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Abstract. We consider the coefficients identification problem in a mathematical

model for indirect transmission of a disease between two independent host populations

living in two non-coincident spatial domains. The direct problem is given by an initial

boundary value problem for a set of seven differential equations: a single equation

for the dynamics of propagation of the contaminant and six equations governing the

dynamics of disease in each host population under the susceptible-infected-removed

approach. The different rates of disease transmission are space dependent functions

and are the coefficients in the reaction terms. The identification problem consists of

the determination of the coefficients in the reaction terms from an observation of the

state variables at the final time of the process. We apply a methodology based on

optimization with partial differential equations as constraints. We reformulate the

inverse problem as an optimization problem for an appropriate cost function. Our

main results are: the proof of existence of solutions for the optimization problem,

the introduction of a necessary optimality conditions, the stability of direct problem

solution with respect to the unknown coefficients, the stability of the adjoint system

solution with respect to the unknown coefficients and the observations, and the

uniqueness up to an additive constant of the identification problem.

PACS numbers: 47.10.ad, 47.10.g, 47.10.A

Keywords: inverse problem; optimal control; indirectly transmitted diseases

1. Introduction

In the last decades there is a growing interest in inverse problems arising from

mathematical models coming from several applications and where the governing

equations are given in terms of partial differential equations, see for instance [4,27–29].
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In a broad sense there are at least four kinds of inverse problems: the determination

of the domain or part of the domain, the determination of the initial condition, the

determination of the boundary condition and the determination of the coefficients of

the equations. In all cases we need some knowledge about the solution of the forward

problem obtained from experimental measurements. Moreover, it is well known that the

methods for analysis and properties of inverse problems are different from the standard

theories used for direct problems, for instance a general common property for all kinds of

inverse problems is the fact that they usually are ill-posed in uniqueness. In particular,

the aim of the present study is to analyze the inverse problem arising from the coefficients

determination problem for a reaction-diffusion system originated from the mathematical

theory of epidemics.

In epidemiology, the consideration of differential equations as transmitted disease

models go back to the work of Kermack and McKendrick [30]. They study the evolution

of an epidemic in a closed host population of total size N which is divided into three

classes of individuals: susceptibles (S) which capable of contracting the disease and

became themselves infectives; infectives (I) which are capable of transmitting the disease

to susceptibles; and removed (R) which have contracted the disease and being unable

to transmitted the disease because have died or, if recovered, are permanently immune

or have been isolated. Assuming that the transfer process from S to I and from I to

R are given by a mass action and exponential decay laws, respectively; the basic model

(called SIR model) is given by the following dynamical system

dS

dt
= −kSI, dI

dt
= kSI − λI, dR

dt
= λI, (1)

S(0) = S0, I(0) = I0, I(0) = R0, (2)

with k and λ some positive constants and S0, I0, and R0 some nonegative constants such

that S0 + I0 + R0 = N . Later on, SIR models have been improved by several authors

who have considered other factors of individuals (position, sex, age, diffusion, etc) and

have developed a long and rich literature, see e.g. [6, 13–15, 25] and references therein.

Particularly, by considering the position as a factor and assuming that the individuals

disperse by means of Fickian diffusion, we obtain a a description of population densities

by continuous in space and time functions satisfying a spatially-extended versions of (1)

to the reaction-diffusion system

∂tS − div(dS(x)∇S) = k(x)SI, (x, t) ∈ Ω× R+, (3)

∂tI − div(dI(x)∇I) = k(x)SI − λ(x)I, (x, t) ∈ Ω× R+, (4)

∂tR− div(dR(x)∇R) = λ(x)I, (x, t) ∈ Ω× R+, (5)

where dS, dS, dS, k and λ are some positive functions defined on Ω ⊂ Rd (d = 1, 2, 3).

More complex and realistic models can be obtained for incorporating modifications in

the diffusion and reaction terms, see for instance [3] for a model with nonlocal cross-

diffusion and [2] for a reaction term obtained by application of Frequency-dependent

transmission law for the transfer process from S to I.
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In this work, the direct problem is the mathematical model introduced in [26]

to describe the transmission through a contaminated environment of a microparasite

between two independent host populations H1 and H2, living in two non-coincident

spatial domains Ω1 and Ω2 of Rd (d = 1, 2, 3), i.e. Ω1∩Ω2 6= ∅ and Ω1∩Ω2 6= Ωi, i = 1, 2;

respectively. Assuming that the dynamic processes of transmitted disease in each

population are governed by a SIR type reaction-diffusion system and the interaction of

both populations is given by a contaminated environment, Fitzgibbon and collaborators

[26] deduce the following set of differential equations

∂tϕ− div(d11(x)∇ϕ) = −σ11(x)
ϕψ

H1

− σ31(x)cϕ+ (1− w1)λ1ψ

+ b(x)H1 − (m(x) + k(x)H1)ϕ, in Q1,T := Ω1×]0, T [, (6)

∂tψ − div(d12(x)∇ψ) = σ11(x)
ϕψ

H1

+ σ31(x)cϕ− ω1λ1ψ

− (m(x) + k(x)H1)ψ, in Q1,T , (7)

∂tχ− div(d13(x)∇χ) = ω1λ1ψ − (m(x) + k(x)H1)χ, in Q1,T , (8)

∂tu− div(d21(x)∇u) = −σ32(x)cu, in Q2,T := Ω2×]0, T [, (9)

∂tu− div(d22(x)∇u) = σ32(x)cu− ελ2v, in Q2,T , (10)

∂tv − div(d23(x)∇w) = 0, in Q2,T , (11)

∂tc = σ13(x)(1− c)ϕ̃+ σ23(x)(1− c)ṽ − δ(x)c, in QT := (Ω1 ∪ Ω2)×]0, T [, (12)

supplemented with the initial and boundary conditions

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), χ(x, 0) = χ0(x), in Ω1, (13)

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), in Ω2, (14)

c(x, 0) = c0(x), in Ω1 ∪ Ω2, (15)

d11(x)∇ϕ · η1 = d12(x)∇ψ · η1 = d13(x)∇χ · η1 = 0, in Γ1,T := ∂Ω1×]0, T [, (16)

d21(x)∇u · η2 = d22(x)∇v · η2 = d23(x)∇w · η2 = 0, in Γ2,T := ∂Ω2×]0, T [. (17)

The state variables ϕ, ψ and χ are defined on Q1,T and represent the population

densities of the subclasses of susceptible, infected and recovered individuals from the

total population H1 = ϕ+ψ+χ; the state variables u, v, and w are defined on Q2,T and

are used to represent the population densities of the susceptible, infected and recovered

subclasses of the total population H2 = u+ v + w; while the state variable c is defined

on QT represents the proportion of the environment contaminant. The functions ϕ̃

and ṽ denote the prolongation by zero of ϕ and v, on Q2,T and Q1,T , respectively.

The functions di1, di2, di3 are defined on Ωi and denotes the diffusivity of susceptible,

infected and recovered individuals from population Hi, i = 1, 2, respectively. The

functions σ11, σ13, σ23, σ31 and σ32 are intrapopulation and contact with the contaminant

transmission rates. The functions b,m and k are rates related with the vital dynamics

(birth and mortality) on the population H1. Further, δ is a rate modelling the

unsustainable habitat contamination. Finally, λ1, λ2, ω1, and ε are positive constants;

ϕ0, ψ0, χ0, u0, v0, w0, and c0 are the initial conditions; and ηi denotes the unit outward
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normal vector to the boundary of Ωi given by ∂Ωi, i = 1, 2. We note that (16)-(17) are

no-flux boundary conditions which means that there is no population flux across the

boundaries of Ω1 and Ω2.

