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CASE
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FRANCESCA RAPETTI§

Abstract. We extend, to Raviart–Thomas finite elements of any degree, two methods for the
construction of basis of the space of divergence-free functions that are well established in the case
of degree one. The first one computes directly a basis of the kernel of the divergence operator
whereas the second one computes a basis of the image of the curl operator that, if the boundary of
the domain is not connected, is completed with a basis of the second de Rham cohomology group
(namely, the space of divergence-free functions that are not curls). When using the lower order
Whitney elements on a tetrahedral mesh, the degrees of freedom are supported on the vertices, edges,
faces and tetrahedra of the mesh respectively and, from Stokes theorem, the matrices describing the
differential operators gradient, curl and divergence are the transposed of the connectivity matrices
of the mesh. This allows the use of a tree-cotree splitting of associated oriented graphs to efficiently
construct a basis of either the kernel of the divergence or the image of the curl operator. We prove
that these two properties hold true also for r > 0 when using as degrees of freedom a particular
realization, based on Berstein polynomials, of the moments. In this work we analyze in detail the
second method, the one based on the identification of a basis of the space of the curls of Nédélec
finite elements. (The first one has been analyzed in [5].)

Key words. High order Raviart–Thomas finite elements, divergence-free finite elements, span-
ning tree, oriented graph, incidence matrix
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1. Introduction. Two approaches for the construction of a basis of the diver-
gence-free Raviart–Thomas finite element space, RT 0

r+1, in a bounded polyhedral
domain, Ω, discretized by a tetrahedral mesh have been presented in the work [6], for
the lower order case r = 0. There are not restrictions on the topology of Ω. In the
first approach, the authors compute directly a basis of the kernel of the divergence
operator. In the second one, the construction starts from a basis of the image of the
matrix associated with the curl operator. If the boundary of the domain has p + 1
connected components with p > 0, in this second approach it is necessary to complete
the previous set with p discrete representatives of a basis of the second de Rham
cohomology group (divergence-free functions that are not curls). These two methods
can be extended to the high order case r > 0. The extension of the first one has
been analyzed in [5]. In this work we analyze in detail the extension of the second
approach. However, for the sake of completeness we include in this introduction a
brief description of both methods in the high order case.

Let T be a tetrahedral mesh of a bounded polyhedral domain Ω ⊂ R3. We will
denote P−r+1Λk(T ) the space of Whitney k-differential forms of degree r + 1 (see e.g.
[9]). They can be identified with Lr+1, the Lagrange finite elements of degree r+ 1, if
k = 0, with Nr+1, the first family of Nédélec finite elements of degree r + 1, if k = 1,
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‡CI2MA, Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Chile and Scien-

tific and Applied Computing Laboratory, Polytechnic School, National University of Asuncion, San
Lorenzo, Paraguay
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with RTr+1, the Raviart–Thomas finite elements of degree r + 1, if k = 2, and with
Pr, the space of discontinuous piecewise polynomial functions of degree r, if k = 3.
When using the lower order Whitney elements on a simplicial complex, P−1 Λk(T ),
with k = 0, 1, 2, 3, the degrees of freedom are supported on the vertices (V), edges
(E), faces (F) and tetrahedra (T) of the mesh respectively. It is well known (see
e.g. [12]) that given an orientation to edges, faces and tetrahedra of the mesh, the
matrices describing the differential operators d : P−1 Λk(T )→ P−1 Λk+1(T ) in terms of
the degrees of freedom are the transposed of the matrices of the boundary operators
∂ : Ck+1(T ,Z) → Ck(T ,Z) being Ck(T ,Z) the group of k-chains in T . Figure 1.1
represents de De Rham’s complex as in [11]. It summarizes these facts in both the
continuous and the discrete case. Hk denotes the cohomology groups for k ∈ {0, 1, 2}
and MV denotes the set of degrees of freedom (moments) of the finite elements space
V .
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Fig. 1.1. The De Rham complex for the continuos spaces (left) and for Whitney differential
forms (right).

Since the boundary of an edge consists of two vertices, and any face belongs to
the boundary of one or two tetrahedra, from the point of view of graph theory we
observe that: i) the transposed of the matrix associated with the gradient, G>, is
the all-nodes incidence matrix of a directed and connected graph having a node for
each vertex and an arc for each (oriented) edge of the mesh; ii) the matrix associated
with the divergence operator, D, is an incidence matrix of a directed and connected
graph having a node for each tetrahedron, plus an additional node associated with
the exterior of the domain, and an arc for each face. This fact is used in different
contexts as the tree-cotree gauge (see [3], [4], [18], [15]), the construction of bases of
the space of divergence-free Raviart–Thomas finite elements (see [8], [20], [6]) or the
construction of discrete potentials (see [22], [7]).

One of the goals of this paper is to emphasize that the duality between the
differential operators and the boundary operators in the discrete De Rham complex
is preserved to some extent when r > 0 if an appropriate set of degrees of freedom is
choosen. For instance the two properties i) and ii) hold true also for r > 0 when using
as degrees of freedom for uh ∈ P−r+1Λk(T ) a particular realizations of the moments,

mS(uh) =

∫
S

TrS(uh) ∧ η, η ∈ Pr+k−dimSΛdimS−k(S) ,

being S any subsimplex of the mesh with dimS ≥ k. (See e.g. [9].) We use Berstein
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polynomials to identify a basis of Pr+k−dimSΛdimS−k(S), following the approach in
[1]. (See also [2] where Berstein polynomials are used to express a set of basis of
P−r+1Λk(T ).) In [5] we identify in this way a set of moments in Pr and RTr+1 such
that the matrix associated with the divergence operator D, when considering cardinal
basis, is an incidence matrix of a directed and connected graph having a node for each
moment of Pr plus an additional node associated with the exterior of the domain, and
an arc for each moment of RTr+1. Proceeding in a similar way, we identify, in Section
3, a set of moments of Nr+1 and Lr+1 such that, when considering cardinal basis, the
transposed of the matrix associated with the gradient operator, GT , is the all nodes
incidence matrix of a directed and connected graph having a node for each moment
of Lr+1 and an arc for each moment of Nr+1.

A way to construct the moments of a basis of RT 0
r+1, the divergence-free subspace

of RTr+1, is to identify a maximal invertible submatrix of the matrix D associated
with the divergence operator. Following the method proposed in [8] for a triangular
mesh in R2, this can be done by choosing the columns corresponding to the arcs
in a spanning tree of the associated tetrahedra-faces graph. If we decompose D =
[Dst, Dct] being Dst the columns corresponding to the spanning tree and Dct those
of the co-tree, then Dst is invertible. Let us set dP = dimPr and dRT = dimRTr+1.
For any vector mct ∈ RdRT−dP , solving Dstmst = −Dctmct the entries of the vector[

mst

mct

]
are the degrees of freedom of a discrete function that is divergence-free.

Then it is easy to prove that the columns of

[
−D−1

st Dct

I

]
, being I the identity

matrix in R(dRT−dP )×(dRT−dP ), are the degrees of freedom of the elements of a basis
of divergence-free Raviart–Thomas finite elements.

