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Abstract

In this paper we consider two mixed variational formulations that have been recently proposed
for the coupling of the Navier–Stokes and Darcy–Forchheimer equations, and derive reliable and
efficient residual-based a posteriori error estimators suitable for adaptive mesh-refinement me-
thods. For the reliability analysis of both schemes we make use of the inf-sup condition and the
strict monotonicity of the operators involved, suitable Helmholtz decomposition in nonstandard
Banach space in the porous medium, local approximation properties of the Clément interpolant and
Raviart–Thomas operator, and a smallness assumption on the data. In turn, inverse inequalities,
the localization technique based on triangle-buble and edge-buble functions in local Lp spaces, are
the main tools for study the efficiency estimate. In addition, for one of the schemes, we derive
two estimators, one obtained as a direct consequence of the Cauchy–Schwarz inequality and the
other one employing a Helmholtz decomposition. Finally, several numerical results confirming the
properties of the estimators and illustrating the performance of the associated adaptive algorithm
are reported.
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1 Introduction

We have recently introduced two mixed finite element methods to numerically approximate the fluid
flow between porous media and free-flow zones described by the coupling of the Navier–Stokes and
Darcy–Forchheimer equations with the mass conservation, balance of normal forces, and the Beavers–
Joseph–Saffman condition on the interface [7, 10]. In particular, a primal-mixed formulation was
derived and analyzed in [7], that is, the standard velocity-pressure mixed formulation in the Navier–
Stokes domain and the dual-mixed one in the Darcy–Forchheimer region, which yields the introduction
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of the trace of the porous medium presure as a suitable Lagrange multiplier. The well-posedness of
the problem is achieved by combining a fixed-point strategy, classical results on nonlinear monotone
operators and the well-known Schauder and Banach fixed-point theorems. A feasible choice of finite
element subspaces for the formulation introduced in [7] is given by Bernardi–Raugel and Raviart–
Thomas elements for the velocities, and piecewise constant elements for the pressures and the Lagrange
multiplier. On the other hand, a fully-mixed formulation, that is, dual-mixed formulations in both
domains, which yields the introduction of two additional Lagrange mulipliers: the trace of the porous
media pressure and the fluid velocity on the interface, was derived in [10]. The resulting augmented
variational system of equations is then ordered so that it shows a twofold saddle point structure. The
well-posedness of the problem is obtained by combining a fixed-point argument, an abstract theory
for twofold saddle point problems, classical results on nonlinear monotone operators and the well-
known Schauder and Banach fixed-point theorems. The corresponding mixed finite element scheme
employs Raviart–Thomas element, continuous piecewise polynomials and piecewise polynomials for the
pseudostress tensor, velocity and vorticity in the free fluid, whereas Raviart–Thomas and piecewise
polynomials for the velocity and pressure in the porous medium. For both formulations, sub-optimal
a priori error estimates were also derived.

Now, it is well known that under the eventual presence of singularities, as well as when dealing with
nonlinear problems, as in the present case, most of the standard Galerkin procedures such as finite ele-
ment and mixed finite element methods inevitably lose accuracy, and hence one usually tries to recover
it by applying an adaptive algorithm based on a posteriori error estimates. For example, residual-based
a posteriori error analyses for the Stokes–Darcy and Navier–Stokes/Darcy coupled problems have been
developed in [3] and [8] for the associated primal-mixed and fully-mixed formulations, respectively.
In fact, standard arguments relying on duality techniques, suitable decompositions and classical ap-
proximation properties, are combined there with corresponding small data assumptions to derive the
reliability of the estimators. In turn, inverse inequalities and the usual localization technique based
on bubble functions are employed in both works to prove the corresponding efficiency estimates. On
the other hand, and concerning quasi-Newtonian fluid flows obeying to the power law, as in the case
of the Darcy–Forchheimer model, not much has been done and we just refer to [16, 13, 17], where
different contributions addressing this interesting issue can be found. In particular, an a posteriori
error estimator defined via a non-linear projection of the residues of the variational equations for a
three-field model of a generalized Stokes problem was proposed and analyzed in [16]. We remark that
the non-linear projections do not need to be explicitly computed to construct the a posteriori error
estimates. In turn, a fully local residual-based a posteriori error estimator for the mixed formulation
of the p-Laplacian problem in a polygonal domain, was derived in [13]. In this case, the authors study
the reliability of the estimator defining two residues and then bounding the norm of the errors in terms
of the norms of these residues. Moreover, the discretized dual-mixed formulation is hybridized and
provide several tests for p = 1.8 and p = 3 to experimentally verify the reliability of the estimator.
We remark that up to the authors’ knowledge, there is not works dealing with the a posteriori error
analysis for the coupling of the Navier–Stokes (or Stokes) and the Darcy–Forchheimer models.

According to the above discussion and aiming to complement the results on the numerical analysis
of the coupled Navier–Stokes and Darcy–Forchheimer equations, in this paper we proceed similarly
to [16, 13, 17, 19, 3, 20, 21, 8] and [9], and develop reliable and efficient residual-based a posteriori
error estimators for the mixed finite element methods introduced and analyzed in [7] and [10]. More
precisely, starting from the inf-sup condition and the strict monotonicity of the operators involved, and
employing suitable Helmholtz decompositions in nonstandard Banach spaces, we prove the reliability
of residual-based estimators under a smallness condition on the data, . In turn, the efficiency estimate
is consequence of standard arguments such as inverse inequalities and the localization technique based
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on triangle-buble and edge-buble functions in local Lp spaces. Alternatively, and similarly to [9], a
second reliable and efficient residual-based a posteriori error estimator not making use of any Helmholtz
decomposition in the Navier–Stokes region is also proposed for the fully-mixed formulation.

The rest of this work is organized as follows. The remainder of this section introduces some standard
notations and definition of functional spaces. In Section 2 we recall from [7] and [10] the model problem.
Next, in Section 3 we describe the continuous formulations and the corresponding primal-mixed and
fully-mixed finite element methods, whereas some preliminary results necessary to the a posteriori
error analysis are established in Section 4. Then, in Sections 5 and 6 we introduce a posteriori error
indicators and, assuming small data, we derive the corresponding theoretical bounds yielding reliability
and efficiency of each estimator. Finally, some numerical results confirming the theoretical sub-optimal
order of convergence and at the same time suggesting an optimal rate of convergence as in [7, 10] are
presented in Section 7. Additionally, these numerical essays illustrate the efficiency and reliability of
the a posteriori error estimators, and show the good performance of the associated adaptive algorithm
for the finite element methods.

We end this section by introducing some definitions and fixing some notations. Let O ⊆ Rn,
n ∈ {2, 3}, denote a domain with Lipschitz boundary Γ. For s ≥ 0 and p ∈ [1,+∞] we denote by
Lp(O) and Ws,p(O) the usual Lebesgue and Sobolev spaces endowed with the norms ‖ · ‖Lp(O) and
‖ · ‖s,p;O, respectively. Note that W0,p(O) = Lp(O). If p = 2, we write Hs(O) in place of Ws,2(O), and
denote the corresponding Lebesgue and Sobolev norms by ‖ · ‖0,O and ‖ · ‖s,O, respectively, and the
seminorm by |·|s,O. In addition, we denote by W1/q,p(Γ) the trace space of W1,p(O), and let W−1/q,q(Γ)
be the dual space of W1/q,p(Γ) endowed with the norms ‖ · ‖1/q,p;Γ and ‖ · ‖−1/q,q;Γ, respectively, with
p, q ∈ (1,+∞) satisfying 1/p + 1/q = 1. By M and M we will denote the corresponding vectorial and
tensorial counterparts of the generic scalar functional space M, and ‖ ·‖, with no subscripts, will stand
for the natural norm of either an element or an operator in any product functional space. In turn, for
any vector fields v = (vi)i=1,n and w = (wi)i=1,n, we set the gradient, divergence, and tensor product
operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=

n∑
j=1

∂vj
∂xj

and v ⊗w := (viwj)i,j=1,n.

Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let divτ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr (τ ) :=

n∑
i=1

τii, τ : ζ :=

n∑
i,j=1

τijζij and τ d := τ − 1

n
tr (τ )I,

where I is the identity matrix in Rn×n. In what follows, when no confusion arises, | · | will denote the
Euclidean norm in Rn or Rn×n. Additionally, we recall that

H(div;O) :=
{
τ ∈ L2(O) : divτ ∈ L2(O)

}
,

equipped with the usual norm ‖τ‖2div;O := ‖τ‖20,O + ‖divτ‖20,O, is a standard Hilbert space in the

realm of mixed problems. On the other hand, the following symbol for the L2(Γ) inner product

〈ξ, λ〉Γ :=

∫
Γ
ξ λ ∀ ξ, λ ∈ L2(Γ),
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will also be employed for their respective extension as the duality parity between W−1/q,q(Γ) and
W1/q,p(Γ). Furthermore, given an integer k ≥ 0 and a set S ⊆ Rn, Pk(S) denotes the space of
polynomial functions on S of degree ≤ k. In addition, and coherently with previous notations, we
set Pk(S) := [Pk(S)]n and Pk(S) := [Pk(S)]n×n. Finally, we end this section by mentioning that,
throughout the rest of the paper, we employ 0 to denote a generic null vector (or tensor), and use C
and c, with or without subscripts, bars, tildes or hats, to denote generic constants independent of the
discretization parameters, which may take different values at different places.

2 The model problem

For simplicity of exposition we set the problem in R2. In order to describe the geometry under
consideration we let ΩS and ΩD be two bounded and simply connected polygonal domains in R2 such
that ∂ΩS ∩ ∂ΩD = Σ 6= ∅ and ΩS ∩ΩD = ∅. Then, let ΓS := ∂ΩS \Σ, ΓD := ∂ΩD \Σ, and denote by n
the unit normal vector on the boundaries, which is chosen pointing outward from Ω := ΩS ∪ Σ ∪ ΩD

and ΩS (and hence inward to ΩD when seen on Σ). On Σ we also consider a unit tangent vector t (see
Figure 2.1 below).

ΩD

ΩS

ΓD

ΓS

n

t

n

n

Σ

Figure 2.1: Sketch of a 2D geometry of our Navier–Stokes/Darcy–Forchheimer models.

The problem we are interested in consists of the movement of an incompressible viscous fluid
occupying ΩS which flows towards and from a porous medium ΩD through Σ, where ΩD is saturated
with the same fluid. The mathematical model is defined by two separate groups of equations and by
a set of coupling terms. In the free fluid domain ΩS, the motion of the fluid can be described by the
incompressible Navier–Stokes equations:

− 2µdiv e(uS) + ρ(∇uS)uS +∇pS = fS in ΩS, div uS = 0 in ΩS, uS = 0 on ΓS, (2.1)

where e(uS) :=
1

2

{
∇uS +(∇uS)t

}
stands for the strain tensor of small deformations, µ is the viscosity

of the fluid, ρ is the density, and fS ∈ L2(ΩS) is a given external force.

On the other hand, as was explained in [7, 10], given functions fD ∈ L3/2(ΩD) and gD ∈ L2(ΩD), in
the porous medium ΩD we consider the Darcy–Forchheimer equations:

µ

ρ
K−1uD +

F

ρ
|uD|uD +∇pD = fD in ΩD, div uD = gD in ΩD, uD · n = 0 on ΓD, (2.2)

where F represents the Forchheimer number of the porous medium, and K ∈ L∞(ΩD) is a symmetric
tensor in ΩD representing the intrinsic permeability κ of the porous medium divided by the viscosity
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µ of the fluid. We assume that there exists CK > 0 such that w ·K−1(x)w ≥ CK|w|2, for almost
all x ∈ ΩD, and for all w ∈ R2. Finally, the transmission conditions coupling (2.1) and (2.2) will be
described below.

3 The variational formulations

In this section we introduce two variational formulations for the coupling of the Navier–Stokes and
Darcy–Forchheimer equations proposed in [7, Section 2.2] and [10, Section 3.1], and recall the respec-
tive solvability results.

3.1 Preliminaries

We first introduce further notations and definitions. In what follows, given ? ∈ {S,D}, we set

(u, v)? :=

∫
Ω?

u v, (u,v)? :=

∫
Ω?

u · v, and (σ, τ )? :=

∫
Ω?

σ : τ .

Furthermore, given p ∈ [2,+∞), in the sequel we will employ the following Banach space,

Hp(div ; ΩD) :=
{

vD ∈ Lp(ΩD) : div vD ∈ L2(ΩD)
}
,

endowed with the norm

‖vD‖Hp(div ;ΩD) :=
(
‖vD‖pLp(ΩD) + ‖div vD‖p0,ΩD

)1/p
,

and the following subspaces of L2(ΩS), Hp(div ; ΩD) and H1(ΩS), respectively

L2
skew(ΩS) :=

{
ηS ∈ L2(ΩS) : ηt

S = −ηS

}
,

Hp
ΓD

(div ; ΩD) :=
{

vD ∈ Hp(div ; ΩD) : vD · n = 0 on ΓD

}
,

H1
ΓS

(ΩS) :=
{
vS ∈ H1(ΩS) : vS = 0 on ΓS

}
, H1

ΓS
(ΩS) := [H1

ΓS
(ΩS)]2.

In addition, we need to introduce the space of traces H
1/2
00 (Σ) :=

[
H

1/2
00 (Σ)

]2
, where

H
1/2
00 (Σ) :=

{
v|Σ : v ∈ H1

ΓS
(ΩS)

}
.

Observe that, if E0,S : H1/2(Σ)→ L2(∂ΩS) is the extension operator defined by

E0,S(ψ) :=

{
ψ on Σ
0 on ΓS

∀ψ ∈ H1/2(Σ),

we have that
H

1/2
00 (Σ) =

{
ψ ∈ H1/2(Σ) : E0,S(ψ) ∈ H1/2(∂ΩS)

}
,

which is endowed with the norm ‖ψ‖1/2,00;Σ := ‖E0,S(ψ)‖1/2,∂ΩS
. The dual space of H

1/2
00 (Σ) is denoted

by H
−1/2
00 (Σ).
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3.2 The primal-mixed approach

Let us consider the Cauchy stress tensor σ̃S := −pSI+ 2µ e(uS) in ΩS. In this way, the Navier–Stokes
problem 2.1 can be rewritten as

− divσ̃S + ρ(∇uS)uS = fS in ΩS, div uS = 0 in ΩS, uS = 0 on ΓS. (3.1)

In turn, in the porous media we consider the equations (2.2), whereas the transmission conditions are
given by

uS · n = uD · n on Σ and σ̃Sn +
αdµ√
t · κt

(uS · t) t = −pDn on Σ, (3.2)

where αd is a dimensionless positive constant which depends only on the geometrical characteristics
of the porous medium and usually assumes values between 0.8 and 1.2.

3.2.1 The continuous formulation

In this section we introduce the weak formulation derived for the coupled problem given by (3.1),
(2.2), and (3.2) (see [7, Section 2.2] for details). In fact, we first group the spaces and unknowns as
follows:

H := H1
ΓS

(ΩS)×H3
ΓD

(div ; ΩD), Q := L2
0(Ω)×W1/3,3/2(Σ),

u := (uS,uD) ∈ H, (p, λ) ∈ Q,

where p := pSχS + pDχD, with χ? being the characteristic function for ? ∈ {S,D}, and λ := pD|Σ ∈
W1/3,3/2(Σ) is an additional unknown. Thus, we arrive at the mixed variational formulation: Find
(u, (p, λ)) ∈ H×Q, such that

[a(uS)(u),v] + [b(v), (p, λ)] = [f ,v] ∀v := (vS,vD) ∈ H,

[b(u), (q, ξ)] = [g, (q, ξ)] ∀ (q, ξ) ∈ Q,
(3.3)

where, given wS ∈ H1
ΓS

(ΩS), the operator a(wS) : H→ H′ is defined by

[a(wS)(u),v] := [AS(uS),vS] + [BS(wS)(uS),vS] + [AD(uD),vD],

with

[AS(uS),vS] := 2µ(e(uS), e(vS))S +

〈
αdµ√
t · κt

uS · t,vS · t
〉

Σ

,

[BS(wS)(uS),vS] := ρ((∇uS)wS,vS)S,

[AD(uD),vD] :=
µ

ρ

(
K−1uD,vD

)
D

+
F

ρ
(|uD|uD,vD)D ,

whereas the operator b : H→ Q′ is given by

[b(v), (q, ξ)] := −(div vS, q)S − (div vD, q)D + 〈vS · n− vD · n, ξ〉Σ .

In turn, the functionals f and g are defined by

[f ,v] := (fS,vS)S + (fD,vD)D and [g, (q, ξ)] := −(gD, q)D.

