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Rodolfo Rodŕıguez, Manuel Solano

PREPRINT 2019-40

SERIE DE PRE-PUBLICACIONES





AN ASYMPTOTIC MODEL BASED ON MATCHING FAR AND NEAR FIELD

EXPANSIONS FOR THIN GRATINGS PROBLEMS ∗

Peter B. Monk1, Cinthya Rivas2, Rodolfo Rodŕıguez2, 3 and Manuel E.
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Abstract. In this paper, we devise an asymptotic model for calculating electromagnetic diffraction
and absorption in planar multilayered structures with a shallow surface-relief grating. Far from the
grating, we assume that the solution can be written as a power series in terms of the grating thickness δ,
the coefficients of this expansion being smooth up to the grating. However, the expansion approximates
the solution only sufficiently far from the grating (far field approximation). Near the grating, we assume
that there exists another expansion in powers of δ (near field approximation). Moreover, there is an
overlapping zone where both expansion are valid. The proposed model is based on matching the two
expansions on this overlapping domain. Then, by truncating terms of order δ2 or higher, we obtain
explicitly the equations satisfied by the lowest order terms in the power series. Under appropriate
assumptions, we prove second order convergence of the error with respect to δ. Finally, an alternative
form, more convenient for implementation, is derived and discretized with finite elements to perform
some numerical tests.
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Introduction

An important class of light harvesting devices are three-dimensional structures composed by a multilayered
material, usually a dielectric or a semiconductor, placed on top of a periodically corrugated metallic surface relief
grating; for example, photovoltaic solar cells [25] or planar optical concentrators [23, 24]. The electromagnetic
field in these structures can be modeled by the frequency domain Maxwell’s equations and it is of interest
to optimize optical and geometrical parameters to maximize the light absorption [22, 23]. In general, in this
context, it is not possible to obtain closed-form expressions of the solution to Maxwell’s equations. This is
the reason why numerical methods play an important role in order to approximate the electromagnetic field.
Amongst those that discretize the partial differential equations directly, probably the most popular are the
finite-difference time-domain (FDTD) method [27], the rigorous coupled-wave approach (RCWA) [4,12–14,18],
the boundary integral equations method [1,11] and the finite element method (FEM) [19,22,26], the latter being
preferred to simulate complicated structures.

These devices can exhibit extremely thin layers or very shallow grating corrugations compared to the total
size of the structure. This feature affects the computational cost of mesh-based numerical solvers, since an
extremely fine grid is needed to resolve the geometry. As an alternative, it is possible to devise an asymptotic
model that approximates the electromagnetic field in the structure by replacing the thin layer by an interface
where suitable transmission conditions are imposed [7–9, 17, 20]. In this direction, an asymptotic model for
calculating electromagnetic diffraction and absorption in planar multilayered structures with a shallow surface-
relief grating has been devised in [21]. The numerical results reported in this reference show that when the
asymptotic expansion of the solution is truncated to second order terms, third-order convergence with respect
to the thickness δ of the thin grating layer is obtained for transverse electric polarization (s-polarization), and
at least second-order convergence for the transverse magnetic polarization (p-polarization). However, there is
no rigorous mathematical framework supporting this approach. Actually, to the best of the authors’ knowledge,
there is no asymptotic model for this problem for which error estimates have been rigorously proved.

In this paper, we describe an alternative asymptotic model inspired by that in Reference [8], for which
we succeed in deriving an error analysis. Far from the grating, we again assume that the solution can be
written as a power series in terms of δ, the coefficients of this expansion being smooth up to the grating. This
expansion is a far field approximation, in the sense that it approximates the solution only sufficiently far from
the grating. Near the grating, we assume that there exists another expansion in powers of δ, which is a near field
approximation. Moreover, there is an overlapping zone where both expansions hold. The asymptotic model is
based on matching these two expansions on the overlapping domain. We truncate the expansion of the solution
to first order terms and, under appropriate assumptions, prove convergence of the error with order δ2.

The rest of the paper is organized as follows. In Section 1 we describe the boundary-value problem. In
Section 2 we formulate the asymptotic model. In Section 3 we prove error estimates for the asymptotic expansion
of the solution. In Section 4 we introduce an alternative formulation more convenient for the implementation of
a finite element discretization. In Section 5 we report some numerical tests. Finally, we include in an appendix
the derivation of the approximate transmission conditions and other auxiliary results.

1. Model Problem

First, let us fix some notation. The free-space wavenumber, wavelength and intrinsic impedance are respec-
tively denoted by k0 := ω

√
ε0µ0, λ0 := 2π/k0 and η0 :=

√
µ0/ε0, where µ0 > 0 and ε0 > 0 are respectively

the magnetic permeability and the electric permittivity of free space and ω > 0 is the angular frequency. For a
particular material, let εr := ε/ε0 be the relative electric permittivity (with ε being the absolute permittivity),
which in general is a complex-valued function.

Consider a simplified structure motivated by solar cell applications that occupies the region

Φ :=
{

(x, y, z) ∈ R3 : |x| <∞, |y| <∞, −Lm < z < Ld
}
.



P.B. MONK, C. RIVAS, R. RODRÍGUEZ AND M.E. SOLANO 3

Within this region, the relative permittivity is a periodic function of x ∈ (−∞,∞) with period L, that also
varies with z ∈ (−Lm, Ld) but not with y ∈ (−∞,∞); namely, εr(x, z) = εr(x + mL, z) ∀m ∈ Z. The half
spaces z < −Lm and z > Ld are occupied by air, so that the relative permittivity therein is εr(x, z) ≡ 1.

The wave propagation in the solar cell is governed by the time-harmonic Maxwell equations:{
∇×E = iωµ0H,

∇×H = −iωε0εr(x, z)E,
(1.1a)

where E and H denote the electric and magnetic fields, respectively.
The upper boundary of the solar-cell (z = Ld) is illuminated by an obliquely incident plane wave whose

electric field is given by

Einc(x, y, z) = {asûy + ap (ûx cos θ + ûz sin θ)} exp {ik0 (x sin θ − (z − Ld) cos θ)} , z ≥ Ld, (1.1b)

where ûx, ûy and ûz are the Cartesian unit vectors, θ is the angle of incidence with respect to the z axis, and
as and ap are data coefficients. This quantity, Einc, is the only source term of the problem. From (1.1a), the
corresponding incident magnetic field is given by

H inc =
1

iωµ0
∇×Einc, z ≥ Ld. (1.1c)

Note that (Einc,H inc) satisfies (1.1a) when εr = 1.

X

Z

δ/2

δ/2

Incident light Reflected light

Transmitted light

Ld

Lm

Γ

Γ
+

Γ
−

Ω
+
δ

Ω
−

δ

Ωδ

L

θ

Figure 1. Domain Ω showing the geometric subdomains and notation.

Since all the quantities do not depend on y, these equations can be written in any section for y fixed.
Moreover, because of the periodic character of the physical coefficients, the problem can be posed over one
period, 0 < x < L, by imposing appropriate quasi-periodic conditions that will be specified below (cf. (1.5)).
Therefore, we restrict the domain of our problem to the so called unit cell :

Ω :=
{

(x, z) ∈ R2 : 0 < x < L, −Lm < z < Ld
}
.
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Moreover, we introduce the following notation (see Figure 1):

Γ+ := {(x, z) ∈ Ω : z = Ld} ,
Γ := {(x, z) ∈ Ω : z = 0} ,

Γ− := {(x, z) ∈ Ω : z = −Lm} ,
Ω+
δ :=

{
(x, z) ∈ Ω : δ

2 < z < Ld
}
,

Ωδ :=
{

(x, z) ∈ Ω : − δ2 < z < δ
2

}
,

Ω−δ :=
{

(x, z) ∈ Ω : −Lm < z < − δ2
}
.

The region Ω+
δ is occupied by an isotropic homogeneous dielectric material of real relative permittivity ε+

r .

The region Ω−δ is occupied by a homogeneous metal of complex relative permittivity ε−r . In the middle region
Ωδ, which is occupied by the grating, we assume that the complex relative permittivity εgr varies only with x.
Therefore, the relative permittivity of the entire unit cell is given by

εr(x, z) :=


ε+
r , (x, z) ∈ Ω+

δ ,

εgr(x), (x, z) ∈ Ωδ,

ε−r , (x, z) ∈ Ω−δ .

All the permittivities are assumed not to vanish. Moreover we assume that εgr is infinitely differentiable in [0, L]
and the following inequalities, which are typically fulfilled in the applications:

ε+
r > 0,

Im(ε−r ) ≥ 0,

Im(εgr(x)) ≥ 0 ∀x ∈ [0, L].

