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Abstract

In this work we introduce and analyze a new augmented fully-mixed formulation for the stationary
Navier-Stokes/Darcy coupled problem. Our approach employs, on the free-fluid region, a technique
previously applied to the stationary Navier-Stokes equations, which consists of the introduction of
a modified pseudostress tensor involving the diffusive and convective terms, together with the
pressure. In addition, by using the incompressibility condition, the pressure is eliminated, and
since the convective term forces the free-fluid velocity to live in a smaller space than usual, we
augment the resulting formulation with suitable Galerkin type terms arising from the constitutive
and equilibrium equations. On the other hand, in the Darcy region we apply the usual dual-mixed
formulation, which yields the introduction of the trace of the porous media pressure as an associated
Lagrange multiplier. The latter is connected with the fact that one of the transmission conditions
involving mass conservation becomes essential and must be imposed weakly. In this way, we obtain
a five-field formulation where the pseudostress and the velocity in the fluid, together with the
velocity and the pressure in the porous medium, and the aforementioned Lagrange multiplier, are
the corresponding unknowns. The well-posedness analysis is carried out by combining the classical
Babuška-Brezzi theory and the Banach fixed-point theorem. A proper adaptation of the arguments
exploited in the continuous analysis allows us to state suitable hypotheses on the finite element
subspaces ensuring that the associated Galerkin scheme is well-posed and convergent. In particular,
Raviart-Thomas elements of lowest order for the pseudostress and the Darcy velocity, continuous
piecewise linear polynomials for the free-fluid velocity, piecewise constants for the Darcy pressure,
together with continuous piecewise linear elements for the Lagrange multiplier, constitute feasible
choices. Finally, we provide several numerical results illustrating the performance of the Galerkin
method and confirming the theoretical rates of convergence.
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1 Introduction

In this article we introduce a new finite element scheme to numerically solve the coupling of fluid
flow, governed by the Navier-Stokes equations, with porous media flow, modeled by the Darcy law,
coupled through interface conditions given by mass conservation, balance of normal forces, and the
Beavers–Joseph–Saffman law. More precisely, we employ a recent approach for the stationary Navier-
Stokes equations based on the introduction of a pseudostress tensor relating the diffusive term with
the convective term and the pressure, consider the standard dual-mixed formulation for the Darcy law,
which yields the introduction of the trace of the porous media pressure as an associated Lagrange mul-
tiplier, and propose an augmented fully-mixed finite element method for the coupled problem, where
the aforementioned pseudostress tensor and Lagrange multiplier, together with the fluid velocities in
both domains and the Darcy pressure, are the main unknowns of the system. The pressure in the
fluid region, as well as the fluid velocity gradient and the shear-stress tensor, can be easily recovered
through simple post-processing procedures.

An important body of literature dealing with numerical techniques to solve this coupled system, or
its linearized version where the Stokes equations are considered instead of the Navier-Stokes system,
has been introduced in the last decades due to its applicability in different areas of interest, such as
medicine, petroleum engineering, environmental science, etc. (see e.g. [2, 5, 6, 11, 13, 14, 15, 16, 19, 20,
21, 23, 25, 30, 32] and the references therein). The list above includes iterative subdomain and mortar
methods, discontinuous Galerkin (DG) and hybridizable discontinuous Galerkin (HDG) schemes, as
well as stabilized formulations. In general, most of the finite element formulations developed are based
on velocity-pressure discretizations for the free-fluid part of the coupled system (see, for instance
[2, 11, 13, 14, 16, 25, 30, 32]). However, in this work we give special attention to numerical schemes
based on dual-mixed formulations for the fluid flow, which have gained considerable attention mainly
due to the fact that, on the one hand, they allow to unify the analysis for Newtonian and non-
Newtonian flows, and on the other hand, they permit to approximate diverse unknowns of physical
interest, either directly through the formulation employed or using simple post-processing formulae.

Going back to the Stokes-Darcy model, new fully-mixed finite element methods have been intro-
duced in [6, 21, 19] to approximate the solution of the coupled system, considering Newtonian (in
[6, 21]) and Non-Newtonian flows (in [19]). There, the methods are based on the introduction of
the pseudostress (in [19, 21]) or stress tensors (in [6]) as further unknowns, which permits, on one
hand, to successfully unify the analysis, and on the other hand, to employ the same family of finite
elements in both domains. In particular, in [6] two new fully-mixed formulations have been suggested
for the linear coupled system. The first one extends [21] by introducing a new fully-mixed formulation
where the stress tensor is considered in the fluid domain instead of the pseudostress, which yields the
introduction of the vorticity as a further unknown. Next, the aforementioned stress-based formulation
is partially augmented by introducing Galerkin least-squares type terms arising from the constitutive
and equilibrium equations of the Stokes equation, and from the relation defining the vorticity in terms
of the free fluid velocity, yielding, in this way, the second method. The main advantage of the latter
is the flexibility of choosing discrete subspaces for the variables in the Stokes domain since no inf-sup
conditions are needed to obtain the stability of the method.

More recently, the results obtained in [19] were extended in [10] to the coupled nonlinear Navier-
Stokes and linear Darcy problems with constant density and variable viscosity in the fluid region.
Due to the nonlinearity related with the viscosity, the velocity gradient is introduced as a further
unknown, which together with the fluid stress, the fluid vorticity, the velocity in both domains, the
porous media pressure and two Lagrange multipliers, namely the traces of the porous media pressure
and the fluid velocity on the interface, constitute the main unknowns of the system. In addition, since
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the convective term of the Navier-Stokes model forces the velocity to live in a space smaller than L2,
we follow [7, 9, 8] and seek this unknown in H1, so that the variational formulation is then augmented
with residual terms arising from the constitutive and equilibrium equations for the fluid flow, and the
formulae for the strain and vorticity tensors. As for the second method in [6], the latter yields more
flexibility in the choice of discrete subspaces for the variables of the Navier-Stokes equations.

The purpose of the present work is to additionally contribute in the direction of mixed finite element
schemes for the coupling of fluid flows with porous media flows by introducing a new augmented fully-
mixed method for the steady state Navier-Stokes/Darcy coupled problem. Differently from [6] and
[10], here we proceed analogously to [8] in the fluid region, by taking advantage of the fact that the
fluid velocity is considered in H1 and avoiding the introduction of the vorticity and the trace of the
fluid velocity on the interface as further unknowns. In this way, we obtain a simpler method with only
five unknowns. The rest of the work is organized as follows. In Section 2 we recall the model problem
and rewrite it as a first-order system of equations. In Section 3 we derive the augmented mixed
variational formulation, which, differently from [6, 10], does not include the vorticity nor the trace of
the fluid velocity on the interface as auxiliary unknowns. Next, we proceed with the solvability analysis,
mainly via the Babuška-Brezzi theory and the Banach fixed-point theorem, under a sufficiently small
data assumption. In turn, in Section 4 we study the associated Galerkin scheme by using a discrete
version of the fixed-point strategy developed in Section 3. Next, the a priori error estimate and the
corresponding rates of convergence for a particular choice of discrete subspaces are derived in Section 4
under a similar assumption on the size of the data. Finally, a couple of numerical examples illustrating
the performance of the method and confirming the theoretical rates of convergence, are reported in
Section 5.

We end this section by recalling some definitions and fixing useful notations. Given the vector fields
v = (vi)i=1,n and w = (wi)i=1,n, with n ∈ {2, 3}, we set the gradient, divergence, and tensor product
operators, by

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=
n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n.

Furthermore, for any tensor fields S := (Sij)i,j=1,n and R := (Rij)i,j=1,n, we define the transpose, the
trace, the tensor inner product, and the deviatoric tensor, respectively, by

St := (Sji)i,j=1,n, tr (S) :=

n∑
i=1

Sii, S : R :=

n∑
i,j=1

SijRij , and Sd := S− 1

n
tr (S)I,

where I is the identity matrix in Rn×n. When no confusion arises, | · | will denote the Euclidean norm
in Rn or Rn×n. Additionally, we will utilize standard simplified terminology for Sobolev spaces and
norms. In particular, if O is a domain, Γ is an open or closed Lipschitz curve (respectively surface in
R3), and r ∈ R, we define

Hr(O) := [Hr(O)]n, Hr(O) := [Hr(O)]n×n, and Hr(Γ) := [Hr(Γ)]n,

and for r = 0 we write, as usual, L2(O), L2(O),L2(O), and L2(Γ) instead of H0(O), H0(O),H0(O),
and H0(Γ), respectively. The corresponding norms are denoted by ‖ · ‖r,O for Hr(O), Hr(O) and
Hr(O), and ‖ · ‖r,Γ for Hr(Γ) and Hr(Γ). We also write | · |r,O for the Hr-seminorm. In addition, we
recall that

H(div;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,
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is a standard Hilbert space (see, e.g. [4, 24]), and the space of matrix valued functions whose rows
belong to H(div;O) will be denoted by H(div;O). The norms of H(div;O) and H(div;O) are denoted
by ‖ · ‖div;O and ‖ · ‖div;O, respectively. In turn, the symbol for the L2(Γ)– and L2(Γ)–inner products

〈ξ, λ〉Γ :=

∫
Γ
ξλ, 〈ξ,λ〉Γ :=

∫
Γ
ξ · λ

will be also employed for their respective extensions as the duality products H−1/2(Σ)×H1/2(Σ) and
H−1/2(Σ)×H1/2(Σ). On the other hand, given an integer k ≥ 0 and a set M ⊆ Rn, we let Pk(M) be
the space of polynomials on M of degree ≤ k, and set Pk(M) := [Pk(M)]n and Pk(M) := [Pk(M)]n×n.
Furthermore, we will use ‖ · ‖ with no subscripts, to denote the natural norm of either an element
or an operator in any product functional space. In addition, C will stand for any positive constant
independent of the meshsizes, but eventually depending on data and/or stabilization parameters,
which may take different values at each occurrence. Finally, we employ 0 to mean a generic null
vector, including the null functional and operator.

