation problem. Modern examples include high-order finite differences [22], conforming finite el-
ements [1, 36], mixed finite element methods [14, 25], nodal and local discontinuous Galerkin meth-
ods [27, 40], finite volume schemes [7, 37], and combined/hybrid discretisations [20, 21, 28], and we also
point out Ref. [16] where the authors present a polygonal discretisation based on hybrid high-order
methods. These schemes are constructed using different formulations of the governing equations in-
cluding primal and several types of mixed forms.

In this paper we propose a virtual element method (VEM) using a three-field formulation of the time-
dependent poromechanics equations. We base the development following the formulation proposed in
Refs. [30] and [38] for the stationary Biot system and extend the discrete analysis to include the quasi-
steady case. We stress that this is not the first VEM formulation for the Biot equations, as Ref. [20]
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proposes a method that combines VEM and finite volumes for the solid and fluid parts of the problem,
respectively.

Advantages of VEM include the relaxation of computing basis functions (of particular usefulness
when dealing with high-order approximations), and the flexibility of computing solutions on general-
shaped meshes (for instance, including non-convex elements). In addition, one works locally on polyg-
onal elements, without the need of passing through a reference element, see e.g. Refs. [2, 8–10, 34]. This
further simplifies the implementation of the building blocks of the numerical method. Polytopal meshes
can be now generated with accurate tools such as CD-adapto [11].

Here we consider a pair of virtual elements for displacement and total pressure which is stable. This
pair, introduced in Ref. [5], can be regarded as a generalisation of the Bernardi-Raugel finite elements
(piecewise linear elements enriched with bubbles normal to the faces for the displacement components,
and piecewise constant approximations for total pressure, see e.g. Ref. [24]). On the other hand, no
compatibility between the spaces for total pressure and fluid pressure is needed. Therefore for the
fluid pressure we employ the enhanced virtual element space from Refs. [3, 10, 43], which allows us to
construct a suitable projector onto piecewise linear functions. All this is restricted, for sake of simplicity,
to the lowest-order 2D case, but one could extend the analysis to higher polynomial degrees and the 3D,
for instance considering the discrete inf-sup stable pair from Ref. [11] for the Stokes problem. The main
difficulties in our analysis lie in the definition of an adequate projection operator that allows to treat
the time-dependent problem. To handle this issue we have combined Stokes-like and elliptic operators
that constitute the new map, here named poroelastic projector. We derive stability for semi-discrete and
fully-discrete approximations and establish the optimal convergence of the virtual element scheme in the
natural norms. These bounds turn to be robust with respect to the dilation modulus of the deformable
porous structure. A further advantage of the proposed virtual discretisation is that it combines primal
and mixed virtual element spaces. In addition, this work can be seen as a stepping stone in the study of
more complex coupled problems including interface poroelastic phenomena and multiphysics (see, for
instance, Refs. [4, 23, 44]).

We have arranged the contents of the paper as follows. Section 2 is devoted to the definition of the
linear poroelasticity problem, and it also contains the precise definition of the continuous weak formu-
lation using three fields, and presents a few preliminary results needed in the semi-discrete analysis as
well. In Section 3 we introduce the virtual element approximation in semi-discrete form. We specify
the virtual element spaces, we identify the degrees of freedom, and derive appropriate estimates for
the discrete bilinear forms. The a priori error analysis has been derived in Section 4, with the help of
the newly introduced poroelastic projection operator. The implementation of the problem on different
families of polygonal meshes is then discussed in Section 5, where we confirm the theoretical rates of
convergence and produce some applicative tests to gain insight on the behaviour of the model problem.
A summary and concluding remarks are collected in Section 6.

2 Equations of time-dependent linear poroelasticity using total pres-
sure

2.1 Strong form of the governing equations

A deformable porous medium is assumed to occupy the domain Ω, where Ω is an open and bounded
set in R2 (simply for sake of notational convenience) with a Lipschitz continuous boundary ∂Ω. The
medium is composed by a mixture of incompressible grains forming a linearly elastic skeleton, as well
as interstitial fluid. The mathematical description of this interaction between deformation and flow can
be placed in the context of the classical Biot problem, written as follows (see for instance, the exposition
in Ref. [42]). In the absence of gravitational forces, and for a given body load b(t) : Ω → R2 and a
volumetric source or sink `(t) : Ω→ R, one seeks, for each time t ∈ (0, tfinal], the vector of displacements
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of the porous skeleton, u(t) : Ω → R2, and the pore pressure of the fluid, p(t) : Ω → R, satisfying the
mass conservation of the fluid content and momentum balance equations

∂t(c0p+ α divu)− 1

η
div
(
κ(x)∇p

)
= `,

−div
(
λ(divu)I + 2µε(u)− αpI

)
= ρb in Ω× (0, tfinal],

where κ(x) is the hydraulic conductivity of the porous medium (the mobility matrix, possibly anisotropic),
ρ is the density of the solid material, η is the constant viscosity of the interstitial fluid, c0 is the con-
strained specific storage coefficient (typically small and representing the amount of fluid that can be
injected during an increase of pressure maintaining a constant bulk volume), α is the Biot-Willis consoli-
dation parameter (typically close to one), and µ and λ are the shear and dilation moduli associated with
the constitutive law of the solid structure. The total stress

σ = λ(divu)I + 2µε(u)− αpI

receives contribution from the effective mechanical stress of a Hookean elastic material, λ(divu)I +
2µε(u), and the non-viscous fluid stress represented only by the pressure scaled with α. As in Refs.
[30, 38], we consider here the volumetric part of the total stress ψ, hereafter called total pressure, as one
of the primary variables. And this allows us to rewrite the time-dependent problem as

−div
(
2µε(u)− ψI

)
= ρb,(

c0 +
α2

λ

)
∂tp−

α

λ
∂tψ −

1

η
div(κ∇p) = `,

ψ − αp+ λ divu = 0 in Ω× (0, tfinal],

(2.1)

which we endow with appropriate initial data (for instance, assuming that the system is at rest)

p(0) = 0, u(0) = 0 in Ω× {0}

(which we can use to compute the initial condition for the total pressure ψ(0) = 0) and boundary condi-
tions in the following manner

u = 0 and
κ

η
∇p · n = 0 on Γ× (0, tfinal], (2.2)(

2µε(u)− ψ I
)
n = 0 and p = 0 on Σ× (0, tfinal], (2.3)

where the boundary ∂Ω = Γ∪Σ is disjointly split into Γ and Σ where we prescribe clamped boundaries
and zero fluid normal fluxes; and zero (total) traction together with constant fluid pressure, respectively.
Homogeneity of the boundary conditions is only assumed to simplify the exposition of the subsequent
analysis.

2.2 Weak formulation

In order to obtain a weak form (in space) for (2.1), we define the function spaces

V := [H1
Γ(Ω)]2, Q := H1

Σ(Ω), Z := L2(Ω).

Multiplying (2.1) by adequate test functions, integrating by parts (in space) whenever appropriate, and
using the boundary conditions (2.2)-(2.3), leads to the following variational problem: For a given t > 0,
find u(t) ∈ V , p(t) ∈ Q,ψ(t) ∈ Z such that

a1(u,v) + b1(v, ψ) = F (v) ∀v ∈ V , (2.4)
ã2(∂tp, q) + a2(p, q) − b2(q, ∂tψ) = G(q) ∀q ∈ Q, (2.5)
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b1(u, φ) + b2(p, φ) − a3(ψ, φ) = 0 ∀φ ∈ Z, (2.6)

where the bilinear forms a1 : V × V → R, a2 : Q × Q → R, a3 : Z × Z → R, b1 : V × Z → R,
b2 : Q × Z → R, and linear functionals F : V → R, G : Q → R, are given by the following respective
expressions:

a1(u,v) := 2µ

∫
Ω

ε(u) : ε(v), b1(v, φ) := −
∫

Ω

φ div v,

F (v) :=

∫
Ω

ρb · v, ã2(p, q) :=

(
c0 +

α2

λ

)∫
Ω

pq,

a2(p, q) :=
1

η

∫
Ω

κ∇p · ∇q, b2(p, φ) :=
α

λ

∫
Ω

pφ,

a3(ψ, φ) :=
1

λ

∫
Ω

ψφ, G(q) :=

∫
Ω

` q.

(2.7)

2.3 Properties of the bilinear forms and linear functionals

We now list the continuity, coercivity, and inf-sup conditions for the variational forms in (2.7). These are
employed in Ref. [38] to derive the well-posedness of the stationary form of (2.1).

First we have the bounds

a1(u,v) ≤ 2µ‖ε(u)‖0‖ε(v)‖0 ≤ C‖u‖1‖v‖1 for all u,v ∈ V ,
b1(v, φ) ≤ ‖div v‖0‖φ‖0 ≤ C‖v‖1‖φ‖0 for all v ∈ V and φ ∈ Z,

a2(p, q) ≤ κmax

η
|p|1|q|1 ≤

κmax

η
‖p‖1‖q‖1 for all p, q ∈ Q,

b2(q, φ) ≤ α

λ
‖q‖0‖φ‖0, a3(ψ, φ) ≤ 1

λ
‖ψ‖0‖φ‖0 for all q ∈ Q and ψ, φ ∈ Z,

F (v) ≤ ρ‖b‖0‖v‖1, G(q) ≤ ‖`‖0‖q‖0 for all v ∈ V and q ∈ Q,

then the coercivity of the diagonal bilinear forms, i.e.,

a1(v,v) = 2µ‖ε(v)‖20 ≥ C‖v‖21 for all v ∈ V ,

a2(q, q) ≥ κmin

η
‖q‖21 for all q ∈ Q,

a3(φ, φ) =
1

λ
‖φ‖20 for all φ ∈ Z,

and finally satisfaction of the inf-sup condition, viz. there exists a constant β > 0 such that

sup
v(6=0)∈V

b1(v, φ)

‖v‖1
≥ β‖φ‖0 for all φ ∈ Z.

The solvability of the continuous problem is not the focus here, and we refer to Ref. [42] for the
corresponding well-posedness and regularity results.

3 Virtual element approximation

3.1 Discrete spaces and degrees of freedom

In this section we construct a VEM associated with (2.4)–(2.6). We start denoting by {Th}h a sequence of
partitions of the domain Ω into general polygons K (open and simply connected sets whose boundary
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∂K is a non-intersecting poly-line consisting of a finite number of straight line segments) having diam-
eter hK , and define as meshsize h := maxK∈Th hK . By Nv

K we will denote the number of vertices in the
polygon K, Ne

K will stand for the number of edges on ∂K, and e a generic edge of Th. For all e ∈ ∂K,
we denote by neK the unit normal pointing outwards K, teK the unit tangent vector along e on K, and
Vi represents the ith vertex of the polygon K.