(1.2)

1.1. Scalar equations and boundary conditions

Problem (1.1) can be decoupled into two separate problems with corresponding coefficients as and ap in the
source term (1.1b). The respective decoupled problems are called the s- and p-polarization states. Both reduce
to the following common form of the Helmholtz equation:

∇ · (B(x, z)∇u(x, z)) + k2
0b(x, z)u(x, z) = 0, (x, z) ∈ Ω,

where, for the s-polarization state,

u(x, z) = Ey(x, z), B(x, z) = 1, b(x, z) = εr(x, z), (1.3)

and for the p-polarization state,

u(x, z) = −η0Hy(x, z), B(x, z) =
1

εr(x, z)
, b(x, z) = 1. (1.4)

The data of each of these problems are the corresponding components of the incident plane waves (1.1b) and
(1.1c):

uinc(x, z) =

{
as exp (ik0 (x sin θ − (z − Ld) cos θ)) , for the s-polarization,

ap exp (ik0 (x sin θ − (z − Ld) cos θ)) , for the p-polarization.
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The total field u satisfies the following relations:
B(x, z)

∂u

∂z
(x, z) =

(
T−u

)
(x, z) on Γ−,

B(x, z)

(
∂u

∂z
(x, z)− ∂uinc

∂z
(x, z)

)
=
(
T+u

)
(x, z)−

(
T+uinc

)
(x, z) on Γ+,

where T− and T+ are the corresponding Dirichlet-to-Neumann operators (see [5]).
In addition, u(x, z) satisfies the quasi-periodicity conditions

u(L, z) = exp(iαL)u(0, z),

∂u

∂x
(L, z) = exp(iαL)

∂u

∂x
(0, z),

 z ∈ (−Lm, Ld), (1.5)

where α := k0 sin θ.
Altogether, we arrive at the following problem:

∇ · (B(x, z)∇u(x, z)) + k2
0b(x, z)u(x, z) = 0 in Ω,

u(L, z) = eiαLu(0, z), z ∈ (−Lm, Ld),

∂u

∂x
(L, z) = eiαL

∂u

∂x
(0, z), z ∈ (−Lm, Ld),

B(x, z)
∂u

∂z
(x, z) =

(
T−u

)
(x, z) on Γ−,

B(x, z)

(
∂u

∂z
(x, z)− ∂uinc

∂z
(x, z)

)
=
(
T+u

)
(x, z)−

(
T+uinc

)
(x, z) on Γ+.

(1.6)

The next step is to write a variational formulation of this problem. To this end we define

H1
α(Ω) :=

{
v ∈ H1(Ω) : v(L, z) = eiαLv(0, z) ∀z ∈ (−Lm, Ld)

}
.

Testing the first equation in (1.6) with v ∈ H1
α(Ω) and integrating by parts lead to the following problem: Find

u ∈ H1
α(Ω) such that

a(u, v) = L(v) ∀v ∈ H1
α(Ω), (1.7)

where
a(w, v) :=

∫
Ω

(
B∇w · ∇v − k2

0bwv
)
dx dz −

∫
Γ+

(
T+w

)
v dx−

∫
Γ−

(
T−w

)
v dx, v, w ∈ H1

α(Ω),

L(v) :=

∫
Γ+

(
B
∂uinc

∂z
− T+uinc

)
v dx, v ∈ H1

α(Ω).

(1.8)

Assumption 1. We assume that problem (1.7) is well posed for all but at most a sequence of countable
frequencies ωj with |ωj | → +∞ and we restrict our attention to ω 6= ωj. Then, there exists a constant C > 0
such that

‖w‖H1(Ω) ≤ C sup
v∈H1

α(Ω)
v 6=0

|a(w, v)|
‖v‖H1(Ω)

∀w ∈ H1
α(Ω).

Moreover, we assume that C is independent of δ.

Remark 1.1. The first part of this assumption has been proved in [10, Theorem 3.3], in case that εgr(x) is
piecewise constant and inequalities (1.2) hold true. The assumption that C is independent of δ can be proved,
for example, if the grating is non-trapping [6].
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2. Asymptotic Model

In this section, we will introduce an alternative to deal with the thin grating layer Ωδ. In fact, problem (1.6)
constitutes the full model, which will be approximated by an asymptotic model (valid in the limit δ → 0), where
the effect of the grating layer Ωδ will be taken into account by means of appropriate approximate transmission
conditions across Γ.

With this aim, we consider an auxiliary problem based on another partition of the domain Ω into subdomains
Ω+ and Ω−, where (see Figure 2)

Ω+ := (0, L)× (0, Ld) and Ω− := (0, L)× (−Lm, 0),

with relative permittivity

εr(x, z) :=

{
ε+
r , (x, z) ∈ Ω+,

ε−r , (x, z) ∈ Ω−.

X

Z

δ/2

δ/2

Ld

Lm

Γ

Γ
+

Γ
−

Ω
+

Ω
−

L

Figure 2. Decomposition of the domain Ω with the thin interface removed.

For any function v : Ω+ ∪ Ω− −→ C, we denote v+ := v|Ω+ and v− := v|Ω− . In general, we identify v with
the pair of functions (v+, v−). Note that in this asymptotic model, B± and b± as defined in (1.3)–(1.4) are
constant.

Inspired by the procedure used in [8], we consider two different expansions of the solution u(x, z): one in the
far field zone (|z| � δ/2) and the other in the near field zone (|z| ∼ δ/2). In what follows, we describe each of
them in detail.

2.1. Far field equations

In the far field, we make the following assumption.

Assumption 2. Outside the grating, we assume that u can be expanded in a standard series in powers of δ:

u(x, z) =


∞∑
n=0

δnu+
n (x, z), z ≥ δ/2,

∞∑
n=0

δnu−n (x, z), z ≤ −δ/2,
(2.1)



P.B. MONK, C. RIVAS, R. RODRÍGUEZ AND M.E. SOLANO 7

where the far field terms u±n defined in Ω± are quasi-periodic in x and infinitely smooth up to Γ. Moreover, we
assume that each u±n can be expanded in a power series with respect to the z-coordinate around zero, i.e.,

u±n (x, z) =

∞∑
k=0

zk

k!

∂ku±n
∂zk

(x, 0), (x, z) ∈ Ω±, n ≥ 0.

To derive the equations satisfied by the far field terms u±n , we insert the asymptotic expansion (2.1) into (1.6)
and extend the first equation to the whole Ω±. Then, equating the terms with the same powers of δ we obtain:

∇ ·
(
B±∇u±n (x, z)

)
+ k2

0b
±u±n (x, z) = 0 in Ω±,

u±n (L, z) = eiαLu±n (0, z), z ∈ (−Lm, Ld) ,

∂u±n
∂x

(L, z) = eiαL
∂u±n
∂x

(L, z), z ∈ (−Lm, Ld) ,

B−
∂u−n
∂z

(x, z) =
(
T−u−n

)
(x, z) on Γ−, n ≥ 0,

B+ ∂u
+
n

∂z
(x, z) =

(
T+u+

n

)
(x, z) on Γ+, n ≥ 1,

B+ ∂u
+
0

∂z
(x, z)−B+ ∂uinc

∂z
(x, z) =

(
T+u+

0

)
(x, z)−

(
T+uinc

)
(x, z) on Γ+.

(2.2)

Note that to determine u±n entirely, we need to prescribe transmission conditions relating u+
n and u−n on Γ.

2.2. Near field equations

In the near field (|z| < 2δ) we resort to an asymptotic expansion based on the original partition of the domain
Ω into the subdomains Ω+

δ , Ωδ and Ω−δ (see Figure 1). With this aim, we rescale the solution u of problem (1.7)
with respect to the thickness of the grating layer by changing the variable z to ξ := z

δ and make the following
assumption.

Assumption 3. Near the grating, we assume that there exists an expansion, which, after rescaling by δ, can
be written as follows:

u(x, z) =

∞∑
n=0

δnUn

(
x,
z

δ

)
, |z| ≤ 2δ, (2.3)

where Un(x, ξ) are quasi-periodic in x continuous functions in H1((0, L)× (−2, 2)) with B(x, δξ)∂Un∂ξ (x, ξ) also

continuous. Furthermore, we assume that Un are infinitely smooth for 1
2 ≤ |ξ| ≤ 2 (i.e., out of the grating).

With any function U(x, ξ), we associate the function

Uδ(x, z) := U
(
x,
z

δ

)
and recall the chain rule:

∂Uδ

∂z
=

1

δ

∂U

∂ξ
.

Therefore, the expansion (2.3) can be rewritten as

u(x, z) =

∞∑
n=0

δnU δn(x, z).
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To derive the equations satisfied by the near field terms Un, we insert this asymptotic expansion into (1.6).
Then, from the first equation and the assumption that Un are smooth, we have that

∞∑
n=0

δn
{
∇ ·
(
B∇Uδn

)
+ k2

0bU
δ
n

}
= 0.

Now, using the chain rule and denoting ξ := z
δ , we obtain

∇ ·
(
B(x, z)∇Uδn(x, z)

)
+ k2

0b(x, z)U
δ
n(x, z)

=
1

δ2

∂

∂ξ

(
B(x, δξ)

∂Un(x, ξ)

∂ξ

)
+

∂

∂x

(
B(x, δξ)

∂Un(x, ξ)

∂x

)
+ k2

0b(x, δξ)Un(x, ξ). (2.4)

Hence, equating the terms with the same power of δ and using the convention that U δ` = 0 for ` < 0, we
obtain the following equations for the near field terms Un, n ≥ 0:

∂

∂ξ

(
B(x, δξ)

∂Un(x, ξ)

∂ξ

)
= − ∂

∂x

(
B(x, δξ)

∂Un−2(x, ξ)

∂x

)
− k2

0b(x, δξ)Un−2(x, ξ), (x, ξ) ∈ (0, L)× (−2, 2) ,

Un(L, ξ) = eiαLUn(0, ξ), ξ ∈ (−2, 2) ,

∂Un
∂x

(L, ξ) = eiαL
∂Un
∂x

(0, ξ), ξ ∈ (−2, 2) .

