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Abstract

In this work we introduce and analyze a mixed virtual element method (mixed-VEM) for the
two-dimensional stationary Boussinesq problem. The continuous formulation is based on the in-
troduction of a pseudostress tensor depending nonlinearly on the velocity, which allows to obtain
an equivalent model in which the main unknowns are given by the aforementioned pseudostress
tensor, the velocity and the temperature, whereas the pressure is computed via a postprocessing
formula. In addition, an augmented approach together with a fixed point strategy is used to an-
alyze the well-posedness of the resulting continuous formulation. Regarding the discrete problem,
we follow the approach employed in a previous work dealing with the Navier-Stokes equations,
and couple it with a VEM for the convection-diffusion equation modelling the temperature. More
precisely, we use a mixed-VEM for the scheme associated with the fluid equations in such a way
that the pseudostress and the velocity are approximated on virtual element subspaces of H(div)
and H1, respectively, whereas a VEM is proposed to approximate the temperature on a virtual
element subspace of H1. In this way, we make use of the L2-orthogonal projectors onto suitable
polynomial spaces, which allows the explicit integration of the terms that appear in the bilinear
and trilinear forms involved in the scheme for the fluid equations. On the other hand, in order
to manipulate the bilinear form associated to the heat equations, we define a suitable projector
onto a space of polynomials to deal with the fact that the diffusion tensor, which represents the
thermal conductivity, is variable. Next, the corresponding solvability analysis is performed using
again appropriate fixed-point arguments. Further, Strang-type estimates are applied to derive the
a priori error estimates for the components of the virtual element solution as well as for the fully
computable projections of them and the postprocessed pressure. Finally, the corresponding rates
of convergence are also established.

Key words: Boussinesq problem, pseudostress-based formulation, augmented formulation, mixed
virtual element method, high-order approximations

1 Introduction

In [24] we developed a mixed-VEM for a pseudostress-velocity formulation of the two-dimensional
Navier-Stokes equations. There, we employed a dual-mixed approach based on the introduction of a
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nonlinear pseudostress linking the usual linear one for the Stokes equations and the convective term.
In this way, the resulting continuous scheme is augmented with Galerkin type terms arising from the
constitutive and equilibrium equations, and the Dirichlet boundary condition, all them multiplied
by suitable stabilization parameters, so that the Banach fixed-point and Lax-Milgram theorems are
applied to establish the well-posedness of the continuous scheme (cf. [16]). Regarding the discrete
problem we proposed there the simultaneous use of virtual element subspaces for H1 and H(div)
in order to approximate the velocity and the pseudostress, respectively. Then, the discrete bilinear
and trilinear forms involved, their main properties, and the associated mixed virtual scheme were
defined, and the corresponding solvability was performed by applying similar techniques to those
for the continuous formulation. Other contributions dealing with VEM for nonlinear models include
[13, 25, 17, 9, 27]. More specifically, in [13] the authors proposed a mixed-VEM for quasi-Newtonian
Stokes flows, whereas in [25] the approach from [13] was extend to a nonlinear Brinkman model of
porous media flow. In [17] a virtual element method dealing with quasilinear elliptic problems was
developed. Finally, an H1-conforming VEM for the Navier-Stokes equations was introduced in [9],
whereas a nonconforming one was proposed in [27].

On the other hand, the development of new mixed finite element methods for the Boussinesq model
has constituted a very active research topic in recent years [19, 20, 21, 2, 3, 4]. In particular, an aug-
mented mixed-primal formulation is introduced and analyzed in [19], where the sought quantities are
the pseudostress, the velocity, the temperature, and the normal heat flux through the boundary. Un-
der sufficiently small data, it is proved there that when Raviart-Thomas, Lagrange, and discontinuous
piecewise finite elements are used to approximate the above unknowns, then the resulting Galerkin
method is well-posed and optimally-convergent. Similarly, two formulations for this model, based on
a dual-mixed formulation for the momentum equation, and either a primal or a mixed-primal one for
the energy equation, are proposed in [20]. In this case, the velocity, the trace-free gradient, and the
normal heat flux are approximated by discontinuous piecewise polynomials, whereas Raviart-Thomas
and Lagrange elements are employed for the stress and the temperature, which guarantees the stabil-
ity and the optimal convergence of the finite element methods. In turn, the Boussinesq problem with
temperature-dependent parameters was studied in [2] for the two-dimensional case. There, the au-
thors propose an augmented mixed-primal finite element method that approximates the pseudostress
tensor with Raviart-Thomas elements of order k+ 1, the velocity and the temperature with Lagrange
elements of order k, and the vorticity tensor and normal heat flux on the boundary with discontinuous
piecewise polynomials of degree ≤ k, thus obtaining optimal a priori error estimates as well. Later on,
the approach from [2] is suitably modified in [3] to derive an augmented mixed-primal finite element
method for the n-dimensional case, n ∈ {2, 3}, in which the incorporation of the strain rate tensor as
an auxiliary unknown plays a key role in the analysis. Discontinuous piecewise polynomial functions
of degree ≤ k, together with Raviart-Thomas and Lagrange elements of order k and k+1, respectively,
are utilized in [3] to approximate the strain rate, the vorticity, the normal heat flux, the pseudostress,
the velocity, and the temperature of the fluid.

According to the above discussion and in order to continue extending the applicability of VEM
to nonlinear models in fluids mechanics, we now generalize the approach from [24] to the case of the
Boussinesq problem. More precisely, we consider the equations and the variational formulation from
[19], and then adapt the approach from [24] to propose, up to our knowledge by the first time, a
mixed-VEM for Boussinesq. In fact, the pseudostress and the velocity of the fluid are approximated
by virtual element subspaces of H(div) and H1, respectively, whereas a virtual element subspace of
H1 is employed to approximate the temperature. Thus, similarly as in the aforementioned references,
fixed-point arguments are utilized to develop the corresponding solvability analysis, whereas Strang-
type estimates are applied to derive the corresponding a priori error estimates for the components
of the virtual element solution as well as for their fully calculable projections and the postprocessed
pressure.
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1.1 Outline

The rest of this work is organized as follows. At the end of the present section we provide some
useful notations. In Section 2 we describe our nonlinear model, recall from [19] the derivation of the
augmented formulation to be employed, as well as the corresponding well-posedness result. Then,
in Section 3 we introduce the virtual element subspaces approximating the temperature, the velocity
and the pseudostress in H1, H1 and H(div), respectively, state their approximation properties, and
define the L2-projectors and remaining ingredients that are needed for the discrete analysis. In turn,
computable discrete versions of the bilinear and trilinear forms involved, and of the corresponding
functional on the right-hand side of the formulation, are locally and then globally defined in Section 4.
Next, in Section 5 we define the associated mixed virtual element scheme, and perform its solvability
analysis by using suitable fixed-point arguments. Moreover, we apply Strang-type estimates to derive
the a priori error estimates for both the virtual element solution and the fully computable projections
of its components. The corresponding rates of convergence are then readily established by using the
approximation properties of the subspaces introduced in Sections 3 and 4.

1.2 Notations

For any vector fields v = (vi)i=1,2 and w = (wi)i=1,2, we set the gradient, divergence and tensor
product operators as

∇v :=

(
∂vi
∂xj

)
i,j=1,2

, div (v) :=

2∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,2 ,

respectively. In addition, denoting by I the identity matrix of R2×2, and given τ := (τij), ζ := (ζij) ∈
R2×2, we write as usual

τ t := (τji) , tr(τ ) :=

2∑
i=1

τii, τd := τ − 1

2
tr(τ ) I , and τ : ζ :=

2∑
i,j=1

τijζij ,

which corresponds, respectively, to the transpose, the trace, and the deviator tensor of τ , and to the
tensorial product between τ and ζ. Next, given a bounded domain O ⊆ R2 with boundary ∂O, we
let n be the outward unit normal vector on ∂O. Also, given r ≥ 0 and 1 < p ≤ ∞, we let Wr,p(O) be
the standard Sobolev space with norm ‖ · ‖r,p,O and seminorm | · |r,p,O. In particular, for r = 0 we let
Lp(O) := W0,p(O) be the usual Lebesgue space, and for p = 2 we let Hs(O) := Wr,2(O) be the classical
Hilbertian Sobolev space with norm ‖ · ‖s,O and seminorm | · |s,O. Furthermore, given a generic scalar
functional space M, we let M and M be its vector and tensorial counterparts, respectively, whose
norms and seminorms are denoted exactly as those of M. On the other hand, letting div (resp. rot)
be the usual divergence operator div (resp. rotational operator rot) acting along the rows of a given
tensor, we recall that the space

H(div;O) :=
{
τ ∈ L2(O) : div (τ ) ∈ L2(O)

}
,

and

H(rot;O) :=
{
τ ∈ L2(O) : rot (τ ) ∈ L2(O)

}
,

equipped with the usual norms

‖τ‖2div;O := ‖τ‖20,O + ‖div (τ )‖20,O ∀ τ ∈ H(div;O) ,
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and
‖τ‖2rot;O := ‖τ‖20,O + ‖rot (τ )‖20,O ∀ τ ∈ H(rot;O) ,

are Hilbert spaces. Also, we define

H0(div;O) :=
{
τ ∈ H(div;O) :

∫
Ω

tr(τ ) = 0
}
,

and recall (see [11, 23]) that there holds the decomposition

H(div;O) = H0(div;O)⊕ R I . (1.1)

More precisely, for each τ ∈ H(div;O) there exist unique τ 0 ∈ H0(div;O) and c := 1
2|O|

∫
O tr(τ ) ∈ R,

where |O| denotes the measure of O, such that τ = τ 0 + c I. Finally, in what follows we employ 0
to denote a generic null vector, null tensor or null operator, and use C to denote generic constants
independent of the discretization parameters, which may take different values at different places.

2 The model problem and its continuous formulation

Let Ω be a bounded polygonal domain in R2 with boundary Γ. We consider the stationary Boussinesq
problem, that is, given an external force per unit mass g ∈ L∞(Ω) and the boundary data uD ∈
H1/2(Γ) and ϕN ∈ H−1/2(Γ), we are interested in finding the velocity u, the pressure p and the
temperature ϕ of a fluid occupying the region Ω, such that

−µ∆u + (∇u)u + ∇ p − gϕ = 0 in Ω , div (u) = 0 in Ω , u = uD on Γ ,

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω and (K∇ϕ) · n = ϕN on Γ ,
(2.1)

where µ > 0 is the fluid viscosity and K ∈ L∞(Ω) is a uniformly positive definite tensor describing the
thermal conductivity. Note that from the incompressibility condition (cf. second equation in (2.1))
the data uD must satisfy the compatibility condition

∫
Γ uD · n = 0. In addition, the uniqueness of a

pressure solution of (2.1), is ensured in the space L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω q = 0

}
.