As in Ref. [8] we need to assume regularity of the polygonal meshes in the following sense: there
exists CT > 0 such that, for every h and every K ∈ Th, the ratio between the shortest edge and hK is
larger than CT ; and K ∈ Th is star-shaped with respect to every point within a ball of radius CT hK .

Denoting by Pk(K) the space of polynomials of degree up to k, defined locally on K ∈ Th, we
proceed to characterise the scalar energy projection operator Π∇K : H1(K)→ P1(K) by the relations(

∇(Π∇Kq − q),∇r
)

0,K
= 0, P 0

K(Π∇Kq − q) = 0, (3.1)

valid for all q ∈ H1(K) and r ∈ P1(K), and where (·, ·)0,K denotes the L2-product on K, and

P 0
K(q) :=

∫
∂K

q ds.

If we now denote byMk(K) the space of monomials of degree up to k, defined locally onK ∈ Th, we
can define, on each polygon K ∈ Th, the local virtual element spaces for displacement, fluid pressure,
and total pressure, as

V h(K) :=

{
vh ∈ [H1(K)]2 : vh|∂K ∈ B(∂K),{
−∆vh −∇s = 0 in K,
div vh ∈ P0(K)

for some s ∈ L2
0(K)

}
,

Qh(K) :=
{
qh ∈ H1(K) ∩ C0(∂K) : qh|e ∈ P1(e),∀e ∈ ∂K,

∆qh|K ∈ P1(K), (Π∇Kqh − qh,mα)0,K = 0 ∀mα ∈M1(K)
}
,

Zh(K) := P0(K),

(3.2)

where we define

B(∂K) :=
{
vh ∈ [C0(∂K)]2 : vh|e · teK ∈ P1(e),vh|e · neK ∈ P2(e),∀e ∈ ∂K

}
.

It is clear from the above definitions that the dimension of V h(K) is 3Ne
K , the dimension of Qh(K)

is Nv
K , and that of Zh(K) is one. Note that the virtual element space of degree k = 1, introduced in

Ref. [2], has been utilised here for the approximation of fluid pressure. This facilitates the computation of
the L2-projection onto the space of polynomials of degree up to 1 (which are required in order to define
the zero-order discrete bilinear form on Qh(K)). Next, and in order to take advantage of the features
of VEM discretisations (for instance, estimation of the terms of the discrete formulation without explicit
computation of basis functions), we need to specify the degrees of freedom associated with (3.2). These
entities will consist of discrete functionals of the type (taking as an example the space for total pressure)

(Di) : Zh|K → R; Zh|K 3 φ 7→ Di(φ),

and we start with the degrees of freedom for the local displacement space V h(K):

• (Dv1) the values of a discrete displacement vh at vertices of the element;

• (Dv2) the normal displacement vh · neK at the mid-point of each edge e ∈ ∂K.

Then we precise the degrees of freedom for the local fluid pressure space Qh(K):
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• (Dq) the values of qh at vertices of the polygonal element.

And similarly, the degree of freedom for the local total pressure space Zh(K):

• (Dz) the value of φh over K.

It has been proven elsewhere (see e.g. Refs. [2,5,8,9]) that these degrees of freedom are unisolvent in
their respective spaces. We also define global counterparts of the local virtual element spaces as follows:

V h := {vh ∈ V : vh|K ∈ V h(K) ∀K ∈ Th},
Qh := {qh ∈ Q : qh|K ∈ Qh(K) ∀K ∈ Th},
Zh := {φh ∈ Z : φh|K ∈ Zh(K) ∀K ∈ Th}.

In addition, we denote by NV denotes the number of degrees of freedom for V h, by NQ the number of
degrees of freedom for Qh, and by dofr(s) the r-th degree of a given function s.

3.2 Projection operators

Besides (3.1) we need to define other projectors. Regarding restricted quantities, and in particular, bilin-
ear forms restricted locally to a single element, we will use the notation BK(·, ·) = B(·, ·)|K for a generic
bilinear form B(·, ·). Then we can define the energy projection Πε

K : V h(K)→ [P1(K)]2 such that

aK1 (Πε
Kv − v, r) = 0, mK(Πε

Kv − v, r) = 0

for all v ∈ V h(K) and r ∈ [P1(K)]2,

where we define

mK(v, r) :=
1

Nv
K

Nv
K∑

i=1

v(Vi) · r(Vi) for r ∈ ker(aK1 (·, ·)).

Then, using the degree of freedom (Dv1), we can readily compute the bilinear form mK(v, r) for all
r ∈ ker(aK1 (·, ·)) and v ∈ V h(K).

Next, for all v ∈ V h(K) let us consider the localised form

aK1 (v, r) =

∫
K

ε(v) : ε(r) = −
∫
K

v · div
(
ε(r)

)
+

∫
∂K

v ·
(
ε(r)neK

)
ds.

One readily sees that div(ε(r)) = 0 and ε(r) is constant for all r ∈ [P1(K)]2. Therefore the other term
can be simply rewritten as [12]∫

∂K

v ·
(
ε(r)neK

)
ds

=
∑
e∈∂K

{(
ε(r)neK · teK

) ∫
e

(v · teK) +
(
ε(r)neK · neK

) ∫
e

(v · neK)

}
.

(3.3)

We can compute first term on the right-hand side of (3.3) using the degree of freedom (Dv1) in con-
junction with the trapezoidal rule, whereas for the second term it suffices to use the degrees of freedom
(Dv1) and (Dv2) together with a Gauss-Lobatto quadrature. Thus, the operator Πε

K is computable on
V h(K).

We now define the L2-projection on the scalar space as Π0
K : L2(K)→ P1(K) such that

(Π0
Kq − q, r)0,K = 0, q ∈ L2(K), r ∈ P1(K),
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and we can clearly verify that Π0
Kqh = Π∇Kqh, ∀qh ∈ Qh.

Finally, we consider the L2-projection onto the piecewise constant functions, Π0,0
K : L2(K) → P0(K)

and Π0,0
K : L2(K)2 → P0(K)2, for scalar and vector fields, respectively. We observe that the latter is

fully computable on the virtual space V h(K) [13].

3.3 Discrete bilinear forms and formulations

For all uh,vh ∈ V h(K) and ph, qh ∈ Qh(K) we now define the local discrete bilinear forms

ah1 (uh,vh)|K := aK1 (Πε
Kuh,Π

ε
Kvh) + SK1

(
(I −Πε

K)uh, (I −Πε
K)vh

)
,

ah2 (ph, qh)|K := aK2 (Π∇Kph,Π
∇
Kqh) + SK2

(
(I −Π∇K)ph, (I −Π∇K)qh

)
,

ãh2 (ph, qh)|K := ãK2 (Π0
Kph,Π

0
Kqh) + SK0

(
(I −Π0

K)ph, (I −Π0
K)qh

)
,

where the stabilisation of the bilinear forms SK1 (·, ·), SK2 (·, ·), SK0 (·, ·) acting on the kernel of their respec-
tive operators Πε

K , Π∇K , Π0
K , are defined as

SK1 (uh,vh) := σK1

NV∑
l=1

dofl(uh)dofl(vh), uh,vh ∈ ker(Πε
K);

SK2 (ph, qh) := σK2

NQ∑
l=1

dofl(ph)dofl(qh), ph, qh ∈ ker(Π∇K);

SK0 (ph, qh) := σK0 area(K)

NQ∑
l=1

dofl(ph)dofl(qh), ph, qh ∈ ker(Π0
K),

where σK1 , σK2 and σK0 are positive multiplicative factors to take into account the magnitude of the phys-
ical parameters (independent of a mesh size).

Note that for all vh ∈ V h(K), qh ∈ Qh(K), these stabilising terms satisfy the following relations
[5, 12]:

α∗a
K
1 (vh,vh) ≤ SK1 (vh,vh) ≤ α∗aK1 (vh,vh),

ζ∗a
K
2 (qh, qh) ≤ SK2 (qh, qh) ≤ ζ∗aK2 (qh, qh),

ζ̃∗ã
K
2 (qh, qh) ≤ SK0 (qh, qh) ≤ ζ̃∗ãK2 (qh, qh),

(3.4)

where α∗, α
∗, ζ∗, ζ

∗, ζ̃∗, ζ̃
∗ are positive constants independent of K and hK . Now, for all uh,vh ∈

V h, ph, qh ∈ Qh, the global discrete bilinear forms are specified as

ah1 (uh,vh) :=
∑
K∈Th

ah1 (uh,vh)|K , ah2 (ph, qh) :=
∑
K∈Th

ah2 (ph, qh)|K ,

ãh2 (ph, qh) :=
∑
K∈Th

ãh2 (ph, qh)|K , b1(vh, φh) :=
∑
K∈Th

bK1 (vh, φh)

a3(ψh, φh) :=
∑
K∈Th

aK3 (ψh, φh), b2(qh, φh) :=
∑
K∈Th

bK2 (qh, φh)

In addition, we observe that

b2(ph, φh) =
α

λ

∑
K∈Th

∫
K

phφh =
α

λ

∑
K∈Th

∫
K

Π0
Kphφh. (3.5)
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On the other hand, the discrete linear functionals, defined on each element K, are

Fh(vh)|K := ρ

∫
K

bh(·, t) · vh, vh ∈ V h; Gh(qh)|K :=

∫
K

`h(·, t)qh, qh ∈ Qh,

where the discrete load and volumetric source are given by:

bh(·, t)|K := Π0,0
K b(·, t), `h(·, t)|K := Π0

K`(·, t).

In view of (3.4), the discrete bilinear forms ah1 (·, ·), ãh2 (·, ·) and ah2 (·, ·) are coercive and bounded in the
following manner [5, 8, 43]

ah1 (uh,uh) ≥ min{1, α∗} 2µ ‖ε(uh)‖20 for all uh ∈ V h,

ah2 (qh, qh) ≥ min{1, ζ∗}
κmin

η
‖∇qh‖20 for all qh ∈ Qh,

ãh2 (qh, qh) ≥ min{1, ζ̃∗}
(
c0 +

α2

λ

)
‖qh‖20 for all qh ∈ Qh,

ah1 (uh,vh) ≤ max{1, α∗} 2µ ‖ε(uh)‖0‖ε(vh)‖0 for all uh,vh ∈ V h,

ah2 (ph, qh) ≤ max{1, ζ∗} κmax

η
‖∇ph‖0‖∇qh‖0 for all ph, qh ∈ Qh,

ãh2 (ph, qh) ≤ max{1, ζ̃∗}
(
c0 +

α2

λ

)
‖ph‖0‖qh‖0 for all ph, qh ∈ Qh.