A different approach, that does not require to invert a matrix, is based on the
fact that, if the boundary of the domain is connected, the curls of the elements of
any basis of Nr+1 generates the divergence-free subspace of RTr+1. However this set
is not linear independent because the kernel of the curl operator is not trivial. To
obtain a basis is necessary to disregard some elements of the basis of Nr+1, precisely,
those elements that generates the kernel of the curl operator. In other words, it is
possible to compute the degrees of freedom of the elements of a basis of RT 0

r+1 by just
choosing a maximal linear independent set of the columns of the matrix associated
with the curl operator when considering a cardinal basis.

This is done in [20] (see also [19]), for the lower order case r = 0 and a simply
connected domain, by eliminating the elements of the cardinal basis ofNr+1 associated
to edges in a spanning tree of the graph made up of vertices and edges of the mesh.
In this paper we prove that, if the degrees of freedom are the moments, it is possible,
to use a procedure analogous also for r > 0: the elements to be disregarded are those
corresponding to the moments in a belted tree (see e.g. [14], [18], [17]) of the graph
associated with G>. If the domain is simply connected then the belted tree is in fact
a spanning tree. If the boundary of the domain has p+ 1 connected components with
p > 0, then it is necessary to complete the previous set with p discrete representatives
of a basis of the second de Rham cohomology group (divergence-free functions that
are not curls).

This paper is organized as follows. In Section 2 we introduce the notation and
recall some elementary results of graph theory. In Section 3 we choose the degrees
of freedom that will be used in the sequel. For this choice of degrees of freedom,
we compute the matrix associated with the gradient operator when using cardinal
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basis, and we see that it is the transposed of the all-nodes incidence matrix of a
directed graph MG. The proof of this result can be found in the appendix. We
propose also an algorithm to construct a spanning tree of this graph. In Section 4 the
spanning tree is used to identify a maximal set of linearly independent curls of Nédélec
functions. (If Ω is not simply connected it is used, in fact, a belted tree). Then, if the
boundary of Ω is not connected, we complete this set with discrete representatives of
a basis of the second de Rham cohomology group (computed again using a tree-cotree
decomposition method) to obtain a basis of the subspace of divergence-free elements
of RTr+1. Section 5 contains some conclusions and remarks concerning the use of
this basis. In particular we notice that the cardinal basis can be constructed from
any basis of the polynomial space using a generalized Vandermonde matrix whose
entries are the degrees of freedom of the elements of the choosen basis. This is not
expensive from the computational point of view because the Vandermonde matrix for
the moments is the same for all the elements of the mesh.

2. Notation. Let T = (V,E, F, T ) be a tetrahedral mesh of Ω where V is the set
of vertices, E is the set of edges, F is the set of faces, and T is the set of tetrahedra
of T . If ∆d(T ) denotes, for d = 0, 1, 2, 3, the set of d-simplex of the mesh then
∆0(T ) = V , ∆1(T ) = E, ∆2(T ) = F , and ∆3(T ) = T . Let us fix an orientation on
each edge, face, and tetrahedron of T . This can be done by choosing a total ordering
of the vertices in V = {vi}nV

i=1 and by associating with each d-simplex of the mesh,
S ∈ ∆d(T ), an increasing function mS : {0, 1, . . . , d} → {1, . . . , nV }: the oriented
d-simplex S is hence given by S = [vmS(0), . . . ,vmS(d)

].
Analogously, if S ∈ ∆d(T ) we denote by ∆`(S), for ` = 0, . . . , d, the set of `-

subsimplices of S. If Σ ∈ ∆`(S) with ` ∈ {0, . . . , d− 1} then we can write Σ = S − σ
being σ the (oriented) (d − 1 − `)-subsimplex of S such that ∆0(Σ) ∩ ∆0(σ) = ∅.
Moreover there exists a unique increasing map mS

Σ : {0, . . . , `} → {0, . . . , d} such
that, for each i ∈ {0, . . . , `}, mΣ(i) = mS(mS

Σ(i)).
For any t ∈ T we denote by nt the outward unit vector normal to the boundary of

t. For any f ∈ F we define nf :=
(vmf (1)−vmf (0))×(vmf (2)−vmf (0))

|(vmf (1)−vmf (0))×(vmf (2)−vmf (0))|
and we denote by

ν∂f the unit vector normal to the boundary of f in the plane containing f and pointing

outward f . We define τ ∂f := nf × ν∂f . For any e ∈ E we define te =
vme(1)−vme(0)

|vme(1)−vme(0)|
.

For `, d ∈ N let us set

I(`, d+ 1) = {η = (η0, . . . ηd) ∈ Nd+1 : |η| = `} ,

being |η| :=
∑d
i=0 ηi. The cardinality of I(`, d+ 1) is equal to

(
`+ d
d

)
.

For ζ ∈ I(` + 1, d + 1) and j ∈ {0, 1, . . . , d} we denote by ζ − ej the vector in
Zd+1 with components (ζ − ej)i = ζi − δj,i, for i ∈ {0, 1, . . . , d}, namely

(2.1) (ζ − ej)i =

{
ζi if i 6= j
ζi − 1 if i = j .

Note that ζ − ej ∈ I(`, d+ 1) if and only if ζj > 0. So we also consider the following
set of vectors in Zd+1:

J (`, d+1) = {η̃ ∈ Zd+1 : η̃ = ζ−ej for some ζ ∈ I(`+1, d+1) and j ∈ {0, 1, . . . , d}} .
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Clearly I(`, d+ 1) ⊂ J (`, d+ 1). For each η̃ ∈ J (`, d+ 1) we define

aη̃ =


`!

Πd
i=0η̃i!

=

(
`
η̃

)
if η̃ ∈ I(`, d+ 1)

0 otherwise.

In this way for each ζ ∈ I(`+ 1, d+ 1) we have

(2.2) aζζj = (`+ 1)aζ−ej , j ∈ {0, 1, . . . , d} .

The barycentric coordinates of a point x ∈ R3 with respect to the vertices of
t ∈ T are given by the unique set of scalars λt(x) = (λt,0(x), λt,1(x), λt,2(x), λt,3(x))
satisfying

x =

3∑
j=0

λt,j(x)vmt(j) and

3∑
j=0

λt,j(x) = 1 .

For each i ∈ {1, . . . , nV }, λi : Ω→ R denotes the continuous function

λi : x 7→ λi(x) =

{
λt,j(x) if x ∈ t and i = mt(j) for some j ∈ {0, 1, 2, 3}

0 otherwise ;

and for S ∈ ∆d(T ) and η̃ ∈ J (`, d+ 1), λη̃S : Ω→ R denotes the continuous function

λη̃S : x 7→ λη̃S(x) =

{
Πd
j=0

[
λmS(j)(x)

]η̃j
if η̃ ∈ I(`, d+ 1)

0 otherwise.

For each ` ∈ N, S ∈ ∆d(T ) and x ∈ S

(2.3) 1 =

 d∑
j=0

λmS(j)(x)

`

=
∑

η∈I(`,d+1)

aηλ
η
S(x) .