2 The model problem

We begin by describing the geometry of the problem. To that end we let ΩS and ΩD be two bounded
and simply connected polygonal domains in Rn, n ∈ {2, 3}, such that ∂ΩS ∩ ∂ΩD = Σ 6= ∅ and
ΩS ∩ ΩD = ∅, and let ΓS := ∂ΩS \ Σ̄ and ΓD := ∂ΩD \ Σ̄. On the boundaries we consider the normal
unit vector field n which is chosen pointing outwards from ΩS ∪ Σ ∪ ΩD and ΩS (and hence inward
to ΩD, when seen on Σ). In addition, on Σ we consider a local orthonormal basis for its tangent
hyperplane given by {t1, · · · , tn−1}. See Fig. 2.1 below for a two–dimensional representation of the
geometry of the problem, where we simply denote t = t1.

ΩS

ΩD

Σ

ΓD

ΓS

t

n

n

n

Figure 2.1: Geometric configuration for our Navier-Stokes/Darcy model

Then, our coupled problem consists of two set of equations describing the behaviour of the fluid in
both domains, ΩS and ΩD, and a set of interface conditions on Σ. More precisely, in ΩS the governing
equations are those of the Navier–Stokes problem with constant viscosity ν > 0 and density ρ > 0,
that is

σS = 2 ν e(uS) − pSI in ΩS , ρ(uS · ∇)uS − divσS = fS in ΩS ,

div uS = 0 in ΩS , uS = 0 on ΓS

(2.1)

where uS and pS denote the velocity and the pressure of the fluid, respectively, whereas σS is the
Cauchy stress tensor, fS is a given external force living in a space to be specified later on, and e is the
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strain rate tensor given by

e(uS) :=
1

2
(∇uS + (∇uS)t),

with the superscript t denoting transposition. While the standard strong Navier-Stokes equations are
presented above to describe the behaviour of the fluid in ΩS, in this work we make use of an equivalent
version of (2.1) based on the introduction of a pseudostress tensor relating the stress tensor σ with the
convective term. More precisely, analogously to [7] and [10], we introduce the nonlinear–pseudostress
tensor

TS := σS − ρ(uS ⊗ uS) = 2νe(uS) − pSI − ρ(uS ⊗ uS), (2.2)

and owing to the incompressibility condition tr (e(uS)) = div uS = 0 in ΩS, we deduce the following
identities

pS = − 1

n

{
tr (TS) + ρtr (uS ⊗ uS)

}
in ΩS and − div TS = fS. (2.3)

Note that the first identity allows us to eliminate the unknown pressure in (2.1), obtaining

Td
S = 2νe(uS) − ρ(uS ⊗ uS)d in ΩS .

Then, defining

ω(vS) :=
1

2
(∇vS − (∇vS)t) ∀vS ∈ H1(ΩS) , (2.4)

the Navier-Stokes equations (2.1) can be rewritten equivalently as follows:

Td
S = 2ν∇uS − 2νω(uS) − ρ(uS ⊗ uS)d in ΩS , −div TS = fS in ΩS ,

TS = Tt
S in ΩS, and uS = 0 on ΓS.

(2.5)

In turn, in the porous medium ΩD we consider the Darcy model:

K−1uD = −∇pD + fD in ΩD ,

div uD = 0 in ΩD , uD · n = 0 on ΓD

(2.6)

where uD is the velocity and pD is the pressure. The matrix–valued function K, describing the
permeability of ΩD divided by the viscosity ν, satisfies Kt = K, has L∞(ΩD) components and is
uniformly elliptic, that is, there exists CK > 0, such that

α ·K(x)α ≥ CK‖α‖2, (2.7)

for almost all x ∈ ΩD and for all α ∈ Rn. Finally fD is a given external force that accounts for gravity.
We conclude the description of our coupled system by introducing the transmission conditions on the
interface Σ:

uS · n = uD · n on Σ (2.8)

and

σSn +
n−1∑
l=1

wl(uS · tl)tl = −pDn on Σ , (2.9)

where {w1, . . . , wn−1} is a set of positive frictional constants that can be determined experimentally.
Condition (2.8) corresponds to mass conservation on Σ, whereas (2.9) can be decomposed into its
normal and tangential components, as follows:

(σSn) · n = −pD and (σSn) · tl = −wl(uS · tl), l = 1, . . . , n− 1. (2.10)
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The first condition in (2.10) corresponds to the balance of normal forces, whereas the second one,
known as the Beavers-Joseph-Saffman law, establishes that the slip velocity along Σ is proportional to
the shear stress along Σ (assuming also, based on experimental evidences, that uD ·tl, l = 1, . . . , n−1,
is negligible). We refer the reader to [3, 28, 31] for further details on this interface condition. Notice
that equation (2.9) can be rewritten in terms of tensor TS as

TSn = −ρ(uS ⊗ uS)n −
n−1∑
l=1

wl(uS · tl)tl − pDn on Σ, (2.11)

which will be employed below in place of (2.9).

3 The continuous formulation

In this section we introduce our augmented fully-mixed variational formulation and address its solv-
ability.

3.1 The augmented fully–mixed variational problem

In what follow we derive the variational formulation of our model problem based on equations
(2.5),(2.6), (2.8) and (2.11). To this end, we first introduce the Hilbert spaces

H1
ΓS

(ΩS) :=
{

vS ∈ H1(ΩS) : vS = 0 on ΓS

}
,

HΓD
(div; ΩD) :=

{
vD ∈ H(div; ΩD) : vD · n = 0 on ΓD

}
,

and recall the identities

Td : R = Td : Rd and (ω(v),R)ΩS
=

1

2
(curl (v), as(R))ΩS

(3.1)

for all v ∈ H1(ΩS), and for all T, R ∈ L2(ΩS), with

curl (v) :=


∂v2

∂x1
− ∂v1

∂x2
in R2,

∇× v :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
in R3,

and

as(R) :=

 R21 −R12 in R2,

(R32 −R23, R13 −R31, R21 −R12) in R3.

In addition, given ? ∈ {S,D}, in what follows we denote:

(u, v)? :=

∫
Ω?

uv, (u,v)Ω? :=

∫
Ω?

u · v, (σ, τ )Ω? :=

∫
Ω?

σ : τ .

First, for the set of equations (2.5) we proceed analogously to [9] (see also [1, Section 2.1] for a
similar approach). More precisely, we multiply the first and second equations of (2.5) by test functions
RS ∈ H(div; ΩS) and vS ∈ H1

ΓS
(ΩS), respectively, and then perform integration by parts once for the
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equation multiplied by RS and twice for the one multiplied by vS. In this way, utilizing the Dirichlet
boundary condition uS = 0 on ΓS and the interface condition (2.11), and making use of the identity
〈(u⊗w)n,v〉Σ = 〈w · n,u · v〉Σ, we obtain

(Td
S,R

d
S)ΩS

+ 2 ν(uS,div RS)ΩS
+ ν(curl (uS), as(RS))ΩS

+ ρ
(
(uS ⊗ uS)d,RS)ΩS

− 2 ν 〈RSn,uS〉Σ = 0 ∀RS ∈ H(div; ΩS) ,
(3.2)

and

−2ν(vS,div TS)ΩS
+ 2ν〈TSn,vS〉Σ − ν(curl (vS), as(TS))ΩS

+ 2νρ 〈uS · n,uS · vS〉Σ

+ 2ν

n−1∑
l=1

wl〈(uS · tl)tl,vS〉Σ + 2ν〈vS · n, λ〉Σ = 2ν(fS,vS)ΩS
∀vS ∈ H1

ΓS
(ΩS) ,

(3.3)

where λ := pD|Σ ∈ H1/2(Σ) is introduced as an additional unknown.

On the other hand, for the set of equations (2.6) we proceed analogously to [14, 21] to get

2ν(K−1uD,vD)ΩD
− 2ν(pD,div vD)ΩD

− 2ν〈vD · n, λ〉Σ

= 2ν(fD,vD)ΩD
∀vD ∈ HΓD

(div; ΩD) ,
(3.4)

and
2ν(qD,div uD) = 0 ∀ qD in L2(ΩD), (3.5)

whereas (2.8) is imposed weakly through

2ν〈uS · n, ξ〉Σ − 2ν〈uD · n, ξ〉Σ = 0 ∀ξ ∈ H1/2(Σ). (3.6)

Above, and for convenience of the forthcoming analysis, we have intentionally multiplied equations
(3.3)–(3.6) by 2ν. Finally, we proceed analogously to [9] and add the following redundant terms arising
from the constitutive and equilibrium equations

κ1 (div TS + fS,div RS)ΩS
= 0 ∀RS ∈ H(div; ΩS) , (3.7)

and
κ2

(
Td

S − 2 νe(uS) + ρ (uS ⊗ uS)d, e(vS)
)

Ω
= 0 ∀vS ∈ H1

ΓS
(ΩS) , (3.8)

respectively, where κ1 and κ2 are positive parameters to be specified later. In this way, at first instance
we arrive at the variational problem: Find

(TS,uS,uD) in H(div; ΩS)×H1
ΓS

(ΩS)×HΓD
(div; ΩD),

(pD, λ) in L2(ΩD)×H1/2(Σ),

such that (3.2)–(3.8) hold.