In this paper, we focus on the inverse problem of coefficients determination on

the initial boundary value problem (6)-(17) from final time observation of the state

variables. The inverse problem is motivated by the practical situation where the densities

of the different classes (susceptible, infected, and recovered) of both populations and

the concentration of the contaminant can be measured, on the other hand, however, the

different rates (disease transmission, disease recovery, birth, mortality, etc) and other

coefficients of the model, are very costly or even infeasible to measure. Moreover, we

remark that form epidemiological viewpoint, the knowledge of the different coefficients is

important at least for two reasons: permits the solution of (6)-(17) in a real application

context and can be used to validate the model in order to simulate or improve some

properties.

There is a huge list of articles where the problem of coefficients identification in

reaction-diffusion equations is focused, see for instance [7–11, 16, 17, 19–23, 34–36]. The

list is not exhaustive and there is a more extensive literature. The majority of the

results are obtained for the case of scalar equations and were originally motivated by

applications of heat transfer phenomena. The few results in the case of systems are

reported in [17, 19, 21, 22, 35, 36]. In particular, we remark that in [35] the authors

define the inverse problem for a susceptible-infective-susceptible (SIS) reaction-diffusion

model in a multidimensional space but however some of their findings are reduced to

one dimensional case. Recently, in [17] the authors of the present paper have extend

the results of [35] for the multidimensional case.

In this article, we rewrite the inverse coefficient problem in an optimization problem

for an appropriate cost function defined on an admissible set. Then, we introduce an

adjoint state and prove the main contributions of the paper: (a) the existence of solutions

for the inverse problem, (b) the introduction of first order optimality condition, (c) the

stability of a direct problem solution with respect to the coefficients of the reaction term,

(d) the stability of the adjoint problem solution with respect to the coefficients of the

reaction term and the observations, (e) the uniqueness of the identification problem.

The organization of the paper is as follows. In section 2 we present the definition of

direct and inverse problems, the notation and the enunciate of main results. In section 3,

we present the proofs of the main results.

2. Problem statement and main results

2.1. The direct problem

The direct problem is given by the mathematical model (6)-(17) formulated by

Fitzgibbon, Langlais and Morgan [26]. Indeed, for completeness and in order to be

more precise, we summarize the assumptions by the following list
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(A0) There are two independent host populations H1 and H2 which are spatially

distributed over non-coincident spatial domains Ω1 and Ω2 of ⊂ Rd (d = 1, 2, 3);

i.e. Ω1 ∩ Ω2 6= ∅ and Ω1 ∩ Ω2 6= Ωi, i = 1, 2; respectively. The region Ω1 is a

reservoir where lives a parasite which, in most of the cases of interest, is benign on

the population H1 and lethal on the population H2.

(A1) There is a contaminated habitat or environment and the variable c(x, t) represents

the proportion of such contaminant at the position x ∈ Ω1∪Ω2 and time t ∈ [0, T ].

(A2) Each host population is subdivided into three subclasses: susceptible, infected, and

removed individuals, with population densities ϕ, ψ and χ in the population H1

and u, v, and w in the population H2, respectively.

(A3) The dynamic in the host population H1 is given as follows. The susceptible

individuals in the host population H1 can contract the disease from cross contacts

with infected hosts from H1 or with the environment. Moreover, we consider that

the force of infection is modeled by a frequency-dependent transmission function

of the form σ11(x)ϕψ/H1 with σ11 a transmission coefficient. Related with with

infective individuals from H1, we consider two facts: 1/λ1 represents the duration

of the infective stage and a fixed proportion ω1 ∈ [0, 1] of infective individuals

become permanently immune and a proportion 1 − ω1 ∈ [0, 1] reentering in the

susceptible class. Moreover, we consider that H1 has vital dynamics with b(x) and

m(x) + k(x)H1 identical in each subclass and representing the birth and mortality

rates, respectively.

(A4) The dynamic in the host population H2 is given as follows. The susceptible

individuals in the host population H2 are infected by contact with the environment,

but there is neither cross infection from infected hosts from H2 nor criss-cross

infection with H1. The demographic effects are ignored in H2. Moreover, the

disease can be lethal in the population H2 with a fixed survival rate ε1 ∈ [0, 1].

(A5) The transmission via contact with the contaminant environment is modeled by

mass action kinetics of the form σ31cϕ and σ32cu, which appears as loss terms

for susceptible classes and gain terms for infective classes of both populations.

Moreover the dynamic of the contaminant is modeled by the mass action and linear

decreasing factor with terms of the form σ13(1−c)ψ, σ23(1−c)v and δc, respectively.

The functions σ13 and σ23 are identically to zero on Ω2 and Ω1, respectively.

(A6) The host population H1 and H2 are confined to Ω1 and Ω2 for all time, respectively.

From the assumptions (A0)-(A6) and the standard arguments for modelling the dynamic

of populations, we deduce (6)-(17).

The mathematical model (6)-(17) can be written as a reaction-diffusion system of

the following form

∂thi − div(Di(x)∇hi) = fi(x,hi, c;θi(x)), in Qi,T , i = 1, 2, (18)

∂tc = g(x,h1,h2, c;θ3(x)), in QT , (19)

(Di(x)∇hi) · ηi = 0, on Γi,T , i = 1, 2, (20)
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h1(x, 0) = (ϕ0, ψ0, χ0)(x) in Ω1, (21)

h2(x, 0) = (u0, v0, w0)(x) in Ω2, (22)

c(x, 0) = c0(x) in Ω1 ∪ Ω2, (23)

where hi are the state variables of the population Hi, i = 1, 2, i.e. h1 = (φ, ψ, χ)

and h2 = (u, v, w); θ1 = (σ11, σ31, b,m, k), θ2 = σ32 are the coefficients related with

the equations governing the population Hi, and θ3 = (σ13, σ23, δ) with the equation

of the contaminant; Di = diag(di1, di2, di3) are diffusion matrices of the population Hi;

fi = (fi1, fi2, fi3) are the reaction terms modelling the dynamics of the population Hi

and g the dynamics of the contaminant which are defined by

f11 = −σ11(x)
ϕψ

H1

− σ31(x)cϕ+ (1− w1)λ1ψ + b(x)H1 − (m(x) + k(x)H1)ϕ,

f12 = σ11(x)
ϕψ

H1

+ σ31(x)cϕ− ω1λ1ψ − (m(x) + k(x)H1)ψ,

f13 = ω1λ1ψ − (m(x) + k(x)H1)χ, f21 = −σ32(x)cu,

f22 = σ32(x)cu− ελ2v, f23 = 0,

g = σ13(x)(1− c)ϕ̃+ σ23(x)(1− c)ṽ − δ(x)c,

with the functions ϕ̃ and ṽ denoting the prolongation by zero of ϕ and v, on Ω2 and Ω1,

respectively; ηi are the unit outward normal vectors to ∂Ωi; and ϕ0, ψ0, χ0, u0, v0, w0,

and c0 are the initial conditions.

We consider the standard functional framework used in the analysis of parabolic

equations, see for instance [31–33]. In particular, we use the notations Ck,α(Ω) with

k ∈ N and α ∈]0, 1], Lp(Ω) with p ≥ 1, Wm,p(Ω) with m ∈ N and p ≥ 1, for the Banach

spaces of Hölder k−times continuously function whose kth-partial derivatives are Hölder

continuous with exponent α; the space of all functions from Ω to R which are p-integrable

in the sense of Lebesgue; and the usual Sobolev spaces, respectively. In particular, we

consider the notations Cα(Ω) and Hm(Ω) instead of C0,α(Ω) and Wm,2(Ω), respectively.