Now, proceeding as in [19, Section II], we introduce the pseudostress tensor

σ := µ∇u − (u⊗ u) − p I in Ω , (2.2)

and use the incompressibility condition to eliminate the pressure, so that then our model problem
(2.1) can be rewritten equivalently as

σd + (u⊗ u)d = µ∇u in Ω, −div (σ) − gϕ = 0 in Ω , u = uD on Γ ,

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω, (K∇ϕ) · n = ϕN on Γ and

∫
Ω

tr(σ + u⊗ u) = 0 ,
(2.3)

where the pressure p can be approximated by the postprocessing formula

p = −1

2
tr (σ + u⊗ u) in Ω . (2.4)

Next, following [19, Section III], and motivated by the decomposition (1.1), we test the first, second
and fourth equation of (2.3), with τ ∈ H0(div; Ω), v ∈ H1(Ω), and ψ ∈ H1(Ω), respectively. Then,
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we integrate by parts, use the boundary conditions, and enrich the resulting variational formulation
with the incorporation of the following redundant terms

κ1

∫
Ω

{
µ∇u− (u⊗ u)d − σd

}
: ∇v = 0 ∀v ∈ H1(Ω) ,

κ2

∫
Ω
div (σ) · div (τ ) + κ2

∫
Ω
gϕ · div (τ ) = 0 ∀ τ ∈ H0(div; Ω) ,

κ3

∫
Γ
u · v = κ3

∫
Γ
uD · v ∀v ∈ H1(Ω) ,

with κ1, κ2 and κ3 positives parameters to be specified later. In this way, we arrive at the following
augmented formulation: Find (~σ, ϕ) := ((σ,u), ϕ) ∈ H×H such that

A(~σ, ~τ ) + B(u; ~σ, ~τ ) = F(ϕ; ~τ ) + FD(~τ ) ∀ ~τ := (τ ,v) ∈ H := H0(div; Ω)×H1(Ω),

a(ϕ,ψ) = F(u, ϕ;ψ) + FN (ψ) ∀ ψ ∈ H := H1(Ω) ,
(2.5)

where the forms A,B and a are defined, respectively as

A(~σ, ~τ ) :=

∫
Ω
σd : τd + κ2

∫
Ω
div (σ) · div (τ ) + κ1 µ

∫
Ω
∇v : ∇u

−µ
∫

Ω
v · div (σ) + µ

∫
Ω
u · div (τ ) − κ1

∫
Ω
σd : ∇v + κ3

∫
Γ
v · u ,

(2.6)

B(z; ~σ, ~τ ) :=

∫
Ω

(u⊗ z)d :
{
τ − κ1∇v

}
, (2.7)

and

a(ϕ,ψ) :=

∫
Ω
K∇ϕ · ∇ψ (2.8)

for all ~σ := (σ,u) ∈ H, for all z ∈ H1(Ω), and for all ϕ,ψ ∈ H. In turn, F(ϕ) (with a given
ϕ ∈ H1(Ω)), and F(u, ϕ) (with a given (u, ϕ) ∈ H1(Ω)×H1(Ω)), are the linear functionals defined by

F(ϕ; ~τ ) :=

∫
Ω
gϕ ·

{
µv − κ2 div (τ )

}
, (2.9)

and

F(u, ϕ;ψ) := −
∫

Ω
(u · ∇ϕ)ψ , (2.10)

respectively, whereas FD and FN are given by

FD(~τ ) := κ3

∫
Γ
uD · v + µ 〈τn,uD〉 and FN (ψ) := 〈ϕN , ψ〉 . (2.11)

We recall here that the choice of H1(Ω) and H1(Ω) as tests functions spaces for the velocity u and the
temperature ϕ, is motivated by the convective terms at the first and fourth equation in (2.3), which
require u and ϕ to be in spaces smaller than L2(Ω) and L2(Ω), respectively. In fact, this is possible
thanks to the Cauchy-Schwarz and Hölder inequalities, and the compact (and hence continuous)
injections (see [16, 19] for more details)

ic : H1(Ω)→ L4(Ω) and ic : H1(Ω)→ L4(Ω) . (2.12)

In this way, according to (2.7) and (2.12), we have that

|B(z;~ζ, ~τ )| ≤ CB‖z‖1,Ω‖~ζ‖H‖~τ‖H ∀ z ∈ H1(Ω), ∀~ζ, ~τ ∈ H . (2.13)
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with CB := ‖ic‖2(1 + κ2
1)1/2.

In addition, the analysis of the continuous formulation (2.5) is analogous to [19, Section III], and
therefore up to minor changes caused by the incorporation now of the Neumann boundary condition
for (K∇ϕ) ·n (instead of the nonhomogenous Dirichlet condition for ϕ), its well-posedness is developed
through a fixed-point strategy based on decoupling the fluid and heat equations, and then combining
the classical Banach Theorem and the Lax-Milgram Theorem. In particular, it was proved there (cf.
[19, Lemma 3.3]) that for κ1 ∈ (0, 2µ) and κ2, κ3 ∈ (0,∞), there exists αA > 0 (cf. [19, eq. 3.30]),
depending on κ1, κ2, κ3, µ and the constants c1(Ω) and c2(Ω) (cf. Lemma 4.3 below), such that

A(~τ , ~τ ) ≥ αA‖~τ‖2H ∀ ~τ ∈ H , (2.14)

which together with (2.13), yielded the H-ellipticity of the bilinear form A + B(z; ·, ·) for sufficiently

small z, that is, for each z ∈ H1(Ω) such that ‖z‖1,Ω ≤
αA

2CB
, there holds (cf. [19, eq. 3.32])

A(~τ , ~τ ) + B(z; ~τ , ~τ ) ≥ αA

2
‖~τ‖2H ∀ ~τ ∈ H .

In turn, the boundedness of the bilinear form A (cf. (2.6)) is obtained with a constant CA > 0,
depending on κ1, κ2, κ3, µ and ‖γ0‖, where γ0 : H1(Ω)→ H1/2(Γ) is the usual trace operator, that is,
there holds

|A(~ζ, ~τ )| ≤ CA‖~ζ‖H‖~τ‖H ∀~ζ, ~τ ∈ H . (2.15)

Furthermore, given φ ∈ H1(Ω), it follows from the Cauchy-Schwarz inequality and the trace theorems
in H(div; Ω) and H1(Ω), that

‖F(φ; ·)‖ ≤ CF‖g‖∞,Ω‖φ‖0,Ω ,

‖FD‖ ≤ κ3‖γ0‖‖uD‖0,Γ + µ‖uD‖1/2,Γ ,
(2.16)

with CF := (µ2 + κ2
2)1/2. In this way, denoting MF := max

{
CF, κ3‖γ0‖

}
, we get

‖F(φ; ·) + FD‖ ≤MF

{
‖g‖∞,Ω‖φ‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
. (2.17)

On the other hand, it is clear from (2.8) and the properties of the tensor K, that a is a bounded and
H-elliptic bilinear form with constants ‖K‖∞,Ω and αa, respectively. In addition, according to the
duality pairing of H−1/2(Γ) and H1/2(Γ), and (2.12), it follows from (2.10) and (2.11) that for a given
(z, φ) ∈ H1(Ω)×H1(Ω), there hold

‖F(z, φ)‖ ≤ CF‖z‖1,Ω|φ|1,Ω and ‖FN‖ ≤ ‖ϕN‖−1/2,Γ ,

with CF := ‖ic‖‖ic‖. Then, denoting MF :=
{

1, CF

}
, we get

‖F(z, φ) + FN‖ ≤MF

{
‖z‖1,Ω|φ|1,Ω + ‖ϕN‖−1/2,Γ

}
.

Finally, by using the aforementioned arguments we can conclude the following result.

Theorem 2.1. Let κ1 ∈ (0, 2µ) and κ2 , κ3 ∈ (0,∞). Given ρ ∈
(

0,
αA

2CB

)
, let Wρ be the closed ball

in H1(Ω)×H1(Ω) defined by Wρ :=
{

(z, φ) ∈ H1(Ω)×H1(Ω) : ‖(z, φ)‖ ≤ ρ
}

. In addition, assume

that the data satisfy the assumptions

cT

{
‖g‖∞,Ω + ‖uD‖0,Ω + ‖uD‖1/2,Γ + ‖ϕN‖−1/2,Γ

}
≤ ρ ,
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and
CT

{
‖g‖∞,Ω + ‖uD‖0,Ω + ‖uD‖1/2,Γ

}
< 1 ,

where cT := cT(ρ,MF, αA,MF, αa) and CT := CT(ρ, CF, CF, CB, αa, αA,MF) are positive constants.
Then, problem (2.5) has a unique solution ((σ,u), ϕ) ∈ H×H with (u, ϕ) ∈Wρ. Moreover, there hold

‖(σ,u)‖H ≤
2MF

αA

{
ρ ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
, (2.18)

and

‖ϕ‖1,Ω ≤
2MF

αa

{
ρ ‖u‖1,Ω + ‖ϕN‖−1/2,Γ

}
. (2.19)

Proof. We omit details and refer to [19, Theorem 3.9].

3 The virtual element subspaces

In this section we introduce suitable virtual element subspaces for H1(Ω), H1(Ω), and H0(div; Ω), to-
gether to their respective approximation properties. To this end, we will assume the basic assumptions
on meshes that are standard in this context (cf. [5, 10]), that is, given {Th}h>0 a family of decomposi-
tions of Ω in polygonal elements K, and given a particular K ∈ Th, we denote its barycenter, diameter,
and number of edges by xK , hK , and dK , respectively, and define, as usual, h := max{hK : K ∈ Th}.
In addition, we assume that there exists a constant CT > 0 such that for each decomposition Th and
for each K ∈ Th there hold:

a) the ratio between the shortest edge and the diameter hK of K is bigger than CT , and

b) K is star-shaped with respect to a ball B of radius CT hK and center xB ∈ K.

Now, given an integer ` ≥ 0 and O ⊆ R2, we let P`(O) be the space of polynomials on O of
degree up to `, and according to the notations introduced in Section 1.2, we set P`(O) := [P`(O)]2

and P`(O) := [P`(O)]2×2. Also, in what follows we use the multi-index notation, that is, given
x := (x1, x2)t ∈ R2 and α := (α1, α2)t, with non-negative integers α1, α2, we let xα := xα1

1 xα2
2 and

|α| := α1 + α2. Furthermore, given K ∈ Th and an edge e ∈ ∂K with barycentric xe and diameter
he, we introduce the following sets of (`+ 1) normalized monomials on e

B`(e) :=

{(
x− xe
he

)j}
0≤j≤`

,

and 1
2(`+ 1)(`+ 2) normalized monomials on K

B`(K) :=

{(
x− xK
hK

)α}
0≤|α|≤`

,

which constitute basis of P`(e) and P`(K), respectively. In addition, denoting B̃0(K) := B1(K), we
define for each integer ` ≥ 1,

B̃`(K) := B`+1(K) \ B`−1(K) ,

which is a basis of the subspace of polynomials on K of degree exactly ` + 1 or `. In turn, the
corresponding vector and tensor versions of the foregoing sets of monomials are given by

B`(e) :=
{

(q, 0)t : q ∈ B`(e)
}
∪
{

(0, q)t : q ∈ B`(e)
}
,

B`(K) :=
{

(q, 0)t : q ∈ B`(K)
}
∪
{

(0,q)t : q ∈ B`(K)
}
,
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and
B̃`(K) :=

{
(q, 0)t : q ∈ B̃`(K)

}
∪
{

(0,q)t : q ∈ B̃`(K)
}
.

On the other hand, for each integer ` ≥ 0, we let G`(K) be a basis of
(
∇P`+1(K)

)⊥∩P`(K), which
is the L2(K)-orthogonal of ∇P`+1(K) in P`(K), and denote its vectorial counterparts as follow:

G`(K) :=

{(
q
0

)
: q ∈ G`(K)

}
∪
{(

0
q

)
: q ∈ G`(K)

}
.

We remark that, alternatively, one could also consider another choices, not necessarily orthogonal, that
have been proposed recently, such as Pk(K) = ∇Pk+1⊕x⊥Pk−1(K), where, given x := (x1, x2) ∈ R2,
x⊥ denotes the rotated vector (−x2, x1). Actually, it is not difficult to see that it suffices to choose
any space G(K) such that P`(K) = ∇P`+1 ⊕ G(K).

