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Abstract

In this work we introduce and analyze a new augmented fully-mixed formulation for the stationary
Navier-Stokes/Darcy coupled problem. Our approach employs, on the free-fluid region, a technique
previously applied to the stationary Navier-Stokes equations, which consists of the introduction of
a modified pseudostress tensor involving the diffusive and convective terms, together with the
pressure. In addition, by using the incompressibility condition, the pressure is eliminated, and
since the convective term forces the free-fluid velocity to live in a smaller space than usual, we
augment the resulting formulation with suitable Galerkin type terms arising from the constitutive
and equilibrium equations. On the other hand, in the Darcy region we apply the usual dual-mixed
formulation, which yields the introduction of the trace of the porous media pressure as an associated
Lagrange multiplier. The latter is connected with the fact that one of the transmission conditions
involving mass conservation becomes essential and must be imposed weakly. In this way, we obtain
a five-field formulation where the pseudostress and the velocity in the fluid, together with the
velocity and the pressure in the porous medium, and the aforementioned Lagrange multiplier, are
the corresponding unknowns. The well-posedness analysis is carried out by combining the classical
Babuska-Brezzi theory and the Banach fixed-point theorem. A proper adaptation of the arguments
exploited in the continuous analysis allows us to state suitable hypotheses on the finite element
subspaces ensuring that the associated Galerkin scheme is well-posed and convergent. In particular,
Raviart-Thomas elements of lowest order for the pseudostress and the Darcy velocity, continuous
piecewise linear polynomials for the free-fluid velocity, piecewise constants for the Darcy pressure,
together with continuous piecewise linear elements for the Lagrange multiplier, constitute feasible
choices. Finally, we provide several numerical results illustrating the performance of the Galerkin
method and confirming the theoretical rates of convergence.
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1 Introduction

In this article we introduce a new finite element scheme to numerically solve the coupling of fluid
flow, governed by the Navier-Stokes equations, with porous media flow, modeled by the Darcy law,
coupled through interface conditions given by mass conservation, balance of normal forces, and the
Beavers—Joseph—Saffman law. More precisely, we employ a recent approach for the stationary Navier-
Stokes equations based on the introduction of a pseudostress tensor relating the diffusive term with
the convective term and the pressure, consider the standard dual-mixed formulation for the Darcy law,
which yields the introduction of the trace of the porous media pressure as an associated Lagrange mul-
tiplier, and propose an augmented fully-mixed finite element method for the coupled problem, where
the aforementioned pseudostress tensor and Lagrange multiplier, together with the fluid velocities in
both domains and the Darcy pressure, are the main unknowns of the system. The pressure in the
fluid region, as well as the fluid velocity gradient and the shear-stress tensor, can be easily recovered
through simple post-processing procedures.

An important body of literature dealing with numerical techniques to solve this coupled system, or
its linearized version where the Stokes equations are considered instead of the Navier-Stokes system,
has been introduced in the last decades due to its applicability in different areas of interest, such as
medicine, petroleum engineering, environmental science, etc. (see e.g. [2, 5, 6, 11, 13, 14, 15, 16, 19, 20,
21, 23, 25, 30, 32] and the references therein). The list above includes iterative subdomain and mortar
methods, discontinuous Galerkin (DG) and hybridizable discontinuous Galerkin (HDG) schemes, as
well as stabilized formulations. In general, most of the finite element formulations developed are based
on velocity-pressure discretizations for the free-fluid part of the coupled system (see, for instance
[2, 11, 13, 14, 16, 25, 30, 32]). However, in this work we give special attention to numerical schemes
based on dual-mixed formulations for the fluid flow, which have gained considerable attention mainly
due to the fact that, on the one hand, they allow to unify the analysis for Newtonian and non-
Newtonian flows, and on the other hand, they permit to approximate diverse unknowns of physical
interest, either directly through the formulation employed or using simple post-processing formulae.

Going back to the Stokes-Darcy model, new fully-mixed finite element methods have been intro-
duced in [6, 21, 19] to approximate the solution of the coupled system, considering Newtonian (in
[6, 21]) and Non-Newtonian flows (in [19]). There, the methods are based on the introduction of
the pseudostress (in [19, 21]) or stress tensors (in [6]) as further unknowns, which permits, on one
hand, to successfully unify the analysis, and on the other hand, to employ the same family of finite
elements in both domains. In particular, in [6] two new fully-mixed formulations have been suggested
for the linear coupled system. The first one extends [21] by introducing a new fully-mixed formulation
where the stress tensor is considered in the fluid domain instead of the pseudostress, which yields the
introduction of the vorticity as a further unknown. Next, the aforementioned stress-based formulation
is partially augmented by introducing Galerkin least-squares type terms arising from the constitutive
and equilibrium equations of the Stokes equation, and from the relation defining the vorticity in terms
of the free fluid velocity, yielding, in this way, the second method. The main advantage of the latter
is the flexibility of choosing discrete subspaces for the variables in the Stokes domain since no inf-sup
conditions are needed to obtain the stability of the method.

More recently, the results obtained in [19] were extended in [10] to the coupled nonlinear Navier-
Stokes and linear Darcy problems with constant density and variable viscosity in the fluid region.
Due to the nonlinearity related with the viscosity, the velocity gradient is introduced as a further
unknown, which together with the fluid stress, the fluid vorticity, the velocity in both domains, the
porous media pressure and two Lagrange multipliers, namely the traces of the porous media pressure
and the fluid velocity on the interface, constitute the main unknowns of the system. In addition, since



the convective term of the Navier-Stokes model forces the velocity to live in a space smaller than L2,
we follow [7, 9, 8] and seek this unknown in H!, so that the variational formulation is then augmented
with residual terms arising from the constitutive and equilibrium equations for the fluid flow, and the
formulae for the strain and vorticity tensors. As for the second method in [6], the latter yields more
flexibility in the choice of discrete subspaces for the variables of the Navier-Stokes equations.

The purpose of the present work is to additionally contribute in the direction of mixed finite element
schemes for the coupling of fluid flows with porous media flows by introducing a new augmented fully-
mixed method for the steady state Navier-Stokes/Darcy coupled problem. Differently from [6] and
[10], here we proceed analogously to [8] in the fluid region, by taking advantage of the fact that the
fluid velocity is considered in H' and avoiding the introduction of the vorticity and the trace of the
fluid velocity on the interface as further unknowns. In this way, we obtain a simpler method with only
five unknowns. The rest of the work is organized as follows. In Section 2 we recall the model problem
and rewrite it as a first-order system of equations. In Section 3 we derive the augmented mixed
variational formulation, which, differently from [6, 10], does not include the vorticity nor the trace of
the fluid velocity on the interface as auxiliary unknowns. Next, we proceed with the solvability analysis,
mainly via the Babuska-Brezzi theory and the Banach fixed-point theorem, under a sufficiently small
data assumption. In turn, in Section 4 we study the associated Galerkin scheme by using a discrete
version of the fixed-point strategy developed in Section 3. Next, the a priori error estimate and the
corresponding rates of convergence for a particular choice of discrete subspaces are derived in Section 4
under a similar assumption on the size of the data. Finally, a couple of numerical examples illustrating
the performance of the method and confirming the theoretical rates of convergence, are reported in
Section 5.

We end this section by recalling some definitions and fixing useful notations. Given the vector fields
vV = (Vj)i=1,n and W = (w;)i=1,, with n € {2,3}, we set the gradient, divergence, and tensor product
operators, by

ov; . " Ov;
Vv = (8 , divv:i= a—], and v Q@ W = (0;wj)ij=1n-
Li/ij=1,n =1 9%

Furthermore, for any tensor fields S := (S;;)i j=1,» and R := (R;;); j=1n, we define the transpose, the
trace, the tensor inner product, and the deviatoric tensor, respectively, by

n n
1
St = (Sji)ije1m, tr(S):= Z Sii, S:R:= Z SijRij, and §%:=8 - —tr(S)L,
=1 4,j=1
where I is the identity matrix in R™*”. When no confusion arises, |- | will denote the Euclidean norm

in R™ or R™*™. Additionally, we will utilize standard simplified terminology for Sobolev spaces and
norms. In particular, if O is a domain, I" is an open or closed Lipschitz curve (respectively surface in
R3), and r € R, we define

H'(0) = [(O)", H'(0) = [H'(O)™", and H'():= [H'(D)]",

and for r = 0 we write, as usual, L2(0), L?(0),L%(0), and L3(T") instead of H°(0), H°(O), H°(0),
and H(T'), respectively. The corresponding norms are denoted by || - || for H"(O), H"(O) and
H"(O), and || - ||;r for H"(I") and H"(I"). We also write | - |,,0 for the H"-seminorm. In addition, we
recall that

