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Abstract

We propose a new fully-mixed formulation for the stationary Oberbeck-Boussinesq problem when
viscosity depends on both temperature and concentration. Following similar ideas applied pre-
viously to the Boussinesq and Navier-Stokes equations, we incorporate the velocity gradient and
the Bernoulli stress tensor as auxiliary unknowns of the fluid equations. In turn, the gradients
of temperature and of concentration, in addition to a Bernoulli vector, are introduced as further
variables of the heat and mass transfer equations. Consequently, a dual-mixed approach with
Dirichlet data is defined in each sub-system, and the well-known Banach and Brouwer theorems
are combined with Babuška-Brezzi’s theory in each independent set of equations, yielding the solv-
ability of the continuous and discrete schemes. Next, we describe specific finite element subspaces
satisfying appropriate stability requirements, and derive optimal a priori error estimates. Finally,
several numerical examples illustrating the performance of the fully-mixed scheme and confirming
the theoretical rates of convergence are presented.
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1 Introduction

Natural convection in porous media is of paramount interest due to its applicability in many environ-
mental and technological processes. Typical examples include seawater flow, mantle flow in the earths
crust, water movement in geothermal reservoirs, underground spreading of chemical wastes and other
pollutants, grain storage, thermal insulation, evaporative cooling and solidification [19, 40, 41], among
others. When both the temperature and concentration differences occur simultaneously, the flow can
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become quite complex. A mathematical description of this kind of flows, in the so-called Oberbeck-
Boussinesq approximation framework, is given by the incompressible Navier-Stokes/Brinkman equa-
tions for describing the underlying hydrodynamic in the porous media, and the advection-diffusion
equations for both the substance concentration and the temperature, nonlinearly coupled via convec-
tive mass and heat transfer.

Motivated by the vast possible applications and the challenging mathematical structure of the
nonlinearly coupled system, the interest in analyzing and developing efficient numerical techniques
to simulate this and related phenomena has significantly increased (see [1, 2, 3, 5, 6, 8, 10, 13, 15,
21, 23, 22, 26, 28, 29, 31, 32, 34, 36, 39, 42, 44, 46, 47, 48], and the references therein). Those
include numerical algorithms based on finite volume approaches, standard finite element techniques,
parallel and projection-based stabilization methods, spectral collocation methods, control theory, and
mixed finite element methods; and concentrate on heat-driven flows and double-diffusion convection,
including cases in which the phenomena occurs in porous enclosures, with either constant or variable
physical parameters and even time-dependent models.

More closely related contributions dealing with the phenomenon we address in the present work
are [15, 21]. In [21], the authors propose a projection-based stabilization method for the Darcy-
Brinkman system in double-diffusive convection in unsteady state. They focus on the convergence
of the velocity, temperature and concentration in the semi-discrete case and present some numerical
experiments to compare with previous studies. There, it is also confirmed that the proposed method
provide optimal order of errors and that the results are in agreement with benchmark data. On the
other hand, in [15] a divergence-conforming primal formulation for double-diffusive viscous flow in
porous media is constructed and analyzed. The well-posedness of the respective discrete scheme and
convergence properties are derived rigorously. In particular, the authors present numerical examples
confirming the predicted rates of error and state that their scheme produces exactly divergence-free
velocity approximations.

In certain applications some additional physically relevant variables, such as the gradient of the
fluid velocity or the concentration and the temperature variations, might reveal specific mechanisms
of the phenomena, and hence become of primary interest. Whilst these variables could be obtained
via numerical integration of the discrete solutions provided by standard methods, this certainly would
lead to a loss of accuracy or deteriorate the expected convergence order. In light of this, the purpose
of this work is precisely to construct, analyze and implement a new high-order optimally convergent
technique based on mixed finite elements for simulating double-diffusive convection in porous media,
in which the velocity gradient, the temperature gradient and the concentration gradient are primary
unknowns of interest.

To that end, we extend the theory developed in [22], for heat driven flows, and introduce the stress
and the velocity gradient as auxiliary variables in the fluid equations, whereas in the temperature
and the concentration equations are introduced the respective gradients and a vector version of the
Bernoulli tensor that combines advective and diffusive heat and concentration fluxes, respectively. As
a consequence, the resulting formulation retains the same saddle-point structure on reflexive Banach
spaces for both the Navier-Stokes/Darcy and the thermal energy conservation equations. The latter
feature constitutes a clear advantage (essentially from the theoretical point of view) since the contin-
uous and discrete analyses for the two sub-models can be carried out separately and very much in the
same way. Indeed, the well-known Banach and Brouwer theorems, combined with the application of
the Babuška-Brezzi theory to each independent equation, lead to the solvability of the continuous and
discrete schemes. It is further shown that Raviart-Thomas spaces of order k ≥ n− 1 for the Bernoulli
tensor and its vector version, and piecewise polynomials of degree ≤ k for the velocity, the tempera-
ture, the concentration, and all gradients, are an adequate choice. This implies in particular, that the
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primal unknowns of velocity, pressure, temperature, and concentration end up being approximated by
discontinuous functions, which can be appealing when rough solutions are expected.

Some advantages that this new method provides include:

(a) the pressure is eliminated by its own definition of associated function spaces and can be recovered
by a simple postprocessing calculation,

(b) a reduced regularity requirement on the temperature and the concentration fields, allowing for
more flexibility when choosing particular finite element spaces,

(c) the trace-free velocity gradient and the temperature and the concentration gradients become
primary unknowns,

(d) differently from the methods constructed in [10, 15, 23, 25, 42], the Dirichlet boundary conditions
for the temperature and concentration are naturally introduced into the formulation, avoiding
the use of either an extension or a Lagrange multiplier on the boundary via a weak imposition,

(e) this scheme does not involve any augmentation term (as done, e.g. in [4, 5, 6, 8, 9]), avoid-
ing restrictions regarding stabilization parameters for the well-posedness of the continuous and
discrete problem as well as the convergence of the method.

(f) the analysis developed in this work can be adapted to a more general model in which cross-
diffusion effects take place.

The rest of this work is organized as follows. At the end of the present section we describe some
standard notations and functional spaces. In Section 2 we state the governing equations in strong
primal form and in strong mixed form. Next, the continuous variational formulation is derived in
Section 3, which, after decoupling the fluid equation from the heat and mass transfer equations,
is rewritten as a fixed-point operator equation. The solvability analysis is performed by means of
the Banach version of the classical Babuška-Brezzi theory, and the Banach fixed-point theorem. In
Section 4 we define the Galerkin scheme with arbitrary finite element subspaces satisfying suitable
assumptions, and follow basically the same techniques employed in Section 3 to analyze its solvability.
We then specify finite element subspaces satisfying the assumptions stipulated in Section 4. Our
analysis makes use of a sufficiency result developed in [22] (see, also [35]) for the occurrence of inf-sup
conditions on products of reflexive Banach spaces. Furthermore, in Section 5 we assume sufficiently
small data to derive an a priori error estimate for the Galerkin scheme with arbitrary finite element
subspaces verifying the hypotheses from Section 4. Finally, several numerical examples illustrating
the performance of our fully-mixed formulation with the particular subspaces proposed in Section 4,
are reported in Section 6.

Recurrent notation and preliminaries

Let us denote by Ω ⊆ Rn, n ∈ {2, 3} a given bounded domain with polyhedral boundary Γ, and denote
by ν the outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces
Lp(Ω) and Sobolev spaces Ws,p(Ω), with s ∈ R and p > 1, whose corresponding norms, either for the
scalar, vectorial, or tensorial case, are denoted by ‖ · ‖0,p;Ω and ‖ · ‖s,p;Ω, respectively. In particular,
given a non-negative integer m, Wm,2(Ω) is also denoted by Hm(Ω), and the notations of its norm
and seminorm are simplified to || · ||m,Ω and | · |m,Ω, respectively. Given a generic scalar functional
space M, we let M and M be the corresponding vectorial and tensorial counterparts, whereas ‖ · ‖,
with no subscripts, will be employed for the norm of any element or operator whenever there is no
confusion about the space to which they belong. Furthermore, as usual I stands for the identity tensor
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in Rn×n, and | · | denotes the Euclidean norm in Rn. In turn, for any vector fields v = (vi)i=1,n and
w = (wi)i=1,n we set the tensor product operator as v⊗w := (viwj)i,j=1,n. In addition, for any tensor
fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence operator div acting along
the rows of τ , and denote by τ t, tr(τ ), and τ d, the transpose, the trace, and the deviatoric tensor
of τ , respectively, and define the tensor inner product between τ and ζ as τ : ζ :=

∑n
i,j=1 τijζij .

Next, we introduce the Banach spaces H(div4/3; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L4/3(Ω)

}
and

H(div4/3; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L4/3(Ω)

}
, equipped with the natural norms

‖τ‖div4/3;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,4/3;Ω and ‖τ‖div4/3;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,4/3;Ω .

In addition, H1/2(Γ) is the space of traces of functions of H1(Ω) and H−1/2(Γ) is its dual. Also, by
〈·, ·〉Γ we will denote the duality pairing between H−1/2(Γ) and H1/2(Γ) (and also between H−1/2(Γ)
and H1/2(Γ)).

2 Governing equations

The stationary Oberbeck-Boussinesq problem is constituted by the incompressible Navier-Stokes-
Brinkman equation coupled with the heat and mass transfer equations through a convective term
and a buoyancy term acting in opposite direction to gravity. The problem of interest (without di-
mensionless numbers for readability purposes) reduces to: Find a velocity field u, a pressure field p, a
temperature field ϕ1 and a concentration field ϕ2, both defining a vector ϕ :=

(
ϕ1, ϕ2

)
, such that

γ u − 2div(µ(ϕ) e(u)) + (∇u)u +∇p− (ϑ ·ϕ)g = 0 in Ω ,

div u = 0 in Ω ,

−div
(
K1∇ϕ1

)
+ u · ∇ϕ1 = 0 in Ω ,

−div
(
K2∇ϕ2

)
+ u · ∇ϕ2 = 0 in Ω ,

(2.1)

where γ is a positive constant given by the reciprocal of the Darcy number Da, µ : R×R+ −→ R+ is
the viscosity of the fluid, which is assumed to depend on both the temperature and the concentration

of mass, e(u) :=
1

2

{
∇u + (∇u)t

}
is the rate of strain tensor, ϑ :=

(
ϑ1, ϑ2

)
is a vector containing

expansion coefficients, g ∈ L∞(Ω) is an external force per unit mass, and Kj ∈ L∞(Ω), j ∈
{

1, 2
}

,
are uniformly positive definite tensors allowing the possibility of anisotropy (cf. [37]). In addition, µ
is assumed bounded and Lipschitz continuous, i.e., there exist µ1, µ2, Lµ > 0, such that

µ1 ≤ µ(φ) ≤ µ2 and |µ(φ)− µ(ψ)| ≤ Lµ |φ−ψ| ∀φ, ψ ∈ R× R+ , (2.2)

where | · | denotes from on the euclidean norm of Rn, n ∈
{

1, 2, 3
}

. Equations (2.1) are complemented
with Dirichlet boundary conditions for the velocity, the temperature, and the concentration, that is

u = uD , ϕ1 = ϕ1,D , and ϕ2 = ϕ2,D on Γ , (2.3)

with given data uD ∈ H1/2(Γ), ϕ1,D ∈ H1/2(Γ) and ϕ2,D ∈ H1/2(Γ). Owing to the incompressibility
of the fluid and the Dirichlet boundary condition for u, the datum uD must satisfy the compatibility
condition

∫
Γ uD · ν = 0. In addition, due to the first equation of (2.1), and in order to guarantee

uniqueness of the pressure, this unknown will be sought in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.
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On the other hand, in order to derive a fully-mixed formulation for (2.1) - (2.3), in which the
Dirichlet boundary conditions become natural ones, we now proceed as in [22, Section 2] (see similar
approaches in [4], [6], [24], and [25]), and introduce the velocity gradient and the Bernoulli stress
tensor as further unknowns, that is

t := ∇u and σ := 2µ(ϕ)tsym −
1

2
(u⊗ u)− pI , (2.4)

where tsym :=
1

2
{t+ tt} is the symmetric part of t. In this way, and noting thanks to the incompress-

ibility condition that div(u⊗ u) = (∇u)u, we find that the first equation of (2.1) becomes

γu− divσ +
1

2
tu − (ϑ ·ϕ)g = 0 .