In all the terms above, [ ·, · ] denotes the duality pairing induced by the corresponding operators.
Further details for the solvability of (3.3) follows from the fixed-point strategy developed in [7, Theo-
rem 3.12].
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3.2.2 The finite element method

Let T S
h and T D

h be respective triangulations of the domains ΩS and ΩD formed by shape-regular
triangles of diameter hT and denote by hS and hD their corresponding mesh sizes. Assume that they
match on Σ so that Th := T S

h ∪T D
h is a triangulation of Ω := ΩS∪Σ∪ΩD. Hereafter h := max

{
hS, hD

}
.

For each T ∈ T D
h we consider the local Raviart–Thomas space of the lowest order:

RT0(T ) := span
{

(1, 0), (0, 1), (x1, x2)
}
.

In addition, for each T ∈ T S
h we denote by BR(T ) the local Bernardi–Raugel space:

BR(T ) := P1(T )⊕ span
{
η2η3n1, η1η3n2, η1η2n3

}
,

where
{
η1, η2, η3

}
are the baricentric coordinates of T , and

{
n1,n2,n3

}
are the unit outward normals

to the opposite sides of the corresponding vertices of T . Hence, the finite element subspaces for the
velocities and pressure are, respectively,

Hh,ΓS
(ΩS) :=

{
v ∈ H1

ΓS
(ΩS) : v|T ∈ BR(T ), ∀T ∈ T S

h

}
,

Hh,ΓD
(ΩD) :=

{
v ∈ H3

ΓD
(div ; ΩD) : v|T ∈ RT0(T ), ∀T ∈ T D

h

}
,

Lh,0(Ω) :=
{
q ∈ L2

0(Ω) : q|T ∈ P0(T ), ∀T ∈ Th
}
.

Next, for introducing the finite element subspace of W1/3,3/2(Σ), we denote by Σh the partition of Σ
inherited from T D

h (or T S
h ), which is formed by edges e of length he, and set hΣ := max

{
he : e ∈ Σh

}
.

Therefore, we can define (see [7, Section 4] for details):

Λh(Σ) :=
{
ξh : Σ→ R : ξh|e ∈ P0(e) ∀ edge e ∈ Σh

}
. (3.4)

In this way, grouping the discrete spaces and unknowns as follows:

Hh := Hh,ΓS
(ΩS)×Hh,ΓD

(ΩD), Qh := Lh,0(Ω)× Λh(Σ),

uh := (uS,h,uD,h) ∈ Hh, (ph, λh) ∈ Qh,

where ph := pS,hχS+pD,hχD, the Galerkin approximation of (3.3) reads: Find (uh, (ph, λh)) ∈ Hh×Qh,
such that

[ah(uS,h)(uh),vh] + [b(vh), (ph, λh)] = [f ,vh] ∀vh := (vS,h,vD,h) ∈ Hh,

[b(uh), (qh, ξh)] = [g, (qh, ξh)] ∀ (qh, ξh) ∈ Qh.
(3.5)

Here, ah(wS,h) : Hh → H′h is the discrete version of a(wS) (with wS,h ∈ Hh,ΓS
(ΩS) in place of

wS ∈ H1
ΓS

(ΩS)) defined by

[ah(wS,h)(uh),vh] := [AS(uS,h),vS,h] + [BhS(wS,h)(uS,h),vS,h] + [AD(uD,h),vD,h],

where BhS(wS,h) is the well-known skew-symmetric convective form:

[BhS(wS,h)(uS,h),vS,h] := ρ ((∇uS,h)wS,h,vS,h)S +
ρ

2
(div wS,huS,h,vS,h)S,

for all uS,h,vS,h,wS,h ∈ Hh,ΓS
(ΩS). The solvability analysis and a priori error bounds for (3.5) are

established in [7, Theorems 4.9 and 5.2], respectively.
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3.3 The fully-mixed approach

Now, we consider the nonstandard pseudostress and vorticity tensors, respectively,

σS = −pSI + 2µe(uS)− ρ(uS ⊗ uS) and γS =
1

2

{
∇uS − (∇uS)t

}
in ΩS.

Thus, the Navier–Stokes problem 2.1 can be rewritten as

1

2µ
σd

S = ∇uS − γS −
ρ

2µ
(uS ⊗ uS)d in ΩS, −divσS = fS in ΩS,

pS = − 1

n
tr (σS + ρ(uS ⊗ uS)) in ΩS, uS = 0 on ΓS.

(3.6)

Note that the third equation in (3.6) allows us to eliminate the pressure pS from the system and
compute it as a simple post-process of the solution. In turn, in the porous media we consider the
equations 2.2, whereas the transmission conditions are given by

uS · n = uD · n on Σ and σSn + ω−1
1 (uS · t)t = −pDn on Σ, (3.7)

where ω1 is a positive frictional constant that can be determined experimentally.

3.3.1 The continuous formulation

In this section we introduce the weak formulation for the coupled problem given by (3.6), (2.2),

and (3.7). For this case, we need to add two auxiliary unknowns: ϕ := −uS|Σ ∈ H
1/2
00 (Σ) and

λ := pD|Σ ∈ W1/3,3/2(Σ). In turn, for uniqueness of solution we will require pD ∈ L2
0(ΩD) (see [10,

Section 3.2] for details). Then, we group the spaces, unknowns, and test functions as follows:

X1 := H(div; ΩS)×H1
ΓS

(ΩS)× L2
skew(ΩS), X2 := H3

ΓD
(div ; ΩD),

X := X1 ×X2, Y := H
1/2
00 (Σ)×W1/3,3/2(Σ),

H := X×Y and Q := L2
0(ΩD),

σ := (σS,uS,γS) ∈ X1, τ := (τ S,vS,ηS) ∈ X1 ,

t := (σ,uD) ∈ X, ϕ := (ϕ, λ) ∈ Y, pD ∈ Q,
r := (τ ,vD) ∈ X, ψ := (ψ, ξ) ∈ Y, qD ∈ Q,

where X, Y, H and H×Q are respectively endowed with the norms

‖r‖X := ‖τ S‖div;ΩS
+ ‖vS‖1,ΩS

+ ‖ηS‖0,ΩS
+ ‖vD‖H3(div ;ΩD),

‖ψ‖Y := ‖ψ‖1/2,00;Σ + ‖ξ‖1/3,3/2;Σ, ‖(r,ψ)‖H := ‖r‖X + ‖ψ‖Y,
‖((r,ψ), qD)‖H×Q := ‖(r,ψ)‖H + ‖qD‖0,ΩD

.

Hence, the augmented fully-mixed variational formulation for the system (3.6), (2.2) and (3.7) reads:
Find ((t,ϕ), pD) ∈ H×Q such that

[A(uS)(t,ϕ), (r,ψ)] + [B(r,ψ), pD] = [F, (r,ψ)] ∀ (r,ψ) ∈ H,

[B(t,ϕ), qD] = [G, qD] ∀ qD ∈ Q,
(3.8)
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where, given wS ∈ H1
ΓS

(ΩS), the operator A(wS) : H→ H′ is defined by

[A(wS)(t,ϕ), (r,ψ)] := [a(wS)(t), r] + [b(r),ϕ] + [b(t),ψ]− [c(ϕ),ψ],

and a(wS) : X→ X′ is given by

[a(wS)(t), r] := [AS(σ), τ ] + [BS(wS)(σ), τ ] + [AD(uD),vD],

with

[AS(σ), τ ] :=
1

2µ
(σd

S, τ
d
S)S + κ1(divσS,divτ S)S + (uS,divτ S)S − (divσS,vS)S

+ (γS, τ S)S − (σS,ηS)S + κ2

(
e(uS)− 1

2µ
σd

S, e(vS)

)
S

+ κ3

(
γS −

1

2
(∇uS − (∇uS)t),ηS

)
S

,

[BS(wS)(σ), τ ] :=
ρ

2µ

(
(wS ⊗ uS)d, τ S − κ2e(vS)

)
S
,

[AD(uD),vD] :=
µ

ρ
(K−1uD,vD)D +

F

ρ
(|uD|uD,vD)D,

whereas the operators b : X→ Y′, c : Y → Y′ and B : H→ Q′ are defined, respectively, by

[b(r),ψ] := 〈τ Sn,ψ〉Σ − 〈vD · n, ξ〉Σ ,

[c(ϕ),ψ] := ω−1
1 〈ϕ · t,ψ · t〉Σ + 〈ϕ · n, ξ〉Σ − 〈ψ · n, λ〉Σ ,

[B(r,ψ), qD] := −(qD,div vD)D.

In turn, the functionals F and G are set as

[F, (r,ψ)] := −κ1(fS,divτ S)S + (fS,vS)S + (fD,vD)D and [G, qD] := −(gD, qD)D,

where κ1, κ2, and κ3 are suitable positive parameters described in [10, Section 3.2], which will be
chosen explicitly for the numerical experiments in Section 7.

We remark here that (3.8) is equivalent to the variational formulation defined in [10, Section 3.2],
in which σS is decomposed as σS = σS + `I, with σS ∈ H0(div; ΩS) and ` ∈ R, where

H0(div; ΩS) :=
{
τ S ∈ H(div; ΩS) : (tr τ S, 1)S = 0

}
.

For details of the well-posedness of (3.8) we refer the reader to [10, Section 4].

3.3.2 The finite element method

Now, considering the same notations stated in Section 3.2.2, we recall from [10, Section 5] the finite
element subspaces:

Hh(ΩS) :=
{
τ S,h ∈ H(div; ΩS) : ctτ S,h ∈ RT0(T ) ∀ c ∈ Rn

}
,

H1
h,ΓS

(ΩS) :=
{

vS,h ∈ H1
ΓS

(ΩS) : vS,h|T ∈ P1(T ) ∀T ∈ T S
h

}
,

Lh(ΩS) :=
{
ηS,h ∈ L2

skew(ΩS) : ηS,h|T ∈ P0(T ) ∀T ∈ T S
h

}
,

Hh,ΓD
(ΩD) :=

{
vD,h ∈ H3

ΓD
(div ; ΩD) : vD,h|T ∈ RT0(T ) ∀T ∈ T D

h

}
,

Lh,0(ΩD) :=
{
qD,h ∈ L2

0(ΩD) : qD,h|T ∈ P0(T ) ∀T ∈ T D
h

}
.
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In turn, we also consider the subspaces ΛD
h (Σ) := Λh(Σ) (cf. (3.4)) and ΛS

h(Σ) := [ΛS
h(Σ)]2, given by

ΛS
h(Σ) :=

{
ψh ∈ C(Σ) : ψh|e ∈ P1(e) ∀ edge e ∈ Σ2h, ψh(x0) = ψh(xN ) = 0

}
,

where Σ2h is the partition of Σ arising by joining pairs of adjacent edges of Σh (if the number of edges
of Σh is odd, we simply reduce to the even case by joining any pair of two adjacent elements and then
construct Σ2h from this reduced partition) and x0 and xN are the extreme points of Σ.

Then, defining the global subspaces, unknowns, and test functions as follows

Xh,1 := Hh(ΩS)×H1
h,ΓS

(ΩS)× Lh(ΩS), Xh,2 := Hh,ΓD
(ΩD),

Xh := Xh,1 ×Xh,2, Yh := ΛS
h(Σ)× ΛD

h (Σ),

Hh := Xh ×Yh and Qh := Lh,0(ΩD),

σh := (σS,h,uS,h,γS,h) ∈ Xh,1, τ h := (τ S,h,vS,h,ηS,h) ∈ Xh,1 ,

th := (σh,uD,h) ∈ Xh, ϕ
h

:= (ϕh, λh) ∈ Yh, pD,h ∈ Qh,

rh := (τ h,vD,h) ∈ Xh, ψ
h

:= (ψh, ξh) ∈ Yh, qD,h ∈ Qh,

the Galerkin scheme associated with problem (3.8) reads: Find ((th,ϕh), pD,h) ∈ Hh ×Qh such that

[A(uS,h)(th,ϕh), (rh,ψh)] + [B(rh,ψh), pD,h] = [F, (rh,ψh)] ∀ (rh,ψh) ∈ Hh,

[B(th,ϕh), qD,h] = [G, qD,h] ∀ qD,h ∈ Qh.
(3.9)

The solvability analysis and a priori error bounds for (3.9) are established in [10, Theorems 4.10 and
6.1], respectively.

4 Preliminaries for the a posteriori error analysis

Now we introduce a few useful notations for describing local information on elements and edges. First,
given T ∈ T S

h ∪ T D
h , we let E(T ) be the set of edges of T , and denote by Eh the set of all edges of

T S
h ∪ T D

h , subdivided as follows:

Eh = Eh(ΓS) ∪ Eh(ΓD) ∪ Eh(ΩS) ∪ Eh(ΩD) ∪ Eh(Σ),

where Eh(Γ?) :=
{
e ∈ Eh : e ⊆ Γ?

}
, Eh(Ω?) :=

{
e ∈ Eh : e ⊆ Ω?

}
, for ? ∈ {S,D}, and the edges of Eh(Σ)

are exactly those forming the previously defined partition Σh, that is Eh(Σ) :=
{
e ∈ Eh : e ⊆ Σ

}
.

Moreover, he stands for the length of a given edge e. Also for each edge e ∈ Eh we fix a unit normal
vector ne := (n1, n2)t, and let te := (−n2, n1)t be the corresponding fixed unit tangential vector along
e. Now, let v ∈ L2(Ω?) such that v|T ∈ C(T ) on each T ∈ T ?h . Then, given e ∈ E(T ) ∩ Eh(Ω?), we
denote by Jv · teK the tangential jump of v across e, that is, Jv · teK :=

{
(v|T )|e − (v|T ′)|e

}
· te, where

T and T ′ are the triangles of T ?h having e as a common edge. In addition, for τ ∈ L2(Ω?) such that
τ |T ∈ C(T ), we let Jτ neK be the normal jump of τ across e, that is, Jτ neK :=

{
(τ |T )|e − (τ |T ′)|e

}
ne

and we let Jτ teK be the tangential jump of τ across e, that is, Jτ teK :=
{

(τ |T )|e − (τ |T ′)|e
}
te. From

now on, when no confusion arises, we simply write n and t instead of ne and te, respectively. Finally,
given scalar and vector valued fields φ, v = (v1, v2)t and τ := (τij)2×2, respectively, we set

curl (φ) :=

(
∂φ

∂x2
, − ∂φ

∂x1

)t

, curl (v) :=

(
curl (v1)t

curl (v2)t

)
,

rot (v) :=
∂v2

∂x1
− ∂v1

∂x2
, and rot (τ ) :=

(
rot (τ11, τ12)
rot (τ21, τ22)

)
,
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where the derivatives involved are taken in the distributional sense.

Let us now recall the main properties of the Raviart–Thomas interpolator (see [18, 22]) and the
Clément operator onto the space of continuous piecewise linear functions [12, 27]. We begin with the
former, denoted Π?

h : H1(Ω?)→ Hh(Ω?), ? ∈ {S,D}, which is characterized by the identity∫
e

Π?
h(v) · n =

∫
e
v · n ∀ edge e of T ?h . (4.1)

As consequence of (4.1), there holds: div (Π?
h(v)) = P?h(div v), where P?h is the L2(Ω?)-orthogonal pro-

jector onto the piecewise constant functions on Ω?. A tensor version of Π?
h, say Π?

h : H1(Ω?)→ Hh(Ω?),
which is defined row-wise by Π?

h, and a vector version of P?h, say P?
h, which is the L2(Ω?)-orthogonal

projector onto piecewise constant vectors on Ω?, might also be required. The local approximation
properties of Π?

h (and hence of Π?
h) are established in the following lemma. For the corresponding

proof we refer the reader to [18] (see also [4]).

Lemma 4.1 For each ? ∈ {S,D} there exist constants c1, c2 > 0, independent of h, such that for all
v ∈ H1(Ω?) there holds

‖v −Π?
hv‖0,T ≤ c1 hT ‖v‖1,T ∀T ∈ T ?h

and
‖v · n−Π?

hv · n‖0,e ≤ c2 h
1/2
e ‖v‖1,Te ∀ e ∈ Eh,

where Te is a triangle of T ?h containing the edge e on its boundary.

In turn, given p ∈ (1,+∞), we make use of the Clément interpolation operator I?h : W1,p(Ω?) →
Xh(Ω?), with ? ∈ {S,D}, where

Xh(Ω?) :=
{
v ∈ C(Ω?) : v|T ∈ P1(T ) ∀T ∈ T ?h

}
.