H(div; 0) := {w € L?(0) : divw € L*(0)},



is a standard Hilbert space (see, e.g. [4, 24]), and the space of matrix valued functions whose rows
belong to H(div; O) will be denoted by H(div; Q). The norms of H(div; O) and H(div; O) are denoted
by || - [laiv:o and || - ||div:0, respectively. In turn, the symbol for the L*(I')- and L?*(T)-inner products

€N = [ eXr = [ e

will be also employed for their respective extensions as the duality products H~1/2(X) x H/2(¥) and
H~/2(X) x H/2(X). On the other hand, given an integer k > 0 and a set M C R", we let Py(M) be
the space of polynomials on M of degree < k, and set Py (M) := [Py (M)]|" and Py (M) := [Py (M)]™*™.
Furthermore, we will use || - || with no subscripts, to denote the natural norm of either an element
or an operator in any product functional space. In addition, C' will stand for any positive constant
independent of the meshsizes, but eventually depending on data and/or stabilization parameters,
which may take different values at each occurrence. Finally, we employ 0 to mean a generic null
vector, including the null functional and operator.

2 The model problem

We begin by describing the geometry of the problem. To that end we let () and Qp be two bounded
and simply connected polygonal domains in R™, n € {2,3}, such that 9Qg N 90Qp = ¥ # @ and
QsNQp = 0, and let I's := 9Ns\ ¥ and I'p := IQp \ E. On the boundaries we consider the normal
unit vector field n which is chosen pointing outwards from g U X U Qp and Qg (and hence inward
to Qp, when seen on ). In addition, on ¥ we consider a local orthonormal basis for its tangent
hyperplane given by {t1,--- ,t,—1}. See Fig. 2.1 below for a two—dimensional representation of the
geometry of the problem, where we simply denote t = t;.
/n

I'p

Figure 2.1: Geometric configuration for our Navier-Stokes/Darcy model

Then, our coupled problem consists of two set of equations describing the behaviour of the fluid in
both domains, {25 and p, and a set of interface conditions on Y. More precisely, in 2g the governing
equations are those of the Navier—-Stokes problem with constant viscosity v > 0 and density p > 0,
that is
os = 2ve(ug) — psl in Qg, p(ug-V)ug — diveg = fg in Qg,
(2.1)
divug = 0 in g, ugs =0 on Ig

where ug and pg denote the velocity and the pressure of the fluid, respectively, whereas og is the
Cauchy stress tensor, fg is a given external force living in a space to be specified later on, and e is the



strain rate tensor given by

e(us) = 5 (Vus + (Vus)').

with the superscript ! denoting transposition. While the standard strong Navier-Stokes equations are
presented above to describe the behaviour of the fluid in €2g, in this work we make use of an equivalent
version of (2.1) based on the introduction of a pseudostress tensor relating the stress tensor o with the
convective term. More precisely, analogously to [7] and [10], we introduce the nonlinear—pseudostress
tensor

Ts := o — p(us ® ug) = 2ve(us) —psI — p(us @ ug), (2.2)
and owing to the incompressibility condition tr (e(ug)) = divug = 0 in Qg, we deduce the following
identities

1
ps = {tr (Ts) + ptr (ug ®us)} in Qg and —divTg="fs. (2.3)

n
Note that the first identity allows us to eliminate the unknown pressure in (2.1), obtaining

T§ = 2ve(us) — p(ug®ug)® in Q.

Then, defining

w(vg) == %(Vvs — (Vvs)) Vvg € HY(Qg), (2.4)
the Navier-Stokes equations (2.1) can be rewritten equivalently as follows:
T = 2vVug — 2vw(ug) — plug®@ug)? in Qg, —divTg = fs in Qg, -
Tg = Tg in Qg, and ug=0 on TI%s.
In turn, in the porous medium Qp we consider the Darcy model:
Klup = -Vpp + fp in Qp,
(2.6)

diquZO in QD, U_D'IIZO on FD

where up is the velocity and pp is the pressure. The matrix—valued function K, describing the
permeability of Qp divided by the viscosity v, satisfies K! = K, has L>(Qp) components and is
uniformly elliptic, that is, there exists Cx > 0, such that

a-K(z)a > CK||a||2, (2.7)

for almost all z € Qp and for all « € R™. Finally fp is a given external force that accounts for gravity.
We conclude the description of our coupled system by introducing the transmission conditions on the
interface X:

us-n =up-n on D) (2.8)
and
n—1
ogn + Zwl(us -t))t; = —ppn on >, (2.9)
=1
where {wy,...,w,—1} is a set of positive frictional constants that can be determined experimentally.

Condition (2.8) corresponds to mass conservation on Y, whereas (2.9) can be decomposed into its
normal and tangential components, as follows:

(ogn)-n = —pp and (osn)-t; = —wi(ug-t;), I=1,...,n—1. (2.10)



The first condition in (2.10) corresponds to the balance of normal forces, whereas the second one,
known as the Beavers-Joseph-Saffman law, establishes that the slip velocity along ¥ is proportional to
the shear stress along ¥ (assuming also, based on experimental evidences, that up -t;, [ =1,...,n—1,
is negligible). We refer the reader to [3, 28, 31] for further details on this interface condition. Notice
that equation (2.9) can be rewritten in terms of tensor Ty as

n—1

Tsn = —p(ug ® ug)n — Zwl(us -t)t;—ppn on X, (2.11)
=1

which will be employed below in place of (2.9).

3 The continuous formulation

In this section we introduce our augmented fully-mixed variational formulation and address its solv-
ability.

3.1 The augmented fully-mixed variational problem

In what follow we derive the variational formulation of our model problem based on equations
(2.5),(2.6), (2.8) and (2.11). To this end, we first introduce the Hilbert spaces

H%S(QS) = {VS € Hl(Qs): vg = 0 on FS},
Hr, (div; Qp) = {VD € H(div;Qp): vp-n =0 on FD},
and recall the identities
T%R:w&#aM(mwm%:%@mw%mmS (3.1)

for all v € HY(Qg), and for all T, R € L?(Qg), with
(91)2 (%1

_4 _ _ - : R2
l( ) L 8951 8332 m ’
T g (P 0 du 0w 9w 0w g
© \Oxy Oxs’ Oxrs Oxy Oxrp O ’
and
Ro1 — Ry in R?

as(R) := ' ,
(R32 — Rag, Ri13 — R31, Ro1 — Ri2)  in R°.

In addition, given x € {S,D}, in what follows we denote:

(Wm:/ﬂ“ mwm:/fw, @ﬂm:/fm.

First, for the set of equations (2.5) we proceed analogously to [9] (see also [1, Section 2.1] for a
similar approach). More precisely, we multiply the first and second equations of (2.5) by test functions
Rg € H(div;Qg) and vg € H%S (Qsg), respectively, and then perform integration by parts once for the

6



equation multiplied by Rg and twice for the one multiplied by vg. In this way, utilizing the Dirichlet
boundary condition ug = 0 on I's and the interface condition (2.11), and making use of the identity
(u®@w)n,v)y, = (wW-n,u-v)y, we obtain

(Tg, Rg)gs + 2v(ug,div Rg)qg + v(curl (ug), as(Rg))aq

(3.2)
+ p((ug & uS)d, Rs)QS —2v <Rsn, us>2 =0 VRg € H(div; Qs) ,
and
—2v(vg,div Ts)og + 2v(Tsn, ve)y, — v(curl (vs), as(Ts))ag + 2vp (us - n, ug - vg)x
n—1 (3.3)
+ 20 ) wi{(us - )b, ve)s + 2v(vs - n, Ny = 20(fs, ve)as  Vvs € Hi (),
=1
where A := pp|s € HY2(%) is introduced as an additional unknown.
On the other hand, for the set of equations (2.6) we proceed analogously to [14, 21] to get
2v(K tup, vp)a, — 2v(pp, divvp)a, — 2v(vp - n, A)x
(3.4)
= QV(fD, VD)QD VVD € HFD (div; QD) ,
and
2v(gp,divup) = 0 Vgo in L*Qp), (3.5)
whereas (2.8) is imposed weakly through
2v(ug-m, &)y —2wlup -n, &y =0 Ve e H/A(RD). (3.6)

Above, and for convenience of the forthcoming analysis, we have intentionally multiplied equations
(3.3)=(3.6) by 2v. Finally, we proceed analogously to [9] and add the following redundant terms arising
from the constitutive and equilibrium equations

k1 (div Tg + fg,div RS)QS =0 VRg € H(div;Qg), (3.7)
and
ko (T§ — 2ve(us) + p(us ® ug)?, e(vs)), =0 Vvg € H%S(QS), (3.8)
respectively, where k1 and ko are positive parameters to be specified later. In this way, at first instance
we arrive at the variational problem: Find
(Ts,ug,up) in H(div;Qg) x Hy (Qs) x Hp, (div; Qp),
(pp, ) in L*(Qp) x HYZ(Z),

such that (3.2)—(3.8) hold.