(2.5)

2.3. Matching conditions

To determine the terms u−n , u+
n and Un, we need additional matching conditions that will be obtained from

the fact that the far and near field expansions have to coincide on certain overlapping zones C±δ . These zones
should be disjoint with the grating layer but they should approach the interface Γ as δ goes to zero. Because of
this, we define the following overlapping domain, where expansions (2.1) and (2.3) are both valid:

Cδ := C+
δ ∪ C

−
δ with C+

δ := (0, L)× (δ, 2δ) and C−δ := (0, L)× (−2δ,−δ).

From Assumption 2, outside the grating (and so in particular in Cδ), we have that

u(x, z) =

∞∑
n=0

∞∑
k=0

δn
zk

k!

∂ku±n
∂zk

(x, 0). (2.6)

In turn, for the near field expansion, we have the following result regarding the behavior of the terms Un in
the overlapping areas.

Proposition 2.1. There exist infinitely smooth quasi-periodic functions p±n,k such that

Un(x, ξ) =

n+1∑
k=0

p±n,k(x)ξk, x ∈ (0, L),
1

2
≤ |ξ| ≤ 2. (2.7)

Let us remark that the equation (2.7) is an abbreviated form of

Un(x, ξ) =



n+1∑
k=0

p+
n,k(x)ξk, x ∈ (0, L),

1

2
≤ ξ ≤ 2,

n+1∑
k=0

p−n,k(x)ξk, x ∈ (0, L), −2 ≤ ξ ≤ −1

2
.
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Similar notation will be used for other quantities in what follows.

Proof. We proceed as in [8] in the simpler framework of our problem. For what follows, recall that the coefficients
B±(x, δξ) and b±(x, δξ) are constant in Ω±.

• For n = 0, the first equation in (2.5) reduces to

∂

∂ξ

(
B±

∂U0(x, ξ)

∂ξ

)
= 0.

Then, there exist functions p±0,0(x) and p±0,1(x) such that

U0(x, ξ) = p±0,0(x) + p±0,1(x)ξ, x ∈ (0, L),
1

2
≤ |ξ| ≤ 2.

Moreover, since we have assumed that Un is infinitely smooth for 1
2 ≤ |ξ| ≤ 2, we derive that p±0,0(x)

and p±0,1(x) are infinitely smooth, too.

• For n = 1, the first equation in (2.5) also reduces to

∂

∂ξ

(
B±

∂U1(x, ξ)

∂ξ

)
= 0.

Then, as above, there exist smooth functions p±1,0(x) and p±1,1(x) such that

U1(x, ξ) = p±1,0(x) + p±1,1(x)ξ, x ∈ (0, L),
1

2
≤ |ξ| ≤ 2.

• For n = 2, the first equation in (2.5) reduces to

∂

∂ξ

(
B±

∂U2(x, ξ)

∂ξ

)
= −

{
∂

∂x

(
B±

∂U0(x, ξ)

∂x

)
+ k2

0b
±U0(x, ξ)

}
= −

{(
B±

∂2p±0,0(x)

∂x2
+ k2

0b
±p±0,0(x)

)
+

(
B±

∂2p±0,1(x)

∂x2
+ k2

0b
±p±0,1(x)

)
ξ

}
.

Then, once more, there exist smooth functions p±2,0(x), p±2,1(x), p±2,2(x) and p±2,3(x) such that

U2(x, ξ) = p±2,0(x) + p±2,1(x)ξ + p±2,2(x)ξ2 + p±2,3(x)ξ3, x ∈ (0, L),
1

2
≤ |ξ| ≤ 2.

• An induction argument allows us to show that the proposition holds for all n ≥ 0.

�

Now, we are in a position to settle matching conditions between both expansions.

Proposition 2.2. For n ≥ 0 and 0 ≤ k ≤ n,

Un(x, ξ) =

n∑
k=0

ξk

k!

∂ku±n−k
∂zk

(x, 0), x ∈ (0, L),
1

2
≤ |ξ| ≤ 2.

Proof. By substituting (2.7) into the near field expansion (2.3), we obtain

u(x, z) =

∞∑
n=0

n+1∑
k=0

δnp±n,k(x)
(z
δ

)k
=

∞∑
n=0

n+1∑
k=0

δn−kp±n,k(x)zk, x ∈ (0, L),
δ

2
≤ |z| ≤ 2δ.
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The identification on the overlapping zones of the far field (2.6) with this expression for the near field leads to

∞∑
n=0

∞∑
k=0

δn
zk

k!

∂ku±n
∂zk

(x, 0) =

∞∑
n=0

n+1∑
k=0

δn−kp±n,k(x)zk =

∞∑
k=0

∞∑
n=k−1,
n≥0

δn−kp±n,k(x)zk =

∞∑
k=0

∞∑
n=−1,
n+k≥0

δnp±n+k,k(x)zk

for all (x, z) ∈ Cδ. Then, exchanging the order of summation,

∞∑
n=0

∞∑
k=0

δn
zk

k!

∂ku±n
∂zk

(x, 0) =

∞∑
n=−1

∞∑
k=0

n+k≥0

δnzkp±n+k,k(x), (x, z) ∈ Cδ.

Identifying the terms with the same power of δ, we arrive at

p±n,k(x) =


0, if k = n+ 1,

1

k!

∂ku±n−k
∂zk

(x, 0), if 0 ≤ k ≤ n,
(2.8)

for all n ≥ 0, which substituted into (2.7) allows us to conclude the proof. �

2.4. Truncated asymptotic expansion

Outside the grating, we approximate u by

u(x, z) ≈ u±0 (x, z) + δu±1 (x, z), |z| ≥ δ

2
,

and inside the grating by

u(x, z) ≈ U0

(
x,
z

δ

)
+ δU1

(
x,
z

δ

)
, |z| < δ

2
.

Given v± defined in Ω± we use the following notation for its jump and average on Γ (i.e., at z = 0):

[v] := v+(x, 0)− v−(x, 0),

〈v〉 :=
v+(x, 0) + v−(x, 0)

2
.

Also, we denote the coefficients on the grating layer Bg := B|Ωδ and bg := b|Ωδ . We recall that Bg and bg are
assumed not to depend on z.

In the appendix we perform an asymptotic analysis that allows us to find the following transmission conditions
relating u+

n and u−n for n = 0 and 1 and for all x ∈ (0, L):

[u0] (x) = 0,[
B
∂u0

∂z

]
(x) = 0,

[u1] (x) =

(
1

Bg(x)
−
〈

1

B

〉)〈
B
∂u0

∂z

〉
(x),[

B
∂u1

∂z

]
(x) = − ∂

∂x

(
(Bg(x)− 〈B〉) ∂ 〈u0〉

∂x
(x)

)
− k2

0 (bg(x)− 〈b〉) 〈u0〉 (x).

(2.9)



P.B. MONK, C. RIVAS, R. RODRÍGUEZ AND M.E. SOLANO 11

Adding these transmission conditions to equations (2.2), we are led to the following problems to determine
u0 and u1, respectively:



∇ ·
(
B±(x, z)∇u±0 (x, z)

)
+ k2

0b
±(x, z)u±0 (x, z) = 0 in Ω±,

[u0] (x) = 0 on Γ,[
B
∂u0

∂z

]
(x) = 0 on Γ,

u±0 (L, z) = eiαLu±0 (0, z), z ∈ (−Lm, Ld) ,

∂u±0
∂x

(L, z) = eiαL
∂u±0
∂x

(0, z), z ∈ (−Lm, Ld) ,

B−
∂u−0
∂z

(x, z) =
(
T−u−0

)
(x, z) on Γ−,

B+ ∂u
+
0

∂z
(x, z)−B+ ∂uinc

∂z
(x, z) =

(
T+u+

0

)
(x, z)−

(
T+uinc

)
(x, z) on Γ+;

(2.10)



∇ ·
(
B±(x, z)∇u±1 (x, z)

)
+ k2

0b
±(x, z)u±1 (x, z) = 0 in Ω±,

[u1] (x) =

(
1

Bg(x)
−
〈

1

B

〉)〈
B
∂u0

∂z

〉
(x) on Γ,[

B
∂u1

∂z

]
(x) = − ∂

∂x

(
(Bg(x)− 〈B〉) ∂ 〈u0〉

∂x
(x)

)
− k2

0 (bg(x)− 〈b〉) 〈u0〉 (x) on Γ,

u±1 (L, z) = eiαLu±1 (0, z), z ∈ (−Lm, Ld) ,

∂u±1
∂x

(L, z) = eiαL
∂u±1
∂x

(0, z), z ∈ (−Lm, Ld) ,

B±
∂u±1
∂z

(x, z) =
(
T±u±1

)
(x, z) on Γ±.

