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aGIMNAP-Departamento de Matemática, Facultad de Ciencias, Universidad del Bı́o-Bı́o, Casilla 5-C, Concepción, Chile
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Abstract

We present an a priori and a posteriori error analysis of a conforming finite element method for a four-field formu-
lation of Biot’s consolidation model. For the a priori error analysis we provide suitable hypotheses on the corre-
sponding finite dimensional subspaces ensuring that the associated Galerkin scheme is well-posed. We show that a
suitable choice of subspaces is given by the Raviart–Thomas elements of order k ≥ 0 for the fluid flux, discontinuous
polynomials of degree k for the fluid pressure, and any stable pair of Stokes elements for the solid displacements and
total pressure. Next, we develop a reliable and efficient residual-based a posteriori error estimator. Both the reliability
and efficiency estimates are shown to be independent of the modulus of dilatation. Numerical examples in 2D and 3D
verify our analysis and illustrate the performance of the proposed a posteriori error indicator.
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1. Introduction

Linear poroelasticity refers to fluid-structure interaction of an elastic solid infiltrated by an interconnected network
of fluid-saturated pores. The modeling equations can be traced back to the pioneering theory of soil consolidation
by Terzaghi [1] and Biot [2, 3], in which Darcy’s law for the motion of a fluid is coupled to Hooke’s theory of
linear elasticity for the solid deformation. Advances in the understanding of the mechanical and physical aspects of
Biot’s consolidation model are of key importance in many applications. For instance, it has been used to predict the
mechanics of groundwater withdrawals [4], earthquake fault zones [5], CO2 sequestration [6] and biological systems
(brain [7, 8], bones [9], arteries [10], intestines [11], etc.).

There is an extensive literature on theoretical results for this problem. A well-accepted mathematical analysis
of existence, uniqueness, and regularity of the solution for the displacement-pressure formulation of Biot’s model
was carried out by Showalter [12, 13]. Moreover, many different numerical schemes have been proposed for this
formulation with varying success, e.g., [14, 15, 16, 17, 18, 19, 20, 5, 21, 22, 23] and references therein. The main
difficulties encountered when developing numerical methods for this model are volumetric locking and spurious,
nonphysical pressure oscillations. While volumetric locking is similar to the locking phenomenon in linear elasticity
(see, e.g. [24]), spurious pressure oscillations occurs when the displacement of the porous skeleton is driven to
a divergence-free state, the permeability of the porous solid is low and the so-called “constrained specific storage
constant” is close to zero (see, e.g. [25]).
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Recently, Oyarzúa et al. [26] (see also [27]) proposed and analyzed a three-field formulation for Biot’s model
using classical finite element methods that is locking-free and free of spurious pressure oscillations. More precisely,
in addition to the displacement and the pore pressure of the fluid, they introduced a “total pressure”, showing existence,
uniqueness, and stability of the discrete solution with constants independent of the modulus of dilatation, even in the
incompressible limit. To achieve a numerical scheme that is also mass conserving, they later extended this formulation
to a four-field formulation by introducing also the “fluid flux” as an unknown [28]. They propose to approximate the
solid displacement in this model by a finite volume method (FVM) while remaining unknowns are approximated by a
mixed finite element method (MFE).

In this paper, we consider a conforming finite element discretization of the four-field formulation of Biot’s consol-
idation model [28]. Assuming standard hypotheses on the discrete spaces, we first show well-posedness and optimal
a priori error estimates of the Galerkin scheme. In particular, we show that any pair of stable Stokes element, such
as the Hood–Taylor elements, for solid displacements and total pressure, combined with Raviart–Thomas elements
of degree k ≥ 0 for the fluid flux, and discontinuous polynomials of degree k for the pore pressure, are suitable finite
element subspaces for this problem. We furthermore show that the scheme is locking-free.

The main contribution of this paper, however, is a reliable and efficient residual-based a posteriori error estima-
tor for the four-field formulation of Biot’s consolidation model. In this direction, an a posteriori error analysis for
a conforming finite element method (with Backward Euler time stepping) of the displacement-pressure formulation
for poroelasticity was presented by Ern and Meunier [29]. They proved reliability and efficiency estimates related
to energy norms through direct arguments (dual problems, local properties of Clément-type interpolation operators,
and localization techniques), and showed an overall convergence of O(h). To show higher order accuracy, an elliptic
reconstruction approach was applied but without efficiency of the estimator. Later, a reliable a posteriori error es-
timator based on stress and flux reconstructions was proposed by Riedlbeck et al. [30], while a reliable space-time
a posteriori error estimator for a four-field system, in terms of the total stress tensor, displacement, fluid flux, and
pressure, was derived in [31]. To the best of our knowledge, however, no efficiency estimates for poroelasticity have
been proven for higher order accurate approximations.

In this paper, we will prove efficiency estimates for higher order accurate approximations of the four-field formu-
lation of Biot’s consolidation model by using a localization technique by bubble functions and inverse inequalities.
Such an approach was previously used, for example, in the a posteriori analysis of the Stokes-Darcy problem in [32],
and of the elasticity problem in [33] and [34]. By inf-sup conditions on the involved finite element spaces, Helmholtz
decompositions, and standard local approximation properties of Clément and Raviart–Thomas interpolation operators,
we furthermore prove a reliability estimate and propose an adaptive algorithm for our problem.

The rest of this paper is structured as follows. The governing equations, corresponding weak formulation and
well-posedness of the problem are discussed in Section 2. In Section 3 we introduce the Galerkin scheme and derive
the stability result and corresponding Céa’s estimate. We derive a reliable and efficient residual-based a posteriori
error estimator in Section 4 and present numerical results in Section 5. Conclusions are drawn in Section 6.

2. A four-field formulation of Biot’s equations

2.1. Notation
Let Ω ⊆ Rd, d ∈ {2, 3}, denote a bounded and simply connected domain with Lipschitz boundary Γ = Γu ∪ Γp

such that |Γu| > 0 and Γu ∩ Γp , ∅. In what follows we use standard notation for Sobolev spaces and norms, and
denote spaces of vector-valued functions in boldface. For example, if r ∈ R, we denote Hr(Ω) := [Hr(Ω)]d and
Hr(Γ) := [Hr(Γ)]d, with the convention that H0(Ω) = L2(Ω) and H0(Γ) = L2(Γ). For vector-valued functions we also
require the Hilbert space

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

equipped with the norm
‖ · ‖div,Ω :=

{
‖ · ‖20,Ω + ‖div (·)‖20,Ω

}1/2
.

Furthermore, we denote by H−1/2
00 (Γp) the dual space of H1/2

00 (Γp) :=
{
q|Γp : q ∈ H1

Γu
(Ω)

}
, with

H1
Γu

(Ω) :=
{
v ∈ H1(Ω) : v|Γu = 0

}
. (2.1)
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The space H1/2
00 (Γp) is endowed with the norm

‖q‖1/2,00,Γp := inf
{
‖v‖1,Ω : q ∈ H1

Γu
(Ω) and v|Γp = q

}
.

Finally, by 0 we will refer to the generic null vector (including the null functional and operator), and we will denote
by C, with or without subscripts, bar, tildes, or hats, generic constants independent of the discretization parameters.

2.2. Governing equations

The interaction between fluid motion and linear mechanical response of a porous medium occupying Ω can be
described by Biot’s equations, formulated here by following [28]. More precisely, given a body force f : Ω → Rd,
a volumetric fluid source ` : Ω → R, an imposed pressure flux pΓ : Γp → R, and a load vector mΓ : Γp → Rd,
the problem reads: Find the displacements of the porous skeleton u : Ω → Rd, the total pore pressure of the fluid
p : Ω → R, the fluid flux σ : Ω → Rd, and the total fluid-structure pressure (or total volumetric stress) φ : Ω → R,
satisfying

−div (2µε(u) − φI) = f in Ω, (2.2a)
φ = αp − λ div u in Ω, (2.2b)

σ = −
κ

η
(∇p − ρg) in Ω, (2.2c)(

c0 +
α2

λ

)
p −

α

λ
φ + divσ = ` in Ω, (2.2d)

p = pΓ, (2µε(u) − φI)n = mΓ on Γp, (2.2e)
u = 0, σ · n = 0 on Γu, (2.2f)

where n denotes the outward unit normal vector on Γ, ε(u) := 1
2

(
∇u + (∇u)T

)
is the total strain rate tensor, I is

the identity tensor in Rd×d, and div stands for the divergence operator div acting along the rows of a given tensor.
Furthermore, g is the gravity acceleration (constant and aligned with the vertical direction), α > 0 is the so-called
Biot–Willis parameter (which is close to 1), c0 > 0 is the constrained specific storage coefficient, η, ρ > 0 are the
viscosity and density of the pore fluid, λ, µ are the Lamé parameters of the solid (dilation and shear moduli of the
solid), and κ is the permeability of the porous solid, here assumed to be uniformly bounded: 0 < κ1 ≤ κ(x) ≤ κ2 for
all x ∈ Ω.

We finally recall that, under the assumption of small solid deformations, (2.2a) corresponds to the conservation of
momentum of the fluid-structure mixture. Moreover, (2.2b) and (2.2c) are introduced as new unknowns in the system,
whereas (2.2d) arises from the time discretization of the fluid mass conservation equation in the transient Biot’s model.

2.3. Weak formulation

The weak formulation of the coupled problem (2.2) is given by [28, Section 2]: Find (u, φ,σ, p) ∈ H ×Q ×Z ×Q
such that

as(u, v)+ bs(v, φ) = F(v) ∀ v ∈ H, (2.3a)
bs(u, ψ)− cs(φ, ψ) +bs f (ψ, p) = 0 ∀ψ ∈ Q, (2.3b)

a f (σ, τ)+b f (τ, p) = G(τ) ∀ τ ∈ Z, (2.3c)
bs f (φ, q)+b f (σ, q)−c f (p, q) = H(q) ∀ q ∈ Q, (2.3d)

where, by the boundary conditions (2.2f), the functional spaces are defined as

H := H1
Γu

(Ω), Q := L2(Ω), and Z := {τ ∈ H(div; Ω) : τ · n = 0 on Γu} ,
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and the corresponding forms are defined as

as(u, v) := 2µ
∫

Ω

ε(u) : ε(v), bs(v, ψ) := −
∫

Ω

ψ div v, cs(φ, ψ) :=
1
λ

∫
Ω

φψ,

bs f (ψ, q) :=
α

λ

∫
Ω

ψq, a f (σ, τ) :=
∫

Ω

η

κ
σ · τ, b f (τ, q) := −

∫
Ω

q div τ, c f (p, q) :=
(
c0 +

α2

λ

) ∫
Ω

pq,

F(v) :=
∫

Ω

f · v + 〈mΓ, v〉Γp , G(τ) :=
∫

Ω

ρg · τ − 〈τ · n, pΓ〉Γp , H(q) := −
∫

Ω

`q.

(2.4)

The subscripts “s” or “ f ” are introduced to emphasize that a bilinear form is only related to structure or fluid variables,
respectively.