Now, let us notice that if ((Ts, us,up), (pp,A)) € X x Q solves (3.2) - (3.8), then simple compu-
tations show that for all ¢ € R, ((Ts — cI,ug,up), (pp + ¢, A + ¢)) is also a solution of (3.2)-(3.8),
and consequently, uniqueness of solution of the coupled system fails. Then, in order to overcome this
drawback, from now on we restrict the pressure space to Lg (Qp), where

L3(0p) = {q € L2(Op) - /QDq - o}.

7



Furthermore, recalling that there holds the decomposition
H(div;Qg) = Ho(div;Qg) & Py(Qs) 1, (3.9)

where
Ho(div; Qg) = {Rs € H(div;g) : / trRg = 0} , (3.10)
Qg

we redefine the fluid pseudostress tensor Tg as
Ts + uI  with the new unknowns Tg € Hy(div;€2g) and peR,
whence equation (3.3) becomes

—2pu (vs,div Ts)qg  + 2v(Ts, vs)s + 2vpu({vs - n, 1)y — p (curl (vs), as(Ts))q,
n—1
+ 2vp({ug - n,ug - vg)s + Z 2vwi((ug - t)t;, ve)n (3.11)
=1
+ 2I/<VS -1, )\>2 = (fs,Vs)Qs VVS S H%S (Qs) .

In turn, decomposing the test function Rg of (3.2) according to (3.9), we obtain

(Td7R§)QS + 2v (ug, div Rg)q, + v (curl (ug),as(Rg))QS 5.12)
+p((us® US)d,RS)QS — 2v(Rgn,ug)y = 0 VRg € Hy(div; Qg),

and
2vn{ug -n, 1)y, =0 VneR. (3.13)

In this way, by replacing (3.2) and (3.3) by (3.12) - (3.13) and (3.11), respectively, the variational
formulation of our coupled system can be stated as: Find (Tg,ug,up) € Hy(div;Qg) x H%s (Qg) %
Hr, (div; Qp) and (pp, A\, u) € LE(Qp) x H/2(X) x R such that (3.4)(3.8), (3.12) - (3.13), and (3.11)
hold. Moreover, we show next that it can be rewritten in terms of suitable forms and functionals. In
fact, we begin by grouping the unknowns, test functions, and spaces, as follows

® = (Ts,ug,up) , ¥ = (Rg,vs,vp) € X :=Ho(div;Qg) x Hp (Qs) x Hr,, (div; Qp)
(3.14)
b= (pDv)\nu)a qa= (QD>fa"7) €Q:= L(Q)(QD) X Hl/Q(E) X R,

where X and Q are endowed with the norms || - [|% = || - |Giv.0s + I - [1F.0s + |- G0, 20d |1 11§ =
|- [lo,0n + I - H%/Q s + | - |, respectively. In addition, given wg € Hpg(f2s), we define the bilinear forms
Aws(®,®) := Ag((Ts,vs), (Rs, vs)) + Cwg ((Ts,vs), (Rs,vs)) + Ap(up, vp), (3.15)

and
B(¥,q) := —2v(¢p,divvp)a, + 2v(vs-n — vp-n,&{)s + 2vn(vs-n,l)x, (3.16)

for all & = (Ts,us,up), ¥ = (Rg,vs,vp) € X, and for all q = (¢p,&,n) € Q, where Ag, Cyg, and
Ap are in turn the bilinear forms given by
As((Ts,uS),(Rs,Vs)) = (Tg,R%)QS + QV(US,diVRs)QS — 2V(Vs,diVTs)QS
+ v(curl (ug), as(Rg))ags — v(curl (vg),as(Ts))os — 2v(Rsn,ug)y, + 2v(Tsn, vg)s

n—1
+ r1(div Ts,div Rg)og — ,‘<;2(T°S1 — 2ve(ug),e(vs))os + 2VZwl<uS-tl,V5-tl>g,
=1

(3.17)



Cws ((Ts, ug), (Rg, vg)) = p((ws ® ug)?,Rg)as + 2vp(ws - n,ug - vs)y

(3.18)
— rap((ws ® ug)?, e(vs))og ,
and
Ap(up,vp) = (K_luD,vD)QD. (3.19)
In addition, we define the functional F € X’ as
F(¥) = —2v(fs,vs)as + 2v(fp, vb)a, — ki1(fs,divRs)ay, (3.20)

for all ¥ = (Rs,vs,vp) € X. Consequently, we arrive to the coupled system: Find (®,p) € X x Q
such that

Ay (2, ¥) + B(¥,p) = F¥) V¥eX,
(3.21)
B(®,q) = 0 Vq e Q.
3.2 Analysis of the continuous problem
Let us define the mapping
J -MC H%‘S (Qs) — H%‘S (Qs), wWs — j(Ws) = us, (3.22)

where ug € H%S (£2g) is the second component of ® € X, which, together with p € Q, constitutes the
unique solution of the linearized version of problem (3.21): Find (®,p) € X x Q such that

Aws(2,¥) + B(Z,p) = F(¥) V¥eX,
- (3.23)
B(®,q) = 0 Vq € Q,

and M is a bounded set ensuring the well-definiteness of J (to be specified below). Then, noticing
that (®,p) = ((Ts,us,up), (pp, A\, 1)) € X x Q is a solution of (3.21) if and only if ug € H%S(QS) is
a solution of the fixed-point problem: Find ug € M, such that

J(us) = us, (3.24)

it is clear that to prove the well-posedness of (3.21) it suffices to prove the unique solvability of problem
(3.24). Before doing that we must study the well-definiteness of 7. The following section is devoted
to this matter.

3.2.1 Well-definedness of the fixed-point operator

According to the mixed structure of the linearized problem (3.23), in what follows we apply the
Babuska-Brezzi theory to prove its well-posedness, or equivalently the one of 7. We begin by estab-
lishing the continuity of the functional F and the bilinear forms Ag, Ap and B:

F@)| < { (@ + )" Ifsloas + 2llfbllocn ) 12]x, (3.25)
|As ((Ts, ug), (Rs, vs)) | < Csql[(Ts, us) [|[[(Rs, vs)|], (3.26)
| Ap(up, vp) |< Cpllup|ldgiv:op VD ldivion » up,vp € Hry(div; Qp), (3.27)
and
IB(®,q)| < Csl|2|x|dllq, (3.28)

9



for all ® € X, Tg,Rg € Hy(div;Qg), us, vs € H%S(Qs), and (®,q) € X x Q, with Cs1,Cp,C > 0.
The proofs of the previous estimates are straightforward.

Now, given wg € H%s (Qg), from the continuity of the embeddings iz : HY/?(¥) — L*(X) and
is : H'(Qg) — L*(Qs), and the continuity of the trace operator vg : H'(Q2s) — L?(9fgs), we obtain
that there exists Cg o > 0 such that

|Cws((Ts, us), (Rs, vs))| < Csof|ws

1.9s [ (Ts, us) [ (Rs, vs)|l, (3.29)

for all Ts,Rs € Ho(div; 2s) and ug,vs € HE_(Qs), with Csa = [lis]|? (02 + £3) "> + 2vis|2[vs]-
In particular, from (3.26) and (3.29) we easily deduce that, for a fixed wg € HILS(QS), Ay (cf. (3.15))
is a continuous bilinear form, that is

[Aws (2, ¥)[ < (Ca + Csoflwsllios) | lx[[E]x V@, ¥eX, (3.30)
with Ca > 0. Let us now define the subspace
Vo= {ge X : B(¥,q) =0 Yq=(qp,&n) € Q}. (3.31)
From the definition of B (cf. (3.16)), it follows that ¥ = (Rg,vs,vp) € V, if and only if,

(qD,diV VD)QD =0 VqD S L%(QD) , <VS - n, 1)2 = O,

and <VS ‘n — vp - n,f)z =0 Vée Hl/Q(E) (3.32)

Then, recalling that L2(Qp) = L2(2p) ®R, and noticing from the second and third equations of (3.32)
that fQD divvp = (vp-n, 1)y, = (vg-n, 1)x = 0, we conclude together with the first equation of (3.32)
that

(diVVD,qD) =0 Ygp € LQ(QD).