(2.11)

To complete the derivation, it is also shown in the appendix that U0 and U1 into the grating are given by

U0(x, ξ) = u0(x, 0),

U1(x, ξ) = 〈u1〉 (x) +

(
ξ

Bg(x)
+

1

4

[
1

B

])〈
B
∂u0

∂z

〉
(x),

 x ∈ (0, L), |ξ| ≤ 1

2
. (2.12)

3. Error estimates

In this section, we estimate the error between the exact solution u and its first-order far field approximation

uδ,1(x, z) := u±0 (x, z) + δu±1 (x, z). (3.1)

For the forthcoming analysis, we will also use the second-order approximation

uδ,2(x, z) := u±0 (x, z) + δu±1 (x, z) + δ2u±2 (x, z) (3.2)

and the corresponding one for the near field:

Uδ,2(x, z) := U δ0 (x, z) + δUδ1 (x, z) + δ2U δ2 (x, z) . (3.3)
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We proceed as in [8] and introduce a smooth cut-off function χ ∈ C∞(R) such that

χ(ξ) =

{
1, if |ξ| ≤ 1,

0, if |ξ| ≥ 2.

Then, denoting as above χδ(z) := χ
(
z
δ

)
, we introduce the global approximate solution

ũδ(x, z) :=
(
1− χδ(z)

)
uδ,2(x, z) + χδ(z)Uδ,2(x, z) (x, z) ∈ Ω.

Let us remark that Uδ,2(x, z) is actually defined only for |z| ≤ 2δ. However, any smooth extension can be
used to define properly ũδ. In fact, since in this definition Uδ,2 appears multiplied by χδ, which vanishes for
|z| ≥ 2δ, ũδ does not depend on the particular extension (which we still denote Uδ,2). Moreover, according to
Assumption 3, χδUδ,2 ∈ H1

α(Ω).
In general, uδ,2 does not lie in H1

α(Ω), but
(
1− χδ

)
uδ,2 does. In fact, in spite of the fact that uδ,2 may have

a jump on Γ, this does not affect the smoothness of
(
1− χδ

)
uδ,2 since

(
1− χδ

)
vanishes for |z| ≤ δ. Moreover,

according to Assumption 2,
(
1− χδ

)
uδ,2 is infinitely differentiable in the whole of Ω.

Since in what follows we will have to deal with functions like uδ,2 that are smooth in Ω+ and Ω− but not in
Ω, from now on we will use the following notation:

∫
Ω±

f±(x, z) dx dz =
∫

Ω+ f
+(x, z) dx dz+

∫
Ω−

f+(x, z) dx dz

and
∫

Γ±
g±(x) dx =

∫
Γ+ g

+(x) dx+
∫

Γ−
g+(x) dx.

Now, since from Assumption 1 we have the stability estimate

‖u− ũδ‖H1(Ω) ≤ C sup
v∈H1

α(Ω)
v 6=0

|a(u− ũδ, v)|
‖v‖H1(Ω)

, (3.4)

our next goal is to find a bound for the right-hand side.

Lemma 3.1. For all v ∈ H1
α(Ω),

a(u− ũδ, v) = εmδ (v) + εcδ(v), (3.5)

where

εmδ (v) :=

∫
Cδ

B (uδ,2 − Uδ,2)∇χδ · ∇v dx dz −
∫
Cδ

B∇(uδ,2 − Uδ,2) · ∇χδ v dx dz (3.6)

and
εcδ(v) := −a(Uδ,2, χ

δv). (3.7)

Terms εmδ (v) and εcδ(v) are called the matching error and the consistency error, respectively.

Proof. Taking into account the definition of ũδ and (1.7), for all v ∈ H1
α(Ω) we have that

a(u− ũδ, v) = L(v)− a
((

1− χδ
)
uδ,2, v

)
− a

(
χδUδ,2, v

)
. (3.8)

For the second term on the right-hand side, the definition of a(·, ·) and straightforward computations lead to

a
((

1− χδ
)
uδ,2, v

)
=

∫
Ω±

{
B±∇

((
1− χδ

)
uδ,2

)
· ∇v − k2

0b
± (1− χδ)uδ,2 v} dx dz − ∫

Γ±

(
T±
((

1− χδ
)
uδ,2

))
v dx

=

∫
Ω±

B±uδ,2∇
(
1− χδ

)
· ∇v dx dz −

∫
Ω±

B±∇uδ,2 · ∇
(
1− χδ

)
v dx dz

+

∫
Ω±

{
B±∇uδ,2 · ∇

((
1− χδ

)
v
)
− k2

0b
±uδ,2

(
1− χδ

)
v
}
dx dz −

∫
Γ±

(
T±uδ,2

) (
1− χδ

)
v dx. (3.9)
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Now, multiplying the first equation in (2.2) by
(
1− χδ

)
, integrating by parts separately in Ω+ and Ω− and

using the boundary conditions from (2.2), we obtain

∫
Ω±

{
B±∇uδ,2 · ∇

((
1− χδ

)
v
)
− k2

0b
±uδ,2

(
1− χδ

)
v
}
dx dz −

∫
Γ±

(
T±uδ,2

) (
1− χδ

)
v dx

=

∫
Γ+

(
B+ ∂uinc

∂z
− T+uinc

)(
1− χδ

)
v dx = L(v).

Let us emphasize that in spite of the fact that B±∇uδ,2 is in general discontinuous on Γ, no jump across this
curve appears from the integration by parts because

(
1− χδ

)
vanishes for |z| ≤ δ and thus on Γ.

Then, substituting the above equation into (3.9) we have that

a
((

1− χδ
)
uδ,2, v

)
=

∫
Ω±

B±uδ,2∇
(
1− χδ

)
· ∇v dx dz −

∫
Ω±

B±∇uδ,2 · ∇
(
1− χδ

)
v dx dz + L(v)

Next, computations similar to those that lead to (3.9) yield

a
(
χδUδ,2, v

)
= a

(
Uδ,2, χ

δv
)

+

∫
Ω±

B±Uδ,2∇χδ · ∇v dx dz −
∫

Ω±
B±∇Uδ,2 · ∇χδv dx dz.

Finally, substituting the last two equations into (3.8) we obtain

a(u− ũδ, v) =

∫
Ω±

B± (uδ,2 − Uδ,2)∇χδ · ∇v dx dz −
∫

Ω±
B±∇ (uδ,2 − Uδ,2) · ∇χδv dx dz − a

(
Uδ,2, χ

δv
)
.

Since ∇χδ vanishes out of Cδ, the above equation and definitions (3.6) and (3.7) allow us to end the proof. �

The following estimates are similar to those used in [8]. For the sake of completeness, we include the
corresponding proofs.

Lemma 3.2. Let Oδ := {(x, z) ∈ Ω : |z| ≤ 2δ}. Then, for all v ∈ H1
α(Ω),

‖v‖L2(Oδ)
≤ C
√
δ ‖v‖H1(Ω) ,

‖v‖L1(Oδ)
≤ Cδ ‖v‖H1(Ω) ,

‖∇v‖L1(Oδ)
≤ C
√
δ ‖v‖H1(Ω) .

Proof. We use a density argument. For v smooth enough we write

v(x, z) = v(x, 0) +

∫ z

0

∂v

∂z
(x, t) dt ∀(x, z) ∈ Oδ.

Then, ∫
Oδ

|v(x, z)|2 dx dz ≤ 2

∫
Oδ

|v(x, 0)|2 dx dz + 2

∫
Oδ

∣∣∣∣∣
∫ z

0

∣∣∣∣∂v∂z (x, t)

∣∣∣∣2 dt
∣∣∣∣∣ dx dz.

For the first term we have∫
Oδ

|v(x, 0)|2 dx dz = 4δ

∫ L

0

|v(x, 0)|2 dx = 4δ ‖v‖2L2(Γ) ≤ Cδ ‖v‖
2
H1(Ω)
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and for the second one∫
Oδ

∣∣∣∣∣
∫ z

0

∣∣∣∣∂v∂z (x, t)

∣∣∣∣2 dt
∣∣∣∣∣ dx dz ≤ 4δ

∫ L

0

(∫ 2δ

−2δ

∣∣∣∣∂v∂z (x, t)

∣∣∣∣2 dt
)
dx ≤ Cδ ‖v‖2H1(Ω) .

Thus, the first estimate of the lemma follows from the last three inequalities.
The second estimate follows from Cauchy-Schwarz inequality and the previous one. The last one follows from

Cauchy-Schwarz inequality. �

For the matching error we have the following estimate.

Lemma 3.3. For all v ∈ H1
α(Ω),

εmδ (v) ≤ Cδ2 ‖v‖H1(Ω) .

Proof. Let v ∈ H1
α(Ω). The far field terms un and the near field terms Uδn have been assumed to lie in C∞(Cδ)

(cf. Assumptions 2 and 3). Then, from the definition (3.6) of εmδ (v) and Hölder inequality, since χδ does not
depend on x and the support of its gradient is contained in Cδ, we have that

|εmδ (v)| ≤ ‖B‖L∞(Ω)

∥∥∇χδ∥∥
L∞(R)

{∥∥∥∥∂v∂z
∥∥∥∥
L1(Cδ)

‖uδ,2 − Uδ,2‖L∞(Cδ)
+

∥∥∥∥ ∂∂z (uδ,2 − Uδ,2)

∥∥∥∥
L∞(Cδ)

‖v‖L1(Cδ)

}
.