Let us discuss the stability properties of the forms involved in (2.3). Firstly, it is easy to check that

|as(u, v)| ≤ 2µCk,2‖u‖1,Ω‖v‖1,Ω, |a f (σ, τ)| ≤ ηκ−1
1 ‖σ‖div,Ω‖τ‖div,Ω,

|bs(v, ψ)| ≤
√

d‖v‖1,Ω‖ψ‖0,Ω, |b f (τ, q)| ≤ ‖τ‖div,Ω‖q‖0,Ω,

|bs f (ψ, q)| ≤ αλ−1‖ψ‖0,Ω‖q‖0,Ω, |cs(φ, ψ)| ≤ λ−1‖φ‖0,Ω‖ψ‖0,Ω,

|c f (p, q)| ≤
(
c0 + α2λ−1

)
‖p‖0,Ω‖q‖0,Ω,

(2.5)

for all u, v ∈ H, p, q, φ, ψ ∈ Q, and σ, τ ∈ Z. Above, Ck,2 is one of the positive constants satisfying

Ck,1‖v‖21,Ω ≤ ‖ε(u)‖20,Ω ≤ Ck,2‖v‖21,Ω ∀ v ∈ H. (2.6)

Also, the functionals F, G, and H can be bounded as follows:

|F(v)| ≤
(
‖ f‖0,Ω + ‖mΓ‖−1/2,00,Γp

)
‖v‖1,Ω ∀ v ∈ H,

|G(τ)| ≤
(
ρ‖g‖0,Ω + ‖pΓ‖1/2,00,Γp

)
‖τ‖div,Ω ∀ τ ∈ Z,

|H(q)| ≤ ‖`‖0,Ω‖q‖0,Ω ∀ q ∈ Q.

On the other hand, the positivity of the bilinear forms as and a f are immediate from the lower bound for κ and the
inequality (2.6). More precisely, we have

as(v, v) ≥ 2µCk,1‖v‖21,Ω ∀ v ∈ H, and a f (τ, τ) ≥ ηκ−1
2 ‖τ‖

2
div,Ω ∀ τ ∈ K f , (2.7)

where
K f :=

{
τ ∈ Z : b f (τ, q) = 0 ∀ q ∈ Q

}
= {τ ∈ Z : div τ = 0 in Ω} . (2.8)

Finally, the following inf-sup conditions are well-known to hold (see, e.g. [35]):

sup
vh∈H
vh,0

bs(v, ψ)
‖v‖1,Ω

≥ βs‖ψ‖0,Ω ∀ψ ∈ Q, and sup
τ∈Z
τh,0

b f (τ, q)
‖τ‖div,Ω

≥ β f ‖q‖0,Ω ∀ q ∈ Q,

where βs, β f > 0 depend on |Ω|.
Let us now briefly comment on the well-posedness of the problem (2.3). To this end, we follow the approach of

[28, Section 2]. We start by recalling the following continuous dependence result for (2.3) with arbitrary functionals.
This will also be useful later on when deriving our a priori and a posteriori error bounds (cf. Sections 3 and 4,
respectively). To alleviate the notation, in the sequel we use the norm

|||(v, ψ, τ, q)||| := ‖v‖1,Ω + ‖ψ‖0,Ω + ‖τ‖div,Ω + ‖q‖0,Ω (2.9)

for all v ∈ H, ψ ∈ Q, τ ∈ Z, p ∈ Q.
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Lemma 2.1. Given F1 ∈ H′, G1 ∈ Q′, F2 ∈ Z′ and G2 ∈ Q′, let (u, φ,σ, p) ∈ H × Q × Z × Q be such that

as(u, v)+ bs(v, φ) = F1(v) ∀ v ∈ H, (2.10a)
bs(u, ψ)− cs(φ, ψ) +bs f (ψ, p) = G1(ψ) ∀ψ ∈ Q, (2.10b)

a f (σ, τ)+b f (τ, p) = F2(τ) ∀ τ ∈ Z, (2.10c)
bs f (φ, q)+b f (σ, q)−c f (p, q) = G2(q) ∀ q ∈ Q, (2.10d)

where the bilinear forms as, bs, cs, a f , b f , cs and bs f are given by (2.4). There exists a constant C > 0, independent
of λ, such that

|||(u, φ,σ, p)||| ≤ C
(
‖F1‖H′ + ‖G1‖Q′ + ‖F2‖Z′ + ‖G2‖Q′

)
, (2.11)

Now, letM : H × Q × Z × Q → H × Q × Z × Q be the mapping induced by the left-hand side of (2.10). Then,
if (u, φ,σ, p) satisfies (2.10), it follows thatM(u, φ,σ, p) = (RH(F1),RQ(G1),RZ(F2),RQ(G2)), where RH : H′ → H,
RQ : Q′ → Q and RZ : Z′ → Z are the corresponding Riesz operators. Moreover, from (2.11) we have

|||(u, φ,σ, p)||| ≤ C|||M(u, φ,σ, p)|||,

which implies that M has closed range and its kernel is the null vector, or equivalently, M∗ is surjective (see, e.g.
[36, Theorem 2.20]). SinceM is self-adjoint, it becomes clear that the unique solvability of (2.3) follows from the
estimate (2.11) by setting F1 = F, G1 = 0, F2 = G and G2 = H, that is, the following result holds.

Theorem 2.2. There exists a unique (u, φ,σ, p) ∈ H × Q × Z × Q satisfying (2.3). Moreover, there exists Cstab > 0,
independent of λ, such that

|||(u, φ,σ, p)||| ≤ Cstab

(
‖ f‖0,Ω + ‖g‖0,Ω + ‖`‖0,Ω + ‖mΓ‖−1/2,00,Γp + ‖pΓ‖1/2,00,Γp

)
.

We close this section by observing that the solution of (2.3) solves the original problem (2.2) in the sense of the
following lemma.

Lemma 2.3. Let (u, φ,σ, p) ∈ H × Q × Z × Q be the unique solution of (2.3). It satisfies in a distributional sense,
−div (2µε(u) − φI) = f in Ω, 1

λ
(αp − φ) − div u = 0 in Ω, η

κ
σ +∇p − ρg = 0 in Ω,

(
c0 + α2

λ

)
p − α

λ
φ + divσ − ` = 0 in

Ω. Additionally, u, φ, σ and p satisfy the boundary conditions described in (2.2e)-(2.2f).

Proof. The result follows by applying integration by parts in (2.3) and using suitable test functions. We omit the
mathematical details.

3. The Galerkin method

In this section we introduce the Galerkin approximation of the problem (2.3), analyze its well-posedness and
establish the associated Céa’s estimate. For this, we consider arbitrary finite dimensional subspaces, denoted by

Hh ⊆ H, Qh,Wh ⊆ Q, and Zh ⊆ Z. (3.1)

Hereafter, the index h > 0, refers to the meshsize of a shape-regular triangulation Th of Ω made of triangles T (when
d = 2) or tetrahedra (when d = 3) of diameter hT , i.e., h := max{hT : T ∈ Th}.

In this way, the Galerkin scheme associated to (2.3) reads: Find (uh, φh,σh, ph) ∈ Hh × Qh × Zh ×Wh such that

as(uh, vh)+ bs(vh, φh) = F(vh) ∀ vh ∈ Hh, (3.2a)
bs(uh, ψh)− cs(φh, ψh) +bs f (ψh, ph) = 0 ∀ψh ∈ Qh, (3.2b)

a f (σh, τh)+b f (τh, ph) = G(τh) ∀ τh ∈ Zh, (3.2c)
bs f (φh, qh)+b f (σh, qh)−c f (ph, qh) = H(qh) ∀ qh ∈Wh, (3.2d)

where the bilinear forms and the functionals are as in (2.4).
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Next, we proceed as in [28] and make use of the discrete analogue of Lemma 2.1 to prove the well-posedness of
the Galerkin scheme (3.2). Before doing so, in order to ensure the stability properties of the bilinear forms that are
not inherited from the continuous case, we derive general hypotheses on the subspaces in (3.1).

Let us first look at the discrete kernel of the bilinear form b f , which is given by

K f ,h :=
{
τh ∈ Zh : b f (τh, qh) = 0 ∀ qh ∈Wh

}
.

A more explicit definition of this space can be obtained if we assume that

(H0) div Zh ⊆Wh.

In fact, this implies that K f ,h = {τh ∈ Zh : div τh = 0 in Ω}. Moreover, since K f ,h ⊆ K f (cf. (2.8)), the ellipticity
of bilinear form a f on K f ,h is deduced from (2.7), and with the same constant.

Let us also assume that the following discrete inf-sup conditions hold:

(H1) There exists β̂ f > 0, independent of h, such that

sup
τh∈Zh
τh,0

b f (τh, qh)
‖τh‖div,Ω

≥ β̂ f ‖qh‖0,Ω ∀ qh ∈Wh.

(H2) There exists β̂s > 0, independent of h, such that

sup
vh∈Hh
vh,0

bs(vh, ψh)
‖vh‖1,Ω

≥ β̂s‖ψh‖0,Ω ∀ψh ∈ Qh.

In Section 3.1 we specify suitable choices of finite element subspaces satisfying the above hypotheses. We remark
in advance that (Hh,Qh) can be taken as a pair of stable finite element subspaces for the Stokes problem, whereas Zh

and Wh are given by, but are not limited to, the Raviart–Thomas element and the space of discontinuous polynomials,
respectively.

The following result is the discrete analogue of Lemma 2.1 and can be proven by a similar technique.

Lemma 3.1. Given F̂1 ∈ H′h, Ĝ1 ∈ Q′h, F̂2 ∈ Z′h and Ĝ2 ∈W′
h, let (uh, φh,σh, ph) ∈ Hh × Qh × Zh ×Wh be such that

as(uh, vh)+ bs(vh, φh) = F̂1(vh) ∀ vh ∈ Hh, (3.3a)

bs(uh, ψh)− cs(φh, ψh) +bs f (ψh, ph) = Ĝ1(ψh) ∀ψh ∈ Qh, (3.3b)

a f (σh, τh)+b f (τh, ph) = F̂2(τh) ∀ τh ∈ Zh, (3.3c)

bs f (φh, qh)+b f (σh, qh)−c f (ph, qh) = Ĝ2(qh) ∀ qh ∈Wh, (3.3d)

where the bilinear forms are defined as in (2.4), and suppose that hypotheses (H0)-(H2) hold. There exists a constant
C > 0, independent of λ and h, such that

|||(uh, φh,σh, ph)||| ≤ C
(
‖F̂1‖H′h + ‖Ĝ1‖Q′h + ‖F̂2‖Z′h + ‖Ĝ2‖W′

h

)
. (3.4)

We are now in a position of stating the well-posedness of the Galerkin scheme (3.2) and the associated Céa’s
estimate.

Theorem 3.2. Suppose that (H0)-(H2) hold. Then, there exists a unique (uh, φh,σh, ph) ∈ Hh×Qh×Zh×Wh satisfying
(3.2). Moreover, there exists a constant Ĉstab, independent of λ and h, such that

|||(uh, φh,σh, ph)||| ≤ Ĉstab

(
‖ f‖0,Ω + ‖g‖0,Ω + ‖`‖0,Ω + ‖mΓ‖−1/2,00,Γp + ‖pΓ‖1/2,00,Γp

)
. (3.5)

In addition, there exists Ccea > 0, also independent of λ and h, such that

|||(u − uh, φ − φh,σ − σh, p − ph)|||

≤ Ccea

(
inf

vh∈Hh
‖u − vh‖1,Ω + inf

ψh∈Qh
‖φ − ψh‖0,Ω + inf

τh∈Zh
‖σ − τh‖div,Ω + inf

qh∈Wh
‖p − qh‖0,Ω

)
.

(3.6)
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Proof. We first observe that (3.5) is a particular case of estimate (3.4). Consequently, the unique solvability of
problem (3.2) can be readily deduced. In fact, since in finite dimensional linear problems existence and uniqueness
of the solution are equivalent, it suffices to note, thanks to (3.5), that the solution of the Galerkin scheme (3.2) with
homogeneous data will be the trivial one.

