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1 Introduction

1.1 Scope

We are interested in the analysis and numerical approximation of the flow of a viscous
fluid through a porous medium, where it is assumed that the fluid carries a number m
of components that are adsorbed by the porous medium. While viscous flow in porous
media with adsorption arises in several applications including polymer flooding as part of
the process of enhanced oil recovery in petroleum engineering [17], chromatography [34],
or water decontamination and removal of pollutants such as heavy metals or radioactive
ions [38], the particular formulation in the present work is motivated by a model of a soil-
based water filtering device designed to remove contaminants from water by adsorption [31].

The governing equations for this process can be formulated as follows. We assume that
the porous medium is represented by a simply connected spatial domain ⌦ ⇢ R3 whose
boundary @⌦ is split into three disjoints parts � in, �wall and � out representing the inlet,
walls, and outlet boundaries. For all times 0 < t  T , we consider the Navier-Stokes-
Brinkman equations written in terms of the volume average flow velocity u(t) : ⌦ ! R3

and the fluid pressure p(t) : ⌦ ! R; as well as the balances for contaminant concentration
possessing sink terms that depend on the rate of degradation of the adsorption properties of
each material, described in terms of the vector of concentrations of m � 2 distinct types of
contaminants ~✓(t) = (✓

1

(t), . . . , ✓m(t)) : ⌦ ! Rm and of the adsorption capacity relative
to each contaminant ~s(t) = (s

1

(t), . . . , sm(t)) : ⌦ ! Rm. The coupled set of governing
equations (three partial di↵erential equations (PDEs) and one ordinary di↵erential equation
(ODE)) adopts the form

⇢
f

(@tu+ u ·ru) +K�1⌫u� div(⌫"(u)� pI) = F (~✓), (1.1a)

divu = 0, (1.1b)

�@t~✓ � div(Dr~✓) + (u ·r)~✓ = �⇢
b

@t~s, (1.1c)

@t~s = G(~s, ~✓) in ⌦ ⇥ (0, T ], (1.1d)

where "(u) = 1

2

(ru+ruT ) is the strain rate tensor, D = diag(D
1

(x), . . . , Dm(x)) denotes
a space-dependent and positive definite matrix containing di↵usivity coe�cients, ⌫ > 0 is
the constant fluid viscosity, ⇢

f

, ⇢
b

are the constant densities of the fluid phases and of the
bulk filter medium, �(x) is the porosity of the soil constituting the porous medium, and
K(x) > 0 is the permeability tensor (assumed symmetric and uniformly positive definite).
The source and reaction terms are

F (~✓) = g

mX

i=1

✓i; Gi(si, ✓i) = k+

i (x)
�
smax

i � si
�
✓i, i = 1, . . . ,m, (1.2)

where G = (G
1

, . . . , Gm)T, g is the gravity acceleration, smax

i is a constant representing
the maximum amount of contaminant i that can be absorbed at a given point, and k+

i (x)
is a spatially-dependent modulation coe�cient accounting for the forward adsorption rate
related to the loss of contaminant i due to the filtering process (boundary conditions and
further assumptions will be specified in later parts of the paper).

Thus, the flow of the incompressible fluid through ⌦ is modelled by the Navier-Stokes-
Brinkman equation (1.1a) and the continuity equation (1.1b), which express the conser-

vation of momentum and mass respectively. Equation (1.1c) describes the evolution of ~✓
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within ⌦, under the e↵ects of advection and di↵usion, in addition to adsorption by the filter
media. Given the typical operating conditions within the filter, we would expect the e↵ects
of advection to dominate those from di↵usion, as noted in [31]. The sink term �⇢

b

@t~s in
(1.1c) accounts for the net and local removal of each contaminant type due to the filtration
process. This adsorption process is described by a multicomponent Langmuir-type model,
as given by (1.1d) and (1.2). Under this model, it is assumed that each site has a maximum
capacity for each individual contaminant, which we take to be uniform across the two layers
of filter media. In this way, the adsorption is noncompetitive and the saturation of a site by
one contaminant does not prevent adsorption of the other contaminants at the same site.
It is also assumed that the adsorption process is irreversible for all contaminants and all
filter layers, so that once adsorbed the contaminants remain attached to the filter media
with no desorption back into the fluid. As described previously, for each contaminant we
ascribe a spatially dependent adsorption rate k+

i (x), so (1.2) stipulates that the rate of
removal of a contaminant at a site is proportional to the concentration of the contaminant
present in the fluid at the site, the remaining capacity of the filter media at the site and
the adsorption rate.