Given η ∈ I(`, d + 1), Bη
S := aηλ

η
S is a Berstein polynomial of degree ` associated

with S, (see, e.g., [1]). Clearly B
η−ej

S ≡ 0 if ηj = 0.
For t ∈ T , S ∈ ∆d(t), let us denote ∇S [λmS(j)|t] = nS ×∇[λmS(j)|t]×nS if d = 2

and ∇S [λmS(j)|t] = (tS · ∇[λmS(j)|t]) tS if d = 1. Then, for any x ∈ t̊

∇SBη
S (x) = aη∇SληS(x) =

∑d
j=0 aηηjλ

η−ej

S (x)∇SλmS(j)(x)

= |η|
∑d
j=0 aη−ej

λ
η−ej

S (x)∇SλmS(j)(x)

= |η|
∑d
j=0B

η−ej

S (x)∇SλmS(j)(x) .

It is worth noting that if x ∈ S̊ and S ∈ ∆d(T ) with d = 2 or d = 1 then ∇SλmS(i)(x)
is well defined because it is independent of the tetrahedron t used to define it. More-
over, if x ∈ S then we have

∑d
j=0 λmS(j)(x) = 1 and ∇SλmS(0) = −

∑d
j=1∇SλmS(j).

So we can write, for x ∈ S̊,

(2.4) ∇SBη
S (x) = aη∇SληS(x) = |η|

∑d
j=1

[
B

η−ej

S (x)−Bη−e0

S (x)
]
∇SλmS(j) .

We denote Rd,j ∈ Zd×(d+1) the matrix obtained from the (d+1)× (d+1) identity
matrix omitting the j-th row. Clearly, if η ∈ I(`, d+1) then, for each j ∈ {0, 1, . . . , d}
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such that ηj = 0 we have Rd,jη ∈ I(`, d) and aη = aRd,jη. Notice that, if Σ ∈ ∆d−1(S)
then Σ = S − [vmS(i)] for a certain i ∈ {0, 1, . . . , d} and [ληS ]|Σ = 0 if ηi 6= 0, hence

[Bη
S ]|Σ =

{
Bη′

Σ with η′ = Rd,iη ∈ I(`, d) if ηi = 0
0 otherwise.

2.1. A drop of graph theory. We recall some basic definitions and results of
graph theory that will be used in the sequel. They can be found, for instance, in [21].

A graph M = (N ,A) consists of two finite sets: a set N = {ni}ni=1 of nodes and
a set A = {aj}mj=1 of arcs. Each arc is identified with a pair of nodes. The two nodes
defining an arc need not be distinct. If the arc aj has the two points equal to the
node ni then it is called a self-loop at node ni. If the arcs of M are identified with
ordered pairs of nodes, then M is called a directed or an oriented graph. Otherwise
M is called an undirected or a nonoriented graph.

The following definitions concern both directed and undirected graphs.
A walk is a finite alternating sequence of nodes and arcs ni0 , aj1 , ni1 , aj2 ,

ni2 , . . . , niK−1
, ajK , niK such that for k ∈ {1, . . . ,K} the arc ajk is identified with

the pair of nodes nik−1
, nik . This walk is usually called a ni0 − niK walk with ni0 and

niK referred to as the end or terminal nodes of this walk. A walk is open if its end
nodes, ni0 , niK are distinct; otherwise it is closed. A walk is a trail if all its edges
are distinct. An open trail is a path if all its vertices are distinct. A closed trail is
a circuit if all its vertices except the end vertices are distinct. A graph is said to be
acyclic if it has no circuits.

Two nodes ni, ni′ are said to be connected in a graphM if there exists a ni − ni′

path in M. A graph M is connected if there exists a path between every pair of
nodes in M.

Finally we recall the definition of spanning tree of a graph M = (N ,A).

Definition 1. A tree of a graph M = (N ,A) is a connected acyclic subgraph of
M. A spanning tree S is a tree of M containing all its nodes.

It is worth noting that if S is a spanning tree of M = (N ,A), then S = (N ,B)
with B ⊂ A. Moreover B has exactly n − 1 arcs. If M is not connected then it has
not spanning trees.

We recall also the definition of the all-nodes incidence matrix of a directed graph.

Definition 2. The all-nodes incidence matrix Me ∈ Zn×m of a directed graph
M = (N ,A), with n nodes N = {ni}ni=1, m arcs A = {aj}mj=1 and with no self-loop,
is the matrix with entries

[Me]i,j =

 1 if aj is incident on ni and oriented away from it,
−1 if aj is incident on ni and oriented toward it,

0 if aj is not incident on ni .

An incidence matrix M ofM is any submatrix of Me with n−1 rows and m columns.
The node that corresponds to the row of Me that is not in M will be called the reference
node of M .

The following result, that joins Theorem 6.9 and Theorem 6.12 in [21], is crucial
in the tree-cotree decompositions.

Theorem 2.1. Let M = (N ,A) be a directed connected graph with no self-loop
and M ∈ Z(n−1)×m an incidence matrix of M. Let S = (N ,B) be a spanning tree
of M and Mst the submatrix of order n − 1 of M given by the columns of M that
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correspond to the arcs in B. Then Mst is invertible and the nonzero elements in each
row of M−1

st are either all 1 or all −1.

3. Moments. For a Whitney k-form uh ∈ P−r+1Λk(T ) the moments are defined
in the following way:

mS(uh) =

∫
S

TrS(uh) ∧ η, η ∈ Pr+k−dimSΛdimS−k(S) ,

being S any subsimplex of the mesh with dimS ≥ k. (See e.g. [9].)
If k = 3 then it must be dimS = 3 and a very natural set of moments in Pr

(namely, in P−r+1Λ3(T )) is
• MP

t,α(uh) =
∫
t
uhB

α
t , t ∈ T and α ∈ I(r, 3).

If, in particular uh = div zh with zh ∈ RTr+1, then using Stokes theorem we have

MP
t,α(div zh) =

∫
t

div zhB
α
t =

∫
∂t

zh · ntBα
t −

∫
t

zh · ∇Bα
t

Let us consider the following set of moments in RTr+1 (namely, in P−r+1Λ2(T )):
• MRT

f,α(zh) =
∫
f

zh · nfBα
f f ∈ F and α ∈ I(r, 2);

• MRT
t,β (zh) = r

∫
t
zh ·Bβ

t ∇λmt(i) t ∈ T , β ∈ I(r − 1, 2) and i ∈ {1, 2, 3}.
Then it is easy to check that the matrix associated with the divergence operator when
using cardinal basis for these moments has all its entries in the set {0, 1,−1}. It can
be proved (see [5]) that it is the incidence matrix of an oriented connected graph that
has a node for each moment of Pr plus a node corresponding to R3 \Ω and an arc for
each moment in RTr+1.

Similarly, taking in particular zh = curl uh with uh ∈ Nr+1 and applying Stokes
theorem it is easy to check that a set of moments in Nr+1 (namely, in P−r+1Λ1(T ))
that leads to a matrix associated with the curl operator with all its entries belonging
to {0, 1,−1} are

• MN
α,e(uh) =

∫
e
uh · teBα

e , for each e ∈ E and α ∈ I(r, 2).