Finally, we let

H1(Th) :=
{
ψ ∈ L2(Ω) : ψ|K ∈ H1(K) ∀ K ∈ Th

}
,

and consider the H1-broken seminorm

|ψ|1,h :=

{ ∑
K∈Th

‖∇ψ‖20,K

}1/2

∀ ψ ∈ H1(Th) .

3.1 The virtual subspace of H1(Ω)

Given K ∈ Th and an integer k ≥ 0, we first let RKk : H1(K) → Pk+1(K) be the projection operator
defined for each ψ ∈ H1(K) as the unique polynomial RKk (ψ) ∈ Pk+1(K) satisfying (cf. [5, 7])∫

K
∇RKk (ψ) · ∇q =

∫
K
∇ψ · ∇q ∀ q ∈ Pk+1(K) ,∫

∂K
RKk (ψ) =

∫
∂K

ψ .

(3.1)

Also, it is readily seen from the first equation of (3.1) that

|RKk (ψ)|1,K ≤ |ψ|1,K ∀ ψ ∈ H1(K) .

In addition, we recall from [7, Lemma 5.1] that for integers m ∈ [2, k + 2] and ` ∈ [1,m], there holds
the approximation property

‖ψ −RKk (ψ)‖`,K ≤ C hm−`K |ψ|m,K ∀ψ ∈ Hm(K) , ∀K ∈ Th . (3.2)

Furthermore, we now consider the finite-dimensional subspace of C(∂K) given by

Bk(∂K) :=
{
ψ ∈ C(∂K) : ψ|e ∈ Pk+1(e) , ∀ edge e ⊆ ∂K

}
, (3.3)

define the following local virtual element space (see, e.g. [1])

QKk :=
{
ψ ∈ H1(K) : ψ|∂K ∈ Bk(∂K) , ∆ψ ∈ Pk+1(K) ,

and

∫
K

{
RKk (ψ)− ψ

}
q = 0 ∀ q ∈ B̃k(K)

}
,

(3.4)
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and recall from [1] the following degrees of freedom for a given ψ ∈ QKk

i) the value of ψ at the ith vertex of K , ∀ i vertex of K ,

ii) the values of ψ at k uniformly spaced points on e , ∀ e ∈ ∂K , for k ≥ 1 ,

iii) the moments

∫
K
ψ q , ∀ q ∈ Bk−1(K) , for k ≥ 1 .

(3.5)

It is well-known that for each ψ ∈ QKk the projection RKk (ψ) ∈ Pk+1(K) is fully computable using
only the degrees of freedom (3.5) (cf. [1, 5]). In addition, for each K ∈ Th and ψ ∈ H1(K), we denote
its QKk -interpolant by ψI , and recall next from [1] its associated approximation properties.

Lemma 3.1. Let k, ` and m be integers such ` ∈ [0, 1] and m ∈ [2, k+2]. Then, there exists a constant
C > 0, independent of K, such that for each K ∈ Th, there holds

‖ψ − ψI‖`,K ≤ C hm−`K |ψ|m,K ∀ ψ ∈ Hm(K) .

Proof. See [1, Proposition 4].

3.2 The virtual subspace of H1(Ω)

In this section we consider the vectorial version of the virtual element space QKk (cf. (3.4)). Indeed,
given K ∈ Th and an integer k ≥ 0, we let RK

k : H1(K) → Pk+1(K) be the vectorial version of
the projection operator RKk : H1(K) → Pk+1(K) (cf. (3.1)), whose approximation properties are
consequence of (3.2), that is, for each s ∈ [2, k + 2] and ` ∈ [1, s], there holds

‖v −RK
k (v)‖`,K ≤ C hs−`K |v|s,K ∀v ∈ Hs(K) , ∀K ∈ Th . (3.6)

Further, letting Bk(∂K) be the vectorial version of the set Bk(∂K) (cf. (3.3)), we can define the space
V K
k as

V K
k :=

{
v ∈ H1(K) : v

∣∣
∂K
∈ Bk(∂K), ∆v| ∈ Pk+1(K)

and

∫
K

{
RK
k (v)− v

}
· p = 0 ∀ p ∈ B̃k(K)

}
,

(3.7)

whose degrees of freedom, for a given v ∈ V K
k , are given by

i) the value of v at the ith vertex of K , ∀ i vertex of K

ii) the values of v at k uniformly spaced points on e , ∀ e ∈ ∂K , for k ≥ 1 ,

iii) the moments

∫
K
v · p , ∀ p ∈ Bk−1(K) , for k ≥ 1 .

(3.8)

Then, denoting by vI the V K
k -interpolant of v ∈ H1(K), we have the following vector version of

Lemma 3.1.

Lemma 3.2. Let k, ` and m be integers such ` ∈ [0, 1] and m ∈ [2, k+2]. Then, there exists a constant
C > 0, independent of K, such that for each K ∈ Th, there holds

‖v − vI‖`,K ≤ C hm−`K |v|m,K ∀ v ∈ Hm(K) .
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3.3 The virtual subspaces of H0(div; Ω)

For each K ∈ Th and k ≥ 0, we introduce the local virtual space HK
k as follows (see, e.g. [6])

HK
k :=

{
τ ∈ H(div;K) ∩H(rot;K) : τn|e ∈ Pk(e) ∀ edge e ∈ ∂K,

div (τ ) ∈ Pk(K) , and rot (τ ) ∈ Pk−1(K)
}
,

(3.9)

whose local degrees of freedom, for a given τ ∈ HK
k , are given by∫

e
τn · q ∀ q ∈ Bk(e) , ∀ edge e ∈ ∂K ,∫

K
τ : ∇q ∀ q ∈ Bk(K) \ {(1, 0)t, (0, 1)t} ,∫

K
τ : ρ ∀ ρ ∈ Gk(K) .

(3.10)

Now, for each K ∈ Th and τ ∈ H1(K), we denote its HK
k -interpolant by τ I , which has the following

approximation properties: for each integer r ∈ [1, k + 1] there exists C > 0, independent of K, such
that

‖τ − τ I ‖0,K ≤ C hrK |τ |r,K ∀ τ ∈ Hr(K) . (3.11)

In addition, for each integer r ∈ [0, k + 1] there exists C > 0, independent of K, such that

‖div (τ )− div (τ I)‖0,K ≤ C hrK |div (τ )|r,K ∀ τ ∈ H1(K) with div(τ ) ∈ Hr(K) . (3.12)

Then, the foregoing estimate together with (3.11) yields the following result.

Lemma 3.3. For each integer r ∈ [1, k + 1] there exists C > 0, independent of K, such that

‖τ − τ I‖div;K ≤ C hrK

{
|τ |r,K + |div (τ )|r,K

}
∀ τ ∈ Hr(K) with div(τ ) ∈ Hr(K) .

Proof. It follows straightforwardly from (3.11) and (3.12).

3.4 The global virtual subspaces

We now set the global virtual element subspaces of H0(div; Ω), H1(Ω) and H1(Ω), respectively, that
is

Hh
k :=

{
τ ∈ H0(div; Ω) : τ

∣∣
K
∈ HK

k ∀ K ∈ Th
}
, (3.13)

Qhk :=
{
ψ ∈ H1(Ω) : ψ

∣∣
K
∈ QKk ∀ K ∈ Th

}
, (3.14)

and
V h
k :=

{
v ∈ H1(Ω) : v

∣∣
K
∈ V K

k ∀ K ∈ Th
}
, (3.15)

or equivalently

V h
k :=

{
v := (v1, v2) ∈ H1(Ω) : vi ∈ Qhk ∀ i ∈

{
1, 2
}}

.

Then, from Lemmas 3.1, 3.2, and 3.3, the approximation properties of (3.13), (3.14) and (3.15) are
given, respectively by
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(APσ
h ) there exists C > 0, independent of h, such that for each integer r ∈ [1, k + 1] there holds

dist(σ, Hh
k ) := inf

ζh∈Hh
k

‖σ − ζh‖div;Ω ≤ C hr
{ ∑
K∈Th

(
|σ|2r,K + |div (σ)|2r,K

)}1/2

for all σ ∈ H0(div; Ω) such that σ|K ∈ Hr(K) and div (σ)|K ∈ Hr(K), for all K ∈ Th.

(APϕ
h) there exists C > 0, independent of h, such that for each integer m ∈ [2, k + 2] there holds

dist(ϕ,Qhk) := inf
φh∈Qh

k

‖ϕ− φh‖1,Ω ≤ Chm−1

{ ∑
K∈Th

|ϕ|2m,K
}1/2

for all ϕ ∈ H1(Ω) such that ϕ
∣∣
K
∈ Hm(K) ∀K ∈ Th .

(APu
h) there exists C > 0, independent of h, such that for each integer s ∈ [2, k + 2] there holds

dist(u, V h
k ) := inf

wh∈V h
k

‖u−wh‖1,Ω ≤ Chs−1

{ ∑
K∈Th

|u|2s,K
}1/2

for all u ∈ H1(Ω) such that u
∣∣
K
∈ Hs(K) ∀K ∈ Th .

3.5 L2-orthogonal projections

For each k ≥ 0, we let PKk : L2(K) → Pk(K) be the L2(K)-orthogonal projector, which, given
ψ ∈ L2(K), is characterized by

PKk (ψ) ∈ Pk(K) and

∫
K
PKk (ψ) q =

∫
K
ψ q ∀ q ∈ Pk(K) .

In addition, it is well-known that, given integers k, s, and ` such that k ≥ 0, s ∈ [1, k + 1], and
` ∈ [0, s], there holds the following approximation property

‖ψ − PKk (ψ)‖`,K ≤ C hs−`K |ψ|s,K ∀ψ ∈ Hs(K) , ∀K ∈ Th . (3.16)

Further, letting PK
k : L2(K) → Pk(K) and PPKk : L2(K) → Pk(K) be the vectorial and tensorial

versions of the orthogonal projector PKk , respectively, as consequence of (3.16) we have that, given
integers k, s, and ` such that k ≥ 0, s ∈ [1, k + 1], and ` ∈ [0, s], there hold

‖v −PK
k (v)‖`,K ≤ C hs−`K |v|s,K ∀v ∈ Hs(K) , ∀K ∈ Th , (3.17)

and
‖τ − PPKk (τ )‖`,K ≤ C hs−`K |τ |s,K ∀ τ ∈ Hs(K) , ∀K ∈ Th . (3.18)

The following lemma establishes the approximation properties of the projector PK
k : L2(K)→ Pk(K)

with respect to more general Sobolev norms

Lemma 3.4. Let K ∈ Th and k, s, m, and p be integers such that k ≥ 0, s ∈ [0, k + 1], ` ∈ [s, k + 1],
and p ∈ [2,+∞). Then, there exists a constant C > 0, independent of K, such that

|v −PK
k (v)|`,p,K ≤ C hs−`K |v|s,p,K ∀ v ∈Ws,p(K) . (3.19)

Proof. See [24, Lemma 3.7].
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As a consequence of the previous lemma, we have the following result.

Lemma 3.5. Let K ∈ Th and k, s, and p be integers such that k ≥ 0, s ∈ [0, k+ 1], and p ∈ [2,+∞).
Then, there exists a constant Ck ≥ 1, independent of K, such that

|PK
k (v)|s,p,K ≤ Ck |v|s,p,K ∀ v ∈Ws,p(K) . (3.20)

Proof. See [24, Lemma 3.8].

In addition, we now recall, as it was remarked in [1] (respectively [6]) that the degrees of freedom
introduced in (3.5) (respectively (3.10)) do allow the explicit calculation of PKk+1(ψ) (respectively

PPKk (τ )) for each ψ ∈ QKk (respectively for each τ ∈ HK
k ). Further, as consequence of the above it is

clear that the degrees of freedom (3.8) ensures the computability of the PK
k+1(v) for each v ∈ V K

k .