(3.10)
In what follows, we estimate each of the terms on the right-hand side above.

(1) For the cut-off function, since ∇χδ = 1
δ∇χ, we have

∥∥∇χδ∥∥
L∞(R)

=
1

δ
‖∇χ‖L∞(R) ≤

C

δ
. (3.11)

(2) To estimate ‖uδ,2 − Uδ,2‖L∞(Cδ)
, for the far field approximation uδ,2, we use Taylor’s formula with

integral remainder for each u±n , n = 0, 1, 2. Then, from (3.2) we have

uδ,2(x, z) =

2∑
n=0

δn

{
2−n∑
i=0

zi

i!

∂iu±n
∂zi

(x, 0) +

∫ z

0

∂3−nu±n
∂z3−n (x, t)

(z − t)2−n

(2− n)!
dt

}
. (3.12)

For the near field, from (2.7) and the matching conditions (2.8), in the overlapping zones we have

Uδn(x, z) =

n∑
i=0

zi

δii!

∂iu±n−i
∂zi

(x, 0).

Hence, from (3.3),

Uδ,2(x, z) =

2∑
n=0

δn

(
n∑
i=0

zi

δii!

∂iu±n−i
∂zi

(x, 0)

)
=

2∑
n=0

n∑
i=0

δn−i
zi

i!

∂iu±n−i
∂zi

(x, 0) (3.13)

=

2∑
i=0

2∑
n=i

δn−i
zi

i!

∂iu±n−i
∂zi

(x, 0) =

2∑
i=0

2−i∑
j=0

δj
zi

i!

∂iu±j
∂zi

(x, 0) =

2∑
j=0

2−j∑
i=0

δj
zi

i!

∂iu±j
∂zi

(x, 0).

Then, subtracting (3.13) from (3.12), we obtain

uδ,2 − Uδ,2 =

2∑
n=0

δn
∫ z

0

∂3−nu±n
∂z3−n (x, t)

(z − t)2−n

(2− n)!
dt. (3.14)
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Now, since the far field terms and their derivatives are bounded in Cδ (cf. Assumption 2), we estimate
the integral above as follows:∣∣∣∣∫ z

0

∂3−nu±n
∂z3−n (x, t)

(z − t)2−n

(2− n)!
dt

∣∣∣∣ ≤ Cδ3−n ∀(x, z) ∈ Cδ.

Then,

‖uδ,2 − Uδ,2‖L∞(Cδ)
≤ Cδ3. (3.15)

(3) For
∥∥ ∂
∂z (uδ,2 − Uδ,2)

∥∥
L∞(Cδ)

, differentiating (3.14) with respect to z we have

∂uδ,2
∂z

(x, z)− ∂Uδ,2
∂z

(x, z) =

1∑
n=0

δn
∫ z

0

∂3−nu±n
∂z3−n (x, t)

(z − t)1−n

(1− n)!
dt.

Since the far field terms and their derivatives are bounded in Cδ, we estimate the integral as follows:∣∣∣∣∫ z

0

∂3−nu±n (x, t)

∂z3−n
(z − t)1−n

(1− n)!
dt

∣∣∣∣ ≤ Cδ2−n ∀(x, z) ∈ Cδ.

Therefore, ∥∥∥∥∂(uδ,2 − Uδ,2)

∂z

∥∥∥∥
L∞(Cδ)

≤ Cδ2. (3.16)

Finally, using (3.11), (3.15), (3.16) and Lemma 3.2 to estimate all terms in (3.10), we conclude the proof. �

For the consistency error (3.7), we have the following estimate.

Lemma 3.4. For all v ∈ H1
α(Ω),

|εcδ(v)| ≤ Cδ2 ‖v‖H1(Ω) .

Proof. Integrating by parts and using the quasi-periodic character of Uδ,2 and v and the fact that the support
of χδ is contained in Oδ, we have that

εcδ(v) = −
∫

Ω

(
B∇Uδ,2 · ∇(χδv)− k2

0bUδ,2χ
δv
)
dx dz =

∫
Oδ

(
∇ · (B∇Uδ,2) + k2

0bUδ,2
)
χδv dx dz.

Now, recalling the definition (3.3) and using (2.4) with ξ = z
δ and the first equation from (2.5), we obtain

∇ · (B(x, z)∇Uδ,2(x, z)) + k2
0b(x, z)Uδ,2(x, z)

=
1

δ2

∂

∂ξ

(
B(x, δξ)

∂U0

∂ξ
(x, ξ)

)
+

1

δ

∂

∂ξ

(
B(x, δξ)

∂U1

∂ξ
(x, ξ)

)
+

∂

∂ξ

(
B(x, δξ)

∂U2

∂ξ
(x, ξ)

)
+

∂

∂x

(
B(x, δξ)

∂U0

∂x
(x, ξ)

)
+ k2

0b(x, δξ)U0(x, ξ) + δ

(
∂

∂x

(
B(x, δξ)

∂U1

∂x
(x, ξ)

)
+ k2

0b(x, δξ)U1(x, ξ)

)
+ δ2

(
∂

∂x

(
B(x, δξ)

∂U2

∂x
(x, ξ)

)
+ k2

0b(x, δξ)U2(x, ξ)

)
= δ

(
∂

∂x

(
B(x, z)

∂Uδ1
∂x

(x, z)

)
+ k2

0b(x, z)U
δ
1 (x, z)

)
+ δ2

(
∂

∂x

(
B(x, z)

∂Uδ2
∂x

(x, z)

)
+ k2

0b(x, z)U
δ
2 (x, z)

)
.

Then,

εcδ(v) = δεc,1δ (v) + δ2εc,2δ (v), (3.17)
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where

εc,iδ (v) :=

∫
Oδ

(
∂

∂x

(
B
∂Uδi
∂x

)
+ k2

0bU
δ
i

)
χδv dx dz, i = 1, 2.

From (1.3) (for the s-polarization) or (1.4) (for the p-polarization) combined with the additional assumption
that εgr(x) is infinitely differentiable in [0, L[, we have that the x-derivative of B is bounded in Ω. So are the
x-derivatives of Uδi too (cf. Lemma (6.1) in the appendix). Then,

|εc,iδ (v)| ≤ C ‖v‖L1(Oδ)
≤ Cδ ‖v‖H1(Ω) , i = 1, 2,

where we have used Lemma 3.2 for the last inequality. Hence, the lemma follows from (3.17). �

Now, we are in a position to write the main approximation result of the paper.

Theorem 3.5. Let u be the solution of problem (1.7) and uδ,1 its far field approximation (3.1). Then, given
γ > 0, there exist a constant C > 0 such that for all δ < γ

2 ,

‖u− uδ,1‖H1(Ω̂γ) ≤ Cδ
2,

where Ω̂γ := {(x, z) ∈ Ω : |z| > γ}.

Proof. From (3.4) and Lemmas 3.1, 3.3 and 3.4, we write

‖u− ũδ‖H1(Ω) ≤ C sup
v∈H1

α(Ω)
v 6=0

|a(u− ũδ, v)|
‖v‖H1(Ω)

≤ C sup
v∈H1

α(Ω)
v 6=0

|εmδ (v)|+ |εcδ(v)|
‖v‖H1(Ω)

≤ Cδ2.

Now, given γ > 0, for all δ < γ
2 , ũδ = uδ,2 in Ω̂γ . Then, from the definition (3.2) of uδ,2 and using that

u±n ∈ H1
α(Ω±δ ) (cf. Assumption 2), we have that

‖ũδ − uδ,1‖H1(Ω̂γ) ≤ δ
2
∥∥u+

2

∥∥
H1(Ω+)

+ δ2
∥∥u−2 ∥∥H1(Ω−)

≤ Cδ2

and, hence,

‖u− uδ,1‖H1(Ω̂γ) ≤ ‖u− ũδ‖H1(Ω̂γ) + ‖ũδ − uδ,1‖H1(Ω̂γ) ≤ Cδ
2.