It remains to prove (3.6), for which we proceed as in the proof of [28, Theorem 5.1]. Firstly, testing equations
(2.3a)-(2.3d) with (v, ψ, τ, q) = (vh, ψh, τh, qh) ∈ Hh × Qh × Zh ×Wh and subtracting the resulting system from (3.2),
we get the Galerkin orthogonality equations

as(u − uh, vh)+ bs(vh, φ − φh) = 0 ∀ vh ∈ Hh, (3.7a)
bs(u − uh, ψh)− cs(φ − φh, ψh) +bs f (ψh, p − ph) = 0 ∀ψh ∈ Qh, (3.7b)

a f (σ − σh, τh)+b f (τh, p − ph) = 0 ∀ τh ∈ Zh, (3.7c)
bs f (φ − φh, qh)+b f (σ − σh, qh)−c f (p − ph, qh) = 0 ∀ qh ∈Wh. (3.7d)

Next, given v̂h ∈ Hh, ψ̂h ∈ Qh, τ̂h ∈ Zh and q̂h ∈ Wh, we let F̂1 ∈ H′h, Ĝ1 ∈ Q′h, F̂2 ∈ Z′h and Ĝ2 ∈ W′
h be the

functionals defined as follows:

F̂1(vh) := −as(u − v̂h, vh) − bs(vh, φ − ψ̂h), Ĝ1(ψh) := −bs(u − v̂h, ψh) + cs(φ − ψ̂h, ψh) − bs f (ψh, p − q̂h),

F̂2(τh) := −a f (σ − τ̂h, τh) − b f (τh, p − q̂h), Ĝ2(qh) := −bs f (φ − ψ̂h, q) − b f (σ − τ̂h, q) + c f (p − q̂h, qh).

Then, adding and subtracting convenient terms to the individual errors in system (3.7), and using Lemma 3.1, it
follows that ∣∣∣∣∣∣∣∣∣∣∣∣(̂vh − uh, ψ̂h − φh, τ̂h − σh, q̂h − ph

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤ C
(
‖F̂1‖H′h + ‖Ĝ1‖Q′h + ‖F̂2‖Z′h + ‖Ĝ2‖W′

h

)
. (3.8)

Using the boundedness of the above bilinear forms (cf. (2.5)), we have

‖F̂1‖H′h ≤ 2µCk,2‖u − v̂h‖1,Ω +
√

d‖φ − ψ̂h‖0,Ω, ‖Ĝ1‖Q′h ≤
√

d‖u − v̂h‖1,Ω +
1
λ
‖φ − ψ̂h‖0,Ω +

α

λ
‖p − q̂h‖0,Ω,

‖F̂2‖Z′h ≤
η

κ1
‖σ − τ̂h‖div,Ω + ‖p − q̂h‖0,Ω, ‖Ĝ2‖W′

h
≤
α

λ
‖φ − ψ̂h‖0,Ω + ‖σ − τ̂h‖div,Ω +

(
c0 +

α2

λ

)
‖p − q̂h‖0,Ω.

Therefore, we obtain using the triangle inequality and estimate (3.8),

|||(u − uh, φ − φh,σ − σh, p − ph)||| ≤
(
1 + C̃

) ∣∣∣∣∣∣∣∣∣(u − v̂h, φ − ψ̂h,σ − τ̂h, p − q̂h)
∣∣∣∣∣∣∣∣∣,

where

C̃ := C max
{

2µCk,2 +
√

d,
1
λ

(1 + α) +
√

d,
η

κ1
+ 1,

α

λ
(α + 1) + c0 + 1

}
.

Above, C̃ can be bounded by a constant independent of λ because λ−1(1+α) and αλ−1(1+α) are bounded. In particular,
they are negligible when volumetric locking occurs (i.e., as λ→ ∞). The proof ends by observing that v̂h, ψ̂h, τ̂h and
q̂h are arbitrary.

3.1. Specific finite element subspaces
The aim of this section is to take advantage of the flexibility of conforming methods to provide concrete finite

element subspaces satisfying the crucial hypotheses (H0)-(H2). To that end, given an integer l ≥ 0 and a subset S of
Rd, we let Pl(S ) (resp. P̃l(S )) denote the space of polynomials of degree at most l on S (resp. of degree equal to l on
S ). We also set Pl(S ) := [Pl(S )]d.

Let k ≥ 0 be an integer. The generalized Hood–Taylor element (see, e.g. [37, Section 8.8.2]) consists of the pair
(Hh,Qh) specified by

Hh :=
{
vh ∈ [C(Ω)]d : vh|T ∈ Pk+2(T ) ∀T ∈ Th, vh = 0 on Γu

}
(3.9)

and
Qh :=

{
ψh ∈ C(Ω) : ψh|T ∈ Pk+1(T ) ∀T ∈ Th

}
. (3.10)

This pair satisfies the inf-sup condition in hypothesis (H2). We refer the reader to [38] for the proof (see also [37, 39]).
In addition, the following approximation properties are well-known to hold:
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(APu
h) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1] and each u ∈ Hs+2(Ω), there holds

inf
vh∈Hh

‖u − vh‖1,Ω ≤ Chs+1‖u‖s+2,Ω.

(APφ
h) There exists C > 0, independent of h, such that for each s ∈ (0, k + 1] and each φ ∈ Hs+1(Ω), there holds

inf
ψh∈Qh

‖φ − ψh‖0,Ω ≤ Chs+1‖φ‖s+1,Ω.

Furthermore, the local Raviart–Thomas space of order k, for each T ∈ Th, is defined as

RTk(T ) := Pk(T ) ⊕ P̃k(T )x,

where x is a generic vector in Rd. To approximate the fluid flux σ we consider the global Raviart–Thomas space of
order k which is given by

Zh := {τh ∈ H(div; Ω) : τh|T ∈ RTk(T ) ∀T ∈ Th, τh · n = 0 on Γu} . (3.11)

We consider discontinuous polynomials of order k for the fluid pressure:

Wh :=
{
qh ∈ L2(Ω) : qh|T ∈ Pk(T ) ∀T ∈ Th

}
. (3.12)

It is well-known that the pair (Zh,Wh) satisfies the hypotheses (H0) and (H1) (see, e.g. [40, 41]). This fact completes
the requirements of Theorem 3.2, and therefore the well-posedness of (3.2) holds for the above subspaces.

Let us now recall the approximation properties of Zh and Wh.

(APσh ) There exists C > 0, independent of h, such that for each m ∈ (0, k + 1] and each σ ∈ Hm(Ω) ∩ Z, with
divσ ∈ Hm(Ω), there holds

inf
τh∈Zh

‖σ − τh‖div,Ω ≤ Chm(‖σ‖m,Ω + ‖divσ‖m,Ω).

(APp
h ) There exists C > 0, independent of h, such that for each m ∈ (0, k + 1] and each p ∈ Hm(Ω), there holds

inf
qh∈Wh

‖p − qh‖0,Ω ≤ Chm‖p‖m,Ω.

From the above discussion, the following theorem provides the theoretical rate of convergence of the Galerkin
scheme (3.2) under suitable regularity assumptions on the exact solution.

Theorem 3.3. Given s,m ∈ (0, k+1], assume that u ∈ Hs+2(Ω), φ ∈ Hs+1(Ω),σ ∈ Hm(Ω)∩Z such that divσ ∈ Hm(Ω),
and p ∈ Hm(Ω). There exists Crate > 0, independent of λ and h, such that

|||(u − uh, φ − φh,σ − σh, p − ph)||| ≤ Cratehmin{s+1,m} (‖u‖s+2,Ω + ‖φ‖s+1,Ω + ‖σ‖m,Ω + ‖divσ‖m,Ω + ‖p‖m,Ω
)
.

Proof. The result is a straightforward application of Céa’s estimate (3.6), and the approximation properties (APu
h),

(APφ
h), (APσh ) and (APp

h ).

Remark 3.1. To approximate the solution of problem (2.3), one may consider other finite element subspaces available
in the literature. For example, for each T ∈ Th, consider the Brezzi–Douglas–Marini space BDMk(T ) := Pk(T ) of
order k ≥ 1 (see, e.g. [40]), and the enriched space P1,b(T ) := [P1(T ) ⊕ span{bT }]d, where bT is the bubble function
defined as bT :=

∏d+1
i=1 λi and {λi}, 1 ≤ i ≤ d + 1, are the barycentric coordinates of T . The following finite element

spaces,
Hh :=

{
vh ∈ [C(Ω)]d : vh|T ∈ P1,b(T ) ∀T ∈ Th, vh = 0 on Γu

}
,

Qh :=
{
ψh ∈ C(Ω) : ψh|T ∈ P1(T ) ∀T ∈ Th

}
,

Zh := {τh ∈ H(div; Ω) : τh|T ∈ BDMk(T ) ∀T ∈ Th, τh · n = 0 on Γu} ,

Wh :=
{
qh ∈ L2(Ω) : qh|T ∈ Pk−1(T ) ∀T ∈ Th

}
,

(3.13)
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result also in a well–posed Galerkin scheme (3.2) with optimal error bounds. In particular, we recall that (Hh,Qh),
which is usually referred to as the MINI-element [42], satisfies the hypothesis (H2). For its proof in two dimensions,
we refer to [42] (see also [40]). The stability of this element in three dimensions follows, as in the two-dimensional
case, by using a suitable Fortin operator (see, e.g. [43]).

The theory developed in this section holds for combinations of the pairs (Hh,Qh) and (Zh,Wh) resulting from the
finite element subspaces (3.9)-(3.12) and (3.13).

4. A residual-based a posteriori error estimator

We now develop a reliable and efficient residual-based a posteriori error estimator for the Galerkin scheme (3.2).
In doing so, we may use any choice of finite dimensional subspaces satisfying the hypotheses of Section 3. For
simplicity, however, we consider the finite dimensional subspaces (3.9)-(3.12), and restrict ourselves to the problem
in two dimensions. In Section 4.3 we will comment on the main consideration for extending the estimator to three
dimensions. We begin by introducing further notation and definitions.

For each T ∈ Th, we let E(T ) be the set of all edges of T , and denote by Eh the set of all edges of Th, that
is, Eh = Eh(Ω) ∪ Eh(Γu) ∪ Eh(Γp), where Eh(Ω) := {e ∈ Th : e ⊆ Ω}, Eh(Γu) := {e ∈ Th : e ⊆ Γu} and
Eh(Γp) := {e ∈ Th : e ⊆ Γp}. In what follows, he stands for the diameter of a given edge e ∈ Eh. For every edge e ∈ Eh

we fix a unit normal vector ne := (n1, n2)T to the edge e, and let se := (−n2, n1)T be the fixed unit tangential vector
along e. However, when no confusion arises we will simply write n and s instead of ne and se, respectively. Given an
edge e ∈ Eh(Ω), τ ∈ L2(Ω) and ξ ∈ [L(Ω)]2×2, such that τ ∈ [C(T )]2 and ξ ∈ [C(T )]2×2 for all T ∈ Th, we let Jτ · sK
and JξnK be the corresponding jumps across e, i.e., Jτ · sK := {(τ|T )|e − (τ|T ′ )|e} · s and JξnK := {(ξ|T )|e − (ξ|T ′ )|e}n,
respectively, where T and T ′ are two triangles of Th sharing a common edge e. Finally, given scalar and vector-valued
fields ψ and τ := (τi)1≤i≤2, respectively, we set

rot τ :=
∂τ2

∂x1
−
∂τ1

∂x2
and curlψ :=

 ∂ψ
∂x2

−
∂ψ
∂x1

 .
Now, let (uh, φh,σh, ph) ∈ Hh × Qh × Zh ×Wh be the unique solution of problem (3.2) and introduce the global a

posteriori error estimator

Θ :=

∑
T∈Th

(
Θ2

s,T + Θ2
f ,T + Θ2

s f ,T

)
1/2

, (4.1)

where Θs,T , Θ f ,T and Θs f ,T are the local error indicators defined for each T ∈ Th as follows:

Θ2
s,T := h2

T ‖ f + div (2µε(uh) − φhI)‖20,T +
∑

e∈E(T )∩Eh(Ω)

he‖J(2µε(uh) − φhI)nK‖20,e

+
∑

e∈E(T )∩Eh(Γp)

he‖mΓ − J(2µε(uh) − φhI)nK‖20,e,
(4.2)

Θ2
f ,T := h2

T

∥∥∥∥∥∇ph − ρg +
η

κ
σh

∥∥∥∥∥2

0,T
+ h2

T

∥∥∥∥∥rot
(
η

κ
σh − ρg

)∥∥∥∥∥2

0,T
+

∑
e∈E(T )∩Eh(Ω)

he

∥∥∥∥∥r(
η

κ
σh − ρg

)
· s

z∥∥∥∥∥2

0,e

+
∑

e∈E(T )∩Eh(Γp)

{
he‖pΓ − ph‖

2
0,e + he

∥∥∥∥∥(ηκσh − ρg
)
· s +

dpΓ

ds

∥∥∥∥∥2

0,e

} (4.3)

Θ2
s f ,T :=

∥∥∥∥∥1
λ

(φh − αph) + div uh

∥∥∥∥∥2

0,T
+

∥∥∥∥∥∥
(
c0 +

α2

λ

)
ph −

α

λ
φh + divσh − `

∥∥∥∥∥∥2

0,T
. (4.4)

The residual character of each term defining (Θs,T +Θ f ,T +Θs f ,T ) is a consequence of the strong problem (2.2) and the
regularity of the weak solution at the continuous level. It is important to remark that the third term of Θs,T requires
mΓ ∈ L2(e) for all e ∈ Eh(Γp), which will be assumed from now on. Similarly, as we will see in Lemma 4.5 (see, in
particular, equation (4.24)), we need to assume that pΓ ∈ H1(Γp). The latter implies that the fourth and fifth terms of
Θ f ,T are well-defined.

In what follows we prove the main properties of Θ, namely its reliability and efficiency.
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4.1. Reliability of the a posteriori error estimator
In this section we focus on the proof of the following result.

Theorem 4.1. There exists a constant Crel > 0, independent of λ and h, such that

|||(u − uh, φ − φh,σ − σh, p − ph)||| ≤ CrelΘ, (4.5)

where |||·||| was defined in (2.9).

The proof of Theorem 4.1 will be separated into several steps. We start by providing a preliminary upper bound
for the total error, as done in [32]. The idea is to bound the global error by dual norms of the residuals associated with
problem (3.2). The following result holds the key to this.

Lemma 4.2. Let (u, φ,σ, p) ∈ H × Q × Z × Q and (uh, φh,σh, ph) ∈ Hh × Qh × Zh ×Wh be the unique solutions of
problems (2.3) and (3.2), respectively. There exists a constant C > 0, independent of λ and h, such that

|||(u − uh, φ − φh,σ − σh, p − ph)||| ≤ C
(
‖F1‖H′ + ‖G1‖Q′ + ‖F2‖Z′ + ‖G2‖Q′

)
,

where F1(·) on H, G1(·) on Q, F2(·) on Z and G2(·) on Q denote the linear functionals defined, respectively, by

F1(v) := F(v) − as(uh, v) − bs(v, φh), (4.6)
G1(ψ) := −bs(uh, ψ) + cs(φh, ψ) − bs f (ψ, ph), (4.7)
F2(τ) := G(τ) − a f (σh, τ) − b f (τ, ph), (4.8)
G2(q) := H(q) − bs f (φh, q) − b f (σh, q) + c f (ph, q). (4.9)

Proof. Adding and subtracting (uh, φh,σh, ph) to the continuous solution in system (2.3), the conclusion follows
directly from the estimate (2.11) by taking F1 = F1, G1 = G1, F2 = F2 and G2 = G2.

Having proved Lemma 4.2, and noting that G1,G2 ∈ Q′ satisfy

‖G1‖Q′ ≤

∥∥∥∥∥1
λ

(φh − αph) + div uh

∥∥∥∥∥
0,T

and ‖G2‖Q′ ≤

∥∥∥∥∥∥
(
c0 +

α2

λ

)
ph −

α

λ
φh + divσh − `

∥∥∥∥∥∥
0,T
, (4.10)

it is clear that in order to show (4.5), we need to obtain suitable upper bounds for ‖F1‖H′ and ‖F2‖Z′ . From the Galerkin
scheme (3.2) we note that F1(vh) = 0 for all vh ∈ Hh, and F2(τh) = 0 for all τh ∈ Zh. We can therefore write

‖F1‖H′ := sup
v∈H
vh,0

|F1(v − vh)|
‖v‖1,Ω

(4.11)

and
‖F2‖Z′ := sup

τ∈Z
τh,0

|F2(τ − τh)|
‖τ‖div,Ω

, (4.12)

with vh ∈ Hh and τh ∈ Zh suitably chosen functions that will be defined later.

4.1.1. Upper bound for ‖F1‖H′

To satisfy homogeneous Dirichlet boundary conditions, we introduce the Clément-type interpolant

Ih,Γu : H1
Γu

(Ω)→ Xh,Γu ,

where
Xh,Γu :=

{
v ∈ C(Ω) : v|T ∈ P1(T ) ∀T ∈ Th, v = 0 on Γu

}
⊆ H1

Γu
(Ω),

with H1
Γu

(Ω) defined as in (2.1). It can be shown that this operator satisfies the same approximation properties as the
standard Clément interpolant [44], i.e.,

‖v − Ih,Γu (v)‖0,T ≤ C1hT |v|1,∆(T ) ∀T ∈ Th, and ‖v − Ih,Γu (v)‖0,e ≤ C2h1/2
e |v|1,∆(e) ∀ e ∈ Eh, (4.13)

where ∆(T ) and ∆(e) are the union of all the elements intersecting with T and e, respectively. Furthermore, we denote
by I h,Γu the vector operator defined componentwise by Ih,Γu .

Next, proceeding analogously to [34, Section 6], we state the main result of this section.
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Lemma 4.3. Assuming that mΓ ∈ L2(e) for all Eh(Γp), there exists a constant C > 0, independent of λ and h, such
that

‖F1‖H′ ≤ C

∑
T∈Th

Θ2
s,T


1/2

,

where Θs, f is defined in (4.2).

Proof. Integrating by parts (4.6) on each T ∈ Th yields for all w ∈ H,

F1(w) =

∫
Ω

f · w +

∫
Γp

mΓ · w − 2µ
∫

Ω

ε(uh) : ε(w) +

∫
Ω

φh div w

=
∑
T∈Th

∫
T

f · w +
∑

e∈Eh(Γp)

∫
e

mΓ · w −
∑
T∈Th

∫
T

(2µε(uh) − φhI) : ∇w

=
∑

e∈Eh(Γp)

∫
e

mΓ · w +
∑
T∈Th

{∫
T

( f + div (2µε(uh) − φhI)) · w −
∫
∂T

(2µε(uh) − φhI)n · w
}

=
∑
T∈Th

∫
T

( f + div (2µε(uh − φhI)) · w +
∑

e∈Eh(Γp)

∫
e
(mΓ − (2µε(uh) − φhI)n) · w

−
∑

e∈Eh(Ω)

∫
e
J(2µε(uh) − φhI)nK · w.

Given v ∈ H, set vh in (4.11) to vh := I h,Γu (v) and let w := v − vh. Then, applying the Cauchy–Schwarz inequality to
each term above, and by the approximation properties of I h,Γu (cf. (4.13)), we obtain

|F1(w)| ≤ C

∑
T∈Th

Θ2
s,T


1/2 ∑

T∈Th

‖v‖21,∆(T ) +
∑

e∈Eh(Ω)

‖v‖21,∆(e) +
∑

e∈Eh(Γp)

‖v‖21,∆(e)


1/2

.

The result follows by using the definition of F1, and noting, by the shape-regularity of the mesh, that the number of
triangles in ∆(T ) and ∆(e) are bounded.

4.1.2. Upper bound for ‖F2‖Z′

In this section, a stable Helmholtz decomposition of Z and suitable interpolation operators will be of paramount
importance to define τh appearing in definition (4.12). This term is necessary to provide an upper bound for ‖F2‖Z′ .
The approach we follow has been widely used in a posteriori error estimators for mixed methods, see for instance
[45, 33, 46].

We start by introducing the L2(Ω)-orthogonal projection onto Wh (cf. (3.12)), Pk
h : L2(Ω)→ Wh, which, for each

q ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, satisfies the approximation property

|q − Pk
h(q)|s,T ≤ Chm−s|q|m,T ∀T ∈ Th, ∀ s ∈ {0, . . . ,m}. (4.14)

In addition, letting ZRT
h := {τh ∈ H(div; Ω) : τh|T ∈ RTk(T ) ∀T ∈ Th}, we recall the classical Raviart–Thomas inter-

polation operator Πk
h : H1(Ω)→ ZRT

h , which, given τ ∈ H1(Ω), is characterized by the identities∫
T
Πk

h(τ) · ζ =

∫
T
τ · ζ ∀ ζ ∈ Pk−1(T ), ∀T ∈ Th, when k ≥ 1, (4.15)∫

e
(Πk

h(τ) · n)ψ =

∫
e
(τ · n)ψ ∀ψ ∈ Pk(e), ∀ e ∈ Eh, when k ≥ 0. (4.16)

Consequently, it is not difficult to check (see, e.g. [41, Lemma 3.7]) that

div (Πk
h(τ)) = Pk

h(div τ) ∀ τ ∈ H1(Ω). (4.17)

Moreover, the following local approximation properties hold [40, 47, 41]:
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• For each τ ∈ Hm(Ω), with 0 ≤ m ≤ k + 1,

‖τ −Πk
h(τ)‖0,T ≤ Chm

T |τ|m,T ∀T ∈ Th, (4.18)

• For each τ ∈ H1(Ω) such that div τ ∈ Hm(Ω), with 0 ≤ m ≤ k + 1,

‖div (τ −Πk
h(τ))‖0,T ≤ Chm

T |div τ|m,T ∀T ∈ Th, (4.19)

• For each τ ∈ H1(Ω), there holds
‖(τ −Πk

h(τ)) · n‖0,e ≤ Ch1/2
e |τ|1,Te , (4.20)

where Te denotes an element of Th having e as an edge.

We now introduce a stable Helmholtz decomposition of Z. This will require Γu to lie on the boundary of a convex
domain containing Ω. We refer to [45, Lemma 3.9] for the proof of this result in the tensorial case.

Lemma 4.4. Assume that there exists a convex domain Ξ such that Ω ⊆ Ξ and Γu ⊆ ∂Ξ. Then, for each τ ∈ Z there
exist ζ ∈ H1(Ω) and ϕ ∈ H1

Γu
(Ω), such that

τ = ζ + curlϕ in Ω, and ‖ζ‖1,Ω + ‖ϕ‖1,Ω ≤ C‖τ‖div,Ω, (4.21)

where C is a positive constant independent of τ, ζ and ϕ.

We now introduce the discrete version of (4.21) and follow similar steps as in [32, Lemma 3.8] (see also [46,
Section 4.1]). Given τ ∈ Z and its Helmholtz decomposition (4.21), we let ζh := Πk

h(ζ) and ϕh := Ih,Γu (ϕ), where
Ih,Γu is the Clément-type interpolant given in Section 4.1.1. We then set the discrete Helmholtz decomposition as
τh := ζh + curlϕh ∈ Zh.