Furthermore, also it is possible to compute PK
k (∇ψ) and PPKk (∇v) for each ψ ∈ QKk and v ∈ V K

k ,
respectively. More details can be found in [1, 6, 24, 25]).

4 The discrete forms

We proceed as in [24, Section 4]. Indeed, we introduce a global virtual element subspace of H :=
H0(div; Ω) ×H1(Ω). More precisely, given k ≥ 0, we set Hh

k := Hh
k × V h

k , where Hh
k and V h

k have
been defined in (3.13) and (3.15), respectively. Further, defining HK

k := HK
k × V K

k , it is clear that

Hh
k :=

{
~τ := (τ ,v) ∈ H : ~τ

∣∣
K
∈ HK

k ∀K ∈ Th
}
.

Now, we observe that for each K ∈ Th the local version AK : HK
k ×HK

k → R of the bilinear form A

(cf. (2.6)), which is defined for all ~ζ := (ζ,w), ~τ := (τ ,v) ∈ HK
k by

AK(~ζ, ~τ ) :=

∫
K
ζd : τd + κ2

∫
K
div (ζ) · div (τ ) + κ1µ

∫
K
∇w : ∇v − µ

∫
K
v · div (ζ)

+µ

∫
K
w · div (τ ) − κ1

∫
K
ζd : ∇v + κ3

∫
∂K∩Γ

w · v

is not computable since the tensors ζd, τd, ∇w and ∇v are not known on each K ∈ Th. This is the
reason why in what follows we define a discrete computable versions of AK in terms of some suitable
projection operators. Then, proceeding as in [24], by using the analysis from Section 3.5, we can
introduce a local discrete bilinear form AK

h : HK
k ×HK

k → R, as

AK
h (~ζ, ~τ ) := AK,d(ζ, τ ) + κ2

∫
K
div (ζ) · div (τ ) + AK,∇(w,v)− µ

∫
K
v · div (ζ)

+µ

∫
K
w · div (τ ) − κ1

∫
K

(PPKk (ζ))d : PPKk (∇v) + κ3

∫
∂K∩Γ

w · v

for all ~ζ := (ζ,w), ~τ := (τ ,v) ∈ HK
k , where AK,d

h : HK
k ×HK

k → R and AK,∇
h : V K

k × V K
k → R are

the bilinear forms given by

AK,d
h (ζ, τ ) :=

∫
K

(PPKk (ζ))d : (PPKk (τ ))d + SK,d(ζ − PPKk (ζ), τ − PPKk (τ )) ∀ ζ, τ ∈ HK
k , (4.1)

and

AK,∇
h (w,v) := κ1µ

∫
K
∇RK

k (w) : ∇RK
k (v) + SK,∇(w−RK

k (w),v−RK
k (v)) ∀ w,v ∈ V K

k , (4.2)
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respectively, with SK,d : HK
k × HK

k → R and SK,∇ : V K
k × V K

k → R being symmetric and positive
bilinear forms verifying (see [5, Section 4.6] or [6, Section 3.3])

ĉ0‖ζ‖20,K ≤ SK,d(ζ, ζ) ≤ ĉ1‖ζ‖20,K ∀ ζ ∈ HK
k ,

and
c̃0 |w|21,K ≤ SK,∇(w,w) ≤ c̃1 |w|21,K ∀ w ∈ V K

k ,

where ĉ0, ĉ1, c̃0, c̃1 > 0 are constants depending only on CT . In particular, we can take SK,d (respec-
tively SK,∇) as the bilinear form whose associated matrix with respect to the canonical basis of HK

k

(respectively V K
k ) determined by the degrees of freedom (3.10) (respectively (3.8)), is the identity

matrix.

In addition, the bilinear form SK,∇, which stabilizes the term κ1µ

∫
K
∇RK

k (w) : ∇RK
k (v), does

not need to be multiplied by κ1µ, since the constant that provides the ellipticity of Ah (cf. Lemma 4.4
below), involve the parameters κ2 and κ3, and the unknowns constants c1(Ω) and c2(Ω) (cf. Lemma
4.3). More information about this fact can be found in [24, Section 4.1] or [25, Section 3.4].

Now, the following two lemmas establish the properties of the bilinear forms AK,d (cf. (4.1)) and
AK,∇ (cf. (4.2)), respectively.

Lemma 4.1. For each K ∈ Th, there holds

AK,d
h (p, τ ) = AK,d(p, τ ) ∀ p ∈ Pk(K) , ∀ τ ∈ HK

k .

In addition, there exist constants α1, α2 > 0, independent of h and K, such that

|AK,d
h (ζ, τ )| ≤ α2 ‖ζ‖0,K‖τ‖0,K ∀ ζ, τ ∈ HK

k ,

and
α1 ‖ζd‖20,K ≤ AK,d

h (ζ, ζ) ≤ α2 ‖ζ‖20,K ∀ ζ ∈ HK
k .

Proof. See [24, Lemma 4.2].

Lemma 4.2. For each K ∈ Th there holds

AK,∇
h (q,v) = AK,∇(q,v) ∀ q ∈ Pk(K) , ∀ v ∈ V K

k ,

and there exist positive constants β1, β2, independent of h and K, such that

|AK,∇
h (w,v)| ≤ β2 |w|1,K |v|1,K

and
β1 |w|21,K ≤ AK,∇

h (w,w) ≤ β2 |w|21,K
for all w,v ∈ V K

k .

Proof. See [24, Lemma 4.4].

Hence, we define the global discrete bilinear form Ah : Hh
k ×Hh

k → R as

Ah(~ζ, ~τ ) :=
∑
K∈Th

AK
h (~ζ, ~τ ) ∀ ~ζ, ~τ ∈ Hh

k .
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In turn, in what follows, for each k ≥ 0 we denote by Phk , Ph
k , and PPhk , the global counterparts of the

projections PKk , PK
k , and PPKk , respectively, which were introduced in Section 3.5. In other words, for

each K ∈ Th we let

Phk (ψ)|K := PKk (ψ|K), Ph
k(v)|K := PK

k (v|K) , and PPhk (τ )|K := PPKk (τ |K) ,

for all ψ ∈ L2(Ω), v ∈ L2(Ω), and τ ∈ L2(Ω). Next, we observe that using the properties of the
projector PPhk and the Lemmas 4.1 and 4.2, we can deduce the boundedness of the bilinear form Ah,

that is, there exists a positive constant C̃A, depending only on κ1, κ2, κ3, µ, α2, β2 and ‖γ0‖, such that

|Ah(~ζ, ~τ )| ≤ C̃A ‖~ζ‖H ‖~τ‖H ∀ ~ζ, ~τ ∈ Hh
k . (4.3)

Now, in order to prove the Hh
k-ellipticity of the bilinear form Ah, we require the following results.

Lemma 4.3. There exist constants c1(Ω), c2(Ω) > 0, independent of h, such that

c1(Ω) ‖τ‖20,Ω ≤ ‖τd‖20,Ω + ‖div(τ )‖20,Ω ∀ τ ∈ H0(div; Ω)

and
c2(Ω) ‖v‖21,Ω ≤ |v|21,Ω + ‖v‖20,Γ ∀ v ∈ H1(Ω) .

Proof. See [11, Proposition 3.1, Chapter IV] and [22, Lemma 3.3], respectively.

Lemma 4.4. Assume that κ2, κ3 > 0 and 0 < κ1 < 2 min{α1, β1}, where α1 and β1 are the positive
constants from Lemmas 4.1 and 4.2, respectively. Then, there holds

Ah(~τ , ~τ ) ≥ α̃A ‖~τ‖2H ∀ ~τ ∈ Hh
k , (4.4)

with α̃A := min
{
α1 − κ1

2 ,
κ2
2 , β1 − κ1

2 , κ3

}
min

{
1, c1(Ω), c2(Ω)

}
.

Proof. See [24, Lemma 4.11].

Regarding an optimal choice of the parameters κ1, κ2, and κ3, we follow the approach from [19]
(see also [14] and [15]) and adopt the criterion of maximizing some of the constants defining α̃A. In
this way, κ1 is taken as the midpoint of its range, that is κ1 = min{α1, β1}, and then both κ3 and
κ2
2 are chosen equal to 1

2 min{α1, β1}. If the constants α1 and β1 are not known explicitly, then we
proceed as in the continuous case (see [19]) and replace min{α1, β1} above by µ, thus yielding heuristic
choices for these stabilization parameters.

We now introduce a computable discrete version of the form B defined in (2.7). Indeed, for each
z ∈ V h

k we let Bh(z; · , · ) : Hh
k ×Hh

k → R be the bilinear form defined by

Bh(z;~ζ, ~τ ) :=

∫
Ω

(
Ph
k+1(w)⊗Ph

k+1(z)
)d

:
{
PPhk (τ )− κ1PPhk (∇v)

}
for all ~ζ := (ζ,w), ~τ := (τ ,v) ∈ Hh

k . In addition, the boundedness of the form Bh is established by

(cf. [24, Lemma 4.13])
|Bh(z;~ζ, ~τ )| ≤ C̃B ‖z‖1,Ω ‖~ζ‖H ‖~τ‖H (4.5)

for all z ∈ V h
k and ~ζ, ~τ ∈ Hh

k , with C̃B := ‖ic‖2C2
k (1+κ2

1)1/2. Finally, for a given φ ∈ Qhk , we introduce
the computable discrete version Fh(φ; ·) : Hh

k → R of the functional F(φ; ·) (cf. (2.9)) given by

Fh(φ; ~τ ) :=

∫
Ω
gPhk+1(φ) ·

{
µPh

k+1(v)− κ2 div (τ )
}

∀ ~τ := (τ ,v) ∈ Hh
k . (4.6)
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We remark here that the functional FD : Hh
k → R (cf. (2.11)) is fully computable using the degrees

of freedom (3.8) and (3.10). On the other hand, since the local version aK : QKk × QHk → R of the
bilinear form a (cf. (2.8)), which is defined for all ϕ,ψ ∈ QKk by

aK(ϕ,ψ) :=

∫
K
K∇ϕ · ∇ψ , (4.7)

is not computable, in what follows we aim to define a computable version ah : Qhk × Qhk → R of the
bilinear form a (cf. (2.8)). To this end, motivated by the fact that the tensor K (cf. Section 2) is not
constant, we follow the approach from [8, Section 3.4]. Indeed, for each q ∈ Pk+1(K) and ψ ∈ QKk ,
and bearing in mind the orthogonal projector PK

k : L2(K) → Pk(K), a simple integration by parts
yields ∫

K
PK
k (K∇q) · ∇ψ = −

∫
K

div(PK
k (K∇q))ψ +

∫
∂K

(PK
k (K∇q)) · nψ . (4.8)

Then, using the fact that div(PK
k (K∇q)) ∈ Pk−1(K) and (PK

k (K∇q)) · n ∈ Pk(e) for each edge
e ∈ ∂K, together with the knowledge of the degrees of freedom (3.5), we deduce that the expression
(4.8) is fully computable. Therefore, we can introduce the projection operator ΠK

k : QKk → Pk+1(K)
defined for each ψ ∈ QKk as the unique polynomial ΠK

k (ψ) ∈ Pk+1(K) satisfying (cf. [8, eq. 3.22])∫
K
K∇ΠK

k (ψ) · ∇q =

∫
K
PK
k (K∇q) · ∇ψ ∀ q ∈ Pk+1(K) ,

ΠK
k (ψ) = ψ .