The vector valued spaces like [C∞(Ω)]3, [Lp(Ω)]3 and [Wm,p(Ω)]3 and others, are defined

as usual, namely in the componentwise sense, and are denoted by bold symbols, for

instance we denote by C∞(Ω), Lp(Ω) and Wm,p(Ω), the spaces [C∞(Ω)]3, [Lp(Ω)]3 and

[Wm,p(Ω)]3, respectively. Moreover, in order to simplify the presentation of our results

and proofs we consider the following notation

L p = Lp(Ω1)× Lp(Ω2)× Lp(Ω1 ∪ Ω2), (24)

Lp =
[
Lp(Ω1)

]5

× Lp(Ω2)× Lp(Ω1 ∪ Ω2), (25)

C α =
[
C0,α(Ω1)

]5

× C0,α(Ω2)×
[
C2,α

(
Ω1 ∪ Ω2\D

)]2

× C2,α(Ω1 ∪ Ω2), (26)

with D = (∂Ω1 ∩Ω2)∪ (∂Ω2 ∩Ω1); and analogously to L p we consider the notation for

the functional spaces W m,p and H m.

The existence and uniqueness of the positive classical solution of the system (18)-

(23) were developed in [26] by considering the assumptions:
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(H0) The sets Ω1 and Ω2 are open bounded convex sets of Rd such that ∂Ωi are of C3,α

regularity.

(H1) The functions modelling the initial conditions are non-negative and satisfying the

following regularity conditions: ϕ0, ψ0, χ0 are continuous on Ω1; u0, v0, w0 are

continuous on Ω2; and c0 is continuous on Ω1 ∪ Ω2\D . Moreover, we assume that

c0(x) ∈ [0, 1] on Ω1 ∪ Ω2.

(H2) The diffusion coefficients di,j for (i, j) ∈ {1, 2} × {1, 2, 3} are positive functions,

bounded from below on Ωi and belong C2,α(Ωi) ∩ L∞(Ωi).

(H3) The coefficients are componentwise strictly positive on their domains of definition,

i.e. σ11, σ31, b,m, and k are strictly positive on Ω1; σ32 is strictly positive on Ω2; δ is

strictly positive on Ω1 ∪ Ω2; σ13 is strictly positive on Ω1 and identically 0 outside of

Ω1; σ23 is strictly positive on Ω2 and identically 0 outside of Ω2. Moreover, θ ∈ C α

and the birth and mortality rates are such that b(x)−m(x) is strictly positive for

all x ∈ Ω1.

Theorem 2.1. If the requirements listed above in (H0)-(H3) are met, then the system

(18)-(23) has a unique, classical, global nonnegative solution ϕ, ψ, χ, u, v, w, and c, which

is componentwise non-negative; ϕ, ψ, and χ are uniformly bounded on Q1 = Ω1×]0,∞[,

u, v, and w, are uniformly bounded on Q2 = Ω2×]0,∞[, and c is uniformly bounded on

Q = (Ω1 ∪ Ω2)×]0,∞[; and c(x, t) ∈ [0, 1] on Q.

The details of the proof for Theorem 2.1 are given in [26] and is divided in

four big parts: the local existence is followed by Banach fixed point argument; the

componentwise non-negativity is deduced by application of the weak maximum principle

for scalar parabolic equations; the global well posedness is a consequence of L∞ estimates

of solution components; and the global existence is proved by using the results for

discontinuous coefficients and uniform estimates using cut-off functions.

2.2. Definition and formulation of the inverse problem

We assume that a measurement of each subclass of both populations at final time T ,

and also of the contaminant are given and we need to determine the coefficients in the

forward problem (18)-(23). More precisely, we have that the inverse coefficient problem

is defined as follows:

Inverse problem. Given the following data, ϕ0, ψ0, χ0, u0, v0, w0 and c0, namely the

initial condition functions, the diffusion coefficients dij for {i, j} ∈ {1, 2}×{1, 2, 3},
and the observation functions ϕobs, ψobs, χobs, uobs, vobs, wobs and cobs defined at time

t = T ; find the functions σ11, σ13, σ23, σ31, σ32, b,m, k and δ such that the solution

of the initial boundary value problem (18)-(23) is “as close as” possible to the

observation functions at time t = T.

Note that the distinct functions are defined on Ω1, Ω2 or Ω1∪Ω2. In the context of inverse

coefficient problems the term “as close as” is precised by considering an appropriate

cost functional, see for instance [12] for the case of flux-diffusion determination in
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the mathematical modelling of sedimentation. In this paper, in order to analyze the

inverse problem, we introduce a formulation of the inverse problem as an optimal control

problem. The admissible set Uad := Uad(Ω1,Ω2) and the cost function J : Uad → R are

defined as follows

Uad = A (Ω1,Ω2) ∩H Jd/2K+1, (27)

J(θ) :=
1

2

∥∥(h1,h2, c)(·, T )− (hobs1 ,hobs2 , cobs)
∥∥2

L 2 +
Γ

2
‖∇θ‖2

L2 , Γ > 0, (28)

where hobs1 = (φobs, ψobs, χobs), hobs2 = (uobs, vobs, wobs) and

A (Ω1,Ω2) =
{
θ := (θ1,θ2,θ3) ∈ C α : Ran(θ) ⊆

9∏
i=1

[ri, ri] ⊂ R9
+, ∇θ ∈ L2

}
.

Here, Ran(θ) and ∇θ denote the range and the gradient of a function θ in the

componentwise sense. Thus, the inverse problem is reformulated as the following

optimization problem

Find θ ∈ Uad : J(θ) = inf
θ∈Uad

J(θ) subject to (h1,h2, c) is solution of (18)-(23). (29)

We remark that the parameter Γ in (28) should be appropriately selected to get

uniqueness of the inverse problem.

2.3. Main results

Let us consider that θ ∈ Uad is a solution of the optimal control problem (29) and

(h1,h2, c) is the corresponding solution of (18)-(23) with θ instead of θ. Then, we

introduce the notation pi : Ωi → R3 for i = 1, 2 and s : Ω1 ∪ Ω2 → R3, satisfying the

following backward boundary value problem

∂tpi + div(Di(x)∇pi) = qi(x,pi, s; hi, c,θi(x)), in Qi,T , i = 1, 2, (30)

∂ts = ς(x,p1,p2, s; c,θ3(x)), in QT , (31)

(Di(x)∇hi) · ηi = 0, on Γi,T , i = 1, 2, (32)

pi(x, T ) = hi(x, T )− hobsi (x), in Ωi, i = 1, 2, (33)

s(x, T ) = c(x, T )− cobs(x), in Ω1 ∪ Ω2, (34)

where the functions qi and ς are defined as follows

q11 =

[
σ11(x)

ψ(ϕ+ ψ)

(H1)2
+ σ31(x)c

]
(p12 − p11)

+
(
b(x)−m(x)

)
p11 − k(x)

(
2ϕp11 + ψp12 + χp13

)
,

q12 = σ11(x)
ϕ(ϕ+ χ)

(H1)2
(p12 − p11) + (1− ω1λ1 + b(x))p11 −m(x)p12 + ω1λ1(p13 − p12)

−k(x)
(
ϕp11 + 2ψp12 + χp13

)
+ σ13(x)(1− c)s,

q13 = −σ11(x)
ϕψ

(H1)2
(p12 − p11)− b(x)p11 − k(x)

(
ϕp11 + ψp12 + 2χp13

)
,



Identification of coefficients in an indirectly transmitted diseases model 9

q21 = σ32(x)c(p22 − p21), q22 = ελ2(p23 − p22) + σ23(x)(1− c)s, q23 = 0,

ς = σ31(x)ψ̃(p̃12 − p̃11) + σ32(x)ṽ(p̃22 − p̃21)− (σ13(x)ψ̃ + σ23(x)ṽ + δ(x))s.

Here, the functions p̃1 and p̃2 denote the prolongation by zero of p1 and p2 on Ω2

and Ω1, respectively. Similarly are defined ψ̃ and ṽ. Moreover, we observe that the

system (30)-(31) is a linear system and the analysis of existence can be developed by

standard arguments for parabolic equations. Indeed, for a recent similar result, which

can be straightforward extend to analyze the system (30)-(31), we refer to the work of

Apreutesei [5].