In turn, applying the matrix trace to the expression defining σ and using that tr(tsym) = div u = 0,
one arrives at

p = − 1

2n
tr
(
2σ + u⊗ u

)
, (2.5)

which, replaced back into the second equation of (2.4), yields what we call from now on the new
constitutive law of the fluid, namely

σd = 2µ(ϕ)tsym −
1

2
(u⊗ u)d . (2.6)

Conversely, starting from (2.5) and (2.6) we readily recover the incompressibility condition and the
original definition of σ, whence these pair of equations are actually equivalent. Furthermore, for the
heat and mass transfer equations we proceed similarly as for the fluid, so that following now [22, eq.
(2.7)], we introduce for each j ∈

{
1, 2
}

the auxiliary unknowns

t̃j := ∇ϕj and σ̃j := Kj t̃j −
1

2
ϕj u . (2.7)

They represent respectively the gradients and the total (diffusive plus advective) fluxes for temperature
and concentration of solutes. Observing again from the incompressibility condition that in this case
there holds div(ϕj u) = ∇ϕj ·u = t̃j ·u, our model problem (2.1) is re-stated as follows: Find (u, t,σ)
and (ϕj , t̃j , σ̃j), j ∈

{
1, 2
}

, in suitable spaces to be indicated below such that

∇u = t in Ω ,

γu− divσ +
1

2
tu − (ϑ ·ϕ)g = 0 in Ω ,

2µ(ϕ)tsym −
1

2
(u⊗ u)d = σd in Ω ,

∇ϕj = t̃j in Ω ,

Kj t̃j −
1

2
ϕj u = σ̃j in Ω ,

−div σ̃j +
1

2
t̃j · u = 0 in Ω ,

u = uD and ϕ = ϕD on Γ ,∫
Ω

tr(2σ + u⊗ u) = 0 ,

(2.8)
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where the Dirichlet datum for ϕ is certainly given by ϕD :=
(
ϕ1,D, ϕ2,D

)
. At this point we stress

that, as suggested by (2.5), p is eliminated from the present formulation and computed afterwards in
terms of σ and u by using that identity. This fact justifies the last equation in (2.8), which aims to
ensure that the resulting p does belong to L2

0(Ω).

3 Well-posedness of the continuous problem

In this section we derive a weak formulation for (2.8) and analyze its properties reusing most of the
arguments that hold for the Boussinesq model in [22, eq. (2.8)], that is, we decouple the advection-
diffusion equations from the fluid equations using a fixed-point argument. The main differences reside
in the presence of an extra first order term γu and the mass transfer equation, but the overall structure
of the problem remains unchanged.

3.1 The fully-mixed formulation

Proceeding in a standard manner, we arrive at the following weak form of (2.8): Find (u, t,σ) ∈
L4(Ω)×L2

tr(Ω)×H(div4/3; Ω), and (ϕj , t̃j , σ̃j) ∈ L4(Ω)×L2(Ω)×H(div4/3; Ω), j ∈
{

1, 2
}

, such that∫
Ω

tr(2σ + u⊗ u) = 0, and∫
Ω
γu · v −

∫
Ω

v · div(σ) +
1

2

∫
Ω

tu · v =

∫
Ω

(ϑ ·ϕ)g · v ∀v ∈ L4(Ω) ,∫
Ω

2µ(ϕ)tsym : s − 1

2

∫
Ω

(u⊗ u)d : sd =

∫
Ω
σd : sd ∀ s ∈ L2

tr(Ω) ,∫
Ω
τ : t +

∫
Ω

u · div(τ ) = 〈τν,uD〉Γ ∀ τ ∈ H(div4/3; Ω) , (3.1)

−
∫

Ω
ψj div(σ̃j) +

1

2

∫
Ω
ψj t̃j · u = 0 ∀ψj ∈ L4(Ω) ,∫

Ω
Kj t̃j · s̃j −

1

2

∫
Ω
ϕju · s̃j =

∫
Ω
σ̃j · s̃j ∀ s̃j ∈ L2(Ω) ,∫

Ω
τ̃ j · t̃j +

∫
Ω
ϕj div(τ̃ j) = 〈τ̃ j · ν, ϕj,D〉Γ ∀ τ̃ j ∈ H(div4/3; Ω) ,

where the Dirichlet boundary conditions for u and ϕ has been employed in the derivation of the
foregoing weak formulation. Note here that the continuous injection of H1(Ω) in L4(Ω) (resp. the
continuous injection of H1(Ω) in L4(Ω)) guarantees that τν (resp. τ̃ j · ν) is well defined and belongs
to H−1/2(Γ) (resp. H−1/2(Γ)) when τ ∈ H(div4/3; Ω) (resp. τ̃ j ∈ H(div4/3; Ω)). On the other hand,
notice that we look for t in L2

tr(Ω) due to the incompressibility condition, where

L2
tr(Ω) :=

{
s ∈ L2 : tr(s) = 0

}
.

We now consider, as in [22, eqs. (3.8) and (3.9)], the orthogonal decomposition (cf., e.g. [30, 43])

H(div4/3; Ω) = H0(div4/3; Ω) ⊕ RI , with H0(div4/3; Ω) :=
{
ζ ∈ H(div4/3; Ω) :

∫
Ω

tr(ζ) = 0
}
, (3.2)

and (3.2) together with

∫
Ω

tr(2σ + u⊗ u) = 0, imply that σ can be uniquely decomposed as

σ = σ0 + c0 I , with σ0 ∈ H0(div4/3; Ω) and c0 := − 1

2n|Ω|

∫
Ω

tr(u⊗ u) . (3.3)
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Making abuse of notation, we will continue to denote σ0 as simply σ ∈ H0(div4/3; Ω), and instead
of (3.1) consider the equivalent formulation: Find (u, t,σ) ∈ L4(Ω) × L2

tr(Ω) × H0(div4/3; Ω), and

(ϕj , t̃j , σ̃j) ∈ L4(Ω) × L2(Ω) × H(div4/3; Ω), j ∈
{

1, 2
}

, such that (3.1) holds for all (v, s, τ ) ∈
L4(Ω)×L2

tr(Ω)×H0(div4/3; Ω), and (ψj , s̃j , τ̃ j) ∈ L4(Ω)×L2(Ω)×H(div4/3; Ω), j ∈
{

1, 2
}

. For sake
of clarity in the presentation we introduce the following vector quantities

→
u := (u, t) ,

→
v := (v, s) ,

→
u0 := (u0, t0) ∈ L4(Ω)× L2

tr(Ω) ,

and
→
ϕj := (ϕj , t̃j) ,

→
ψj := (ψj , s̃j) ∈ L4(Ω)× L2(Ω) ,

with their corresponding norms given by

‖→u‖ := ‖u‖0,4;Ω + ||t||0,Ω ∀→u ∈ L4(Ω)× L2
tr(Ω) , (3.4)

‖→ϕj‖ := ‖ϕj‖0,4;Ω + ||̃tj ||0,Ω ∀→ϕj ∈ L4(Ω)× L2(Ω) . (3.5)

Then, the fully-mixed formulation for the coupled problem reads: Find (
→
u,σ) ∈

(
L4(Ω)× L2

tr(Ω)
)
×

H0(div4/3; Ω) and (
→
ϕj , σ̃j) ∈

(
L4(Ω)× L2(Ω)

)
×H(div4/3; Ω), j ∈

{
1, 2
}

, such that

aϕ(
→
u,
→
v) + c(u;

→
u,
→
v) + b(

→
v ,σ) = Fϕ(

→
v) ∀→v ∈

(
L4(Ω)× L2

tr(Ω)
)
,

b(
→
u, τ ) = G(τ ) ∀ τ ∈ H0(div4/3; Ω) ,

ãj(
→
ϕj ,

→
ψj) + c̃u(

→
ϕj ,

→
ψj) + b̃(

→
ψj , σ̃j) = 0 ∀

→
ψj ∈

(
L4(Ω)× L2(Ω)

)
,

b̃(
→
ϕj , τ̃ j) = G̃j(τ̃ j) ∀ τ̃ j ∈ H(div4/3; Ω) ,

(3.6)

where, given arbitrary (w,φ) ∈ L4(Ω) × L4(Ω), the forms aφ, b, c(w; ·, ·), ãj , b̃, and c̃w, and the

functionals Fφ, G, and G̃j , are defined by

aφ(
→
u,
→
v) :=

∫
Ω
γu · v +

∫
Ω

2µ(φ)tsym : s , b(
→
v , τ ) := −

∫
Ω
τ : s −

∫
Ω

v · div(τ ) , (3.7)

c(w;
→
u,
→
v) :=

1

2

{∫
Ω

tw · v −
∫

Ω
(u⊗w)d : sd

}
, (3.8)

for all
→
u := (u, t),

→
v := (v, s) ∈ L4(Ω)× L2

tr(Ω), for all τ ∈ H0(div4/3; Ω),

ãj(
→
ϕj ,

→
ψj) :=

∫
Ω
Kj t̃j · s̃j , b̃(

→
ψj , τ̃ j) := −

∫
Ω
τ̃ j · s̃j −

∫
Ω
ψjdiv(τ̃ j) ,

c̃w(
→
ϕj ,

→
ψj) :=

1

2

{∫
Ω
ψj t̃j ·w −

∫
Ω
ϕjw · s̃j

}
,

(3.9)

for all
→
ϕj := (ϕj , t̃j),

→
ψj := (ψj , s̃j) ∈ L4(Ω)× L2(Ω), for all τ̃ j ∈ H(div4/3; Ω), and

Fφ(
→
v) :=

∫
Ω

(ϑ · φ)g · v , G(τ ) := −〈τ ν,uD〉Γ , G̃j(τ̃ j) := −〈τ̃ j · ν, ϕj,D〉Γ , (3.10)

for all
→
v := (v, s) ∈ L4(Ω)× L2

tr(Ω), for all τ ∈ H0(div4/3; Ω), for all τ̃ j ∈ H(div4/3; Ω).