Now, let us notice that if
(
(TS,uS,uD), (pD, λ)

)
∈ X ×Q solves (3.2) - (3.8), then simple compu-

tations show that for all c ∈ R, ((TS − cI,uS,uD), (pD + c, λ+ c)) is also a solution of (3.2)-(3.8),
and consequently, uniqueness of solution of the coupled system fails. Then, in order to overcome this
drawback, from now on we restrict the pressure space to L2

0(ΩD), where

L2
0(ΩD) =

{
q ∈ L2(ΩD) :

∫
ΩD

q = 0

}
.
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Furthermore, recalling that there holds the decomposition

H(div; ΩS) = H0(div; ΩS) ⊕ P0(ΩS) I , (3.9)

where

H0(div; ΩS) :=

{
RS ∈ H(div; ΩS) :

∫
ΩS

tr RS = 0

}
, (3.10)

we redefine the fluid pseudostress tensor TS as

TS + µI with the new unknowns TS ∈ H0(div; ΩS) and µ ∈ R ,

whence equation (3.3) becomes

−2µ (vS,div TS)ΩS
+ 2ν〈TS,vS〉Σ + 2νµ〈vS · n, 1〉Σ − µ (curl (vS), as(TS))ΩS

+ 2νρ〈uS · n,uS · vS〉Σ +
n−1∑
l=1

2νwl〈(uS · tl)tl,vS〉Σ

+ 2ν〈vS · n, λ〉Σ = (fS,vS)ΩS
∀vS ∈ H1

ΓS
(ΩS) .

(3.11)

In turn, decomposing the test function RS of (3.2) according to (3.9), we obtain(
Td

S,R
d
S

)
ΩS

+ 2ν (uS,div RS)ΩS
+ ν (curl (uS), as(RS))ΩS

+ ρ
(
(uS ⊗ uS)d ,RS

)
ΩS
− 2ν〈RSn,uS〉Σ = 0 ∀RS ∈ H0(div; ΩS) ,

(3.12)

and
2νη〈uS · n, 1〉Σ = 0 ∀ η ∈ R . (3.13)

In this way, by replacing (3.2) and (3.3) by (3.12) - (3.13) and (3.11), respectively, the variational
formulation of our coupled system can be stated as: Find (TS,uS,uD) ∈ H0(div; ΩS) ×H1

ΓS
(ΩS) ×

HΓD
(div; ΩD) and (pD, λ, µ) ∈ L2

0(ΩD)×H1/2(Σ)×R such that (3.4)–(3.8), (3.12) - (3.13), and (3.11)
hold. Moreover, we show next that it can be rewritten in terms of suitable forms and functionals. In
fact, we begin by grouping the unknowns, test functions, and spaces, as follows

Φ := (TS,uS,uD) , Ψ = (RS,vS,vD) ∈ X := H0(div; ΩS)×H1
ΓS

(ΩS)×HΓD
(div; ΩD) ,

p := (pD, λ, µ) , q = (qD, ξ, η) ∈ Q := L2
0(ΩD)×H1/2(Σ)× R ,

(3.14)

where X and Q are endowed with the norms ‖ · ‖2X := ‖ · ‖2div;ΩS
+ ‖ · ‖21,ΩS

+ ‖ · ‖2div;ΩD
and ‖ · ‖2Q :=

‖ · ‖0,ΩD
+ ‖ · ‖21/2,Σ + | · |, respectively. In addition, given wS ∈ HΓS

(ΩS), we define the bilinear forms

AwS(Φ,Ψ) := AS

(
(TS,vS), (RS,vS)

)
+ CwS

(
(TS,vS), (RS,vS)

)
+ AD(uD,vD) , (3.15)

and
B(Ψ,q) := −2ν(qD,div vD)ΩD

+ 2ν〈vS · n − vD · n, ξ〉Σ + 2νη〈vS · n, 1〉Σ, (3.16)

for all Φ = (TS,uS,uD), Ψ = (RS,vS,vD) ∈ X, and for all q = (qD, ξ, η) ∈ Q, where AS, CwS , and
AD are in turn the bilinear forms given by

AS

(
(TS,uS), (RS,vS)

)
:= (Td

S,R
d
S)ΩS

+ 2ν(uS,div RS)ΩS
− 2ν(vS,div TS)ΩS

+ ν(curl (uS), as(RS))ΩS
− ν(curl (vS), as(TS))ΩS

− 2ν〈RSn,uS〉Σ + 2ν〈TSn,vS〉Σ

+ κ1(div TS,div RS)ΩS
− κ2(Td

S − 2νe(uS), e(vS))ΩS
+ 2ν

n−1∑
l=1

wl〈uS · tl,vS · tl〉Σ ,
(3.17)
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CwS

(
(TS,uS), (RS,vS)) := ρ((wS ⊗ uS)d,RS)ΩS

+ 2νρ〈wS · n,uS · vS〉Σ

− κ2ρ((wS ⊗ uS)d, e(vS))ΩS
,

(3.18)

and
AD(uD,vD) := (K−1uD,vD)ΩD

. (3.19)

In addition, we define the functional F ∈ X′ as

F(Ψ) := −2ν(fS,vS)ΩS
+ 2ν(fD,vD)ΩD

− κ1(fS, div RS)ΩS
, (3.20)

for all Ψ = (RS,vS,vD) ∈ X. Consequently, we arrive to the coupled system: Find (Φ,p) ∈ X×Q
such that

AuS(Φ,Ψ) + B(Ψ,p) = F(Ψ) ∀Ψ ∈ X,

B(Φ,q) = 0 ∀q ∈ Q.
(3.21)

3.2 Analysis of the continuous problem

Let us define the mapping

J : M ⊆ H1
ΓS

(ΩS)→ H1
ΓS

(ΩS), wS → J (wS) = uS, (3.22)

where uS ∈ H1
ΓS

(ΩS) is the second component of Φ ∈ X, which, together with p ∈ Q, constitutes the
unique solution of the linearized version of problem (3.21): Find (Φ,p) ∈ X×Q such that

AwS(Φ,Ψ) + B(Ψ,p) = F(Ψ) ∀Ψ ∈ X,

B(Φ,q) = 0 ∀q ∈ Q,
(3.23)

and M is a bounded set ensuring the well-definiteness of J (to be specified below). Then, noticing
that (Φ,p) = ((TS,uS,uD), (pD, λ, µ)) ∈ X×Q is a solution of (3.21) if and only if uS ∈ H1

ΓS
(ΩS) is

a solution of the fixed-point problem: Find uS ∈M, such that

J (uS) = uS, (3.24)

it is clear that to prove the well-posedness of (3.21) it suffices to prove the unique solvability of problem
(3.24). Before doing that we must study the well-definiteness of J . The following section is devoted
to this matter.

3.2.1 Well-definedness of the fixed-point operator

According to the mixed structure of the linearized problem (3.23), in what follows we apply the
Babuška-Brezzi theory to prove its well-posedness, or equivalently the one of J . We begin by estab-
lishing the continuity of the functional F and the bilinear forms AS, AD and B:

|F (Ψ) | ≤
{(

4ν2 + κ2
1

)1/2 ‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}
‖Ψ‖X, (3.25)

|AS ((TS,uS), (RS,vS)) | ≤ CS,1‖(TS,uS)‖‖(RS,vS)‖, (3.26)

| AD(uD,vD) |≤ CD‖uD‖div;ΩD
‖vD‖div;ΩD

, uD,vD ∈ HΓD
(div; ΩD), (3.27)

and
|B(Φ,q)| ≤ CB‖Φ‖X‖q‖Q, (3.28)
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for all Φ ∈ X, TS,RS ∈ H0(div; ΩS), uS,vS ∈ H1
ΓS

(ΩS), and (Φ,q) ∈ X×Q, with CS,1, CD, CB > 0.
The proofs of the previous estimates are straightforward.

Now, given wS ∈ H1
ΓS

(ΩS), from the continuity of the embeddings iΣ : H1/2(Σ) → L4(Σ) and

iS : H1(ΩS) → L4(ΩS), and the continuity of the trace operator γS : H1(ΩS) → L2(∂ΩS), we obtain
that there exists CS,2 > 0 such that

|CwS((TS,uS), (RS,vS))| ≤ CS,2‖wS‖1,ΩS
‖(TS,uS)‖‖(RS,vS)‖, (3.29)

for all TS,RS ∈ H0(div; ΩS) and uS,vS ∈ H1
ΓS

(ΩS), with CS,2 = ‖iS‖2
(
ρ2 + κ2

2

)1/2
+ 2ν‖iΣ‖2‖γS‖.

In particular, from (3.26) and (3.29) we easily deduce that, for a fixed wS ∈ H1
ΓS

(ΩS), AwS (cf. (3.15))
is a continuous bilinear form, that is

|AwS(Φ,Ψ)| ≤ (CA + CS,2‖wS‖1,ΩS
)‖Φ‖X‖Ψ‖X ∀Φ,Ψ ∈ X, (3.30)

with CA > 0. Let us now define the subspace

V :=
{

Ψ ∈ X : B(Ψ,q) := 0 ∀q = (qD, ξ, η) ∈ Q
}
. (3.31)

From the definition of B (cf. (3.16)), it follows that Ψ = (RS,vS,vD) ∈ V, if and only if,

(qD, div vD)ΩD
= 0 ∀ qD ∈ L2

0(ΩD) , 〈vS · n, 1〉Σ = 0,

and 〈vS · n − vD · n, ξ〉Σ = 0 ∀ ξ ∈ H1/2(Σ).
(3.32)

Then, recalling that L2(ΩD) = L2
0(ΩD)⊕R, and noticing from the second and third equations of (3.32)

that
∫

ΩD
div vD = 〈vD ·n, 1〉Σ = 〈vS ·n, 1〉Σ = 0, we conclude together with the first equation of (3.32)

that
(div vD, qD) = 0 ∀ qD ∈ L2(ΩD).

Consequently, we can rewrite the subspace V as follows

V :=
{
Ψ = (RS,vS,vD) ∈ X : div vD = 0 in ΩD, vS · n− vD · n = 0 on Σ

and 〈vS · n, 1〉Σ = 0
}
.

Now we address the ellipticity of AwS on V for suitable choices of wS ∈ H1
ΓS

(ΩS).