From the above discussion and by definition of F2 (cf. (4.8)), we can write

F2(τ − τh) = F2(ζ − ζh) + F2(curl (ϕ − ϕh)). (4.22)

We will bound each term on the right-hand side of (4.22) separately.
Proceeding as in the proof of [46, Lemma 4.4 ], applying the Cauchy–Schwarz inequality, using the identities

(4.15)-(4.17), the approximation properties (4.18) and (4.20), and the fact that the number of triangles in ∆(T ) and
∆(e) are bounded (due to shape-regularity of the mesh), we obtain, after some algebraic manipulations,

|F2(ζ − ζh)| ≤ C

∑
T∈Th

h2
T

∥∥∥∥∥∇ph − ρg +
η

κ
σh

∥∥∥∥∥2

0,T
+

∑
e∈Eh(Γp)

he‖pΓ − ph‖
2
0,e


1/2

‖ζ‖1,Ω. (4.23)

The upper bound for |F2(curl (ϕ − ϕh))| follows by similar arguments as in [46, Lemma 4.3]. Indeed, using the
identity curl (ϕ − ϕh) · n = d

ds (ϕ − ϕh), assuming dpΓ

ds ∈ L2(Γp), and integrating by parts on Γp (see [48, Lemma 3.5,
eq. (3.34)]), we obtain

〈curl (ϕ − ϕh) · n, pΓ〉Γp = −

〈
dpΓ

ds
, ϕ − ϕh

〉
Γp

= −
∑

e∈Eh(Γp)

∫
e
(ϕ − ϕh)

dpΓ

ds
. (4.24)

We can then write F2(curl (ϕ − ϕh)), using (4.24) and applying [35, Theorem 2.11] to integrate by parts elementwise,
as

F2(curl (ϕ − ϕh)) = −

∫
Ω

(
η

κ
σh − ρg

)
· curl (ϕ − ϕh) − 〈curl (ϕ − ϕh) · n, pΓ〉Γp

= −
∑
T∈Th

∫
T

rot
(
η

κ
σh − ρg

)
(ϕ − ϕh) +

∑
e∈Eh(Ω)

∫
e

r(
η

κ
σh − ρg

)
· s

z
(ϕ − ϕh)

+
∑

e∈Eh(Γp)

∫
e

{(
η

κ
σh − ρg

)
· s +

dpΓ

ds

}
(ϕ − ϕh).
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Next, applying the Cauchy–Schwarz inequality, using (4.13), and the shape-regularity of the mesh, it follows that

|F2(curl (ϕ − ϕh))| ≤ C

∑
T∈Th

h2
T

∥∥∥∥∥rot
(
η

κ
σh − ρg

)∥∥∥∥∥2

0,T
+

∑
e∈Eh(Ω)

he

∥∥∥∥∥r(
η

κ
σh − ρg

)
· s

z∥∥∥∥∥2

0,e

+
∑

e∈Eh(Γp)

he

∥∥∥∥∥(ηκσh − ρg
)
· s +

dpΓ

ds

∥∥∥∥∥2

0,e


1/2

‖ϕ‖1,Ω.

(4.25)

Finally, combining (4.23) and (4.25), and using the stability of the Helmholtz decomposition (4.21), we obtain the
desired bound as summarized in the next lemma.

Lemma 4.5. Suppose that the hypotheses of Lemma 4.4 hold. Assume further that pΓ ∈ H1(Γp). Then, there exists
C > 0, independent of λ and h, such that

‖F2‖Z′ ≤ C

∑
T∈Th

Θ2
f ,T


1/2

,

with Θ f ,T defined in (4.3).

We end this section by noting that the reliability estimate (4.5) is a direct consequence of Lemmas 4.3 and 4.5,
and the estimates given by (4.10)

4.2. Efficiency of the a posteriori error estimator

The main result of this section reads as follows.

Theorem 4.6. There exists a constant Ceff > 0, independent of λ and h, such that

CeffΘ ≤ |||(u − uh, φ − φh,σ − σh, p − ph)||| + h.o.t., (4.26)

where h.o.t. is a generic expression denoting one or several terms of higher order.

To obtain (4.26), we will find upper bounds for each estimator term in (4.2), (4.3) and (4.4), separately. We can
immediately deduce the estimates for the zero-order terms appearing in the definition of Θs f ,T (cf. (4.4)), as done in
the following lemma.

Lemma 4.7. For all T ∈ Th, there hold∥∥∥∥∥1
λ

(φh − αph) + div uh

∥∥∥∥∥
0,T
≤
√

2‖u − uh‖1,T +
1
λ
‖φ − φh‖0,T +

α

λ
‖p − ph‖0,T ,

and ∥∥∥∥∥∥
(
c0 +

α2

λ

)
ph −

α

λ
φh + divσh − `

∥∥∥∥∥∥
0,T
≤ ‖σ − σh‖div,T +

α

λ
‖φ − φh‖0,T +

(
c0 +

α2

λ

)
‖p − ph‖0,T .

Note that volumetric locking is not a concern in the above two inequalities, because at least one term on the
right-hand side does not vanish when λ→ ∞.

To bound the remaining terms, we introduce further notation and preliminary results. Given T ∈ Th and e ∈ E(T ),
we let ΦT and Φe be the usual element-bubble and edge-bubble functions [49], respectively. In particular, ΦT satisfies
ΦT ∈ P3(T ), sup ΦT ⊆ T , ΦT = 0 on ∂T and 0 ≤ ΦT ≤ 1 in T . Similarly, one has Φe|T ∈ P2(T ), sup Φe ⊆ ωe :=
∪ {T ′ ∈ Th : e ∈ E(T ′)}, Φe = 0 on ∂T \ {e} and 0 ≤ Φe ≤ 1 in ωe. We then have the following useful result.
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Lemma 4.8. Given an integer k ≥ 0, there exists an extension operator L : C(e) → C(T ) such that L(q)|e = q
for all q ∈ Pk(e). Moreover, there exist positive constants γi, i ∈ {1, 2, 3, 4}, which only depend on k and on the
shape-regularity parameter of the mesh, such that for each T ∈ Th and each e ∈ E(T ),

‖ΦTψ‖
2
0,T ≤ ‖ψ‖

2
0,T ≤ γ1‖Φ

1/2
T ψ‖20,T ∀ψ ∈ Pk(T ), (4.27)

‖ΦeL(q)‖20,e ≤ ‖q‖
2
0,e ≤ γ2‖Φ

1/2
e q‖20,e ∀ q ∈ Pk(e), (4.28)

and
γ3h1/2

e ‖q‖0,e ≤ ‖Φ
1/2
e L(q)‖0,T ≤ γ4h1/2

e ‖q‖0,e ∀ q ∈ Pk(e). (4.29)

Proof. See [49, Lemma 4.1] or [50, Lemma 3.3] for details.

The following inverse estimate will also be used.

Lemma 4.9. Let k,m, l ∈ N ∪ {0} such that l ≤ m. There exists a constant C > 0, depending only on k,m, l and the
shape-regularity constant of the mesh, such that for each T ∈ Th there holds

|q|m,T ≤ Cinvhl−m
T |q|l,T ∀ q ∈ Pk(T ). (4.30)

Proof. See [47, Theorem 3.2.6].

Furthermore, we will need the following trace inequality (see, e.g. [51]):

‖v‖0,e ≤ Ctr

(
h−1/2

e ‖v‖0,Te + h1/2
e |v|1,Te

)
∀ v ∈ H1(Te). (4.31)

Above, Te is the mesh element introduced in (4.20). Moreover, the constant Ctr > 0 depends only on the minimum
angle of Te.

In what follows, considering σh the approximate fluid flux in problem (3.2), we often write ξ := η
κ
σh and assume,

for simplicity, that for r,m ≥ k + 2, the permeability satisfies: κ−1|T ∈ Hr+1(T ) for all T ∈ Th, and κ−1|e ∈ Hm+1(e) for
all e ∈ Eh. Furthermore, the vector counterpart of the projection operator Pk

h (cf. (4.14)) will be denoted in boldface.
The following three lemmas provide upper bounds for the estimator terms in (4.3). We present here proofs inspired

by the proofs of Lemmas 6.10, 6.11 and 6.12 in [52]. Similar ideas can be found in [53].

Lemma 4.10. There exists a constant c1 > 0, independent of λ and h, such that for all T ∈ Th,

hT

∥∥∥∥∥rot
(
η

κ
σh − ρg

)∥∥∥∥∥
0,T
≤ c1

(
‖σ − σh‖div,T + h.o.t.

)
. (4.32)

Proof. Adding and subtractingPPPr
h(ξ), and using the triangle inequality, there holds

‖rot (ξ − ρg)‖0,T ≤ C|ξ −PPPr
h(ξ)|1,T +

∥∥∥∥rot
(
PPPr

h(ξ) − ρg
)∥∥∥∥

0,T
. (4.33)

Applying now (4.27) to the second term on the right-hand side of (4.33), and noting, by Lemma 2.3, that ρg =

∇p + ξ +
η
κ
(σ − σh) in Ω, we obtain∥∥∥∥rot

(
PPPr

h(ξ) − ρg
)∥∥∥∥2

0,T
≤ γ1

∥∥∥∥Φ1/2
T rot

(
PPPr

h(ξ) − ρg
)∥∥∥∥2

0,T
= γ1

∫
T

ΦT

(
rot

(
PPPr

h(ξ) − ρg
))2

= γ1

∫
T

ΦT rot
(
PPPr

h(ξ) − ρg
)

rot
(
PPPr

h(ξ) − ξ −
η

κ
(σ − σh)

)
= γ1

∫
T

curl
(
ΦT rot

(
PPPr

h(ξ) − ρg
))
·

(
PPPr

h(ξ) − ξ −
η

κ
(σ − σh)

)
.

It then follows from (4.27) and (4.30) that∥∥∥∥rot
(
PPPr

h(ξ) − ρg
)∥∥∥∥

0,Ω
≤ Cinvγ1h−1

T

(
‖ξ −PPPr

h(ξ)‖0,T +

∥∥∥∥∥ηκ (σ − σh)
∥∥∥∥∥

0,T

)
. (4.34)
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Substituting (4.34) into (4.33), using the lower bound for κ, and applying the approximation property ofPPPr
h in (4.14),

yields
hT ‖rot (ξ − ρg)‖0,T ≤ C̃

(
‖σ − σh‖div,T + hr+1

T |ξ|r+1,T

)
.

Since r ≥ k + 2, the result follows.

Lemma 4.11. There exists a constant c2 > 0, independent of λ and h, such that for all T ∈ Th,

hT

∥∥∥∥∥∇ph − ρg +
η

κ
σh

∥∥∥∥∥
0,T
≤ c2

(
hT ‖σ − σh‖div,T + ‖p − ph‖0,T + h.o.t.

)
. (4.35)

Proof. First, adding and subtractingPPPr
h(ξ), it follows that

‖∇ph − ρg + ξ‖0,T ≤
∥∥∥∇ph − ρg +PPPr

h(ξ)
∥∥∥

0,T + ‖ξ −PPPr
h(ξ)‖0,T . (4.36)

To bound the first term on the right-hand side of (4.36), we apply estimate (4.27), integrate by parts, and use the
identity ρg = ∇p + ξ +

η
κ
(σ − σh) in Ω, to obtain∥∥∥∇ph − ρg +PPPr

h(ξ)
∥∥∥2

0,T ≤ γ1

∥∥∥∥Φ1/2
T

(
∇ph − ρg +PPPr

h(ξ)
)∥∥∥∥2

0,T

= γ1

∫
T

ΦT

(
∇ph − ρg +PPPr

h(ξ)
)
· ∇(ph − p) − γ1

∫
T

ΦT

(
∇ph − ρg +PPPr

h(ξ)
)
·

(
η

κ
(σ − σh) + ξ −PPPr

h(ξ)
)

= −γ1

∫
T

(ph − p) div
(
ΦT

(
∇ph − ρg +PPPr

h(ξ)
))
− γ1

∫
T

ΦT

(
∇ph − ρg −PPPr

h(ξ)
)
·

(
η

κ
(σ − σh) + ξ −PPPr

h(ξ)
)
.