In what follows we proceed similarly as in [9, 23] to prove that problem (3.6) is well-posed. More
precisely, in Section 3.2 we will reformulate (3.6) as an equivalent fixed-point equation in terms of a
suitable operator T . Then, in Section 3.3 we show that T is well-defined, and finally in Section 3.4 we
apply the classical Banach theorem to conclude that T has a unique fixed point.
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3.2 The fixed-point approach

We first let S : L4(Ω)× L4(Ω) −→ L4(Ω) be the operator defined by

S(w,φ) := u ∀ (w,φ) ∈ L4(Ω)× L4(Ω) ,

where (
→
u,σ) :=

(
(u, t),σ

)
∈
(
L4(Ω)×L2

tr(Ω)
)
×H0(div4/3; Ω) is the unique solution (to be confirmed

below) of the problem:

aφ(
→
u,
→
v) + c(w;

→
u,
→
v) + b(

→
v ,σ) = Fφ(

→
v) ∀→v ∈ L4(Ω)× L2

tr(Ω) ,

b(
→
u, τ ) = G(τ ) ∀ τ ∈ H0(div4/3; Ω) .

(3.11)

In turn, for each j ∈
{

1, 2
}

we let S̃j : L4(Ω) −→ L4(Ω) be the operator given by

S̃j(w) := ϕj ∀w ∈ L4(Ω) ,

where (
→
ϕj , σ̃j) :=

(
(ϕj , t̃j), σ̃j

)
∈
(
L4(Ω) × L2(Ω)

)
× H(div4/3; Ω) is the unique solution (to be

confirmed below) of the problem:

ãj(
→
ϕj ,

→
ψj) + c̃w(

→
ϕj ,

→
ψj) + b̃(

→
ψj , σ̃j) = 0 ∀

→
ψj ∈ L4(Ω)× L2(Ω) ,

b̃(
→
ϕj , τ̃ j) = G̃j(τ̃ j) ∀ τ̃ j ∈ H(div4/3; Ω) ,

(3.12)

so that we can introduce S̃(w) :=
(
S̃1(w), S̃2(w)

)
∈ L4(Ω) for all w ∈ L4(Ω). Having defined the

mappings S and S̃, we now set T : L4(Ω)× L4(Ω) −→ L4(Ω)× L4(Ω) as

T (w,φ) :=
(
S(w,φ), S̃

(
S(w,φ)

))
∀ (w,φ) ∈ L4(Ω)× L4(Ω) , (3.13)

and realize that solving (3.6) is equivalent to finding (u,ϕ) ∈ L4(Ω)× L4(Ω) such that

T (u,ϕ) = (u,ϕ) .

3.3 Well-definedness of the fixed-point operator

In what follows we show that T is well-defined, reducing to prove that the uncoupled problems (3.11)
and (3.12) are well-posed. These results will be straightforward consequences of the Banach version
of the Babuška-Brezzi theory (cf. [27, Theorem 2.34]). Note that the problems in (3.12) only differ in
the bilinear forms ãj and the functionals G̃j on the right-hand side of the second equation. However,
since the tensors Kj defining the forms ãj satisfy exactly the same properties, the required hypotheses

need to be checked only for a generic ãj and for b̃.

We begin our analysis by observing, as in [22, eqs. (3.30), (3.31)], that the kernels of the operators
induced by the bilinear forms b and b̃, are given by V and Ṽ, respectively, where

V :=
{→

v = (v, s) ∈ L4(Ω)× L2
tr(Ω) : ∇v = s and v ∈ H1

0(Ω)
}
, (3.14)

and

Ṽ :=
{→
ψj = (ψj , s̃j) ∈ L4(Ω)× L2(Ω) : ∇ψj = s̃j and ψj ∈ H1

0(Ω)
}
. (3.15)
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Next, we introduce the spaces H := L4(Ω) × L2
tr(Ω) and H̃ := L4(Ω) × L2(Ω), with norms given by

(3.4) and (3.5), and readily establish the boundedness of aφ, b, ãj , and b̃, by using the Cauchy-Schwarz
inequality, the bound for µ (cf. (2.2)), and the fact that Kj ∈ L∞(Ω). More precisely, there hold

aφ(
→
u,
→
v) ≤ (|Ω|1/2γ + 2µ2) ‖→u‖ ‖→v‖ ∀φ ∈ L4(Ω) , ∀→u, →v ∈ H , (3.16)

b(
→
v , τ ) ≤ ‖→v‖ ‖τ‖div4/3;Ω ∀→v ∈ H , ∀ τ ∈ H0(div4/3; Ω) , (3.17)

ãj(
→
ϕj ,

→
ψj) ≤ ‖Kj‖0,∞;Ω ‖

→
ϕj‖ ‖

→
ψj‖ ∀→ϕj ,

→
ψj ∈ H̃ , (3.18)

b̃(
→
ψj , τ̃ j) ≤ ‖

→
ψj‖ ‖τ̃ j‖div4/3;Ω ∀

→
ψj ∈ H̃ , ∀ τ̃ j ∈ H(div4/3; Ω) . (3.19)

In turn, the following lemma establishes the ellipticity of the bilinear forms aφ and ãj .

Lemma 3.1 There exist positive constants α and α̃j such that

aφ(
→
v ,
→
v) ≥ α ‖→v‖2 ∀φ ∈ L4(Ω) , ∀→v ∈ V , (3.20)

and

ãj(
→
ψj ,

→
ψj) ≥ α̃j ‖

→
ψj‖2 ∀

→
ψj ∈ Ṽ . (3.21)

Proof. Given
→
v = (v, s) ∈ V and φ ∈ L4(Ω), we know from (3.14) that ∇v = s and v ∈ H1

0(Ω),
which yields e(v) = ssym. Hence, applying the lower bound of µ (cf. (2.2)), the Korn inequality in
H1

0(Ω), the continuous injection i : H1(Ω) −→ L4(Ω), and the Friedrichs-Poincaré inequality with
constant cp, we obtain

aφ(
→
v ,
→
v) =

∫
Ω
γv · v +

∫
Ω

2µ(φ)ssym : ssym ≥ 2µ1 ‖ssym‖20,Ω = 2µ1 ‖e(v)‖20,Ω

≥ µ1 |v|21,Ω =
µ1

2
|v|21,Ω +

µ1

2
‖s‖20,Ω ≥

µ1cp
2‖i‖2

‖v‖20,4;Ω +
µ1

2
‖s‖20,Ω ,

which implies (3.20) with α depending on µ1, cp, and ‖i‖. The proof of (3.21), using that Kj is a
uniformly positive definite tensor, and proceeding analogously to the one of (3.20), is omitted. �

We find it important to remark that the V-ellipticity of aφ does not depend on γ. This property
will remain valid for the discrete case, and therefore this constant could be chosen arbitrarily small.
In particular, while γ is related to Darcy’s number, it could also arise from time discretization of the
evolutionary problem. Next, we recall from [22] that b and b̃ (cf. (3.7) and (3.9)) verify the inf-sup
condition corresponding to the Banach version of the Babuška-Brezzi theory.

Lemma 3.2 There exist positive constants β and β̃ such that

sup
→
v ∈H
→
v 6=0

b(
→
v , τ )

‖→v‖
≥ β ‖τ‖div4/3;Ω ∀ τ ∈ H0(div4/3; Ω) ,

and

sup
→
ψ∈H̃
→
ψ 6=0

b̃(
→
ψ, τ̃ )

‖
→
ψ‖

≥ β̃ ‖τ̃‖div4/3;Ω ∀ τ̃ ∈ H(div4/3; Ω) .
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Proof. See [22, Lemma 3.3]. �

Furthermore, in what follows we collect also from [22] various fundamental properties of the forms
c(w; ·, ·) and c̃w that are instrumental for the forthcoming analysis.

Lemma 3.3 The bilinear forms c(w; ·, ·) : H ×H → R and c̃w : H̃ × H̃ → R are bounded for each
w ∈ L4(Ω) with boundedness constants given in both cases by ‖w‖0,4;Ω. Moreover:

c(w;
→
v ,
→
v) = 0 and c̃w(

→
ϕj ,

→
ϕj) = 0 ∀w ∈ L4(Ω) , ∀→v ∈ H , ∀→ϕj ∈ H̃, (3.22)∣∣c(w;

→
u,
→
v) − c(z;

→
u,
→
v)
∣∣ ≤ ‖w − z‖0,4;Ω ‖

→
u‖ ‖→v‖ ∀w, z ∈ L4(Ω) , ∀→u, →v ∈ H , (3.23)∣∣c̃w(

→
φj ,

→
ψj) − c̃w(

→
ϕj ,

→
ψj)

∣∣ ≤ ‖w‖0,4;Ω ‖
→
φj −

→
ϕj‖ ‖

→
ψj‖ ∀w ∈ L4(Ω) , ∀

→
φj ,

→
ϕj ,

→
ψj ∈ H̃ , (3.24)∣∣c̃w(

→
ϕj ,

→
ψj) − c̃z(

→
ϕj ,

→
ψj)

∣∣ ≤ ‖w − z‖0,4;Ω ‖
→
ϕj‖ ‖

→
ψj‖ ∀w, z ∈ L4(Ω) , ∀→ϕj ,

→
ψj ∈ H̃. (3.25)

Proof. See [22, Lemma 3.4]. �

Given (w,φ) ∈ L4(Ω)×L4(Ω), we adopt a similar notation as in [22, Lemma 3.5, 3.6] and introduce
the bilinear forms Aw,φ : H×H −→ R and Ãw,j : H̃× H̃ −→ R defined by

Aw,φ(
→
u,
→
v) := aφ(

→
u,
→
v) + c(w,

→
u,
→
v) ∀→u,→v ∈ H (3.26)

Ãw,j(
→
ϕj ,

→
ψj) := ãj(

→
ϕj ,

→
ψj) + cw(

→
ϕj ,

→
ψj) ∀→ϕj ,

→
ψj ∈ H̃ , (3.27)

which, thanks to (3.16), (3.18) and Lemma 3.3, satisfy∣∣Aw,φ(
→
u,
→
v)
∣∣ ≤ (|Ω|1/2γ + 2µ2 + ‖w‖0,4;Ω

)
‖→u‖ ‖→v‖ ∀→u, →v ∈ H , (3.28)

|Ãw,j(
→
ϕj ,

→
ψj)| ≤

(
‖Kj‖0,∞;Ω + ‖w‖0,4;Ω

)
‖→ϕj‖ ‖

→
ψj‖ ∀→ϕj ,

→
ψj ∈ H̃ . (3.29)

In addition, in virtue of Lemma 3.1 and (3.22), we readily see that Aw,φ and Ãw,j are V-elliptic

and Ṽ-elliptic, respectively, with the same constants α and α̃j from Lemma 3.1. According to these

results and the inf-sup conditions satisfied by b and b̃ (cf. Lemma 3.2), straightforward applications of
the Babuška-Brezzi theory in Banach spaces imply that (3.11) and (3.12) are well-posed, equivalently
that the operators S and S̃j , j ∈

{
1, 2
}

(and hence S̃), are all well-defined. More precisely, denoting
‖K‖0,∞;Ω := ‖K1‖0,∞;Ω + ‖K2‖0,∞;Ω, we are now in position to state the following lemmas.