Lemma 3.1 Assume that κ1 > 0 and 0 < κ2 < 4ν, and let wS ∈ H1
ΓS

(ΩS) such that

‖wS‖1,ΩS
≤ α

CS,2
, (3.33)

where α = 1
2 min{αS, CK}, αS is the constant defined below in (3.38), and CK and CS,2 are the positive

constants satisfying (2.7) and (3.29), respectively. Then, there holds

AwS(Ψ,Ψ) ≥ α‖Φ‖X ∀Ψ ∈ V . (3.34)

Proof. Given Ψ :=
(
RS,vS,vD

)
∈ V, we first recall from [17, Lemma 2.3] (see also [4, Chapter IV])

and [4, 24], respectively, that the following well known estimates hold

Cd‖R‖20,ΩS
≤ ‖Rd‖20,ΩS

+ ‖div R‖20,ΩS
(3.35)
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and
Ck‖v‖21,ΩS

≤ ‖e(v)‖20,ΩS
, (3.36)

with Cd > 0 and Ck > 0 depending only on ΩS. Then, employing (2.7) we deduce that

AS

(
(RS,vS), (RS,vS)

)
+ AD(vD,vD)

≥ Cd
2

min{κ1, 1}‖RS‖2div;ΩS
+ CK‖vD‖20,ΩD

+ κ2Ck

(
2ν − κ2

2

)
‖vS‖21,ΩS

≥ αS‖(RS,vS)‖2 + CK‖vD‖2div;ΩD
,

(3.37)

with

αS = min

{
Cd
2

min{κ1, 1}, Ckκ2

(
2ν − κ2

2

)}
. (3.38)

Then, using that

AwS(Ψ,Ψ) = AS((RS,vS), (RS,vS)) + AD(vD,vD) + CwS((RS,vS), (RS,vS)),

≥ AS((RS,vS), (RS,vS)) + AD(vD,vD)− |CwS((RS,vS), (RS,vS))|,

we conclude from (3.29), (3.37), and the hypotheses on the parameters κ1 and κ2, the required
inequality (3.34). �

Now we turn to establish the inf-sup condition of B. As we shall see next, this result can be derived
from the following two estimates.

Lemma 3.2 There exists c1 > 0 such that

S1(qD, ξ) := sup
vD∈HΓD

(div;ΩD)

vD 6=0

(div vD, qD) + 〈vD · n, ξ〉Σ
‖vD‖div;ΩD

≥ c1

{
‖qD‖0,ΩD

+ ‖ξ‖1/2,Σ
}
. (3.39)

for all (qD, ξ) ∈ L2
0(ΩD)×H1/2(Σ).

Proof. See Lemma 3.3 in [22]. �

Lemma 3.3 There exist c2, c3 > 0, such that

S2(ξ, η) := sup
vS∈HΓS

(ΩS)

vS 6=0

〈vS · n, ξ〉Σ − η〈vS · n, 1〉Σ
‖vS‖1,ΩS

≥ c2|η| − c3‖ξ‖1/2,Σ, (3.40)

for all (ξ, η) ∈ H1/2(Σ)× R.

Proof. We proceed similarly to the proofs of [22, Lemma 3.2] and [8, Lemma 3.2]. In fact, we let v0

be a fixed element in H1
ΓS

(ΩS) satisfying 〈v0 · n, 1〉Σ 6= 0 (see the proof of [8, Lemma 3.2] for the

construction of such an element), and observe that for all (ξ, η) ∈ H1/2(Σ)× R, there holds

S2(ξ, η) ≥ | 〈v0 · n, ξ〉Σ − η〈v0 · n, 1〉Σ |
‖v0‖1,ΩS

≥ |η| |〈v0 · n, 1〉Σ|
‖v0‖1,ΩS

− |〈v0 · n, ξ〉Σ|
‖v0‖1,ΩS

≥ c2 |η| − c3‖ξ‖1/2,Σ ,
(3.41)

with c2 = |〈v0·n,1〉|
‖v0‖1,ΩS

and c3 > 0 the constant satisfying |〈v0 · n, ξ〉Σ| ≤ c3‖v0‖1,ΩS
‖ξ‖1/2,Γ, which yields

the desired result. �

Employing the previous two lemmas, we prove now the inf-sup condition of B.
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Lemma 3.4 There exists β > 0, such that

S(q) := sup
Ψ∈X
Ψ 6=0

B
(
Ψ,q

)
‖Ψ‖X

≥ β‖q‖Q ∀q ∈ Q. (3.42)

Proof. Given q = (pD, ξ, η) ∈ Q, from the definition of the bilinear form B (cf. (3.16)), we observe
that

S(q) ≥ 2νS1(qD, ξ) and S(q) ≥ 2νS2(ξ, η),

which together with Lemmas 3.2 and 3.3, yield

S(q) ≥ 2νc1

{
‖qD‖0,ΩD

+ ‖ξ‖1/2,Σ
}

and S(q) ≥ 2ν
{
c2|η| − c3‖ξ‖1/2,Σ

}
.

Then, from the latter estimates we easily obtain(
1 +

c2

2c3

)
S(q) ≥ νc1 min

{
1,
c2

c3

}
‖q‖Q, (3.43)

which implies the result with β = νc1 min{1, c2c3 }
(

1 + c2
2c3

)−1
. �

Now we are in position of providing the well-posedness of (3.23).

Lemma 3.5 Assume that κ1 > 0 and 0 < κ2 < 4ν. Then, for each wS ∈ H1
ΓS

(ΩS) satisfying (3.33)

and each fS ∈ L2(ΩS) and fD ∈ L2(ΩD), there exists a unique (Φ,p) ∈ X ×Q solution to (3.23). In
addition, the following estimates hold:

‖Φ‖X ≤ α−1
{(

4ν2 + κ2
1

)1/2 ‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}
, (3.44)

and

‖p‖Q ≤ β−1
(
1 + α−1(CA + CS,2‖wS‖1,ΩS

)
){ (

4ν2 + κ2
1

)1/2 ‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}
. (3.45)

Proof. The unique solvability of (3.23) is a direct consequence of Lemmas 3.1 and 3.4 and the classical
Babuška-Brezzi theory. In turn, for the estimate (3.44) we use the fact that Φ ∈ V and apply (3.34)
and (3.25), whereas (3.45) follows from the inf-sup condition (3.42) and estimates (3.25), (3.30) and
(3.44). We omit further details. �

According to the previous lemma we conclude that if we choose the set M in (3.22) in such a way

that M ⊆ B
(
0, α

CS,2

)
:=
{

wS ∈ H1
ΓS

(ΩS) : ‖wS‖1,Ω ≤ α
CS,2

}
, then J is clearly well-defined. If so,

from (3.44) we obtain that for all wS ∈M, there holds

‖J (wS)‖1,ΩS
= ‖uS‖1,ΩS

≤ ‖Φ‖X ≤ α−1
((

4ν2 + κ2
1

)1/2 ‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

)
. (3.46)

In particular, if we consider the set

M :=

{
wS ∈ H1

ΓS
(ΩS) : ‖wS‖1,ΩS

≤ α−1
{

(4ν2 + κ2
1)1/2‖fS‖0,ΩS

+ 2ν‖fD‖0,ΩD

}}
, (3.47)

and assume that
CS,2

α2

{
(4ν2 + κ2

1)1/2‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}
< 1 , (3.48)
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we readily obtain that M ⊆ B
(
0, α

CS,2

)
, thus proving that J is well-defined. In addition from (3.46)

we have that
J (M) ⊆M.

Therefore, in order to prove the well-posedness of (3.21), in what follows we consider M defined as
in (3.47) and show, equivalently, that J has a unique fixed-point in M by means of the Banach
fixed-point theorem and under the same small data assumption (3.48).

3.2.2 Unique solvability

The main result of this section is stated now.

Theorem 3.6 Let fS ∈ L2(ΩS) and fD ∈ L2(ΩD) be such that (3.48) holds. Then, the operator J
(cf. (3.22)) has a unique fixed-point uS in M. Equivalently, the coupled problem (3.21) has a unique
solution (Φ,p) = ((TS,uS,uD), (pD, λ, µ)) ∈ X×Q, with uS ∈M. Moreover, there hold the following
a priori estimates

‖Φ‖X ≤ α−1
{(

4ν2 + κ2
1

)1/2 ‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}
,

‖p‖Q ≤ β−1
(
2 + α−1CA

){ (
4ν2 + κ2

1

)1/2 ‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}
.

(3.49)

Proof. We begin by recalling from the previous analysis that assumption (3.48) ensures the well-
definedness of J . Now, let zS,1, zS,2, uS,1 and uS,2 in M, such that uS,i := J (zS,i), i ∈ {1, 2}.
According to the definition of J (cf. (3.22)) we have that for each i ∈ {1, 2} there exist (Φi,pi) =
((TS,i,uS,i,uD,i), (pD,i, λi, µi)) ∈ X×Q, such that

AzS,i(Φi,Ψ) + B(Ψ,p
i
) = F(Ψ) ∀Ψ ∈ X ,

B(Φi,q) = 0 ∀q ∈ Q ,

from which we obtain

AzS,1(Φ1,Ψ)−AzS,2(Φ2,Ψ) + B(Ψ,p
1
− p

2
) = 0 ∀Ψ ∈ X,

B(Φ1 −Φ2,q) = 0 ∀q ∈ Q.
(3.50)

Then, observing that Φ1 −Φ2 ∈ V, from the first equation of (3.50) with Ψ = Φ1 −Φ2, and simple
computations, we deduce that

AzS,1(Φ1 −Φ2,Φ1 −Φ2) = −AzS,1(Φ2,Φ1 −Φ2) + AzS,2(Φ2,Φ1 −Φ2)

= −CzS,1−zS,2((TS,2,uS,2), (TS,1 −TS,2,uS,1 − uS,2)),

which, together with (3.34) and (3.30), imply

‖uS,1 − uS,2‖1,Ω ≤ ‖Φ1 −Φ2‖X ≤ α−1CS,2‖zS,1 − zS,2‖1,ΩS
‖(TS,2,uS,2)‖

≤ α−1CS,2‖Φ2‖X‖zS,1 − zS,2‖1,ΩS
.