Using the Cauchy–Schwarz inequality and the estimates (4.27) and (4.30), it follows that∥∥∥∇ph − ρg +PPPr
h(ξ)

∥∥∥
0,T ≤ C

(
h−1

T ‖ph − p‖0,T +

∥∥∥∥∥ηκ (σ − σh)
∥∥∥∥∥

0,T
+ ‖ξ −PPPr

h(ξ)‖0,T

)
,

where C > 0 is independent of λ and h. Combined with (4.36) we obtain estimate (4.35).

Lemma 4.12. There exists a constant c3 > 0, independent of λ and h, such that for all e ∈ Eh(Ω),

h1/2
e

∥∥∥∥∥r(
η

κ
σh − ρg

)
· s

z∥∥∥∥∥
0,e
≤ c3

∑
T⊆ωe

(
‖σ − σh‖div,T + h.o.t.

)
. (4.37)

Furthermore, assuming that pΓ is a piecewise polynomial, there exist constants c4, c5 > 0, also independent of λ and
h, such that for all e ∈ Eh(Γp),

h1/2
e

∥∥∥∥∥(ηκσh − ρg
)
· s +

dpΓ

ds

∥∥∥∥∥
0,e
≤ c4

(
‖σ − σh‖div,T + h.o.t.

)
, (4.38)

h1/2
e ‖pΓ − ph‖0,e ≤ c5

(
‖p − ph‖0,T + (1 + hT )‖σ − σh‖div,T + h.o.t

)
. (4.39)

Proof. Let us first prove (4.37). In order to simplify notation, given e ∈ Eh(Ω), we decompose J(ξ − ρg) · sK into
χe :=

q
(ξ −PPPm

h (ξ)) · s
y

and ζe :=
q

(PPPm
h (ξ) − ρg) · s

y
. Applying now the estimate (4.31) and using similar arguments

as in the previous two lemmas,∥∥∥J(ξ − ρg) · sK
∥∥∥

0,e ≤ ‖χe‖0,e + ‖ζe‖0,e

≤
∑
T⊆ωe

Ctr

(
h−1/2

e ‖ξ −PPPm
h (ξ)‖0,T + h1/2

e |ξ −PPP
m
h (ξ)|1,T

)
+ ‖ζe‖0,e

≤ h−1/2
e

∑
T⊆ωe

Ctr

(
‖ξ −PPPm

h (ξ)‖0,T + he|ξ −PPP
m
h (ξ)|1,T

)
+ ‖ζe‖0,e

≤ Ch−1/2
e

∑
T⊆ωe

hm+1
T |ξ|m+1,T + ‖ζe‖0,e,

(4.40)
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where we recall that ωe := ∪ {T ′ ∈ Th : e ∈ E(T ′)}. To estimate ‖ζe‖0,e, we use the second inequality in (4.28),
integrate by parts, and use the identity ρg = ∇p + ξ +

η
κ
(σ − σh) in Ω. This yields

‖ζe‖
2
0,e ≤ γ2‖Φ

1/2
T ζe‖

2
0,e = γ2

∫
e

(ΦeL(ζe)) ζe

=
∑
T⊆ωe

{∫
T

ΦeL(ζe) rot
(
PPPm

h (ξ) − ρg
)
−

∫
T

(
PPPm

h (ξ) − ρg
)
· curl (ΦeL(ζe))

}
=

∑
T⊆ωe

{∫
T

ΦeL(ζe) rot
(
PPPm

h (ξ) − ρg
)
−

∫
T

(
PPPm

h (ξ) − ξ −
η

κ
(σ − σh) − ∇p

)
· curl (ΦeL(ζe))

}
,

where clearly
∫

T ∇p · curl (ΦeL(ζe)) = 0 for all T ⊆ ωe. Using the Cauchy–Schwarz inequality and the inverse
estimate (4.30), it follows that

‖ζe‖
2
0,e ≤ C̃

∑
T⊆ωe

h−1
T

{
hT

∥∥∥∥rot
(
PPPm

h (ξ) − ρg
)∥∥∥∥

0,T
+ ‖ξ −PPPm

h (ξ)‖0,T +

∥∥∥∥∥ηκ (σ − σh)
∥∥∥∥∥

0,T

}
‖ΦeL(ζe)‖0,T . (4.41)

Furthermore, by (4.29) and by construction of Φe, we obtain ‖ΦeL(ζe)‖0,T ≤ ‖Φ
1/2
e L(ζe)‖0,T ≤ γ4h1/2

e ‖ζe‖0,e. This,
together with estimates (4.14), (4.32) and (4.41), and the fact that he ≤ hT for all T ⊂ ωe, gives

‖ζe‖0,e ≤ Ĉh−1/2
e

∑
T⊆ωe

(
‖σ − σh‖div,T + hm+1

T |ξ|m+1,T

)
. (4.42)

The result (4.37) follows by combining (4.40) and (4.42).
To prove (4.38), we proceed as in the proof of (4.37). Given e ∈ Eh(Γp), we let %e := PPPm

h (ξ) − ρg − dpΓ

ds . Since pΓ

is assumed to be a piecewise polynomial, we use similar arguments as in (4.40) to obtain

‖%e‖
2
0,e ≤ γ2‖Φ

1/2
T %e‖

2
0,e = γ2

∫
e

(ΦeL(%e)) %e

=

∫
T e

ΦeL(%e) rot
(
PPPm

h (ξ) − ξ −
η

κ
(σ − σh)

)
−

∫
Te

(
PPPm

h (ξ) − ξ −
η

κ
(σ − σh) − ∇p

)
· curl (ΦeL(%e)),

where Te denotes the only element of Th having e as an edge. Therefore, (4.38) follows by mimicking the steps in the
proof of (4.37).

Finally, proceeding exactly as in the proof of [46, Lemma 4.14], we find

‖pΓ − ph‖0,e ≤ Ctr

(
h−1/2

e ‖p − ph‖0,T + h1/2
e |p − ph|1,T

)
= Ctr

(
h−1/2

e ‖p − ph‖0,T + h1/2
e

∥∥∥∥∥ρg −
η

κ
σh −

η

κ
(σ − σh) − ∇ph

∥∥∥∥∥
1,T

)
≤ Ctr

(
h−1/2

e ‖p − ph‖0,T + h1/2
e

∥∥∥∥∥∇ph − ρg +
η

κ
σh

∥∥∥∥∥
0,T

+ h1/2
e

∥∥∥∥∥ηκ (σ − σh)
∥∥∥∥∥

1,T

)
.

The result (4.39) then follows immediately from (4.35) and the fact that he ≤ hT .

We remark that (4.38) holds also when pΓ is sufficiently smooth. In this case, we can approximate this data by a
Taylor polynomial approximation and obtain (4.38) with further higher order terms appearing on the right-hand side.

Next, we provide the upper bounds for the estimator terms in (4.2). Our general strategy consists of mimicking
the proofs of the results in [34, Section 6] under further assumptions on the data. We have the following lemma.

Lemma 4.13. Suppose that f and mΓ are piecewise polynomials. There exist constants c6, c7 > 0, independent of λ
and h, such that for all T ∈ Th and e ∈ Eh(Γp),

hT ‖ f + div (2µε(uh) − φhI)‖0,T ≤ c6
(
‖u − uh‖1,T + ‖φ − φh‖0,T

)
, (4.43)

16



h1/2
e ‖mΓ − (2µε(uh) − φhI)n‖0,e ≤ c7

(
‖u − uh‖1,T + ‖φ − φh‖0,T

)
. (4.44)

Furthermore, there exists a constant c8 > 0, also independent of λ and h, such that for all e ∈ Eh(Ω),

h1/2
e ‖J(2µε(uh) − φhI)nK‖0,e ≤ c8

∑
T⊆ωe

(
‖u − uh‖1,T + ‖φ − φh‖0,T

)
. (4.45)

Proof. We prove (4.43) and (4.45) using similar arguments as in the proof of Lemma 4.12. We define χT := f +

div (2µε(uh)−φhI) and χe := J(2µε(uh)−φhI)nK. Then, applying (4.27) to ‖χT ‖0,T , using that f = −div (2µε(u)−φI)
in Ω (cf. Lemma 2.3), integrating by parts, and finally using the inverse estimate (4.30), we obtain

‖χT ‖
2
0,T ≤ γ1‖Φ

1/2
T χT ‖

2
0,T = γ1

∫
T

ΦTχ
2
T

= γ1

∫
T

ΦTχT · ( f + div (2µε(uh) − φhI)) = γ1

∫
T

ΦTχT · div (2µε(uh − u) − (φh − φ)I)

= −γ1

∫
T
∇(ΦTχT ) : (2µε(uh − u) − (φh − φ)I) ≤ Ch−1

T ‖ΦTχT ‖0,T ‖2µε(uh − u) − (φh − φ)I‖0,T .

By (4.27), ‖ΦTχT ‖0,T ≤ ‖χT ‖0,T , thus hT ‖χT ‖0,T ≤ C̃
(
‖u − uh‖1,T + ‖φ − φh‖0,T

)
providing (4.43).

Next, denoting by L the vector operator defined componentwise by the extension L : C(e)→ C(T ) introduced in
Lemma 4.8, using inequality (4.28), and integrating by parts, we find

‖χe‖
2
0,e ≤ γ2‖Φ

1/2
e χe‖

2
0,e =

∫
e
ΦeL(χe) · χe =

∫
e
ΦeL(χe) ·

(
χe + J(2µε(u) − φI)nK

)
=

∑
T⊆ωe

{∫
T
∇(ΦeL(χe)) : (2µε(uh − u) − (φh − φ)I) +

∫
T

(ΦeL(χe)) · χT

}
≤

∑
T⊆ωe

h−1
T

(
‖2µε(uh − u) − (φh − φ)I‖0,T + hT ‖χT ‖0,T

)
‖ΦeL(χe)‖0,T

≤ Ĉh1/2
e

∑
T⊆ωe

h−1
T

(
‖u − uh‖1,T + ‖φ − φh‖0,T

)
‖ΦeL(χe)‖0,T .

(4.46)

Similar to the steps in the proof of (4.37) we note that ‖ΦeL(χe)‖0,T ≤ γ4h1/2
e ‖χe‖. Combined with (4.46) this implies

h1/2
e ‖χe‖0,e ≤ C

∑
T⊆ωe

(
‖u − uh‖1,T + ‖φ − φh‖0,T

)
,

since he ≤ hT for all T ⊆ ωe. The result (4.45) follows.
Finally, proceeding as in the proof of (4.38), it is not difficult to see that the proof of (4.45) is similar to that of

(4.44).

Note again that, in the above lemma, if the data is sufficiently smooth instead of piecewise polynomial, then higher
order terms arising from suitable polynomial approximations will appear on the corresponding right-hand sides.

The efficiency estimate (4.26) now follows directly from Lemmas 4.7, 4.10, 4.11, 4.12 and 4.13.