�

4. Implementation

In order to avoid solving separately problems (2.10) and (2.11), it is possible to approximate directly uδ,1 =
u0 + δu1 up to δ2-terms. With this purpose, we use equations (2.9) to write

[uδ,1] = [u0] + δ [u1] = δ

(
1

Bg(x)
−
〈

1

B

〉)〈
B
∂uδ,1
∂z

〉
− δ2

(
1

Bg(x)
−
〈

1

B

〉)〈
B
∂u1

∂z

〉
and [

B
∂uδ,1
∂z

]
=

[
B
∂u0

∂z

]
+ δ

[
B
∂u1

∂z

]
= −δ

{
∂

∂x

(
(Bg(x)− 〈B〉) ∂

∂x

)
+ k2

0 (bg(x)− 〈b〉)
}
〈uδ,1〉

+ δ2

{
∂

∂x

(
((Bg(x)− 〈B〉) ∂

∂x

)
+ k2

0 (bg(x)− 〈b〉)
}
〈u1〉 .
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Since u±0 and u±1 satisfy (2.2), so does u±0 + δu±1 . To obtain a well posed problem we must complement these
equations with appropriate jump conditions on Γ. With this end, we use the two above equations, neglecting
the δ2 terms. Therefore, we are led to the following alternative problem, whose solution we denote by û±δ,1:



∇ ·
(
B±∇û±δ,1(x, z)

)
+ k2

0b
±û±δ,1(x, z) = 0 in Ω±,

[ûδ,1] (x) = δ

(
1

Bg(x)
−
〈

1

B

〉)〈
B
∂ûδ,1
∂z

〉
(x) on Γ,[

B
∂u1

∂z

]
(x) = −δ ∂

∂x

(
(Bg(x)− 〈B〉) ∂ 〈ûδ,1〉

∂x
(x)

)
− δk2

0 (bg(x)− 〈b〉) 〈ûδ,1〉 (x) on Γ,

û±δ,1(L, z) = eiαLû±δ,1(0, z) z ∈ (−Lm, Ld) ,

∂û±δ,1
∂x

(L, z) = eiαL
∂û±δ,1
∂x

(L, z) z ∈ (−Lm, Ld) ,

B−
∂û−δ,1
∂z

(x, z) = T−û−δ,1(x, z) on Γ−,

B+
∂û+

δ,1

∂z
(x, z)−B+ ∂uinc

∂z
(x, z) = T+(û+

δ,1(x, z)− uinc(x, z)) on Γ+.

(4.1)

4.1. Variational formulation

To implement a FEM for this asymptotic model, we need a variational formulation of problem (4.1). With
this end in mind, consider the Hilbert space

V :=
{
v ∈ L2(Ω) : v− ∈ H1

α(Ω−), v+ ∈ H1
α(Ω+) and 〈v〉 ∈ H1

α(Γ)
}

endowed with the norm defined by

‖v‖2V := ‖v‖2H1(Ω−) + ‖v‖2H1(Ω+) + ‖〈v〉‖2H1(Γ) .

Multiplying the first equation in (4.1) by v ∈ V and integrating by parts, we obtain

∫
Ω±

(
B±∇û±δ,1 · ∇v

± − k2
0b
±û±δ,1v

±
)
dx dz +

∫
∂Ω+

B+
∂û+

δ,1

∂n
v+ds+

∫
∂Ω−

B−
∂û−δ,1
∂n

v−ds = 0.

Because of the quasi-periodic character of v, the integrals on ∂Ω± reduce to Γ and Γ±. For the former we have

∫
Γ

B+
∂û+

δ,1

∂z
v+dx−

∫
Γ

B−
∂û−δ,1
∂z

v−dx =

∫
Γ

[
B
∂ûδ,1
∂z

v

]
dx =

∫
Γ

[
B
∂ûδ,1
∂z

]
〈v〉 dx+

∫
Γ

〈
B
∂ûδ,1
∂z

〉
[v] dx.

For the second term on the right-hand side above, using the second equation from (4.1) we have that

〈
B
∂ûδ,1
∂z

〉
(x) =

1

δ

(
1

Bg(x)
−
〈

1

B

〉)−1

[ûδ,1] (x), (4.2)
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provided 1
Bg(x) 6=

〈
1
B

〉
. Then, using the third equation from (4.1) and integrating by parts yield

∫
Γ

B+
∂û+

δ,1

∂z
v+dx−

∫
Γ

B−
∂û−δ,1
∂z

v−dx

= −δ
∫

Γ

∂

∂x

(
(Bg(x)− 〈B〉) ∂ 〈ûδ,1〉

∂x

)
〈v〉 dx− δk2

0

∫
Γ

(bg(x)− 〈b〉) 〈ûδ,1〉 〈v〉 dx

+
1

δ

∫
Γ

(
1

Bg(x)
−
〈

1

B

〉)−1

[ûδ,1] [v] dx,

= δ

∫
Γ

(Bg(x)− 〈B〉) ∂ 〈ûδ,1〉
∂x

∂ 〈v〉
∂x

dx− δk2
0

∫
Γ

(bg(x)− 〈b〉) 〈ûδ,1〉 〈v〉 dx

+
1

δ

∫
Γ

(
1

Bg(x)
−
〈

1

B

〉)−1

[ûδ,1] [v] dx.

For the integrals on Γ+ and Γ−, we proceed as we did to derive (1.7) and we arrive at similar terms. Therefore,
all together, we are led to the following weak form of problem (4.1): Find ûδ,1 ∈ V such that

â(ûδ,1, v) = L(v) ∀v ∈ V, (4.3)

where the sesquilinear form â(·, ·) is defined for all w, v ∈ V by

â(w, v) :=

∫
Ω±

(
B±∇w± · ∇v± − k2

0b
±w±v±

)
dx dz + δ

∫
Γ

(Bg(x)− 〈B〉) ∂ 〈w〉
∂x

∂ 〈v〉
∂x

dx

− δk2
0

∫
Γ

(bg(x)− 〈b〉) 〈w〉 〈v〉 dx+
1

δ

∫
Γ

(
1

Bg(x)
−
〈

1

B

〉)−1

[w] [v] dx−
∫

Γ±

(
T±w±

)
v±dx

and the linear functional L is the same as in (1.8)
Let us remark that equation (4.2) only makes sense provided 1

Bg(x) 6=
〈

1
B

〉
. In case that this term vanishes

identically, the second equation from (4.1) implies that [ûδ,1] ≡ 0 on Γ and this condition should be imposed on
the trial and test functions. Therefore, in such a case, the space V must be replaced by

Ṽ :=
{
v ∈ H1

α(Ω) : v|Γ ∈ H1
α(Γ)

}
.

In particular, this happens for the s-polarization, when Bg(x) = B+ = B− = 1. In such a case, substituting B

and b in terms of the physical parameters, we are led to the following problem: Find ûδ,1 ∈ Ṽ such that

âs(ûδ,1, v) = L(v) ∀v ∈ Ṽ , (4.4)

where

âs(w, v) :=

∫
Ω±

(
∇w± · ∇v± − k2

0ε
±
r w
±v±

)
dx dz− δk2

0

∫
Γ

(εgr − 〈εr〉)wv dx−
∫

Γ±

(
T±w±

)
v± dx, w, v ∈ Ṽ .

5. Numerical examples

In this section, we report the results of two numerical tests, to demonstrate numerically the convergence
properties of the asymptotic model. We have solved problem (4.3) using standard Lagrange FEM with third-
degree polynomials. For the Dirichlet-to-Neumann operators T+ and T−, we have used a truncated Fourier
expansion approach similar to that in [21].
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In the examples that follow, we focus on the convergence of the asymptotic model at a fixed wavelength
λ0 = 450 nm. For all examples, we have fixed L = 400 nm, Ld = 131.25 nm, and Lm = 56.25 nm. We have
chosen values of δ between 12.5 nm and 6.103125e−03 nm, namely, between 6.67% and 0.003255% of the total
height Lm + Ld = 187.5 nm.

We have fixed the angle of incidence to θ = 0, since most solar cells are illuminated normally to maximize
photonic absorption. The physical parameters have been taken as in [21], where further details can be found:
ε+
r = 3.6876 and ε−r = −5.8828 + 0.6650 i.

The domain Ω+ ∪ Ω− has been discretized with a triangular mesh with Ne triangles and mesh size h. For

each polarization state, q = s or q = p, let û q,hδ,1 denote the approximate values of the solution to problem (1.7),

delivered by the FEM solution of the asymptotic model (4.3) for the p-polarization or (4.4) for the s-polarization,

for a specific choice of h and δ. We have also used the approximate solution û q,hδ,1 to compute a physical quantity

of interest: the so called absorptance Aq,hδ (see for instance [21]).

5.1. Example 1: Planar backreflector

The first test allows us to validate the method and its implementation. We have chosen a planar backreflector
in which the material occupying Ωδ has a uniform relative permittivity εgr(x) ≡ −0.5488 + 0.1663 i. For this
problem, for each polarization state q = s or q = p, the exact solution uq(x, z) of (1.7) and the corresponding
exact absorptance Aq can be analytically determined using a textbook approach [2].

For each polarization state, we have computed the relative errors

euq =

(∫
Ω̂γ

|uq − û q,hδ,1 |
2 dx dz

)1/2

(∫
Ω̂γ

|uq|2 dx dz

)1/2
and eAq =

|Aq −Aq,hδ |
|Aq|

, q ∈ {s, p} .

We have chosen γ large enough (γ = 12.5 nm), so that Ω̂γ and Ωδ do not intersect for any value of δ in our
computations.

In order to evaluate the performance of the asymptotic model with respect to the parameter δ, we display in
Tables 1 and 2 values of the relative errors eus and eAs , respectively, for varying δ and h.

In spite of the fact that us and up are expected to have a similar behavior, the asymptotic models to compute
them differ. However the errors eus and eAs are essentially the same as eup and eAp , respectively. This is the
reason why we only report the former in Tables 1 and 2.

Many of the errors reported in Tables 1 and 2 correspond to values of δ and h for which the discretization and
the asymptotic modeling errors are of a similar size. Because of this, the convergence behavior can be clearly
seen only on the last rows and columns of these tables (where the errors arising from the asymptotic modeling
or the discretization, respectively, are negligible).