Remark 2.1. From Theorem 2.1, for θ ∈ Uad the solution of the direct problem

(h1,h2, c) is classical and hence a weak solution. Thus, by convenience we work in

the topology of L2(0, T,H 1) without losing the viewpoint that we always are considering

classical solutions for the direct problem.

The main results of the paper are the existence, stability and uniqueness of the

inverse problem, as is established in the following theorems:

Theorem 2.2. Let us consider that (H0)-(H3) and the following hypothesis

(H4) The observation function (hobs1 ,hobs2 , cobs) belongs L 2,

are valid. Moreover consider the on U := A (Ω1,Ω2)∩M with M a bounded closed set

of H Jd/2K+1 containing the constant functions. Then, there exists at least one solution

of (29) on U .

Theorem 2.3. Assume that the hypothesis of Theorem 2.2 are satisfied, consider that

θ is the solution of (29) and (h1,h2, c) is the corresponding solution of (18)-(23) with

θ instead of θ. Then, the adjoint system to (18)-(23) is given by the system (30)-(34).

Moreover, the pair (p1,p2) is bounded in L∞(0, t; [H2(Ω1)]3 × [H2(Ω2)]3) for almost all

time t in ]0, T ] and the solution of (30)-(34) is bounded in L∞(0, t; L∞) for almost all

time t in ]0, T ].

Theorem 2.4. Assume that the hypothesis of Theorem 2.2 are satisfied and consider

the notation θ, (h1,h2, c) and (p1,p2, s) as is given in Theorem 2.3. Then, the following

inequality∫ ∫
Q1,T

{[
(σ̂11 − σ11)

ϕ ψ

H1

+ (σ̂31 − σ31)

]
(p11 − p12) + bH1p11 − (m+ kH1)h1 · p1

}
dxdt

+

∫ ∫
Q2,T

(σ̂32 − σ32)(p21 − p22)dxdt+

∫ ∫
QT

{(
σ̂13 − σ13

)
(1− c)ϕ̃s+

(
σ̂23 − σ23

)
(1− c)ṽ

− (δ̂ − δ)c
}
sdxdt+ Γ

∫
Ω1

∇θ1 · ∇(θ̂1 − θ1)dx+ Γ

∫
Ω2

∇θ2 · ∇(θ̂2 − θ2)dx

+ Γ

∫
Ω1∪Ω2

∇θ3 · ∇(θ̂3 − θ3)dx
]
≥ 0, ∀θ̂ ∈ Uad, (35)

is satisfied.



Identification of coefficients in an indirectly transmitted diseases model 10

Theorem 2.5. Assume that the hypothesis of Theorem 2.2 are valid. Then, considering

the norm induced topologies of L2, L∞(0, t; L 2), and L2×L 2 we have that the assertions

(i) The mapping θ 7→ (h1,h2, c) is continuous from Uad ⊂ L2 to L∞(0, t; L 2) for

almost all time t in ]0, T ].

(ii) The mapping (θ,hobs1 ,hobs2 , cobs) 7→ (p1,p2, s) is continuous from Uad × L 2 ⊂
L2 ×L 2 to L∞(0, t; L 2) for almost all time t in ]0, T ].

are satisfied.

Theorem 2.6. Let us define the set

Uc =
{
θ ∈ U :

∫
Ω

θ(x)dx = c, c = (c1, . . . , c9) ∈ R9
+

}
with U the set defined on Theorem 2.2. Then, for each c, the solution of (29) is

uniquely defined, up to an additive constant, on Uc in the L2 sense for any large enough

regularization parameter Γ.

3. Proof of Main results

3.1. Proof of Theorem 2.2

We note that the admissible set U is a nonempty set and the cost function J is bounded

on U . To prove that U 6= ∅ is enough to select the functions θ(x) = (r + r)/2, which

clearly is belong to A (Ω1,Ω2) and M . The boundedness of J is deduced by the following

three facts: the L 2 norm of (h1,h2, c)(·, T ) is bounded as consequence of Theorem 2.1

and hypothesis (H0), the hypothesis (H4) and the property that ∇θ ∈ L 2 by the

definition of A (Ω1,Ω2). Then, we can consider that there exist {θn} ⊂ U a minimizing

sequence of J .

On the other hand, we claim the compact embedding H Jd/2K+1 ⊂ C α for α ∈]0, 1/2].

Indeed, firstly we observe that HJd/2K+1(Ω) ⊂ Cα(Ω) for α ∈]0, 1/2], for any open

convex subset Ω ⊂ Rd. This fact can be deduced using two results: the Theorem

6 [24, pp. 270] and the Theorem 1.3.1 [1, pp. 11], which enables the continuous

embedding HJd/2K+1(Ω) ⊂ C1/2(Ω) and the compact embedding C1/2(Ω) ⊂ Cα(Ω) for

all α ∈]0, 1/2], respectively. Then, we can prove our claim by applying the the compact

embedding HJd/2K+1(Ω) ⊂ Cα(Ω) . Thus, the claim is proved by using the Cartesian

product defining H Jd/2K+1 and Cα.

The compact embedding H Jd/2K+1 ⊂ C α for α ∈]0, 1/2], implies that the

minimizing sequence {θn} is bounded in the strong topology of C α for all α ∈]0, 1/2],

since there exists a positive constant C (independent of θn) such that: ‖θn‖Cα ≤
C‖θn‖H Jd/2K+1 for all α ∈]0, 1/2]. Now, we note that {θn} is bounded in H Jd/2K+1 by

the definition of U .

Let us denote by (h1,h2, c)n the solution of the initial boundary value problem (18)-

(23) corresponding to θn. Then, by considering the fact that θn ∈ C α for all α ∈]0, 1/2],

by Theorem 2.1, we have that (h1,h2, c)n are belong the Hölder space C 2+α,1+α
2 and
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also {(h1,h2, c)n} is a bounded sequence in the strong topology of C 2+α,1+α
2 for all

α ∈]0, 1/2].

The boundedness of the minimizing sequence and the corresponding sequence

{(h1,h2, c)n}, implies that there exist θ ∈ C 1/2 ∩U and (h1,h2, c) ∈ C 2+ 1
2
,1+ 1

4 and the

subsequences again labeled by {θn} and {(h1,h2, c)n} such that θn → θ uniformly on

C α and (h1,h2, c)n → (h1,h2, c) uniformly on C 2+α,1+α
2 . Moreover, we can deduce that

(h1,h2, c) is the solution of the initial boundary value problem (18)-(23) corresponding

to the coefficients θ.

Hence, by Lebesgue’s dominated convergence theorem, the weak lower-

semicontinuity of L2 norm, and the definition of the minimizing sequence, we have

that J(θ) ≤ limn→∞ J(θn) = infθ∈Uad(Ω) J(θ). Then, θ is a solution of (29).

3.2. Proof of Theorem 2.3

The fact that (p1,q2, s) satisfying the system (30)-(34) is the adjoint system for (18)-

(23) can be proved by straightforward generalization to systems of the formal calculus

presented in [12, 18] for the case of nonlinear scalar parabolic strongly degenerate

equation. Now, to get the boundedness behavior of the solution, we observe that is

enough to prove the following space estimates

‖(p1,q2, s)(·, t)‖2
L 2(Ω) ≤ P1, ‖∇(p1,q2)(·, t)‖2

L2(Ω1)×L2(Ω2) ≤ P2, (36)

2∑
i=1

‖div(D1(x)∇pi)(·, t)‖2
L2(Ωi)

≤ P3, ‖(p1,q2, s)(·, t)‖L ∞(Ω) ≤ P4, (37)

for any t ∈ [0, T ] and some positive constants P1, . . . , P4. Thus, the rest of the proof is

focused on getting (36)-(37).

Let us introduce the change of variable τ = T − t for t ∈ [0, T ] and the notation

(v1,v2, %)(x, τ) = (p1,q2, s)(x, T − τ), (h∗1,h
∗
2, c
∗)(x, τ) = (h1,h2, c)(x, T − τ).