Moreover, by using definitions of the operators Π0,0
K and Π0

K , the linear functionals hold the following
bounds:

Fh(vh) ≤ ρ‖b‖0‖vh‖0 for all vh ∈ V h,

Gh(qh) ≤ ‖`‖0‖qh‖0 for all qh ∈ Qh.

We also recall that the bilinear form b1(·, ·) satisfies the following discrete inf-sup condition on V h ×
Zh: there exists β̃ > 0, independent of h, such that (see Ref. [5]),

sup
vh( 6=0)∈V h

b1(vh, φh)

‖vh‖1
≥ β̃‖φh‖0 for all φh ∈ Zh. (3.6)

The semidiscrete virtual element formulation is now defined as follows: For all t > 0, given uh(0),
ph(0), ψh(0), find uh ∈ L2((0, tfinal],V h), ph ∈ L2((0, tfinal], Qh), ψh ∈ L2((0, tfinal], Zh) with ∂tph ∈
L2((0, tfinal], Qh), ∂tψh ∈ L2((0, tfinal], Zh) such that

ah1 (uh,vh) + b1(vh, ψh) = Fh(vh) ∀vh ∈ V h, (3.7)

ãh2 (∂tph, qh) + ah2 (ph, qh) − b2(qh, ∂tψh) = Gh(qh) ∀qh ∈ Qh, (3.8)
b1(uh, φh) + b2(ph, φh) − a3(ψh, φh) = 0 ∀φh ∈ Zh. (3.9)

Now we establish the stability of (3.7)–(3.9).

Theorem 3.1 (Stability of the semi-discrete problem) Let (uh(t), ph(t), ψh(t)) be a solution of problem (3.7)–
(3.9) for each t ∈ (0, tfinal]. Then there exists a constant C independent of h, λ such that

µ‖ε(uh(t))‖20 + ‖ψh(t)‖20 + c0‖ph(t)‖20 +
κmin

η

∫ t

0

‖∇ph(s)‖20 ds

≤ C
(
‖ε(uh(0))‖20 + ‖ph(0)‖20 + ‖ψh(0)‖20 +

∫ t

0

‖∂tb(s)‖20 ds

+ sup
t∈[0,tfinal]

‖b(t)‖20 +

∫ t

0

‖`(s)‖20 ds

)
.

(3.10)

8
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Proof. Following Ref. [31], we can differentiate equation (3.9) with respect to time and choose as test
function φh = −ψh. We get

−b1(∂tuh, ψh)− b2(∂tph, ψh) + a3(∂tψh, ψh) = 0.

Then we take qh = ph in (3.8), vh = ∂tuh in (3.7) and add the result to the previous relation to obtain

ah1 (uh, ∂tuh) + b1(∂tuh, ψh) + ãh2 (∂tph, ph) + ah2 (ph, ph)− b2(ph, ∂tψh)

− b1(∂tuh, ψh)− b2(∂tph, ψh) + a3(∂tψh, ψh) = Fh(∂tuh) +Gh(ph).

Using the stability of the bilinear forms ah1 (·, ·), ah2 (·, ·), ãh2 (·, ·) as well as the definition of the discrete
bilinear forms b1(·, ·) (cf. (3.5)) and ãh2 (·, ·), we readily have

µ

2

d

dt
‖ε(uh)‖20 +

c0
2

d

dt
‖ph‖20 +

κmin

η
‖∇ph‖20 +

1

λ
‖ψh‖20,K

+
∑
K

(
α2

λ

((
∂t(Π

0
Kph),Π0

Kph
)

0,K
+ SK0

(
(I −Π0

K)∂tph, (I −Π0
K)ph

))
− α

λ

(
(Π0

Kph, ∂tψh)0,K +
(
∂t(Π

0
Kph), ψh

)
0,K

))
(3.11)

. Fh(∂tuh) +Gh(ph).

Rearranging terms on the left-hand side gives

µ

2

d

dt
‖ε(uh)‖20 +

κmin

η
‖∇ph‖20 +

c0
2

d

dt
‖ph‖20

+
1

λ

∑
K

((
∂t(αΠ0

Kph − ψh), (αΠ0
Kph − ψh)

)
0,K

+
α2

2

d

dt
SK0
(
(I −Π0

K)ph, (I −Π0
K)ph

))
. Fh(∂tuh) +Gh(ph),

and after exploiting the stability of SK0 (·, ·) and integrating from 0 to t, we arrive at

µ‖ε(uh(t))‖20 + c0‖ph(t)‖20 +
α2

λ

∑
K

‖(I −Π0
K)ph(t)‖20,K

+
1

λ

∑
K

‖(αΠ0
Kph − ψh)(t)‖20,K +

κmin

η

∫ t

0

‖∇ph(s)‖20 ds

. µ‖ε(uh(0))‖20 + c0‖ph(0)‖20 +
α2

λ

∑
K

‖(I −Π0
K)ph(0)‖20,K

+
1

λ

∑
K

‖(αΠ0
Kph − ψh)(0)‖20,K

+ ρ

∫ t

0

∑
K

(
b(s),Π0,0

K ∂tuh(s)
)

0,K︸ ︷︷ ︸
=:T1

+

∫ t

0

∑
K

(
`(s),Π0

Kph(s)
)

0,K︸ ︷︷ ︸
=:T2

.

Then, integration by parts in time, and an application of Korn, Poincaré, and Young inequalities, implies
that

T1 = ρ
∑
K

((
b(t),Π0,0

K uh(t)
)

0,K
−
(
b(0),Π0,0

K uh(0)
)

0,K

)

9
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− ρ
∫ t

0

∑
K

(
∂tb(s),Π

0,0
K uh(s)

)
0,K

ds

≤ µ‖ε(uh(t))‖20

+ C1ρ

(
ρ

µ
‖b(t)‖20 + ‖b(0)‖0‖ε(uh(0))‖0 +

∫ t

0

‖∂tb(s)‖0‖ε(uh(s))‖0 ds

)
.

The bound for T2 follows from the Cauchy-Schwarz, Poincaré, and Young inequalities in the following
manner:

T2 =

∫ t

0

∑
K

(`(s),Π0
Kph(s))0,K ds

.
∫ t

0

‖`(s)‖0‖ph(s)‖0 ds ≤ C2
η

κmin

∫ t

0

‖`(s)‖20 ds+
κmin

2η

∫ t

0

‖∇ph(s)‖20 ds.

Thus, we achieve

µ‖ε(uh(t))‖20 + c0‖ph(t)‖20 +
α2

λ

∑
K

‖(I −Π0
K)ph(t)‖20,K

+
1

λ

∑
K

‖(αΠ0
Kph − ψh)(t)‖20,K +

κmin

2η

∫ t

0

‖∇ph(s)‖20 ds

. µ‖ε(uh(0))‖20 + c0‖ph(0)‖20 +
α2

λ

∑
K

‖(I −Π0
K)ph(0)‖20,K

+
1

λ

∑
K

‖(αΠ0
Kph − ψh)(0)‖20,K + C

(∫ t

0

‖`(s)‖20 ds+
(
‖b(t)‖20

+ ‖b(0)‖0‖ε(uh(0))‖0 +

∫ t

0

‖∂tb(s)‖0‖ε(uh(s))‖0 ds
))

.

(3.12)

The discrete inf-sup condition (3.6) alongwith (3.7) gives

‖ψh‖0 ≤ sup
vh(6=0)∈V h

1

‖vh‖1
(
Fh(vh)− ah1 (uh,vh)

)
≤ C(‖b‖0 + ‖ε(uh)‖0). (3.13)

Now, Young’s and Gronwall’s inequalities together with (3.12)-(3.13) concludes the proof of the bound
(3.10). �

Corollary 1 (Solvability of the discrete problem) The problem (3.7)-(3.9) has a unique solution in V h ×
Qh × Zh for each t ∈ (0, tfinal].

Proof. Analogously to the Fredholm alternative approach exploited in Ref. [38], one can consider (3.7)–
(3.9) as the operator problem of finding ~uh(t) := (uh(t), ph(t), ψh(t)) such that

(Ah + Bh)~uh(t) = Fh,

where

〈Ah(~uh), ~vh〉 := ah1 (uh,vh) + ãh2 (∂tph, qh) + ah2 (ph, qh) + a3(ψh, φh)

+ b1(vh, ψh)− b1(uh, φh),

〈Bh(~uh), ~vh〉 := −b2(qh, ∂tψh)− b2(ph, φh).

10
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Note that one can regard the problem Ah~uh = Lh for given Lh = (Lh1 , L
h
2 , L

h
3 ) ∈ (V h × Qh × Zh)′ as a

combination of the perturbed saddle-point problem

For every t ∈ (0, tfinal], find (uh(t), ψh(t)) ∈ V h × Zh such that

ah1 (uh,vh) + b1(vh, ψh) = Lh1 (vh) for all vh ∈ V h,

b1(uh, φh)− a3(ψh, φh) = Lh3 (φh) for all φh ∈ Zh

and the parabolic problem

For each t ∈ (0, tfinal], find ph(t) ∈ Qh such that

ãh2 (∂tph, qh) + ah2 (ph, qh) = Lh2 (qh) for all qh ∈ Qh.

Classical saddle-point theory [15] and the theory of parabolic problems [29] then imply the invertibility
of the operatorAh. On the other hand, noting that ∂tψh ∈ L2((0, tfinal], Zh) and that the operator induced
by b2(·, ·) from V h to Zh is compact (and so is its adjoint), we obtain that the operator Bh is compact for
a given t ∈ (0, tfinal]. Hence the unique solvability is obtained by invoking the stability result (3.10). �

Next, we discretise in time using the backward Euler method with the constant step size ∆t = tfinal/N
and denote any function f at t = tn by fn. The fully discrete scheme reads:

Given u0
h, p0

h, ψ0
h, and for tn = n∆t, n = 1, . . . , N , find unh ∈ V h,

pnh ∈ Qh and ψnh ∈ Zh such that for all vh ∈ V h, qh ∈ Qh and φh ∈ Zh
ah1 (unh,vh) + b1(vh, ψ

n
h) = Fh,n(vh), (3.14a)

ãh2 (pnh, qh) + ∆tah2 (pnh, qh)− b2 (qh, ψ
n
h)

= ∆tGh,n(qh) + ãh2
(
pn−1
h , qh

)
− b2

(
qh, ψ

n−1
h

)
, (3.14b)

b1(unh, φh) + b2(pnh, φh)− a3(ψnh , φh) = 0, (3.14c)

where for all vh ∈ V h and qh ∈ Qh we define

Fh,n(vh)|K := ρ

∫
K

bh(tn) · vh, Gh,n(qh)|K :=

∫
K

`h(tn)qh.