We report in Figure 3 (left) error curves for eus and eAs versus δ for a very fine mesh (h = 2.21 nm). These
plots show that the errors decrease with order O(δ2) as the theory predicts.

Finally, to validate our FEM solver, we display in Figure 3 (right), eus versus h for an extremely thin grating
layer (δ = 6.103125e−03 nm). Standard FEM theory [3] predicts that the rate of convergence of eup must be of
order O(h4). In Figure 3 (right) we observe exactly this trend, except for the smallest value of h for which the
asymptotic modeling error dominates the FEM error.
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Table 1. Relative error eus versus δ (nm) and h (nm) for Example 1. The number Ne of
triangular elements is shown in parentheses for each of the values of h in the table.

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584) 4.42 (14336) 2.21 (57344)

12.5 5.2675e-02 5.2683e-02 5.5093e-02 5.5093e-02 5.5093e-02

6.25 1.3077e-02 1.3081e-02 1.3081e-02 1.3381e-02 1.3381e-02

3.125 3.2539e-03 3.2564e-03 3.2563e-03 3.2563e-03 3.2935e-03

1.5625 8.1168e-04 8.1214e-04 8.1207e-04 8.1206e-04 8.1205e-04

7.812e-01 2.0886e-04 2.0258e-04 2.0249e-04 2.0248e-04 2.0248e-04

3.906e-01 7.7185e-05 5.0841e-05 5.0657e-05 5.0650e-05 5.0649e-05

1.953e-01 6.1086e-05 1.3245e-05 1.2667e-05 1.2658e-05 1.2658e-05

9.765e-02 6.0182e-05 4.9215e-06 3.1794e-06 3.1644e-06 3.1638e-06

4.8825e-02 6.0172e-05 3.8188e-06 8.3173e-07 7.9152e-07 7.9086e-07

2.44125e-02 6.0176e-05 3.7321e-06 3.1203e-07 1.9875e-07 1.9769e-07

1.220625e-02 6.0174e-05 3.7244e-06 2.4233e-07 5.2073e-08 4.9411e-08

6.103125e-03 6.0172e-05 3.7232e-06 2.3649e-07 1.9636e-08 1.2366e-08

Table 2. Relative error eAs versus δ (nm) and h (nm) for Example 1. The number Ne of
triangular elements is shown in parentheses for each of the values of h in the table.

h (Ne)

δ (nm) 35.36 (224) 17.68 (896) 8.84 (3584) 4.42 (14336) 2.21 (57344)

12.5 2.7768e-02 2.7778e-02 2.7781e-02 2.7780e-02 2.7780e-02

6.25 6.0088e-03 6.0007e-03 6.0006e-03 6.0008e-03 6.0008e-03

3.125 1.3919e-03 1.3754e-03 1.3745e-03 1.3745e-03 1.3745e-03

1.5625 3.4925e-04 3.2862e-04 3.2737e-04 3.2731e-04 3.2731e-04

7.812e-01 1.0393e-04 8.1280e-05 7.9835e-05 7.9749e-05 7.9745e-05

3.906e-01 4.4983e-05 2.1316e-05 1.9776e-05 1.9679e-05 1.9674e-05

1.953e-01 3.0754e-05 6.5822e-06 4.9945e-06 4.8920e-06 4.8858e-06

9.765e-02 2.7365e-05 2.9409e-06 1.3295e-06 1.2243e-06 1.2177e-06

4.8825e-02 2.6591e-05 2.0410e-06 4.1765e-07 3.1104e-07 3.0431e-07

2.44125e-02 2.6433e-05 1.8198e-06 1.9053e-07 8.3232e-08 7.6419e-08

1.220625e-02 2.6411e-05 1.7662e-06 1.3400e-07 2.6361e-08 1.9506e-08

6.103125e-03 2.6414e-05 1.7537e-06 1.1998e-07 1.2163e-08 5.2873e-09

5.2. Example 2: Periodic backreflector with rectangular corrugations

For the second test, we have considered a backreflector with rectangular corrugations of height δ and width
L1 = 200 nm, as shown in Figure 4. In this case, the discontinuous coefficient εgr is defined as follows (see
Figure 4):

εgr(x) =

{
ε+
r , x ∈

(
0, L−L1

2

)
∪ (L+L1

2 , L),

ε−r , x ∈
(
L−L1

2 , L+L1

2

)
.
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Figure 3. Example 1. Left: Computed values of the relative errors eus (identified by blue
◦) and eAs (red �) versus δ for h = 2.21 nm; solid black line indicate δ2 dependence. Right:
Computed values (blue ◦) of the relative error eus versus h for δ = 6.103125e−03 nm; solid red
line indicate h4 dependence.
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Figure 4. Example 2: Domain of a backreflector with a rectangular corrugation.

Let us remark that this kind of corrugation, which is usual in practice, does not satisfy the smoothness as-
sumption on εgr used in the theoretical analysis for Theorem 3.5 to hold. Nevertheless, our numerical experiments
will show that the proposed strategy works for such a piecewise constant functions εgr , too.

Since no analytical solution is know for a backreflector like this, we have used as a reference solution the
FEM solution of the full model (1.7) computed on a very fine mesh (h = 2.21 nm). We denote this reference

solution by ŭ(x, z) and by Ă the corresponding absorptance. Using this reference solution, we have computed
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the relative errors

ĕuq =

(∫
Ω̂γ

|ŭq − û q,hδ,1 |
2 dx dz

)1/2

(∫
Ω̂γ

|ŭq|2 dx dz

)1/2
and ĕAq =

|Ăq −Aq,hδ |
|Ăq|

, q ∈ {s, p} ,

for different values of δ. Notice that since the exact solution depends on δ, the reference solution had to be
computed for each value of this parameter. Let us remark that this FEM reference solution has been validated
in [24] by comparing it with an RCWA solution. In fact, it has been reported in that reference that the FEM
and RCWA solutions agree within 3% in absorptances and within 5% in L2(Ω).

Figure 5 shows error curves for ĕuq and ĕAq versus δ for q = s (left) and q = p (right). These plots show that
the errors ĕus , ĕAs and ĕup decrease with order O(δ2). Instead, the order of convergence of ĕAp is not clear.
However, a least squares fitting of these errors decreases with order around O(δ2), as can be seen in the same
figure.
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Figure 5. Example 2. Computed values of the relative errors ĕuq (identified by blue ◦) and
ĕAq (red �) versus δ for h = 2.21 nm. Solid black lines indicate δ2 dependence. Left: q = s.
Right: q = p; the dash-dotted green line corresponds to a least squares fitting of ĕAp .

According to [24], the solution ŭq(x, z) of the full model contains strong singularities near metallic corners,
due to the type of partial differential equation involved. Hence, in principle, any numerical approximation of the
actual solution is not very accurate, unless the mesh is sufficiently refined in the proximity of these corners. In
practice, this implies dealing with extremely fine meshes and, hence, expensive solutions in terms of computer
cost. This is a classical problem in grating theory [15, 16], specially for p polarization. This issue affects the
numerical solution of the full model [24] as well as those obtained by other approaches as, for instance, the
RCWA method [26] and could affect the asymptotic model as well. However, a clear advantage of the proposed
asymptotic approach is that this kind of overrefined meshes are no longer needed.
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6. Appendix

The main goal of this section is to derive the transmission conditions (2.9), as well as expressions (2.12) for
the near field terms within the grating.

6.1. Equations for the first term of the asymptotic expansions

For n = 0, according to Proposition 2.2, outside the grating layer we have

U0(x, ξ) = u±0 (x, 0), x ∈ (0, L),
1

2
≤ |ξ| ≤ 2. (6.1)

Into the grating, since B(x, δξ) = Bg(x) does not depend on ξ, the first equation in (2.5) reads

∂

∂ξ

(
Bg(x)

∂U0(x, ξ)

∂ξ

)
= 0, x ∈ (0, L), |ξ| ≤ 1

2
,

Then, there exist functions q0(x) and r0(x) such that

U0(x, ξ) = q0(x) +
r0(x)

Bg(x)
ξ, x ∈ (0, L), |ξ| ≤ 1

2
, (6.2)

Since U0 is continuous on ξ = ± 1
2 , we have that

U0

(
x, 1

2

−
)

= U0

(
x, 1

2

+
)

=⇒ q0(x) +
1

2

r0(x)

Bg(x)
= u+

0 (x, 0),

U0

(
x,− 1

2

+
)

= U0

(
x,− 1

2

−
)

=⇒ q0(x)− 1

2

r0(x)

Bg(x)
= u−0 (x, 0).

while, from the continuity of B ∂U0

∂ξ ,

Bg(x)
∂U0

∂ξ

(
x, 1

2

−
)

= B+ ∂U0

∂ξ

(
x, 1

2

+
)

=⇒ r0(x) = 0,

Bg(x)
∂U0

∂ξ

(
x,− 1

2

+
)

= B−
∂U0

∂ξ

(
x,− 1

2

−
)

=⇒ r0(x) = 0.