Consequently, we can rewrite the subspace V as follows
V = {g: (Rg,vs,vp) € X :divvp =0 in Qp, vs-m—vp-n=0 on X
and (vs-n, 1)y = 0}.
Now we address the ellipticity of Ay, on V for suitable choices of wg € H%S(QS).

Lemma 3.1 Assume that k1 > 0 and 0 < kg < 4v, and let wg € H%S (Qs) such that

o
Iwsll1,0s < Coa’ (3.33)

)

where o = %min{as, Ck}, ag is the constant defined below in (3.38), and Ck and Cs 2 are the positive
constants satisfying (2.7) and (3.29), respectively. Then, there holds

Ay (¥, ¥) > a|®|x V¥ cV. (3.34)

Proof. Given W := (Rs, VS7VD) € V, we first recall from [17, Lemma 2.3] (see also [4, Chapter IV])
and [4, 24], respectively, that the following well known estimates hold

CallR[F a5 < IR og + lIdivR[F o (3.35)
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and
Crllvlli g < lle()5.0s - (3.36)

with Cy > 0 and Cy > 0 depending only on {2g. Then, employing (2.7) we deduce that
As((Rs,vs), (Rs,vs)) + Ap(vp, vD)

Cyqy . K
> ~Lmin{r, 1} Rs3vas + Cxlvola, + #2Cr (2v =32 ) Ivslig, (3:37)
> asl(Rs, vs)I? + Cxcl[vol3iay
with o
ag = min {2d min{xy, 1}, Cxka <2u - /;2)} . (3.38)

Then, using that
Ay (¥,¥) = As((Rs,vs), (Rs,vs)) + Ap(vp, vb) + Cws((Rs, vs), (Rs, vs)),

> As((Rs,vs), (Rs, vs)) + Ap(vp, vp) — |Cwg((Rs, vs), (Rs, vs))l,

we conclude from (3.29), (3.37), and the hypotheses on the parameters x; and kg, the required
inequality (3.34). O

Now we turn to establish the inf-sup condition of B. As we shall see next, this result can be derived
from the following two estimates.

Lemma 3.2 There exists ¢; > 0 such that

diVVDaQD + (VD - nag P
Sil.€) = sp | LEOD RS S fapllogy + [€hes)-  (3:39)
vpeHr, (divip) VD [laivsep
vp#0
for all (gp, &) € LE(Qp) x H'Y?(%).
Proof. See Lemma 3.3 in [22]. O

Lemma 3.3 There exist co,c3 > 0, such that

Sa(&,m) == sup (vs m,§)x — nlvs -1, Dy

VseHFS(Qs) HVSHLQS
vs#0

for all (£,m) € HY/?(X) x R.

> caln| — CSHle/Q,& (3.40)

Proof. We proceed similarly to the proofs of [22, Lemma 3.2] and [8, Lemma 3.2]. In fact, we let vy
be a fixed element in H%S(QS) satisfying (vp - n, 1)y, # 0 (see the proof of [8, Lemma 3.2] for the

construction of such an element), and observe that for all (¢,7) € H'/?(X) x R, there holds

| (vo-n,&)s — n(vo-n,1)x |

82(5777) Z
”VOHLQS (3 41)
[l [(vo-n, )| [{vo-m,§)s| '
- > can| — C3||f||1/2,2>
[voll1,0s Ivoll1,0s
with ¢y = [0l and ¢5 > 0 the constant satisfying |(vo - 1, &)s| < cs|[voll1asll&]l1/2.r, Which yields
Q29
the desired result. O

Employing the previous two lemmas, we prove now the inf-sup condition of B.
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Lemma 3.4 There exists § > 0, such that

B(¥,q
stw = gy g
\11750

> fllale  Va e Q. (3.42)

Proof. Given q = (pp,§,n) € Q, from the definition of the bilinear form B (cf. (3.16)), we observe
that
S(ﬂ) > 2VSl(qDa 5) and S(ﬂ) > 27/52(55 n)a

which together with Lemmas 3.2 and 3.3, yield

S(@ = 2ver {llavllog + €l 25} and S(@) = 20 {ealnl = esliglhyos}-

Then, from the latter estimates we easily obtain

(1+52) 5@ = vermin {1, 2 jall (3.43)

203

—1
which implies the result with 8 = ve; min{1, % (1 + 2?3) . O

Now we are in position of providing the well-posedness of (3.23).

Lemma 3.5 Assume that k1 > 0 and 0 < ko < 4v. Then, for each wg € H%S (Qg) satisfying (3.33)
and each fg € L*(Qg) and fp € L*(Qp), there exists a unique (,p) € X x Q solution to (3.23). In
addition, the following estimates hold:

_ 1/2
1@lx <o { (1% + 53) " Ifsllo.os + 2¢[ollo0s | (3.44)
and

_ _ 1/2
Pl <B7'(1+a'(Ca +Cs,2HWsH1,Qs)){ (42 + 12)"* |Ifsllo.0s + 2V||fDHo,QD}- (3.45)

Proof. The unique solvability of (3.23) is a direct consequence of Lemmas 3.1 and 3.4 and the classical
Babuska-Brezzi theory. In turn, for the estimate (3.44) we use the fact that ® € V and apply (3.34)
and (3.25), whereas (3.45) follows from the inf-sup condition (3.42) and estimates (3.25), (3.30) and
(3.44). We omit further details. O

According to the previous lemma we conclude that if we choose the set M in (3.22) in such a way
that M C B (0, o 2) = {ws € H%S (Qs) : %}, then J is clearly well-defined. If so,
from (3.44) we obtain that for all wg € M, there holds

_ 1/2
17(ws)les = luslia, < 12lx < o (42 + £2)" sl ). (349)
In particular, if we consider the set
M := {ws € HE,(9s) © Iwsllos < o7 {(4? + #3) + 2y||fD|yo,QD}}, (3.47)
and assume that o
S
S @2+ wD P tslogs + 2voloas | < 1, (3.48)
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we readily obtain that M C B (0, &), thus proving that J is well-defined. In addition from (3.46)
we have that

J(M) C M.

Therefore, in order to prove the well-posedness of (3.21), in what follows we consider M defined as
in (3.47) and show, equivalently, that J has a unique fixed-point in M by means of the Banach
fixed-point theorem and under the same small data assumption (3.48).

3.2.2 Unique solvability

The main result of this section is stated now.

Theorem 3.6 Let fs € L2(Qg) and fp € L2(Qp) be such that (3.48) holds. Then, the operator J
(cf. (3.22)) has a unique fixed-point ug in M. Equivalently, the coupled problem (3.21) has a unique
solution (®,p) = ((Ts,us,up), (pp, A\, 1)) € X x Q, with ug € M. Moreover, there hold the following
a priort estimates

[®[lx < orl{ (42 + 1) |fsllos + 21/HfDHO,QD}7 o
3.49
Iplq <B7'(2+ a‘lCA){ (4% + H%)1/2 Ifs

00s + 20[olloos | -

Proof. We begin by recalling from the previous analysis that assumption (3.48) ensures the well-
definedness of J. Now, let zg, zg2, ug; and ugs in M, such that ug; := J(zs;), ¢ € {1,2}.
According to the definition of J (cf. (3.22)) we have that for each i € {1,2} there exist (®;,p,) =
((Ts,isusi,up), (Pp,is Ais i) € X x Q, such that

Ay, (2, %) + B(¥,p,) =F(¥) VE¥eX,

B(Qzag) =0 VQEQ7
from which we obtain
AZSJ (gl7i) - AZS,Q (Q27g) + B(g7 El - 22) - O VE S X7
(3.50)
B(®, - ®,,9) =0 VqeQ.
Then, observing that ®, — ®, € V, from the first equation of (3.50) with ¥ = &, — ®,, and simple
computations, we deduce that

Aug (B — Py, @) —Py) = —Ay (Py, R) — Do) + Ay, (2, 2 — D)

Z3,1

= —Cyugy-25,((Ts2,us2),(Ts1 — Ts2,us1 —usp2)),
which, together with (3.34) and (3.30), imply

lug: — ugzlli < |8 — Byllx < o 'Cso

zs1 — 2s2/l1.05[|(Ts 2, us )|

< o 'Cs2|| R Ix |lzs,1 — Z8 2|10 -

Hence, recalling that ®, satisfies (3.44), we conclude from the foregoing inequality and (3.48) that J
is a contraction mapping. Therefore, a straightforward application of the Banach fixed-point theorem
implies the unique solvability of the fixed-point problem (3.24), or equivalently, the well-posedness of
(3.21). Finally, letting (®,p) = ((Ts,us,up), (pp, A, 1)) € X x Q be the unique solution of (3.21),
with ug € M satisfying (3.24), it is clear that (®, p) satisfies (3.23) with ws = ug. Therefore, noticing
that estimates (3.46) and (3.48) imply |lus||1 og gfé, from (3.44) and (3.45) we clearly obtain (3.49),
which concludes the proof. O
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4 The Galerkin formulation

In this section we introduce the Galerkin scheme of problem (3.21) and provide sufficient conditions
on the corresponding finite-dimensional spaces guaranteeing its unique solvability, stability, and Céa’s
estimate.