Theorem 3.2 (Stability of the fully-discrete problem) The unique solution to problem (3.14) depends con-
tinuously on data. Precisely, there exists a constant C independent of λ, h,∆t such that

µ‖ε(unh)‖20 + ‖ψnh‖20 + c0‖pnh‖20 + (∆t)
κmin

η

n∑
j=1

‖∇pjh‖
2
0

≤ C
(
‖ε(u0

h)‖20 + ‖p0
h‖20 + ‖ψ0

h‖20 + max
0≤j≤n

‖bj‖20

+ (∆t)

n∑
j=1

(
‖∂tbj‖20 + ‖`j‖20

)
+ (∆t)2

∫ T

0

‖∂ttb(s)‖20 ds

)
.

(3.15)

with bk := b(·, tk) and `k := `(·, tk), for k = 1, . . . , n.

Proof. Taking vh = unh − u
n−1
h in (3.14a) gives

ah1 (unh,u
n
h − un−1

h ) + b1(unh − un−1
h , ψnh) = Fh,n(unh − un−1

h ). (3.16)

A use of (3.9) for the time step n, n− 1 and setting φh = −ψnh , (3.14c) becomes

−b1(unh − un−1
h , ψnh)− b2(pnh − pn−1

h , ψnh) + a3(ψnh − ψn−1
h , ψnh) = 0. (3.17)

11
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Adding (3.17) from (3.16) we readily obtain

ah1 (unh,u
n
h − un−1

h ) + a3(ψnh − ψn−1
h , ψnh)− b2(pnh − pn−1

h , ψnh)

= Fh,n(unh − un−1
h ),

(3.18)

and choosing qh = pnh in (3.14b) implies the relation

ãh2 (pnh − pn−1
h , pnh) + ∆t ah2 (pnh, p

n
h)− b2(pnh, ψ

n
h − ψn−1

h ) = ∆tGh,n(pnh). (3.19)

Next we proceed to adding (3.18) and (3.19), to get

ah1 (unh,u
n
h − un−1

h ) + ∆t ah2 (pnh, p
n
h) + a3(ψnh − ψn−1

h , ψnh)

+ ãh2 (pnh − pn−1
h , pnh)− b2(pnh − pn−1

h , ψnh)− b2(pnh, ψ
n
h − ψn−1

h )

= Fh,n(unh − un−1
h ) + ∆tGh,n(pnh).

(3.20)

Repeating the similar argument (as to obtain (3.11)) used in the derivation of proof of stability of semi-
discrete scheme together with the inequality

(fnh − fn−1
h , fnh ) ≥ 1

2
(‖fnh ‖20 − ‖fn−1

h ‖20), (3.21)

for any discrete function f jh, j = 1, . . . , n we arrive at
µ

2
(‖ε(unh)‖20 − ‖ε(un−1

h )‖20) + (∆t)
κmin

η
‖∇pnh‖20

+
1

2

∑
K

c0(‖Π0
Kp

n
h‖20,K − ‖Π0

Kp
n−1
h ‖20,K)

+
1

2

(
c0 +

α2

λ

)∑
K

(‖(I −Π0
K)pnh‖20,K − ‖(I −Π0

K)pn−1
h ‖20,K)

+
1

2λ

∑
K

(‖αΠ0
Kp

n
h − ψnh‖20,K − ‖αΠ0

Kp
n−1
h − ψn−1

h ‖20,K)

. (∆t)(ρ(bnh, δtu
n
h)0,Ω + (`nh, p

n
h)0,Ω).

where we have denoted δtfh(tn) := fh(tn)−fh(tn−1)
∆t for any time-space discrete function fh. Summing

over n we obtain

µ

2
(‖ε(unh)‖20 − ‖ε(u0

h)‖20) + (∆t)
κmin

η

n∑
j=1

‖∇pjh‖
2
0

+
1

2

∑
K

c0(‖Π0
Kp

n
h‖20,K − ‖Π0

Kp
0
h‖20,K)

+
1

2

(
c0 +

α2

λ

)∑
K

(‖(I −Π0
K)pnh‖20,K − ‖(I −Π0

K)p0
h‖20,K)

+
1

2λ

∑
K

(‖αΠ0
Kp

n
h − ψnh‖20,K − ‖αΠ0

Kp
0
h − ψ0

h‖20,K)

. ρ(∆t)

n∑
j=1

(bjh, δtu
j
h)0,Ω︸ ︷︷ ︸

=:J1

+ (∆t)

n∑
j=1

(`jh, p
j
h)0,Ω︸ ︷︷ ︸

=:J2

.

Using the equality
n∑
j=1

(f jh − f
j−1
h , gjh) = (fnh , g

n
h)− (f0

h , g
0
h)−

n∑
j=1

(f j−1
h , gjh − g

j−1
h ), (3.22)

12
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for any discrete functions f jh, g
j
h, j = 1, . . . , n, alongwith the Taylor expansion, Cauchy Schwarz, Korn’s

inequality and generalised Young’s inequality gives

J1 = ρ
(

(bnh,u
n
h)0,Ω − (b0

h,u
0
h)0,Ω −

n∑
j=1

(bjh − b
j−1
h ,uj−1

h )0,Ω

)
= ρ
(

(bnh,u
n
h)0,Ω − (b0

h,u
0
h)0,Ω − (∆t)

n∑
j=1

(∂tb
j
h,u

j−1
h )0,Ω

+

n∑
j=1

(∫ tj

tj−1

(s− tj−1)∂ttbh(s) ds,uj−1
h

)
0,Ω

)

≤ µ‖ε(u0
h)‖20 +

µ

4
‖ε(unh)‖20 + µ(∆t)

n−1∑
j=0

‖ε(ujh)‖20

+ C1(ρ, µ)
(

max
0≤j≤n

‖bj‖20 + (∆t)

n∑
j=1

‖∂tbj‖20 + (∆t)2

∫ T

0

‖∂ttb(s)‖20 ds
)
.

Again an application of Young’s inequality gives

J2 ≤ C2(η, κmin)(∆t)

n∑
j=1

‖`j‖20 + (∆t)
κmin

2η

n∑
j=1

‖pjh‖
2
0.

Bounds of J1, J2 and Π0
K implies

µ‖ε(unh)‖20 + c0‖pnh‖20 + (∆t)
κmin

η

n∑
j=1

‖∇pjh‖
2
0 +

(α2

λ

)∑
K

‖(I −Π0
K)pnh‖20,K

+
1

λ

∑
K

‖αΠ0
Kp

n
h − ψnh‖20,K

≤ µ

2
‖ε(unh)‖20 + (∆t)

(κmin

2η

n∑
j=1

‖pjh‖
2
0 + µ

n−1∑
j=0

‖ε(ujh)‖20
)

(3.23)

+ C
(
‖ε(u0

h)‖20 + ‖p0
h‖20 + ‖ψ0

h‖20

+ max
0≤j≤n

‖bj‖20 + (∆t)

n∑
j=1

‖∂tbj‖20 + (∆t)2

∫ T

0

‖∂ttb(s)‖20 ds

+ (∆t)

n∑
j=1

‖`j‖20
)
.

An application of (3.6) together with (3.14a) yields

‖ψnh‖0 ≤ C(‖bn‖0 + ‖ε(unh)‖0). (3.24)

Finally, the discrete Gronwall’s inequality and (3.23)-(3.24) concludes (3.15). �

It is worth pointing out that the proof is particularly delicate since the stabilisation term requires a
careful treatment in order to guarantee that the bounds remain independent of the stability constants of
the bilinear form ã2(·, ·).

4 A priori error estimates

For the sake of error analysis, we require the high regularity: In particular, for any t > 0, we consider that
the displacement is u(t) ∈ H2(Ω), the fluid pressure p(t) ∈ H2(Ω), and the total pressure ψ(t) ∈ H1(Ω).

13
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We recall the estimate for the interpolant uI ∈ V h of u and pI ∈ Qh of p (see Refs. [5, 18, 19, 35]).

Lemma 4.1 There exist interpolants uI ∈ V h and pI ∈ Qh of u and p, respectively, such that

‖u− uI‖0 + h|u− uI |1 ≤ Ch2|u|2, ‖p− pI‖0 + h|p− pI |1 ≤ Ch2|p|2.

We now introduce the poroelastic projection operator: given (u, p, ψ) ∈ V × Q × Z, find Ih :=
(Ihuu, I

h
p p, I

h
ψψ) ∈ V h ×Qh × Zh such that

ah1 (Ihuu,vh) + b1(vh, I
h
ψψ) =a1(u,vh) + b1(vh, ψ) for all vh ∈ V h, (4.1)

b1(Ihuu, φh) =b1(u, φh) for all φh ∈ Zh, (4.2)

ah2 (Ihp p, qh) = a2(p, qh) for all qh ∈ Qh, (4.3)

and we remark that Ih is defined by the combination of the saddle-point problem (4.1), (4.2) and the
elliptic problem (4.3); and hence, it is well-defined.

Theorem 4.1 (Estimates for the poroelastic projection) Let (u, p, ψ) and (Ihuu, I
h
p p, I

h
ψψ) be the unique so-

lutions of (3.7)–(3.9) and (4.1), (4.2), respectively. Then the following estimates hold:

‖u− Ihuu‖0 + h‖u− Ihuu‖1 ≤ Ch2(|u|2 + |ψ|1), (4.4)

‖ψ − Ihψψ‖0 ≤ Ch(|u|2 + |ψ|1), (4.5)

‖p− Ihp p‖0 + h‖p− Ihp p‖1 ≤ Ch2|p|2. (4.6)

Proof. The estimates available for discretisations of Stokes [5] and elliptic problems [10] conclude the
statement. �

Remark 4.1 Note that repeating the same arguments exploited in this and in the subsequent sections, it is possible
to derive error estimates of order hs. It suffices to assume that u(t) ∈ H1+s(Ω)2, p(t) ∈ H1+s(Ω), and ψ(t) ∈
Hs(Ω), for 0 < s ≤ 1.