Lemma 3.4 For each (w,φ) ∈ L4(Ω) × L4(Ω), problem (3.11) has a unique solution (
→
u,σ) :=(

(u, t),σ
)
∈ H×H0(div4/3; Ω). Moreover, there exists CS > 0, independent of (w,φ), such that

‖S(w,φ)‖ := ‖u‖0,4;Ω ≤ CS

{
‖φ‖0,4;Ω ‖g‖0,∞;Ω +

(
1 + ‖w‖0,4;Ω

)
‖uD‖1/2,Γ

}
. (3.30)

Lemma 3.5 For each w ∈ L4(Ω), and j ∈
{

1, 2
}

, problem (3.12) has a unique solution (
→
ϕj , σ̃j) :=(

(ϕj , t̃j), σ̃j
)
∈ H̃×H(div4/3; Ω). Moreover, there exists C

S̃
> 0, independent of w, such that

||S̃(w)|| := ||
(
S̃1(w), S̃2(w)

)
|| = ‖(ϕ1, ϕ2)‖ ≤ C

S̃

{
1 + ‖K‖0,∞;Ω + ‖w‖0,4;Ω

}
‖ϕD‖1/2,Γ. (3.31)

We refer to [22, Lemmas 3.5 and 3.6] for similar algebraic details on the a priori estimates (3.30)
and (3.31), as well as for the explicit expressions for the constants CS and C

S̃
.
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3.4 Solvability of the fixed-point equation

Having proved that the operators S, S̃, and hence T , are well-defined, we now follow [22] to establish
the existence of a unique fixed point for T . For sake of simplicity of the remaining analysis, we consider
a constant viscosity, but should µ depend on ϕ, we would only need to assume further regularity on
the solution of the problem defining S, exactly as we did in [22, Section 3.4]. In any case, the most
distinctive aspects of our subsequent mathematical discussion will remain unchanged.

We begin by observing from (3.13), the a priori bounds for S̃ (cf. Lemma 3.5) and S (cf. Lemma
3.4), and some algebraic manipulations, that for all (w,φ) ∈ L4(Ω)× L4(Ω) there holds

‖T (w,φ)‖ := ‖
(
S(w,φ), S̃

(
S(w,φ)

))
‖ = ‖S(w,φ)‖ + ‖S̃

(
S(w,φ)

)
‖

≤
(
1 + C

S̃
‖ϕD‖1/2,Γ

)
‖S(w,φ)‖+ C

S̃

(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ

≤ CS max
{

1, C
S̃

} (
1 + ‖ϕD‖1/2,Γ

) (
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

) (
1 + ‖(w,φ)‖

)
+ C

S̃

(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ ,

(3.32)

from which, assuming that ‖(w,φ)‖ ≤ r, with r > 0 given, we get

‖T (w,φ)‖ ≤ C(r)
{(

1 + ‖ϕD‖1/2,Γ
) (
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
+
(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ

}
, (3.33)

with C(r) := CS max
{

1, C
S̃

}
(r+1)+C

S̃
. In this way, denoting by W the closed ball of L4(Ω)×L4(Ω)

with radius r, we conclude from the foregoing estimate that if the data satisfy the assumption{(
1 + ‖ϕD‖1/2,Γ

) (
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
+
(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ

}
≤ r

C(r)
, (3.34)

then the operator T maps W into itself.

In the following lemmas we establish the continuity of the operators S and S̃.

Lemma 3.6 Let α be the V-ellipticity constant provided by Lemma 3.1 and let LS := α−1. Then

‖S(w,φ)− S(z,ψ)‖ ≤ LS

{
‖w − z‖0,4;Ω ‖S(z,ψ)‖ + ‖φ−ψ‖0,4;Ω ‖g‖0,∞;Ω

}
, (3.35)

for all (w,φ), (z,ψ) ∈ L4(Ω)× L4(Ω).

Proof. It proceeds similarly as in [22, Lemma 3.8 and eq. (3.64)]. We omit further details. �

Lemma 3.7 There exists a positive constant L
S̃

, depending on α̃ and C
S̃

(cf. Lemma 3.5), such that

‖S̃(w)− S̃(z)‖ ≤ L
S̃
‖z−w‖0,4;Ω

{(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ + ‖z‖0,4;Ω ‖ϕD‖1/2,Γ

}
, (3.36)

for all w, z ∈ L4(Ω).

Proof. Given w, z ∈ L4(Ω), it suffices to recall that S̃(w)− S̃(z) =
(
S̃1(w)− S̃1(z), S̃2(w)− S̃2(z)

)
,

and then apply the continuity for each S̃j , j ∈
{

1, 2
}

, provided by [22, Lemma 3.9]. �

We are now in a position to establish the continuity of T as a consequence of Lemmas 3.6 and 3.7.

Lemma 3.8 There holds

‖T (w,φ)− T (z,ψ)‖ ≤ LS

{
1 + L

S̃

(
1 + ‖K‖0,∞;Ω + ‖S(z,ψ)‖

)
‖ϕD‖1/2,Γ

}
×
{
‖(S(z,ψ)‖ + ‖g‖0,∞;Ω

}
‖(w,φ)− (z,ψ)‖

(3.37)

for all (w,φ), (z,ψ) ∈ L4(Ω)× L4(Ω).
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Proof. According to the definition of T (cf. (3.13)), and employing the continuity estimate (3.36) for
S̃ (cf. Lemma 3.7), we readily find first that

‖T (w,φ)− T (z,ψ)‖ = ‖S(w,φ)− S(z,ψ)‖ + ‖S̃
(
S(w,φ)

)
− S̃

(
S(z,ψ)

)
‖

≤
{

1 + L
S̃

(
1 + ‖K‖0,∞;Ω + ‖S(z,ψ)‖

)
‖ϕD‖1/2,Γ

}
‖S(w,φ)− S(z,ψ)‖ ,

from which, appealing to the continuity estimate (3.35) for S (Lemma 3.6), we conclude the proof. �

Next, given (z,ψ) ∈ L4(Ω)× L4(Ω) such that ‖(z,ψ)‖ ≤ r, with r > 0 given, we deduce from the
a priori estimate (3.30) for S (cf. 3.4) that

‖S(z,ψ)‖ ≤ CS (1 + r)
{
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

}
.

In this way, inserting the foregoing estimate back into (3.37), and performing several suitable inequali-
ties, we are able to show the Lipschitz-continuity of T , that is

‖T (w,φ)−T (z,ψ)‖ ≤ LT (1+r)2C(K, g,uD,ϕD)
(
‖g‖0,∞;Ω +‖uD‖1/2,Γ

)
‖(w,φ)− (z,ψ)‖, (3.38)

for all (w,φ) ∈ L4(Ω)× L4(Ω), where LT := LS max
{

1, L
S̃

} (
max

{
1, CS

})2
, and

C(K, g,uD,ϕD) :=
{

1 +
(

1 + ‖K‖0,∞;Ω + ‖g‖0,∞;Ω + ‖uD‖1/2,Γ
)
‖ϕD‖1/2,Γ

}
. (3.39)

We now establish sufficient conditions for the existence of a unique fixed point of T (equivalently,
for the well-posedness of the coupled problem (3.6)). More precisely, we have the following result.

Theorem 3.9 Given r > 0, let W be the closed ball in L4(Ω) × L4(Ω) with center at the origin and
radius r, and assume that the data satisfy (3.34) and

LT (1 + r)2C(K, g,uD,ϕD)
(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
< 1 . (3.40)

Then, the operator T has a unique fixed point (u,ϕ) ∈W . Equivalently, the coupled problem (3.6) has

a unique solution (
→
u,σ) ∈ H × H0(div4/3; Ω) and (

→
ϕj , σ̃j) :=

(
(ϕj , t̃j), σ̃j

)
∈ H̃ ×H(div4/3; Ω), j ∈{

1, 2
}

, with (u,ϕ) :=
(
u, (ϕ1, ϕ2)

)
∈W . Moreover, there exist positive constants Ci, i ∈

{
1, 2, . . . , 6

}
,

depending on CS, r, C
S̃

, ‖K‖0,∞;Ω, |Ω|, γ, µ2, α, ϑ1, ϑ2, β, β̃, and α̃j, j ∈
{

1, 2
}

, such that the
following a priori estimates hold

‖→u‖ ≤ C1 ‖g‖0,∞;Ω + C2 ‖uD‖1/2,Γ , (3.41)

‖σ‖ ≤ C3 ‖g‖0,∞;Ω + C4 ‖uD‖1/2,Γ , (3.42)

‖→ϕj‖ ≤ C5 ‖ϕD‖1/2,Γ , (3.43)

‖σ̃j‖ ≤ C6 ‖ϕD‖1/2,Γ . (3.44)

Proof. Let us recall from the first part of the present Subsection 3.4 that, under the assumption (3.34),
T maps the ball W into itself. Then, thanks to (3.38) and (3.40), a straightforward application of
Banach fixed-point theorem implies the existence of a unique fixed point (u,ϕ) ∈W of T . In turn, the
estimates (3.41), (3.43), (3.42), and (3.44) follow similarly to the derivation of the a priori estimates
[22, eqs. (3.74), (3.75), (3.76) and (3.77), Theorem 3.11]. �
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3.5 A case of cross-diffusion

In this section we briefly describe a related model to (2.1), which, on one hand is a particular case
of that problem, and on the other hand constitutes a slight modification of it. More precisely, the
temperature and concentration equations can accommodate cross-diffusion (see, for instance [15])

−div
(
K11∇ϕ1 + K12∇ϕ2

)
+ u · ∇ϕ1 = 0 in Ω ,

−div
(
K21∇ϕ1 + K22∇ϕ2

)
+ u · ∇ϕ2 = 0 in Ω ,

(3.45)

Here, the coefficients Kij ∈ L∞(Ω), i, j ∈
{

1, 2
}

, are appropriate scalar functions that need to satisfy
adequate properties so that the equations remain well-defined. Introducing the tensor

K :=

(
K11 K12

K21 K22

)
∈ L∞(Ω) , (3.46)

we realize that (3.45) can be rewritten as the system

−div
(
K∇ϕ

)
+
(
∇ϕ
)
u = 0 in Ω ,

ϕ = (ϕ1,D, ϕ2,D) on Γ ,
(3.47)

including the Dirichlet boundary conditions for the vector temperature-concentration. In this way,
proceeding as in Sections 2 and 3.1, but instead of (2.7), setting

t̃ := ∇ϕ and σ̃ := Kt̃ − 1

2
ϕ⊗ u ,

we arrive at the following variational formulation for the coupling of (3.47) with the momentum

and mass balance equations: Find (
→
u,σ) :=

(
(u, t),σ

)
∈
(
L4(Ω) × L2

tr(Ω)
)
× H0(div4/3; Ω) and

(
→
ϕ, σ̃) :=

(
(ϕ, t̃), σ̃

)
∈
(
L4(Ω)× L2(Ω)

)
×H(div4/3; Ω) such that

aϕ(
→
u,
→
v) + c(u;

→
u,
→
v) + b(

→
v ,σ) = Fϕ(

→
v) ∀→v ∈

(
L4(Ω)× L2

tr(Ω)
)
,

b(
→
u, τ ) = G(τ ) ∀ τ ∈ H0(div4/3; Ω) ,

ã(
→
ϕ,
→
ψ) + c̃u(

→
ϕ,
→
ψ) + b̃(

→
ψ, σ̃) = 0 ∀

→
ψ ∈

(
L4(Ω)× L2(Ω)

)
,

b̃(
→
ϕ, τ̃ ) = G̃(τ̃ ) ∀ τ̃ ∈ H(div4/3; Ω) ,

(3.48)

where, for a given (w,φ) ∈ L4(Ω)×L4(Ω), the forms aφ, b, and c(w; ·, ·), and the functionals Fφ and

G, are defined as in (3.7),(3.8),(3.10), whereas ã, b̃, c̃w, and G̃, are specified as

ã(
→
ϕ,
→
ψ) :=

∫
Ω
Kt̃ : s̃ , b̃(

→
ψ, τ̃ ) := −

∫
Ω
τ̃ : s̃ −

∫
Ω
ψ · div(τ̃ ) ,

c̃w(
→
ϕ,
→
ψ) :=

1

2

{∫
Ω

t̃w ·ψ −
∫

Ω
(ϕ⊗w) : s̃

}
, G̃(τ̃ ) := −〈τ̃ν,ϕD〉Γ ,

for all
→
ϕ := (ϕ, t̃),

→
ψ := (ψ, s̃) ∈ L4(Ω) × L2(Ω), for all τ̃ ∈ H(div4/3; Ω). Note that the well-

posedness analysis for (3.48) follows almost verbatim to that in Sections 3.2-3.5 with a single j ∈
{

1, 2
}

in (3.6), upon the assumption that K (cf. (3.46)) is uniformly positive definite. We omit further details.
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4 The Galerkin scheme

We now devote ourselves to constructing a Galerkin method for (3.6). The solvability of this scheme
is addressed following similar techniques as those employed throughout Section 3.