4.1 The discrete problem
Let us consider generic finite element subspaces

H;,(Qs) € H(div; Qg), H,(Qp) € H(div; Qp), H} (Qs) € HY(Q),

Ly(Qp) € L2(Qp) and  Ax(S) C HYZ(E), (41)
and let
Hy,(Qg) = {Rh € H(div; Q) : ¢'Ry, € Hy(div; Qs) Ve e ]R”}.
Then, defining the global finite element spaces as
Xh = Hhﬁ(Qs) X Hilz,FS (Qs) X H}LFD (QD) and Qh = Lh,O(QD) X Ah(E) X R, (4.2)
with
th(Qs) = Hp(Qg) NHy(div; Qg), Hfll,FS (Qg) = [H}L(Qs)]n N Hll"s (Qs), (4.3)

Hh,FD (QD) = Hh(QD) N HFD (diV; QD), Lh,O(QS) = Lh(QD) N L(Q)(QD),

the Galerkin scheme of (3.21) reads: Find (Qh,gh) = ((Th,s; uns, un D), (Gh,Ds Ans 1)) € X X Qp,

such that
Ay, (2, 9,) + B(EhaEh) = F(¥,) V¥, e Xy,

B(®,.q,) = 0 Vq, € Qu.

In turn, in order to study the unique solvability of (4.4), and analogously to the continuous case, we
realize that (4.4) can be rewritten equivalently as the fixed-point problem: Find up g € My, such that

(4.4)

TIn(ups) = ups, (4.5)

where 7}, is the discrete fixed-point operator defined as Jj, : M, C H}L,FS(QS) — H,%L’FS(QS), Whs —
JIn(Wns) = upg, where upg € H,ILFS(QS) is the second component of ®;, which, together with
P, € Qp, constitutes the unique solution of the linearized version of (4.4): Find upg € H,ll FS(QS)

such that
Av,s(®,,2,) + B(Z,,p,) = F(¥,) V¥, X,

B(ifﬂgh) = 0 vgh € Qh7

and M, C H}L’FS (Qg) is a subset ensuring the well-definedness of 7}, or equivalently, the well-posedness
of (4.6).

According to the above, now we focus on providing suitable hypotheses on the finite-dimensional
spaces (4.1) that will allow us to prove the well-posedness of (4.6), and consequently, the unique
solvability of problem (4.4). We begin by observing that, in order to properly define the spaces
Hy0(Qs) and L3(Qp), we need to be able to eliminate multiples of the identity matrix from Hy(Qs)
and constants polynomials from L2?(€2p). These requests are certainly satisfied if we assume that:

(4.6)

(H.O) Po(Qs) - Hh(div;ﬂs) and Po(QD) - Lh(QD).
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Thus, it readily follows from (H.0) that the following decompositions hold

Hip(Q2s) = Hpo(Q2s) ® Po(Qs)T and Ly (2p) = Lpo(2p) ® Po(2p). (4.7)
Now, we turn to establish sufficient conditions for the discrete inf-sup condition
B(‘I’h?q ) =~
Sn(q,) = sup ———="= > f|iq Va, € Qp, 4.8
@)= o g = Alala Ve, (48)
¥, 40

where B > ( is a constant required to be independent of the discretization parameter h. To that end,
we apply the same arguments utilized in the proof of Lemma 3.4 and realize that the inf-sup condition
(4.8) holds if we guarantee the following conditions:

(H.1)  there exists ¢; > 0, independent of h, such that

(div vy D, qn,D)D + (VaD -1, &p)s

Sin(anp, &) = sup
vi,DEHp 1y (D) VDl div:op o
Vh7D7£O ( . )
> 0 {HQh,D lo,0p + ||fh||1/2,z} V(qn,D,&n) € Lao(S2p) x Ap(E).

(H.2)  there exists vy € H%s (Qg) such that vy € H}L,Fs (Qg) for all h, and (vo-n,1)s # 0.
In particular, analogously to the proof of Lemma 3.3, the latter clearly implies

(Vhs -1, &n)s — np(vas -0, 1)y
HVh,S’ 1,09

So (s mn) = sup
vh’seH}hFS(Qs)
Vh,s70
> Gl —Glénllijzs ¥ (nsmn) € An(E) x R,

with a2, ¢3 > 0 independent of h, which, together with (4.9), gives (4.8).

(4.10)

Finally, we look at the discrete kernel of B, namely
V), = {gh €X, : B(¥),q,) =0 Vaq, € Qh}. (4.11)
In order to describe explicitly V},, we now introduce the following assumption:
(H.3) divH,(Qp) C Lp(Qp) and Py(X) C Ax(X)

Using (H.3), and recalling the definition of B (cf. (3.16)), we have that ¥, = (Rys,Vhs, Vap) € Vi,
if and only if
div vpD € R, <Vh,S "N — ViyD - n,§h>2 =0 V& € Ap, and <Vh,S - n, 1>E =0. (4.12)

In particular, starting from the third identity of (4.12), and then taking &, = 1 in the second one, we
obtain

0= <Vh,S - n, 1>Z = <Vh,D -1, 1>E = (le Vh.D, 1)D ;
which easily yields divvyp = 0 in {2p. In this way, we obtain the following characterization of Vj:
V= {Eh € Xy div ViD= 0 in Qp, <Vh7S -n, 1>2 =0,
(4.13)
and (vps-n—vupp n&)n=0 V¢ € Ah(z)} :

As a consequence of the above, we observe that the following discrete version of (3.37) holds:

As((Rps vas), (Ras, Vas)) + Ap(Vip, vap) > asl|(Rus, vis)I® + Ckllvaplliiva,»  (4.14)
for all (Ry,s,Vhs, VD) € Vi, with ag defined in (3.38) and Ck the positive constant satisfying (2.7).
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4.2 Well-posedness of the discrete problem

We begin by establishing the well-definedness of 7}, or equivalently, the well-posedness of (4.6). For
this purpose, we first observe that the estimates (3.25), (3.26), (3.27), (3.28), and (3.29) certainly hold
for the subspaces Hp, o(€2s), H}LIS(QS), Hy,r,(2p), Lp(Qp), and Ap(E), of Hy(div; Qg), H%S(Qs),
H%D(div; Qp), L2(Qp), and H/2(X), respectively. In addition, (3.30) is also valid for wg = Whs €
H}L,FS (Qs). In turn, we establish next the discrete analogue of Lemma 3.1.

Lemma 4.1 Assume that k1 >0 and 0 < k2 < 4v, and let wy, g € H}, re(Q2s) such that
a

1,05 < @7

)

[Wh.s (4.15)
where o = %min{aS,C’K}, ag is the constant defined in (3.38), and Cx and Csyo are the positive
constants satisfying (2.7) and (3.29), respectively. Assume further that (H.0) and (H.3) hold. Then,
there holds

Avw,s(¥p, ¥),) 2 af|@llx  VE, €V, (4.16)

Proof. Analogously to the proof of Lemma 3.1, (4.16) is a direct consequence of (3.29), (4.14) and
assumption (4.15). We omit further details. O

Now we are in position of establishing the well-posedness of (4.6).