Theorem 4.2 (Semi-discrete energy error estimates) Let (u(t), p(t), ψ(t)) ∈ V ×Q×Z and (uh(t), ph(t), ψh(t)) ∈
V h ×Qh × Zh be the unique solutions to problems (2.4)–(2.6) and (3.7)–(3.9), respectively. Then, the following
bounds hold, with constants C > 0 independent of h, λ

µ‖ε((u− uh)(t))‖20 + ‖(ψ − ψh)(t)‖20

+
κmin

η

∫ t

0

‖∇(p− ph)(s)‖20 ds ≤ C h2.

Proof. Invoking the Scott-Dupont Theory (see Ref. [17]) for the polynomial approximation: there exists a
constant C > 0 such that for every swith 0 ≤ s ≤ 1 and for every u ∈ H1+s(K), there exists uπ ∈ Pk(K),
k = 0, 1, such that

‖u− uπ‖0,K + hK |u− uπ|1,K ≤ Ch1+s
K |u|1+s,K for all K ∈ Th. (4.7)

We can then write the displacement and total pressure error in terms of the poroelastic projector as
follows

(u− uh)(t) = (u− Ihuu)(t) + (Ihuu− uh)(t) := eIu(t) + eAu(t),

(ψ − ψh)(t) = (ψ − Ihψψ)(t) + (Ihψψ − ψh)(t) := eIψ(t) + eAψ (t).

Then, a combination of equations (4.1), (3.7) and (2.4) gives

ah1 (eAu ,vh) + b1(vh, e
A
ψ ) = (a1(u,vh)− ah1 (uh,vh)) + b1(vh, ψ − ψh)

14
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= (F − Fh)(vh),

and taking as test function vh = ∂te
A
u , we can write the relation

ah1 (eAu , ∂te
A
u) + b1(∂te

A
u , e

A
ψ ) = (F − Fh)(∂te

A
u). (4.8)

Now, we write the pressure error in terms of the poroelastic projector as follows

(p− ph)(t) = (p− Ihp p)(t) + (Ihp p− ph)(t) := eIp(t) + eAp (t).

Using (4.3), (3.8) and (2.5), we obtain

ãh2 (∂te
A
p , qh) + ah2 (eAp , qh)− b2(qh, ∂te

A
ψ )

= ãh2 (∂tI
h
p p, qh) + a2(p, qh)− b2(qh, ∂tI

h
ψψ)−Gh(qh)

= (ãh2 (∂tI
h
p p, qh)− ã2(∂tp, qh)) + b2(qh, ∂te

I
ψ) + (G−Gh)(qh).

We can take qh = eAp , which leads to

ãh2 (∂te
A
p , e

A
p ) + ah2 (eAp , e

A
p )− b2(eAp , ∂te

A
ψ )

= (ãh2 (∂tI
h
p p, e

A
p )− ã2(∂tp, e

A
p )) + b2(eAp , ∂te

I
ψ) + (G−Gh)(eAp ).

(4.9)

Next we use (4.2), (3.9) and (2.6), and this implies

b1(eAu , φh) + b2(eAp , φh)− a3(eAψ , φh) = b1(Ihuu, φh) + b2(Ihp p, φh)− a3(Ihψψ, φh)

= b1(u, φh) + b2(Ihp p, φh)− a3(Ihψψ, φh) = −b2(eIp, φh) + a3(eIψ, φh).

Differentiating the above equation with respect to time and taking φh = −eAψ , we can assert that

−b1(∂te
A
u , e

A
ψ )− b2(∂te

A
p , e

A
ψ ) + a3(∂te

A
ψ , e

A
ψ ) = b2(∂te

I
p, e

A
ψ )− a3(∂te

I
ψ, e

A
ψ ). (4.10)

Then we simply add (4.8), (4.9) and (4.10), to obtain

ah1 (eAu , ∂te
A
u) + ãh2 (∂te

A
p , e

A
p ) + ah2 (eAp , e

A
p )

+ a3(∂te
A
ψ , e

A
ψ )− b2(eAp , ∂te

A
ψ )− b2(∂te

A
p , e

A
ψ )

= (F − Fh)(∂te
A
u) + (ãh2 (∂tI

h
p p, e

A
p )− ã2(∂tp, e

A
p ))

+ b2(eAp , ∂te
I
ψ) + (G−Gh)(eAp ) + b2(∂te

I
p, e

A
ψ )− a3(∂te

I
ψ, e

A
ψ ).

(4.11)

Regarding the left-hand side of (4.11), repeating arguments to obtain alike to (3.11). That is,

ah1 (eAu , ∂te
A
u) + ãh2 (∂te

A
p , e

A
p )

+ ah2 (eAp , e
A
p ) + a3(∂te

A
ψ , e

A
ψ )− b2(eAp , ∂te

A
ψ )− b2(∂te

A
p , e

A
ψ )

≥ 1

2

d

dt
ah1 (eAu , e

A
u) +

c0
2

d

dt
‖eAp ‖20 + ah2 (eAp , e

A
p )

+
1

λ

∑
K

(
α2
(
∂t(Π

0
Ke

A
p ),Π0

Ke
A
p

)
0,K

+ α2SK0
(
(I −Π0

K)∂te
A
p , (I −Π0

K)eAp
)

+ (∂te
A
ψ , e

A
ψ )0,K − α(Π0

Ke
A
p , ∂te

A
ψ )0,K − α(Π0

K∂te
A
p , e

A
ψ )0,K

)
≥ C

(
µ

d

dt
‖ε(eAu)‖20 + c0

d

dt
‖eAp ‖20 +

2κmin

η
‖∇eAp ‖20

+
1

λ

∑
K

(
α2 d

dt
‖(I −Π0

K)eAp ‖20,K +
d

dt
‖αΠ0

Ke
A
p − eAψ‖20,K

))
.
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Then integrating equation (4.11) in time implies the bound

µ‖ε(eAu(t))‖20 + c0‖eAp (t)‖20 +
κmin

η

∫ t

0

‖∇eAp (s)‖20 ds

+
1

λ

∑
K

(
α2‖(I −Π0

K)eAp (t)‖20,K + ‖(αΠ0
Ke

A
p − eAψ )(t)‖20,K

)
. µ‖ε(eAu(0))‖20 + c0‖eAp (0)‖20

+
1

λ

∑
K

(
α2‖(I −Π0

K)eAp (0)‖20,K + ‖(αΠ0
Ke

A
p − eAψ )(0)‖20,K

)
+ ρ

∫ t

0

(
(b− bh)(s), ∂te

A
u(s)

)
0,Ω

ds︸ ︷︷ ︸
=:D1

+

∫ t

0

(
(`− `h)(s), eAp (s)

)
0,Ω

ds︸ ︷︷ ︸
=:D2

+

∫ t

0

∑
K

(
ãh,K2

(
∂t(I

h
p p− pπ)(s), eAp (s)

)
− ãK2

(
∂t(p− pπ)(s), eAp (s)

))
ds︸ ︷︷ ︸

=:D3

+

∫ t

0

(
b2
(
eAp (s), ∂te

I
ψ(s)

)
+ b2

(
∂te

I
p(s), e

A
ψ (s)

)
− a3

(
∂te

I
ψ(s), eAψ (s)

))
ds︸ ︷︷ ︸

=:D4

.

Then we can integrate by parts (also in time) and use Cauchy-Schwarz inequality to arrive at

D1 = ρ

((
(b− bh)(t), eAu(t)

)
0,Ω
−
(
(b− bh)(0), eAu(0)

)
0,Ω

+

∫ t

0

(
∂t(b− bh)(s), eAu(s)

)
0,Ω

ds

)
≤ C1(ρ)h

(
|b(t)|1‖eAu(t)‖0 + |b(0)|1‖eAu(0)‖0 +

∫ t

0

|∂tb(s)|1‖eAu(s)‖0 ds

)
,

where we have used standard error estimate for the L2-projection Π0,0
K onto piecewise constant func-

tions. Using also Cauchy-Schwarz inequality and standard error estimates for Π0
K on the termD2 readily

gives

D2 ≤ C2h

∫ t

0

|`(s)|1‖eAp (s)‖0 ds.

On the other hand, considering the polynomial approximation pπ (cf. (4.7)) of p and utilising the triangle
inequality yield

D3 ≤ C3

(
c0 +

α2

λ

)
×
∫ t

0

∑
K

(
‖∂t(Ihp p− pπ)(s)‖0,K + ‖∂t(p− pπ)(s)‖0,K

)
‖eAp (s)‖0,K ds

≤ C3h
2

(
c0 +

α2

λ

)∫ t

0

|∂tp(s)|2‖eAp (s)‖0 ds.

Also,

D4 =

∫ t

0

(
b2
(
eAp (s), ∂te

I
ψ(s)

)
+ b2

(
∂te

I
p(s), e

A
ψ (s)

)
− a3

(
∂te

I
ψ(s), eAψ (s)

))
ds
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≤ 1

λ

∫ t

0

(
α‖eAp (s)‖0‖∂teIψ(s)‖0 +

(
α‖∂teIp(s)‖0 + ‖∂teIψ(s)‖0

)
‖eAψ (s)‖0

)
ds

≤ C4

λ
h

∫ t

0

(
α‖eAp (s)‖0(|∂tψ(s)|1 + |∂tu(s)|2) + (αh|∂tp(s)|2 + |∂tψ(s)|1

+ |∂tu(s)|2)‖eAψ (s)‖0
)

ds.

Using (3.6) and a combination of equations (4.1), (3.7) and (2.4), we get

‖eAψ (t)‖0 ≤ sup
vh∈V h

b1(vh, e
A
ψ (t))

‖vh‖1
≤ C5

(
ρ
∑
K

‖(b− bh)(t)‖0,K + µ‖ε(eAu(t))‖0

)
≤ C5

(
ρ h|b(t)|1 + µ‖ε(eAu(t))‖0

)
.

(4.12)

Then the bound of D4 becomes

D4 ≤
C6

λ
h

∫ t

0

(
(αh|∂tp(s)|2 + |∂tψ(s)|1 + |∂tu(s)|2)(ρh|b(s)|1 + µ‖ε(eAu(t))‖0)

+ α‖eAp (s)‖0(|∂tψ(s)|1 + |∂tu(s)|2)
)

ds.