4.1 Preliminaries

Let us consider arbitrary finite dimensional subspaces Hu
h ⊆ L4(Ω), Ht

h ⊆ L2
tr(Ω), Hσh ⊆ H0(div4/3; Ω),

Hϕ
h ⊆ L4(Ω), Ht̃

h ⊆ L2(Ω), and Hσ̃
h ⊆ H(div4/3; Ω), whose specific choices are postponed to Section

4.3, below. Hereafter, h := max
{
hK : K ∈ Th

}
stands for the size of a regular triangulation Th of Ω

formed by triangles K (when n = 2) or tetrahedra K (when n = 3) of diameter hK . Next, we denote

→
uh := (uh, th) ,

→
vh := (vh, sh) ,

→
u0,h := (u0,h, t0,h) ∈ Hh := Hu

h ×Ht
h,

→
ϕj,h := (ϕj,h, t̃j,h) ,

→
ψj,h := (ψj,h, s̃j,h) ∈ H̃h := Hϕ

h ×Ht̃
h .

The Galerkin scheme associated with (3.6) reads: Find (
→
uh,σh) ∈ Hh × Hσh and (

→
ϕj,h, σ̃j,h) ∈

H̃h ×Hσ̃
h , j ∈

{
1, 2
}

, such that

aϕh
(
→
uh,

→
vh) + c(uh;

→
uh,

→
vh) + b(

→
vh,σh) = Fϕh

(
→
vh) ∀→vh ∈ Hh ,

b(
→
uh, τ h) = G(τ h) ∀ τ h ∈ Hσh ,

ãj(
→
ϕj,h,

→
ψj,h) + c̃uh

(
→
ϕj,h,

→
ψj,h) + b̃(

→
ψj,h, σ̃j,h) = 0 ∀

→
ψj,h ∈ H̃h ,

b̃(
→
ϕj,h, τ̃ j,h) = G̃j(τ̃ j,h) ∀ τ̃ j,h ∈ Hσ̃

h .

(4.1)

We now follow a discrete analogue of the fixed-point approach developed in Section 3.2. To this
end, we first let Hϕ

h := Hϕ
h ×Hϕ

h and introduce the operator Sh : Hu
h ×Hϕ

h → Hu
h defined by

Sh(wh,φh) := uh ∀ (wh,φh) ∈ Hu
h ×Hϕ

h ,

where (
→
uh,σh) =

(
(uh, th),σh

)
∈ Hh × Hσh is the unique solution (to be confirmed below) of the

problem

aφh
(
→
uh,

→
vh) + c(wh;

→
uh,

→
vh) + b(

→
vh,σh) = Fφh

(
→
vh) ∀→vh ∈ Hh ,

b(
→
uh, τ h) = G(τ h) ∀ τ h ∈ Hσh .

(4.2)

In turn, for each j ∈
{

1, 2
}

we let S̃j,h : Hu
h → Hϕ

h be the operator given by

S̃j,h(wh) := ϕj,h ∀wh ∈ Hu
h ,

where (
→
ϕj,h, σ̃j,h) =

(
(ϕj,h, t̃j,h), σ̃j,h

)
∈ H̃h ×Hσ̃

h is the unique solution (to be confirmed below) of
the problem

ãj(
→
ϕj,h,

→
ψj,h) + c̃wh

(
→
ϕj,h,

→
ψj,h) + b̃(

→
ψj,h, σ̃j,h) = 0 ∀

→
ψj,h ∈ H̃h ,

b̃(
→
ϕj,h, τ̃ j,h) = G̃j(τ̃ j,h) ∀ τ̃ j,h ∈ Hσ̃

h ,

(4.3)
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and then we introduce S̃h(wh) :=
(
S̃1,h(wh), S̃2,h(wh)

)
∈ Hϕ

h for all wh ∈ Hu
h . Hence, defining

Th : Hu
h ×Hϕ

h → Hu
h ×Hϕ

h as

Th(wh,φh) :=
(
Sh(wh,φh), S̃h

(
Sh(wh,φh)

))
∀ (wh,φh) ∈ Hu

h ×Hϕ
h , (4.4)

we realize that solving (4.1) is equivalent to seeking a fixed point of Th, that is: Find (uh,ϕh) ∈
Hu
h ×Hϕ

h such that
Th(uh,ϕh) = (uh,ϕh) . (4.5)

4.2 Solvability of the discrete problem

We now aim to establish the well-posedness of (4.1) by studying the solvability of the equivalent
equation (4.5) using Brouwer’s fixed-point theorem (cf. [20, Theorem 9.9-2]). Exactly as for the
continuous case, we begin by showing that Sh and S̃j,h, j ∈

{
1, 2
}

, and hence S̃h and Th, are well-
defined. For this purpose, we need to establish hypotheses on the (so far, arbitrary) discrete spaces.
Subsequently we will specify suitable finite element spaces satisfying these conditions.

In what follows, we let Vh and Ṽh be the discrete kernels of b and b̃, respectively, that is

Vh :=
{→

vh := (vh, sh) ∈ Hh :

∫
Ω
τ h : sh +

∫
Ω

vh · div(τ h) = 0 ∀ τ h ∈ Hσh
}
,

Ṽh :=
{→
ψj,h := (ψj,h, s̃j,h) ∈ H̃h :

∫
Ω
τ̃ j,h · s̃j,h +

∫
Ω
ψj,h div(τ̃ j,h) = 0 ∀ τ̃ j,h ∈ Hσ̃

h

}
.

In addition, for each sh ∈ Ht
h we denote by sh,sym and sh,skw its symmetric and skew-symmetric parts,

respectively.

Then, we consider the following hypotheses on the discrete subspaces employed:

Assumption 4.1 There exists a positive constant βd > 0, independent of h, such that

sup
→
v h∈Hh
→
vh 6=0

b(
→
vh, τ h)

||→vh||
≥ βd ‖τ h‖div4/3;Ω ∀ τ h ∈ Hσh . (4.6)

Assumption 4.2 There exists a positive constant Cd, independent of h, such that

‖sh,sym‖0,Ω ≥ Cd ‖(vh, sh,skw)|| ∀→vh := (vh, sh) ∈ Vh . (4.7)

Assumption 4.3 There exists a positive constant β̃d > 0, independent of h, such that

sup
→
ψ j,h∈H̃h
→
ψj,h 6=0

b̃(
→
ψj,h, τ̃ j,h)

‖
→
ψj,h‖

≥ β̃d ‖τ̃ j,h‖div4/3;Ω ∀ τ̃ j,h ∈ Hσ̃
h . (4.8)

Assumption 4.4 There exists a positive constant C̃d, independent of h, such that

‖s̃j,h‖0,Ω ≥ C̃d ‖ψj,h‖0,4;Ω ∀
→
ψj,h := (ψj,h, s̃j,h) ∈ Ṽh . (4.9)
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As consequence of Assumptions 4.1 and 4.2, and following basically the same procedure and
notations from [22, Lemma 4.2], we are able to establish next the well-definedness of Sh, which
constitutes the discrete analogue of Lemma 3.4.

Lemma 4.1 For each (wh,φh) ∈ Hu
h ×Hϕ

h , (4.2) has a unique solution (
→
uh,σh) :=

(
(uh, th),σh

)
∈

Hh ×Hσh . Moreover there exists a positive constant CS,d, independent of h and (wh,φh), such that

‖Sh(wh,φh)‖ := ‖uh‖ ≤ CS,d

{
‖φh‖0,4;Ω ‖g‖0,∞;Ω +

(
1 + ‖wh‖0,4;Ω

)
‖uD‖1/2,Γ

}
. (4.10)

Proof. Given (wh,φh) ∈ Hu
h × Hϕ

h , we first recall from (3.26) and (3.28) that Awh,φh
is bounded.

Then, for each
→
vh := (vh, sh) ∈ Vh we easily deduce from (2.2), (4.7) (cf. Assumption 4.2), and a

simple algebraic manipulation, that

aφh
(
→
vh,

→
vh) =

∫
Ω
γvh · vh +

∫
Ω

2µ(φh) sh,sym : sh,sym ≥ µ1 min
{

1, C2
d

}
‖→vh‖2 ,

which, together with the fact that c(wh;
→
vh,

→
vh) = 0 ∀→vh ∈ Hh (cf. (3.22)), yields the Vh-ellipticity

of both aφh
and Awh,φh

with constant αd := µ1 min
{

1, C2
d

}
. In turn, it is clear from Assumption

4.1 that b satisfies the discrete inf-sup condition required by the Babuška-Brezzi theorem in Banach
spaces. Invoking then that theorem we readily obtain both the unique solvability of (4.2) and the a
priori estimate (4.10), with a positive constant CS,d depending on Ω, µ2, ϑ, γ, αd and βd. �

Similarly as we did in the continuous case, we remark that the Vh-ellipticity of aφh
, and hence of

Awh,φh
, does not depend on γ, certainly yielding the same appealing features mentioned in Section 3.3.

Next, as consequence of Assumptions 4.3 and 4.4, we provide the well-definedness of S̃j,h, j ∈{
1, 2
}

, and hence of S̃h, thus establishing the discrete analogue of Lemma 3.5.

Lemma 4.2 For each wh ∈ Hu
h , and for each j ∈

{
1, 2
}

, (4.3) has a unique solution (
→
ϕj,h, σ̃j,h) :=(

(ϕj,h, t̃j,h), σ̃j,h
)
∈ H̃h ×Hσ̃

h . Moreover, there exists a positive constant C
S̃,d

, independent of h and
wh, such that

‖S̃h(wh)‖ := ‖
(
S̃1,h(wh), S̃2,h(wh)

)
‖ = ‖(ϕ1,h, ϕ2,h)‖

≤ C
S̃,d

{
1 + ‖K‖0,∞;Ω + ‖wh‖0,4;Ω

}
‖ϕD‖1/2,Γ .