While the modelling of a filter calls for a three-dimensional domain, in practice most
filter designs display rotational symmetry around their central axis, with the flow also ex-
pected to exhibit such symmetry. This property motivates an axisymmetric formulation of
the problem, allowing for the reduction from three to two spatial dimensions, which evi-
dently reduces the computational cost associated with its solution. Thus, the model which is
eventually analysed herein is a reformulation of (1.1) along with suitable initial and bound-
ary conditions as a meridional axisymmetric PDE-ODE initial-boundary value problem. It
is the purpose of this paper to advance a second-order divergence-conforming discretisation
for this problem. Specifically, we introduce an axisymmetric H(div)-conforming method
based on two-dimensional Brezzi-Douglas-Marini (BDM) spaces [14] combined with an im-
plicit, second-order backward di↵erentiation formula (BDF2) for time discretization. Based
on discrete stability properties, we prove that the discrete problem has at least one solu-
tion. At the core of this paper is the derivation of an optimal a priori error estimate for
the numerical scheme, where the main di�culty is the fully discrete analysis verifying that
each of the terms is bounded optimally in the corresponding weighted spaces. Numerical
examples illustrate the model and reconfirm the theoretical order of accuracy.

1.2 Related work

To put the present work into the proper perspective, we mention that several studies
treat the axisymmetric formulation of the Stokes and Navier-Stokes flows, including the
discretisation employing spectral, mortar, and stabilized finite elements (see e.g. [7,10,11,
13,23], and references cited in these works). More recently, mixed formulations of Brinkman
flow including the numerical analysis of finite element (FE) approximations were studied.
Anaya et al. [4] presented an augmented finite element approximation based on an extension
to the vorticity-based Stokes problem was. A related recent model in [5] incorporates a
stream function and vorticity formulation of axisymmetric Brinkman flow, for which a
conforming mixed FE approximation is employed.

Papers concerning the coupling of flow and transport problems in a stationary and
non-stationary setting include [19, 29, 39]. In [19] the authors present a FE method with
projection-based stabilization for the double-di↵usive convection in Darcy-Brinkman flow,
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and a FE error analysis and a convergence analysis are performed for the time-dependent
case.

A time dependent Boussinesq model with nonlinear viscosity depending on the tem-
perature is proposed in [2]. The authors analyze first and second order numerical schemes
based on finite element methods and derive an optimal a priori error estimate for each
numerical scheme. A related non-stationary phase-change Boussinesq model is presented
in [39], where a second order finite element method for the primal formulation of the prob-
lem in terms of velocity, temperature, and pressure is constructed, and conditions for its
stability are provided.

The coupling of advection-di↵usion-reaction systems with Brinkman equations in their
velocity-vorticity-pressure formulation, is studied in [29]. The equations are discretised
in space using mixed FE methods on unstructured meshes, whereas the time integration
hinges on an operator splitting strategy that uses the di↵erences in scales between the
reaction, advection, and di↵usion processes. The authors compare several coupling strate-
gies in terms of memory usage, iteration count, speed of calculation, and dynamics of the
energy norm.

With respect to axisymmetric formulations, we mention that the numerical analysis
of the axisymmetric Darcy and Stokes-Darcy flow using Raviar-Thomas (RT) and Brezzi-
Douglas-Marini (BDM) finite elements was presented in [22,23]. In [22], the authors estab-
lished the stability of the RT and BDM approximations for an axisymmetric Darcy flow
problem by extending the Stenberg criteria, and they also derive a priori error estimates. A
similar problem, addressing Brinkman flows coupled with a first-order transport-adsorption
PDE, is approximated numerically in [17] by an H(div)-conforming scheme in combination
with DG method specifically tailored for discontinuous fluxes.