Lemma 4.2 Assume that (H.0), (H.1), (H.2), and (H.3) hold, and that k1 > 0 and 0 < kg < 4v.
Then, for each wpg € H}LIS(QS) satisfying (4.15) and each fs € L?(Qg) and fp € L2(Qp), there
exists a unique (25,,p,) € Xy X Qp solution to (4.6). In addition, there hold the following a priori
estimates

_ 1/2
1@slx < o™ { (02 + &))" Ifsllo.cs + 2¢l0lloen |
(4.17)

S _ 1/2
Ip,llg <B'(1+a ' (Ca +CS,2HWh,SHms)){ (42 + &3) llfslloas + 2v0follogs |-

Proof. The unique solvability of (4.6) follows straightforwardly from (4.8), (4.16), and the classical
Babusgka-Brezzi theory. In turn, by applying the same steps employed in the proof of Lemma 3.5, one
can obtain the estimates (4.17). O

According to the previous lemma, and analogously to the continuous case (cf. (3.47)), we now
introduce the bounded set

M, := {Vh,S € H}L,S(Qs) S visllies < 071{(4V2 + 502 fsllo.0s + QVHfDHO7QD}}'

Then, assuming that (3.48) holds, it follows that the fixed operator 7, defined through (4.6) is well-
defined and satisfies Jj,(M},) € M. Moreover, analogously to the continuous case, we can prove the
well-posedness of problem (4.4). This result is established now.

Theorem 4.3 Assume that (H.0), (H.1), (H.2), and (H.3) hold, and that k1 > 0 and 0 < k2 <
dv. Assume further that the external forces fs and fp satisfy (3.48). Then, there exists a unique
(Qh,gh) € Xy, x Qp, solution to (4.4). In addition, there hold the following a priori estimates

_ 1/2
@1 lx < 0~ (472 + 52) "2 Esllo.as + 2vlfbllon |
(4.18)

Iyl < 872+ tCa){ (42 + 1) lifsloas + 20l llosn |-
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Proof. By applying the same tools employed in the proof Theorem 3.6, that is, estimates (4.16),
(3.29), and assumption (3.48), it can be easily deduced that 7, is a contraction mapping on My,
which, together with the Banach fixed-point theorem, implies the unique solvability of the fixed-
point problem (4.5), or equivalently, the well-posedness of (4.4). Moreover, analogously to the
proof of Theorem 3.6, estimates (4.18) follow from (3.48) and the fact that the solution (®,,p,) =
((Thys,uh,s,uhp), (Ph.D, )\h,,uh)) € X, x Qy, satisfies the estimates (4.17), the second of them with
WhS = UpS € M;,. U

4.3 The Cea estimate

Our next goal is to provide the Cea estimate for our Galerkin scheme (4.4). For this purpose, we

let (Q;B) — ((TS,US,UD), (pDaAa,u)) S X x Q and (Qh’Eh) - ((Th,Sauh,Sauh,D)a (ph,Da)‘haMh)) S
X}, X Qp be the unique solutions of (3.21) and (4.4), respectively, and observe that the following
orthogonality-type relation holds

Aus (iagh) - Auh,s(ghagh) + B(Eh?E_ Eh) = 0 vﬂh S Xh7

(4.19)
B(®-®,,q9,) =0 Vg, € Q.
In turn, for the sake of simplicity we denote the corresponding errors as
ep =P — Qh? and ep = P—P, (420)

and for given ®, = (Sh’s,zh,s, Zh,D) € Vy and ry, = (rpp,Yn, (n) € Qp, we write
es =0p + Mg :=(2—-9,)+(p, —2,) and ep =6p + 0, :=(p—1ry) +(r,—p,). (421
Then, we have the following main result.

Theorem 4.4 Assume that (H.0), (H.1), (H.2), and (H.3) hold, and that k1 > 0 and 0 < ko < 4v.
Assume further that

Cs 1
2@ + D Ylslloos + 200l } < 5 (4:22)
Then, there exists Ceeq > 0, independent of h, such that
1(@,p) = (21, p))lIxxq < Ceea inf (@, p) — (¥, q,)lxxq- (4.23)

(¥,,9,)€X,xQp

Proof. From the first equation of (4.19), adding and subtracting suitable terms, and recalling the
definition of Ay, ¢ (cf. (3.15)), we arrive at
Ayg(ea, ¥),) = _Auh,s(gh’gh) + Aug (P, ¥p) — B(Ehaeg) (4.24)
= _CuS—uh,s ((Th,Sa uh,S)7 (Rh,Sy Vh,S)) - B(Ehv eE) )

which, using that es =ds + ng and ep = dp + 7, can be rewritten as

Aus(Me, ¥)) = —Aug(08, %)) — Cugu, s ((Ths; uns), (Rus, vis))

- B(glwag) - B(Ehang)a
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for all ¥, = (Ry.s,Vhs, VD) € Xp,. Next, we notice from the second equation of (4.4) that ®; € Vy,
whence ng := ¢, — @), belongs to V, as well. Then, taking ¥, = ng in (4.16), employing the
estimates (3.29) and (3.28), and denoting dug = us — zx,s and N, = zps — Wps, we readily obtain

alnelk < (Ca+Cszllus|liog) 19e]x /14 lx

+ Cs2 ([18uslle + Inusll1.0) 124lx[Inelx + Crlnaslxldpla-

which, together with the fact that ||dugll1,0 < [[da]/x and |[ny.ll1,0 < [[nel/x, implies

(a = Csal®llx) [nsllx < (Ca + Cspllusllios + Cs2ll®]1x) d2lx + C |dpllq -
Then, recalling that ||ug||10s < ||®]|x, from (3.44), (4.17), and assumption (4.22), we deduce that

Insllx < Cilldallx + C2|dpllq,
with constants C'1, Co > 0, independent of h, which yields
lealx < (1+C)dallx + C2[|0plq - (4.25)
On the other hand, noticing from (4.24) that there holds
B(¥;,,np) = —Aus(es, ¥),) — Cug—uy s ((Ths, uns), (Ras, vis)) — B(¥y,,0p),

for all ¥, = (Rns,Vhs,Vhap) € Xp, and using the inf-sup condition (4.8), the estimates (3.28),
(3.29), (3.30), (4.17), and (3.46) (with wg = ug € M), and the fact that ||lus —ups|li,0s < |les|x,
we conclude that

Blnylla < B 1)

rr’ < Sup - =

RIQ = o x, 1¥lx
U, #0

< Csllesllx + Culldpllq,

which, combined with (4.25), gives

lepll@ < lImpllq + [9plle < Cs(ld2lx + Cs[dpllq; (4.26)

with constants C3, Cy4, C5, Cg > 0, independent of h. Finally, recalling that the inf-sup condition
(4.8) implies the estimate (see [17, estimate (2.89)])

inf |® —¥,|x <c inf [|® - |x, 4.27

o2, [ —¥,)x < ¢ gnf 12 — ¥, x (4.27)

with ¢ > 0, independent of h, from (4.25) and (4.26) and the fact that P, = (Sh,S,Zh,S,Zh,D) €Vy
and rj, = (rpp, Un, (p) € Qp, are arbitrary, we obtain the desired result. O

4.4 Computing further variables of interest

In this section we introduce suitable approximations for further variables of interest, such as the
pressure p, the vorticity w := %(Vu — Vu'), the velocity gradient G = Vu and the stress tensor
o :=v(Vu+ (Vu)!) — pl, all them written in terms of (Qh,gh) = ((Th,s:uns, unD), (qh,D, My i) €
X} % Qp, solution of the discrete problem (4.4). In fact, observing that at the continuous level there
hold

1 1 1
p=- (tr (T)+tr(u®@u) — M(tr(u@u),lh), G = ;(Td + (u®u)?d),
1 1
U:Td+Tt—m(tr(u®u),l)gl+u®u+(u®u)d and wzi(T—Tt),
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we propose the following approximations for the aforementioned variables

1 1 1
ph=— (tr (Th) + tr (up, @ up) — @(tr (up, @ up), 1)9) , G, = ;(Ti + (up @ up)?),

1 1
O'hZT‘}iﬂ—T}Z—m(tr(uh®uh),1)gl+uh®uh+(uh®uh)d and wyp = Z(Th_TZ)'

4.5 A particular choice of finite elements

In this section we proceed similarly to [6] and [22] and specify concrete examples of finite element
subspaces in 2D and 3D satisfying the hypotheses (H.0) — (H.3). To this end, we let 7;> and 7,0
be respective triangulations of the domains (2g and 2p, which are formed by shape-regular triangles
(in R?) or tetrahedra (in R?®) of diameter hy, assume that they match in ¥ so that 7,° U 7, is a
triangulation of g U ¥ U Qp, and denote by ¥, the partition of ¥ inherited from 77? (or ’ED).
We let hy := max{hr : T € T} (x € {S,D}) and h := max{hg,hp}. In addition, we denote by
X = (Z1,...,2n)" a generic vector of R™ and for each T € 7;5 U 7;ZD we consider the local Raviart—
Thomas space of order 0, given by

RTU(T) = PO(T) + P()(T)X.