The local approximation properties of this operator are established in the following lemma (see [27,
Lemma 3.1] for details):

Lemma 4.2 For each ? ∈ {S,D} there exists constants c3, c4 > 0, independent of h?, such that for
all v ∈W1,p(Ω?) there hold

‖v − I?hv‖Lp(T ) ≤ c3 hT ‖v‖1,p;∆?(T ) ∀T ∈ T ?h ,

and
‖v − I?hv‖Lp(e) ≤ c4 h

1−1/p
e ‖v‖1,p;∆?(e) ∀ e ∈ Eh,

where

∆?(T ) := ∪
{
T ′ ∈ T ?h : T ′ ∩ T 6= ∅

}
and ∆?(e) := ∪

{
T ′ ∈ T ?h : T ′ ∩ e 6= ∅

}
.

In particular, for p = 2 a vector version of IS
h , say IS

h : H1(ΩS)→ Xh(ΩS), which is defined component-
wise by IS

h , will be needed as well.

For the forthcoming analysis we will also utilize a stable Helmholtz decomposition for H3
ΓD

(div ; ΩD).
In this regard, and in order to analyze a more general result, given p ∈ [2,+∞) we will consider the
Banach space Hp

ΓD
(div ; ΩD) introduced in Section 3.1, and analogously to [2] we remark in advance

that the decomposition for Hp
ΓD

(div ; ΩD) will require the boundary ΓD to lie in a “convex part” of

11



ΩD, which means that there exists a convex domain containing ΩD, and whose boundary contains ΓD.
We begin by introducing the following subspaces of W1,p(ΩD),

W1,p
ΓD

(ΩD) :=
{
ηD ∈W1,p(ΩD) : ηD = 0 on ΓD

}
,

and establishing a suitable Helmholtz decomposition of our space Hp
ΓD

(div ; ΩD).

Lemma 4.3 Assume that ΩD is a connected domain and that ΓD is contained in the boundary of a
convex part of ΩD, that is there exists a convex domain Ξ such that ΩD ⊆ Ξ and ΓD ⊆ ∂Ξ. Then, for
each vD ∈ Hp

ΓD
(div ; ΩD) with p ∈ [2,+∞), there exist wD ∈ H1(ΩD) and βD ∈W1,p

ΓD
(ΩD) such that

vD = wD + curlβD in ΩD, (4.2)

and
‖wD‖1,ΩD

+ ‖βD‖1,p;ΩD
≤ Chel ‖vD‖Hp(div ;ΩD), (4.3)

where Chel is a positive constant independent of all the foregoing variables.

Proof. Since div vD ∈ L2(ΩD) for each vD ∈ Hp
ΓD

(div ; ΩD), the first part of the proof proceeds

similarly as the proof of [2, Lemma 3.9]. In fact, given vD ∈ Hp
ΓD

(div ; ΩD), we let z ∈ H2(Ξ) be the
unique weak solution of the boundary value problem:

∆z =


div vD in ΩD

− 1

|Ξ \ ΩD|

∫
ΩD

div vD in Ξ \ ΩD
, ∇z · n = 0 on ∂Ξ,

∫
Ξ
z = 0. (4.4)

Thanks to the elliptic regularity result of (4.4) we have that z ∈ H2(Ξ) and

‖z‖2,Ξ ≤ c ‖div vD‖0,ΩD
,

where c > 0 is independent of z. In addition, it is clear that wD := (∇z)|ΩD
∈ H1(ΩD), div wD =

∆z = div vD in ΩD, wD · n = 0 on ∂Ξ (which implies wD · n = 0 on ΓD), and

‖wD‖1,ΩD
≤ ‖z‖2,ΩD

≤ ‖z‖2,Ξ ≤ c ‖div vD‖0,ΩD
. (4.5)

On the other hand, let us set φD := vD − wD and notice that φD is a divergence-free vector field
in ΩD. Then, using the continuous injection from H1(ΩD) into Lp(ΩD) with p ∈ [2,+∞), and the
estimate (4.5), we deduce that φD ∈ Lp(ΩD) and

‖φD‖Lp(ΩD) ≤ ĉ
{
‖vD‖Lp(ΩD) + ‖wD‖1,ΩD

}
≤ c̃ ‖vD‖Hp(div ;ΩD). (4.6)

In this way, as a consequence of [22, Theorem I.3.1], given φD ∈ Lp(ΩD) with p ∈ [2,+∞) satisfing
divφD = 0 in ΩD, and ΩD connected, there exists βD ∈W1,p(ΩD) such that φD = curlβD in ΩD, or
equivalently

vD −wD = curlβD in ΩD. (4.7)

In turn, noting that 0 = (vD − wD) · n = curlβD · n = dβD
dt on ΓD, we deduce that βD is constant

on ΓD, and therefore βD can be chosen so that βD ∈W1,p
ΓD

(ΩD), which, together with (4.7), complete
the Helmholtz decomposition (4.2). Finally, as a consequence of the generalized Poincaré inequality,
it is easy to see that the norms ‖βD‖1,p;ΩD

and |βD|1,p;ΩD
= ‖curlβD‖Lp(ΩD) are equivalent (see [22,

Lemma I.3.1] for details), and employing (4.6), we obtain

‖βD‖1,p;ΩD
≤ c ‖curlβD‖Lp(ΩD) = c ‖φD‖Lp(ΩD) ≤ C ‖vD‖Hp(div ;ΩD). (4.8)

Then, it is clear that (4.5) and (4.8) imply (4.3) and conclude the proof. �

Now, we establish an integration by parts formula which is an extension of [14, Lemma 3.5].
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Lemma 4.4 Let p and q two fixed real numbers such that 1/p + 1/q = 1. Let Ω be a bounded domain
with Lipschitz-continuous boundary ∂Ω. Then there holds

〈curlχ · n, ϕ〉∂Ω = −
〈
dϕ

dt
, χ

〉
∂Ω

∀χ ∈W1,p(Ω), ∀ϕ ∈W1,q(Ω). (4.9)

Proof. We first recall from [15, Corollaries B.57 and B.58] (see also [22, eq. (2.17) and Theorem 2.11])
that the Green formulae in Hp(div p; Ω) and Hq(rot q; Ω) establish, respectively, that∫

Ω
φ div v +

∫
Ω

v · ∇φ = 〈v · n, φ〉∂Ω ∀v ∈ Hp(div p; Ω), ∀φ ∈W1,q(Ω), (4.10)∫
Ω
φ rot v −

∫
Ω

v · curlφ = 〈v · t, φ〉∂Ω ∀v ∈ Hq(rot q; Ω), ∀φ ∈W1,p(Ω), (4.11)

where

Hp(div p; Ω) :=
{

v ∈ Lp : div v ∈ Lp(Ω)
}
, Hq(rot q; Ω) :=

{
v ∈ Lq : rot v ∈ Lq(Ω)

}
.

Then, given now χ ∈W1,p(Ω) and ϕ ∈W1,q(Ω), we first apply (4.10) with v := curlχ ∈ Hp(div p; Ω)
and φ := ϕ ∈ W1,q(Ω), and then employ (4.11) with v := ∇ϕ ∈ Hq(rot q; Ω) and φ := χ ∈ W1,p(Ω),
to obtain

〈curlχ · n, ϕ〉∂Ω =

∫
Ω

curlχ · ∇ϕ =

∫
Ω
χ rot (∇ϕ)− 〈∇ϕ · t, χ〉∂Ω = −

〈
dϕ

dt
, χ

〉
∂Ω

,

which shows (4.9) and completes the proof. �

Finally, we end this section with a lemma providing estimates in terms of local quantities for the
W−1/q,q(Σ) norms of functions in particular subspaces of Lq(Σ), with 1 < p < 2 and 1/p + 1/q = 1.
More precisely, having in mind the definition of Λh(Σ) (cf. (3.4)), which is subspace of W1/q,p(Σ), we
introduce the orthogonal-type space

Λ⊥h (Σ) :=
{
λ ∈W−1/q,q(Σ) ∩ Lq(Σ) : 〈λ, ξh〉Σ = 0 ∀ ξh ∈ Λh(Σ)

}
. (4.12)

Then, the announced lemma is stated as follows.

Lemma 4.5 Let p and q two fixed real numbers with 1 < p < 2 and 1/p+1/q = 1. Then, there exists
C > 0, independent of the meshsizes, such that

‖λ‖−1/q,q;Σ ≤ C

 ∑
e∈Eh(Σ)

he‖λ‖qLq(e)


1/q

∀λ ∈ Λ⊥h (Σ). (4.13)

Proof. Given λ ∈ Λ⊥h (Σ), we first observe that λ ∈W−1/q,q(Σ) and that

‖λ‖−1/q,q;Σ = sup
ξ∈W1/q,p(Σ)

ξ 6=0

〈λ, ξ〉Σ
‖ξ‖1/q,p;Σ

. (4.14)

Then, since PΣ(ξ) ∈ Λh(Σ) ∀ ξ ∈ W1/q,p(Σ), with PΣ being the L2(Σ)-orthogonal projection onto
Λh(Σ), it follows from (4.12), (4.14), and Hölder’s inequality, that

‖λ‖−1/q,q;Σ = sup
ξ∈W1/q,p(Σ)

ξ 6=0

〈λ, ξ − PΣ(ξ)〉Σ
‖ξ‖1/q,p;Σ

≤ sup
ξ∈W1/q,p(Σ)

ξ 6=0

∑
e∈Eh(Σ)

‖λ‖Lq(e)‖ξ − Pe(ξ)‖Lp(e)

‖ξ‖1/q,p;Σ
, (4.15)
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where Pe(ξ) := PΣ(ξ)|e on each e ∈ Eh(Σ). In turn, from the local approximation estimates of Pe, we
have

‖ξ − Pe(ξ)‖Lp(e) ≤ ch0
e‖ξ‖Lp(e) ∀ ξ ∈ Lp(e) and ‖ξ − Pe(ξ)‖Lp(e) ≤ che‖ξ‖1,p;e ∀ ξ ∈W1,p(e),

and then, by interpolation arguments, we find that

‖ξ − Pe(ξ)‖Lp(e) ≤ ch1/q
e ‖ξ‖1/q,p;e ∀ ξ ∈W1/q,p(e), (4.16)

with 1/p + 1/q = 1. Thus, the estimate (4.16) combined with (4.15), yields∑
e∈Eh(Σ)

‖λ‖Lq(e)‖ξ − Pe(ξ)‖Lp(e) ≤ c
∑

e∈Eh(Σ)

h1/q
e ‖λ‖Lq(e)‖ξ‖1/q,p;e

≤ C

 ∑
e∈Eh(Σ)

he‖λ‖qLq(e)


1/q ∑

e∈Eh(Σ)

‖ξ‖p1/q,p;e


1/p

≤ C

 ∑
e∈Eh(Σ)

he‖λ‖qLq(e)


1/q

‖ξ‖1/q,p;Σ.

Notice that in the last inequality we have used the fact that the space
∏
e∈Eh(Σ) W1/q,p(e) coincides

with W1/q,p(Σ), without extra conditions when 1 < p < 2 [23, Theorem 1.5.2.3-(a)], to obtain the
norm ‖ξ‖1/q,p;Σ, which combined with (4.15) imply (4.13) and conclude the proof. �

5 A posteriori error analysis: The primal-mixed approach

In what follows we assume that the hypotheses of Theorems 3.12 and 4.9 in [7] hold. Let ~u :=
(u, (p, λ)) ∈ H×Q and ~uh := (uh, (ph, λh)) ∈ Hh×Qh be the unique solutions of problems (3.3) and
(3.5), respectively. In addition, let us denote pS,h := ph|ΩS

and pD,h := ph|ΩD
. Then, we define for

each T ∈ T S
h the local error indicator

Θ2
S,T := ‖div uS,h‖20,T + h2

T

∥∥∥fS + divσ̃S,h − ρ(∇uS,h)uS,h −
ρ

2
div uS,huS,h

∥∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩS)

he
∥∥ Jσ̃S,hnK

∥∥2

0,e
+

∑
e∈E(T )∩Eh(Σ)

he

∥∥∥∥σ̃S,hn + λhn +
αdµ√
t · κt

(uS,h · t)t

∥∥∥∥2

0,e

,

(5.1)

where
σ̃S,h := − pS,hI + 2µe(uS,h) on each T ∈ T S

h . (5.2)

Similarly, for each T ∈ T D
h we set

Θ̂2
D,T := ‖gD − div uD,h‖20,T + h2

T ‖fD −UD,h‖20,T +
∑

e∈E(T )∩Eh(Σ)

he‖λh − pD,h‖20,e (5.3)

and

Θ̃
3/2
D,T := h

3/2
T

∥∥rot (fD −UD,h)
∥∥3/2

L3/2(T )
+

∑
e∈E(T )∩Eh(ΩD)

he
∥∥ J(fD −UD,h) · tK

∥∥3/2

L3/2(e)

+
∑

e∈E(T )∩Eh(Σ)

he
∥∥ (fD −UD,h) · t

∥∥3/2

L3/2(e)
,

(5.4)

where

UD,h :=
µ

ρ
K−1uD,h +

F

ρ
|uD,h|uD,h on each T ∈ T D

h . (5.5)
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Finally, for each e ∈ Eh(Σ) we define

Θ3
Σ,e := he

∥∥uS,h · n− uD,h · n
∥∥3

L3(e)
, (5.6)

so that the global a posteriori error estimator is given by:

Θ :=

∑
T∈T S

h

Θ2
S,T +

∑
T∈T D

h

Θ̂2
D,T


1/2

+

 ∑
T∈T D

h

Θ̃
3/2
D,T


2/3

+

 ∑
e∈Eh(Σ)

Θ3
Σ,e


1/3

. (5.7)

Notice that the second term defining Θ̂2
D,T requires that fD ∈ L2(T ) for each T ∈ T D

h . This is ensured

below by assuming that fD lives now in L2(ΩD) in place of L3/2(ΩD).

The main goal of the present section is to establish, under suitable assumptions, the existence
of positive constants Crel and Ceff , independent of the meshsizes and the continuous and discrete
solutions, such that

Ceff Θ + h.o.t. ≤ ‖~u− ~uh‖H×Q ≤ Crel Θ1/2, (5.8)

where h.o.t. stands, eventually, for one or several terms of higher order. The upper and lower bounds
in (5.8), which are known as the reliability of Θ1/2 and efficiency of Θ, are derived below in Sections 5.1
and 5.2, respectively.

5.1 Reliability

First, we recall from [7] the following notation

M(fS, fD, gD) := max
{
N (fS, fD, gD)1/2,N (fS, fD, gD),N (fS, fD, gD)2

}
,

where N (fS, fD, gD) := ‖fS‖0,ΩS
+ ‖fD‖L3/2(ΩD) + ‖gD‖0,ΩD

+ ‖gD‖20,ΩD
. Then, we establish the main

result of this section.

Theorem 5.1 Assume that ΩD is a connected domain and that ΓD is contained in the boundary of
a convex part of ΩD, that is there exists a convex domain Ξ such that ΩD ⊆ Ξ and ΓD ⊆ ∂Ξ. In
addition, assume that the data fS, fD and gD, satisfy:

M(fS, fD, gD) ≤ 1

2
min

{
r, r̃
}
, (5.9)

where r and r̃ are the positive constants, independent of the data, provided by [7, Lemma 3.11 and
Theorem 4.9], respectively. Assume further that fD ∈ L2(ΩD). Then, there exists a constant Crel > 0,
independent of h, such that

‖~u− ~uh‖H×Q ≤ Crel Θ1/2. (5.10)

We begin the proof of (5.10) with a preliminary estimate for the total error ‖~u− ~uh‖H×Q. In fact,
proceeding analogously to [13, Section 1] (see also [16, 17]), we first define two residues Rf and Rg on
H and Q, respectively, by

Rf (v) := [f ,v]−
{

[ah(uS,h)(uh),v] + [b(v), (ph, λh)]
}
∀v := (vS,vD) ∈ H, (5.11)

and
Rg(q, ξ) := [g, (q, ξ)]− [b(uh), (q, ξ)] ∀ (q, ξ) ∈ Q. (5.12)

Then we are able to establish the following preliminary a posteriori error estimate.
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Lemma 5.2 Assume that the data fS, fD and gD, satisfy (5.9). Then, there exists a constant C > 0,
depending only on parameters and other constants, all them independent of h, such that

‖~u− ~uh‖H×Q ≤ C max
{
‖R‖1/2(H×Q)′ , ‖R‖

2/3
(H×Q)′ , ‖R‖

3/4
(H×Q)′ , ‖R‖(H×Q)′ , ‖R‖

3/2
(H×Q)′

}
, (5.13)

where R : H×Q→ R is the residual functional given by R(~v) := Rf (v)+Rg(q, ξ) ∀ ~v := (v, (q, ξ)) ∈
H×Q (cf. (5.11) and (5.12)), which satisfies

R(~vh) = 0 ∀ ~vh := (vh, (qh, ξh)) ∈ Hh ×Qh. (5.14)

Proof. First, from the assumption (5.9) and the a priori estimates [7, Theorems 3.12 and 4.9], we
obtain

‖uD‖H3(div ;ΩD), ‖uS‖1,ΩS
≤ cTM(fS, fD, gD),

‖uD,h‖H3(div ;ΩD), ‖uS,h‖1,ΩS
≤ c̃TM(fS, fD, gD).