Hence, recalling that Φ2 satisfies (3.44), we conclude from the foregoing inequality and (3.48) that J
is a contraction mapping. Therefore, a straightforward application of the Banach fixed-point theorem
implies the unique solvability of the fixed-point problem (3.24), or equivalently, the well-posedness of
(3.21). Finally, letting (Φ,p) = ((TS,uS,uD), (pD, λ, µ)) ∈ X ×Q be the unique solution of (3.21),
with uS ∈M satisfying (3.24), it is clear that (Φ,p) satisfies (3.23) with wS = uS. Therefore, noticing
that estimates (3.46) and (3.48) imply ‖uS‖1,ΩS

≤ α
CS,2

, from (3.44) and (3.45) we clearly obtain (3.49),

which concludes the proof. �
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4 The Galerkin formulation

In this section we introduce the Galerkin scheme of problem (3.21) and provide sufficient conditions
on the corresponding finite-dimensional spaces guaranteeing its unique solvability, stability, and Céa’s
estimate.

4.1 The discrete problem

Let us consider generic finite element subspaces

Hh(ΩS) ⊆ H(div; ΩS), Hh(ΩD) ⊆ H(div; ΩD), H1
h(ΩS) ⊆ H1(ΩS),

Lh(ΩD) ⊆ L2(ΩD) and Λh(Σ) ⊆ H1/2(Σ),
(4.1)

and let
Hh(ΩS) :=

{
Rh ∈ H(div; ΩS) : ctRh ∈ Hh(div; ΩS) ∀ c ∈ Rn

}
.

Then, defining the global finite element spaces as

Xh := Hh,0(ΩS)×H1
h,ΓS

(ΩS)×Hh,ΓD
(ΩD) and Qh := Lh,0(ΩD)× Λh(Σ)× R, (4.2)

with
Hh,0(ΩS) := Hh(ΩS) ∩H0(div; ΩS), H1

h,ΓS
(ΩS) := [H1

h(ΩS)]n ∩H1
ΓS

(ΩS),

Hh,ΓD
(ΩD) := Hh(ΩD) ∩HΓD

(div; ΩD), Lh,0(ΩS) := Lh(ΩD) ∩ L2
0(ΩD),

(4.3)

the Galerkin scheme of (3.21) reads: Find
(
Φh,ph

)
=
(
(Th,S,uh,S,uh,D), (qh,D, λh, µh)

)
∈ Xh ×Qh,

such that
Auh,S

(Φh,Ψh

)
+ B

(
Ψh,ph

)
= F(Ψh) ∀Ψh ∈ Xh,

B
(
Φh,qh

)
= 0 ∀q

h
∈ Qh.

(4.4)

In turn, in order to study the unique solvability of (4.4), and analogously to the continuous case, we
realize that (4.4) can be rewritten equivalently as the fixed-point problem: Find uh,S ∈Mh such that

Jh(uh,S) = uh,S, (4.5)

where Jh is the discrete fixed-point operator defined as Jh : Mh ⊆ H1
h,ΓS

(ΩS) → H1
h,ΓS

(ΩS), wh,S →
Jh(wh,S) = uh,S, where uh,S ∈ H1

h,ΓS
(ΩS) is the second component of Φh, which, together with

p
h
∈ Qh, constitutes the unique solution of the linearized version of (4.4): Find uh,S ∈ H1

h,ΓS
(ΩS)

such that
Awh,S

(Φh,Ψh

)
+ B

(
Ψh,ph

)
= F(Ψh) ∀Ψh ∈ Xh,

B
(
Φh,qh

)
= 0 ∀q

h
∈ Qh,

(4.6)

and Mh ⊆ H1
h,ΓS

(ΩS) is a subset ensuring the well-definedness of Jh, or equivalently, the well-posedness
of (4.6).

According to the above, now we focus on providing suitable hypotheses on the finite-dimensional
spaces (4.1) that will allow us to prove the well-posedness of (4.6), and consequently, the unique
solvability of problem (4.4). We begin by observing that, in order to properly define the spaces
Hh,0(ΩS) and L2

0(ΩD), we need to be able to eliminate multiples of the identity matrix from Hh(ΩS)
and constants polynomials from L2(ΩD). These requests are certainly satisfied if we assume that:

(H.0) P0(ΩS) ⊆ Hh(div; ΩS) and P0(ΩD) ⊆ Lh(ΩD).
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Thus, it readily follows from (H.0) that the following decompositions hold

Hh(ΩS) = Hh,0(ΩS)⊕ P0(ΩS) I and Lh(ΩD) = Lh,0(ΩD)⊕ P0(ΩD). (4.7)

Now, we turn to establish sufficient conditions for the discrete inf-sup condition

Sh(q
h
) := sup

Ψh∈Xh

Ψh 6=0

B
(
Ψh,qh

)
‖Ψh‖X

≥ β̂‖q
h
‖Q ∀q

h
∈ Qh, (4.8)

where β̂ > 0 is a constant required to be independent of the discretization parameter h. To that end,
we apply the same arguments utilized in the proof of Lemma 3.4 and realize that the inf-sup condition
(4.8) holds if we guarantee the following conditions:

(H.1) there exists ĉ1 > 0, independent of h, such that

S1,h(qh,D, ξh) := sup
vh,D∈Hh,ΓD

(ΩD)

vh,D 6=0

(div vh,D, qh,D)D + 〈vh,D · n, ξh〉Σ
‖vh,D‖div;ΩD

≥ ĉ1

{
‖qh,D‖0,ΩD

+ ‖ξh‖1/2,Σ
}
∀ (qh,D, ξh) ∈ Lh,0(ΩD)× Λh(Σ) .

(4.9)

(H.2) there exists v0 ∈ H1
ΓS

(ΩS) such that v0 ∈ H1
h,ΓS

(ΩS) for all h, and 〈v0 · n, 1〉Σ 6= 0.

In particular, analogously to the proof of Lemma 3.3, the latter clearly implies

S2,h(ξh, ηh) := sup
vh,S∈H

1
h,ΓS

(ΩS)

vh,S 6=0

〈vh,S · n, ξh〉Σ − ηh〈vh,S · n, 1〉Σ
‖vh,S‖1,ΩS

≥ ĉ2|ηh| − ĉ3‖ξh‖1/2,Σ ∀ (ξh, ηh) ∈ Λh(Σ)× R ,

(4.10)

with ĉ2, ĉ3 > 0 independent of h, which, together with (4.9), gives (4.8).

Finally, we look at the discrete kernel of B, namely

Vh :=
{

Ψh ∈ Xh : B(Ψh,qh) = 0 ∀q
h
∈ Qh

}
. (4.11)

In order to describe explicitly Vh, we now introduce the following assumption:

(H.3) div Hh(ΩD) ⊆ Lh(ΩD) and P0(Σ) ⊆ Λh(Σ)

Using (H.3), and recalling the definition of B (cf. (3.16)), we have that Ψh = (Rh,S,vh,S,vh,D) ∈ Vh

if and only if

div vh,D ∈ R , 〈vh,S · n− vh,D · n, ξh〉Σ = 0 ∀ ξh ∈ Λh , and 〈vh,S · n, 1〉Σ = 0 . (4.12)

In particular, starting from the third identity of (4.12), and then taking ξh = 1 in the second one, we
obtain

0 = 〈vh,S · n, 1〉Σ = 〈vh,D · n, 1〉Σ = (div vh,D, 1)D ,

which easily yields div vh,D = 0 in ΩD. In this way, we obtain the following characterization of Vh:

Vh =
{

Ψh ∈ Xh : div vh,D = 0 in ΩD , 〈vh,S · n, 1〉Σ = 0 ,

and 〈vh,S · n− vh,D · n, ξh〉Σ = 0 ∀ ξh ∈ Λh(Σ)
}
.

(4.13)

As a consequence of the above, we observe that the following discrete version of (3.37) holds:

AS

(
(Rh,S,vh,S), (Rh,S,vh,S)

)
+ AD(vh,D,vh,D) ≥ αS‖(Rh,S,vh,S)‖2 + CK‖vh,D‖2div;ΩD

, (4.14)

for all (Rh,S,vh,S,vh,D) ∈ Vh, with αS defined in (3.38) and CK the positive constant satisfying (2.7).
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4.2 Well-posedness of the discrete problem

We begin by establishing the well-definedness of Jh, or equivalently, the well-posedness of (4.6). For
this purpose, we first observe that the estimates (3.25), (3.26), (3.27), (3.28), and (3.29) certainly hold
for the subspaces Hh,0(ΩS), H1

h,ΓS
(ΩS), Hh,ΓD

(ΩD), Lh(ΩD), and Λh(Σ), of H0(div; ΩS), H1
ΓS

(ΩS),

H1
ΓD

(div; ΩD), L2(ΩD), and H1/2(Σ), respectively. In addition, (3.30) is also valid for wS = wh,S ∈
H1
h,ΓS

(ΩS). In turn, we establish next the discrete analogue of Lemma 3.1.

Lemma 4.1 Assume that κ1 > 0 and 0 < κ2 < 4ν, and let wh,S ∈ H1
h,ΓS

(ΩS) such that

‖wh,S‖1,ΩS
≤ α

CS,2
, (4.15)

where α = 1
2 min{αS, CK}, αS is the constant defined in (3.38), and CK and CS,2 are the positive

constants satisfying (2.7) and (3.29), respectively. Assume further that (H.0) and (H.3) hold. Then,
there holds

Awh,S
(Ψh,Ψh) ≥ α ‖Φh‖X ∀Ψh ∈ Vh . (4.16)

Proof. Analogously to the proof of Lemma 3.1, (4.16) is a direct consequence of (3.29), (4.14) and
assumption (4.15). We omit further details. �

Now we are in position of establishing the well-posedness of (4.6).

Lemma 4.2 Assume that (H.0), (H.1), (H.2), and (H.3) hold, and that κ1 > 0 and 0 < κ2 < 4ν.
Then, for each wh,S ∈ H1

h,ΓS
(ΩS) satisfying (4.15) and each fS ∈ L2(ΩS) and fD ∈ L2(ΩD), there

exists a unique (Φh,ph) ∈ Xh ×Qh solution to (4.6). In addition, there hold the following a priori
estimates

‖Φh‖X ≤ α−1
{(

4ν2 + κ2
1

)1/2 ‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}
,

‖p
h
‖Q ≤ β̂−1

(
1 + α−1(CA + CS,2‖wh,S‖1,ΩS

)
){ (

4ν2 + κ2
1

)1/2 ‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}
.