Other contributions to the design of numerical methods for axisymmetric formulations
of coupled flow and transport problems include [3,15]. Furthermore, in [16] a semi-discrete
discontinuous finite volume element (FVE) scheme is proposed and the unique solvability
of both the nonlinear continuous problem and the semi-discrete counterpart is discussed.
An FVE method is also proposed in [15] to discretise a Stokes equation for flow coupled
with a parabolic equation modelling sedimentation. The method is based on a stabilized
discontinuous Galerkin formulation for the concentration field, and a multiscale stabilized
pair of P

1

-P
1

elements for velocity and pressure, respectively. A mixed variational formu-
lation of a Darcy-Forchheimer flow coupled with a energy equation is semi-discretised in [3]
using Raviart-Thomas elements for fluxes and piecewise constant elements for the pressure,
a posteriori error estimates are also established.

The technological application behind the water filter model goes back to the observation
that it is possible to remove arsenic from water by passing it through iron-rich laterite
soil [41,42]. The arsenic is removed through an adsorption process, which may be enhanced
by chemically treating the laterite to increase its porosity and surface area, improving the
adsorption e�ciency [43]. Clearly, the formulation of accurate mathematical models of
these filters, in addition to their e�cient computational solution, would greatly aid in the
development of improved filters and guidelines for their safe operation. The development
and analysis of such a model forms the basis of the work [31], where the authors examined
the removal of a single contaminant (arsenic; case m = 1 in our notation) in a cylindrical
filter of uniform media. The authors utilised a Darcy-Brinkman equation, coupled with
an advection-di↵usion-adsorption equation to model the flow of the contaminated water
through the filter and the removal of the arsenic through adsorption. In practice, however,
there are likely m > 1 contaminants present, which calls for a filter consisting of multiple
(up to m) layers in order to allow for their removal. In this work we attempt to study the
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filtration process in a soil-based water filter consisting of two distinct layers of di↵ering
media, in the presence of multiple contaminant species.

Problems of a similar nature abound in the literature. For example, [25] considers the
numerical solution, via a finite volume method, of a double di↵usive problem within a
porous medium. The problem in question concerns the flow of a fluid within the porous
medium, and the transport within that fluid of both heat and some particulate species (or
secondary fluid constituent). The paper [35] considers a similar double di↵usive problem,
however, much like our proposed layered filter, the authors allow for the possibility of het-
erogeneous stratified porous media. While many of the studies concerning double di↵usive
problems consider entirely closed domains filled with porous media, a large number of ap-
plication cases, such as our filter, feature partial enclosures with openings or infiltrations.
The article [36] introduces such a feature, with the addition of ‘free ports’ to their model
domain. Considering other potential variants, the authors of [40] extend the usual double
di↵usive problem by a first-order reaction process between the di↵using species and the
fluid. This reaction process necessitates the addition of a sink term to the equation gov-
erning the species concentration that plays a role similar to that on the right-hand side
of (1.1c).

1.3 Outline of the paper

The remainder of this paper is organized as follows. In Section 2 we introduce the model
problem and state some preliminaries for its analysis, starting with a description of the
initial and boundary conditions for (1.1) that correspond to the filter model (Section 2.1).
Next, in Section 2.2, we reformulate (1.1) and the corresponding initial and boundary
conditions in meridional axisymmetric form, which under suitable assumptions leads to
model in two (namely, radial and vertical) space dimensions. We provide in Section 2.3
some preliminaries on functional spaces associated with radially symmetric functions. The
weak (variational) formulation of the axisymmetric problem is stated in Section 2.4. Fur-
ther assumptions on the model coe�cients, as well as a number of inequalities related
to the bilinear and trilinear forms involved in the weak formulation, are stated in Sec-
tion 2.5. Section 3 outlines the well-posedness analysis (proof of existence and uniqueness
of a weak solution) of the axisymmetric problem derived in Section 2.4. Section 4 is devoted
to the description of the spatio-temporal discretisation of the axisymmetric model, starting
by Section 4.1, where we introduce the basic triangulation of the computational domain
and some notation. We then proceed to specify, in Section 4.2, the axisymmetric H(div)-
conforming method, where we first derive a semi-discrete (continuous in time) Galerkin
formulation for the model problem, based on two-dimensional BDM spaces adapted to the
axisymmtric setting, and then pass to a fully discrete scheme by applying a second-order
time discretization through an implicit backward di↵erentiation formula (BDF2). Next,
in Section 4.3, we establish discrete stability properties of the bilinear and trilinear forms
involved in the method. These properties allow us to prove (in Section 4.4) the existence of
a discrete solution. Then, in Section 5, we prove an optimal a priori error estimate for the
numerical scheme, where we verify that each of the terms is bounded optimally in the cor-
responding weighted space. Finally, in Section 6 we present numerical examples generated
by the method introduced. Example 1 (Section 6.1) is an accuracy test with a manufac-
tured known exact solution of (1.1) equipped with initial and boundary conditions. Results
confirm that the method converges to the exact solution with the expected second-order
rate. Next, in Example 2 (Section 6.2), numerical results are validated against experimen-
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Fig. 1 Left: schematic representation of the domain ⌦, its various boundaries � in, �wall and � out, and
the material interface ⌃. Right: reduction to the axisymmetric configuration