(4.9)

with ψ :=
1

dK

∑
x∈V(K)

ψ(x), where dK and V(K) denote the number of edges and the set of vertices

of K, respectively. Notice that it is clear from (4.8) and (4.9) that ΠK
k (ψ) is well-defined for each

ψ ∈ QKk , and that ΠK
k is indeed a projection operator. Also, it easy to see from the first equation of

(4.9) and the properties of the tensor K that there exists CK > 0, depending only on K, such that

|ΠK
k (ψ)|1,K ≤ CK|ψ|1,K ∀ ψ ∈ H1(K) . (4.10)

In addition, the approximation properties of ΠK
k are established in [8, Section 4], that is, given integers

k, m and ` such that k ≥ 0, m ∈ [2, k + 2] and ` ∈ [1,m], there holds

‖ψ −ΠK
k (ψ)‖`,K ≤ C hm−`K |ψ|m,K ∀ψ ∈ Hm(K) , ∀K ∈ Th . (4.11)

Now, we can introduce a local discrete bilinear form aKh : QKk ×QKk → R, which is defined by

aKh (ϕ,ψ) := aK(ΠK
k (ϕ),ΠK

k (ψ)) + SK,Π(ϕ−ΠK
k (ϕ), ψ −ΠK

k (ψ)) (4.12)

for all ϕ,ψ ∈ QKk , where SK,Π : QKk ×QKk → R is a positive and symmetric bilinear form verifying

c0 |ψ|21,K ≤ SK,Π(ψ,ψ) ≤ c1 |ψ|21,K ∀ ψ ∈ QKk , (4.13)

with c0 c1 positives constant depending only on CT .

The following lemma establishes the properties of the bilinear form (4.12). (cf. [8])

Lemma 4.5. There holds

aKh (p, ψ) =

∫
K
PK
k (K∇p) · ∇ψ ∀ p ∈ Pk+1(K) , ∀ψ ∈ QKk , ∀K ∈ Th ,

and there exist constants α∗, α
∗ > 0, such that

α∗a
K(ψ,ψ) ≤ aKh (ψ,ψ) ≤ α∗aK(ψ,ψ) ∀ψ ∈ QKk , ∀K ∈ Th .
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Proof. See [8, Section 3.4].

In this way, we define the global discrete bilinear form ah : Qhk ×Qhk → R as

ah(ϕ,ψ) :=
∑
K∈Th

aKh (ϕ,ψ) ∀ ϕ,ψ ∈ Qhk .

In turn, it is clear from (2.10) that, given (z, φ) ∈ V h
k × Qhk , the functional F(z, φ; ·) : Qhk → R (cf.

(2.10)) is not computable. Therefore, we introduce a computable discrete version Fh(z, φ; ·), which is
given by

Fh(z, φ;ψ) := −
∫

Ω
(Ph

k+1(z) ·Ph
k(∇φ))Phk+1(ψ) (4.14)

for all ψ ∈ Qhk . We remark here that the functional FN : Qhk → R (cf. (2.11)) is fully computable
using the degrees of freedom (3.5).

5 The virtual element scheme and its stability analysis

We now use the discrete forms analyzed in the previous section to introduce our mixed virtual element
scheme associated with (2.5), which reads: Find (~σh, ϕh) := ((σh,uh), ϕh) ∈ Hh

k ×Qhk such that

Ah(~σh, ~τ h) + Bh(uh; ~σh, ~τ h) = Fh(ϕh; ~τ h) + FD(~τ h) ∀ ~τ h := (τ h,vh) ∈ Hh
k ,

ah(ϕh, ψh) = Fh(uh, ϕh;ψh) + FN (ψh) ∀ ψh ∈ Qhk .
(5.1)

For the stability analysis of the Galerkin scheme (5.1), we follow the approach from [19, Section III.B]
and employ a fixed-point strategy. Indeed, we define the discrete operators Sh : V h

k ×Qhk → Hh
k and

S̃h : V h
k ×Qhk → Qhk , respectively, as

Sh(zh, φh) := (S1,h(zh, φh),S2,h(zh, φh)) = ~σh,

and
S̃h(zh, φh) := ϕh

for all (zh, φh) ∈ V h
k × Qhk , where ~σh := (σh,uh) ∈ Hh

k and ϕh ∈ Qhk are the unique solutions of the
discrete problems:

Ah(~σh, ~τ h) + Bh(zh; ~σh, ~τ h) = Fh(φh; ~τ h) + FD(~τ h) ∀ ~τ h ∈ Hh
k , (5.2)

and
ah(ϕh, ψh) = Fh(zh, φh;ψh) + FN (ψh) ∀ψh ∈ Qhk , (5.3)

respectively. Next, we introduce the operator Th : V h
k ×Qhk → V h

k ×Qhk as

Th(zh, φh) := (S2,h(zh, φh), S̃h(S2,h(zh, φh), φh)) ∀ (zh, φh) ∈ V h
k ×Qhk , (5.4)

and realize that (5.1) can be rewritten as the fixed-point problem: Find (uh, ϕh) ∈ V h
k ×Qhk such that

Th(uh, ϕh) = (uh, ϕh) . (5.5)

The following two lemmas establish the well-posedness of (5.2) and (5.3), and hence the well-
definedness of the operator Th.
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Lemma 5.1. Suppose that the parameters κ1, κ2 and κ3, satisfy the conditions required by Lemma 4.4

and let ρ ∈
(

0,
α̃A

2C̃B

)
. Then, the problem (5.2) has a unique solution ~σh := (σh,uh) ∈ Hh

k for each

(zh, φh) ∈ V h
k × Qhk such that ‖zh‖1,Ω ≤ ρ. Further, there exists a constant cS > 0, independent of

zh, φh, and h, such that

‖Sh(zh, φh)‖H = ‖~σh‖H ≤ cS

{
‖g‖∞,Ω‖φh‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
. (5.6)

Proof. We proceed as in [19, Lemma 3.3] (see also [24, Lemma 5.1]). In fact, given ρ ∈
(

0,
α̃A

2C̃B

)
and (zh, φh) ∈ V h

k ×Qhk such that ‖zh‖1,Ω ≤ ρ, we can deduce, using (4.4) and (4.5), that the ellipticity

of the bilinear form Ah + Bh(zh; ·, ·) is ensured with the constant α̃A
2 . In addition, we have that

‖Fh(φh; ·)‖ ≤ CF‖g‖∞,Ω‖φh‖0,Ω ∀ϕh ∈ Qhk , (5.7)

with CF the bound in (2.16). Then, there holds

‖Fh(φh; ·) + FD‖ ≤MF

{
‖g‖∞,Ω‖φh‖0,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
,

where MF is the constant in (2.17). Then, a direct application of the Lax-Milgram theorem implies the

existence of a unique solution ~σh := (σh,uh) ∈ Hh
k of (5.2), which satisfies (5.6) with cS :=

2MF

α̃A
.

Lemma 5.2. For each (zh, φh) ∈ V h
k ×Qhk, there exists a unique solutuion ϕh ∈ Qhk solution of (5.3),

and there holds

‖S̃h(zh, φh)‖1,Ω = ‖ϕh‖1,Ω ≤ c
S̃

{
‖zh‖1,Ω|φh|1,Ω + ‖ϕN‖−1/2,Γ

}
, (5.8)

with c
S̃

independent of zh, φh and h.

Proof. From Lemma 4.5 we deduce the boundedness and ellipticity of the bilinear form ah with
constants α∗‖a‖ = α∗‖K‖∞,Ω and α∗αa, respectively. Further, for each (zh, φh) ∈ V h

k × Qhk , we find
from (4.14), (2.12) and Lemma 3.5, that

‖Fh(zh, φh; ·)‖ ≤ C̃F‖zh‖1,Ω|φh|1,Ω , (5.9)

with C̃F := ‖ic‖‖ic‖C2
k (cf. (2.12) and (3.20)). Then, denoting M̃F := max

{
1, C̃F

}
, we have that

‖Fh(zh, φh; ·) + FN‖ ≤ M̃F

{
‖zh‖1,Ω|φh|1,Ω + ‖ϕN‖−1/2,Γ

}
.

In this way, the Lax-Milgram theorem guarantees the existence of a unique solution ϕh ∈ Qhk of (5.3),

and a positive constant c
S̃

:=
M̃F

α∗αa
such that (5.8) holds.

Having proved the well-definedness of Th, we now aim to establish the existence of a unique fixed
point for this operator. We begin with the following result.

Lemma 5.3. Suppose that the parameters κ1, κ2 and κ3, satisfy the conditions required by Lemma 4.4

and let ρ ∈
(

0,
α̃A

2C̃B

)
. Also, let W h

ρ be the closed ball in V h
k ×Qhk defined by

W h
ρ :=

{
(zh, φh) ∈ V h

k ×Qhk : ‖(zh, φh)‖ ≤ ρ
}
, (5.10)
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and assume that the data satisfy

c̃T

{
‖g‖∞,Ω + ‖uD‖0,Ω + ‖uD‖1/2,Γ + ‖ϕN‖−1/2,Γ

}
≤ ρ , (5.11)

where c̃T := max
{

(1 + c
S̃
ρ) max

{
1, ρ
}
cS, cS̃

}
. Then, there holds Th(W h

ρ ) ⊆W h
ρ .

Proof. It follows by similar arguments to those used in the proof of [19, Lemma 3.5].

Lemma 5.4. Suppose that the parameters κ1, κ2 and κ3, satisfy the conditions required by Lemma 4.4.

In addition, let ρ ∈
(

0,
α̃A

2C̃B

)
and W h

ρ as in Lemma 5.3 (cf. (5.10)). Then, there exists a positive

constant C̃T, such that

‖Th(zh, φh)−Th(z̃h, φ̃h)‖ ≤ C̃T

{
‖g‖∞,Ω + ‖uD‖0,Ω + ‖uD‖1/2,Γ

}
‖(zh, φh)− (z̃h, φ̃h)‖ (5.12)

for all (zh, φh), (z̃h, φ̃h) ∈W h
ρ .

Proof. We proceed as in [19, Lemma 3.8]. In fact, from the definition of Th (cf. (5.4)) we first observe
that

‖Th(zh, φh)−Th(z̃h, φ̃h)‖ ≤ ‖S2,h(zh, φh)− S2,h(z̃h, φ̃h)‖1,Ω

+ ‖S̃h(S2,h(zh, φh), φh)− S̃h(S2,h(z̃h, φ̃h), φ̃h)‖1,Ω .
(5.13)

The two expressions on the right-hand side of (5.13) are bounded in what follows. Indeed, letting
(σh,uh) := Sh(zh, φh) and (σ̃h, ũh) := Sh(z̃h, φ̃h) be the corresponding solutions of problem (5.2),
and reasoning similarly as in [24, Lemma 5.2], we deduce that

‖Sh(zh, φh)− Sh(z̃h, φ̃h)‖H ≤
2

α̃A

{
C̃B‖S2,h(zh, φh)‖1,Ω‖zh − z̃h‖1,Ω + CF‖g‖∞,Ω‖φh − φ̃h‖0,Ω

}
.

Then, from the foregoing inequality and Lemma 5.1, we get

‖S2,h(zh, φh)− S2,h(z̃h, φ̃h)‖1,Ω

≤ 2

α̃A

{
cSC̃B

(
ρ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

)
‖zh − z̃h‖1,Ω + CF‖g‖∞,Ω‖φh − φ̃h‖0,Ω

}
≤ CS

{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
‖(zh, φh)− (z̃h, φ̃h)‖ ,

(5.14)

with CS :=
2(1 + ρ)

α̃A
max

{
cSC̃B, CF

}
.