• MN
β,f,i(uh) = (−1)ir

∫
f
(uh×nf ) ·Bβ

f∇fλmf (j) for each f ∈ F , β ∈ I(r−1, 3)

and i ∈ {1, 2}. Here j ∈ {1, 2} and j 6= i.
• MN

γ,t,i(uh) = (−1)sr(r − 1)
∫
t
uh · Bγ

t ∇λmt(j) ×∇λmt(k) for each t ∈ T , γ ∈
I(r − 2, 4) and i ∈ {1, 2, 3}. Here j, k ∈ {1, 2, 3}, j < k, i 6∈ {j, k}. Moreover
s = 0 if the tetrahedra t is positive oriented, namely, if te1 · (te2 × te3) > 0,
being ei = [vmt(0),vmt(i)] for i ∈ {1, 2, 3}, and s = 1 otherwise.

Remark 3.1. We recall that

∇fλmf (j) = −
|f−[vmf (j)]|

2|f | νf |f−[vmf (j)] and ∇λmt(j) = −
|t−[vmf (j)]|

3|t| nt|t−[vmt(j)
] .

Hence we have for i, j ∈ {1, 2} and i 6= j

(uh × nf ) · ∇fλmf (j) = uh ·
(
nf ×∇fλmf (j)

)
= −

|[vmf (0),vmf (i)]|
2|f | uh · (nf × νf )|[vmf (0),vmf (i)]

= (−1)i
|[vmf (0),vmf (i)]|

2|f | uh · t[vmf (0),vmf (i)] ,

and for i, j, k ∈ {1, 2, 3}, j < k and i 6∈ {j, k}

∇λmt(j) ×∇λmt(k) =
|t−[vmt(j)

]|
3|t| nt|t−[vmt(j)

] ×
|t−[vmt(k)]|

3|t| nt|t−[vmt(k)]

= (−1)s
|t−[vmt(j)

]|
3|t|

|t−[vmt(k)]|
3|t| t[vmt(0)

,vmt(i)
] .



8 A. ALONSO RODŔıGUEZ, J. CAMAÑO, E. DE LOS SANTOS. F. RAPETTI

These two results are mainly Proposition 3 and Proposition 4 in [10].
It is worth noting that MN

β,f,i reads information in the direction of the edge

[vmf (0),vmf (i)] and MN
γ,t,i in the direction of the edge [vmt(0),vmt(i)].

If uh = ∇ϕh with ϕh ∈ Lr+1, using Stokes theorem, we can rewrite the moments
of ∇ϕh in terms of ϕh and, in this way, to identify appropriate moments in Lr+1 to
obtain a matrix associated with D with all its entries in the set {0, 1,−1}.

We consider the following moments in Lr+1 (namely, in P−r+1Λ0(T )):
• ML

α,v(ϕh) = (ϕhB
α
v )(v), for each v ∈ V and α ∈ I(r, 1) (note that Bα

v (v) =
1);

• ML
β,e(ϕh) = r

|e|
∫
e
ϕhB

β
e , for each e ∈ E and β ∈ I(r − 1, 2);

• ML
γ,f (ϕh) = r(r−1)

2|f |
∫
f
ϕhB

γ
f , for each f ∈ F and γ ∈ I(r − 2, 3);

• ML
δ,t(ϕh) = r(r−1)(r−2)

6|t|
∫
t
ϕhB

δ
t , for each t ∈ T and δ ∈ I(r − 3, 4);

or, in a more compact way,

(3.1) ML
η,S(ϕh) =

1

|S|

(
r
d

)∫
S

ϕhB
η
S , for each S ∈ ∆d(T ) and η ∈ I(r−d, d+1) .

Remark 3.2. It is well known (see [16] Proposition 3.5) that for any S ∈ ∆d(T )
and η ∈ I(l, d+ 1)

(3.2)

∫
S

ληS = |S|
d!
∏d
j=0 ηj !

(l + d)!
,

hence then Lagrange moments of a constant function ϕh ≡ c are equal to that con-
stant. In fact, from (3.1) and recalling that, for any S ∈ ∆d(T ) and η ∈ I(r−d, d+1),

Bη
S = aηλ

η
S =

(
r − d
η

)
ληS , we have

ML
η,S(c) =

1

|S|

(
r
d

)
c

∫
S

aηλ
η
S = c

1

|S|

(
r
d

)(
r − d
η

)
|S|

d!
∏d
j=0 ηj !

r!
= c .

We extend the definition of ML
η,S(ϕh) to J (r− d, d+ 1) in the following way. For

any η̃ ∈ J (r − d, d + 1) \ I(r − d, d + 1) there exits a unique j ∈ {0, 1, . . . , d} such
that η̃j = −1 and ζ := η̃ + ej ∈ I(r − d+ 1, d+ 1). We define

ML
η̃,S(ϕh) = ML

ζ−ej ,S(ϕh) = ML
Rd,jζ,S−[vmS(j)]

(ϕh) .

Then it can be proved (see Appendix) that

(3.3)

MN
α,e(∇ϕh) = −(ML

α−e1,e(ϕh)−ML
α−e0,e(ϕh))

MN
β,f,i(∇ϕh) = −(ML

β−ei,f
(ϕh)−ML

β−e0,f
(ϕh))

MN
γ,t,i(∇ϕh) = (−1)i(ML

γ−ei,t(ϕh)−ML
γ−e0,t(ϕh)) .

Proposition 3.3. Let us set dN = dimNr+1 and dL = dimLr+1. If we denote
G ∈ RdN×dL the matrix that computes, from the moments of ϕh, the moments of
∇ϕh then G> is the all-nodes incidence matrix of a directed graph MG with a node
for each Lagrange moment and an arc for each Nédélec moment: MG = (ML,MN ).
This graph is connected.
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Proof. From (3.3) it follows that the matrix G ∈ RdN×dL has, on each row, two
elements different from zero, one equal 1 and one equal −1, hence G> is the all-nodes
incidence matrix of a directed graph MG = (ML,MN ).

The fact that it is connected is quite clear using the visualization of the graph
illustrated in Figure 3.1 for a single tetrahedron t in the case r = 2. As usually the
moments in Lr+1, that are the nodes of the graph, are the points of the principal
lattice of t of order r + 1. The moments in Nr+1, namely the arcs of the graph,
are associated with some of the (small) edges connecting the adjacent points in the
principal lattice (see [16]). On each face f the graph has only (small) edges parallels
to [vmf (0),vmf (i)] for i ∈ {1, 2}. In the interior of each tetrahedron there are only
(small) edges parallels to [vmt(0),vmt(i)] for i ∈ {1, 2, 3}. For a rigorous proof of the
fact that the graph MG = (ML,MN ) is connected (see [13]).

The following algorithm constructs a spanning tree of the graph MG.