4.3. Extension of the estimator to three dimensions

We briefly discuss the a posteriori error estimator in three dimensions.
Given a sufficiently smooth vector field τ, we let curl τ := ∇ × τ. Furthermore, we take a tetrahedralization Th of

Ω and consider the same notation as in the introduction of Section 4 (replacing the word “edge” by “face”). Given a
face e ∈ Eh(Ω), τ ∈ L2(Ω) and ξ ∈ [L2(Ω)]3×3, such that τ ∈ [C(T )]3 and ξ ∈ [C(T )]3×3 for all T ∈ Th, we let Jτ × nK
and JξnK be the corresponding jumps across e, namely, Jτ×nK := {(τ|T )|e− (τ|T ′ )|e}×n and JξnK := {(ξ|T )|e− (ξ|T ′ )|e}n,
respectively, where T and T ′ are the elements of Th sharing a face e.
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The local error indicator Θ f ,T now reads

Θ2
f ,T := h2

T

∥∥∥∥∥∇ph − ρg +
η

κ
σh

∥∥∥∥∥2

0,T
+ h2

T

∥∥∥∥∥curl
(
η

κ
σh − ρg

)∥∥∥∥∥2

0,T
+

∑
e∈E(T )∩Eh(Ω)

he

∥∥∥∥∥r(
η

κ
σh − ρg

)
× n

z∥∥∥∥∥2

0,e

+
∑

e∈E(T )∩Eh(Γp)

{
he‖pΓ − ph‖

2
0,e + he

∥∥∥∥∥(ηκσh − ρg
)
× n + ∇pΓ × n

∥∥∥∥∥2

0,e

}
,

while the error indicators Θs,T and Θs f ,T are defined as for the two-dimensional case in (4.2) and (4.4), respectively.
We then set the global indicator as in (4.1).

All the results for the reliability estimate in Section 4.1 hold also in the three-dimensional case, except the upper
bound for ‖F2‖Z′ in Section 4.1.2. To bound this term, we require the following three results.

We require the 3D analogue of (4.24). This is an immediate consequence of the identity

〈curlϕ · n,χ〉Γp = −〈∇χ × n,ϕ〉Γ ∀ϕ,χ ∈ H1(Ω).

Its proof, like in the 2D case, follows from [48, Lemma 3.5].
We require also the following integration by parts formula:∫

T
curl τ · χ −

∫
T
τ · curlχ = 〈τ × n,χ〉∂T

for all τ ∈ H(curl ; Ω) :=
{
τ ∈ L2(Ω) : curl τ ∈ L2(Ω)

}
and χ ∈ H1(Ω). Above, 〈·, ·〉∂T stands for the duality pairing

between H−1/2(∂T ) and H1/2(∂T ).
Finally, the stable Helmholtz decomposition in Lemma 4.4 is also valid in this case (see [54, Theorem 3.2]), where

curlϕ in (4.21) is replaced by curlϕ (ϕ ∈ H1
Γu

(Ω)). A proof for the upper bound for ‖F2‖Z′ , the proof of the reliability
of Θ, as well as the efficiency estimate, proceed now as in the two-dimensional case.

5. Numerical examples

We present several tests illustrating the performance of the Galerkin scheme (3.2), verifying the reliability and
efficiency of the a posteriori error estimator Θ, and confirming the locking-free estimates. All simulations were
implemented using the FEniCS library [55]. As a direct solver we used the Multifrontal Massively Parallel Solver
MUMPS [56]. In all our examples we use the finite element spaces (3.9)-(3.12).

In what follows, we denote by N the total number of degrees of freedom. The global error and the effectivity index
associated to the global estimator Θ are denoted, respectively, by

e(u, φ,σ, p) :=
{
e(u)2 + e(φ)2 + e(σ)2 + e(p)2

}1/2
and eff(Θ) := e(u, φ,σ, p)/Θ,

where
e(u) := ‖u − uh‖1,Ω, e(φ) := ‖φ − φh‖0,Ω, e(σ) := ‖σ − σh‖div,Ω, e(p) := ‖p − ph‖0,Ω.

Moreover, using the fact that cN−1/d ≤ h ≤ CN−1/d, the experimental rate of convergence of any of the above quantities
will be computed as

rate := −d
[
log(e/e′)/ log(N/N′)

]
,

where N and N′ denote the total degrees of freedom associated to two consecutive triangulations with errors e and e′.
The examples to be considered in this section are described next. Example 1 is used to explore the performance of

the two-dimensional Galerkin scheme (3.2) and the a posteriori error estimator Θ under a quasi-uniform refinement,
especially in the presence of volumetric locking. Furthermore, the two and three-dimensional simulations in Examples
2, 3 and 4 demonstrate the behavior of the adaptive algorithm associated to Θ, which reads as follows:

1. Start with a coarse mesh Th of Ω.

2. Solve the discrete problem (3.2) on the current mesh.
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3. Compute ΘT for each T ∈ Th.

4. Check the stopping criterion and decide whether to finish or go to the next step.

5. Use Plaza and Carey’s algorithm [57] to refine each T ′ ∈ Th satisfying:

ΘT ′ ≥ Cper max{ΘT : T ∈ Th} for some Cper ∈]0, 1[.

6. Define the resulting mesh as the current mesh Th, and go to step 2.

Note that the above procedure is the usual adaptive refinement strategy from [50], except that the classical blue-green
refinement has been replaced by step 5.

5.1. Example 1: Accuracy assessment

This first example is aimed at evaluating the accuracy of the method, as well as the properties of the a poste-
riori error estimator through the effectivity index eff(Θ), under a quasi-uniform refinement strategy. To that end,
we consider the domain Ω :=]0, 3/2[×]0, 1[ and split its boundary into Γu :=

{
(x1, x2)T ∈ R2 : x1 = 0 or x2 = 1

}
and Γp :=

{
(x1, x2)T ∈ R2 : x1 = 3/2 or x2 = 0

}
. We choose the data f , `, pΓ and mΓ such that the solution

of problem (2.2) is given by u := (u1, u2)T , where u1(x1, x2) := 0.1
(
sin(πx1) cos(πx2) +

x2
1

2λ

)
and u2(x1, x2) :=

0.1
(
− cos(πx1) sin(πx2) +

x2
2

2λ

)
, and p(x1, x2) := π sin(πx1) sin(πx2), and φ and σ defined as in (2.2b) and (2.2c), re-

spectively, with g := (0, 1)T .
In Table 1 we present the convergence history obtained for this example under the following non-dimensional

model parameters: η = α = ρ = 1, c0 = 10−3, κ(x1, x2) := 1 + sin2(πx1) cos2(πx2), E = 100, g = (0, 0,−1)T and
three cases for the Poisson ratio, ν = 0.35, ν = 0.4 and ν = 0.4999. From Table 1 we conclude that there are almost
no differences between the corresponding errors when varying ν. This confirms that the estimates given by Lemma
3.1 are independent of λ := 2E/[(1 − 2ν)(1 + ν)], i.e., our conforming scheme (3.2) is locking-free. Moreover, for
each value of ν, the effectivity index eff(Θ) remains bounded, thus verifying the reliability and efficiency of the a
posteriori error estimator Θ.

It is worth mentioning that it is desirable to have eff(Θ)→ 1 as h→ 0. For the four-field poroelasticity equations,
we claim that eff(Θ) is affected by the values of η/κ in (2.2c). To show this, we use the same model parameters as
before, fix ν = 0.4, and consider the cases of η/κ = 104, η/κ = 100 and η/κ = 10−4. The decay of the corresponding
total errors with respect to the total number of degrees of freedom, as well as the effectivity indexes, using a quasi-
uniform refinement strategy are depicted in Figure 1. From these results, we conclude that the method is not robust
with respect to the ratio η/κ. Moreover, in two cases the effectivity index is far from 1 and for all cases the effectivity
index differs from each other, but is still bounded. This behavior is not surprising since our a posteriori and a priori
error estimates may depend on η/κ. Despite this, we proceed as in [58] to modify e(u, φ,σ, p) in such a way that
eff(Θ) is closer to 1. For this, we first introduce the estimator terms Θi (i = 1, . . . , 10) given by Θ2

i :=
∑

T∈Th
Θ̂2

i ,
where

Θ̂2
1 :=

∥∥∥∥∥∥
(
c0 +

α2

λ

)
ph −

α

λ
φh + divσh − `

∥∥∥∥∥∥2

0,T
, Θ̂2

2 := h2
T ‖ f + div (2µε(uh) − φhI)‖20,T ,

Θ̂2
3 := h2

T

∥∥∥∥∥rot
(
η

κ
σh − ρg

)∥∥∥∥∥2

0,T
, Θ̂2

4 :=
∥∥∥∥∥1
λ

(φh − αph) + div uh

∥∥∥∥∥2

0,T
,

Θ̂2
5 :=

∑
e∈E(T )∩Eh(Γp)

he

∥∥∥∥∥(ηκσh − ρg
)
· s +

dpΓ

ds

∥∥∥∥∥2

0,e
, Θ̂2

6 :=
∑

e∈E(T )∩Eh(Γp)

he‖pΓ − ph‖
2
0,e,

Θ̂2
7 :=

∑
e∈E(T )∩Eh(Γp)

he‖mΓ − (2µε(uh) − φhI)n‖20,e, Θ̂2
8 :=

∑
e∈E(T )∩Eh(Ω)

he

∥∥∥∥∥r(
η

κ
σh,−ρg

)
· s

z∥∥∥∥∥2

0,e
,

Θ̂2
9 :=

∑
e∈E(T )∩Eh(Ω)

he‖J(2µε(uh) − φhI)nK‖20,e, Θ̂2
10 := h2

T

∥∥∥∥∥∇ph − ρg +
η

κ
σh

∥∥∥∥∥2

0,T
.
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The history of convergence of these estimator terms for the three values of η/κ are shown in Figure 2. Although
Θ1 > Θi for all i = 2, . . . , 10 when κ/η = 10−4, the results for κ/η = 100 and κ/η = 104 allow us to conjecture that
the global estimator Θ focuses on refining where the divergence of 2µε(u− uh)− (φ− φh)I (associated to Θ2) is large.
Inspired by [58], this situation leads us to consider, under further regularity of the solution, the modified total error
and effectivity index given by

ê(u, φ,σ, p) :=

e(u, φ,σ, p)2 +
∑
T∈Th

h2
T ‖div (2µε(u − uh) − (φ − φh)I)‖20,T


1/2

and êff(Θ) := ê(u, φ,σ, p)/Θ,

respectively. The left panel of Figure 3 illustrates the updated history of convergence, whereas the associated effec-
tivity indexes are shown on the right panel. It can be concluded that, in general, êff(Θ) is much closer to 1 than
eff(Θ).