On the other hand, since S2,h(zh, φh),S2,h(z̃h, φ̃h) ∈ V h
k we let ϕh := S̃h(S2,h(zh, φh), φh) and ϕ̃h :=

S̃h(S2,h(z̃h, φ̃h), φ̃h) be the corresponding solutions of problem (5.3). Then, using the ellipticity of the
bilinear form a, Lemma 4.5, and adding and subtracting suitable terms, we get

‖S̃h(S2,h(zh, φh), φh)− S̃h(S2,h(z̃h, φ̃h), φ̃h)‖21,Ω = ‖ϕh − ϕ̃h‖21,Ω ≤ (α∗αa)−1ah(ϕh − ϕ̃h, ϕh − ϕ̃h)

≤ (α∗αa)−1|Fh(S2,h(zh, φh), φh − φ̃h;ϕh − ϕ̃h) + Fh(S2,h(zh, φh)− S2,h(z̃h, φ̃h), φ̃h;ϕh − ϕ̃h)| .

Then, from the foregoing inequality, the boundedness of Fh (cf. (5.9)), the estimates (5.6) and (5.14),
and the fact that φh, φ̃h ∈W h

ρ , we obtain

‖S̃h(S2,h(zh, φh), φh)− S̃h(S2,h(z̃h, φ̃h), φ̃h)‖1,Ω

≤ (α∗αa)−1C̃F

{
‖S2,h(zh, φh)‖1,Ω|φh − φ̃h|1,Ω + ρ‖S2,h(zh, φh)− S2,h(z̃h, φ̃h)‖1,Ω

}
≤ C

S̃

{
‖g‖∞,Ω + ‖uD‖0,Ω + ‖uD‖1/2,Γ

}
‖(zh, φh)− (z̃h, φ̃h)‖ ,

(5.15)
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where C
S̃

:= (α∗αa)−1C̃F(1+ρ) max
{
cS, ρCS

}
. Therefore, from (5.13)-(5.15) we conclude (5.12) with

C̃T := max{CS, CS̃
}.

We are ready to prove that our discrete scheme (5.1) ( equivalently, the fixed-point operator equation
(5.5)) is well-posed. More precisely, we have the following result.

Theorem 5.1. Suppose that the parameters κ1, κ2 and κ3, satisfy the conditions required by Lemma

4.4, and let ρ ∈
(

0,
α̃A

2C̃B

)
. Also, let W h

ρ as in Lemma 5.3 (cf. (5.10)), and assume that the data

satisfy the assumptions (5.11) and

C̃T

{
‖g‖∞,Ω + ‖uD‖0,Ω + ‖uD‖1/2,Γ

}
< 1 ,

with C̃T given by Lemma 5.4. Then, the mixed virtual element scheme (5.1) has a unique solution
((σh,uh), ϕh) ∈ Hh

k ×Qhk, with (uh, ϕh) ∈W h
ρ , and there hold

‖(σh,uh)‖H ≤
2MF

α̃A

{
ρ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
, (5.16)

and

‖ϕh‖1,Ω ≤
M̃F

α∗αa

{
ρ‖uh‖1,Ω + ‖ϕN‖−1/2,Γ

}
. (5.17)

Proof. It follows from Lemmas 5.3 and 5.4, the Banach fixed-point theorem, and the estimates (5.6)
and (5.8).

5.1 A priori error estimates

We now aim to derive the a priori estimates for the error

‖(~σ, ϕ) − (~σh, ϕh)‖ := ‖~σ − ~σh‖H + ‖ϕ− ϕh‖1,Ω , (5.18)

where (~σ, ϕ) := ((σ,u), ϕ) ∈ H×H and (~σh, ϕh) := ((σh,uh), ϕh) ∈ Hh
k×Qhk are the unique solutions

of the continuous and discrete schemes (2.5) and (5.1), respectively. In this regard, and as suggested
by Theorems 2.1 and 5.1, we first define

ρ0 := min
{ αA

2CB
,
α̃A

2C̃B

}
, (5.19)

and observe that, under the assumptions that κ2, κ3 > 0, and 0 < κ1 < 2 min{µ, α1, β1}, the existence
of (~σ, ϕ) and (~σh, ϕh) is guaranteed within the respective balls centered at the origin and with radius
ρ ∈ (0, ρ0).

Next, recalling that the local projectors RK
k : V K

k → Pk+1(K) and ΠK
k : QKk → Pk+1(K) are

introduced in Sections 3.2 and 4, respectively, we now denote by Rh
k and Πh

k its global counterparts,
respectively, that is, given v ∈ V h

k and ψ ∈ Qhk , we let

Rh
k(v)|K := RK

k (v|K) and Πh
k(ψ)|K := ΠK

k (ψ|K) ∀K ∈ Th .

We begin our analysis with some preliminary lemmas.
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Lemma 5.5. There exist positive constants LA, Cp, and Cq, independent of h, such that

sup
~τh∈Hh

k
~τh 6=0

|(A−Ah)(~ζh, ~τ h)|
‖~τ h‖H

≤ LA

{
‖~σ − ~ζh‖H + ‖σ − PPhk (σ)‖0,Ω + |u−Rh

k(u)|1,h
}
, (5.20)

and

sup
~τh∈Hh

k
~τh 6=0

|(B−Bh)(u;~ζh, ~τ h)|
‖~τ h‖H

≤ Cp

{
‖~σ − ~ζh‖H + ‖σ − PPhk (σ)‖0,Ω + |u−Rh

k(u)|1,h + ‖u−Ph
k+1(u)‖0,4,Ω

} (5.21)

for all ~ζh := (ζh,wh) ∈ Hh
k, and

sup
~τh∈Hh

k
~τh 6=0

|(F− Fh)(ϕ; ~τ h)|
‖~τ h‖H

≤ Cq

{
‖div (σ)−Ph

k+1(div (σ))‖0,Ω + ‖ϕ− Phk+1(ϕ)‖0,Ω
}
. (5.22)

Proof. Firstly, using [24, Lemma 4.8], and by adding and subtracting suitable terms (see also [24,

eq. (5.21)]), we get (5.20) with LA := 3 max
{
α2 + κ1, β2

}
, where α2 and β2 are the constants from

Lemmas 4.1 and 4.2, respectively. In turn, in order to prove (5.21), we proceed as in [24, Lemma 4.12]
by adding and subtracting suitable terms, which yields

(B−Bh)(u;~ζh, ~τ h) =

∫
Ω

{
(wh ⊗ u)d − PPhk ((wh ⊗ u)d)

}
:
{
τ h − κ1∇vh

}
+

∫
Ω

(
wh ⊗ u−Ph

k+1(wh)⊗Ph
k+1(u))

)d
: PPhk (τ h − κ1∇vh) .

(5.23)

The two expressions on the right-hand side of (5.23) are bounded in what follows. In fact, adding and
subtracting u, it follows that

(wh ⊗ u)− PPhk (wh ⊗ u) = (wh − u)⊗ u− PPhk ((wh − u)⊗ u) + (u⊗ u)− PPhk (u⊗ u) .

Then, using the foregoing expression, and the first equation of (2.3), we arrive at∫
Ω

{
(wh ⊗ u)d − PPhk ((wh ⊗ u)d)

}
:
{
τ h − κ1∇vh

}
=

∫
Ω

{
(wh − u)⊗ u− PPhk ((wh − u)⊗ u)

}d
:
{
τ h − κ1∇vh

}
+µ

∫
Ω

{
∇u− PPhk (∇u)

}
:
{
τ h − κ1∇vh

}
−
∫

Ω

{
σ − PPhk (σ)

}d
:
{
τ h − κ1∇vh

}
.

(5.24)
In this way, replacing (5.24) into (5.23), using the Cauchy-Schwarz and Hölder inequalities, employing
the compact injection (2.12) and the fact that ∇Rh

k(u)
∣∣
K
∈ Pk(K) for all K ∈ Th, and then bounding

‖u−wh‖1,Ω and ‖u‖1,Ω by ‖~σ − ~ζh‖H and ρ0, respectively, we deduce

|(B−Bh)(u;~ζh, ~τ h)| ≤ Ĉp

{
‖~σ − ~ζh‖H + |u−Rh

k(u)|1,h + ‖σ − PPhk (σ)‖0,Ω

+ ‖(wh ⊗ u)−Ph
k+1(wh)⊗Ph

k+1(u)‖0,Ω
}
‖~τ h‖H ,

(5.25)
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with Ĉp := (1 + κ2
1)1/2 max

{
1, 2ρ0‖ic‖2, µ

}
. On the other hand, adding and subtracting Ph

k+1(u),

employing the Cauchy-Schwarz and Hölder inequalities, Lemma 3.5, and the compact injection (2.12),
we find that

‖(wh ⊗ u)−Ph
k+1(wh)⊗Ph

k+1(u)‖0,Ω

≤ ‖ic‖Ck

{
‖wh‖1,Ω‖u−Ph

k+1(u)‖0,4,Ω + ‖u‖1,Ω‖wh −Ph
k+1(wh)‖0,4,Ω

}
.

(5.26)

Furthermore, using similar arguments, and bounding ‖u−wh‖1,Ω and ‖u‖1,Ω by ‖~σ − ~ζh‖H and ρ0,
respectively, we get

‖wh‖1,Ω‖u−Ph
k+1(u)‖0,4,Ω

≤ ‖ic‖(1 + Ck)‖u‖1,Ω‖u−wh‖1,Ω + ‖u‖1,Ω‖u−Ph
k+1(u)‖0,4,Ω

≤ ρ0 max
{

1, ‖ic‖(1 + Ck)
}{
‖~σ − ~ζh‖H + ‖u−Ph

k+1(u)‖0,4,Ω
}
,

(5.27)

and

‖u‖1,Ω‖wh −Ph
k+1(wh)‖0,4,Ω

≤ ρ0

{
‖ic‖(1 + Ck)‖u−wh‖1,Ω + ‖u−Ph

k+1(u)‖0,4,Ω
}

≤ ρ0 max
{

1, ‖ic‖(1 + Ck)
}{
‖~σ − ~ζh‖H + ‖u−Ph

k+1(u)‖0,4,Ω
}
.

(5.28)

Therefore, replacing (5.27) and (5.28) back into (5.26), we get

‖(wh ⊗ u)−Ph
k+1(wh)⊗Ph

k+1(u)‖0,Ω ≤ Cp

{
‖~σ − ~ζh‖H + ‖u−Ph

k+1(u)‖0,4,Ω
}
, (5.29)

with Cp := ‖ic‖Ckρ0 max
{

1, ‖ic‖(1 + Ck)
}

. Finally, replacing (5.29) into (5.25), and taking the

supremum on ~τ h ∈ Hh
k , we deduce (5.21) with Cp := Ĉp(1 + Cp). Next, in order to deal with (5.22),

we observe from (2.9) and (4.6) that

(F−Fh)(ϕ; ~τ h) =

∫
Ω
gϕ ·µvh−

∫
Ω
gPhk+1(ϕ) ·µPh

k+1(vh)−κ2

∫
Ω
g
{
ϕ−Phk+1(ϕ)

}
·div (τ h) . (5.30)

Next, adding and subtracting µ

∫
Ω
Ph
k+1(gϕ) · vh, and using the second equation in (2.3), we deduce

that ∫
Ω
gϕ · µvh −

∫
Ω
gPhk+1(ϕ) · µPh

k+1(vh)

= µ

∫
Ω

{
gϕ−Ph

k+1(gϕ)
}
· vh + µ

∫
Ω
g
{
ϕ− Phk+1(ϕ)

}
·Ph

k+1(vh)

= −µ
∫

Ω

{
div (σ)−Ph

k+1(div (σ))
}
· vh + µ

∫
Ω
g
{
ϕ− Phk+1(ϕ)

}
·Ph

k+1(vh) .