1. Initialization:
Construction of a spanning tree τ of the graph (V,E)
Loop over the edges e ∈ E

set macrotree(e) = .false.

set eVisited(e) = .false.

if ( e ∈ τ ) then
set macrotree(e) = .true.

end if
end Loop over the edges e ∈ E
Loop over the faces f ∈ F

set fVisited(f) = .false.

end Loop over the faces f ∈ F

2. Construction of a spanning tree τs of the fictitious mesh
Loop over the tetra t ∈ T : let t = [v1, v2, v3, v4]

Loop over the faces f ∈ F (t): let f = [vi, vj , vk]
if ( fVisited(f) = .true. ) cycle Loop over the faces f ∈ F (t)

Loop over the edges e ∈ E(f): let e = [vg , vh]
if ( eVisited(e) = .true. ) cycle Loop on the edges e ∈ E(f)
if ( macrotree(e) = .true. ) then

add to τs the edge moments MN
α,e for all α

else
add to τs the edge moments MN

α,e for the r − 1 first† indices α
end if
set eVisited(e) = .true.

end Loop on the edges e ∈ E(f)

Loop over the layers ss = r − 1 : −1 : 2 internal to f
add to τs the face moments MN

β,f,1 for the ss− 1 first† indices β

end Loop over the layers ss internal to f
set fVisited(f) = .true.

end Loop over the faces f ∈ F (t)

Loop over the layers ` = r − 1 : −1 : 3 internal to t
Loop over the layers k = `− 1 : −1 : 2 internal to the layer `

add to τs the volume moments MN
γ,t,1 for the k − 1 first† indices γ

end Loop over the layers k internal to `
end Loop over the layers ` internal to t

end Loop over the tetrahedra t ∈ T

first† is always intended in the reversed lexicographical order

It induces a numeration of the moments of Nr+1 (an analogous numeration can
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be used for the moments of Lr+1) and can be also useful to understand the structure
of the graph. The construction is based on a spanning tree of the graph given by
vertices and edges of the mesh (the so-called global spanning tree). Then a loop by
elements enriches this initial spanning tree with arcs corresponding to face moments
(only those faces of the tetrahedra that have not been visited previously) and with
the arcs corresponding to the volume moments (see Figure 3.2). Figure 3.3 shows the
spanning tree in two tetrahedra of the mesh.

0

1

2

3

Fig. 3.1. On the left the decomposition of an element induced by the principal lattice. On
the right, the arcs of the graph MG in red (in thick line), on a fragmented visualization of the
decomposition. In this example r = 2.

2

0

1

0

1

2

3

Fig. 3.2. The spanning tree of the graph MG = (ML,MN ) on a tetrahedron. On the left the
subgraph corresponding to edge and face moments of a particular face and the corresponding part
of the spanning tree. The red arcs (in very thick line) belong to the spanning tree if and only if
its mesh edge belongs to the global spanning tree. The green arcs (less thick but still in thick line)
always belong to the spanning tree. On the left the volume moments belonging to the spanning are
visualized. In this example r = 4.

4. A basis of the finite element space RT 0
r+1. We denote H0(div; Ω) :=

{u ∈ H(div; Ω) : div u = 0} and RT 0
r+1 := RTr+1 ∩H0(div; Ω).

In general dimRT 0
r+1 = dN − (dL−1)−g+p, being g = β1(Ω) first Betti number

of Ω, namely the number of handles of Ω, and p = β2(Ω) the second Betti number of
Ω, namely, the number of connected components of the boundary of Ω minus one.

Let {MN
i }

dN
i=1 be the set of Nédélec moments and {Φi}dNi=1 be a cardinal basis for

those moments. Let SG = (ML, SN ) be a spanning tree of MG. We consider the set
of elements of the cardinal basis corresponding to Nédélec moments that are not in
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3

4

6

5

7

Fig. 3.3. The spanning tree in two tetrahedra of a mesh (r = 4). In blue (long quite thick line)
the arcs of the global spanning tree, in green (in less thick line) and red (in thick line, close to the
vertices) the arcs of the spanning tree of the graph MG = (ML,MN ). It is worth noting that the
red arcs in this figure correspond to the red arcs in Figure 3.2 belonging to an edge of the global
spanning tree

the spannig tree SG, namely, the set {Φi}i∈K being K = {i ∈ N, 1 ≤ i ≤ dN : MN
i 6∈

SN}. Clearly, denoting dK the number of elements in K, one has dK = dN − (dL−1).

Proposition 4.1. If Ω is simply connected then the set {curl Φj}j∈K ⊂ RT 0
r+1

is linearly independent. Moreover, if we assume also that ∂Ω is connected then it is
a basis of RT 0

r+1.

Proof. Let A ∈ RdN×dN be the matrix with entries

Ai,j =

∫
Ω

curl Φi · curl Φj

and A0 ∈ RdK×dK the submatrix of A obtained choosing those rows and columns
of A that correspond to indices in K. We will proof that A0 is non singular. If
K = {k(1), . . . , k(dK)} ⊂ {1, . . . , dN}, given a vector c ∈ RdK with components cj we

denote ch =
∑dK
j=1 cjΦk(j). If A0c = 0 then

c>A0c =

∫
Ω

curl ch · curl ch = 0

and, being Ω simply connected, follows that ch = ∇φh for some φh ∈ Lr+1. Since the
Nédélec moments of ch = ∇φh in a spanning tree ofMG are equal to zero, hence, from
(3.3), all the moments of φh are equal to the same constant. Due to the unisolvence
of the moments, follows that φh is constant and then ch = ∇φh = 0. Since the set of
functions {Φj}dNj=1 is linearly independent then c = 0.

If wh =
∑
j∈K cj curl Φj = 0 then, for any i ∈ K we have

0 =

∫
Ω

curl Φi ·wh =
∑
j∈K

cj

∫
Ω

curl Φi · curl Φj =
∑
j∈K

cjAi,j = (A0c)i .
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This means that A0c = 0. Since A0 is not singular follows that c = 0 hence the set
{curl Φj}j∈K ⊂ RT 0

r+1 is linearly independent. If Ω is simply connected and ∂Ω is
connected then dimRT 0

r+1 = dN − (dL − 1) = dK , so {curl Φj}j∈K is a basis.

If Ω is not simply connected then its first Betti number β1(Ω) = g is not zero. If
{σj}gj=1 is a set of 1-cycles representing a basis of H1(Ω;Z) then any curl-free function

with
∮
σj

uh = 0 for j = 1, . . . , g is a gradient. Our aim is to extend to the high order

case the notion of belted tree (see e.g. [14], [18], [17]). To this end we assume to know a
set of g polygonal loops in T , {σj}gj=1, mutually disjoint and without self-intersection,

representing a basis of H1(Ω;Z). For each j ∈ {1, . . . , g}, σj is a 1-cycle of the form
σj =

∑
e∈E a

j
ee with aje ∈ {−1, 0, 1}. We denote supp(σj) = {e ∈ E : aje 6= 0}. Then,

using (2.3) we have

(4.1)

∮
σj

uh =
∑
e∈supp(σj) a

j
e

∫
e
uh · τ e

=
∑
e∈supp(σj) a

j
e

∑
α∈I(r,2)

∫
e
uh · τ eBα

e

=
∑
e∈supp(σj) a

j
e

∑
α∈I(r,2)M

N
α,e .