4.5.1 Finite element subspaces in 2D

Here we propose to choose the finite element subspaces H} (Qg), Hx (%) (x € {S,D}), and Ly (Qp) in
(4.1) as follows

H!(Qg) = {vh € [C(Qs)2: valr € PU(T) VT e 7?}
H,(Q,) = {Th € H(div;Q): m|r € RT(T) VT Th*}, € {S,D}, (4.28)
Lh(QD) = {qh S LQ(QD) : qh]T S P[)(T) VT € ED } .

Observe that Hy(Qg) and Ly (Qp) clearly satisfy (H.0). In addition, (H.2) is easy to verify if the
sequence of subspaces is nested or if we are able to find a coarser space where (H.2) holds. For further
details on the construction of vy € H%S(Qs) satisfying (H.2), we refer to [22, Section 3.2] (see, also
[21, Section 3.2] or [6, Lemma 3.2]).

Now, we turn to define the finite dimensional subspace Ap(X). For this purpose, let us assume that
the number of edges of ¥, is even and let Yoj be the partition of ¥ arising by joining pairs of adjacent
edges of ¥, (if the number of edges of ¥, is odd, we simply reduce to the even case by joining any
pair of two adjacent elements and then construct g, from this reduced partition). Then, we set

Ap(S) = {gh €CX): &l € Pile) Vec EQh}, (4.29)

and denote hy := max {he : ec€ Egh}. Observe that Py(X) C Ap(X). Also, it is easy to see that
divH,(Qp) € Ly (Qp), whence hypothesis (H.3) holds.

It remains to prove that (H.1) is satisfied as well. To this end, we recall from [21] that the set of
normal traces of Hy rp, (2p) = Hp(Qp) NHry, (div; Qp) on ¥ is defined by the subspace of L?(X) given
by

On(Z) := {¢h 'S5 R: ¢ple € Pole) Ve € zh}. (4.30)
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Then, analogously to [29, Lemma A.1], we can deduce that there exists a discrete lifting operator
Lh: 04(%) — Hyr, (Qp), satisfying

1L (o) l|aivson < clldnll—1/25 and L'(¢) m=¢, on X, (4.31)

for all ¢5, € ©4(2). Additionally, we recall from [21, Lemma 5.1] that there exists By, > 0 such that
the pair of subspaces (01,(X), A (X)) satisfies the discrete inf-sup condition
Phs &)y -
sup PSS e Vel € M), (4.32)
sncon®) onll-1/2,s
70
Then, owing to the existence of £ and estimate (4.32), it is easy to see (see [21, Lemma 4.2]) that
there exists C' > 0, independent of A, such that

(Vh,p -1, &p)x
sup — =

vh,DE€Hp 1 (D) ”Vh,DHdiV;QD
Vh,p#0

> Cllénllry2,s- (4.33)

According to the above discussion, we are in position of proving next the inf-sup condition (4.9).

Lemma 4.5 There exists ¢1 > 0, independent of h, such that

(div vy p, gnp)ap + (Vap -1, &p)s

S =
1,h(Qh,D7§h) vh,DEEli,IIszD) HVh,D |diV;QD
v (4.34)
> 0 {HQh,D 0.0p T ||5h||1/2,2} ;

for all (qn,p, &n) € Lno(Op) X Ap(X).
Proof. Given (gn,p,&n) € Ly o(Q2p) % Ap(X), we first observe that there holds

(div Va0, gn.D)op
[Iva,plldiv:0p

S1,n(qnp,86n) = sup
vhyDEIjIh(QD)
Vi, D#0

where ﬁh(QD) = {th €eH,(Qp): vpp-n=0 on 8QD}. Then, employing the analysis from
[17, Section 4.3], we get

S11(qnp,&n) > Cllanplloap- (4.35)

On the other hand, it is clear that

A\ -n
Sl,h(Qh,Da &n) > sup M
Vh,DEHp T (2D) ||Vh,D”diV;QD

Vh,D7#0

— llgn,pllo.0; (4.36)

which, combined with (4.33), yields

Stn(anp,én) > Clénllz2s — lanpllogp -

Finally, from the latter estimate and (4.35) we readily obtain (4.34), which concludes the proof. O

Having verified hypotheses (H.0) — (H.3), a straightforward application of Theorem 4.3 yields the
well-posedness of (4.4) and the corresponding Céa estimate.
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Theorem 4.6 Let Xj and Qyp, be the finite element subspaces defined by (4.2) in terms of the specific
discrete spaces given by (4.28) and (4.29), and assume that the hypotheses of Theorem 4.4 hold. Then
the Galerkin scheme (4.4) has a unique solution (Qh,gh) € Xy, X Qp,, which satisfies the estimates
(4.17) and (4.23).

Proof. Since assumption (4.22) implies (3.48) and hypotheses (H.0) — (H.3) hold, the result follows
from a straightforward application of Theorems 4.3 and 4.4. U

Finally, by employing the approximations properties of the finite element subspaces involved (see,
g. [4, 17, 24, 27]), and the a priori estimate (4.23), we can easily obtain the following result.

Theorem 4.7 Assume that the hypotheses of Theorem 4.4 hold. Let (®,p) € X x Q and (2;,,p,) €
X x Qp be the unique solutions of the continuous and discrete problem (3.21) and (4.4), respectively.
Assume further that there exists § > 0 such that Ts € H?(Qg), divTs € H*(Qg), up € H(Qp),
divup € H*(Qp), us € HO Y (Qg), and fp € H (Qp). Then, pp € HO ! (Qp), A € HHV2(S), and
there exists C' > 0, independent of h and the continuous and discrete solutions, such that

[(@,p) — (21,p,)[xxq < 0h5{|lTs||5,Qs + [|div Tsls,04 )
4.37

+ [[uslls 105 + lldivupflsap + lpollsrian | -

Proof. From the first equation of (3.21) (cf. (3.4)) we find that K~'up = —Vpp + fp in Qp, which
implies that pp € H'*9(X), whence A = pp |s€ HY?T9(X). The rest of the proof follows from the a
priori estimate (4.23), the approximation properties of the discrete spaces involved and the fact that,
owing to the trace theorem in Qp, there holds [[A[[s11/25 < cllpplls+1,0p- O

4.5.2 Finite element subspaces in 3D

Let us now consider the discrete spaces

H(Qs) = {vie @) wilrePi(T) vTeTs},
HAy(Q,) = {Th € H(div;Q,): mlr € RTo(T) VT € Th*}, x € {S,D}, (4.38)
Lo(@0) = {aneI*@p): alr € R(T) vT e TP}

Next, in order to define the subspace approximating the unknown A, we introduce an independent
trlangulatlon Y- of X, by triangles K of diameter hK, and define hg ‘= max {hK K e Zh} and

hg = max{hK . Ke Zﬁ}. Then, we define
Ap(S) = {gh cC(D): &k € PIK) VK ¢ zg} . (4.39)

In this way, we define the global spaces X;, and Qy, by combining (4.1), (4.2), (4.38), and (4.39).

Now, for the verification of the required hypotheses for the corresponding discrete analysis, we first
observe that the same arguments from the 2D case imply the verification of (H.0), (H.2) and (H.3)
in 3D. However, for the inf-sup conditions in (H.1), we need to proceed slightly different to the 2D
case and apply [18, Lemma 7.5]. More precisely, utilizing [18, Lemma 7.5], we conclude that there
exists Cy € (0,1) such that for each pair (hy, hy) verifying hy, < Cohy, the inf-sup condition (4.33)
holds. According to this, we can proceed analogously to the proof of Lemma 4.5 to verify (H.1).
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Having verified hypotheses (H.0)-(H.3), we conclude that the Galerkin scheme (4.4) defined with
the spaces in (4.38) is well posed. In addition, owing again to the approximations properties of the
finite element subspaces involved (see, e.g. [4, 17, 24, 27]), and the a priori estimate (4.23), we obtain
exactly the same Theorem 4.7 for the 3D case as well.