Therefore, r0(x) vanishes and u+
0 (x, 0) = q0(x) = u−0 (x, 0). Hence, (6.1) and (6.2) imply that

U0(x, ξ) = u+
0 (x, 0) = u−0 (x, 0), x ∈ (0, L), |ξ| ≤ 2. (6.3)

In particular, U0 does not depend on ξ. Moreover, this implies that u0 is continuous across Γ, so that

[u0] (x) = u+
0 (x, 0)− u−0 (x, 0) = 0, x ∈ (0, L),

and

〈u0〉 (x) =
u+

0 (x, 0) + u−0 (x, 0)

2
= U0(x), x ∈ (0, L). (6.4)

Note that since U0 does not depend on ξ, here and in what follows we make the abuse of language of writing
U0(x) instead of U0(x, ξ).
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6.2. Equations for the second term of the asymptotic expansions

For n = 1, according to Proposition 2.2, outside the grating layer we have

U1(x, ξ) = u±1 (x, 0) + ξ
∂u±0
∂z

(x, 0), x ∈ (0, L),
1

2
≤ |ξ| ≤ 2,

while, into the grating, the first equation in (2.5) reads

∂

∂ξ

(
Bg(x)

∂U1(x, ξ)

∂ξ

)
= 0, x ∈ (0, L), |ξ| ≤ 1

2
.

Then, there exist functions q1(x) and r1(x) such that

U1(x, ξ) = q1(x) +
r1(x)

Bg(x)
ξ, x ∈ (0, L), |ξ| ≤ 1

2
. (6.5)

Proceeding as in the previous step, from the continuity of U1 and B ∂U1

∂ξ on ξ = ± 1
2 we obtain

u±1 (x, 0)± 1

2

∂u±0
∂z

(x, 0) = q1(x)± 1

2

r1(x)

Bg(x)
, (6.6)

B+ ∂u
+
0

∂z
(x, 0) = r1(x) = B−

∂u−0
∂z

(x, 0). (6.7)

From the latter, we derive [
B
∂u0

∂z

]
(x) = 0,

and 〈
B
∂u0

∂z

〉
(x) = r1(x). (6.8)

For the jump of u1 across Γ, by subtracting both expressions in (6.6) we obtain

[u1] (x) = −1

2

∂u−0
∂z

(x, 0)− 1

2

∂u+
0

∂z
(x, 0) +

r1(x)

Bg(x)
= − 1

2B−
r1(x)− 1

2B+
r1(x) +

r1(x)

Bg(x)
,

where we have used (6.7) for the last equality. Then, (6.8) leads to

[u1](x) =

(
1

Bg(x)
−
〈

1

B

〉)〈
B
∂u0

∂z

〉
(x), x ∈ (0, L).

Finally, to obtain from (6.5) an expression for U1 into the grating, we need expressions of q1 and r1. For the
latter, we already have (6.8). For the former, we average both equations in (6.6) and obtain

q1(x) = 〈u1〉 (x) +
1

4

∂u+
0

∂z
(x, 0)− 1

4

∂u−0
∂z

(x, 0) = 〈u1〉 (x) +
1

4B+
r1(x)− 1

4B−
r1(x),

where we have used (6.7) for the last equality. Then, substituting this into (6.5) and using (6.8) to eliminate
r1(x) leads to

U1(x, ξ) = 〈u1〉 (x) +

(
ξ

Bg(x)
+

1

4

[
1

B

])〈
B
∂u0

∂z

〉
(x), x ∈ (0, L), |ξ| ≤ 1

2
. (6.9)
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6.3. Equations for the third term of the asymptotic expansions

For n = 2, according to Proposition 2.2, outside the grating layer we have

U2(x, ξ) = u±2 (x, 0) + ξ
∂u±1
∂z

(x, 0) +
ξ2

2

∂2u±0
∂z2

(x, 0), x ∈ (0, L),
1

2
≤ |ξ| ≤ 2. (6.10)

Into the grating, since B(x, δξ) = Bg(x), b(x, δξ) = bg(x) and U0(x) do not depend on ξ, the first equation in
(2.5) reads

∂

∂ξ

(
Bg(x)

∂U2(x, ξ)

∂ξ

)
= −

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
, x ∈ (0, L), |ξ| ≤ 1

2

and, hence, there exist functions q2(x) and r2(x) such that

U2(x, ξ) = q2(x) +
r2(x)

Bg(x)
ξ − 1

2Bg(x)

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
ξ2, x ∈ (0, L), |ξ| ≤ 1

2
.

(6.11)
Since U2 is continuous on ξ = ± 1

2 , by equating (6.10) and (6.11) at those values of ξ, we obtain

u±2 (x, 0)± 1

2

∂u±1
∂z

(x, 0) +
1

8

∂2u±0
∂z2

(x, 0) = q2(x)± r2(x)

2Bg(x)
− 1

8Bg(x)

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
.

Then, averaging and subtracting both equations above, we obtain

q2(x) =
1

2
u+

2 (x, 0) +
1

2
u−2 (x, 0) +

1

4

∂u+
1

∂z
(x, 0)− 1

4

∂u−1
∂z

(x, 0) +
1

16

∂2u+
0

∂z2
(x, 0) +

1

16

∂2u−0
∂z2

(x, 0)

+
1

8Bg(x)

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
(6.12)

and

r2(x) = Bg(x)

(
u+

2 (x, 0)− u−2 (x, 0) +
1

2

∂u+
1

∂z
(x, 0) +

1

2

∂u−1
∂z

(x, 0) +
1

8

∂2u+
0

∂z2
(x, 0)− 1

8

∂2u−0
∂z2

(x, 0)

)
. (6.13)

Note that both functions, q2(x) and r2(x), are infinitely smooth in [0, L].
On the other hand, since B ∂U2

∂ξ is also continuous on ξ = ± 1
2 , differentiating (6.10) and (6.11) with respect

to ξ and evaluating at those values of ξ lead to

B±
∂u±1
∂z

(x, 0)±B± ∂
2u±0
∂z2

(x, 0) = ∓1

2

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
+ r2(x).

For the jump of B ∂u1

∂z across Γ, we subtract the equations above and obtain[
B
∂u1

∂z

]
(x) = −

(
∂

∂x

(
Bg(x)

∂U0(x)

∂x

)
+ k2

0b
g(x)U0(x)

)
−B+ ∂

2u+
0

∂z2
(x, 0)−B− ∂

2u−0
∂z2

(x, 0), x ∈ (0, L).

(6.14)

However, this equation involves the undetermined quantities
∂2u±0
∂z2 (x, 0). To eliminate them, we resort again to

the first equation in (2.5), now for |ξ| ≥ 1
2 . Since in such a case, B(x, δξ) = B± and b(x, δξ) = b±, the equation

reads
∂

∂ξ

(
B±

∂U2(x, ξ)

∂ξ

)
= −

(
∂

∂x

(
B±

∂U0(x)

∂x

)
+ k2

0b
±U0(x)

)
, x ∈ (0, L),

1

2
≤ |ξ| ≤ 2.
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Hence, as above, there exist functions q±2 (x) and r±2 (x) such that

U2(x, ξ) = q±2 (x) +
r±2 (x)

B±
ξ − 1

2B±

(
∂

∂x

(
B±

∂U0(x)

∂x

)
+ k2

0b
±U0(x)

)
ξ2, x ∈ (0, L),

1

2
≤ |ξ| ≤ 2.

Since (6.10) holds true in the same domain, identifying both expressions we derive that

u±2 (x, 0) = q±2 (x),
∂u±1
∂z

(x, 0) =
r±2 (x)

B±
and

1

2

∂2u±0
∂z2

(x, 0) = − 1

2B±

(
∂

∂x

(
B±

∂U0(x)

∂x

)
+ k2

0b
±U0(x)

)
.

Then, using the last equation and (6.4) in (6.14), we obtain[
B
∂u1

∂z

]
(x) = − ∂

∂x

(
(Bg(x)− 〈B〉) ∂ 〈u0〉

∂x
(x)

)
− k2

0 (bg(x)− 〈b〉) 〈u0〉 (x), x ∈ (0, L).

The equations derived above that appear within boxes have been claimed to hold without a proof in Section 2.
In fact, they correspond either to the transmission conditions (2.9) or to equations (2.12) for the near field in
the grating. To end this paper, we use some of the equations derived above to prove the following result, which
has been used in the proof of Lemma 3.4.

Lemma 6.1. U δ0 , Uδ1 and Uδ2 are infinitely differentiable with respect to x in Oδ and their x-derivatives are
uniformly bounded independently of δ.

Proof. Out of the grating, there is nothing to prove. In fact, according to Assumption 3, Un(x, ξ) are infinitely
smooth for 1

2 ≤ |ξ| ≤ 2 and, then, U δn(x, z) are infinitely smooth for δ
2 ≤ |z| ≤ 2δ.

Into the grating (|z| ≤ δ
2 ), we must recall the assumed smoothness of εgr(x) and u±n (cf. Assumption 2 for the

latter). Then, the property for Uδ0 holds immediately because of (6.3). For U δ1 , it follows from (6.9). Finally,
for U δ2 it is derived from (6.11), (6.12), (6.13) and the already proved smoothness of U0(x). �
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