(4.11)

Proof. Given wh ∈ Hu
h , we know from (3.27) and (3.29) that each Ãwh,j is bounded. In addition, it is

easy to see, thanks to the uniform positive definiteness of Kj , the Assumption 4.4, and the fact that

c̃wh
(
→
ϕj,h,

→
ϕj,h) = 0 ∀→ϕj,h ∈ H̃h (cf. (3.22)), that ãj and Ãwh,j are Ṽh-elliptic with a positive constant

α̃j,d. In turn, it is clear from Assumption 4.3 that b̃ satisfies an adequate discrete inf-sup condition
and then the Banach version of the Babuška-Brezzi theory implies unique solvability of (4.3) for each
j ∈

{
1, 2
}

. Moreover, a priori estimates for each S̃j,h(wh) imply (4.11) with a positive constant C
S̃,d

depending on α̃d and β̃d. �

Proceeding as in the beginning of Section 3.4 but now for Th (cf. (4.4)), we employ the a priori
bounds (4.10) and (4.11), and denote by Wh the closed ball of Hu

h ×Hϕ
h with center at the origin and

radius r. We find that for each (wh,φh) ∈Wh there holds

‖Th(wh,φh)‖ ≤ Cd(r)
{(

1 + ‖ϕD‖1/2,Γ
) (
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
+
(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ

}
,
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with Cd(r) := CS,d max
{

1, C
S̃,d

}
(r + 1) + C

S̃,d
. It readily follows that, under the assumption{(

1 + ‖ϕD‖1/2,Γ
) (
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
+
(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ

}
≤ r

Cd(r)
, (4.12)

the operator Th maps Wh into itself.

In analogy with the continuous case, the continuity of Th follows from that of Sh, S̃j,h, j ∈
{

1, 2
}

,

and hence S̃h. Proceeding as in [22, Lemmas 4.5 and 4.6], we prove the discrete analogues of Lemmas
3.6 and 3.7. More precisely, there exist positive constants LS,d and L

S̃,d
, both independent of h, the

first one given by α−1
d (cf. proof of Lemma 4.1), and the second one depending on α̃d and C

S̃,d
(cf.

proof of Lemma 4.2), such that

‖Sh(wh,φh)−Sh(zh,ψh)‖ ≤ LS,d

{
‖wh− zh‖0,4;Ω ‖Sh(zh,ψh)‖ + ‖φh−ψh‖0,4;Ω ‖g‖0,∞;Ω

}
, (4.13)

for all (wh,φh), (zh,ψh) ∈ Hu
h ×Hϕ

h , and

‖S̃h(wh)− S̃h(zh)‖ ≤ L
S̃,d
‖zh−wh‖0,4;Ω

{(
1 + ‖K‖0,∞;Ω

)
‖ϕD‖1/2,Γ + ‖zh‖0,4;Ω ‖ϕD‖1/2,Γ

}
, (4.14)

for all wh, zh ∈ Hu
h . Then, as a straightforward consequence of (4.13) and (4.14), and following the

same steps from the second half of Section 3.4, we arrive at the discrete analogue of (3.38), that is

‖Th(wh,φh)− Th(zh,ψh)‖

≤ LT,d (1 + r)2C(K, g,uD,ϕD)
(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
‖(wh,φh)− (zh,ψh)‖

(4.15)

for all (wh,φh) ∈ Hu
h ×Hϕ

h , where

LT,d := LS,d max
{

1, L
S̃,d

} (
max

{
1, CS,d

})2
,

and C(K, g,uD,ϕD) is given by (3.39).

Then, we are in position to establish our main result.

Theorem 4.3 Assume that the data satisfy (4.12) and

LT,d (1 + r)2C(K, g,uD,ϕD)
(
‖g‖0,∞;Ω + ‖uD‖1/2,Γ

)
< 1 . (4.16)

Then, the operator Th has a unique fixed point (uh,ϕh) ∈ Wh. Equivalently, the coupled problem

(4.1) has a unique solution (
→
uh,σh) ∈ Hh × Hσh and (

→
ϕj,h, σ̃j,h) :=

(
(ϕj,h, t̃j), σ̃j,h

)
∈ H̃h ×Hσ̃

h ,
j ∈

{
1, 2
}

, with (uh,ϕh) :=
(
uh, (ϕ1,h, ϕ2,h)

)
∈ Wh. Moreover, there exist positive constants Ci,d,

i ∈
{

1, 2, . . . , 6
}

, depending on CS,d, r, C
S̃,d

, ‖K‖0,∞;Ω, |Ω|, γ, µ2, αd, ϑ1, ϑ2, βd, β̃d, and α̃j,d,

j ∈
{

1, 2
}

, such that the following a priori estimates hold

‖→uh‖ ≤ C1,d ‖g‖0,∞;Ω + C2,d ‖uD‖1/2,Γ, (4.17)

‖σh‖ ≤ C3,d ‖g‖0,∞;Ω + C4,d ‖uD‖1/2,Γ , (4.18)

‖→ϕj,h‖ ≤ C5,d ‖ϕD‖1/2,Γ , (4.19)

‖σ̃j,h‖ ≤ C6,d ‖ϕD‖1/2,Γ . (4.20)
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Proof. We first recall that, under the assumption (4.12), Th maps Wh into itself. Then, (4.15), (4.16),
and the Banach fixed-point theorem conclude the proof. The a priori estimates (4.17), (4.19), (4.18),
and (4.20) are derived similarly as for [22, eqs. (4.26)-(4.29), Theorem 4.8]. �

We end this section by remarking that if the viscosity depends on temperature and concentration, it
is not possible to establish the Lipschitz-continuity of Th (cf. (4.15)), but just continuity. Consequently,
instead of the Banach theorem, the Brouwer fixed-point theorem is applied, thus yielding only existence
of the discrete solution. For related details, we refer to [22, Section 4.2].

4.3 Specific finite element subspaces

In this section we specify finite element subspaces Hu
h ⊆ L4(Ω), Ht

h ⊆ L2
tr(Ω), Hσh ⊆ H0(div4/3; Ω),

Hϕ
h ⊆ L4(Ω), Ht̃

h ⊆ L2(Ω), and Hσ̃
h ⊆ H(div4/3; Ω), satisfying the crucial discrete inf-sup conditions

given by Assumptions 4.1, 4.2, 4.3, and 4.4. These discrete spaces arise naturally as consequence
of the same analysis developed in [22, Section 5], which is based on stable finite element subspaces
for the primal formulation of the Stokes problem (see also [11] for the case of linear elasticity). In
particular, here we propose those obtained by considering the Scott-Vogelius pair (cf. [45]). Given a
positive integer ` and a set O ⊆ Rn, P`(O) stands for the space of polynomials of degree ≤ ` defined
on O, with vector and tensorial versions denoted by P`(O) := [P`(O)]n and P`(O) := [P`(O)]n×n,
respectively. In addition, given a regular partition Th of Ω into triangles (in R2) or tetrahedra (in
R3), we denote by T b

h its barycentric refinement, and let RT`(K) := P`(K) ⊕ P`(K) x be the local
Raviart-Thomas space of order ` for each K ∈ T b

h , where x denotes a generic vector in Ω.

We deduce that, in order to guarantee the well-posedness of our Galerkin scheme (4.1), it suffices
to define for each integer k such that k + 1 ≥ n, the finite element subspaces

Hu
h :=

{
vh ∈ L4(Ω) : vh|K ∈ Pk(K) ∀K ∈ T b

h

}
, (4.21)

Ht
h :=

{
sh ∈ L2

tr(Ω) : sh|K ∈ Pk(K) ∀K ∈ T b
h

}
, (4.22)

Hσh :=
{
τ h ∈ H0(div4/3; Ω) : ct τ h|K ∈ RTk(K) ∀ c ∈ Rn , ∀K ∈ T b

h

}
, (4.23)

Hϕ
h :=

{
ψh ∈ L4(Ω) : ψh|K ∈ Pk(K) ∀K ∈ T b

h

}
, (4.24)

Ht̃
h :=

{
s̃h ∈ L2(Ω) : s̃h|K ∈ Pk(K) ∀K ∈ T b

h

}
, (4.25)

Hσ̃
h :=

{
τ̃ h ∈ H(div4/3; Ω) : τ̃ h|K ∈ RTk(K) ∀K ∈ T b

h

}
. (4.26)

We end this section by collecting next the approximation properties of the finite element subspaces
Hu
h , Ht

h, Hσh , Hϕ
h , Ht̃

h, and Hσ̃
h , which basically follow from interpolation estimates of Sobolev spaces

and the approximation properties provided by the projector Pk
h (see [22, eq. (5.37)]), and the Raviart-

Thomas interpolation operator (see [22, eq. (5.41)] and also [12, 14, 17, 30]).

(APu
h) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each v ∈Wl,4(Ω)

there holds
dist(v,Hu

h) := inf
vh∈Hu

h

‖v − vh‖0,4;Ω ≤ C hl ‖v‖l,4;Ω . (4.27)

(APt
h) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each s ∈

Hl(Ω) ∩ L2
tr(Ω) there holds

dist(s,Ht
h) := inf

sh∈Ht
h

‖s− sh‖0,Ω ≤ C hl ‖s‖l,Ω . (4.28)

18



(APσh ) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each τ ∈
Hl(Ω) ∩ H0(div4/3; Ω) with div(τ ) ∈Wl,4/3(Ω), there holds

dist(τ ,Hσh ) := inf
τh∈Hσh

‖τ − τ h‖div4/3;Ω ≤ C hl
{
‖τ‖l,Ω + ‖div(τ )‖l,4/3;Ω

}
. (4.29)

(APϕ
h) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each ψ ∈Wl,4(Ω)

there holds
dist(ψ,Hϕ

h) := inf
ψh∈Hϕ

h

‖ψ − ψh‖0,4;Ω ≤ C hl ‖ψ‖l,4;Ω . (4.30)

(APt̃
h) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each s̃ ∈ Hl(Ω)

there holds
dist(s̃,Ht̃

h) := inf
s̃h∈Ht̃

h

‖s̃− s̃h‖0,Ω ≤ C hl ‖s̃‖l,Ω . (4.31)

(APσ̃h ) there exists C > 0, independent of h, such that for each l ∈ [0, k + 1], and for each τ̃ ∈
Hl(Ω) ∩ H(div4/3; Ω) with div(τ̃ ) ∈Wl,4/3(Ω), there holds

dist(τ̃ ,Hσ̃
h ) := inf

τ̃h∈Hσ̃h
‖τ̃ − τ̃ h‖div4/3;Ω ≤ C hl

{
‖τ̃‖l,Ω + ‖div(τ̃ )‖l,4/3;Ω

}
. (4.32)

5 A priori error analysis

The first objective here is to derive a Céa estimate. Let (
→
u,σ) ∈ H×H0(div4/3; Ω) and (

→
ϕj , σ̃j) :=(

(ϕj , t̃j), σ̃j
)
∈ H̃×H(div4/3; Ω), j ∈

{
1, 2
}

, with (u,ϕ) :=
(
u, (ϕ1, ϕ2)

)
∈W , be the unique solution

of the coupled problem (3.6), and let (
→
uh,σh) ∈ Hh × Hσh and (

→
ϕj,h, σ̃j,h) :=

(
(ϕj,h, t̃j,h), σ̃j,h

)
∈

H̃h × Hσ̃
h , with (uh,ϕh) :=

(
uh, (ϕ1,h, ϕ2,h)

)
∈ Wh, be a solution of the discrete coupled problem

(4.1). Then, we first rewrite (3.6) and (4.1) in terms of the forms (3.26) and (3.27), that is

Au,ϕ(
→
u,
→
v) + b(

→
v ,σ) = Fϕ(

→
v) ∀→v ∈ H ,

b(
→
u, τ ) = G(τ ) ∀ τ ∈ H0(div4/3; Ω) ,

(5.1)

Ãu,j(
→
ϕj ,

→
ψj) + b̃(

→
ψj , σ̃j) = 0 ∀

→
ψj ∈ H̃ ,

b̃(
→
ϕj , τ̃ j) = G̃j(τ̃ j) ∀ τ̃ j ∈ H(div4/3; Ω) ,

(5.2)