Then, the adjoint system (18)-(34) can be rewritten as follows

∂τvi − div(Di(x)∇vi) = qi(x,vi, ρ; h∗i , c
∗,θi(x)), in Qi,T , i = 1, 2, (38)

∂τ% = ς(x,v1,v2, %; c∗,θ3(x)), in QT , (39)

(Di(x)∇vi) · ηi = 0, on Γi,T , i = 1, 2, (40)

vi(x, 0) = hi(x, T )− hobsi (x), in Ωi, i = 1, 2, (41)

%(x, 0) = c(x, T )− cobs(x), in Ω1 ∪ Ω2. (42)

Now, in order to prove the estimates of the form (36) for (p1,p2, s), we get the

corresponding estimates for (v1,v2, %).

Testing the equation (38) by vi, we have that∫
Ωi

(vi)τ · vi dx+

∫
Ωi

(D(x)vi) · vti dx =

∫
Ωi

qi(x,vi, s; h
∗
i , c
∗,θi(x)) · vi dx, (43)
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where vti denotes the transpose of vi. By the strict positivity of di,j, we have that

min

{
1

2
, inf

Ωi
di1, inf

Ωi
di2, inf

Ωi
di3

}[
d

dτ
‖vi(·, τ)‖2

L2(Ωi)
+ ‖∇vi(·, τ)‖2

L2(Ωi)

]
≤
∫

Ω1

(vi)τ · vi dx+

∫
Ωi

(D(x)vi) · vti dx. (44)

We observe that the integrands in the right hand side of (43) are homogeneous

polynomials of degree two in the components of vi with the coefficients are depending

on (h∗1,h
∗
2, c
∗) and θi. Indeed, for i = 1 we can rewrite the integrand as follows

q1(x,v1, s; h
∗
1, c
∗,θ1(x)) · v1

=

{[
σ11

ψ∗(ϕ∗ + ψ∗)

(H1)2
+ σ31c

∗
]

(v12 − v11) +
(
b−m

)
v11 − k

(
2ϕ∗v11 + ψ∗v12 + χ∗v13

)}
v11

+

{
σ11

ϕ∗(ϕ∗ + χ∗)

(H1)2
(v12 − v11) + (1− ω1λ1 + b)v11 −mv12 + ω1λ1(v13 − v12)

−k
(
ϕ∗v11 + 2ψ∗v12 + χ∗v13

)
+ σ13(1− c∗)%

}
v12

+

{
−σ11

ϕ∗ψ∗

(H1)2
(v12 − v11)− bv11 − k

(
ϕ∗v11 + ψ∗v12 + 2χ∗v13

)}
v13

= Υ1v
2
11 + Υ2v

2
12 + Υ3v

2
13 + Υ4v11v12 + Υ5v11v13 + Υ6v12v13 + Υ7v12%, (45)

with Υi the coefficients defined by

Υ1 = −
[
σ11

ψ∗(ϕ∗ + ψ∗)

(H1)2
+ σ31c

∗
]

+ b−m− 2kϕ∗,

Υ2 = σ11
ψ∗(ϕ∗ + χ∗)

(H1)2
−m− ω1λ1 − 2kψ∗, Υ3 = −2kχ∗,

Υ4 =

[
σ11

ψ∗(ϕ∗ + ψ∗)

(H1)2
+ σ31c

∗
]
− kψ∗v12 − σ11

ϕ∗(ϕ∗ + χ∗)

(H1)2
+ (1− ω1λ1 + b)− kϕ∗,

Υ5 = −kχ∗ + σ11
ϕ∗ψ∗

(H1)2
− b− kϕ∗, Υ6 = ω1λ1 − kχ∗ − σ11

ϕ∗ψ∗

(H1)2
− kψ∗,

Υ7 = σ13(1− c∗).

Similarly, for i = 2, we have that

q2(x,v2, s; h
∗
2, c
∗,θ2(x)) · v2

= −σ32c
∗v2

21 − ελ2v
2
22 + σ32c

∗v21v22 + ελ2v21v23 + σ32(1− c∗)%v22. (46)

Now, from (45) and (46), the Cauchy-Schwarz inequality gives the bound∫
Ω1

q1(x,p1, s; h
∗
1, c
∗,θ1(x)) · v1dx

≤
(
‖Υ1‖L∞(Ω1) +

1

2
‖Υ4‖L∞(Ω1) +

1

2
‖Υ5‖L∞(Ω1)

)
‖v11‖2

L2(Ω1)

+

(
‖Υ2‖L∞(Ω1) +

1

2
‖Υ4‖L∞(Ω1) +

1

2
‖Υ6‖L∞(Ω1) +

1

2
‖Υ7‖L∞(Ω1)

)
‖v12‖2

L2(Ω1)

+

(
‖Υ3‖L∞(Ω1) +

1

2
‖Υ5‖L∞(Ω1) +

1

2
‖Υ6‖L∞(Ω1)

)
‖v13‖2

L2(Ω1)
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+
1

2
‖Υ7‖L∞(Ω1)‖%‖2

L2(Ω1), (47)∫
Ω2

q2(x,p2, s; h
∗
2, c
∗,θ2(x)) · v2dx

≤
(

3

2
‖σ32c

∗‖L∞(Ω2) +
ελ2

2

)
‖v21‖2

L2(Ω2) + ελ2‖v23‖2
L2(Ω2)

+ ‖σ32(1− c∗)‖L∞(Ω2)‖%‖2
L2(Ω2). (48)

Then adding the equations (43) for i = 1, 2; applying the bounds (44), (47), and (48);

and using the facts that θi is bounded by definition of Uad and (h∗1,h
∗
2, c
∗) is bounded

by Theorem 2.1, we get that there exists a positive constant Ξ1 such that

d

dτ

[
‖v1(·, τ)‖2

L2(Ω1) + ‖v2(·, τ)‖2
L2(Ω2)

]
+ ‖∇v1(·, τ)‖2

L2(Ω1) + ‖∇v2(·, τ)‖2
L2(Ω2)

≤ Ξ1

[
‖v1(·, τ)‖2

L2(Ω1) + ‖v1(·, τ)‖2
L2(Ω1) + ‖%‖2

L2(Ω1∪Ω2)

]
, (49)

for any τ ∈ [0, T ]. Similarly, we can test the equation (39) by % and obtain the following

estimate

d

dτ
‖%(·, τ)‖2

L2(Ω2) ≤ Ξ2

[
‖v1(·, τ)‖2

L2(Ω1)‖v2(·, τ)‖2
L2(Ω2) + ‖%(·, τ)‖2

L2(Ω1∪Ω2)

]
. (50)

for any τ ∈ [0, T ] and some positive constant Ξ2. Now, summing the inequalities (49)

and (50), we deduce that

d

dτ
‖(v1,v2, s)(·, τ)‖2

L 2 + ‖∇(v1,v2)(·, τ)‖2
L2(Ω1)×L2(Ω2) ≤ C‖(v1,v2, s)(·, τ)‖2

L 2 , (51)

for any τ ∈ [0, T ] and with C = max{Ξ1,Ξ2}. By the Gronwall inequality we get

‖(v1,v2, s)(·, τ)‖2
L 2 ≤ eCT‖(v1,v2, s)(·, 0)‖2

L 2 , which implies the first estimate in (36)

with P1 = eCT‖(w,v, s)(·, 0)‖2
L 2 . Moreover, the L 2-estimate used to bound the right

hand side of (51), proves the second inequality in (36) with P2 = CP1.