(4.17)

Proof. The unique solvability of (4.6) follows straightforwardly from (4.8), (4.16), and the classical
Babuška-Brezzi theory. In turn, by applying the same steps employed in the proof of Lemma 3.5, one
can obtain the estimates (4.17). �

According to the previous lemma, and analogously to the continuous case (cf. (3.47)), we now
introduce the bounded set

Mh :=

{
vh,S ∈ H1

h,S(ΩS) : ‖vh,S‖1,ΩS
≤ α−1

{
(4ν2 + κ2

1)1/2‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}}
.

Then, assuming that (3.48) holds, it follows that the fixed operator Jh defined through (4.6) is well-
defined and satisfies Jh(Mh) ⊆Mh. Moreover, analogously to the continuous case, we can prove the
well-posedness of problem (4.4). This result is established now.

Theorem 4.3 Assume that (H.0), (H.1), (H.2), and (H.3) hold, and that κ1 > 0 and 0 < κ2 <
4ν. Assume further that the external forces fS and fD satisfy (3.48). Then, there exists a unique
(Φh,ph) ∈ Xh ×Qh solution to (4.4). In addition, there hold the following a priori estimates

‖Φh‖X ≤ α−1
{(

4ν2 + κ2
1

)1/2 ‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}
,

‖p
h
‖Q ≤ β−1

(
2 + α−1CA

){ (
4ν2 + κ2

1

)1/2 ‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}
.

(4.18)
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Proof. By applying the same tools employed in the proof Theorem 3.6, that is, estimates (4.16),
(3.29), and assumption (3.48), it can be easily deduced that Jh is a contraction mapping on Mh,
which, together with the Banach fixed-point theorem, implies the unique solvability of the fixed-
point problem (4.5), or equivalently, the well-posedness of (4.4). Moreover, analogously to the
proof of Theorem 3.6, estimates (4.18) follow from (3.48) and the fact that the solution (Φh,ph) =(
(Th,S,uh,S,uh,D), (ph,D, λh, µh)

)
∈ Xh × Qh satisfies the estimates (4.17), the second of them with

wh,S = uh,S ∈Mh. �

4.3 The Cea estimate

Our next goal is to provide the Cea estimate for our Galerkin scheme (4.4). For this purpose, we
let (Φ,p) =

(
(TS,uS,uD), (pD, λ, µ)

)
∈ X × Q and (Φh,ph) =

(
(Th,S,uh,S,uh,D), (ph,D, λh, µh)

)
∈

Xh × Qh be the unique solutions of (3.21) and (4.4), respectively, and observe that the following
orthogonality-type relation holds

AuS(Φ,Ψh)−Auh,S
(Φh,Ψh) + B(Ψh,p− p

h
) = 0 ∀Ψh ∈ Xh,

B(Φ−Φh,qh) = 0 ∀q
h
∈ Qh.

(4.19)

In turn, for the sake of simplicity we denote the corresponding errors as

eΦ = Φ − Φh, and ep = p− p
h
, (4.20)

and for given ϕ
h

=
(
Sh,S, zh,S, zh,D

)
∈ Vh and rh = (rh,D, ϑh, ζh) ∈ Qh, we write

eΦ = δΦ + ηΦ := (Φ−ϕ
h
) + (ϕ

h
−Φh) and ep = δp + ηp := (p− rh) + (rh − p

h
). (4.21)

Then, we have the following main result.

Theorem 4.4 Assume that (H.0), (H.1), (H.2), and (H.3) hold, and that κ1 > 0 and 0 < κ2 < 4ν.
Assume further that

CS,2

α2

{
(4ν2 + κ2

1)1/2‖fS‖0,ΩS
+ 2ν‖fD‖0,ΩD

}
≤ 1

2
. (4.22)

Then, there exists Ccea > 0, independent of h, such that

‖(Φ,p)− (Φh,ph)‖X×Q ≤ Ccea inf
(Ψh,qh

)∈Xh×Qh

‖(Φ,p)− (Ψh,qh)‖X×Q . (4.23)

Proof. From the first equation of (4.19), adding and subtracting suitable terms, and recalling the
definition of Auh,S

(cf. (3.15)), we arrive at

AuS(eΦ,Ψh) = −Auh,S
(Φh,Ψh) + AuS(Φh,Ψh) − B(Ψh, ep)

= −CuS−uh,S
((Th,S,uh,S), (Rh,S,vh,S)) − B(Ψh, ep) ,

(4.24)

which, using that eΦ = δΦ + ηΦ and ep = δp + ηp, can be rewritten as

AuS(ηΦ,Ψh) = −AuS(δΦ,Ψh)−CuS−uh,S
((Th,S,uh,S), (Rh,S,vh,S))

− B(Ψh, δp) − B(Ψh,ηp) ,
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for all Ψh = (Rh,S,vh,S,vh,D) ∈ Xh. Next, we notice from the second equation of (4.4) that Φh ∈ Vh,
whence ηΦ := ϕ

h
− Φh belongs to Vh as well. Then, taking Ψh = ηΦ in (4.16), employing the

estimates (3.29) and (3.28), and denoting δuS = uS − zh,S and ηuS
= zh,S − uh,S, we readily obtain

α ‖ηΦ‖2X ≤
(
CA + CS,2‖uS‖1,ΩS

)
‖δΦ‖X‖ηΦ‖X

+ CS,2

(
‖δuS‖1,Ω + ‖ηuS

‖1,Ω
)
‖Φh‖X‖ηΦ‖X + CB‖ηΦ‖X‖δp‖Q ,

which, together with the fact that ‖δuS‖1,Ω ≤ ‖δΦ‖X and ‖ηuS
‖1,Ω ≤ ‖ηΦ‖X, implies(

α− CS,2‖Φh‖X
)
‖ηΦ‖X ≤

(
CA + CS,2‖uS‖1,ΩS

+ CS,2‖Φh‖X
)
‖δΦ‖X + CB ‖δp‖Q .

Then, recalling that ‖uS‖1,ΩS
≤ ‖Φ‖X, from (3.44), (4.17), and assumption (4.22), we deduce that

‖ηΦ‖X ≤ C1 ‖δΦ‖X + C2 ‖δp‖Q ,

with constants C1, C2 > 0, independent of h, which yields

‖eΦ‖X ≤ (1 + C1) ‖δΦ‖X + C2 ‖δp‖Q . (4.25)

On the other hand, noticing from (4.24) that there holds

B(Ψh,ηp) = −AuS(eΦ,Ψh)−CuS−uh,S
((Th,S,uh,S), (Rh,S,vh,S)) − B(Ψh, δp),

for all Ψh = (Rh,S,vh,S,vh,D) ∈ Xh, and using the inf-sup condition (4.8), the estimates (3.28),
(3.29), (3.30), (4.17), and (3.46) (with wS = uS ∈M), and the fact that ‖uS − uh,S‖1,ΩS

≤ ‖eΦ‖X,
we conclude that

β̂‖ηp‖Q ≤ sup
Ψh∈Xh

Ψh 6=0

B
(
Ψh,ηp

)
‖Ψh‖X

≤ C3 ‖eΦ‖X + C4 ‖δp‖Q ,

which, combined with (4.25), gives

‖ep‖Q ≤ ‖ηp‖Q + ‖δp‖Q ≤ C5 ‖δΦ‖X + C6 ‖δp‖Q , (4.26)

with constants C3, C4, C5, C6 > 0, independent of h. Finally, recalling that the inf-sup condition
(4.8) implies the estimate (see [17, estimate (2.89)])

inf
Ψh ∈Vh

‖Φ −Ψh‖X ≤ c inf
Ψh∈Xh

‖Φ −Ψh‖X, (4.27)

with c > 0, independent of h, from (4.25) and (4.26) and the fact that ϕ
h

=
(
Sh,S, zh,S, zh,D

)
∈ Vh

and rh = (rh,D, ϑh, ζh) ∈ Qh are arbitrary, we obtain the desired result. �

4.4 Computing further variables of interest

In this section we introduce suitable approximations for further variables of interest, such as the
pressure p, the vorticity ω := 1

2(∇u − ∇ut), the velocity gradient G = ∇u and the stress tensor
σ := ν(∇u + (∇u)t)− pI, all them written in terms of

(
Φh,ph

)
=
(
(Th,S,uh,S,uh,D), (qh,D, λh, µh)

)
∈

Xh ×Qh, solution of the discrete problem (4.4). In fact, observing that at the continuous level there
hold

p = − 1

n

(
tr (T) + tr (u⊗ u)− 1

|Ω|
(tr (u⊗ u), 1)Ω

)
, G =

1

ν
(Td + (u⊗ u)d),

σ = Td + Tt − 1

n|Ω|
(tr (u⊗ u), 1)ΩI + u⊗ u + (u⊗ u)d and ω =

1

2ν
(T−Tt) ,
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we propose the following approximations for the aforementioned variables

ph = − 1

n

(
tr (Th) + tr (uh ⊗ uh)− 1

|Ω|
(tr (uh ⊗ uh), 1)Ω

)
, Gh =

1

ν
(Td

h + (uh ⊗ uh)d),

σh = Td
h + Tt

h −
1

n|Ω|
(tr (uh ⊗ uh), 1)ΩI + uh ⊗ uh + (uh ⊗ uh)d and ωh =

1

2ν
(Th −Tt

h) .