(5.31)

Finally, replacing (5.31) into (5.30), and applying the Cauchy-Schwarz inequality, we get (5.22) with

Cq := (4µ2 + κ2
2)1/2 max

{
1, ‖g‖∞,Ω

}
.

Lemma 5.6. There exist positive constants La and C̃q, independent of h, such that

sup
ψh∈Qh

k
ψh 6=0

|(a− ah)(φh, ψh)|
‖ψh‖1,Ω

≤ La

{
‖ϕ− φh‖1,Ω + ‖K∇ϕ−Ph

k(K∇ϕ)‖0,Ω + |ϕ−Πh
k(ϕ)|1,h

}
(5.32)
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for all φh ∈ Qhk, and

sup
ψh∈Qh

k
ψh 6=0

|(F− Fh)(u, ϕ;ψh)|
‖ψh‖1,Ω

≤ C̃q

{
h‖div(K∇ϕ)− Phk+1(div(K∇ϕ))‖0,Ω + |ϕ−Πh

k(ϕ)|1,h + ‖u−Ph
k+1(u)‖0,4,Ω

}
.

(5.33)

Proof. Given K ∈ Th, using the symmetry of the bilinear form aK (cf.(4.7)), and the first equation
in (4.9) with q := ΠK

k (φh) ∈ Pk+1(K), the local bilinear form aKh (cf. (4.12)) can be rewritten as

aKh (φh, ψh) =

∫
K
PK
k (K∇ΠK

k (φh)) · ∇ψh + SK,Π(φh −ΠK
k (φh), ψh −ΠK

k (ψh)) (5.34)

for all φh, ψh ∈ QKk . Then, from (2.8) and (5.34), and adding and subtracting

∫
K
K∇ΠK

k (φh) · ∇ψh,

we get

(aK − aKh )(φh, ψh) =

∫
K
K∇(φh −ΠK

k (φh)) · ∇ψh − SK,Π(φh −ΠK
k (φh), ψh −ΠK

k (ψh))

+

∫
K

{
K∇ΠK

k (φh)−PK
k (K∇ΠK

k (φh))
}
· ∇ψh

whence, applying the Cauchy-Schwarz inequality, using the symmetry of the bilinear form SK,Π, the
upper bound in (4.13), and the estimate (4.10), we obtain

|(a− ah)(φh, ψh)| ≤
{
‖K∇φh −K∇ΠK

k (φh)‖0,K + ‖K∇ΠK
k (φh)−PK

k (K∇ΠK
k (φh))‖0,K

+ (1 + CK) c1 |φh −ΠK
k (φh)|1,K

}
|ψh|1,K .

Further, adding and subtracting suitable terms, summing over all K ∈ Th, and then taking supremum
over ψh ∈ Qhk , we deduce the estimate (5.32) with La depending only on K and c1. On the other hand,

from (2.10) and (4.14), adding and subtracting

∫
Ω
Phk+1(u · ∇ϕ)ψh, and using the fourth equation in

(2.3), we find that

(F− Fh)(u, ϕ;ψh) = −
∫

Ω
(u · ∇ϕ)ψh +

∫
Ω

(Ph
k+1(u) ·Ph

k(∇ϕ))Phk+1(ψh)

= −
∫

Ω

{
(u · ∇ϕ)− Phk+1(u · ∇ϕ)

}
ψh −

∫
Ω

{
(u · ∇ϕ)− (Ph

k+1(u) ·Ph
k(∇ϕ))

}
Phk+1(ψh)

= −
∫

Ω

{
div(K∇ϕ)− Phk+1(div(K∇ϕ))

}
(ψh − Phk+1(ψh))−

∫
Ω

{(
u−Ph

k+1(u)
)
· ∇ϕ

}
Phk+1(ψh)

−
∫

Ω

{
Ph
k+1(u) ·

(
∇ϕ−Ph

k(∇ϕ)
)}
Phk+1(ψh) ,

whence, applying the Cauchy-Schwarz and Hölder inequalities, the approximation properties (3.16),
Lemma 3.5, the fact that ∇Πh

k(ϕ)
∣∣
K
∈ Pk(K) for all K ∈ Th, and finally bounding |ϕ|1,Ω and ‖u‖1,Ω

by ρ0, we get (5.33) with C̃q := max
{
Ĉ, Ck‖ic‖ρ0, C

2
k‖ic‖‖ic‖ρ0

}
, where Ĉ is the constant obtained

when (3.16) is applied with ψh ∈ H1(Ω).

Next, since we are interested in obtain an upper bound for the error ‖(~σ, ϕ)− (~σh, ϕh)‖ (cf. (5.18)),
we first rearrange (2.5) and (5.1) as the following pairs of continuous and discrete formulations

A(~ζ, ~τ ) + B(u;~ζ, ~τ ) = F(ϕ; ~τ ) + FD(~τ ) ∀ ~τ ∈ H ,

Ah(~ζh, ~τ h) + Bh(uh;~ζh, ~τ h) = Fh(ϕh; ~τ h) + FD(~τ h) ∀ ~τ h ∈ Hh
k ,

(5.35)
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and
a(ϕ,ψ) = F(u, ϕ;ψ) + FN (ψ) ∀ψ ∈ H ,

ah(ϕh, ψh) = Fh(uh, ϕh;ψh) + FN (ψh) ∀ψh ∈ Qhk .
(5.36)

Then, we have the following lemma establishing a preliminary estimate for ‖~σ − ~σh‖H.

Lemma 5.7. There exist positive constants Cd and Cr, independent of h, such that

‖~σ − ~σh‖H ≤ Cd

{
‖div (σ)−Ph

k+1(div (σ))‖0,Ω + ‖ϕ− Phk+1(ϕ)‖0,Ω + ‖σ − PPhk (σ)‖0,Ω

+ |u−Rh
k(u)|1,h + ‖u−Ph

k+1(u)‖0,4,Ω + dist(~σ,Hh
k)
}

+Cr

{
‖~σ‖H + ‖g‖∞,Ω

}
‖(~σ, ϕ) − (~σh, ϕh)‖ .

(5.37)

Proof. Employing the bounds provided by (2.13)-(2.15) and (4.3)-(4.5), the fact that ‖u‖1,Ω and
‖uh‖1,Ω are bounded by ρ0 (cf.(5.19)), and recalling that Ck ≥ 1 (cf. Lemma 3.5), we deduce that
A + B(u; ·, ·) and Ah + Bh(uh; ·, ·) are bounded and elliptic with the common constants LB and LE,
respectively, both independent of h, which are given by

LB := max
{
CA, C̃A

}
+ C̃Bρ0 and LE :=

1

2
min{αA, α̃A} .

In turn, F(ϕ; ·) + FD and Fh(ϕh; ·) + FD are bounded linear functionals in H and Hh
k , respectively.

Then, a straightforward application of the first Strang lemma for linear problems (see [18, Theorem
4.1.1] or [26, Theorem 11.1]) to the context (5.35) gives

‖~σ − ~σh‖H ≤ Cst

{
sup

~τh∈Hh
k

~τh 6=0

|F(ϕ; ~τ h)− Fh(ϕh; ~τ h)|
‖~τ h‖H

+ inf
~ζh∈Hh

k

(
‖~σ − ~ζh‖H

+ sup
~τh∈Hh

k
~τh 6=0

|(A−Ah)(~ζh, ~τ h) + B(u;~ζh, ~τ h)−Bh(uh;~ζh, ~τ h)|
‖~τ h‖H

)}
, (5.38)

where Cst := L−1
E max

{
1, LE + LB

}
. Next, adding and subtracting Fh(ϕ; ~τ h), we find that

F(ϕ; ~τ h)− Fh(ϕh; ~τ h) = (F− Fh)(ϕ; ~τ h) + Fh(ϕ− ϕh; ~τ h) . (5.39)

Then, from (5.39), the estimate (5.22) in Lemma 5.5, and the boundedness of Fh (cf. (5.7)), we deduce
that

sup
~τh∈Hh

k
~τh 6=0

|F(ϕ; ~τ h)− Fh(ϕh; ~τ h)|
‖~τ h‖H

≤ Cq

{
‖div (σ)−Ph

k+1(div (σ))‖0,Ω + ‖ϕ− Phk+1(ϕ)‖0,Ω
}

+ CF‖g‖∞,Ω‖ϕ− ϕh‖1,Ω .

(5.40)

Also, adding and subtracting suitable terms, we find that

|B(u;~ζh, ~τ h)−Bh(uh;~ζh, ~τ h)|

≤ |(B−Bh)(u;~ζh, ~τ h)|+ |Bh(u− uh; ~σ, ~τ h)−Bh(u− uh; ~σ − ~ζh, ~τ h)| .
(5.41)
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Furthermore, by using the boundedness of Bh (cf. (4.5)), and bounding ‖u‖1,Ω and ‖uh‖1,Ω by ρ0, we
get

|Bh(u− uh; ~σ, ~τ h)−Bh(u− uh; ~σ − ~ζh, ~τ h)|

≤ C̃B

(
‖~σ‖H + ‖~σ − ~ζh‖H

)
‖u− uh‖1,Ω‖~τ h‖H

≤ C̃B

(
‖~σ‖H‖~σ − ~σh‖H + 2ρ0 ‖~σ − ~ζh‖H

)
‖~τ h‖H .

Then, from (5.41), the foregoing expression, and the estimate (5.21) from Lemma 5.5, we get

sup
~τh∈Hh

k
~τh 6=0

|B(u;~ζh, ~τ h)−Bh(uh;~ζh, ~τ h)|
‖~τ h‖H

≤ C̃p

{
‖~σ − ~ζh‖H + ‖σ − PPhk (σ)‖0,Ω

+ |u−Rh
k(u)|1,h + ‖u−Ph

k+1(u)‖0,4,Ω
}

+ C̃B‖~σ‖H‖~σ − ~σh‖H ,

(5.42)

with C̃p := Cp + 2ρ0C̃B. In this way, replacing (5.40), (5.20) and (5.42) into (5.38), we deduce the
estimate (5.37) with

Cd := Cst max
{
Cq, LA, C̃p

}
and Cr := Cst max

{
C̃B, CF

}
. (5.43)

Next, as for the error ‖ϕ− ϕh‖1,Ω arising from (5.36), we have the following result.

Lemma 5.8. There exist positive constants C̃d and C̃r, independent of h, such that

‖ϕ− ϕh‖1,Ω ≤ C̃d

{
‖K∇ϕ−Ph

k(K∇ϕ)‖0,Ω + h‖div (K∇ϕ)− Phk+1(div(K∇ϕ))‖0,Ω

+ |ϕ−Πh
k(ϕ)|1,h + ‖u−Ph

k+1(u)‖0,4,Ω + dist(ϕ,Qhk)
}

+ C̃r

{
‖~σh‖H + ‖ϕ‖1,Ω

}
‖(~σ, ϕ) − (~σh, ϕh)‖ .