On the other hand, using the fact that∫
Ωi

(vi)τ · div(Di(x)∇vi) dx

= −
∫

Ωi

(
Di(x)∇[(vi)τ ]

)
· ∇vi dx +

∫
∂Ωi

(vi)τ ·
([

Di(x)∇(vi)
]
ηti

)
dS

≤ −1

2
inf
x∈Ωi

{
di1(x), di2(x), di3(x)

} d

dτ
‖∇vi(·, τ)‖2

L2(Ωi)
,

multiplying (38) by div(Di(x)∇vi); adding the results for i = 1, 2; and applying the

Cauchy-Schwarz inequality with ε, we deduce that

2∑
i=1

d

dτ

{
‖∇vi(·, τ)‖2

L2(Ωi)
+ ‖div(Di(x)∇vi)(·, τ)‖2

L2(Ωi)

}
≤ C∗

[
ε

2∑
i=1

‖vi(·, τ)‖2
L2(Ωi)

+ ε‖%(·, τ)‖2
L2(Ω1∪Ω2) +

1

4ε

2∑
i=1

‖∆w(·, τ)‖2
L2(Ωi)

]
, (52)
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with C∗ a positive constant and any ε > 0. Now, selecting ε > C∗/4 and using the

L 2-estimate, we get

2∑
i=1

‖div(Di(x)∇vi)(·, τ)‖2
L2(Ωi)

≤ 4ε2 max{C1, C2}
4ε−max{C1, C2}

P1.

Thus the first inequality in (37) is proved.

From (36) and the first estimate in (37), we have that the norm of (p1,p2) is

bounded in the norm of [H2(Ω1)]3 × [H2(Ω2)]3. Then, by the standard embedding

theorem ofH2 ⊂ L∞, we easily deduce that (p1,p2) is bounded in [L∞(Ω1)]3×[L∞(Ω2)]3.

Moreover, using the equation (39) and the fact that (p1,p2) are bounded we deduce that

% is bounded in L∞(Ω1 ∪ Ω2). Thus, we have that the second inequality in (37) is also

satisfied and we conclude the proof of theorem.

3.3. Proof of Theorem 2.4

Let us select arbitrarily θ̃ ∈ Uad and introduce the notation

θε = (1− ε)θ + εθ̃ ∈ Uad,

Jε = J(θε) =
1

2
‖(hε1,hε2, cε)(·, T )− (hobs1 ,hobs2 , cobs)‖2

L 2 +
Γ

2
‖∇θε‖2

L2

where (hε1,h
ε
2, c

ε) is the solution of (18)-(23) with θε instead of θ. Now, using the

hypothesis that θ̄ is an optimal solution of (29) and taking the Fréchet derivative of Jε,

we have that

dJε
dε

∣∣∣
ε=0

=
2∑
i=1

∫
Ωi

(
hεi(x, T )− hobsi (x)

)
· ∂hεi
∂ε

(x, T )
∣∣∣
ε=0

dx

+

∫
Ω1∪Ω2

(
cε(x, T )− cobs(x)

)
· ∂c

ε

∂ε
(x, T )

∣∣∣
ε=0

dx+ Γ

∫
Ω1∪Ω2

∇θ̄ · ∇
(
θ̂ − θ̄

)
dx ≥ 0,(53)

where ∂εh
ε
1 and ∂εh

ε
2 for ε = 0 are calculated by analyzing the sensitivities of solutions

for (18)-(23) with respect to perturbations of θ.

From the definition of (hε1,h
ε
2, c

ε) and (h̄1, h̄2, c̄), we have that

∂th
ε
i − div(Di(x)∇hεi) = fi(x,h

ε
i , c

ε;θεi(x)), in Qi,T , i = 1, 2, (54)

∂tc
ε = g(x,hε1,h

ε
2, c

ε;θε3(x)), in QT , (55)

(Di(x)∇hεi) · ηi = 0, on Γi,T , i = 1, 2, (56)

hε1(x, 0) = (ϕ0, ψ0, χ0)(x) in Ω1, (57)

hε2(x, 0) = (u0, v0, w0)(x) in Ω2, (58)

cε(x, 0) = c0(x) in Ω1 ∪ Ω2, (59)

and

∂thi − div(Di(x)∇hi) = fi(x,hi, c;θ
ε
i(x)), in Qi,T , i = 1, 2, (60)

∂tc = g(x,h1,h2, c;θ3(x)), in QT , (61)

(Di(x)∇hi) · ηi = 0, on Γi,T , i = 1, 2, (62)
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h1(x, 0) = (ϕ0, ψ0, χ0)(x) in Ω1, (63)

h2(x, 0) = (u0, v0, w0)(x) in Ω2, (64)

c(x, 0) = c0(x) in Ω1 ∪ Ω2. (65)

Subtracting the system (60)-(65) from (54)-(59), dividing by ε and using the notation

(z1, z2, ξ) = ε−1
(
hε1 − h̄1,h

ε
2 − h̄2, c

ε − c̄
)
, we deduce the system

∂tzi − div(Di(x)∇zi) = Fi(x, zi, ξ; hi, c,θi(x)), in Qi,T , i = 1, 2, (66)

∂tξ = κ(x, z1, z2, ξ; h1,h2, c,θ3(x)), in QT , (67)

(Di(x)∇zi) · ηi = 0, on Γi,T , i = 1, 2, (68)

z1(x, 0) = 0, in Ω1, (69)

z2(x, 0) = 0, in Ω2, (70)

ξ(x, 0) = 0, in Ω1 ∪ Ω2, (71)

where

F11 = −
(
σ̂11(x)− σ11(x)

)ϕψ
H1

− σ11(x)

{
ψ(ψ + χ)

(H1)2
z11 +

ϕ(ϕ+ χ)

(H1)2
z12 −

ϕψ

(H1)2
z13

}
−
(
σ̂31(x)− σ31(x)

)
cϕ− σ31(x)

(
cz12 + ϕξ

)
+ (1− w1)λ1z12 +

(
b̂(x)− b(x)

)
H1

+ b̂(x)(z11 + z12 + z13)−
(
m̂(x)−m(x)

)
ϕ−m(x)z11 −

(
k̂(x)− k(x)

)
H1ϕ

− k(x)ϕ
(

(2ϕ+ ψ)z11 + ϕz12 + ϕz13

)
,

F12 =
(
σ̂11(x)− σ11(x)

)ϕψ
H1

+ σ11(x)

{
ψ(ψ + χ)

(H1)2
z11 +

ϕ(ϕ+ χ)

(H1)2
z12 −

ϕψ

(H1)2
z13

}
+
(
σ̂31(x)− σ31(x)

)
cϕ+ σ31(x)

(
cz11 + ϕξ

)
−
(
m̂(x)−m(x)

)
ψ

−m(x)z2 −
(
k̂(x)− k(x)

)
H1ψ − k(x)ψ

(
z11 + 2z12 + z13

)
,

F13 = w1λ1z12 −
(
m̂(x)−m(x)

)
χ−m(x)z13 −

(
k̂(x)− k(x)

)
H1χ

− k(x)χ
(
z12 + z12 + 2z13

)
,

F21 = −
(
σ̂32(x)− σ32(x)

)
cu− σ32(x)

(
cz21 + uξ

)
,

F22 =
(
σ̂32(x)− σ32(x)

)
cu+ σ32(x)

(
cz21 + uξ

)
− ελ2z23,

F23 = ελ2z23,

κ =
{(
σ̂13(x)− σ13(x)

)
ϕ̂+

(
σ̂23(x)− σ23(x)

)
v̂
}

(1− c)−
(
σ13(x)ϕ̂+ σ23(x)v̂

)
ξ

+
(
σ13(x) + v̂

)
(1− c)z22 −

[(
δ̂(x)− δ(x)

)
c+ δ(x)ξ

]
.