We associate with each 1-cycle σj in T a circuit Gj of the graph MG in the
following natural way

Gj = ∪e∈supp(σj)G∗e .

Each Gj is a circuit because σj has not self-intersections.
For each j ∈ {1, . . . , g}, we choose an arc MN

α∗j ,e
∗
j

of Gj . The new trail G−j obtained

from the circuit Gj removing the arc MN
α∗j ,e

∗
j

is a path. Since the cycles {σj}gj=1 are

mutually disjoint, the subgraph given by the union of the paths G−j has g acyclic
connected components, hence it is acyclic. So it is possible to construct a spanning
tree SG = (ML, SN ) of MG that contains it. We will refer to the subgraph of MG

given by BG = (ML, BN ) with BN = SN ∪ {MN
α∗1 ,e

∗
1
, . . .MN

α∗g,e
∗
g
} as a belted tree.

Proposition 4.2. The set {curl Φj}j∈K∗ being K∗ = {j ∈ N, 1 ≤ j ≤ dN :
MN
i 6∈ BN} is linearly independent. Moreover if we assume that ∂Ω is connected then

it is a basis of RT 0
r+1.

Proof. The proof is similar to the one of Proposition 4.1. Let A0,∗ ∈ RdK∗×dK∗ the
submatrix of A obtained by choosing those rows and columns of A that correspond
to indices in K∗. (Hence, dK∗ denotes the number of elements of the set K∗.) It
is easy to verify that A0,∗ is non singular. In fact, given c ∈ RdK∗ and denoting
ch =

∑
j∈K cjΦj , if A0,∗c = 0 then

c>A0,∗c =

∫
Ω

curl ch · curl ch = 0 ,

Hence curl ch = 0. Moreover since the moments of ch in K∗ are equal zero, from (4.1)
we have

∮
σj

ch = 0 for all j ∈ {1, . . . , g}, so ch = ∇φh for some φh ∈ Lr+1. Now the

result follows as in Proposition 4.1.
If ∂Ω is connected then dimRT 0

r+1 = dN − (dL − 1)− g. On the other hand the
number of elements in a belted tree is equal to the number of elements in a tree plus
g hence the number of elements in K∗ is equal to dN − (dL − 1 + g) = dimRT 0

r+1 so
{curl Φj}j∈K∗ is a basis.
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Remark 4.3. Let us denote by C ∈ RdRT×dN the matrix that from the moments
of uh ∈ Nr+1 computes the moments of curl uh ∈ RTr+1. It is worth noting that if
{Φj}dNj=1 is a cardinal basis for the moments in Nr+1 then for any j ∈ {1, . . . , dN} the
moments of curl Φj are the elements of column j of matrix C. Hence the moments
of a basis of RT 0

r+1 are give by the submatrix of C corresponding to the columns of
indices j ∈ K∗.

If ∂Ω has p + 1 connected components with p > 0, the space of divergence-free
Raviart–Thomas finite elements that are not the curl of Nédélec finite elements is not
trivial and has dimension p. To obtain a basis it is necessary to complete the set
{curl Φi}i∈K∗ by adding, for each n = 1, . . . , p, a function zh,n ∈ RTr+1 such that

(4.2)

{
div zh,n = 0 in Ω∫

(∂Ω)l
zh,n · nΩ = δn,l l = 1 . . . , p ,

where (∂Ω)l, for l ∈ {0, 1, . . . , p} are the connected components of ∂Ω being (∂Ω)0

the external one. Note that, for any choice of zh,n, the set {zh,n}pn=1 is linearly
independent. A solution of (4.2) can be computed, for instance, as indicated in [5].
Let us consider the graph MD that has dP + (p+ 1) nodes, one for each moment of
Pr and one for each connected component of ∂Ω, and dRT arcs, one for each moments
of RTr+1 and for which the divergence matrix is the incidence matrix with reference
node the one corresponding to the external connected component of ∂Ω. If we choose
a spanning tree of this graph for n ∈ {1, . . . , p} the corresponding column of the

matrix B̃1 in [5] contains the moments of the unique solution of (4.2) that has all the
moments corresponding to the arcs of the cotree equal to zero. This solution can be
computed using a very efficient elimination procedure.

Hence, taking into account Proposition 4.2, we obtain the following result that
holds for any polyhedral Lipschitz domain:

Theorem 4.4. The set {curl Φj}j∈K∗ ∪ {zh,n}pn=1 is a basis of RT 0
r+1.

Proof. We have already proved that both {curl Φj}j∈K∗ and {zh,n}pn=1 are lin-
early independent. Hence to see that this set is linearly independent it is enough to
see that the functions zh,n are not the curl of any function in H(curl; Ω). This is
clear since

∫
(∂Ω)l

zh,n · nΩ 6= 0 for a connected component (∂Ω)n of ∂Ω while for any

u ∈ H(curl; Ω) and l ∈ {0, 1, . . . , p}
∫

(∂Ω)l
curl u · nΩ = 0. In fact let φl ∈ H1(Ω) be

such that (φl)|(∂Ω)m = δl,m. Then∫
(∂Ω)l

curl u · nΩ =

∫
∂Ω

curl u · nΩ φl =

∫
Ω

curl u∇φl = −
∫
∂Ω

u× nΩ∇φl = 0

because (∇φl)|∂Ω = 0.
The considered set is thus a basis of RT 0

r+1 because dimRT 0
r+1 = dN − (dL−1)−

g + p = dK∗ + p.

In Figure 4.1, we summarizes the situation. Due to the property that curl(grad)
is zero, we cannot construct a divergence-free basis of RT 0

r+1 starting from the curl
of a basis of Nr+1 because they are not linear independent. However, the spanning
(eventually belted) tree for the gradient of function Lr+1 allows to identify the set
(associated with the corresponding co-tree) K∗ of columns in G> that will provide
a part of this basis, once we apply on them the curl operator (see Proposition 3). If
p > 0, the basis has to be completed by hands, by adding the generators of H2 (see
Proposition 7), namely the solution of problem (4.2), for each n = 1, ..., p.
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Fig. 4.1. A graphical summary of the structure of the basis of RT 0
r+1 and its construction.

5. Conclusions. We have proved that, for a particular choice of degrees of free-
dom in the spaces Nr+1 and Lr+1 with r ≥ 0, the matrix associated with the gradient
operator is the transposed of the all-nodes incidence matrix of a directed and con-
nected graph. This fact, that was well known when r = 0, allows to extend to high
order finite elements the construction of a basis of the space of divergence-free finite
elements of degree one analyzed in [20] and [6].

This method uses the canonical basis for the chosen degrees of freedom of Nr+1

that, for r > 0, is not explicitly known. However, on each tetrahedron of the mesh,
the elements of the canonical basis are related with the elements of a more natural
basis by a generalized Vandermonde matrix that is independent of the tetrahedron
up to its orientation.

The typical setting in which is convenient to use divergence-free Raviart–Thomas
finite elements is the following mixed problem: find (zh, ph) ∈ RTr+1 × Pr such that{ ∫

Ω
zh ·wh +

∫
Ω
ph div wh =

∫
Ω

f ·wh ∀ wh ∈ RTr+1∫
Ω

div zhqh = 0 ∀ qh ∈ Pr .