Auh,ϕh
(
→
uh,

→
vh) + b(

→
vh,σh) = Fϕh

(
→
vh) ∀→vh ∈ Hh ,

b(
→
uh, τ h) = G(τ h) ∀ τ h ∈ Hσh ,

(5.3)

and

Ãuh,j(
→
ϕj,h,

→
ψj,h) + b̃(

→
ψj,h, σ̃j,h) = 0 ∀

→
ψj,h ∈ H̃h ,

b̃(
→
ϕj,h, τ̃ j,h) = G̃j(τ̃ j,h) ∀ τ̃ j,h ∈ Hσ̃

h .
(5.4)

Applying the Strang lemma stated in [22, Lemma 6.1] to the context given by problems (5.1) and (5.3)
(resp. problems (5.2) and (5.4)), and bearing in mind similar consistency estimates to those provided
in [22, eqs. (6.16) and (6.18)] (resp. [22, eq. (6.17)]), we find, respectively, that

‖(→u,σ)− (
→
uh,σh)‖ ≤ C̄S,1 dist

(→
u,Hh

)
+ C̄S,2 dist

(
σ,Hσh

)
+ C̄S,3 c(g,uD)

{
‖ϕ1 − ϕ1,h‖0,4;Ω + ‖ϕ2 − ϕ2,h‖0,4;Ω + ‖u− uh‖0,4;Ω

}
,

(5.5)
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and for each j ∈
{

1, 2
}

, the bound

‖(→ϕj , σ̃j)− (
→
ϕj,h, σ̃j,h)‖ ≤ ĈS,1 dist

(→
ϕj , H̃h

)
+ ĈS,2 dist

(
σ̃j ,H

σ̃
h

)
+ ĈS,3 c(ϕD) ‖u−uh‖0,4;Ω . (5.6)

For the remaining expressions in (5.5)-(5.6), note that c(g,uD) depends linearly on ‖g‖0,∞;Ω and
‖uD‖1/2,Γ, whereas C̄S,1, C̄S,2, and C̄S,3 are positive constants computed using [22, eq. (6.4)] and
depending on µ2,ϑ, r, αd, βd. After using (3.28), these constants are used to bound both ‖Au,ϕ‖ and

‖Auh,ϕh
‖ by

(
|Ω|1/2γ + 2µ2 + r

)
. In turn, c(ϕD) is a constant multiple of ‖ϕD‖1/2,Γ, and ĈS,1, ĈS,2.

Also, ĈS,3 are positive constants defined in terms of ‖K‖0,∞;Ω, r, α̃d, and β̃d, which are computed

according to [22, eq. (6.4)], after using (3.29) to bound both ‖Ãu,j‖ and ‖Ãuh,j‖ by
(
‖K‖0,∞;Ω + r

)
.

Next we can insert (5.6) into (5.5), which leads to

‖(→u,σ)− (
→
uh,σh)‖ ≤ C̄S,1 dist

(→
u,Hh

)
+ C̄S,2 dist

(
σ,Hσh

)
+ C̄S,3 c(g,uD) ĈS,1

2∑
j=1

dist
(→
ϕj , H̃h

)
+ C̄S,3 c(g,uD) ĈS,2

2∑
j=1

dist
(
σ̃j ,H

σ̃
h

)
+ C̄S,3 c(g,uD)

{
1 + 2 ĈS,3 c(ϕD)

}
‖u− uh‖0,4;Ω .

(5.7)

Imposing the constant multiplying ‖u − uh‖0,4;Ω in (5.7) to be sufficiently small, say ≤ 1/2, we

derive the a priori upper bound for ‖(→u,σ) − (
→
uh,σh)‖. Hence, employing this latter estimate to

bound the third term on the right-hand side of (5.6), we deduce the corresponding upper bound for

‖(→ϕj , σ̃j)− (
→
ϕj,h, σ̃j,h)‖, j ∈

{
1, 2
}

. We have thus demonstrated the following result.

Theorem 5.1 Assume that the data g, uD, and ϕD satisfy

C̄S,3 c(g,uD)
{

1 + 2 ĈS,3 c(ϕD)
}
≤ 1

2
.

Then, there exists a positive constant C, independent of h, but depending on µ2, ϑ, r, αd, βd, ‖K‖0,∞;Ω,

α̃d, β̃d, ‖g‖0,∞;Ω, ‖uD‖1/2,Γ, and ‖ϕD‖1/2,Γ, such that

‖(→u,σ)− (
→
uh,σh)‖ +

2∑
j=1

‖(→ϕj , σ̃j)− (
→
ϕj,h, σ̃j,h)‖

≤ C

{
dist

(→
u,Hh

)
+ dist

(
σ,Hσh

)
+

2∑
j=1

(
dist

(→
ϕj , H̃h

)
+ dist

(
σ̃j ,H

σ̃
h

))}
.

(5.8)

We are now able to provide the rates of convergence of the Galerkin Scheme (4.1) when the finite
element subspaces specified in Section 4.3 are employed.

Theorem 5.2 Assume that there exists l ∈ [0, k+ 1] such that u ∈Wl,4(Ω), t ∈ Hl(Ω)∩L2
tr(Ω), σ ∈

Hl(Ω) ∩ H0(div4/3; Ω), div(σ) ∈Wl,4/3(Ω), ϕj ∈Wl,4(Ω), t̃j ∈ Hl(Ω), σ̃j ∈ Hl(Ω) ∩ H(div4/3; Ω),

and div(σ̃j) ∈Wl,4/3(Ω), for j ∈
{

1, 2
}

. Then, there exists C > 0, independent of h, such that

‖(→u,σ)− (
→
uh,σh)‖ +

2∑
j=1

‖(→ϕj , σ̃j)− (
→
ϕj,h, σ̃j,h)‖ ≤ C hl

{
‖u‖l,4;Ω + ‖t‖l,Ω + ‖σ‖l,Ω

+ ‖div(σ)‖l,4/3;Ω +
2∑
j=1

{
‖ϕj‖l,4;Ω + ‖t̃j‖l,Ω + ‖σ̃j‖l,Ω + ‖div(σ̃j)‖l,4/3;Ω

}}
.

(5.9)
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Figure 6.1: Example of Alfeld splits for a coarse 2D uniform mesh used in Example 1 (left), a coarse
unstructured grid for Example 2 (center), and for a 3D non-uniform mesh used in Example 3 (crinkle
clip on the right panel).

Proof. It follows straightforwardly from (5.8) and the approximation properties from Section 4.3. �

We end this section with the derivative-free postprocessing of the pressure. From the orthogo-
nal decomposition for the pseudostress tensor (3.3) (which yielded the new tensor unknown σ ∈
H0(div4/3; Ω)), we deduce that (2.5) becomes

p = − 1

2n
tr
(
2σ + 2cI + u⊗ u

)
, with c := − 1

2n|Ω|

∫
Ω

tr
(
u⊗ u

)
.

And therefore the discrete pressure will be defined as

ph := − 1

2n
tr
(
2σh + 2chI + uh ⊗ uh

)
, with ch := − 1

2n|Ω|

∫
Ω

tr
(
uh ⊗ uh

)
.

Moreover, it is easy to prove that there exists a positive constant C, independent of h, such that

‖p− ph‖0,Ω ≤ C
{
‖σ − σh‖div4/3;Ω + ‖u− uh‖0,4;Ω

}
,

whence the rate of convergence of ph coincides with the one established by (5.9).

6 Numerical results

In this section we present several numerical examples confirming the good performance of the fully-
mixed finite element method (4.1) with the subspaces indicated in Section 4.3. As required for the
stability of the Scott-Vogelius pair, the computations are performed on barycentric refined meshes T b

h

created from regular partitions Th of Ω, illustrated for 2D and 3D in Figure 6.1. All initial grids and
Alfeld splits (barycentric refinements) are generated with the open-source mesh manipulator GMSH
[33] and the computational implementation has been carried out using the open-source finite element
library FEniCS [7]. A Newton-Raphson algorithm with null initial guesses is used for the resolution
of the nonlinear problem (4.1). As usual, the iterative method is finished when the relative error
between two consecutive iterations of the complete coefficient vector, namely coeffm+1 and coeffm,
is sufficiently small, that is,

||coeffm+1 − coeffm||`2
||coeffm+1||`2

< tol ,
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where tol is a specified tolerance and ‖ · ‖`2 is the standard `2−norm in RDoF with DoF denoting
the total number of degrees of freedom generated by the finite element subspaces. The condition
of zero-average pressure (translated in terms of the trace of 2σ + u ⊗ u) is imposed through a real
Lagrange multiplier. The solution of all linear systems is carried out with the multifrontal massively
parallel sparse direct solver MUMPS.

Errors between exact and approximate solutions are denoted as

e(u) := ‖u− uh‖0,4;Ω , e(t) := ‖t− th‖0,Ω e(σ) := ‖σ − σh‖div4/3;Ω , e(p) := ‖p− ph‖0,Ω ,

e(ϕ) :=
2∑
j=1

‖ϕj − ϕj,h‖0,4;Ω , e(t̃) :=
2∑
j=1

‖t̃j − t̃j,h‖0,4;Ω , e(σ̃) :=
2∑
j=1

‖σ̃j − σ̃j,h‖div4/3;Ω .

In turn, we let r(?) be their corresponding rates of convergence, that is

r(?) :=
log(e(?)/e′(?))

log(h/h′)
∀ ? ∈

{
u, t,σ, p,ϕ, t̃, σ̃

}
,

where h and h′ denote two consecutive mesh sizes with errors e(?) and e′(?), respectively.

Example 1: Convergence against smooth exact solutions. In our first example we study
the accuracy of the approximations by manufacturing an exact solution of (3.6) in the domain Ω :=
(−1, 1)2 with the constant and variable coefficients

µ(ϕ) = e−ϕ1 , ϑ = (1, 0.5)t , γ = 10−3 , K1(x) =

(
exp(−x1) x1/10
x2/10 exp(−x2)

)
,

K2(x) =

(
exp(−x1) 0

0 exp(−x2)

)
, and g(x) = (0,−1)t ∀x := (x1, x2)t ∈ Ω .

Then, the Dirichlet data uD and ϕD, and the terms on the right-hand sides, are imposed according
to the exact solutions given by the smooth functions

u(x) =

(
cos(π2x1) sin(π2x2)
− sin(π2x1) cos(π2x2)

)
, p(x) = (x1 − 0.5)(x2 − 0.5)− 0.25 ,

ϕ1(x) = exp(−x2
1 − x2

2)− 1

2
, and ϕ2(x) = exp(−x1x2[x1 − 1][x2 − 1]) ∀x := (x1, x2)t ∈ Ω .

Values of errors and corresponding convergence rates associated with the approximations with the
finite element family P1 − P1 − RT1 −P1 − P1 − RT1 are summarized in Table 6.1. As expected, we
observe there that the convergence rates are quadratic with respect to h for all the unknowns in their
respective norms. Sample solutions of approximate velocity magnitude, temperature, concentration,
and postprocessed pressure computed with our fully-mixed method are depicted in Figure 6.2.