On the other hand, from (30)-(34) and (66)-(71), we deduce the following identities

∂

∂t
(p1 · z1) =

(
p1 · div(D1(x)∇z1)− z1 ·∆div(D1(x)∇p1)

)
+

[
(σ̂11 − σ11)

ϕ ψ

H1

+ (σ̂31 − σ31)

]
(p11 − p12) + bH1p11 − (m+ kH1)h1 · p1,
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∂

∂t
(p2 · z2) =

(
p2 · div(D2(x)∇z1)− z2 ·∆div(D2(x)∇p2)

)
+ (σ̂32 − σ32)(p21 − p22),

∂

∂t
(sξ) =

(
σ̂13 − σ13

)
(1− c)ϕ̃s+

(
σ̂23 − σ23

)
(1− c)ṽ − (δ̂ − δ)c

which implies that∫ ∫
Q1,T

∂

∂t
(p1 · z1) dxdt+

∫ ∫
Q2,T

∂

∂t
(p2 · z2) dxdt+

∫ ∫
QT

∂

∂t
(sξ) dxdt

=

∫ ∫
Q1,T

{[
(σ̂11 − σ11)

ϕ ψ

H1

+ (σ̂31 − σ31)

]
(p11 − p12) + bH1p11 − (m+ kH1)h1 · p1

}
dxdt

+

∫ ∫
Q2,T

(σ̂32 − σ32)(p21 − p22)dxdt

+

∫ ∫
QT

{(
σ̂13 − σ13

)
(1− c)ϕ̃s+

(
σ̂23 − σ23

)
(1− c)ṽ − (δ̂ − δ)c

}
dxdt, (72)

by integration on Q1,T , Q2,T and QT , respectively. Moreover, we notice that∫ ∫
Q1,T

∂

∂t
(p1 · z1) dxdt+

∫ ∫
Q2,T

∂

∂t
(p2 · z2) dxdt+

∫ ∫
QT

∂

∂t
(sξ) dxdt

=
2∑
i=1

∫
Ωi

(hi(x, T )− hobsi (x)) · zi(x, T )dx+

∫
Ω1∪Ω2

(c(x, T )− cobs(x))ξ(x, T )dx. (73)

Then, from (72) and (73) we deduce that∫ ∫
Q1,T

{[
(σ̂11 − σ11)

ϕ ψ

H1

+ (σ̂31 − σ31)

]
(p11 − p12) + bH1p11 − (m+ kH1)h1 · p1

}
dxdt

+

∫ ∫
Q2,T

(σ̂32 − σ32)(p21 − p22)dxdt

+

∫ ∫
QT

{(
σ̂13 − σ13

)
(1− c)ϕ̃s+

(
σ̂23 − σ23

)
(1− c)ṽ − (δ̂ − δ)c

}
dxdt

=
2∑
i=1

∫
Ωi

(hi(x, T )− hobsi (x)) · zi(x, T )dx+

∫
Ω1∪Ω2

(c(x, T )− cobs(x))ξ(x, T )dx. (74)

We can conclude the proof of (35) by replacing (74) in (53).

3.4. Proof of Theorem 2.5

3.4.1. Proof of part (i). Let us consider that (h1,h2, s) and (ĥ1, ĥ2, ŝ) are solutions to

the system (18)-(23) with coefficients θ and θ̂, respectively. Then, to prove the part (i)

of the theorem is enough to get that there exist the positive constant Ψ1 such that the

estimates ∥∥∥((ĥ1, ĥ2, ŝ)− (ĥ1, ĥ2, ŝ)
)

(·, t)
∥∥∥2

L 2
≤ Ψ1

∥∥∥θ̂ − θ
∥∥∥2

L2
, (75)

holds for any t ∈ [0, T ]. Indeed, let us consider the notation δhi = ĥi − hi, δs = ŝ− s,
and δθ = θ̂ − θ. Then, by the definition of (ĥ1, ĥ2, ŝ) and (h1,h2, s), we have that
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(δh1, δh2, δs) is the solution of the system

∂t(δhi)− div(Di(x)∇(δhi)) = δfi(x,hi, c;θi(x)), in Qi,T , i = 1, 2, (76)

∂t(δc) = δg(x,h1,h2, c;θ3(x)), in QT , (77)

(Di(x)∇hi) · ηi = 0, on Γi,T , i = 1, 2, (78)

δh1(x, 0) = 0 in Ω1, (79)

δh2(x, 0) = 0 in Ω2, (80)

δc(x, 0) = 0 in Ω1 ∪ Ω2, (81)

where

δf11 = −σ̂11

[
ϕ̂ψ̂

Ĥ1

− ϕψ

H1

]
− δσ11

ϕψ

H1

− σ̂31(ĉϕ̂− cϕ)− δσ31cϕ+ (1− ω1)λ1

(
ψ̂ − ψ

)
+ b̂(Ĥ1 −H1) + δbH1 −

(
(m̂+ k̂Ĥ1)ϕ̂− (m+ kH1)ϕ

)
− (δm+ δkH1)ϕ,

δf12 = σ̂11

[
ϕ̂ψ̂

Ĥ1

− ϕψ

H1

]
+ δσ11

ϕψ

H1

+ σ̂31(ĉϕ̂− cϕ) + δσ31cϕ− ω1λ1

(
ψ̂ − ψ

)
−
(

(m̂+ k̂Ĥ1)ψ̂ − (m+ kH1)ψ
)
− (δm+ δkH1)ψ,

δf13 = ω1λ1(ψ̂ − ψ)−
(

(m̂+ k̂Ĥ1)χ̂− (m+ kH1)χ
)
− (δm+ δkH1)χ,

δf21 = −σ̂32

(
ĉû− cu

)
− δσ32cu,

δf22 = −σ̂32

(
ĉû− cu

)
+ δσ32cu− ελ2(v̂ − v), δf23 = 0,

δg = σ̂13

(
(1− ĉ)ˆ̃ϕ−)(1− c)ϕ̃

)
+ δσ13(1− c)ϕ̃+ σ̂23

(
(1− ĉ)ˆ̃v − (1− c)ṽ

)
+ δσ23(1− c)ṽ − δ̂(ĉ− c)− δc.

Moreover, we observe that the following identities

ϕ̂ψ̂

Ĥ1

− ϕψ

H1

=
(ϕ̂+ ψ̂)ψ̂

Ĥ1H1

(ϕ̂− ϕ) +
(ϕ+ ψ̂)ϕ̂

Ĥ1H1

(ψ̂ − ψ)− ϕψ̂

Ĥ1H1

(χ̂− χ),

(ĉϕ̂− cϕ) = ϕ̂(ĉ− c) + c(ϕ̂− ϕ),

Ĥ1 −H1 = (ϕ̂− ϕ) + (ψ̂ − ψ) + (χ̂− χ),

(m̂+ k̂Ĥ1)ϕ̂− (m+ kH1)ϕ =
[
m̂+ k̂(Ĥ1 + ϕ)

]
(ϕ̂− ϕ)

+ (k̂ϕ)(ψ̂ − ψ) + (k̂ϕ)(χ̂− χ) +H1ϕ(k̂ − k),

ĉû− cu = ĉ(û− u) + u(ĉ− c),

are satisfied. Now, in order to prove (75), we test the equations (76) and (77) by δhi
and δc, respectively. Then, adding the results and applying the Cauchy inequality, we

deduce the following inequality

1

2

d

dt
‖(δh1, δh2, δc)(·, t)‖2

L 2 +
2∑
i=1

‖
√
Di∇(δhi)(·, t)‖2

L2(Ωi)

≤ C
(
‖(δh1, δh2, δc)(·, t)‖2

L 2 + ‖δΘ(·, t)‖2
L2

)
,
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with
√
Di = diag(

√
di1,
√
di2,
√
di3) and C a positive constant. Then, applying the

Gronwall inequality, we deduce that

‖(δh1, δh2, δc)(·, t)‖2
L 2 ≤ exp(CT )‖(δh1, δh2, δc)(·, 0)‖2

L 2 + CT‖δΘ(·, t)‖2
L2 ,

which implies (75) by using (79)-(81).