4.5 A particular choice of finite elements

In this section we proceed similarly to [6] and [22] and specify concrete examples of finite element
subspaces in 2D and 3D satisfying the hypotheses (H.0) − (H.3). To this end, we let T S

h and T D
h

be respective triangulations of the domains ΩS and ΩD, which are formed by shape-regular triangles
(in R2) or tetrahedra (in R3) of diameter hT , assume that they match in Σ so that T S

h ∪ T D
h is a

triangulation of ΩS ∪ Σ ∪ ΩD, and denote by Σh the partition of Σ inherited from T S
h (or T D

h ).
We let h? := max{hT : T ∈ T ?h } (? ∈ {S,D}) and h := max{hS, hD}. In addition, we denote by
x := (x1, ..., xn)t a generic vector of Rn and for each T ∈ T S

h ∪ T D
h we consider the local Raviart–

Thomas space of order 0, given by

RT0(T ) := P0(T ) + P0(T )x.

4.5.1 Finite element subspaces in 2D

Here we propose to choose the finite element subspaces H1
h(ΩS), Hh(Ω?) (? ∈ {S,D}), and Lh(ΩD) in

(4.1) as follows

H1
h(ΩS) :=

{
vh ∈ [C(Ω̄S)]2 : vh|T ∈ P1(T ) ∀T ∈ T S

h

}
,

Hh(Ω?) :=
{
τh ∈ H(div; Ω?) : τh|T ∈ RT0(T ) ∀T ∈ T ?h

}
, ? ∈ {S,D} ,

Lh(ΩD) :=
{
qh ∈ L2(ΩD) : qh|T ∈ P0(T ) ∀T ∈ T D

h

}
.

(4.28)

Observe that Hh(ΩS) and Lh(ΩD) clearly satisfy (H.0). In addition, (H.2) is easy to verify if the
sequence of subspaces is nested or if we are able to find a coarser space where (H.2) holds. For further
details on the construction of v0 ∈ H1

ΓS
(ΩS) satisfying (H.2), we refer to [22, Section 3.2] (see, also

[21, Section 3.2] or [6, Lemma 3.2]).

Now, we turn to define the finite dimensional subspace Λh(Σ). For this purpose, let us assume that
the number of edges of Σh is even and let Σ2h be the partition of Σ arising by joining pairs of adjacent
edges of Σh (if the number of edges of Σh is odd, we simply reduce to the even case by joining any
pair of two adjacent elements and then construct Σ2h from this reduced partition). Then, we set

Λh(Σ) :=
{
ξh ∈ C(Σ) : ξh|e ∈ P1(e) ∀ e ∈ Σ2h

}
, (4.29)

and denote hΣ := max
{
he : e ∈ Σ2h

}
. Observe that P0(Σ) ⊆ Λh(Σ). Also, it is easy to see that

div Hh(ΩD) ⊆ Lh(ΩD), whence hypothesis (H.3) holds.

It remains to prove that (H.1) is satisfied as well. To this end, we recall from [21] that the set of
normal traces of Hh,ΓD

(ΩD) = Hh(ΩD)∩HΓD
(div; ΩD) on Σ is defined by the subspace of L2(Σ) given

by

Θh(Σ) :=
{
φh : Σ→ R : φh|e ∈ P0(e) ∀ e ∈ Σh

}
. (4.30)
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Then, analogously to [29, Lemma A.1], we can deduce that there exists a discrete lifting operator
Lh : Θh(Σ)→ Hh,ΓD

(ΩD), satisfying

‖Lh(φh)‖div;ΩD
≤ c‖φh‖−1/2,Σ and Lh(φh) · n = φh on Σ, (4.31)

for all φh ∈ Θh(Σ). Additionally, we recall from [21, Lemma 5.1] that there exists β̂Σ > 0 such that
the pair of subspaces (Θh(Σ),Λh(Σ)) satisfies the discrete inf-sup condition

sup
φh∈Θh(Σ)
φ 6=0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≥ β̂Σ ‖ξh‖1/2,Σ ∀ ξh ∈ Λh(Σ) . (4.32)

Then, owing to the existence of Lh and estimate (4.32), it is easy to see (see [21, Lemma 4.2]) that
there exists C > 0, independent of h, such that

sup
vh,D∈Hh,ΓD

(ΩD)

vh,D 6=0

〈vh,D · n, ξh〉Σ
‖vh,D‖div;ΩD

≥ C‖ξh‖1/2,Σ. (4.33)

According to the above discussion, we are in position of proving next the inf-sup condition (4.9).

Lemma 4.5 There exists ĉ1 > 0, independent of h, such that

S1,h(qh,D, ξh) := sup
vh,D∈Hh,ΓD

(ΩD)

vh,D 6=0

(div vh,D, qh,D)ΩD
+ 〈vh,D · n, ξh〉Σ

‖vh,D‖div;ΩD

≥ ĉ1

{
‖qh,D‖0,ΩD

+ ‖ξh‖1/2,Σ
}
,

(4.34)

for all (qh,D, ξh) ∈ Lh,0(ΩD)× Λh(Σ).

Proof. Given (qh,D, ξh) ∈ Lh,0(ΩD)× Λh(Σ), we first observe that there holds

S1,h(qh,D, ξh) ≥ sup
vh,D∈H̃h(ΩD)

vh,D 6=0

(div vh,D, qh,D)ΩD

‖vh,D‖div;ΩD

,

where H̃h(ΩD) :=
{

vh,D ∈ Hh(ΩD) : vh,D · n = 0 on ∂ΩD

}
. Then, employing the analysis from

[17, Section 4.3], we get

S1,h(qh,D, ξh) ≥ Ĉ‖qh,D‖0,ΩD
. (4.35)

On the other hand, it is clear that

S1,h(qh,D, ξh) ≥ sup
vh,D∈Hh,ΓD

(ΩD)

vh,D 6=0

〈vh,D · n, ξh〉Σ
‖vh,D‖div;ΩD

− ‖qh,D‖0,Ω, (4.36)

which, combined with (4.33), yields

S1,h(qh,D, ξh) ≥ C ‖ξh‖1/2,Σ − ‖qh,D‖0,ΩD
.

Finally, from the latter estimate and (4.35) we readily obtain (4.34), which concludes the proof. �

Having verified hypotheses (H.0)− (H.3), a straightforward application of Theorem 4.3 yields the
well-posedness of (4.4) and the corresponding Céa estimate.
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Theorem 4.6 Let Xh and Qh be the finite element subspaces defined by (4.2) in terms of the specific
discrete spaces given by (4.28) and (4.29), and assume that the hypotheses of Theorem 4.4 hold. Then
the Galerkin scheme (4.4) has a unique solution (Φh,ph) ∈ Xh × Qh, which satisfies the estimates
(4.17) and (4.23).

Proof. Since assumption (4.22) implies (3.48) and hypotheses (H.0) − (H.3) hold, the result follows
from a straightforward application of Theorems 4.3 and 4.4. �

Finally, by employing the approximations properties of the finite element subspaces involved (see,
e.g. [4, 17, 24, 27]), and the a priori estimate (4.23), we can easily obtain the following result.

Theorem 4.7 Assume that the hypotheses of Theorem 4.4 hold. Let (Φ,p) ∈ X×Q and (Φh,ph) ∈
Xh×Qh be the unique solutions of the continuous and discrete problem (3.21) and (4.4), respectively.
Assume further that there exists δ > 0 such that TS ∈ Hδ(ΩS), div TS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD),
div uD ∈ Hδ(ΩD), uS ∈ Hδ+1(ΩS), and fD ∈ Hδ(ΩD). Then, pD ∈ Hδ+1(ΩD), λ ∈ Hδ+1/2(Σ), and
there exists C > 0, independent of h and the continuous and discrete solutions, such that

‖(Φ,p)− (Φh,ph)‖X×Q ≤ C hδ
{
‖TS‖δ,ΩS

+ ‖div TS‖δ,ΩS

+ ‖uS‖δ+1,ΩS
+ ‖uD‖δ,ΩD

+ ‖div uD‖δ,ΩD
+ ‖pD‖δ+1,ΩD

}
.

(4.37)

Proof. From the first equation of (3.21) (cf. (3.4)) we find that K−1uD = −∇pD + fD in ΩD, which
implies that pD ∈ H1+δ(Σ), whence λ = pD |Σ∈ H1/2+δ(Σ). The rest of the proof follows from the a
priori estimate (4.23), the approximation properties of the discrete spaces involved and the fact that,
owing to the trace theorem in ΩD, there holds ‖λ‖δ+1/2,Σ ≤ c‖pD‖δ+1,ΩD

. �

4.5.2 Finite element subspaces in 3D

Let us now consider the discrete spaces

H1
h(ΩS) :=

{
vh ∈ [C(Ω̄S)]3 : vh|T ∈ P1(T ) ∀T ∈ T S

h

}
,

Hh(Ω?) :=
{
τh ∈ H(div; Ω?) : τh|T ∈ RT0(T ) ∀T ∈ T ?h

}
, ? ∈ {S,D} ,

Lh(ΩD) :=
{
qh ∈ L2(ΩD) : qh|T ∈ P0(T ) ∀T ∈ T D

h

}
.

(4.38)

Next, in order to define the subspace approximating the unknown λ, we introduce an independent
triangulation Σ

ĥ
of Σ, by triangles K of diameter ĥK , and define h̃Σ := max

{
hK : K ∈ Σh

}
and

ĥΣ := max
{
ĥK : K ∈ Σ

ĥ

}
. Then, we define

Λh(Σ) :=
{
ξh ∈ C(Σ) : ξh|K ∈ P1(K) ∀K ∈ Σ

ĥ

}
. (4.39)

In this way, we define the global spaces Xh and Qh by combining (4.1), (4.2), (4.38), and (4.39).

Now, for the verification of the required hypotheses for the corresponding discrete analysis, we first
observe that the same arguments from the 2D case imply the verification of (H.0), (H.2) and (H.3)
in 3D. However, for the inf-sup conditions in (H.1), we need to proceed slightly different to the 2D
case and apply [18, Lemma 7.5]. More precisely, utilizing [18, Lemma 7.5], we conclude that there
exists C0 ∈ (0, 1) such that for each pair (h̃Σ, ĥΣ) verifying h̃Σ ≤ C0ĥΣ, the inf-sup condition (4.33)
holds. According to this, we can proceed analogously to the proof of Lemma 4.5 to verify (H.1).