(5.44)

Proof. We first observe that the boundedness and ellipticity of the bilinear form a and Lemma 4.5
guarantee that the family {a} ∪ {ah}h>0 is uniformly bounded and uniformly elliptic with constants,
independent of h, given by

LB := max
{

1, α∗
}
‖a‖ and LE := min{1, α∗}αa .

respectively. Hence, proceeding as in Lemma 5.7, and applying again the first Strang lemma to the
context given by (5.36), we find that

‖ϕ− ϕh‖1,Ω ≤ C̃st

{
sup

ψh∈Qh
k

ψh 6=0

|F(u, ϕ;ψh)− Fh(uh, ϕh;ψh)|
‖ψh‖1,Ω

+ inf
φh∈Qh

k

(
‖ϕ− φh‖1,Ω + sup

ψh∈Qh
k

ψh 6=0

|(a− ah)(φh, ψh)|
‖ψh‖1,Ω

)}
,

(5.45)

Next, adding and subtracting Fh(u− uh, ϕ, ψh) we find that

|F(u, ϕ;ψh)−Fh(uh, ϕh;ψh)| = |(F−Fh)(u, ϕ;ψh) + Fh(uh, ϕ−ϕh;ψh) + Fh(u−uh, ϕ;ψh)| . (5.46)
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For the second and third term on the right-hand side of (5.46) we apply the bound of Fh (cf. (5.9))
to obtain

|Fh(uh, ϕ− ϕh;ψh) + Fh(u− uh, ϕ;ψh)| ≤ C̃F

{
‖uh‖1,Ω|ϕ− ϕh|1,Ω + ‖u− uh‖1,Ω|ϕ|1,Ω

}
‖ψh‖1,Ω .

In addition, thanks to (5.33) from Lemma 5.6, and the foregoing inequality, we get

sup
ψh∈Qh

k
ψh 6=0

|F(u, ϕ;ψh)− Fh(uh, ϕh;ψh)|
‖ψh‖1,Ω

≤ C̃q

{
h‖div(K∇ϕ)− Phk+1(div(K∇ϕ))‖0,Ω + |ϕ−Πh

k(ϕ) |1,h + ‖u−Ph
k+1(u)‖0,4,Ω

}
+ C̃F

{
‖~σh‖H‖ϕ− ϕh‖1,Ω + ‖~σ − ~σh‖H‖ϕ‖1,Ω

}
.

(5.47)

Then, replacing (5.47) into (5.45), and using the estimate (5.32) from Lemma 5.6, we conclude the
proof with

C̃d := C̃st max
{
C̃q, La

}
and C̃r := C̃stC̃F . (5.48)

We are now in a position to derive an estimation for the global error (5.18). Indeed, bearing in
mind the terms in Lemmas 5.7 and 5.8 that are multiplying ‖(~σ, ϕ) − (~σh, ϕh)‖, using the bounds for
‖~σ‖H, ‖ϕ‖1,Ω, and ‖~σh‖H, given by (2.18), (2.19), and (5.16), respectively, the fact that ‖u‖1,Ω ≤ ρ0

(cf. (5.19)), and performing some algebraic manipulations, we find that

Cr

{
‖~σ‖H + ‖g‖∞,Ω

}
+ C̃r

{
‖~σh‖H + ‖ϕ‖1,Ω

}
≤ Cr

{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖ϕN‖−1/2,Γ

}
,

(5.49)

where
Cr := C1,rC2,rC3,r ,

C1,r := max
{
Cr, C̃r

}
,

C2,r := max
{

1, 2MF

(
1

αA
+

1

α̃A

)
,
2MF

αa

}
,

C3,r := (1 + ρ)2 max

{
1, ρ

2MF

αA

}
.

(5.50)

In this way, since the constant Cr depends linearly on the data g, uD and ϕN , we conclude from the
foregoing analysis, the following result.

Theorem 5.2. Let Cr be the constant from (5.50), and assume that the data g,uD, and ϕN are such
that

Cr

{
‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ + ‖ϕN‖−1/2,Γ

}
≤ 1

2
. (5.51)

Then, there exists a positive constant C, depending on Cd (cf. (5.43)) and C̃d (cf. (5.48)), such that

‖(~σ, ϕ) − (~σh, ϕh)‖ ≤ C
{
‖div (σ)−Ph

k+1(div (σ))‖0,Ω + ‖σ − PPhk (σ)‖0,Ω + |u−Rh
k(u)|1,h

+ ‖u−Ph
k+1(u)‖0,4,Ω + ‖K∇ϕ−Ph

k(K∇ϕ)‖0,Ω + h‖div(K∇ϕ)− Phk+1(div(K∇ϕ))‖0,Ω

+ ‖ϕ− Phk+1(ϕ)‖0,Ω + |ϕ−Πh
k(ϕ)|1,h + dist(~σ,Hh

k) + dist(ϕ,Qhk)
}
.

(5.52)
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Proof. It suffices to add the estimates (5.37) and (5.44) from Lemmas 5.7 and 5.8, respectively, and
to use the estimate (5.49) together with the assumption given by (5.51).

Having established Theorem 5.2, we now provide the corresponding rates of convergence.

Theorem 5.3. Let (~σ, ϕ) := ((σ,u), ϕ) ∈ H × H and (~σh, ϕh) := ((σh,uh), ϕh) ∈ Hh
k × Qhk be the

unique solutions of the continuous and discrete schemes (2.5) and (5.1), respectively. Assume that for
integers r ∈ [1, k+ 1], s ∈ [2, k+ 2], and m ∈ [2, k+ 2], there hold σ|K ∈ Hr(K), div (σ)|K ∈ Hr(K),
u|K ∈ Hs(K), ϕ

∣∣
K
∈ Hm(K), and K

∣∣
K
∈Wm−1,∞(K), for each K ∈ Th. Then, there exists a positive

constant C, independent of h, such that

‖(~σ, ϕ) − (~σh, ϕh)‖ ≤ C hmin{r,s−1,m−1}
{ ∑
K∈Th

(
|σ|2r,K + |div (σ)|2r,K + |u|2s,K + |ϕ|2m,K

)}1/2

+C hs−1

{ ∑
K∈Th

|u|4s−1,4,K

}1/4

.

(5.53)

Proof. It follows from (5.52) and the approximation properties (3.6), (3.16)-(3.19), (4.11), (APσ
h ),

(APϕ
h), and (APu

h).

5.2 Computable approximations of σ, u, ϕ and p

We first introduce the fully computable approximations of σh, uh and ϕh given by

σ̂h := PPhk (σh), ûh := Ph
k+1(uh), and ϕ̂h := Phk+1(ϕh) , (5.54)

and establish the corresponding a priori error estimates for the errors

‖((σ,u), ϕ) − ((σ̂h, ûh), ϕ̂h)‖0,Ω := ‖σ − σ̂h‖0,Ω + ‖u− ûh‖0,Ω + ‖ϕ− ϕ̂h‖0,Ω ,

and
|(u, ϕ) − (ûh, ϕ̂h)|1,h := |u− ûh|1,h + |ϕ− ϕ̂h|1,h .

As shown below in Theorem 5.6, they yield exactly the same rate of convergence given by Theorem
5.3. Then, we begin the analysis with the following result.

Theorem 5.4. Let (~σ, ϕ) := ((σ,u), ϕ) ∈ H × H and (~σh, ϕh) := ((σh,uh), ϕh) ∈ Hh × Qhk be the
unique solutions of the continuous and discrete schemes (2.5) and (5.1), respectively. In addition,
let σ̂h, ûh, and ϕ̂h be the discrete approximations introduced in (5.54). Then there exists a positive
constant C > 0, independent of h, such that

‖((σ,u), ϕ)− ((σ̂h, ûh), ϕ̂h)‖0,Ω + |(u, ϕ)− (ûh, ϕ̂h)|1,h

≤ C

{
‖(~σ, ϕ)− (~σh, ϕh)‖ + ‖σ − PPhk (σ)‖0,Ω

+

{ ∑
K∈Th

‖u−PK
k+1(u)‖21,K

}1/2

+

{ ∑
K∈Th

‖ϕ− PKk+1(ϕ)‖21,K
}1/2

}
.

Proof. It follows by using similar arguments from [24, Theorem 5.4].
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Next, proceeding as in [24, Section 5.3], and according to (2.4) and the decomposition of σ provided
by (1.1), we suggest the following computable approximation of the pressure:

p̂h := −1

2
tr
(
σ̂h + ĉhI + ûh ⊗ ûh

)
in Ω , with ĉh := − 1

2|Ω|
‖ûh‖20,Ω . (5.55)

The following lemma establishes the corresponding a priori error estimate.

Theorem 5.5. There exists a positive constant C > 0, independent of h, such that

‖p− p̂h‖0,Ω ≤ C
{
‖(~σ, ϕ)− (~σh, ϕh)‖ + ‖σ − PPhk (σ)‖0,Ω + ‖u−Ph

k+1(u)‖0,4,Ω
}
.

Proof. See [24, Theorem 5.5].

We end this section by providing the theoretical rates of convergence for σ̂h, ûh, ϕ̂h and p̂h.

Theorem 5.6. Let (~σ, ϕ) := ((σ,u), ϕ) ∈ H × H and (~σh, ϕh) := ((σh,uh), ϕh) ∈ Hh × Qhk be the
unique solutions of the continuous and discrete schemes (2.5) and (5.1), respectively. In addition,
let ((σ̂h, ûh), ϕ̂h), and p̂h be the discrete approximations introduced in (5.54) and (5.55), respectively.
Assume that for integers r ∈ [1, k + 1], s ∈ [2, k + 2], and m ∈ [2, k + 2], there hold σ|K ∈ Hr(K),
div (σ)|K ∈ Hr(K), u|K ∈ Hs(K), ϕ

∣∣
K
∈ Hm(K), and K

∣∣
K
∈Wm−1,∞(K), for each K ∈ Th. Then,

there exists a positive constant C, independent of h, such that

‖((σ,u), ϕ)− ((σ̂h, ûh), ϕ̂h)‖0,Ω + |(u, ϕ)− (ûh, ϕ̂h)|1,h + ‖p− p̂h‖0,Ω

≤ C hmin{r,s−1,m−1}
{ ∑
K∈Th

(
|σ|2r,K + |div(σ)|2r,K + |u|2s,K + |ϕ|2m,K

)}1/2

+C hs−1

{ ∑
K∈Th

|u|4s−1,4,K

}1/4

.

(5.56)

Proof. It follows from Theorems 5.3 to 5.5, and the approximation properties provided along the
paper. In particular, applying (3.16) and (3.17), we readily find that{ ∑

K∈Th

‖ϕ− PKk+1(ϕ)‖21,K
}1/2

≤ C hm−1

{ ∑
K∈Th

|ϕ|2m,K
}1/2

,

and { ∑
K∈Th

‖u−PK
k+1(u)‖21,K

}1/2

≤ C hs−1

{ ∑
K∈Th

|u|2s,K
}1/2

,

respectively.

5.3 A convergent approximation of σ in the broken H(div; Ω)-norm

In what follows we proceed as in [12, Section 5.3] and propose a second approximation σ̃h of the
pseudostress σ, which yields the same rate of convergence from Theorems 5.3 and 5.6 in the broken
H(div; Ω)-norm. For this purpose, for each K ∈ Th we let (·, ·)div;K be the usual H(div;K)-inner
product with induced norm ‖ · ‖div;K . Then, we let σ̃h ∈ L2(Ω) be the tensor defined locally as
σ̃h |K := σ̃h,K , where σ̃h,K ∈ Pk+1(K) is the unique solution of the problem

(σ̃h,K , τ h)div;K =

∫
K
σ̂h : τ h +

∫
K
div(σh) · div(τ h) ∀ τ h ∈ Pk+1(K) . (5.57)
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Note here that the right-hand side of (5.57), and hence σ̃h,K , is fully computable since both σ̂h and
div(τ h) are. In addition, it is important to remark that σ̃h,K can be calculated for each K ∈ Th,
independently. Then, the rate of convergence for the broken H(div; Ω)-norm of σ − σ̂h is established
as follows.

Lemma 5.9. Assume that the hypotheses of Theorem 5.3 are satisfied. Then, there exists a positive-
constant C, independent of h, such that∑

K∈Th

‖σ − σ̃h,K‖2div;K


1/2

= O(hmin{r,s−1,m−1}) (5.58)

Proof. See [24, Theorem 5.7].
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