3.4.2. Proof of part (ii). Let us consider the notation (h1,h2, s), (ĥ1, ĥ2, ŝ), δhi, δs, and

δθ introduced in the proof of part (i). Moreover, we consider the notation (p1,p2, s)

and (p̂1, p̂2, ŝ) to the solution of systems of the form (30)-(34) with coefficients and

observations θ,hobs1 ,hobs2 , sobs and θ̂, ĥobs1 , ĥobs2 , ŝobs, respectively. Then, the proof of the

part (ii) of Theorem 2.5 is reduced to get that there exist two positive constant Ψ2,Ψ3

such that the estimate

‖
(

(p̂1, p̂2, ŝ)− (p1,p2, s)
)

(·, t)‖2
L 2

≤ Ψ2‖θ̂ − θ‖2
L2 + Ψ3‖(p̂obs1 , p̂obs2 , ŝobs)− (pobs1 ,pobs2 , sobs)

)
‖2

L 2 , (82)

holds for any t ∈ [0, T ]. Indeed, let us consider the notation δpi = p̂i−pi and δs = ŝ−s.
Then, to prove the inequality (82) we proceed in a similar way to the proof of the part

(i), by performing the following three steps, which algebraic details are omitted: (a) we

consider the definition of (p̂1, p̂2, ŝ) and (p1,p2, s) and deduce a system for (δp1, δp2, δs).

In this new system we rewritten the reactive terms as linear combination of δpi, δs

and δθ; (b) we test the the new system by δp1, δp2 and δs to get a estimate of the

following type

− 1

2

d

dt
‖
(
δp1, δp2, δs

)
(·, t)‖2

L 2 +
2∑
i=1

‖
√

Di∇δpi(·, t)‖2
L2(Ωi)

≤ Ẽ1‖
(
δp1, δp2, δs

)
(·, t)‖2

L 2 + Ẽ2‖δθ‖2
L2 ,

for some positive constants Ẽ1 and Ẽ2; (c) applying the estimate (75), rearranging some

terms; integrating on [t, T ]; and using the end conditions; we can deduce (82).

3.5. Proof of Theorem 2.6

We prove the uniqueness by using adequately the stability result of Theorem 2.5 and

the necessary optimality condition of Theorem 2.4. To be more precise, let us consider

that the sets of functions {h1,h2, c,p1,p2, s} and {ĥ1, ĥ2, ĉ, p̂1, p̂2, ŝ} are solutions to the

systems (18)-(23) and (30)-(34) with the data {θ,hobs1 ,hobs2 , cobs} and {θ̂, ĥobs1 , ĥobs2 , ĉobs},
respectively. From Theorem 2.4 and the hypothesis that θ and θ̂ are solutions of (29)

we have that the inequalities∫ ∫
Q1,T

{[
(σ11 − σ11)

ϕ ψ

H1

+ (σ31 − σ31)

]
(p11 − p12) + bH1p11 − (m+ kH1)h1 · p1

}
dxdt

+

∫ ∫
Q2,T

(σ32 − σ32)(p21 − p22)dxdt+

∫ ∫
QT

{(
σ13 − σ13

)
(1− c)ϕ̃s+

(
σ23 − σ23

)
(1− c)ṽ
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− (δ − δ)c
}
sdxdt+ δ

∫
Ω1

∇θ1 · ∇(θ1 − θ1)dx+ δ

∫
Ω2

∇θ2 · ∇(θ2 − θ2)dx

+ δ

∫
Ω1∪Ω2

∇θ3 · ∇(θ3 − θ3)dx
]
≥ 0, ∀θ ∈ Uad, (83)

and∫ ∫
Q1,T

{[
(σ

11
− σ̂11)

ϕ̂ ψ̂

Ĥ1

+ (σ
31
− σ̂31)

]
(p̂11 − p̂12) + b̂Ĥ1p̂11 − (m̂+ k̂Ĥ1)ĥ1 · p̂1

}
dxdt

+

∫ ∫
Q2,T

(σ
32
− σ̂32)(p̂21 − p̂22)dxdt+

∫ ∫
QT

{(
σ

13
− σ̂13

)
(1− ĉ)ϕ̃s+

(
σ

23
− σ̂23

)
(1− ĉ)˜̂v

− (δ − δ)ĉ
}
sdxdt+ δ

∫
Ω1

∇θ1 · ∇(θ
1
− θ̂1)dx+ δ

∫
Ω2

∇θ2 · ∇(θ
2
− θ̂2)dx

+ δ

∫
Ω1∪Ω2

∇θ3 · ∇(θ
3
− θ̂3)dx

]
≥ 0, ∀θ ∈ Uad, (84)

are satisfied, respectively. In particular, selecting θ = θ̂ in (83) and θ = θ in (84), adding

both inequalities, rearranging some terms, applying the Cauchy-Schwarz inequality, and

Theorem 2.5 we get

Γ‖∇(θ̂ − θ)‖2
L2

≤ C1‖θ̂ − θ‖2
L2 + C2‖(ĥ1, ĥ2, ĉ)− (h1,h2, c)‖2

L 2 + C3‖(p̂1, p̂2, ŝ)− (p1,p2, s)‖2
L 2

≤ (C1 + C2 + C3)‖θ̂ − θ‖2
L2 + C3‖(ĥobs1 , ĥobs2 , ĉobs)− (hobs1 ,hobs2 , cobs)‖2

L 2 , (85)

for some positive constants C1, C2, C3. Now, considering that θ̂,θ ∈ Uc, by the

generalized Poincaré inequality, we have that

‖θ̂ − θ‖L 2 ≤ Cpoi

(
‖∇(θ̂ − θ)‖L 2 + ‖θ̂ − θ‖L 1

)
= Cpoi‖∇(θ̂ − θ)‖L 2 .

Then, in (85) we have that(
Γ− (C1 + C2 + C3)Cpoi

)
‖∇(θ̂ − θ)‖2

L2 ≤ C3‖(ĥobs1 , ĥobs2 , ĉobs)− (hobs1 ,hobs2 , cobs)‖2
L 2 .

Thus, selecting Γ∗ = (C1 + C2 + C3)Cpoi we deduce the uniqueness up an additive

constant.

Acknowledgment

AC and FH thanks the support of the research projects DIUBB GI 172409/C, DIUBB

183309 4/R, FAPEI at Universidad del B́ıo-B́ıo (Chile), and Fundacion Carolina (Spain)

through the program “Estancias Cortas Postdoctorales 2018”. MS thanks to Fondecyt

1180868 and CONICYT-Chile through the project AFB170001 of the PIA Program:

Concurso Apoyo a Centros Cient́ıficos y Tecnológicos de Excelencia con Financiamiento

Basal.

References

[1] R. A. Adams. Sobolev Spaces. Academic Press, New York-London, 1975.



Identification of coefficients in an indirectly transmitted diseases model 20

[2] L.J.S. Allen, B. M. Bolker, Y. Lou, and A. L. Nevai. Asymptotic profiles of the steady states for an

SIS epidemic reaction-diffusion model. Discrete Contin. Dyn. Syst. 21(1):1–20, 2008.

[3] V. Anaya, M. Bendahmane, M. Langlais, M. Sepúlveda. A convergent finite volume for a model
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for a strongly degenerate convection-diffusion problem modelling centrifugation of flocculated

suspensions. Appl. Numer. Math. 52(4):311–337, 2005.

[13] F. Brauer, and C. Castillo-Chavez. Mathematical Models in Population Biology and Epidemiology.

New York: Springer-Verlag, 2001.

[14] S. Busenberg and K. C. Cooke. Vertically Transmitted Diseases, Biomathematics 23. Springer-

Verlag, New York, 1993.

[15] V. Capasso.Mathematical structures of epidemic systems, Lecture Notes in Biomathematics 97.

Springer-Verlag, Berlin, Haidelberg, 1993.

[16] Q. Chen and J. J. Liu. Solving an inverse parabolic problem by optimization from final

measurement data. J. Comput. Appl. Math. 193(1):183–203, 2006.
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