Example 2: Manufactured solutions on a different domain. We now perform an accuracy test
for (3.6) on the tombstone-shaped domain (see [16])

Ω := {x : −0.5 < x1 < 0.5,−0.5 < x2 < 0.5} ∪ {x : −0.5 < x1 < 0.5, 0.5 < x2 < sin(πx2)},

and consider the same specification as in Example 1 for viscosity, gravity, exact temperature, and
diffusivity of the concentration. The modified parameters are the thermal and mass expansions, the
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Finite Element Family: P1 − P1 − RT1 −P1 − P1 − RT1

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ)

1305 1.4140 0.09025 – 0.5561 – 0.93790 –
5153 0.7071 0.01935 2.222 0.1996 1.682 0.27852 1.752
20481 0.3536 0.00420 2.203 0.0622 1.778 0.07634 1.867
81665 0.1768 0.00097 2.114 0.0184 1.859 0.02052 1.895
326145 0.0884 0.00023 2.054 0.0051 1.949 0.00536 1.936
1303553 0.0442 0.00014 2.003 0.0014 1.984 0.00164 1.979

e(ϕ) r(ϕ) e(t̃) r(t̃) e(σ̃) r(σ̃) e(p) r(p) It.

0.0769 – 0.5343 – 0.74246 – 0.17954 – 4
0.01586 2.278 0.1681 1.668 0.20943 1.826 0.04699 1.934 4
0.00334 2.247 0.0474 1.827 0.05768 1.868 0.00976 2.267 4
0.00076 2.126 0.0127 1.898 0.01519 1.925 0.00214 2.185 4
0.00018 2.048 0.0033 1.938 0.00381 1.965 0.00050 2.081 4
0.00011 2.002 0.0009 1.966 0.00143 1.993 0.00013 2.031 4

Table 6.1: Example 1: Convergence history and Newton iteration count for the fully-mixed P1−P1−
RT1 − P1 − P1 − RT1 approximation. DoF stands for the number of degrees of freedom associated
with each barycentric refined mesh T b

h .

Figure 6.2: Example 1: Approximate velocity magnitude, temperature, concentration, and postpro-
cessed pressure, obtained using k = 1 and a barycentrically refined mesh with 19110 elements.

inverse permeability (which is now seven orders of magnitude higher), and the thermal conductivity
(which is now isotropic)

ϑ = (0.75, 0.25)t , γ = 1.0678 · 104 , K1(x) = ex+y I .

Again, the right-hand sides and the boundary Dirichlet data are adjusted in terms of the manufactured
exact solutions, which are in this case

u(x) =

(
2π cos(πx2) sin(πx1) sin(πx1) sin(πx2)
−2π cos(πx1) sin(πx1) sin(πx2) sin(πx2)

)
, p(x) = 5x1 sin(x2),

ϕ1(x) = exp(−x2−y2)− 1

2
, and ϕ2(x) = 15−15 exp(−x1x2[x1−1][x2−1]) ∀x := (x1, x2)t ∈ Ω .

In Table 6.2 we present errors for each variable with respect to DoF, the experimental convergence
rates, and the number of Newton iterations per mesh refinement. This time the computations were
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Finite Element Family: P2 − P2 − RT2 − P2 −P2 −RT2

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ)

2421 0.7224 1.3763e-01 – 1.8751e00 – 4.0911e00 –
10089 0.4234 2.6073e-02 2.3312 4.5061e-01 1.9979 1.0707e00 1.8784
39258 0.2460 2.9780e-03 3.1936 7.1098e-02 2.7181 1.6243e-01 2.7759
158652 0.1397 3.7560e-04 2.9651 1.2822e-02 2.4530 2.5362e-02 2.6594
633555 0.0763 5.0175e-05 2.9076 1.6559e-03 2.9565 3.4396e-03 2.8857

e(ϕ) r(ϕ) e(t̃) r(t̃) e(σ̃) r(σ̃) e(p) r(p) It.

1.8294e-02 – 3.0672e-01 – 6.2336e-01 – 6.4242e00 – 5
2.6228e-03 2.7217 6.8840e-02 2.0937 1.2471e-01 2.2548 5.0722e-01 3.5576 5
2.1645e-04 3.6620 8.7779e-03 3.0316 1.4310e-02 3.1868 4.6338e-02 3.5224 5
2.8554e-05 2.9007 1.4012e-03 2.6277 2.1211e-03 2.7339 7.0811e-03 2.6902 5
3.7241e-06 2.9422 1.8828e-04 2.8991 2.8610e-04 2.8937 1.0393e-03 2.7716 5

Table 6.2: Example 2: Convergence history and Newton iteration count for the fully-mixed P2−P2−
RT2 − P2 − P2 −RT2 approximation of the Oberbeck-Boussinesq equations on a tombstone-shaped
domain with different model parameters.

Figure 6.3: Example 2: Approximate velocity magnitude, temperature, concentration, and postpro-
cessed pressure, using k = 2 and a barycentric refinement with 11534 triangular elements.

done with the finite element family P2 − P2 − RT2 − P2 − P2 −RT2 (k = 2). In concordance with
the theoretical estimates from Section 5, the computational results confirm an error decay with rate
O(h3). A total of 5 Newton iterations were required to reach a tolerance tol = 1E-08. In Figure
6.3 we display the velocity magnitude, the temperature, and the concentration produced with our
fully-mixed scheme on a barycentric refined mesh that, for k = 2, generates 633555 DoFs.

Example 3: Error decay in the 3D case. Verification of the convergence of the method in 3D is
provided with a simple test employing the following closed-form solutions

u(x) =

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 , p(x) = sin(πx1) sin(πx2) sin(πx3),

ϕ1(x) = 1− sin(πx1) cos(πx2) sin(πx3), ϕ2(x) = exp(−(x1 − 0.5)2 − (x2 − 0.25)2 − (x3 − 0.25)2),
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Figure 6.4: Example 3: Approximate velocity magnitude and streamlines, velocity gradient, Bernoulli
tensor, postprocessed pressure, temperature, concentration, temperature gradient, and concentration
gradient, obtained using k = 2 and a barycentrically refined tetrahedral mesh with 24576 elements.

for x := (x1, x2, x3)t ∈ Ω. The manufactured velocity is divergence free and we use it to impose the
Dirichlet condition on Γ. The exact concentration and temperature are uniformly bounded in Ω and
we consider the following constant and variable coefficients

γ = 1, ϑ = (1, 0.5)t, K1(x) =

exp(−x1) 0 0
0 exp(−x2) 0
0 0 exp(−x3)

 , K2 = I,

We recall that the solvability of the discrete problem requires that, for dimension n = 3, the finite
element spaces made precise in (4.21)-(4.26) should use a polynomial degree k ≥ 2. The error history
is shown in Table 6.3, where the tabulated convergence rates with respect to DoF indicate that all
individual fields have optimal error decay as predicted by (5.9). In all cases the number of Newton
iterations needed to reach convergence was 4. The solutions on a coarse mesh with 7521 vertices and
24576 tetrahedral elements (actually representing 957121 DoFs for k = 2), are displayed in Figure 6.4.

Example 4: Simulating exothermic flows. We finalize with a time-dependent problem that
has relevance in the modeling of exothermic reaction-diffusion fronts in porous media. The problem
configuration is adapted from that in [39], where apart from advection and diffusion, a reaction term
is present in the right-hand sides of the temperature and concentration equation. More precisely,
they are Daf(ϕ2) in the equation for ϕ1 and −Da f(ϕ2) in the equation for ϕ2, where Da= 0.001
is the dimensionless Darcy number and the concentration-dependent nonlinear reaction is f(ϕ2) :=
ϕ2(1 + 7ϕ2)(1 − ϕ2)2. The buoyancy term is characterized by ϑ = (5,−1)t, and we simply consider
a constant viscosity µ = 1 and a constant permeability γ = 1. The diffusivities are isotropic and
constant K1 = 8I,K2 = 2.5I, and the domain is the rectangle Ω = (0, 2000) × (−1000, 0). Further
differences with respect to the original system (2.1) include boundary conditions: we now set uD = 0
on the whole boundary whereas we put ϕj = 1 on the top edge of the domain, ϕj = 0 on the bottom
surface, and on the vertical walls we impose zero flux conditions, which in the context of our mixed
formulation are implemented as essential conditions for each t̃j . A barycentric refinement is applied
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Finite Element Family: P2 − P2 − RT2 − P2 −P2 −RT2

DoF h e(u) r(u) e(t) r(t) e(σ) r(σ)

7621 1.225 0.03165 – 0.55572 – 2.4535 –
15181 0.866 0.01095 3.063 0.18479 3.178 0.8475 3.066
120241 0.433 0.00143 2.935 0.02785 2.829 0.1554 2.773
957121 0.2165 0.00026 2.893 0.00484 2.881 0.0293 2.835
7965323 0.1083 0.00007 2.970 0.00063 2.992 0.0046 2.916

e(ϕ) r(ϕ) e(t̃) r(t̃) e(σ̃) r(σ̃) e(p) r(p) It.

0.01043 – 0.10795 – 0.22103 – 0.23510 – 4
0.00397 2.766 0.03389 3.305 0.06753 3.421 0.03295 2.895 4
0.00049 3.029 0.00518 2.705 0.00932 2.860 0.00464 2.974 4
5.99e-05 3.032 0.00069 2.814 0.00120 2.897 0.00087 3.012 4
7.45e-06 2.989 8.17e-05 2.909 1.62e-04 2.936 1.13e-04 3.003 4

Table 6.3: Example 3: Convergence history and Newton iteration count for the fully-mixed P2−P2−
RT2 − P2 − P2 −RT2 approximation of the Oberbeck-Boussinesq equations on a 3D box.

on an unstructured triangulation of the domain and the resulting grid has 32491 elements. In the
bilinear forms Ãu,j we add the term ∫

Ω

1

∆t
(ϕ`+1

j − ϕ`)ψj ,

accounting for the backward Euler time discretization of ∂tϕj , j ∈ {1, 2}. The same is done to add an
acceleration term to the momentum equation. We use a uniform partition of the time domain (from
0 to 2000) and use a constant stepsize of ∆t = 20. The fully mixed scheme is defined by (4.21)-(4.26)
with k = 1, and the initial conditions for the solutal concentration and high temperature near the
domain top surface are uniformly distributed random perturbations, whereas the initial velocity is the
zero vector.

We run the system until 2000 time units and show in Figure 6.5 snapshots of concentration of
the solute at three different times, together with the postprocessed pressure. As a result of the
nonlinear interaction between the change of temperature and the high solute concentration, density-
driven instabilities start to form and the solute fingers commence to move downwards also due to
gravitational effects. Throughout the computation the Newton-Raphson method took at most five
iterations to reach the desired tolerance.
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[16] J. Camaño, G.N. Gatica, R. Oyarzúa, R. Ruiz-Baier and P. Venegas, New fully-mixed finite
element methods for the Stokes-Darcy coupling. Comput. Methods Appl. Mech. Engrg. 295 (2015), 362–
395.

[17] J. Camaño, C. Muñoz and R. Oyarzúa, Numerical analysis of a dual-mixed problem in non-standard
Banach spaces. Electron. Trans. Numer. Anal. 48 (2018), 114–130.

[18] Y.Y. Chen, B.W. Li and J.K. Zhang, Spectral collocation method for natural convection in a square
porous cavity with local thermal equilibrium and non-equilibrium models. Int. J. Heat Mass Transfer 64
(2013), 35–49.

[19] P. Cheng, Heat transfer in geothermal systems. Adv. Heat Transfer 14 (1979), 1–105.

[20] P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2013.
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