(5.15)

In addition, since the exact solution uS ∈ H1
ΓS

(ΩS) satisfies div uS = 0 in ΩS, we have

[BhS(uS)(uS),vS,h] = [BS(uS)(uS),vS,h] ∀vS,h ∈ Hh,ΓS
(ΩS).

Consequently, from the continuous problem (3.3), and the definition of the residual functionals Rf

and Rg (cf. (5.11) and (5.12)), it is clear that

[ah(uS,h)(u)− ah(uS,h)(uh),v] + [b(v), (p− ph, λ− λh)] = Rf (v)− [BhS(uS − uS,h)(uS),vS], (5.16)

and
[b(u− uh), (q, ξ)] = Rg(q, ξ), (5.17)

for all v ∈ H and (q, ξ) ∈ Q. Thus, from the inf-sup condition of b (cf. [7, Lemma 3.5]), the identity
(5.16), and the continuity of ah and BhS (cf. [7, Lemma 4.3 and eq. (4.4)]), we deduce that

β ‖(p− ph, λ− λh)‖Q ≤ sup
06=v∈H

[b(v), (p− ph, λ− λh)]

‖v‖H
≤ ‖Rf‖H′ + C1

(
1 + ‖uS‖1,ΩS

+ ‖uS,h‖1,ΩS

)
‖uS − uS,h‖1,ΩS

+ C2

(
1 + ‖uD‖H3(div ;ΩD) + ‖uD,h‖H3(div ;ΩD)

)
‖uD − uD,h‖H3(div ;ΩD),

which together with (5.15) and assumption (5.9), implies that there exists C > 0, depending only on
parameters and other constants, all of them independent of h, such that

‖(p− ph, λ− λh)‖Q ≤ C
{
‖Rf‖H′ + ‖u− uh‖H

}
. (5.18)

In turn, taking v = u− uh and (q, ξ) = (p− ph, λ− λh) in (5.16) and (5.17), respectively, gives

[ah(uS,h)(u)− ah(uS,h)(uh),u− uh]

= Rf (u− uh)−Rg(p− ph, λ− λh)− [BhS(uS − uS,h)(uS),uS − uS,h].

Hence, employing the strict monotonicity of ah (cf. [7, Lemma 4.4]), the continuity of BhS (cf. [7,
eq. (4.4)]), and the estimates (5.9), (5.15) and (5.18), we deduce the existence of a constant C > 0,
independent of meshsizes, such that

‖uS − uS,h‖21,ΩS
+ ‖uD − uD,h‖3L3(ΩD) ≤ C

{
‖R‖(H×Q)′‖u− uh‖H + ‖Rf‖H′‖Rg‖Q′

}
. (5.19)

16



Moreover, from the identity (5.17) and the definition of b we find that the term ‖div (uD−uD,h)‖0,ΩD

can be bounded by ‖Rg‖Q′ , which, combined with (5.19) and some algebraic manipulations, implies

‖u− uh‖H ≤ C max
{
‖R‖1/2(H×Q)′ , ‖R‖

2/3
(H×Q)′ , ‖R‖

3/4
(H×Q)′ , ‖R‖(H×Q)′ , ‖R‖

3/2
(H×Q)′

}
. (5.20)

Therefore, the estimate (5.13) follows from (5.18) and (5.20). Finally, from the discrete problem
(3.5) we deduce that Rf and Rg vanish on Hh and Qh, respectively, which clearly implies (5.14) and
conclude the proof. �

We remark here that when ‖R‖(H×Q)′ → 0, the dominant term in (5.13) is ‖R‖1/2(H×Q)′ . In this way,

it only remains now to estimate ‖R‖(H×Q)′ . To this end, we first observe that the functional R can
be decomposed as:

R(~v) = R1(vS) +R2(vD) +R3(q) +R4(ξ), (5.21)

for all ~v := ((vS,vD), (q, ξ)) ∈ H×Q, where

R1(vS) := (fS,vS)S − 2µ(e(uS,h), e(vS))S − ρ((∇uS,h)uS,h,vS)S −
ρ

2
(div uS,huS,h,vS)S

+ (div vS, ph)S −
〈

αdµ√
t · κt

uS,h · t,vS · t
〉

Σ

− 〈vS · n, λh〉Σ ,

R2(vD) := (fD,vD)D −
µ

ρ
(K−1uD,h,vD)D −

F

ρ
(|uD,h|uD,h,vD)D

+ (div vD, ph)D + 〈vD · n, λh〉Σ ,

R3(q) := (div uS,h, q)S − (gD − div uD,h, q)D,

R4(ξ) := −〈uS,h · n− uD,h · n, ξ〉Σ .

In this way, it follows that

‖R‖(H×Q)′ ≤
{
‖R1‖H1

ΓS
(ΩS)′ + ‖R2‖H3

ΓD
(div ;ΩD)′ + ‖R3‖L2

0(Ω)′ + ‖R4‖W−1/3,3(Σ)

}
, (5.22)

and hence our next purpose is to derive suitable upper bounds for each one of the terms on the
right-hand side of (5.22). We start with the following lemma, which is a direct consequence of the
Cauchy–Schwarz inequality.

Lemma 5.3 There holds

‖R3‖L2
0(Ω)′ ≤

∑
T∈T S

h

‖div uS,h‖20,T +
∑
T∈T D

h

‖gD − div uD,h‖20,T


1/2

.

We now adapt a result taken from [3] in order to obtain an upper bound for R1.

Lemma 5.4 There exists C > 0, independent of the meshsizes, such that

‖R1‖H1
ΓS

(ΩS)′ ≤ C

∑
T∈T S

h

Θ̂2
S,T


1/2

,
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where

Θ̂2
S,T := h2

T

∥∥∥fS + divσ̃S,h − ρ(∇uS,h)uS,h −
ρ

2
div uS,huS,h

∥∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩS)

he
∥∥ Jσ̃S,hnK

∥∥2

0,e
+

∑
e∈E(T )∩Eh(Σ)

he

∥∥∥∥σ̃S,hn + λhn +
αdµ√
t · κt

(uS,h · t)t

∥∥∥∥2

0,e

,

and σ̃S,h is given by (5.2).

Proof. We proceed similarly as in the proof of [3, Lemma 3.4], by replacing f1,σ1,h,u1,h,Ω1, and
Γ2 by fS − ρ(∇uS,h)uS,h − ρ

2div uS,huS,h, σ̃S,h,uS,h,ΩS, and Σ, respectively, and employing the local
approximation properties of the Clément interpolation operator IS

h : H1(ΩS) → Xh(ΩS) provided by
Lemma 4.2 with p = 2. We omit further details. �

Next, we derive the upper bound for R4, the functional acting on the interface Σ.

Lemma 5.5 There exists C > 0, independent of the meshsizes, such that

‖R4‖W−1/3,3(Σ) ≤ C

 ∑
e∈Eh(Σ)

he‖uS,h · n− uD,h · n‖3L3(e)


1/3

.

Proof. We recall from the definition of R4 (cf. (5.21)) that

R4(ξ) = −〈uS,h · n− uD,h · n, ξ〉Σ ∀ ξ ∈W1/3,3/2(Σ),

which certainly yields
‖R4‖W−1/3,3(Σ) = ‖uS,h · n− uD,h · n‖−1/3,3;Σ . (5.23)

In turn, taking ξh ∈ Λh(Σ) and then (0, (0, ξh)) ∈ Hh ×Qh in (5.14), we deduce that

〈uS,h · n− uD,h · n, ξh〉Σ = 0 ∀ ξh ∈ Λh(Σ),

which says that uS,h · n − uD,h · n belongs to Λ⊥h (Σ) (cf. (4.12)). In this way, the proof follows from
(5.23) and a direct application of (4.13) with p = 3/2 and q = 3 (cf. Lemma 4.5). �

Finally, we focus on deriving the upper bound for R2, for which, given vD ∈ H3
ΓD

(div ; ΩD), we
consider its Helmholtz decomposition provided by Lemma 4.3 with p = 3. More precisely, we let
wD ∈ H1(ΩD) and βD ∈W1,3

ΓD
(ΩD) be such that vD = wD + curlβD in ΩD, and

‖wD‖1,ΩD
+ ‖βD‖1,3;ΩD

≤ Chel ‖vD‖H3(div ;ΩD). (5.24)

In turn, similarly to [2], we consider the finite element subspace of W1,3
ΓD

(ΩD) given by

Xh,ΓD
:=
{
v ∈ C(ΩD) : v|T ∈ P1(T ) ∀T ∈ T D

h , v = 0 on ΓD

}
,

and introduce the Clément interpolator ID
h : W1,3

ΓD
(ΩD) → Xh,ΓD

. In addition, recalling the Raviart–

Thomas interpolator Πh : H1(ΩD)→ Hh(ΩD) introduced in Section 4, we are able to define

vD,h := Πh(wD) + curl (ID
h βD) ∈ Hh,ΓD

(ΩD),

18



which can be seen as a discrete Helmholtz decomposition of vD,h. Then, noting from (5.14) that
R2(vD,h) = 0, we can write

R2(vD) = R2(vD − vD,h) = R2(wD −Πh(wD)) +R2(curl (βD − ID
h βD)).

Next, in order to simplify the subsequent writing, we define ŵD := wD−Πh(wD) and β̂D := βD−ID
h βD.

In this way, according to the definition of R2 (cf. (5.21)), we find that

R2(ŵD) = (fD −UD,h, ŵD)D + (div ŵD, ph)D + 〈ŵD · n, λh〉Σ , (5.25)

and
R2(curl β̂D) =

(
fD −UD,h, curl β̂D

)
D

+
〈
curl β̂D · n, λh

〉
Σ
, (5.26)

with UD,h given by (5.5). The following lemma establishes the estimate for R2.

Lemma 5.6 Assume that there exists a convex domain Ξ such that ΩD ⊆ Ξ and ΓD ⊆ ∂Ξ. Assume
further that fD ∈ L2(ΩD). Then there exist C1, C2 > 0, independent of the meshsizes, such that

‖R2‖H3(div ;ΩD)′ ≤ C1

 ∑
T∈T D

h

Θ
2
D,T


1/2

+ C2

 ∑
T∈T D

h

Θ̃
3/2
D,T


2/3

, (5.27)

where Θ̃D,T is defined in (5.4), and

Θ
2
D,T := h2

T ‖fD −UD,h‖20,T +
∑

e∈E(T )∩Eh(Σ)

he‖λh − pD,h‖20,e

with UD,h given by (5.5).

Proof. We begin by estimatingR2(ŵD) (cf. (5.25)). To that end, and proceeding as in [3, Lemma 3.12],
we note first that ŵD · n ∈ L2(Σ), which follows from the fact that wD ∈ H1(ΩD) and Πh(wD) · n
is piecewise constant on Σ. In addition, noting that pD,h := ph|ΩD

is also piecewise constant on Σ,
integrating by parts the second term in (5.25), recalling that wD · n = 0 on ΓD (cf. Lemma 4.3), and
using (4.1), we find that

R2(ŵD) = (fD −UD,h, ŵD)D +
∑

e∈Eh(Σ)

∫
e
(λh − pD,h)ŵD · n.

In this way, assuming fD ∈ L2(ΩD), and applying the Cauchy–Schwarz inequality and the approx-
imation properties of the Raviart–Thomas interpolation operator Πh (cf. Lemma 4.1), we deduce
that

∣∣R2(ŵD)
∣∣ ≤ Ĉ1

 ∑
T∈T D

h

h2
T ‖fD −UD,h‖20,T +

∑
e∈Eh(Σ)

he‖λh − pD,h‖20,e


1/2

‖wD‖1,ΩD
. (5.28)

On the other hand, in order to bound R2(curl β̂D) (cf. (5.26)), we now notice from the integration
by parts formula (4.9) with p = 3 and q = 3/2 (cf. Lemma 4.4), and the fact that λh is piecewise
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constant on Σ, that the second term in (5.26) vanishes. Then, integrating by parts the first term in
(5.26) on each T ∈ T D

h and using the fact that βD|ΓD
= ID

h βD|ΓD
= 0, we obtain

R2(curl β̂D) =
∑
T∈T D

h

∫
T

rot (fD −UD,h) β̂D

+
∑

e∈Eh(ΩD)

∫
e
J(fD −UD,h) · tK β̂D +

∑
e∈Eh(Σ)

∫
e

{
(fD −UD,h) · t

}
β̂D,

which, together with the Clément interpolator estimates (cf. Lemma 4.2 with p = 3), implies

∣∣R2(curl β̂D)
∣∣ ≤ Ĉ2

 ∑
T∈T D

h

h
3/2
T

∥∥rot (fD −UD,h)
∥∥3/2

L3/2(T )

+
∑

e∈Eh(ΩD)

he
∥∥ J(fD −UD,h) · tK

∥∥3/2

L3/2(e)
+

∑
e∈Eh(Σ)

he
∥∥ (fD −UD,h) · t

∥∥3/2

L3/2(e)


2/3

‖βD‖1,3;ΩD
.

(5.29)

Therefore, as a direct consequence of estimates (5.28) and (5.29), and the stability estimate (5.24) for
the Helmholtz decomposition, we get (5.27) and conclude the proof. �

We end this section by stressing that the estimate (5.10) is a straightforward consequence of Lemmas
5.2 and 5.3–5.6, and the definition of the global estimator Θ (cf. (5.7)), when h→ 0.

5.2 Efficiency

The following theorem is the main result of this section.

Theorem 5.7 Suppose that the data fS, fD and gD satisfy (5.9), and that fD ∈ L2(ΩD). Then, there
exists a constant Ĉeff > 0, independent of h, such that

Ĉeff Θ ≤ ‖~u− ~uh‖H×Q +

 ∑
T∈T D

h

h2
T

∥∥|uD|uD − |uD,h|uD,h

∥∥2

0,T


1/2

+ h.o.t., (5.30)

where h.o.t. stands for one or several terms of higher order. Moreover, assuming that uD ∈ L6(ΩD),
there exists a constant Ceff > 0, depending only on parameters, ‖uD‖L6(ΩD), and other constants, all
them independent of h, such that

Ceff Θ ≤ ‖~u− ~uh‖H×Q + h.o.t. (5.31)

Throughout this section we assume, without loss of generality, that K−1uD,h, fS, and fD, are all
piecewise polynomials. Otherwise, if K, fS, and fD are sufficiently smooth, and proceeding similarly
as in [11, Section 6.2], higher order terms given by the errors arising from suitable polynomial ap-
proximation of these expressions and functions would appear in (5.30) and (5.31), which explains the
eventual h.o.t. in these inequalities. In this regard, analogously to [2, Section 3.3], we remark that
(5.30) constitutes what we call a quasi-efficiency estimate for the global residual error estimator Θ
(cf. (5.7)), in the sense that the expression appearing on the right-hand side of (5.30) is the error

plus the nonlinear term given by
{∑

T∈T D
h
h2
T

∥∥|uD|uD − |uD,h|uD,h

∥∥2

0,T

}1/2
. However, assuming ad-

ditionally that uD ∈ L6(ΩD), we show at the end of this section that the latter can be bounded by
‖uD − uD,h‖H3(div ;ΩD), thus yielding the efficiency estimate given by (5.31).
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In order to prove (5.30) and (5.31), we need first to introduce the Banach space

H(div4/3; ΩS) :=
{
τ S ∈ L2(ΩS) : divτ S ∈ L4/3(ΩS)

}
.

Then, we state the following result, which basically follows by applying integration by parts backwardly
in the formulation (3.3), and proceeding as in [6, Remark 2.1] for the Navier–Stokes terms.