ν = 0.35
e(u) e(φ) e(σ) e(p) e(u, φ,σ, p)

N error rate error rate error rate error rate error rate eff(Θ)
220 6.16e-02 – 4.08e-01 – 1.13e+01 – 2.96e-01 – 1.14e+01 – 0.390
762 1.65e-02 2.12 1.09e-01 2.13 3.21e+00 2.03 8.03e-02 2.10 3.21e+00 2.03 0.410

3146 3.87e-03 2.05 2.44e-02 2.11 7.85e-01 1.99 1.93e-02 2.01 7.86e-01 1.99 0.438
11664 1.03e-03 2.02 6.41e-03 2.04 2.11e-01 2.00 5.02e-03 2.05 2.11e-01 2.00 0.449
46975 2.48e-04 2.05 1.49e-03 2.09 5.23e-02 2.00 1.22e-03 2.03 5.24e-02 2.00 0.457
186597 6.23e-05 2.00 3.72e-04 2.02 1.31e-02 2.00 3.07e-04 2.00 1.31e-02 2.00 0.455
744791 1.56e-05 2.00 9.28e-05 2.01 3.32e-03 1.99 7.69e-05 2.00 3.32e-03 1.99 0.459

ν = 0.4
e(u) e(φ) e(σ) e(p) e(u, φ,σ, p)

N error rate error rate error rate error rate error rate eff(Θ)
220 6.17e-02 – 4.48e-01 – 1.13e+01 – 2.96e-01 – 1.14e+01 – 0.400
762 1.66e-02 2.12 1.13e-01 2.22 3.21e+00 2.03 8.03e-02 2.10 3.21e+00 2.03 0.420

3146 3.88e-03 2.05 2.50e-02 2.13 7.85e-01 1.99 1.93e-02 2.01 7.86e-01 1.99 0.448
11664 1.03e-03 2.02 6.49e-03 2.06 2.11e-01 2.00 5.02e-03 2.05 2.11e-01 2.00 0.460
46975 2.48e-04 2.05 1.50e-03 2.11 5.23e-02 2.00 1.22e-03 2.03 5.24e-02 2.00 0.467
186597 6.23e-05 2.00 3.72e-04 2.02 1.31e-02 2.00 3.07e-04 2.00 1.31e-02 2.00 0.465
744791 1.56e-05 2.00 9.24e-05 2.01 3.32e-03 1.99 7.69e-05 2.00 3.32e-03 1.99 0.470

ν = 0.4999
e(u) e(φ) e(σ) e(p) e(u, φ,σ, p)

N error rate error rate error rate error rate error rate eff(Θ)
220 6.19e-02 – 8.81e-01 – 1.13e+01 – 2.96e-01 – 1.14e+01 – 0.415
762 1.66e-02 2.12 1.51e-01 2.84 3.21e+00 2.03 8.04e-02 2.10 3.22e+00 2.04 0.437

3146 3.88e-03 2.05 2.95e-02 2.30 7.85e-01 1.99 1.93e-02 2.01 7.86e-01 1.99 0.468
11664 1.03e-03 2.02 7.16e-03 2.16 2.11e-01 2.00 5.02e-03 2.05 2.11e-01 2.00 0.480
46975 2.48e-04 2.05 1.57e-03 2.18 5.23e-02 2.00 1.22e-03 2.03 5.24e-02 2.00 0.487
186597 6.24e-05 2.00 3.84e-04 2.05 1.31e-02 2.00 3.08e-04 2.00 1.31e-02 2.00 0.485
744791 1.56e-05 2.00 9.46e-05 2.02 3.32e-03 1.99 7.69e-05 2.00 3.32e-03 1.99 0.490

Table 1: Example 1: Convergence history of the errors under a quasi-uniform refinement strategy and different values of the Poisson ratio ν.

5.2. Example 2: Domain with corner singularity
In this example we set the model parameters (in non-dimensional form) as follows: c0 = η = 0.01, E = 100,

α = 1 and ν = 0.35. Furthermore, we neglect gravity effects and consider the inverted L-shaped domain Ω :=
] − 1, 1[×] − 1, 1[\[0, 1] × [−1, 0], with boundary parts Γp :=] − 1, 1[×{1} and Γu := Γ \ Γp. The manufactured
solution in polar coordinates is given by u := (u1, u2)T , where u1(r, θ) := r2/3 sin (2θ/3) and u2(r, θ) := r2/3 cos (2θ/3),
and p(r, θ) := 1, φ(r, θ) := α and σ(r, θ) := 0, with corresponding data. Note that Γu does not satisfy the geometrical
assumption made in Lemma 4.4, which means that further regularity of the solution on a bigger convex domain needed
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Figure 1: Example 1: Log-log plots of N vs e(u, φ,σ, p) (left) and eff(Θ) (right) for a quasi-uniform refinement strategy and different values of the
ratio η/κ.
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Figure 2: Example 1: Log-log plots of N vs Θi (i = 1, . . . , 10) for a quasi-uniform refinement strategy and different values of the ratio η/κ.
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Figure 3: Example 1: Log-log plots of N vs ê(u, φ,σ, p) (left) and êff(Θ) (right) for a quasi-uniform refinement strategy and different values of the
ratio η/κ.
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by the Helmholtz decomposition (cf. (4.21)) cannot be guarantied theoretically (see [54] for more details). We omit
this fact for the sake of convenience. Furthermore, we note that a negative power of the radius r appears when taking
partial derivatives of the components of the displacements; this implies a singularity at the origin. It is well-known
that in this case a convergence of O(h2/3−δ) (with some δ > 0) is expected from Theorem 3.3.

In Figure 4 we report the history of convergence of the total error for quasi-uniform and adaptive refinement strate-
gies. It is clear that the errors using the adaptive refinement are considerably smaller than when using quasi-uniform
refinement. Moreover, the adaptive procedure reduces the magnitude of e(u, φ,σ, p) with optimal convergence of
O(h2). Some adapted meshes obtained with Cper = 0.2 are depicted in Figure 5, where it is evident that the a posteri-
ori error estimator Θ detects the singularity.
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Figure 4: Example 2: Log-log plot of e(u, φ,σ, p) vs N for both refinement strategies (Cper = 0.2).

Figure 5: Example 2: Initial mesh and two adapted meshes obtained with the adaptive algorithm and Cper = 0.2.

5.3. Example 3: Three-dimensional L-shaped domain

We next consider a three-dimensional L-shaped domain as shown in the left panel of Figure 6. For this ex-
ample we consider the following non-dimensional model parameters: c0 = 0.01, η = α = ρ = 1, E = 10,
κ = 0.05 and ν = 0.4999. Furthermore, the manufactured exact solution is defined as follows: u := (u1, u2, u3)T ,
where u1(x1, x2, x3) := 0.1

(
4(x3

2 − 6x5
3 + 15x2

3) +
x2

1
λ

)
, u2(x1, x2, x3) := 0.1

(
2(x2 − 10)x3 +

x2
2
λ

)
and u3(x1, x2, x3) :=

0.1
(
x2

3 +
x2

3
λ

)
, p(x1, x2, x3) := x1x4

3 − 30x3
2 + x2

3 +
0.1(1.2−x3)

[(1.05−x1)2+(1.05−x3)2] , and φ and σ are defined as in (2.2b) and (2.2c),

respectively, with g := (0, 0,−1)T . We notice that the partial derivatives of p exhibit singularities along the line{
(x1, x2, x3)T ∈ R3 : x1 = x3 = 1.05

}
so that high gradients of p are likely to occur near the re-entrant edge of the

domain.
The right panel of Figure 6 illustrates the decay of the total error with respect to N for quasi-uniform and adaptive

refinement strategies. A suboptimal rate of convergence is observed using quasi-uniform refinement. In contrast, the
adaptive algorithm restores the optimal rate of convergence (i.e., O(h2)) and reduces the magnitude of e(u, φ,σ, p) by
marking the mesh elements near the re-entrant edge, as shown in Figure 7.
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Figure 6: Example 3: Domain configuration (left) and log-log plot of e(u, φ,σ, p) vs N for both refinement strategies (right). The adaptive algorithm
was carried out with Cper = 0.5.

Figure 7: Example 3: Initial mesh and three adapted meshes obtained with the adaptive algorithm and Cper = 0.5.

5.4. Example 4: Simple-poroelastic brain model

In our final example we present a 3D computation illustrating the cerebrospinal fluid-tissue interaction in the
human brain. For this, we use the Colin 27 mesh [59] as our initial mesh, see Figure 8. We neglect effects due to
gravity.

Figure 8: Left, posterior and right, lateral views of the initial mesh (with 99605 elements) used in Example 4. The inner ventricular boundary is
shown in red.

The material properties in our simulations are: E = 1500 [Pa], α = 0.25, c0 = 3 · 10−4 and η = 100 [Pa · s].
These are inspired by the numerical example of [60, Section 6]. We also consider three cases for the permeability,
κ = 3.75 [mm2], κ = 1.57 · 10−1 [mm2] and κ = 1.57 · 10−3 [mm2], and set Γu and Γp as the skull (outer boundary) and
the ventricles (inner boundary) of the brain, respectively. Note that Γu does not satisfy the geometrical assumption
made in the three-dimensional Helmholtz decomposition (see Lemma 4.4 for details in the two-dimensional case).
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We simply omit this fact and continue by imposing the following boundary conditions:

p = 799.92 [Pa] and (2µε(u) − φI)n = −199.98n on Γp,

u = 0 and σ · n = 0 on Γu.

In Figure 9 we observe that there is little displacement when the brain behaves like an elastic material (ν = 0.4999).
Lowering the Poisson ratio to ν = 0.34, the material is able to relax resulting in more displacement. In the first
column we furthermore observe that increasing the permeability results in more displacement. This is due to a higher
filtration rate of the fluid. As expected, in the elastic limit there is little effect on the displacement when increasing the
permeability. In Figure 10 we observe compressibility effects due to high filtration when permeability is large, both
for high (ν = 0.4999) and low (ν = 0.34) Poisson ratios. Finally, the 5th adapted mesh for the case ν = 0.4999 and
κ = 1.57 · 10−3 [mm2] is depicted in Figure 11, from which it is concluded that the adaptive algorithm refines near the
ventricles. It is here where the pressures and displacement are highest.

6. Concluding remarks

We have introduced a conforming approximation of a four-field formulation for Biot’s consolidation model. We
have proven a priori and a posteriori error bounds which are independent of the modulus of dilation. These estimates
have been verified by numerical experiments in 2D and 3D. In particular, an adaptive algorithm associated to the
proposed a posteriori error estimator has been shown to be a powerful tool to improve the accuracy of the approxi-
mation under complex situations, such as high gradients or singularities of the solution. Moreover, it can be used to
reduce the computational cost given by the mesh refinement process. These results are very promising, especially in
the context of our fourth example in Section 5, because its generalization to the multiple-network model [60] can be
used, for example, to study hydrocephalus [61], cerebral oedema [62], and risk factors associated with early stages of
Alzheimer’s disease [63].

On the other hand, further research is needed to obtain robust methods with respect to the ratio between the
viscosity of the pore fluid and the permeability of the porous solid. This is ongoing work.
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(a) ν = 0.34 and κ = 1.57 · 10−3 [mm2]. (b) ν = 0.4999 and κ = 1.57 · 10−3 [mm2].

(c) ν = 0.34 and κ = 1.57 · 10−1 [mm2]. (d) ν = 0.4999 and κ = 1.57 · 10−1 [mm2].

(e) ν = 0.34 and κ = 3.75 [mm2]. (f) ν = 0.4999 and κ = 3.75 [mm2].

Figure 9: Example 4: Approximate displacement magnitude for different values of ν and κ obtained at the 5th refinement step (Cper = 0.3) with:
(a) N = 4969116 and 270243 elements, (b) N = 5290281 and 288805 elements, (c) N = 3290456 and 175830 elements, (d) N = 3216013 and
171634 elements, (e) N = 3865851 and 209323 elements; and (f) N = 3369212 and 180800 elements.
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(a) ν = 0.34 and κ = 1.57 · 10−3 [mm2]. (b) ν = 0.4999 and κ = 1.57 · 10−3 [mm2].

(c) ν = 0.34 and κ = 1.57 · 10−1 [mm2]. (d) ν = 0.4999 and κ = 1.57 · 10−1 [mm2].

(e) ν = 0.34 and κ = 3.75 [mm2]. (f) ν = 0.4999 and κ = 3.75 [mm2].

Figure 10: Example 4: Approximate fluid pressure for different values of ν and κ obtained at the 5th refinement step (Cper = 0.3) with: (a)
N = 4969116 and 270243 elements, (b) N = 5290281 and 288805 elements, (c) N = 3290456 and 175830 elements, (d) N = 3216013 and 171634
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