5 Numerical results

In this section we present two numerical examples in 2D illustrating the performance of our augmented
mixed finite element scheme (4.4) on a set of uniform triangulations of the corresponding domains,
and considering the finite element spaces introduced in Section 4.5.1. Our implementation is based
on a FreeFem++ code (see [26]), in conjunction with the direct linear solver UMFPACK (see [12]).
Regarding the implementation of the iterative strategy generated by the Newton method applied to
(4.4), we remark that the corresponding iterations are terminated once the relative error of the entire
coeflicient vectors between two consecutive ones is sufficiently small, i.e.,

|coeff™ ! — coeff™||;2

lcoeff™ 1|,

< tol,

where || - [|;2 is the standard /2-norm in RY, with N denoting the total number of degrees of freedom
defining the finite element subspaces X and Qp, and tol is a fixed tolerance to be specified in each
case. For the examples shown below we simply take (0,0) as initial guess.

We now introduce some additional notations. The individual errors are denoted by et := Tg — T},
€uy = Us — Up, €y, = Up — UDyp, €, = Pp — Prp and ey = A — A, Also, we let rrg, rug, Tup, Tpp
and r) be the experimental rates of convergence given by

Ts = log(hs/hg) us log(hs/hg) up log(hp/h) '
P2 log(hp/hpy) log(hs/hY)’

where hy and b}, (x € {S,D,X}) denote two consecutive mesh sizes with their respective errors e, e’
(or e,€’). For each example below we assume ap =1, p =1, and K = L.

In Example 1 we take the porous domain Qp := (—1/2,1/2) x (0, —1/2) coupled with a semi-disk-
shaped fluid domain Qg := {(561,562) co2? 413 < (1/2)? and xp > 0}. In addition, we consider
the viscosity v = 1, the parameters k1 = 1 and k2 = 2v, and the data fg and fp are chosen so that the
exact solution in the tombstone-shaped domain 2 = Qg U ¥ U Qp is given by the smooth functions

cos(mxy) sin(mxs)
— cos(mxg) sin(mxy)

ug(x) = ( ) Vx = (21, 22) € O,

64
up (x) := —?xg(x% ~ 025) cos(ma) Vx = (z1,22) € p,
—16sin(mwr1) (23 — 0.25)2

and
pp(x) = cos(z1) + axy Vx = (z1,22) € Op,

where the constant a is chosen in such a way that fQD pp = 0. Notice that the foregoing solution
satisfies us - n = up - n on ¥ and the boundary condition up - n = 0 on I'p. However, the Dirichlet
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boundary condition for the Navier—Stokes velocity on I's is non-homogeneous. Then, we need to
modify accordingly the functional

F(¥) = 2v(fs, vs)as + 2v(fp, vp)a, — ki1(fs, div Rg)ag + 21(Rsn, ug)ry Yo e X.

In Table 5.1 we summarize the convergence history of the first example for a sequence of uniform
triangulations, considering the finite element subspaces described in Section 4.5.1, and solving the
nonlinear problem with a tolerance tol = 107%. Note that the rate of convergence O(h) predicted
by Theorem 4.7 is attained in all the cases. Next, in Figures 5.1, 5.2 and 5.3 we display the first
and second component of the discrete velocity uy, = (up s, us p), the discrete velocity vector field and
the approximate pressure py p together with the {1,1}-component of tensor T}, respectively, with
N = 411915. Observe there that the second components of uy, s and uyp coincide on X, whence
ups-n = u,p-non X as expected, which is confirmed in Figure 5.3 where we clearly observe that
the flux on ¥ is continuous.

N hs ey rrg €ug Tug
458 0.1901 | 1.1196 - 0.3459 -
1707  0.0911 | 0.5638 0.9302 | 0.1679 0.9801
6588  0.0486 | 0.2825 1.0972 | 0.0833 1.1122

26399 0.0242 | 0.1374 1.0353 | 0.0414 1.0064
103855 0.0134 | 0.0696 1.0822 | 0.0208 1.0935
411915 0.0077 | 0.0352 1.1468 | 0.0104 1.1630

N hp Cup Tup €pp "pp
458 0.2001 | 0.0056 - 0.0872 -
1707 0.0937 | 0.0027 0.9807 | 0.0442 0.8979
6588  0.0470 | 0.0012 1.1002 | 0.0219 1.0138

26399 0.0250 | 0.0006 1.1380 | 0.0107 1.1257
103855 0.0129 | 0.0003 1.0944 | 0.0054 1.0338
411915 0.0068 | 0.0001 1.0811 | 0.0027 1.0838
N hx ey )
458 0.1250 | 0.0169 -
1707  0.0625 | 0.0069 1.3016
6588  0.0313 | 0.0036 0.9391
26399 0.0156 | 0.0019 0.9338
103855 0.0078 | 0.0009 1.0351
411915 0.0039 | 0.0005 0.9732

Table 5.1: Degrees of freedom N, mesh sizes h, (x € {S,D,X}), errors and rates of convergence for
the augmented-mixed approximation of the coupled Navier-Stokes/Darcy (EXAMPLE 1).

In Example 2 we focus on the performance of the iterative method with respect to the viscosity
v. To this end, we take the domain Q@ = Qg U X U Qp, with Qg = (-1/2,3/2) x (0,1/2) and
Qp :=(—1/2,3/2) x (0,—1/2). In addition, we consider the parameters k1 = v and kg = 2v, so that
the ellipticity constant « (see Lemma 3.1) becomes o« = Cv for small values of v, with C' independent
of v. In turn, the terms on the right-hand side are adjusted so that the exact solution is given by the

functions
1 — €7t cos(2mxs)
us(x) := 21673”1 sin(2mwxsy) Vx = (@1,22) € Qs
T
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Figure 5.1: first components of ug; and up j, (left) and second components of ug; and up p (right)
(EXAMPLE 1)
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Figure 5.2: velocity vector field u;, (EXAMPLE 1).

8.445e-01
7.604e+00

12088-00 8.623e-01

Figure 5.3: component T,ll’1 of the approximate tensor T}, (left) and approximate pressure pj, p (right)
(EXAMPLE 1).

wi= (INRY) e

and
pp(x) := (z1 — 0.5)%(x2 + 1) Vx = (x1,22) € Qp,
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with

—8m
o= .
V2 +1672 + pt

Notice that ug is the well known analytical solution for the Navier-Stokes problem obtained by Ko-
vasznay in [26], which presents a boundary layer at {—1/2} x (0,2). In Table 5.2 we show the behavior
of the iterative method as a function of the viscosity v, considering different mesh sizes h, and a toler-
ance tol = 1075, We observe there that the smaller the viscosity, the larger the number of iterations.
Numerical experiments for smaller values of v are not reported since, in that case, the maximum
number of iterations established in the code (100) is attained for all the meshes. Next, in Table 5.3
we show the convergence history considering the viscosity v = 0.1. We see there that the rate of
convergence O(h) predicted by Theorem 4.7 is attained by all the unknowns.

pw h=0.37499 h =0.20009 h=0.09576 h =0.04915 h =0.02698 h = 0.01392

1 ) 4 4 4 4 4
0.1 10 8 8 8 9 9
0.01 - - - 53 65 68

Table 5.2: Number of iterations of the iterative method with respect to v (EXAMPLE 2).

N hs eTy rrg eug Tug
284 0.3536 | 2.2340 - 1.8824 -
1034 0.2001 | 0.9226 1.5537 | 0.8833 1.3293
4125 0.0958 | 0.3279 1.4037 | 0.4215 1.0040
14886  0.0492 | 0.1353 1.3278 | 0.2136 1.0189
60055 0.0270 | 0.0618 1.3013 | 0.1061 1.1660
231080 0.0139 | 0.0301 1.0904 | 0.0531 1.0477
N hp Cup Tup Cpp "pp
284 0.3750 | 0.2980 - 0.0665 -
1034 0.2001 | 0.1474 1.1205 | 0.0317 1.1786
4125 0.0950 | 0.0679 1.0436 | 0.0145 1.0509
14886  0.0485 | 0.0347 0.9939 | 0.0072 1.0360
60055 0.0254 | 0.0172 1.0864 | 0.0037 1.0426
231080 0.0160 | 0.0086 1.4990 | 0.0018 1.5167
N hz (Y )
284 0.1250 | 0.1674 -
1034 0.0625 | 0.0651 1.3622
4125 0.0313 | 0.0232 1.4877
14886  0.0156 | 0.0084 1.4611
60055 0.0078 | 0.0031 1.4434
231080 0.0039 | 0.0012 1.4117

Table 5.3: Degrees of Freedom N, mesh sizes h, (x € {S,D,X}), errors and rates of convergence for
the augmented-mixed approximation of the Navier-Stokes/Darcy problem with v = 0.1, x; = %/3
and kg = 3v (EXAMPLE 2).
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