It is clear that zh ∈ RT 0
r+1 and satisfies∫
Ω

zh ·wh =

∫
Ω

f ·wh ∀ wh ∈ RT 0
r+1 .

If β2(Ω) = 0 we have proved that a basis of RT 0
r+1 is given by {curl Φi}i∈K∗ being

{Φi}dNi=1 a cardinal basis of Nr+1 and K∗ the set of indices of the moments associated
with arcs not belonging to a given belted tree of the graph of the curl operator. The
mass matrix corresponding to this basis of the divergence-free subspace of RTr+1 is
then the matrix with entries

∫
Ω

curl Φj · curl Φi for i, j ∈ K∗. So it is a submatrix of
the stiffness matrix of the cardinal basis of Nr+1, the one corresponding to the rows
and columns of indices in K∗.

The stiffness matrix for the cardinal basis is computed, as usually, by assembling
the elementary matrices Atcard ∈ Rn×n with entries [Atcard]k,` =

∫
t
curl Φt

` · curl Φt
k,

being n = (r + 1)

(
r + 4

2

)
the dimension of P−r+1Λ1(t). The explicit form of the

elements of the local cardinal basis {Φt
k}nk=1 is not known. A basis of P−r+1Λ1(t) is
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given by (see for example [16])

(5.1) {λη(e′)
t ωe′ : e′ ∈ ∆1(t) and η(e′) ∈ Ie

′
(r, 4)}

being Ie′(r, 4) = {η ∈ I(r, 4) : ηi = 0 if i < mt
e′(0)}. It is worth noting that the

number of elements in Ie′(r, 4) is equal to the number of elements in I(r, 4−mt
e′(0)).

We denote by {ζl}nl=1 the elements of this basis and by {MN,t
i }ni=1 the set of local

Nédélec moments.
Since {ζl}nl=1 is a basis, for each k ∈ {1, . . . , n} there are n coefficients cj,l (and

they are unique) such that Φt
k =

∑n
l=1 ck,lζl. Moreover

MN,t
i (Φt

k) = δi,k =

n∑
l=1

ck,lM
N,t
i (ζl) .

Following [10], we introduce the generalized Vandermonde matrix: V ∈ Rn×n with
entries Vi,l = MN

t,i(ζl). Since {Φt
k}nk=1 is the local cardinal basis with respects to the

moments introduced in Section 3, we have

MN,t
i (Φk) = δi,k =

n∑
l=1

ck,lM
N,t
i (ζl) =

n∑
l=1

ck,lVi,l = [V C>]i,k ,

being C ∈ Rn×n the matrix with entries ck,l. This means that V C> = I and then
C> = V −1. So, it is possible to compute Atcard from the elementary matrices At ∈
Rn×n with entries [At]i,j =

∫
t
curl ζi · curl ζj because they are linked by V in the

following way.
Atcard = CAt C> = V −>AtV −1 .

Moreover it is enough to compute V for the reference element because it is, in
fact, independent of the physical element. (See [13]. See also [10] Property 1.)

Appendix A. Moments of ∇ϕh ∈ Nr+1 being ϕh ∈ Lr+1.
Let us recall the set of moments that we are considering in the space Nr+1:
• MN

α,e(uh) =
∫
e
uh · teBα

e , for each e ∈ E and α ∈ I(r, 2);

• MN
β,f,i(uh) = (−1)ir

∫
f
(uh×nf )·Bβ

f∇fλmf (j) for each f ∈ F , β ∈ I(r−1, 3),

i, j ∈ {1, 2} and i 6= j.
• MN

γ,t,i(uh) = (−1)sr(r − 1)
∫
t
uh · Bγ

t ∇λmt(j) × ∇λmt(k) for each t ∈ T ,
γ ∈ I(r − 2, 4), i, j, k ∈ {1, 2, 3}, i 6∈ {j, k} and j < k.

If uh = ∇ϕh with ϕh ∈ Lr+1 we obtain

• MN
α,e(∇ϕh) =

∫
e

∇ϕh · teBα
e

= ϕh(vme(1))B
α
e (vme(1))− ϕh(vme(0))B

α
e (vme(0))−

∫
e

ϕh gradeB
α
e · te

(since gradeB
α
e · te = r∇eλme(1)(B

α−e1
e −Bα−e0

e ))

= ϕh(vme(1))B
α
e (vme(1))− ϕh(vme(0))B

α
e (vme(0))

−r gradeλme(1) · te
∫
e
ϕh (Bα−e1

e −Bα−e0
e )

(using that ∇λme(1) · te = 1
|e| )

= ϕh(vme(1))B
α
e (vme(1))− ϕh(vme(0))B

α
e (vme(0))

− r
|e|
[∫
e
ϕhB

α−e1
e −

∫
e
ϕhB

α−e0
e

]
.
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Summing up

MN
α,e(∇ϕh) =


−ϕh(vme(0)) + r

|e|
∫
e
ϕhB

α−e0
e if α = (r, 0)

ϕh(vme(1))− r
|e|
∫
e
ϕhB

α−e1
e if α = (0, r)

− r
|e|
[∫
e
ϕhB

α−e1
e −

∫
e
ϕhB

α−e0
e

]
otherwise

where we have used that λαe (vme(l)) =

{
1 if αi = 0
0 otherwise

for i, l ∈ {0, 1} and

i 6= l.

• MN
β,f,i(∇ϕh) = (−1)ir

∫
f

(∇ϕh × nf ) ·Bβ
f∇fλmf (j)

(with i, j ∈ {1, 2} and i 6= j)

= (−1)i+1r
∫
f
(∇ϕh ×∇fλmf (j)) · nf Bβ

f

= (−1)i+1r
∫
f

divf (ϕh∇fλmf (j) × nf )Bβ
f

= (−1)i+1r
[∫
∂f

(ϕh∇fλmf (j) × nf ) · νf Bβ
f

−
∫
f
(ϕh∇fλmf (j) × nf ) · gradfB

β
f

]
(since ∇Bβ

f = (r − 1)
∑2
k=1∇fλmf (k)

(
Bβ−ek

f −Bβ−e0

f

)
)

= (−1)i+1r

[
2∑
l=0

(∇fλmf (j) × nf ) · νf |f−vl

∫
f−vl

ϕh[Bβ
f ]|f−vl

−(r − 1)

2∑
k=1

(∇fλmf (j) × nf ) · ∇fλmf (k)

∫
f

ϕh(Bβ−ek

j −Bβ−e0

j )

]

(recalling that ∇fλmf (l) = − |f−[vl]|
2|f | νf |f−[vmf (l)])

= (−1)i+1r
[
−
∑2
l=0

2|f |
|f−vl| (∇fλmf (j) × nf ) · ∇fλmf (l)

∫
f−vl

ϕh[Bβ
f ]|f−vl

−(r − 1)
∑2
k=1(∇fλmf (j) × nf ) · ∇fλmf (k)