Theorem 5.8 Let (u, (p, λ)) ∈ H × Q be the unique solution of (3.3). Then div uS = 0 in ΩS,
div uD = gD in ΩD, and uD · n = uS · n on Σ. In addition, defining pS := p|ΩS

, pD := p|ΩD
,

σ̃S := −pSI+2µe(uS), and UD := µ
ρK−1uD + F

ρ |uD|uD, there hold pD ∈W1,3/2(ΩD)∩L2(ΩD), λ = pD

on Σ, divσ̃S = ρ(∇uS)uS − fS in ΩS (which yields σ̃S ∈ H(div4/3; ΩS)), UD +∇pD = fD in ΩD, and
σ̃Sn + λn + αdµ√

t·κt(uS · t)t = 0 on Σ.

We begin the derivation of the efficiency estimates with the following result.

Lemma 5.9 There hold
‖div uS,h‖0,T ≤ |uS − uS,h|1,T ∀T ∈ T S

h

and
‖gD − div uD,h‖0,T ≤ ‖uD − uD,h‖H3(div ;T ) ∀T ∈ T D

h .

Proof. It suffices to use from Theorem 5.8 that div uS = 0 in ΩS and div uD = gD in ΩD. Further
details are omitted. �

In order to derive the upper bounds for the remaining terms defining the global a posteriori error
estimator Θ (cf. (5.7)), we proceed similarly as in [19, 3, 11, 2, 8], and apply results ultimately
based on inverse inequalities and the localization technique based on triangle-bubble and edge-buble
functions. To this end, we now recall some notation and introduce further preliminary results. Given
T ∈ Th := T S

h ∪ T D
h , and e ∈ E(T ), we let ψT and ψe be the usual triangle-bubble and edge-bubble

functions, respectively (see [26, eqs. (1.5) and (1.6)]), which satisfy:

(i) ψT ∈ P3(T ), supp(ψT ) ⊆ T, ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T ,

(ii) ψe|T ∈ P2(T ), supp(ψe) ⊆ ωe, ψe = 0 on ∂T \e, and 0 ≤ ψe ≤ 1 in ωe := ∪
{
T ′ ∈ Th : e ∈ E(T ′)

}
.

In addition, we also recall from [26] that, given k ∈ N ∪ {0}, there exists an extension operator
L : C(e) → C(ωe) that satisfies L(σ) ∈ Pk(T ) and L(σ)|e = σ ∀σ ∈ Pk(e). A corresponding vectorial
version of L, that is, the componentwise application of L, is denoted by L. Additional properties of
ψT , ψe, and L are collected in the following lemma. Regarding the corresponding proof we refer to
[26, Lemma 3.3] for details.

Lemma 5.10 Let p and q two fixed real numbers with p ∈ [1,+∞] and 1/p + 1/q = 1. Given T ∈ Th
and e ∈ E(T ), let VT ⊂ L∞(T ) and Ve ⊂ L∞(e) two arbitrary finite dimensional spaces. Then, there
exist positive constants ci with i ∈ {1, . . . , 7}, depending only on p, q, the spaces VT and Ve, and
the shape-regularity of the triangulations (minimum angle condition), such that for each u ∈ VT and
σ ∈ Ve, there hold

c1 ‖u‖Lp(T ) ≤ sup
v∈VT

∫
T
uψT v

‖v‖Lq(T )
≤ ‖u‖Lp(T ), (5.32)
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c2 ‖σ‖Lp(e) ≤ sup
τ∈Ve

∫
e
σ ψeτ

‖τ‖Lq(e)
≤ ‖σ‖Lp(e), (5.33)

c3 h
−1
T ‖ψTu‖Lq(T ) ≤ ‖∇(ψTu)‖Lq(T ) ≤ c4 h

−1
T ‖ψTu‖Lq(T ), (5.34)

c5 h
−1
T ‖ψeL(σ)‖Lq(T ) ≤ ‖∇(ψeL(σ))‖Lq(T ) ≤ c6 h

−1
T ‖ψeL(σ)‖Lq(T ), (5.35)

and
‖ψeL(σ)‖Lq(T ) ≤ c7 h

1/q
e ‖σ‖Lq(e). (5.36)

As stated in [26, Remark 3.2], VT and Ve can be chosen as suitable spaces of polynomials. Thus, in
what follows we will choose VT as Pk(T ) and Ve as Pk(e) for a given k ∈ N ∪ {0}. In addition, and
coherently with previous notations, we set VT and Ve, respectively, as the corresponding vectorial
counterpart. The following inverse estimate will be also used. We refer the reader to [15, Lemma 1.138]
for its proof.

Lemma 5.11 Let k ∈ N ∪ {0}, n ∈ {2, 3}, l,m ≥ 0 such that m ≤ l, and p, q ∈ [1,+∞]. Then, there
exists c > 0, depending only on k, l,m and the shape regularity of the triangulations, such that, for
each triangle (tetrahedron) T ∈ Th, there holds

‖v‖l,p,T ≤ c h
m−l+n(1/p−1/q)
T ‖v‖m,q,T ∀ v ∈ Pk(T ). (5.37)

We point out that through this section each proof done in 2D can be easily extended to its three-
dimensional counterpart considering n = 3 when we apply (5.37). In that case, other positive power
of the meshsizes hT? , with ? ∈ {S,D}, will be appear on the right-hand side of the efficiency estimates
which anyway are bounded. Next, we continue providing the corresponding upper bounds for the
remaining three terms defining Θ2

S,T (cf. (5.1)), which are adaptations of the proof of [3, Lemmas 4.4,
4.5, and 4.6], respectively, to our configuration.

Lemma 5.12 There exists c > 0, independent of h, such that for each T ∈ T S
h there holds

h2
T

∥∥∥fS + divσ̃S,h − ρ(∇uS,h)uS,h −
ρ

2
div uS,huS,h

∥∥∥2

0,T
≤ c

{
‖pS − pS,h‖20,T + |uS − uS,h|21,T

+ hT
∥∥(∇uS)uS − (∇uS,h)uS,h

∥∥2

L4/3(T )
+ hT ‖div (uS − uS,h)uS,h‖2L4/3(T )

}
.

(5.38)

Proof. Given T ∈ T S
h we define χT := fS + divσ̃S,h − ρ(∇uS,h)uS,h −

ρ

2
div uS,huS,h in T . Then,

applying (5.32) to ‖χT ‖0,T , we obtain

c1 ‖χT ‖0,T ≤ sup
v∈VT

∫
T
χT · ψTv

‖v‖0,T
. (5.39)

Then, thanks to the identities fS = −divσ̃S + ρ(∇uS)uS and div uS = 0 in ΩS (cf. Theorem 5.8), and
integrating by parts, we deduce that∫

T
χT · ψTv =

∫
T

(σ̃S − σ̃S,h) : ∇(ψTv)

+ ρ

∫
T

{
(∇uS)uS − (∇uS,h)uS,h +

1

2
div (uS − uS,h)uS,h

}
· ψTv ,
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from which, using Cauchy–Schwarz and Hölder’s inequalities, applying (5.34) to ‖∇(ψTv)‖0,T , em-
ploying the fact that 0 ≤ ψT ≤ 1, and bearing in mind the definitions of σ̃S and σ̃S,h (cf. Theorem
5.8 and (5.2)), we arrive at∫

T
χT · ψTv ≤ C1

{
h−1
T ‖pS − pS,h‖0,T + h−1

T |uS − uS,h|1,T
}
‖v‖0,T

+ C2

{∥∥(∇uS)uS − (∇uS,h)uS,h

∥∥
L4/3(T )

+ ‖div (uS − uS,h)uS,h‖L4/3(T )

}
‖v‖L4(T ).

(5.40)

Thus, the local inverse estimate ‖v‖L4(T ) ≤ c h
−1/2
T ‖v‖0,T (cf. (5.37)) in combination with (5.40) and

(5.39), imply (5.38) and complete the proof. �

Lemma 5.13 There exists c > 0, independent of h, such that for each e ∈ Eh(ΩS) there holds

he
∥∥ Jσ̃S,hnK

∥∥2

0,e
≤ c

∑
T⊆ωe

{
‖pS − pS,h‖20,T + |uS − uS,h|21,T

+ hT
∥∥(∇uS)uS − (∇uS,h)uS,h

∥∥2

L4/3(T )
+ hT ‖div (uS − uS,h)uS,h‖2L4/3(T )

}
,

(5.41)

where ωe is the union of the two triangles in T S
h having e as an edge.

Proof. Since σ̃S ∈ H(div4/3; ΩS) (cf. Theorem 5.8), it follows that Jσ̃SnK = 0 on each e ∈ Eh(ΩS). In
this way, applying (5.33) to

∥∥ Jσ̃S,hnK
∥∥

0,e
, we get

c2

∥∥ Jσ̃S,hnK
∥∥

0,e
≤ sup

τ∈Ve

∫
e
J(σ̃S,h − σ̃S)nK · ψeL(τ )

‖τ‖0,e
, (5.42)

from which, integrating by parts on each T ⊆ ωe, we deduce that∫
e
J(σ̃S,h − σ̃S)nK · ψeL(τ ) =

∑
T⊆ωe

{∫
T

div(σ̃S,h − σ̃S) · ψeL(τ ) +

∫
T

(σ̃S,h − σ̃S) : ∇ (ψeL(τ ))

}
.

Next, employing the identities divσ̃S = ρ(∇uS)uS − fS and div uS = 0 in ΩS (cf. Theorem 5.8),
and the Cauchy–Schwarz and Hölder inequalities, and applying (5.37) and (5.35) to ψeL(τ ) and
‖∇ (ψeL(τ )) ‖0,T , respectively, we obtain∫

e
J(σ̃S,h − σ̃S)nK · ψeL(τ ) ≤ C

∑
T⊆ωe

{∥∥∥fS + divσ̃S,h − ρ(∇uS,h)uS,h −
ρ

2
div uS,huS,h

∥∥∥
0,T

+ h
−1/2
T

∥∥(∇uS)uS − (∇uS,h)uS,h

∥∥
L4/3(T )

+ h
−1/2
T ‖div (uS − uS,h)uS,h‖L4/3(T )

+ h−1
T ‖σS − σS,h‖0,T

}
‖ψeL(τ )‖0,T .

(5.43)

Then, applying (5.36) to ‖ψeL(τ )‖0,T in combination with (5.43) and (5.42), using the fact that
he ≤ hT , the estimate (5.38) and the definitions of σ̃S and σ̃S,h (cf. Theorem 5.8 and (5.2)), we derive
(5.41) and conclude the proof. �

Before establishing the following lemma, we need to recall a local trace inequality [1, Theorem 3.10].
Indeed, there exists c > 0, depending only on the shape regularity of the triangulations, such that for
each T ∈ T S

h ∪ T D
h and e ∈ E(T ), there holds

he‖v‖20,e ≤ c
{
‖v‖20,T + h2

T |v|21,T
}
∀ v ∈ H1(T ). (5.44)
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Lemma 5.14 There exists c > 0, independent of h, such that for each e ∈ Eh(Σ) there holds

he

∥∥∥∥σ̃S,hn + λhn +
αdµ√
t · κt

(uS,h · t)t

∥∥∥∥2

0,e

≤ c
{
‖pS − pS,h‖20,T + ‖uS − uS,h‖21,T

+ he‖λ− λh‖20,e + hT
∥∥(∇uS)uS − (∇uS,h)uS,h

∥∥2

L4/3(T )
+ hT ‖div (uS − uS,h)uS,h‖2L4/3(T )

}
,

(5.45)
where T is the triangle of T S

h having e as an edge.

Proof. Given e ∈ Eh(Σ) we let χe := σ̃S,hn + λhn +
αdµ√
t · κt

(uS,h · t)t on e. Then, applying (5.33) to

‖χe‖0,e, yields

c2 ‖χe‖0,e ≤ sup
τ∈Ve

∫
e
χe · ψeτ

‖τ‖0,e
, (5.46)

where, using the fact that σ̃Sn + λn +
αdµ√
t · κt

(uS · t)t = 0 on Σ (cf. Theorem 5.8), recalling that

ψe = 0 on ∂T \ e (T being the triangle of T S
h having e as an edge), and integrating by parts on T , we

obtain that ∫
e
χe · ψeτ =

∫
T

(σ̃S,h − σ̃S) : ∇(ψeL(τ )) +

∫
T

div(σ̃S,h − σ̃S) · ψeL(τ )

+

∫
e

{
(λh − λ)n +

αdµ√
t · κt

((uS,h − uS) · t)t
}
· ψeτ .

Hence, using again the identities divσ̃S = ρ(∇uS)uS − fS and div uS = 0 in ΩS (cf. Theorem 5.8),
and the Cauchy–Schwarz and Hölder inequalities, applying (5.35) to ‖∇(ψeL(τ ))‖0,T , noticing that

‖ψeL(τ )‖L4(T ) ≤ ch
−1/2
T ‖ψeL(τ )‖0,T (cf. (5.37)), and recalling that 0 ≤ ψe ≤ 1, we deduce∫

e
χe · ψeτ ≤ C

{
h−1
T ‖σ̃S − σ̃S,h‖0,T +

∥∥∥fS + div σ̃S,h − ρ(∇uS,h)uS,h −
ρ

2
div uS,huS,h

∥∥∥
0,T

+ h
−1/2
T

∥∥(∇uS)uS − (∇uS,h)uS,h

∥∥
L4/3(T )

+ h
−1/2
T ‖div (uS − uS,h)uS,h‖L4/3(T )

}
‖ψeL(τ )‖0,T

+ C
{
‖λ− λh‖0,e + ‖uS − uS,h‖0,e

}
‖τ‖0,e.

Now, from the estimate (5.36) we see that ‖ψeL(τ )‖0,T ≤ c7 h
1/2
e ‖τ‖0,e, which combined with the

above inequality and (5.46), yields

‖χe‖0,e ≤ C h1/2
e

{
h−1
T ‖σ̃S − σ̃S,h‖0,T +

∥∥∥fS + div σ̃S,h − ρ(∇uS,h)uS,h −
ρ

2
div uS,huS,h

∥∥∥
0,T

+ h
−1/2
T

∥∥(∇uS)uS − (∇uS,h)uS,h

∥∥
L4/3(T )

+ h
−1/2
T ‖div (uS − uS,h)uS,h‖L4/3(T )

}
+ C

{
‖λ− λh‖0,e + ‖uS − uS,h‖0,e

}
.

(5.47)

Thus, using that he ≤ hT , applying the local trace inequality (5.44) to ‖uS − uS,h‖20,e, and employing
(5.38), and the definitions of σ̃S and σ̃S,h (cf. Theorem 5.8 and (5.2)), we conclude (5.45). �

The second and third residuals expression defining Θ̂2
D,T (cf. (5.3)), that is, the one containing the

nonlinear Darcy–Forchheimer term, as well as one term acting on Σ, are estimated now. To that end,
we adapt the proofs of [5, Lemma 6.3] and [3, Lemma 4.12], respectively, to our context.
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Lemma 5.15 There exists c > 0, independent of h, such that for each T ∈ T D
h there holds

h2
T ‖fD −UD,h‖20,T

≤ c
{
‖pD − pD,h‖20,T + h2

T ‖uD − uD,h‖2L3(T ) + h
4/3
T

∥∥|uD|uD − |uD,h|uD,h

∥∥2

L3/2(T )

}
.

(5.48)

Proof. Given T ∈ T D
h , we apply (5.32) to ‖fD −UD,h‖0,T , that is

c1 ‖fD −UD,h‖0,T ≤ sup
v∈VT

∫
T

(fD −UD,h) · ψTv

‖v‖0,T
, (5.49)

from which, using the identity fD = UD +∇pD in ΩD (cf. Theorem 5.8), noting that ∇pD,h = 0 on T ,
and integrating by parts, we find that∫

T
(fD −UD,h) · ψTv =

∫
T

{
∇(pD − pD,h) + (UD −UD,h)

}
· ψTv

= −
∫
T

(pD − pD,h)div (ψTv) +

∫
T

(UD −UD,h) · ψTv.

In this way, from the definitions of UD and UD,h (cf. Theorem 5.8 and (5.5)), using the Cauchy–
Schwarz and Hölder inequalities, applying (5.34) to ‖∇(ψTv)‖0,T , and recalling that 0 ≤ ψT ≤ 1, we
get ∫

T
(fD −UD,h) · ψTv ≤ C

{
h−1
T ‖pD − pD,h‖0,T + ‖uD − uD,h‖0,T

}
‖v‖0,T

+
∥∥|uD|uD − |uD,h|uD,h

∥∥
L3/2(T )

‖v‖L3(T ).