Combining the bounds of all Di, i = 1, 2, 3, 4 implies that

µ‖ε(eAu(t))‖20 + c0‖eAp (t)‖20 +
κmin

η

∫ t

0

‖∇eAp (s)‖20 ds

+
1

λ

∑
K

(
α2‖(I −Π0

K)eAp (t)‖20,K + ‖(αΠ0
Ke

A
p − eAψ )(t)‖20,K

)
≤ µ‖ε(eAu(0))‖20 +

(
c0 +

α2

λ

)
‖eAp (0)‖20 +

1

λ
‖eAψ (0)‖20

+
µ

2
‖ε(eAu(t))‖20 + C h

(
h|b(t)|21 + |b(0)|1‖eAu(0)‖0

+

∫ t

0

(
|∂tb(s)|1 + h|∂tp(s)|2 + |∂tψ(s)|1 + |∂tu(s)|2

)
µ‖ε(eAu(s))‖0 ds

+

∫ t

0

(
|`(s)|1 + h|∂tp(s)|2 + |∂tψ(s)|1 + |∂tu(s)|2

)
‖eAp (s)‖0 ds

+ h

∫ t

0

(
h|∂tp(s)|2 + |∂tψ(s)|1 + |∂tu(s)|2

)
|b(s)|1 ds

)
.

The Poincaré, Young’s inequalities and Gronwall lemma now allows us to conclude that

µ‖ε(eAu(t))‖20 + c0‖eAp (t)‖20 +
κmin

η

∫ t

0

‖∇eAp (s)‖20 ds

≤ µ‖ε(eAu(0))‖20 +
(
c0 +

α2

λ

)
‖eAp (0)‖20 +

1

λ
‖eAψ (0)‖20

+ C h2

(
sup

t∈[0,tfinal]

|b(t)|21 +

∫ t

0

(
|b(s)|21 + |∂tb(s)|21 + |`(s)|21

+ |∂tψ(s)|21 + |∂tu(s)|22 + h2|∂tp(s)|22
)

ds

)
.

Then choosing uh(0) := uI(0), ψh(0) := Π0,0ψ(0), ph(0) := pI(0) and applying the triangle inequality
together with (4.12) completes the rest of the proof. �
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Theorem 4.3 (Fully-discrete error estimates) Let (u(t), p(t), ψ(t)) ∈ V ×Q× Z and (unh, p
n
h, ψ

n
h ) ∈ V h ×

Qh × Zh be the unique solutions to problems (2.4)-(2.6) and (3.14a)-(3.14c), respectively. Then the following
estimates hold for any n = 1, . . . , N , with constants C independent of h, ∆t, λ:

µ‖ε(u(tn)− unh)‖20 + ‖ψ(tn)− ψnh‖20
+ (∆t)

κmin

η
‖∇(p(tn)− pnh)‖20 ≤ C (h2 + ∆t2).

(4.13)

Proof. As done for the semidiscrete case, we split the individual errors as

u(tn)− unh = (u(tn)− Ihuu(tn)) + (Ihuu(tn)− unh) := EI,nu + EA,nu ,

ψ(tn)− ψnh = (ψ(tn)− Ihψψ(tn)) + (Ihψψ(tn)− ψnh) := EI,nψ + EA,nψ ,

p(tn)− pnh = (p(tn)− Ihp p(tn)) + (Ihp p(tn)− pnh) := EI,np + EA,np .

Then, from estimate (4.4) we have

‖EI,nu ‖1 ≤ Ch(|u(tn)|2 + |ψ(tn)|1)

≤ Ch(|u(0)|2 + |ψ(0)|1 + ‖∂tu‖L1(0,tn;H2(Ω)) + ‖∂tψ‖L1(0,tn;H1(Ω))). (4.14)

Following the same steps as before, we get

‖EI,nψ ‖0 ≤ Ch(|u(0)|2 + |ψ(0)|1 + ‖∂tu‖L1(0,tn;H2(Ω)) + ‖∂tψ‖L1(0,tn;H1(Ω))), (4.15)

‖EI,np ‖1 ≤ Ch(|p(0)|2 + ‖∂tp‖L1(0,tn;H2(Ω))). (4.16)

From equations (4.1), (3.14a) and (2.4), we readily get

ah1 (EA,nu ,vh) + b1(vh, E
A,n
ψ ) = Fn(vh)− Fh,n(vh). (4.17)

Now, use of (4.2), (3.17) and differentiating (2.6) with respect to time implies

b1(EA,nu − EA,n−1
u , φh) + b2(EA,np − EA,n−1

p , φh)− a3(EA,nψ − EA,n−1
ψ , φh)

= b1((u(tn)− u(tn−1))− (∆t)∂tu(tn), φh)

+ b2((Ihp p(tn)− Ihp p(tn−1))− (∆t)∂tp(tn), φh)

− a3((Ihψψ(tn)− Ihψψ(tn−1))− (∆t)∂tψ(tn), φh). (4.18)

Choosing vh = EA,nu − EA,n−1
u in (4.17) and φh = −EA,nψ in (4.18) then adding the outcomes, we get

ah1 (EA,nu , EA,nu − EA,n−1
u ) + a3(EA,nψ − EA,n−1

ψ , EA,nψ )− b2(EA,np − EA,n−1
p , EA,nψ )

= ρ(b(tn)− bnh, EA,nu − EA,n−1
u )0,Ω

− b1((u(tn)− u(tn−1))− (∆t)∂tu(tn), EA,nψ )

− b2((Ihp p(tn)− Ihp p(tn−1))− (∆t)∂tp(tn), EA,nψ )

+ a3((Ihψψ(tn)− Ihψψ(tn−1))− (∆t)∂tψ(tn), EA,nψ ). (4.19)

Next, the use of (4.3), (3.8) and (2.5) with qh = EA,np , readily gives

ãh2 (EA,np − EA,n−1
p , EA,np ) + ∆tah2 (EA,np , EA,np )− b2(EA,np , EA,nψ − EA,n−1

ψ )

= ∆t(`(tn)− `nh, EA,np )0,Ω + ãh2 (Ihp p(tn)− Ihp p(tn−1), EA,np ) (4.20)

− ã2((∆t)∂tp(tn), EA,np ) + b2(EA,np , (∆t)∂tψ − (Ihψψ(tn))− Ihψψ(tn−1)), (4.21)
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and adding the resulting equations (4.19)- (4.20) we can write

ah1 (EA,nu , EA,nu − EA,n−1
u ) + a3(EA,nψ − EA,n−1

ψ , EA,nψ )− b2(EA,np − EA,n−1
p , EA,nψ )

− b2(EA,np , EA,nψ − EA,n−1
ψ ) + ãh2 (EA,np − EA,n−1

p , EA,np ) + ∆tah2 (EA,np , EA,np )

= ρ(b(tn)− bnh, EA,nu − EA,n−1
u )0,Ω + ∆t(`(tn)− `nh, EA,np )0,Ω

− b1((u(tn)− u(tn−1))− (∆t)∂tu(tn), EA,nψ )

− b2((Ihp p(tn)− Ihp p(tn−1))− (∆t)∂tp(tn), EA,nψ )

+ a3((Ihψψ(tn)− Ihψψ(tn−1))− (∆t)∂tψ(tn), EA,nψ )

+ ãh2 (Ihp p(tn)− Ihp p(tn−1), EA,np )− ã2((∆t)∂tp(tn), EA,np )

+ b2(EA,np , (∆t)∂tψ − (Ihψψ(tn))− Ihψψ(tn−1)),

and we will repeat the arguments identical to (3.11) to get

a3(EA,nψ − EA,n−1
ψ , EA,nψ )− b2(EA,np − EA,n−1

p , EA,nψ )

− b2(EA,np , EA,nψ − EA,n−1
ψ ) + ãh2 (EA,np − EA,n−1

p , EA,np )

= (∆t)

(
c0(δtE

A,n
p , EA,np )0,Ω +

1

λ

∑
K

(
α2(δt(I −Π0

K)EA,np , (I −Π0
K)EA,np )0,K

− (δt(αΠ0
KE

A,n
p − EA,nψ ), αΠ0

KE
A,n
p − EA,nψ )0,K

))
,

The left-hand side can be bounded by using the inequality (3.21) and then summing over n we get

µ(‖ε(EA,nu )‖20 − ‖ε(EA,0u )‖20) + c0(‖EA,np ‖20 − ‖EA,0p ‖20) + (∆t)
κmin

η

n∑
j=1

‖∇EA,jp ‖20

+ (1/λ)

(
α2(‖(I −Π0

K)EA,np ‖20 − ‖(I −Π0
K)EA,0p ‖20)

+
∑
K

(‖αΠ0
KE

A,n
p − EA,nψ ‖20 − ‖αΠ0

KE
A,0
p − EA,0ψ ‖

2
0)

)
(4.22)

≤
n∑
j=1

ρ(b(tj)− bjh, E
A,j
u − EA,j−1

u )0,Ω︸ ︷︷ ︸
:=L1

+

n∑
j=1

∆t(`(tj)− `jh, E
A,j
p )0,Ω︸ ︷︷ ︸

:=L2

−
n∑
j=1

b1((u(tn)− u(tn−1))− (∆t)∂tu(tn), EA,nψ )︸ ︷︷ ︸
:=L3

−
n∑
j=1

b2((Ihp p(tj)− Ihp p(tj−1))− (∆t)∂tp(tj), E
A,j
ψ )︸ ︷︷ ︸

:=L4

+

n∑
j=1

a3((Ihψψ(tj)− Ihψψ(tj−1))− (∆t)∂tψ(tj), E
A,j
ψ )︸ ︷︷ ︸

:=L5

+

n∑
j=1

(ãh2 (Ihp p(tj)− Ihp p(tj−1), EA,jp )− ã2((∆t)∂tp(tj), E
A,j
p ))︸ ︷︷ ︸

:=L6
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+

n∑
j=1

b2(EA,jp , (∆t)∂tψ − (Ihψψ(tj)− Ihψψ(tj−1))︸ ︷︷ ︸
:=L7

.