∫
f
ϕh

(
Bβ−ek

f −Bβ−e0

f

)]
,

= (−1)i+1r (∇fλmf (j) × nf ) · ∇fλmf (i)

[
2|f |
|f − v0|

∫
f−v0

ϕh[Bβ
f ]|f−v0

− 2|f |
|f − vi|

∫
f−vi

ϕh[Bβ
f ]|f−vi

− (r − 1)

∫
f

ϕh

(
Bβ−ei

f −Bβ−e0

f

)]
(using that (∇fλmf (i) ×∇fλmf (j)) · nf = (−1)i+1 1

2|f | )

= r
[

1
|e12|

∫
e12

ϕh[Bβ
f ]|e12 − 1

|e0j |
∫
e0j

ϕh[Bβ
f ]|e0j

− r−1
2|f |

∫
f
ϕh

(
Bβ−ei

f −Bβ−e0

f

)]
.
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Summing up

MN
β,f,i(∇ϕh) =



r
|e12|

∫
e12

ϕh[Bβ
f ]|e12 − r

|e0j |
∫
e0j

ϕh[Bβ
f ]|e0j

if β0 = 0 and βi = 0

− r
|e0j |

∫
e0j

ϕh[Bβ
f ]|e0j + r(r−1)

2|f |
∫
f
ϕhB

β−e0

f

if β0 6= 0 and βi = 0

r
|e12|

∫
e12

ϕh[Bβ
f ]|e12 −

r(r−1)
2|f |

∫
f
ϕhB

β−ei

f

if β0 = 0 and βi 6= 0

− r(r−1)
2|f |

∫
f
ϕh

(
Bβ−ei

f −Bβ−e0

f

)
otherwise.

Finally we recall that if e = f − [vmf (l)] then

[Bβ
f ]|e =

{
B
R2,lβ
e if βl = 0

0 otherwise.

• MN
γ,t,i(∇ϕh) = (−1)sr(r − 1)

∫
t
∇ϕh · Bγ

t ∇λmt(j) × ∇λmt(k) (with i, j, k ∈
{1, 2, 3}, j < k, and i 6∈ {j, k})

= (−1)sr(r − 1)
[∫
∂t
ϕhB

γ
t ∇λmt(j) ×∇λmt(k) · nt
−
∫
t
ϕh div

(
Bγ
t ∇λmt(j) ×∇λmt(k)

)]
= (−1)sr(r − 1)

[∫
∂t
ϕhB

γ
t ∇λmt(j) ×∇λmt(k) · nt
−
∫
t
ϕh∇Bγ

t ·
(
∇λmt(j) ×∇λmt(k)

)]
(since ∇Bγ

t = (r − 2)
∑3
l=1∇λmt(l)

(
Bγ−el
t −Bγ−e0

t

)
)

= (−1)sr(r − 1)
[∑

f∈∆2(t)∇λmt(j) ×∇λmt(k) · nt|f
∫
f
ϕh [Bγ

t ]|f

−(r − 2)
∑3
l=1∇λmt(l) ·

(
∇λmt(j)×∇λmt(k)

)∫
t
ϕh
(
Bγ−el
t −Bγ−e0

t

)]
(denoting fl = t− vl)

= (−1)sr(r − 1)
[∑3

l=0∇λmt(j)×∇λmt(k) · nt|fl
∫
fl
ϕh [Bγ

t ]|fl

−(r − 2)∇λmt(i) ·
(
∇λmt(j) ×∇λmt(k)

) ∫
t
ϕh
(
Bγ−ei

t −Bγ−e0

t

)]
(recalling that nt|fl = − 3|t|

|fl|∇λmt(l))

= (−1)sr(r − 1)

[
3∑
l=0

−3|t|
|fl|
∇λmt(l) · ∇λmt(j) ×∇λmt(k)

∫
fl

ϕh[Bγ
t ]|fl

−(r − 2)∇λmt(i) ·
(
∇λmt(j) ×∇λmt(k)

) ∫
t

ϕh
(
Bγ−ei

t −Bγ−e0

t

)]
= (−1)sr(r − 1)

[
− 3|t|
|f0|
∇λmt(0) · ∇λmt(j) ×∇λmt(k)

∫
f0

ϕh [Bγ
t ]|f0

−3|t|
|fi|
∇λmt(i) · ∇λmt(j) ×∇λmt(k)

∫
fi

ϕh [Bγ
t ]|fl

−(r − 2)∇λmt(i) ·
(
∇λmt(j) ×∇λmt(k)

) ∫
t

ϕh
(
Bγ−ei

t −Bγ−e0

t

)]
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(since ∇λmt(0) = −
∑3
n=1∇λmt(n))

= (−1)sr(r − 1)

[
3|t|
|f0|
∇λmt(i) · ∇λmt(j) ×∇λmt(k)

∫
f0

ϕh [Bγ
t ]|f0

−3|t|
|fi|
∇λmt(i) · ∇λmt(j) ×∇λmt(k)

∫
fi

ϕh [Bγ
t ]|fi

−(r − 2)∇λmt(i) ·
(
∇λmt(j) ×∇λmt(k)

) ∫
t

ϕh
(
Bγ−ei

t −Bγ−e0

t

)]

= (−1)sr(r − 1)∇λmt(i) · ∇λmt(j) ×∇λmt(k)

[
3|t|
|f0|

∫
f0

ϕh [Bγ
t ]|f0

−3|t|
|fi|

∫
fi

ϕh [Bγ
t ]|fi − (r − 2)

∫
t

ϕh
(
Bγ−ei

t −Bγ−e0

t

)
(using that (−1)s∇λmt(i) ·

(
∇λmt(j) ×∇λmt(k)

)
= (−1)i+1 1

6|t| )

= (−1)i+1 r(r − 1)

6|t|

[
3|t|
|f0|

∫
f0

ϕh [Bγ
t ]|f0 −

3|t|
|fi|

∫
fi

ϕh [Bγ
t ]|fi

−(r − 2)

∫
t

ϕh
(
Bγ−ei

t −Bγ−e0

t

)]
.

Summing up MN
γ,t,i(∇ϕh)

=



(−1)ir(r − 1)
(
− 1

2|f123|
∫
f123

ϕh[Bγ
t ]|f123 + 1)

2|f0jk|
∫
f0jk

ϕh[Bγ
t ]|f0jk

)
if γ0 = 0 and γi = 0

(−1)ir(r − 1)
(

1
2|f0jk|

∫
f0jk

ϕh[Bγ
t ]|f0jk − r−2

6|t|
∫
t
ϕhB

γ−e0

f

)
if γ0 6= 0 and γi = 0

(−1)ir(r − 1)
(
− 1

2|f123|
∫
f123

ϕh[Bγ
t ]|f123 + r−2

6|t|
∫
t
ϕhB

γ−ei

t

)
if γ0 = 0 and γi 6= 0

(−1)i r(r−1)(r−2)
6|t|

∫
t
ϕh

(
Bγ−ei

t −Bγ−e0

f

)
otherwise.
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Nice (France), for its support through the MATHIT program during her visiting at the
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Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Casilla
160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro:
http://www.ci2ma.udec.cl



Centro de Investigación en
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