(5.50)

Then, replacing (5.50) back into (5.49), and then applying Hölder’s inequality and the local inverse

estimate ‖v‖L3(T ) ≤ c h
−1/3
T ‖v‖0,T (cf. (5.37)), we arrive at (5.48) and complete the proof. �

Lemma 5.16 Assume that pD|T ∈ H1(T ) for each T ∈ T D
h . Then there exists c > 0, independent of

h, such that for each e ∈ Eh(Σ) there holds

he ‖λh − pD,h‖20,e ≤ c
{
‖pD − pD,h‖20,T + h2

T ‖uD − uD,h‖2L3(T ) + he‖λ− λh‖20,e

+ h
4/3
T

∥∥|uD|uD − |uD,h|uD,h

∥∥2

L3/2(T )
+ h2

T

∥∥|uD|uD − |uD,h|uD,h

∥∥2

0,T

}
,

(5.51)

where T is the triangle of T D
h having e as an edge.

Proof. Since pD,h := ph|ΩD
is piecewise constant and ∇pD = fD −UD in ΩD (cf. Theorem 5.8), we

deduce that for each T ⊆ ωe there holds

h2
T |pD − pD,h|21,T = h2

T ‖∇pD‖20,T = h2
T ‖fD −UD‖20,T

≤ 2
{
h2
T ‖fD −UD,h‖20,T + h2

T ‖UD −UD,h‖20,T
}
.

(5.52)

Next, using that λ = pD on Σ for each e ∈ Eh(Σ) (cf. Theorem 5.8), and employing the local trace
inequality (5.44), we obtain

he‖λh − pD,h‖20,e ≤ 2he

{
‖pD − pD,h‖20,e + ‖λ− λh‖20,e

}
≤ C

{
‖pD − pD,h‖20,T + h2

T |pD − pD,h|21,T + he‖λ− λh‖20,e
}
.
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In this way, combining the foregoing inequality with (5.52), recalling the definitions of UD and UD,h

(cf. Theorem 5.8 and (5.5)), and using (5.48), we are lead to (5.51), thus concluding the proof. �

Now we turn to provide the corresponding estimates for the three terms defining Θ̃
3/2
D,T (cf. (5.4)).

To that end, we adapt the proofs of [5, Lemmas 6.1, 6.2] and [19, Lemma 20], respectively, to our
present spaces configuration.

Lemma 5.17 There exists c > 0, independent of h, such that for each T ∈ T D
h there holds

h
3/2
T

∥∥rot (fD −UD,h)
∥∥3/2

L3/2(T )
≤ c

{
‖uD − uD,h‖

3/2
L3(T )

+
∥∥|uD|uD − |uD,h|uD,h

∥∥3/2

L3/2(T )

}
. (5.53)

Proof. Given T ∈ T D
h , we begin by applying (5.32) to

∥∥rot (fD −UD,h)
∥∥

L3/2(T )
, which gives

c1

∥∥rot (fD −UD,h)
∥∥

L3/2(T )
≤ sup

v∈VT

∫
T

rot (fD −UD,h)ψT v

‖v‖L3(T )
. (5.54)

Then, using that fD = ∇pD + UD in ΩD (cf. Theorem 5.8), and integrating by parts, we readily find
that ∫

T
rot (fD −UD,h)ψT v =

∫
T

rot (UD −UD,h)ψT v =

∫
T

(UD −UD,h) · curl (ψT v) ,

which, together with (5.34) applied to ‖∇(ψT v)‖L3(T ) and the fact that 0 ≤ ψT ≤ 1, implies from
(5.54) that

‖rot (fD −UD,h)‖L3/2(T ) ≤ C h
−1
T ‖UD −UD,h‖L3/2(T ).

Then, according to the definitions of UD and UD,h (cf. Theorem 5.8 and (5.5)), and using the triangle
and Hölder inequalities, we deduce (5.53) and conclude the proof. �

Lemma 5.18 There exists c > 0, independent of h, such that for each e ∈ Eh(ΩD) there holds

he
∥∥ J(fD −UD,h) · tK

∥∥3/2

L3/2(e)
≤ C

∑
T⊆ωe

{
‖uD − uD,h‖

3/2
L3(T )

+
∥∥|uD|uD − |uD,h|uD,h

∥∥3/2

L3/2(T )

}
, (5.55)

where ωe is the union of the two triangles in T D
h having e as an edge.

Proof. Given e ∈ Eh(ΩD), we first apply (5.33) to
∥∥ J(fD −UD,h) · tK

∥∥
L3/2(e)

, which gives

c2

∥∥ J(fD −UD,h) · tK
∥∥

L3/2(e)
≤ sup

τ∈Ve

∫
e
J(fD −UD,h) · tKψeL(τ)

‖τ‖L3(e)
. (5.56)

Then, integrating by parts on each T ⊆ ωe, using the fact that fD = ∇pD+UD in ΩD (cf. Theorem 5.8),
similarly to Lemma 5.13, and applying the estimates (5.35) and (5.36) to ‖∇(ψeL(τ))‖L3(T ), we find
that∫

e
J(fD −UD,h) · tKψeL(τ) =

∑
T⊆ωe

{∫
T

(UD −UD,h) · curl (ψeL(τ)) +

∫
T
ψeL(τ) rot (fD −UD,h)

}
≤ C h1/3

e

∑
T⊆ωe

{
h−1
T ‖UD −UD,h‖L3/2(T ) +

∥∥rot (fD −UD,h)
∥∥

L3/2(T )

}
‖τ‖L3(e) ,

which, replaced back into (5.56), and after using (5.53), Hölder’s inequality and the fact that he ≤ hT
for each T ⊆ ωe, yields (5.55) and concludes the proof. �

26



Lemma 5.19 There exists c > 0, independent of h, such that∑
e∈Eh(Σ)

he
∥∥ (fD −UD,h) · t

∥∥3/2

L3/2(e)

≤ C

 ∑
e∈Eh(Σ)

(
‖uD − uD,h‖

3/2
L3(Te)

+
∥∥|uD|uD − |uD,h|uD,h

∥∥3/2

L3/2(Te)

)
+ ‖λ− λh‖

3/2
1/3,3/2;Σ

 ,

(5.57)
where, given e ∈ Eh(Σ), Te is the triangle of T D

h having e as an edge.

Proof. Given e ∈ Eh(Σ), the application of (5.33) to
∥∥ (fD −UD,h) · t

∥∥
L3/2(e)

gives

c2

∥∥ (fD −UD,h) · t
∥∥

L3/2(e)
≤ sup

τ∈Ve

∫
e

{
(fD −UD,h) · t

}
ψeτ

‖τ‖L3(e)
. (5.58)

Next, proceeding similarly to Lemma 5.18, using the extension operator L, integrating by parts on
the right-hand side of (5.58), employing the identities fD = ∇pD + UD in ΩD and λ = pD on Σ (cf.
Theorem 5.8), noting that λh is piecewise constant on Σ, and then summing up over all e ∈ Eh(Σ),
we deduce from (5.58) that

∑
e∈Eh(Σ)

he
∥∥ (fD −UD,h) · t

∥∥3/2

L3/2(e)
≤ C

 ∑
e∈Eh(Σ)

(
‖uD − uD,h‖

3/2
L3(Te)

+
∥∥|uD|uD − |uD,h|uD,h

∥∥3/2

L3/2(Te)

)
+

∑
e∈Eh(Σ)

(
sup
τ∈Ve

h
2/3
e

‖τ‖L3(e)

〈
d

dt
(λ− λh), ψeτ

〉
e

)3/2
 ,

(5.59)

where 〈·, ·〉e stands for the duality pairing between
(
W

2/3,3
00 (e)

)′
and W

2/3,3
00 (e). Here, W

2/3,3
00 (e) denotes

the space of traces on e of those elements in W1,3(Te) whose traces vanish on ∂Te\e. Now, analogously

to [19, Lemma 20], and since ψeτ ∈ W
2/3,3
00 (e) for each e ∈ Eh(Σ), we see that the third term on the

right-hand side of (5.59) can be bounded by ∑
e∈Eh(Σ)

sup
τ∈Ve

h
2/3
e

‖τ‖L3(e)

〈
d

dt
(λ− λh), ψeτ

〉
e


3/2

≤
{〈

d

dt
(λ− λh), τ̂

〉
Σ

}3/2

,

where τ̂ |e := h
2/3
e ψeτ̃e on each e ∈ Eh(Σ), with ‖τ̃e‖L3(e) = 1. Then, applying the boundedness of the

tangential derivative d
dt : W1/3,3/2(Σ) → W−2/3,3/2(Σ) (see [23, Section I.1.5]), the inverse estimate

‖τ̂‖2/3,3;Σ ≤ ch−2/3‖τ̂‖L3(Σ) [15, Corollary 1.141], and the fact that he ≤ h and 0 ≤ ψe ≤ 1, we find
that

∑
e∈Eh(Σ)

(
sup
τ∈Ve

h
2/3
e

‖τ‖L3(e)

〈
d

dt
(λ− λh), ψeτ

〉
e

)3/2

≤ C ‖λ− λh‖
3/2
1/3,3/2;Σ

(
h−2/3‖τ̂‖L3(Σ)

)3/2

≤ C ‖λ− λh‖
3/2
1/3,3/2;Σ

 ∑
e∈Eh(Σ)

‖τ̃e‖3L3(e)


1/2

≤ C ‖λ− λh‖
3/2
1/3,3/2;Σ,

which, combined with (5.59), leads to (5.57) and completes the proof. �

Finally, we provide the upper bound for the term defining Θ3
Σ,e (cf. (5.6)).
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Lemma 5.20 There exists c > 0, independent of h, such that for each e ∈ Eh(Σ) there holds

he ‖uS,h · n− uD,h · n‖3L3(e) ≤ c
{
‖uS − uS,h‖3L3(TS) + h2

TS
|uS − uS,h|31,TS

+ ‖uD − uD,h‖3L3(TD) + h2
TD
‖div (uD − uD,h)‖30,TD

}
,

(5.60)

where TS and TD are the triangles of T S
h and T D

h , respectively, having e as an edge.

Proof. Given e ∈ Eh(Σ), we let TS and TD be the triangles of T S
h and T D

h , respectively, having e as an
edge, which means that ωe := TS ∪TD, and define χe := uS,h ·n−uD,h ·n on e. Then, applying (5.33)
to ‖χe‖L3(e), we have

c2 ‖χe‖L3(e) ≤ sup
τ∈Ve

∫
e
χe ψeτ

‖τ‖L3/2(e)

, (5.61)

Next, setting ψe,? := ψe|T? , with ? ∈ {S,D}, using the identity uD ·n = uS ·n on Σ (cf. Theorem 5.8),
recalling that ψe,? = 0 on ∂T? \ e, and integrating by parts on T?, we obtain∫

e
χe ψeτ =

∫
TS

(uS − uS,h) · ∇(ψe,SL(τ)) +

∫
TS

ψe,SL(τ) div (uS − uS,h)

+

∫
TD

(uD − uD,h) · ∇(ψe,DL(τ)) +

∫
TD

ψe,DL(τ) div (uD − uD,h).

Thus, using the Cauchy–Schwarz and Hölder inequalities, applying (5.35) to ‖∇(ψe,?L(τ))‖L3/2(T?),

and utilizing the local inverse estimate ‖ψe,?L(τ)‖0,T? ≤ c h
−1/3
T?
‖ψe,?L(τ)‖L3/2(T?) (cf. (5.37)), and the

fact that 0 ≤ ψe ≤ 1 in ωe, we find that∫
e
χe ψeτ ≤ C

{
h−1
TS
‖uS − uS,h‖L3(TS) + h

−1/3
TS
‖div (uS − uS,h)‖0,TS

}
‖ψe,SL(τ)‖L3/2(TS)

+ C
{
h−1
TD
‖uD − uD,h‖L3(TD) + h

−1/3
TD
‖div (uD − uD,h)‖0,TD

}
‖ψe,DL(τ)‖L3/2(TD) .

(5.62)

Finally, applying now (5.36) to ‖ψe,?L(τ)‖L3/2(T?), combining the resulting estimate with (5.62) and
(5.61), and using that he ≤ hT? , we arrive at (5.60) and conclude the proof. �

In order to complete the global efficiency given by (5.30) (cf. Theorem 5.7), we now need to estimate

the terms ‖λ−λh‖20,e, ‖uS−uS,h‖3L3(T ), ‖div (uS−uS,h)uS,h‖2L4/3(T )
,
∥∥(∇uS)uS− (∇uS,h)uS,h

∥∥2

L4/3(T )
,

and
∥∥|uD|uD − |uD,h|uD,h

∥∥3/2

L3/2(T )
appearing in the upper bounds provided by Lemmas 5.12–5.20. To

this end, we first recall that W1/3,3/2(Σ) is continuously embedded into L2(Σ), whence∑
e∈Eh(Σ)

‖λ− λh‖20,e ≤ ‖λ− λh‖20,Σ ≤ C ‖λ− λh‖21/3,3/2;Σ . (5.63)

In turn, we make use of the continuity of the injection i : H1(ΩS)→ L3(ΩS) to obtain∑
T∈T S

h

‖uS − uS,h‖3L3(T ) = ‖uS − uS,h‖3L3(ΩS) ≤ C ‖uS − uS,h‖31,ΩS
. (5.64)
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In addition, applying Hölder’s inequality, the continuous injection i : H1(ΩS) → L4(ΩS), and the a
priori bounds of ‖uS,h‖1,ΩS

(cf. (5.15)) combined with (5.9), we deduce that∑
T∈T S

h

‖div (uS − uS,h)uS,h‖2L4/3(T )
≤
∑
T∈T S

h

‖uS,h‖2L4(T )‖div (uS − uS,h)‖20,T

≤ C ‖uS,h‖21,ΩS
‖uS − uS,h‖21,ΩS

≤ C ‖uS − uS,h‖21,ΩS
.

(5.65)

Similarly, adding and subtracting suitable terms, applying Hölder’s inequality, and using the contin-
uous injection i : H1(ΩS) → L4(ΩS), and the a priori bounds of ‖uS‖1,ΩS

and ‖uS,h‖1,ΩS
(cf. (5.15))

combined with (5.9), we are able to show that∑
T∈T S

h

∥∥(∇uS)uS − (∇uS,h)uS,h

∥∥2

L4/3(T )
≤ C ‖uS − uS,h‖21,ΩS

. (5.66)

Finally, applying again the Cauchy–Schwarz inequality, and the a priori bounds of ‖uD‖H3(div ;ΩD) and
‖uD,h‖H3(div ;ΩD) (cf. (5.15)) combined with (5.9), we find that∑

T∈T D
h

∥∥|uD|uD − |uD,h|uD,h

∥∥3/2

L3/2(T )
≤ C

∑
T∈T D

h

{
‖uD‖3/2L3(T )

+ ‖uD,h‖
3/2
L3(T )

}
‖uD − uD,h‖

3/2
L3(T )

≤ C
{
‖uD‖3/2L3(ΩD)

+ ‖uD,h‖
3/2
L3(ΩD)

}
‖uD − uD,h‖

3/2
L3(ΩD)

≤ C ‖uD − uD,h‖
3/2
H3(div ;ΩD)

.

(5.67)

Consequently, it is not difficult to see that (5.30) follows from the definition of Θ (cf. (5.7)), Lemmas
5.9, 5.12–5.20, and the estimates (5.63)–(5.67). Furthermore, proceeding similarly to (5.67) and

employing that ‖uD,h‖L6(T ) ≤ c h
−1/3
T ‖uD,h‖L3(T ), which follows from the inverse inequality (5.37),

we obtain ∑
T∈T D

h

h2
T

∥∥|uD|uD − |uD,h|uD,h

∥∥2

0,T

≤ C
∑
T∈T D

h

h2
T

{
‖uD‖2L6(T ) + h

−2/3
T ‖uD,h‖2L3(T )

}
‖uD − uD,h‖2L3(T )

≤ C
∑
T∈T D

h

h
4/3
T

{
‖uD‖2L6(T ) + ‖uD,h‖2L3(T )

}
‖uD − uD,h‖2L3(T )

≤ C
{
‖uD‖2L6(ΩD) + ‖uD,h‖2H3(div ;ΩD)

}
‖uD − uD,h‖2H3(div ;ΩD) ,

(5.68)

from which, using the a priori bound of ‖uD,h‖H3(div ;ΩD) (cf. (5.15)) and the hypothesis on uD stated
in Theorem 5.7, it easily follows (5.31), thus concluding the proof of this theorem. We stress here
that requiring uD ∈ L6(ΩD) is coherent with Lemma 5.16 in the sense that, under the assumption
that fD ∈ L2(ΩD), and due to the identity ∇pD = fD − UD in ΩD (cf. Theorem 5.8), there holds
pD|T ∈ H1(T ) for each T ∈ T D

h .