We bound the term L1 with the formula (3.22), the estimates of projection Π0,0
K the Taylor expansion and

generalised Young’s inequality,

L1 = ρ
(
((b− bh)(tn), EA,nu )0,Ω − ((b− bh)(0), EA,0u )0,Ω

−
n∑
j=1

(∆t)(δt(b− bh)(tj), E
A,j−1
u )0,Ω)

)
= ρ

(
((b− bh)(tn), EA,nu )0,Ω − ((b− bh)(0), EA,0u )0,Ω

−
n∑
j=1

(∆t)(∂t(b− bh)(tj), E
A,j−1
u )0,Ω

+

n∑
j=1

(∫ tj

tj−1

(s− tj−1)∂tt(b− bh)(s) ds, EA,j−1
u

)
0,Ω

)

≤ µ

2
‖ε(EA,nu )‖20 + µ‖ε(EA,0u )‖20 + C1

(ρ2

µ
h2
(

max
0≤j≤n

|b(tj)|21 + ∆t

n∑
j=1

|∂tb|21
)

+ (∆t)

n−1∑
j=0

µ‖ε(EA,ju )‖20 +
ρ2

µ
(∆t)2h2

∫ T

0

|∂ttb(s)|21 ds
)
.

Then the estimate of projection Π0
K , Poincaré and Young’s inequalities gives

L2 ≤ C2

n∑
j=1

(∆t)h2|`(tj)|2‖∇EA,jp ‖0

≤ C2

n∑
j=1

(∆t)
η

κmin
h4|`(tj)|22 + (∆t)

κmin

6η

n∑
j=1

‖∇EA,jp ‖20.

The discrete inf-sup condition (3.6) yields

‖EA,jψ ‖0 ≤ C(h|b(tj)|1 + ‖ε(EA,ju )‖0). (4.23)

Applying Taylor series expansion together with (4.23), the Cauchy Schwarz and Young’s inequalities
enable us

L3 ≤ C
n∑
j=1

‖((u(tj)− u(tj−1))− (∆t)∂tu(tj)))‖0(h|b(tj)|1 + ‖ε(EA,ju )‖0)

≤ C
(

(∆t)2‖∂ttu‖2L2(0,tn;L2(Ω)) + (∆t)

n∑
j=1

(
ρ2h2|b(tj)|21 + µ‖ε(EA,ju )‖20

)
.

By use of estimates of the projection Ihp , (4.23), the Cauchy Schwarz and Young’s inequalities we get

L4 ≤ C3
α

λ

n∑
j=1

(
‖Ihp (p(tj)− p(tj−1))− (p(tj)− p(tj−1))‖0

+ ‖(p(tj)− p(tj−1))− (∆t)∂tp(tj)‖0
)
‖EA,jψ ‖0
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≤ C3
α

λ

n∑
j=1

(
h2|p(tj)− p(tj−1)|2 + ‖

∫ tj

tj−1

(s− tj−1)∂ttp(s) ds‖0
)
‖EA,jψ ‖0

≤ C3
α

λ

n∑
j=1

(
h2
(

(∆t)

∫ tj

tj−1

|∂tp(s)|22 ds
)1/2

+
(

(∆t)3

∫ tj

tj−1

‖∂ttp(s)‖20 ds
)1/2

)
‖EA,jψ ‖0

≤ C3

(α
λ

)2

(1 + µ)

n∑
j=1

(
h4
(∫ tj

tj−1

|∂tp(s)|22 ds
)2

+ (∆t)3‖∂ttp‖2L2(0,tn;L2(Ω))

)

+ ρ2h2(∆t)

n∑
j=1

|b(tj)|21 + µ(∆t)

n∑
j=1

‖ε(EA,ju )‖20

≤ C
(
h4‖∂tp‖2L2(0,tn;H2(Ω)) + (∆t)2‖∂ttp‖2L2(0,tn;L2(Ω))

)
+ (∆t)

n∑
j=1

(
ρ2h2|b(tj)|21 + µ‖ε(EA,ju )‖20

)
.

The stability of a3(·, ·) and the proof for the bound of L4 gives

L5 ≤ (1/λ)

n∑
j=1

‖(Ihψψ(tj)− Ihψψ(tj−1))− (∆t)∂tψ(tj)‖0(ρh|b(tj)|1 + ‖ε(EA,ju )‖0)

≤ C
(
h2(‖∂tψ‖2L2(0,tn;H1(Ω)) + ‖∂tu‖2L2(0,tn;H2(Ω))) + (∆t)2‖∂ttψ‖2L2(0,tn;L2(Ω))

)
+ (∆t)

n∑
j=1

(
ρ2h2|b(tj)|21 + µ‖ε(EA,ju )‖20

)
.

The polynomial approximation pπ for fluid pressure, stability of the bilinear forms ã2(·, ·), ãh2 (·, ·), the
Cauchy Schwarz, Poincaré and Young’s inequalitites gives

L6 =

n∑
j=1

(
ãh2 ((Ihp p(tj)− Ihp p(tj−1))− (pπ(tj)− pπ(tj−1)), EA,jp )

+ ã2((pπ(tj)− pπ(tj−1))− (p(tj)− p(tj−1)), EA,jp )

+ ã2((p(tj)− p(tj−1))− (∆t)∂tp(tj), E
A,j
p )

)
≤ C5

(
c0 +

α2

λ

) n∑
j=1

(
h2
(

(∆t)

∫ tj

tj−1

|∂tp(s)|22 ds
)1/2

+
(

(∆t)3

∫ tj

tj−1

‖∂ttp(s)‖20 ds
)1/2

)
‖∇EA,jp ‖0

≤ C
n∑
j=1

(
h4‖∂tp‖2L2(0,tn;H2(Ω)) + (∆t)2‖∂ttp‖L2(0,tn;L2(Ω))

)
+ (∆t)

κmin

6η

n∑
j=1

‖∇EA,jp ‖20.

The continuity of b2(·, ·) and the bound of the L5 gives

L7 ≤
(α
λ

) n∑
j=1

‖(∆t)∂tψ(tj)− (Ihψψ(tj)− Ihψψ(tj−1))‖0‖EA,jp ‖0
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≤ C
(
h2(‖∂tψ‖2L2(0,tn;H1(Ω)) + ‖∂tu‖2L2(0,tn;H2(Ω))) + (∆t)2‖∂ttψ‖2L2(0,tn;L2(Ω))

)
+ (∆t)

κmin

6η

n∑
j=1

‖∇EA,jp ‖20.

The bounds of all Li’s, i = 1, . . . , 7 implies

µ‖ε(EA,nu )‖20 + c0‖EA,np ‖20 + (∆t)
κmin

η

n∑
j=1

‖∇EA,jp ‖20

≤ µ

2
‖ε(EA,nu )‖20 + (∆t)

κmin

2η

n∑
j=1

‖∇EA,jp ‖20 + C(∆t)

n∑
j=0

µ‖ε(EA,ju )‖20

+ C
(
‖ε(EA,0u )‖20 + ‖EA,0p ‖20 + ‖EA,0ψ ‖

2
0

+
(

1 + ∆t
)
h2 max

0≤j≤n
|b(tj)|21 + h2∆t

n∑
j=1

(|b(tj)|21 + |∂tb|21)

+ h2(∆t)2

∫ T

0

|∂ttb(s)|21 ds+ h4(∆t)

n∑
j=1

|`(tj)|22

+ (∆t)2
(
‖∂ttp‖2L2(0,tn;L2(Ω)) + ‖∂ttu‖2L2(0,tn;L2(Ω)) + ‖∂ttψ‖2L2(0,tn;L2(Ω))

)
+ h2

(
‖∂tψ‖2L2(0,tn;H1(Ω)) + ‖∂tu‖2L2(0,tn;H2(Ω)) + h2‖∂tp‖2L2(0,tn;H2(Ω))

))
.

The discrete Gronwall’s inequality concludes that

µ‖ε(EA,nu )‖20 + c0‖EA,np ‖20 + (∆t)
κmin

η

n∑
j=1

‖∇EA,jp ‖20

≤ C
(
µ‖ε(EA,0u )‖20 + (c0 + α2/λ)‖EA,0p ‖20 + (1/λ)‖EA,0ψ ‖

2
0

+
(

1 + ∆t
)
h2 max

0≤j≤n
|b(tj)|21 + h2∆t

n∑
j=1

|∂tb|21

+ (∆t)2h2

∫ T

0

|∂ttb(s)|21 ds+ h2(∆t)

n∑
j=1

|b(tj)|21 + h4(∆t)

n∑
j=1

|`(tj)|22

+ (∆t)2
(
‖∂ttu‖2L2(0,tn;L2(Ω)) + ‖∂ttψ‖2L2(0,tn;L2(Ω)) + ‖∂ttp‖2L2(0,tn;L2(Ω))

)
+ h2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tψ‖2L2(0,tn;H1(Ω)) + h2‖∂tp‖2L2(0,tn;H2(Ω))

))
.

Now the desire result (4.13) holds after choosing u0
h := uI(0), ψ0

h := Π0,0ψ(0), p0
h := pI(0) and applying

triangle’s inequality together with (4.23). �

5 Numerical results

In this section conduct numerical tests to computationally reconfirm the convergence rates of the pro-
posed virtual element scheme and present one test of applicative interest in poromechanics. All numer-
ical results are produced by an in-house MATLAB code, using sparse factorisation as linear solver.
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(a) (b) (c)

Figure 5.1: Samples of triangular (a), distorted quadrilateral (b), and hexagonal (c) meshes employed for
the numerical tests in this section.

5.1 Verification of spatial convergence

First we consider a steady version of the poroelasticity equations. An exact solution of the problem on
the square domain (0, 1)2 is given by the smooth functions

u(x, y) =

(
− cos(2πx) sin(2πy) + sin(2πy) + sin2(πx) sin2(πy)

sin(2πx) cos(2πy)− sin(2πx)

)
,

p(x, y) = sin2(πx) sin2(πy), ψ(x, y) = αp− λ divu.

The body load f and the fluid source ` are computed by evaluating these closed-form solutions and the
problem is completely characterised after specifying the model constants

ν = 0.3, Ec = 100, κ = 1, α = 1, c0 = 1,

η = 0.1, λ =
Ecν

(1 + ν)(1− 2ν)
, µ =

Ec
(2 + 2ν)

.