21



Having verified hypotheses (H.0)–(H.3), we conclude that the Galerkin scheme (4.4) defined with
the spaces in (4.38) is well posed. In addition, owing again to the approximations properties of the
finite element subspaces involved (see, e.g. [4, 17, 24, 27]), and the a priori estimate (4.23), we obtain
exactly the same Theorem 4.7 for the 3D case as well.

5 Numerical results

In this section we present two numerical examples in 2D illustrating the performance of our augmented
mixed finite element scheme (4.4) on a set of uniform triangulations of the corresponding domains,
and considering the finite element spaces introduced in Section 4.5.1. Our implementation is based
on a FreeFem++ code (see [26]), in conjunction with the direct linear solver UMFPACK (see [12]).
Regarding the implementation of the iterative strategy generated by the Newton method applied to
(4.4), we remark that the corresponding iterations are terminated once the relative error of the entire
coefficient vectors between two consecutive ones is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of freedom
defining the finite element subspaces Xh and Qh, and tol is a fixed tolerance to be specified in each
case. For the examples shown below we simply take (0,0) as initial guess.

We now introduce some additional notations. The individual errors are denoted by eT := TS−Th,
euS = uS − uh, euD = uD − uD,h, epD = pD − ph,D and eλ = λ − λh. Also, we let rTS

, ruS , ruD , rpD

and rλ be the experimental rates of convergence given by

rTS
:=

log(eTS
/e′TS

)

log(hS/h′S)
, ruS :=

log(euS/e
′
uS

)

log(hS/h′S)
, ruD :=

log(euD/e
′
uD

)

log(hD/h′D)
,

rpD :=
log(epD/e

′
pD

)

log(hD/h′D)
, rλ :=

log(eλ/e
′
λ)

log(hΣ/h′Σ)
,

where h? and h′? (? ∈ {S,D,Σ}) denote two consecutive mesh sizes with their respective errors e, e′

(or e, e′). For each example below we assume αD = 1, ρ = 1, and K = I.

In Example 1 we take the porous domain ΩD := (−1/2, 1/2)× (0,−1/2) coupled with a semi-disk-

shaped fluid domain ΩS :=
{

(x1, x2) : x2
1 + x2

2 ≤ (1/2)2 and x2 > 0
}

. In addition, we consider

the viscosity ν = 1, the parameters κ1 = 1 and κ2 = 2ν, and the data fS and fD are chosen so that the
exact solution in the tombstone-shaped domain Ω = ΩS ∪ Σ ∪ ΩD is given by the smooth functions

uS(x) :=

(
cos(πx1) sin(πx2)
− cos(πx2) sin(πx1)

)
∀x = (x1, x2) ∈ ΩS,

uD(x) :=

(
−64

π
x2(x2

2 − 0.25) cos(πx1)

−16 sin(πx1)(x2
2 − 0.25)2

)
∀x = (x1, x2) ∈ ΩD ,

and
pD(x) := cos(x1) + ax2 ∀x = (x1, x2) ∈ ΩD ,

where the constant a is chosen in such a way that
∫

ΩD
pD = 0. Notice that the foregoing solution

satisfies uS · n = uD · n on Σ and the boundary condition uD · n = 0 on ΓD. However, the Dirichlet
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boundary condition for the Navier–Stokes velocity on ΓS is non-homogeneous. Then, we need to
modify accordingly the functional

F(Ψ) := 2ν(fS,vS)ΩS
+ 2ν(fD,vD)ΩD

− κ1(fS,div RS)ΩS
+ 2µ〈RSn,uS〉ΓS

∀Ψ ∈ X.

In Table 5.1 we summarize the convergence history of the first example for a sequence of uniform
triangulations, considering the finite element subspaces described in Section 4.5.1, and solving the
nonlinear problem with a tolerance tol = 10−6. Note that the rate of convergence O(h) predicted
by Theorem 4.7 is attained in all the cases. Next, in Figures 5.1, 5.2 and 5.3 we display the first
and second component of the discrete velocity uh = (uh,S,uh,D), the discrete velocity vector field and
the approximate pressure ph,D together with the {1, 1}-component of tensor Th, respectively, with
N = 411915. Observe there that the second components of uh,S and uh,D coincide on Σ, whence
uh,S · n = uh,D · n on Σ as expected, which is confirmed in Figure 5.3 where we clearly observe that
the flux on Σ is continuous.

N hS eTS
rTS

euS ruS

458 0.1901 1.1196 - 0.3459 -
1707 0.0911 0.5638 0.9302 0.1679 0.9801
6588 0.0486 0.2825 1.0972 0.0833 1.1122
26399 0.0242 0.1374 1.0353 0.0414 1.0064
103855 0.0134 0.0696 1.0822 0.0208 1.0935
411915 0.0077 0.0352 1.1468 0.0104 1.1630

N hD euD ruD epD rpD

458 0.2001 0.0056 - 0.0872 -
1707 0.0937 0.0027 0.9807 0.0442 0.8979
6588 0.0470 0.0012 1.1002 0.0219 1.0138
26399 0.0250 0.0006 1.1380 0.0107 1.1257
103855 0.0129 0.0003 1.0944 0.0054 1.0338
411915 0.0068 0.0001 1.0811 0.0027 1.0838

N hΣ eλ rλ
458 0.1250 0.0169 -
1707 0.0625 0.0069 1.3016
6588 0.0313 0.0036 0.9391
26399 0.0156 0.0019 0.9338
103855 0.0078 0.0009 1.0351
411915 0.0039 0.0005 0.9732

Table 5.1: Degrees of freedom N , mesh sizes h? (? ∈ {S,D,Σ}), errors and rates of convergence for
the augmented-mixed approximation of the coupled Navier-Stokes/Darcy (Example 1).

In Example 2 we focus on the performance of the iterative method with respect to the viscosity
ν. To this end, we take the domain Ω = ΩS ∪ Σ ∪ ΩD, with ΩS := (−1/2, 3/2) × (0, 1/2) and
ΩD := (−1/2, 3/2)× (0,−1/2). In addition, we consider the parameters κ1 = ν and κ2 = 2ν, so that
the ellipticity constant α (see Lemma 3.1) becomes α = Cν for small values of ν, with C independent
of ν. In turn, the terms on the right-hand side are adjusted so that the exact solution is given by the
functions

uS(x) :=

(
1− eγx1 cos(2πx2)
γ

2π
eγx1 sin(2πx2)

)
∀x = (x1, x2) ∈ ΩS ,
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Figure 5.1: first components of uS,h and uD,h (left) and second components of uS,h and uD,h (right)
(Example 1)

Figure 5.2: velocity vector field uh (Example 1).

Figure 5.3: component T1,1
h of the approximate tensor Th (left) and approximate pressure ph,D (right)

(Example 1).

uD(x) :=

(
(x1 + 0.5)(x1 − 1.5)
−(x2 + 2)(2x1 − 1)

)
∀x = (x1, x2) ∈ ΩD ,

and
pD(x) := (x1 − 0.5)3(x2 + 1) ∀x = (x1, x2) ∈ ΩD ,
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with

γ :=
−8π√

µ−2 + 16π2 + µ−1
.

Notice that uS is the well known analytical solution for the Navier-Stokes problem obtained by Ko-
vasznay in [26], which presents a boundary layer at {−1/2}×(0, 2). In Table 5.2 we show the behavior
of the iterative method as a function of the viscosity ν, considering different mesh sizes h, and a toler-
ance tol = 10−6. We observe there that the smaller the viscosity, the larger the number of iterations.
Numerical experiments for smaller values of ν are not reported since, in that case, the maximum
number of iterations established in the code (100) is attained for all the meshes. Next, in Table 5.3
we show the convergence history considering the viscosity ν = 0.1. We see there that the rate of
convergence O(h) predicted by Theorem 4.7 is attained by all the unknowns.

µ h = 0.37499 h = 0.20009 h = 0.09576 h = 0.04915 h = 0.02698 h = 0.01392

1 5 4 4 4 4 4
0.1 10 8 8 8 9 9
0.01 - - - 53 65 68

Table 5.2: Number of iterations of the iterative method with respect to ν (Example 2).

N hS eTS
rTS

euS ruS

284 0.3536 2.2340 - 1.8824 -
1034 0.2001 0.9226 1.5537 0.8833 1.3293
4125 0.0958 0.3279 1.4037 0.4215 1.0040
14886 0.0492 0.1353 1.3278 0.2136 1.0189
60055 0.0270 0.0618 1.3013 0.1061 1.1660
231080 0.0139 0.0301 1.0904 0.0531 1.0477

N hD euD ruD epD rpD

284 0.3750 0.2980 - 0.0665 -
1034 0.2001 0.1474 1.1205 0.0317 1.1786
4125 0.0950 0.0679 1.0436 0.0145 1.0509
14886 0.0485 0.0347 0.9939 0.0072 1.0360
60055 0.0254 0.0172 1.0864 0.0037 1.0426
231080 0.0160 0.0086 1.4990 0.0018 1.5167

N hΣ eλ rλ
284 0.1250 0.1674 -
1034 0.0625 0.0651 1.3622
4125 0.0313 0.0232 1.4877
14886 0.0156 0.0084 1.4611
60055 0.0078 0.0031 1.4434
231080 0.0039 0.0012 1.4117

Table 5.3: Degrees of Freedom N , mesh sizes h? (? ∈ {S,D,Σ}), errors and rates of convergence for
the augmented-mixed approximation of the Navier-Stokes/Darcy problem with ν = 0.1, κ1 = ν2/3
and κ2 = 3ν (Example 2).
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2019-27 Ańıbal Coronel, Fernando Huancas, Mauricio Sepúlveda: Identification of
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Residual-based a posteriori error analysis for the coupling of the Navier-Stokes and
Darcy-Forchheimer equations

2019-34 Gabriel N. Gatica, Ricardo Oyarzúa, Nathalie Valenzuela: A five-field
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