6 A posteriori error analysis: The fully-mixed approach

In what follows we assume that the hypotheses from [10, Theorems 4.10 and 5.3] hold. Let ~t :=
((t,ϕ), pD) ∈ H × Q and ~th := ((th,ϕh), pD,h) ∈ Hh × Qh be the unique solutions of problems (3.8)

and (3.9), respectively. Then, we define for each T ∈ T S
h the local error indicators

Ψ2
S,T := ‖fS + divσS,h‖20,T + ‖σd

S,h − 2µe(uS,h) + ρ(uS,h ⊗ uS,h)d‖20,T + ‖σS,h − σt
S,h‖20,T

+
∥∥∥γS,h −

1

2

(
∇uS,h − (∇uS,h)t

)∥∥∥2

0,T
+

∑
e∈E(T )∩Eh(Σ)

he‖σS,hn + ω−1
1 (ϕh · t)t + λhn‖20,e

(6.1)

29



and
Ψ̂2

S,T := Ψ2
S,T + ‖fS −PS

h(fS)‖20,T +
∑

e∈E(T )∩Eh(ΩS)

he
∥∥q(e(uS,h) + γS,h)t

y∥∥2

0,e

+
∑

e∈E(T )∩Eh(ΓS)

he‖(e(uS,h) + γS,h)t‖20,e

+
∑

e∈E(T )∩Eh(Σ)

{
he‖ϕh + uS,h‖20,e + he

∥∥∥(e(uS,h) + γS,h)t +
dϕh
dt

∥∥∥2

0,e

}
.

(6.2)

In addition, for each e ∈ Eh(Σ) we define

Ψ3
Σ,e := he‖uD,h · n +ϕh · n‖3L3(e), (6.3)

and for each T ∈ T D
h we consider Θ̂2

D,T and Θ̃
3/2
D,T as in (5.3) and (5.4), respectively, so that the global

a posteriori error estimates are given, respectively, by:

Ψ1 :=

{ ∑
T∈T S

h

Ψ2
S,T +

∑
T∈T D

h

Θ̂2
D,T + ‖uS,h +ϕh‖21/2,00;Σ

}1/2

+

{ ∑
T∈T D

h

Θ̃
3/2
D,T

}2/3

+

{ ∑
e∈Eh(Σ)

Ψ3
Σ,e

}1/3

(6.4)
and

Ψ2 :=

{ ∑
T∈T S

h

Ψ̂2
S,T +

∑
T∈T D

h

Θ̂2
D,T

}1/2

+

{ ∑
T∈T D

h

Θ̃
3/2
D,T

}2/3

+

{ ∑
e∈Eh(Σ)

Ψ3
Σ,e

}1/3

. (6.5)

Now, similarly to the Section 5, and under suitable assumptions, we will focus on establishing the
existence of positive constants Crel, crel, Ceff and ceff, independent of the meshsizes and the continuous
and discrete solutions, such that

Ceff Ψ1 + h.o.t. ≤ ‖~t−~th‖H×Q ≤ Crel Ψ
1/2
1 (6.6)

and
ceff Ψ2 + h.o.t. ≤ ‖~t−~th‖H×Q ≤ crel Ψ

1/2
2 , (6.7)

where h.o.t. stands, eventually, for one or several terms of higher order. The upper and lower bounds

in (6.6) and (6.7), which are known as the reliability of Ψ
1/2
1 and Ψ

1/2
2 , and efficiency of Ψ1 and Ψ2,

are derived below in Sections 6.1 and 6.2, respectively.

6.1 Reliability

Similarly to 5.1, we recall from [10] the following notation

M(fS, fD, gD) := max
{
N (fS, fD, gD)1/8,N (fS, fD, gD)1/4,N (fS, fD, gD)1/2,

N (fS, fD, gD),N (fS, fD, gD)2,N (fS, fD, gD)4
}
,

where N (fS, fD, gD) := ‖fS‖0,ΩS
+ ‖fD‖L3/2(ΩD) + ‖gD‖0,ΩD

+ ‖gD‖20,ΩD
. Next, we provide the main

result of this section, whose proof follows analogously to Theorem 5.1.

Theorem 6.1 Assume that ΩD is a connected domain and that ΓD is contained in the boundary of
a convex part of ΩD, that is there exists a convex domain Ξ such that ΩD ⊆ Ξ and ΓD ⊆ ∂Ξ. In
addition, assume that the data fS, fD and gD, satisfy:

c̃TM(fS, fD, gD) ≤ r, and cTM(fS, fD, gD) ≤ r

2
(6.8)
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with r ∈ (0, r0), where r0, cT, and c̃T are the positive constants, independent of the data, provided
by [10, Lemmas 4.3, 4.5 and 5.2], respectively. Assume further that fD ∈ L2(ΩD). Then, there exist
constants Crel, crel > 0, independent of h, such that

‖~t−~th‖H×Q ≤ Crel Ψ
1/2
1 (6.9)

and
‖~t−~th‖H×Q ≤ crel Ψ

1/2
2 . (6.10)

We begin the proof of (6.9)–(6.10) by noticing first that [B(r), pD,h] = [B(r,ψ), pD,h] and that F
can be decomposed as F = F1 + F2, with [F1, r] = [F, (r,ψ)] and [F2,ψ] = 0. Thus, we define the
residues RF1 , RF2 and RG on X, Y and Q, respectively, by

RF1(r) := [F1, r]−
{

[a(uS,h)(th), r] + [b(r),ϕ
h
] + [B(r), pD,h]

}
∀ r ∈ X, (6.11)

RF2(ψ) := −
{

[b(th),ψ]− [c(ϕ
h
),ψ]

}
∀ψ ∈ Y, (6.12)

and
RG(qD) := [G, qD]− [B(th), qD] ∀ qD ∈ Q. (6.13)

Then, proceeding as in Lemma 5.2 and [10, Theorem 5.3], and employing the strict monotonicity and
continuity of the operator A, the positive semidefinite of c, and the inf-sup conditions of the operators
b and B, we are able to establish the following preliminary a posteriori error estimate.

Lemma 6.2 Assume that the data fS, fD and gD satisfy (6.8). Then, there exists a constant C > 0,
depending only on parameters and other constants, all them independent of h, such that

‖~t−~th‖H×Q ≤ C max
{
‖R‖1/2(H×Q)′ , ‖R‖

2/3
(H×Q)′ , ‖R‖

3/4
(H×Q)′ , ‖R‖(H×Q)′ , ‖R‖

3/2
(H×Q)′

}
, (6.14)

where, R : H × Q → R is the functional given by R(~r) := RF1(r) + RF2(ψ) + RG(qD) ∀~r :=
((r,ψ), qD) ∈ H×Q, which satisfies

R(~rh) = 0 ∀~rh ∈ Hh ×Qh.

According to the upper bound (6.14) provided in Lemma 6.2, it only remains to estimate ‖R‖H′×Q′ .
To this end, we now notice that the functional R can be decomposed as:

R(~r) = R1(τ S) +R2(vS) +R3(ηS) +R4(vD) +R5(ψ) +R6(ξ) +R7(qD),

for all ~r := ((τ S,vS,ηS,vD,ψ, ξ), qD) ∈ H×Q, where

R1(τ S) := −κ1(fS + divσS,h,divτ S)S −
1

2µ
(σd

S,h + ρ(uS,h ⊗ uS,h)d, τ d
S)S

−(γS,h, τ S)S − (uS,h,divτ S)S − 〈τ Sn,ϕh〉Σ ,

R2(vS) := (fS + divσS,h,vS)S +
κ2

2µ
(σd

S,h − 2µe(uS,h) + ρ(uS,h ⊗ uS,h)d, e(vS))S,

R3(ηS) := (σS,h,ηS)S − κ3

(
γS,h −

1

2

(
∇uS,h − (∇uS,h)t

)
,ηS

)
S
,

R4(vD) :=
(
fD −

µ

ρ
K−1uD,h −

F

ρ
|uD,h|uD,h,vD

)
D

+ (pD,h,div vD)D + 〈vD · n, λh〉Σ ,

R5(ψ) := −〈σS,hn,ψ〉Σ + ω−1
1 〈ϕh · t,ψ · t〉Σ − 〈ψ · n, λh〉Σ ,

R6(ξ) := 〈uD,h · n +ϕh · n, ξ〉Σ ,

R7(qD) := −(gD − div uD,h, qD)D.
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In this way, it readily follows that

‖R‖H′×Q′ ≤
{
‖R1‖H(div;ΩS)′ + ‖R2‖H1

ΓS
(ΩS)′ + ‖R3‖L2

skew(ΩS)′

+ ‖R4‖H3
ΓD

(div ;ΩD)′ + ‖R5‖H−1/2
00 (Σ)

+ ‖R6‖W−1/3,3(Σ) + ‖R7‖L2
0(ΩD)′

}
,

(6.15)

where the upper bounds of R2, R3 and R7, obtained as a direct application of the Cauchy–Schwarz
inequality, provide the first four terms of ΨS,T (cf. (6.1)) and first term of Θ̂D,T (cf. (5.3)). In addition,

R4 follows from Lemma 5.6 and implies the remaining terms of Θ̂D,T and Θ̃D,T (cf. (5.3), (5.4)). In
turn, for R5 we refer the reader to [20, Lemma 3.2], which generates the last term of ΨS,T , whereas
R6 can be bounded from a slight adaptation of Lemma 5.5, thus obtaining ΨΣ,e (cf. (6.3)).

Now, we aim to bound the norm of the functional R1. Analogously to [9], this task is actually
performed in two different ways, which leads to the reliability of Ψ1 (cf. (6.9)) and Ψ2 (cf. (6.10)).
We begin with the bound for R1, which yields the remaining terms of Ψ1 (cf. (6.4)).

Lemma 6.3 There exists C > 0, independent of meshsizes, such that

‖R1‖H(div;ΩS)′ ≤ C
{
‖fS + divσS,h‖20,ΩS

+
∥∥σd

S,h − 2µe(uS,h) + ρ(uS,h ⊗ uS,h)d
∥∥2

0,ΩS

+
∥∥∥γS,h −

1

2

(
∇uS,h − (∇uS,h)t

) ∥∥∥2

0,ΩS

+ ‖uS,h +ϕh‖21/2,00;Σ

}1/2
.

(6.16)

Proof. Similarly to [9, Theorem 3.7], it suffices to integrate by parts the fourth term of R1, add and
subtract (e(uS,h), τ d

S)S, and then employ the Cauchy–Schwarz and trace inequalities. Further details
are omitted. �

We now establish the reliability of the remaining terms of Ψ2 (cf. (6.5)), which is accomplished by
applying the Helmholtz decompositions provided by [20, Lemma 3.3] to R1. In this way, we proceed
as in [21, Lemma 3.10] and [8, Lemma 3.9] to bound ‖R1‖H(div;ΩS)′ .

Lemma 6.4 There exists C > 0, independent of meshsizes, such that

‖R1‖H(div;ΩS)′ ≤ C

{ ∑
T∈T S

h

Ψ̃2
S,T

}1/2

, (6.17)

where

Ψ̃2
S,T := ‖fS −PS

h(fS)‖20,T +
∥∥σd

S,h − 2µe(uS,h) + ρ(uS,h ⊗ uS,h)d
∥∥2

0,T

+ h2
T

∥∥∥γS,h −
1

2

(
∇uS,h − (∇uS,h)t

) ∥∥∥2

0,T

+
∑

e∈E(T )∩Eh(ΩS)

he
∥∥q(e(uS,h) + γS,h)t

y∥∥2

0,e
+

∑
e∈E(T )∩Eh(ΓS)

he‖(e(uS,h) + γS,h)t‖20,e

+
∑

e∈E(T )∩Eh(Σ)

{
he‖ϕh + uS,h‖20,e + he

∥∥∥(e(uS,h) + γS,h)t +
dϕh
dt

∥∥∥2

0,e

}
.

We end this section by concluding that the estimates (6.9) and (6.10) in Theorem 6.1 follow straight-
forwardly from Lemma 6.2, the definition of the global estimators Ψ1 and Ψ2 (cf. (6.4), (6.5)), and
Lemmas 6.3 and 6.4, respectively.
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6.2 Efficiency

In this section we provide the efficiency estimate associated to our estimators Ψ1 and Ψ2 (cf. (6.4),
(6.5)). We begin with the main result of this section, which follows from a slight adaptation of Theorem
5.7.

Theorem 6.5 Suppose that the data fS, fD and gD satisfy (6.8) and that fD ∈ L2(ΩD). Then, there
exist constants Ĉeff , ĉeff > 0, independent of h, such that

Ĉeff Ψ1 ≤ ‖~t−~th‖H×Q +

 ∑
T∈T D

h

h2
T

∥∥|uD|uD − |uD,h|uD,h

∥∥2

0,T


1/2

+ h.o.t., (6.18)

and

ĉeff Ψ2 ≤ ‖~t−~th‖H×Q +

 ∑
T∈T D

h

h2
T

∥∥|uD|uD − |uD,h|uD,h

∥∥2

0,T


1/2

+ h.o.t., (6.19)

where h.o.t. stands for one or several terms of higher order. Moreover, assuming that uD ∈ L6(ΩD),
there exists constants Ceff , ceff > 0, depending only on parameters, ‖uD‖L6(ΩD), and other constants,
all them independent of h, such that

Ceff Ψ1 ≤ ‖~t−~th‖H×Q + h.o.t. (6.20)

and
ceff Ψ2 ≤ ‖~t−~th‖H×Q + h.o.t. (6.21)

We remark here that the estimates (6.18) and (6.19) follows straightforwardly from the definition
of Ψ1 and Ψ2 (cf. (6.4), (6.5)), using similar arguments to those from Section 5.2 to bound the Darcy–
Forchheimer and interface terms, and appealing to results from previous works [21, 19, 20] to bound
the Navier–Stokes terms. In addition, similarly to Theorem 5.7, the extra assumption on uD, and the
estimate (5.68) imply (6.20) and (6.21).

7 Numerical results

This section serves to illustrate the performance and accuracy of our mixed finite element schemes
(3.5) and (3.9) along with the reliability and efficiency properties of the a posteriori error estimators
Θ, Ψ1 and Ψ2 (cf. (5.7), (6.4), (6.5)) derived in Sections 5 and 6. In this regard, we remark that for
purposes of adaptivity, which requires to have locally computable indicators, we use that

‖uS,h +ϕh‖21/2,00;Σ ≤ C ‖uS,h +ϕh‖21,Σ = C
∑

e∈Eh(Σ)

‖uS,h +ϕh‖21,e

and redefine Ψ1 as

Ψ1 :=

{ ∑
T∈T S

h

Ψ2
S,T +

∑
T∈T D

h

Θ̂2
D,T +

∑
e∈Eh(Σ)

‖uS,h+ϕh‖21,e

}1/2

+

{ ∑
T∈T D

h

Θ̃
3/2
D,T

}2/3

+

{ ∑
e∈Eh(Σ)

Ψ3
Σ,e

}1/3

.

Under this redefinition Ψ1 is certainly still reliable, but efficient only up to all terms, except the new
term associated to the interface Σ. Nevertheless, the numerical results to be displayed below allow us
to conjecture that this modified Ψ1 actually verifies both properties.
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Our implementation is based on a FreeFem++ code [24]. Regarding the implementation of the
Newton iterative method associated to (3.5) and (3.9) (see [7, Section 6] and [10, Section 7], respec-
tively, for details), the iterations are terminated once the relative error of the entire coefficient vectors
between two consecutive iterates is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖`2
‖coeffm+1‖`2

≤ tol,

where ‖ · ‖`2 is the standard `2-norm in RN, with N denoting the total number of degrees of freedom
defining the finite element subspaces Hh and Qh in the primal-mixed scheme (respectively Hh and
Qh for the fully-mixed scheme), and tol is a fixed tolerance chosen as tol = 1E − 06. As usual, the
individual errors are denoted by:

e(σS) := ‖σS − σS,h‖div,ΩS
, e(uS) := ‖uS − uS,h‖1,ΩS

, e(γS) := ‖γS − γS,h‖0,ΩS
,

e(pS) := ‖pS − pS,h‖0,ΩS
, e(uD) := ‖uD − uD,h‖H3(div ;ΩD), e(pD) := ‖pD − pD,h‖0,ΩD

,

e(ϕ) := ‖ϕ−ϕh‖(0,1),Σ, e(λ) := ‖λ− λh‖L3/2(Σ).

Notice that for the fully-mixed formulation, the Navier–Stokes pressure is calculated through the
post-process formula

pS,h := − 1

n
tr (σS,h + (uS,h ⊗ uS,h)) in ΩS.