On a sequence of successively refined grids (we have employed for this particular case, uniform
triangular meshes as depicted in Figure 5.1(a)) we compute errors and convergence rates according
to the meshsize and tabulating also the number of degrees of freedom (Ndof). The experimental error
decay (with respect to mesh refinement) is measured using individual relative norms defined as follows:

e1(u) :=

(∑
K∈Th |u−Πε

Kuh|21,K
)1/2

|u|1,Ω
, e0(u) :=

(∑
K∈Th ‖u−Πε

Kuh‖20,K
)1/2

‖u‖0,Ω
,

e1(p) :=

(∑
K∈Th |p−Π∇Kph|21,K

)1/2
|p|1,Ω

, e0(p) :=

(∑
K∈Th ‖p−Π∇Kph‖20,K

)1/2
‖p‖0,Ω

,

e0(ψ) :=

(∑
K∈Th ‖ψ − ψh‖

2
0,K

)1/2
‖ψ‖0,Ω

.

Table 5.1 shows this convergence history, exhibiting optimal error decay.

5.2 Convergence with respect to the time advancing scheme

Regarding the convergence of the time discretisation, we fix a relatively fine hexagonal mesh and con-
struct successively refined partitions of the time interval (0, 1]. As in Ref. [44], and in order to avoid
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Ndof h e1(u) r e0(u) r e0(ψ) r e1(p) r e0(p) r

179 0.25 0.477968 - 0.271687 - 0.508386 - 0.444463 - 0.142539 -
819 0.125 0.204990 1.22 0.055766 2.28 0.198845 1.35 0.195632 1.18 0.029745 2.26
3419 0.0625 0.097838 1.07 0.013083 2.09 0.091837 1.11 0.097854 1.00 0.007526 1.98

13819 0.03125 0.049954 0.97 0.003322 1.98 0.043829 1.07 0.024456 1.02 0.001842 2.03
56067 0.015625 0.024756 1.01 8.2 · 10−4 2.02 0.021704 1.01 0.024456 0.98 4.7 · 10−4 1.96

Table 5.1: Verification of space convergence for the method with k = 1. Errors and convergence rates r
for solid displacement, total pressure and fluid pressure.

∆t E0(u) r E0(p) r E0(ψ) r

0.5 0.002897 – 0.462768 – 0.398059 –
0.25 0.001362 1.09 0.218179 1.08 0.187834 1.08
0.125 6.5173 · 10−4 1.06 0.104546 1.06 0.090044 1.06

0.0625 3.1756 · 10−4 1.04 0.050955 1.04 0.043910 1.04
0.03125 1.5664 · 10−4 1.02 0.025123 1.02 0.021683 1.02

0.015625 7.7950 · 10−5 1.01 0.012469 1.01 0.010826 1.00

Table 5.2: Convergence of the time discretisation for solid displacement, fluid pressure, and total pres-
sure, using successive partitions of the time interval and a fixed hexagonal mesh.

mixing errors coming from the spatial discretisation, we modify the exact solutions to be

u(x, y, t) = 100 sin(t)

(
x
λ + y,
x+ y

λ

)
,

p(x, y, t) = sin(t)(x+ y), ψ(x, y, t) = αp− λ divu,

and we use them to compute loads, sources, initial data, boundary values, and boundary fluxes. The
model parameters assume the values

κ = 0.1, α = 1, c0 = 0, η = 1, λ = 1× 103 µ = 1. (5.1)

The boundary definition is Γ = [{0} × (0, 1)] ∪ [(0, 1)× {0}] (bottom and left edges) and Σ = ∂Ω \ Γ.

We recall that cumulative errors up to tfinal associated with solid displacement, fluid pressure, and a
generic pressure v (representing either fluid or total pressure), are defined as

E0(u) =

(
∆t

N∑
n=1

( ∑
K∈Th

‖u(tn)−Πε
Ku

n
h‖20,K

))1/2

,

E0(v) =

(
∆t

N∑
n=1

( ∑
K∈Th

‖v(tn)−Π∇Kv
n
h‖20,K

))1/2

,

(5.2)

respectively.

From Table 5.2 we can readily observe that these errors decay with a rate of O(∆t).
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h ∆t E1(u) r E0(u) r E1(p) r E0(p) r E0(ψ) r

1/8 1/10 1.741116 - 0.101035 - 0.239518 - 0.009757 - 0.509493 -
1/16 1/20 0.892377 0.96 0.026166 1.95 0.123684 0.95 0.002528 1.95 0.251106 1.02
1/32 1/40 0.451402 0.98 0.006594 1.99 0.062743 0.98 0.000642 1.98 0.125025 1.01
1/64 1/80 0.227050 0.99 0.001650 2.00 0.031584 0.99 0.000161 1.99 0.062399 1.00
1/128 1/160 0.113876 1.00 0.000413 2.00 0.015844 1.00 0.000041 2.00 0.031165 1.00

Table 5.3: Convergence of the numerical method for displacement, fluid pressure, and total pressure,
up to the final time t = 1, using simultaneous partitions of the time interval and of the spatial domain
(using hexagonal meshes).

5.3 Verification of simultaneous space-time convergence for poroelasticity

Now we consider exact solid displacement and fluid pressure solving problem (2.1) on the square do-
main Ω = (0, 1)2 and on the time interval (0, 1], given as

u(x, y, t) =

(
− exp(−t) sin(2πy)(1− cos(2πx)) + exp(−t)

µ+λ sin(πx) sin(πy)

exp(−t) sin(2πx)(1− cos(2πy)) + exp(−t)
µ+λ sin(πx) sin(πy)

)
,

p(x, y, t) = exp(−t) sin(πx) sin(πy), ψ(x, y, t) = αp− λ divu,

which satisfies divu→ 0 as λ→∞ (see similar tests in Ref. [21, 45]). The load functions, boundary val-
ues, and initial data can be obtained from these closed-form solutions, and alternatively to the dilation
modulus and permeability specified in (5.1), we here choose larger values λ = 1× 104, and κ = 1.

In addition to the errors in (5.2), for displacement and for fluid pressure we will also compute

E1(u) =

(
∆t

N∑
n=1

( ∑
K∈Th

|u(tn)−Πε
Ku

n
h|21,K

))1/2

,

E1(p) =

(
∆t

N∑
n=1

( ∑
K∈Th

|p(tn)−Π∇Kp
n
h|21,K

))1/2

.

We consider here pure Dirichlet boundary conditions for both displacement and fluid pressure. A back-
ward Euler time discretisation is used, and in this case we are using successive refinements of the hexag-
onal partition of the domain as shown in Figure 5.1(c), simultaneously with a successive refinement of
the time step. The cumulative errors are again computed until the final time t = 1, and the results are
collected in Table 5.3. They show once more optimal convergence rates for the scheme in its lowest-order
form.

Note from this and the previous test, that a zero constrained specific storage coefficient does not
hinder the convergence properties.

5.4 Gradual compression of a poroelastic block

Finally we carry out a test involving the compression of a block occupying the region Ω = (0, 1)2 by
applying a sinusoidal-in-time traction on a small region on the top of the box (see a similar test in
Ref. [38]). The model parameters in this case are

ν = 0.49995, Ec = 3× 104, κ = 1× 10−4, α = 1, c0 = 1× 10−3,

η = 1, λ =
Ecν

(1 + ν)(1− 2ν)
, µ =

Ec
(2 + 2ν)

.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Compression of a poroelastic block after t = 0.5 adimensional units. Approximate displace-
ment components (a,b), displacement vectors on the undeformed domain (c), displacement magnitude
(d), fluid pressure (e), and total pressure (f), depicted on the deformed domain.

For this test we have employed a mesh conformed by distorted quadrilaterals exemplified in Fig-
ure 5.1(b). The boundary conditions are of homogeneous Dirichlet type for fluid pressure on the whole
boundary, and of mixed type for displacement, and the boundary is split as ∂Ω := Γ1 ∪ Γ2 ∪ Γ3.
A traction h(t) = (0,−1.5 × 104 sin(πt))T is applied on a segment of the top edge of the boundary
Γ1 = (0.25, 0.75) × {1}, on the remainder of the top edge Γ2 = [0, 1] × {1}\Γ1, we impose zero traction,
and the body is clamped on the remainder of the boundary Γ3 = ∂Ω\(Γ1∪Γ2). No boundary conditions
are prescribed for the total pressure. Initially the system is at rest u(0) = 0, ψ(0) = 0, p(0) = 0, and we
employ a backward Euler discretisation of the time interval (0, 0.5] with a constant timestep ∆t = 0.1.
The numerical results obtained at the final time are depicted in Figure 5.2, where the profiles for fluid
and total pressure present no spurious oscillations.

6 Summary and concluding remarks

We have constructed and analysed a new virtual element method for the Biot equations of linear poroe-
lasticity. The finite-dimensional formulation is based on Bernardi-Raugel type elements, which can be
regarded as low-order and stable virtual elements, hence being computationally competitive compared
to other existing stable pairs for incompressible flow problems. Both the formulation and its analysis
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seem to be novel, and they constitute the first fully VEM discretisation for poroelasticity problems.

Optimal and Lamé-robust error estimates were established for solid displacement, fluid pressure,
and total pressure, in natural norms without weighting. This was achieved with the help of appropriate
poroelastic projection operators. Numerical experiments have been performed using different polygo-
nal meshes, and they put into evidence not only computational verification of the convergence of the
scheme (where rates of error decay in space and in time are in excellent agreement with the theoretically
derived error bounds), but also its performance in simple poromechanical tests.

Natural extensions of this work include the development and analysis of higher-order versions of the
virtual discretisations advanced here, the efficient implementation and application to 3D problems, and
the coupling with other phenomena such as diffusion of solutes in poroelastic structures [44], interface
elasticity-poroelasticity problems [4], multilayer poromechanics [37], or multiple-network consolidation
models [26, 31].

Acknowledgements

RB is supported by CONICYT (Chile) through projects Fondecyt 1170473; CONICYT/PIA/AFB170001; and CRHIAM,
project CONICYT/FONDAP/15130015. DM is supported by CONICYT-Chile through FONDECYT project 1180913
and by project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cientı́ficos y Tecnológicos de Excelencia
con Financiamiento Basal. RRB is supported by the Engineering and Physical Sciences Research Council (EPSRC)
through the grant EP/R00207X/1, and by the London Mathematical Society - Scheme 5, grant 51703.

References

[1] F. Aguilar, F. Gaspar, F. Lisbona, and C. Rodrigo, Numerical stabilization of Biot’s consolidation model by a
perturbation on the flow equation, Int. J. Numer. Methods Engrg. 75 (2008) 1282–1300.

[2] B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini, and A. Russo, Equivalent projectors for virtual element methods,
Comput. Math. Appl. 66 (2013) 376–391.
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