Also, since the natural norms to measure the error of the interface unknowns ‖λ − λh‖1/3,3/2;Σ and
‖ϕ−ϕh‖1/2,00;Σ are not computable, we have decided to replace them respectively by ‖ · ‖L3/2(Σ) and

‖ · ‖(0,1),Σ, where the last one is defined based on the fact that H1/2(Σ) is the interpolation space with
index 1/2 between H1(Σ) and L2(Σ):

‖ψ‖(0,1),Σ := ‖ψ‖1/20,Σ ‖ψ‖
1/2
1,Σ ∀ψ ∈ H1(Σ).

Then, the global errors are computed, respectively, as

e(~u) := e(uS) + e(uD) + e(pS) + e(pD) + e(λ)

and
e(~t) := e(σS) + e(uS) + e(γS) + e(uD) + e(pD) + e(ϕ) + e(λ).

In turn, the efficiency and reliability indexes with respect to Θ are given by

eff(Θ) :=
e(~u)

Θ
and rel(Θ1/2) :=

e(~u)

Θ1/2
.

Analogue definitions hold for Ψ1 and Ψ2 with ~t instead of ~u. Regarding these indexes, we observe
from (5.8) (after discarding the higher order terms there) that

Ceff ≤ eff(Θ) ≤ Crel Θ−1/2 , and Ceff Θ1/2 ≤ rel(Θ1/2) ≤ Crel , (7.1)

which says that, while eff(Θ) and rel(Θ1/2) are below and above bounded, respectively, eff(Θ) could
become above unbounded whereas rel(Θ1/2) could very well approaches 0 as Θ goes to 0. Nevertheless,
the numerical results to be displayed below show that eff(Θ) remains always above bounded as well,
whereas rel(Θ1/2) does in fact decreases as Θ goes to 0. The same remarks hold for the efficiency and
reliability indexes with respect to Ψ1 and Ψ2 (cf. (6.6) and (6.7)).
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In addition, we define the experimental rates of convergence

r(�) :=
log(e(�)/e′(�))

log(h/h′)
for each � ∈

{
σS,uS,γS,uD, pS, pD,ϕ, λ, ~u,~t

}
,

where h and h′ denote two consecutive mesh sizes, taken accordingly from
{
hS, hD, ĥΣ, hΣ

}
, with their

respective errors e and e′. However, when the adaptive algorithm is applied, the expression log(h/h′)
appearing in the computation of the above rates is replaced by −1

2 log(N/N′), where N and N′ denote
the corresponding degrees of freedom of each triangulation.

The examples to be considered in this section are described next. In all of them, for the sake of
simplicity, we choose the parameters µ = 1, ρ = 1, F = 1, αd = 1, ω1 = 1, κ = I, and K = I, and
the stabilization parameters are taken as κ1 = 1/(2µ), κ2 = 2µ and κ3 = CKo µ, where we choose
heuristically CKo = 1/2. Furthermore, the conditions (ph, 1)Ω = 0, (trσS,h, 1)S = 0 and (pD,h, 1)D = 0
are imposed via a penalization strategy.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error estimators
Θ, Ψ1 and Ψ2, whereas Example 2 is utilized to illustrate the behavior of the associated adaptive
algorithm, which applies the following procedure from [26]:

(1) Start with a coarse mesh Th := T S
h ∪ T D

h .

(2) Solve the Newton iterative method associated to (3.5) (respectively (3.9)) for the current mesh
Th.

(3) Compute the local indicator ΘT (respectively Ψ1,T and Ψ2,T ) for each T ∈ Th := T S
h ∪ T D

h and
e ∈ Eh(Σ), where

ΘT :=
{

Θ2
S,T + Θ̂2

D,T

}1/2
+ Θ̃D,T + ΘΣ,e, (cf. (5.1), (5.3), (5.4), (5.6))

Ψ1,T :=
{

Ψ2
S,T + Θ̂2

D,T + ‖uS,h +ϕh‖21,e
}1/2

+ Θ̃D,T + ΨΣ,e, (cf. (6.1), (5.3), (5.4), (6.3))

Ψ2,T :=
{

Ψ̂2
S,T + Θ̂2

D,T

}1/2
+ Θ̃D,T + ΨΣ,e. (cf. (6.2), (5.3), (5.4), (6.3))

(4) Check the stopping criterion and decide whether to finish or go to next step.

(5) Generate an adapted mesh through a variable metric/Delaunay automatic meshing algorithm
(see [25, Section 9.1.9]).

(6) Define resulting meshes as current meshes T S
h and T D

h , and go to step (2).

Example 1: Accuracy assessment with a smooth solution in a rectangular domain.

In our first example we consider a rectangle domain divided in two coupled squares, i.e., ΩS :=
(0, 1)× (1, 2), ΩD := (0, 1)2 and Σ := (0, 1)×{1}. The data fS, fD, and gD are chosen so that the exact
solution in the rectangle domain Ω = ΩS ∪ Σ ∪ ΩD is given by the smooth functions

uS :=
1

2

(
− sin(πx1) cos(πx2)

cos(πx1) sin(πx2)

)
, uD :=

π

2

(
sin(πx1) exp(x2)
sin(πx2) exp(x1)

)
,

p? := x1 cos(πx2) in Ω?, with ? ∈ {S,D}.
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Notice that this solution satisfies uS · n = uD · n on Σ. However, the Beavers–Joseph–Saffman
conditions (3.2) and (3.7) are not satisfied, whereas the Dirichlet boundary condition for the Navier–
Stokes velocity on ΓS and the Neumann boundary condition for the Darcy–Forchheimer velocity on ΓD

are both non-homogeneous. In this way, the right-hand side of the resulting system must be modified
accordingly as well as the global estimators Θ, Ψ1 and Ψ2 (cf. (5.7), (6.4), (6.5)). The results reported
in Tables 7.1 and 7.2 are in accordance with the theoretical sub-optimal rate of convergence O(h1/3)
provided by [7, Theorem 5.2] and [10, Theorem 6.1]. Actually, they are better than expected since
they suggest that only technical difficulties stop us of proving an optimal rate of convergence O(h),
which is in fact observed there. In addition, we notice that the behaviors predicted by (7.1) and the
remarks right after it, are also observed in the tables, in the sense that the efficiency indexes remain
above and below bounded and the reliability indexes, while bounded as well, decrease as the estimators
approach 0.

Example 2: Adaptivity in a 2D helmet-shaped domain.

In our second example, we consider a 2D helmet-shaped domain. More precisely, we consider the
domain Ω = ΩS ∪ Σ ∪ ΩD, where ΩS := (−1,−0.75)× (0, 1.25) ∪ (−0.75, 0.75)× (0, 0.25) ∪ (0.75, 1)×
(0, 1.25), ΩD := (−1, 1)× (−0.5, 0) and Σ := (−1, 1)×{0}. The data fS, fD, and gD are chosen so that
the exact solution in the 2D helmet-shaped domain Ω is given by the smooth functions

uS :=


(x2 − 0.27)

r1(x1, x2)
+

(x2 − 0.27)

r2(x1, x2)

−(x1 + 0.73)

r1(x1, x2)
− (x1 − 0.73)

r2(x1, x2)

 , uD :=

(
sin(πx1) cos(πx1) exp(x2)
sin(πx2) cos(πx2) exp(x1)

)
,

p? := x2 sin(πx1) in Ω?, with ? ∈ {S,D},

where

r1(x1, x2) := 4
√

(x1 + 0.73)2 + (x2 − 0.27)2 and r2(x1, x2) := 4
√

(x1 − 0.73)2 + (x2 − 0.27)2.

Figure 7.1, summarizes the convergence history of the methods applied to a sequence of quasi-
uniformly and adaptively refined triangulation of the domain. Sub-optimal rates are observed in
the first case, whereas adaptive refinements according to any of the a posteriori error indicators:

Θ,Θ1/2,Ψ1, Ψ
1/2
1 ,Ψ2, and Ψ

1/2
2 , yield optimal convergence. In particular, Tables 7.3 and 7.5 summa-

rizes the errors, rates of convergence, efficiency and reliability indexes, and Newton iterations of the
methods applied to a sequence of quasi-uniform refinement triangulation of the domain. In turn, and
for the sake of simplicity, we only show Tables 7.4 and 7.6, which summarizes the convergence history

of the primal-mixed and fully-mixed schemes after Θ and Ψ
1/2
1 , respectively. Notice that in all the

examples, when Θ < 1 (respectively Ψ1 and Ψ2) and h→ 0, the rate of convergence of the total error
and the efficiency and reliability indexes have the behavior that we expected. Notice also how the
adaptive algorithms improves the efficiency of the method by delivering quality solutions at a lower
computational cost, to the point that it is possible to get a better one (in terms of e(~u), respectively
e(~t)) with approximately only the 25% of the degrees of freedom of the last quasi-uniform mesh for
the primal-mixed scheme (respectively fully-mixed scheme).

On the other hand, in Figure 7.2 we show the domain configuration in the initial mesh, the second
component of velocity in the whole domain obtained through the primal-mixed scheme (via the indi-
cator Θ), and the first row of the pseudostress tensor streamlines obtained through the fully-mixed

scheme (via the indicator Ψ
1/2
1 ). In particular, we notice that the Navier–Stokes velocity exhibit high
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gradients near the vertices (−0.75, 0.25) and (0.75, 0.25), and the first row of the pseudostress tensor
streamlines show vortices in the same region. In turn, examples of some adapted meshes generated

using Θ and Ψ
1/2
1 are collected in Figure 7.3. We can observe a clear clustering of elements near

the vertices in ΩS of the 2D helmed-shaped domain as we expected. Notice also a clustering of el-
ements on the interface Σ. This is justified by the fact that dλh

dt = 0 since λh is piecewise constant

on Σ and then the local estimator Θ̃D,T (cf. (5.4)) computes he
∥∥ (fD −UD,h) · t

∥∥3/2

L3/2(e)
instead of

he
∥∥ (fD −UD,h) · t− dλh

dt

∥∥3/2

L3/2(e)
for each e ∈ Eh(Σ) (cf. Lemma 5.6).

N hS hD e(uS) r(uS) e(pS) r(pS) e(uD) r(uD) e(pD) r(pD)

279 0.373 0.373 0.2853 – 0.1628 – 1.7893 – 0.1226 –
1061 0.196 0.190 0.1320 1.204 0.0601 1.556 0.8346 1.133 0.0503 1.324
3877 0.103 0.097 0.0653 1.081 0.0274 1.208 0.4119 1.043 0.0206 1.320

15057 0.051 0.057 0.0336 0.950 0.0134 1.024 0.2126 1.268 0.0101 1.363
59203 0.027 0.026 0.0164 1.143 0.0069 1.060 0.1057 0.877 0.0049 0.898

236687 0.014 0.013 0.0082 1.000 0.0034 1.039 0.0527 1.068 0.0025 1.072

hΣ e(λ) r(λ) e(~u) r(~u) Θ eff(Θ) rel(Θ1/2) iter

1/4 0.0866 – 2.4466 – 20.2522 0.1208 0.5437 5
1/8 0.0358 1.274 1.1128 1.230 10.0338 0.1109 0.3513 6
1/16 0.0177 1.020 0.5429 1.104 5.1863 0.1047 0.2384 6
1/32 0.0083 1.083 0.2780 1.151 2.6229 0.1060 0.1716 6
1/64 0.0041 1.019 0.1380 0.936 1.3279 0.1040 0.1198 6
1/128 0.0020 1.004 0.0687 1.005 0.6683 0.1028 0.0840 6

Table 7.1: Example 1, BR−RT0 − P0 − P0 primal-mixed scheme with quasi-uniform refinement.
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Figure 7.1: Example 2, Log-log plot of e(~u) (respectively e(~t)) vs. N for quasi-uniform/adaptive mixed
schemes.
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N hS e(σS) r(σS) e(uS) r(uS) e(γS) r(γS) e(pS) r(pS)

358 0.373 2.2325 – 0.7314 – 0.4206 – 0.2897 –
1341 0.190 0.9447 1.277 0.2481 1.606 0.2282 0.908 0.1346 1.139
4877 0.102 0.4756 1.103 0.1194 1.176 0.1200 1.033 0.0636 1.204

18874 0.051 0.2335 1.016 0.0589 1.008 0.0638 0.901 0.0296 1.095
74123 0.027 0.1176 1.099 0.0296 1.103 0.0306 1.176 0.0155 1.032

295926 0.014 0.0586 1.001 0.0146 1.016 0.0155 0.982 0.0075 1.038

hD ĥΣ hΣ e(uD) r(uD) e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ)

0.373 1/2 1/4 1.7888 – 0.1394 – 0.2324 – 0.0688 –
0.190 1/4 1/8 0.8346 1.132 0.0525 1.450 0.1221 0.929 0.0346 0.992
0.097 1/8 1/16 0.4119 1.043 0.0208 1.366 0.0557 1.132 0.0174 0.993
0.057 1/16 1/32 0.2126 1.237 0.0102 1.350 0.0261 1.092 0.0083 1.064
0.026 1/32 1/64 0.1057 0.882 0.0049 0.907 0.0123 1.082 0.0041 1.017
0.013 1/64 1/128 0.0527 1.082 0.0024 1.087 0.0062 0.984 0.0020 1.003

e(~t) r(~t) Ψ1 eff(Ψ1) rel(Ψ
1/2
1 ) Ψ2 eff(Ψ2) rel(Ψ

1/2
2 ) iter

5.6139 – 20.3330 0.2761 1.2450 21.3233 0.2633 1.2157 5
2.4348 1.223 10.0583 0.2450 0.7772 10.6751 0.2309 0.7544 6
1.2208 1.130 5.1317 0.2379 0.5389 5.5172 0.2213 0.5197 6
0.6134 1.167 2.5801 0.2378 0.3819 2.8311 0.2167 0.3646 6
0.3050 0.951 1.3070 0.2333 0.2668 1.4719 0.2072 0.2514 6
0.1521 1.001 0.6605 0.2303 0.1872 0.7780 0.1955 0.1725 6

Table 7.2: Example 1, RT0−P1−P0−RT0−P0−P1−P0 fully-mixed scheme with quasi-uniform
refinement.

-0.89 -0.43 0.036-1.4 0.5
. 0.68 1.35 2.030.0 2.7

. Magnitude

Figure 7.2: Example 2, domain configuration in the initial mesh, second velocity component on the
whole domain and first row of the Navier–Stokes pseudostress tensor streamlines.

References

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton, NJ, 1965.

[2] M. Alvarez, G.N. Gatica, and R. Ruiz-Baier, A posteriori error analysis for a viscous

38



N hS hD e(uS) r(uS) e(pS) r(pS) e(uD) r(uD) e(pD) r(pD)

975 0.188 0.200 0.4994 – 0.2520 – 0.6380 – 0.0279 –
3803 0.100 0.095 0.3710 0.473 0.1476 0.852 0.3067 0.984 0.0135 0.971

13907 0.050 0.049 0.2486 0.578 0.0908 0.700 0.1558 1.037 0.0067 1.064
55232 0.026 0.026 0.1278 1.005 0.0500 0.903 0.0783 1.081 0.0034 1.089

214793 0.014 0.013 0.0668 1.111 0.0265 1.087 0.0392 0.968 0.0017 0.963
859813 0.007 0.007 0.0033 0.962 0.0134 0.917 0.0196 1.204 0.0009 1.202

hΣ e(λ) r(λ) e(~u) r(~u) Θ eff(Θ) rel(Θ1/2) iter

1/8 0.0088 – 1.4261 – 5.9111 0.2413 0.5866 5
1/16 0.0021 2.088 0.8409 0.776 3.9451 0.2131 0.4234 5
1/32 0.0005 2.032 0.5025 0.794 2.2787 0.2205 0.3329 5
1/64 0.0001 1.974 0.2595 0.958 1.3192 0.1967 0.2260 5
1/128 3.9 e-5 2.052 0.1342 0.971 0.6619 0.2027 0.1649 5
1/256 8.1 e-6 1.934 0.0665 1.013 0.3315 0.2004 0.1154 5

Table 7.3: Example 2, BR−RT0 − P0 − P0 primal-mixed scheme with quasi-uniform refinement.

Figure 7.3: Example 2, three snapshots of adapted meshes according to the indicators Θ and Ψ
1/2
1

(top and bottom plots, respectively).

flow-transport problem. ESAIM Math. Model. Numer. Anal. 50 (2016), no. 6, 1789–1816.
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[6] J. Camaño, C. Garćıa, and R. Oyarzúa, Analysis of a conservative mixed-FEM for
the stationary Navier–Stokes problem. Preprint 2018-25, Centro de Investigación en Ingenieŕıa
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