tal data, and in Example 3 (Section 6.3) we solve the full two-layer, two-contaminant filter
model.

2 Model problem and preliminaries

2.1 Initial and boundary conditions

Let us consider a porous skeleton consisting of two di↵erent materials separated by an
interface, where the matrix is saturated with an incompressible interstitial fluid (see a
diagrammatic representation on the left part of Figure 1). The coupled set of governing
equations (1.1) is posed along with the initial and boundary conditions

u = uin, ~✓ = ~✓ in on � in ⇥ (0, T ], (2.1a)

u = 0, Dr~✓ · n = ~0 on �wall ⇥ (0, T ], (2.1b)

(⌫"(u)� pI)n = 0, Dr~✓ · n = ~0 on � out ⇥ (0, T ], (2.1c)

~✓(0) = ~0, u(0) = ~0, ~s(0) = ~0 in ⌦. (2.1d)

Condition (2.1a) indicates that the contaminated water enters the filter at � in with a
constant influx velocity, and each contaminant ✓i, 1  i  m present at a fixed concen-
tration ✓ in

i ; while condition (2.1c) accounts for zero normal stress and zero contaminant
flux at the outlet. The system is preliminarily flushed with clean water and so there are
no contaminants in the filter. Once the flow is at rest, we consider the initial conditions
(2.1d).

The two distinct materials that compose the porous domain will have di↵erent perme-
ability, porosity, as well as adsorption rate. Moreover, the di↵usivities of the contaminants
will vary from one type of porous structure to another. However it is important to remark
that these di↵erences in material properties, at least in the applications we address here, are
not large enough to modify the flow regime between the two subdomains and this explains
why (1.1a)–(1.1d) are defined on the whole domain ⌦. Should this not be the case, one
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needs to solve explicitly for the coupling of Navier-Stokes/Brinkman or Brinkman/Darcy
equations including suitable transmission conditions at the interface (see for instance [6,23]
for formulations tailored to axisymmetric domains).

2.2 An axisymmetric formulation

Assuming that the data, the domain and the expected flow properties are all symmetric
with respect to a given axis of symmetry denoted � sym, we may rewrite the model equations
in the meridional domain ⌦

a

(see the right part of Figure 1). In this case the velocity
only possess radial and vertical components and we recall that the divergence operator in
axisymmetric coordinates (in radial and height variables r, z) is

div
a

v := @zvz +
1
r
@r(rvr).

Then, making abuse of notation, we may rewrite system of PDES (1.1) as

⇢
f

(@tu+ u ·ru) +K�1⌫u� div

a

(⌫"(u)) +rp+ ⌫(ur/r
2)e

1

= F (~✓), (2.2a)

div
a

u = 0, (2.2b)

�@t~✓ � div
a

(Dr~✓) + (u ·r)~✓ = �⇢
b

@t~s, (2.2c)

@t~s = G(~s, ~✓) for (r, z, t) 2 ⌦
a

⇥ (0, T ], (2.2d)

while the corresponding initial and boundary conditions (2.1) take the form

u = uin, ~✓ = ~✓ in on � in

a

⇥ (0, T ], (2.3a)

u = 0, Dr~✓ · n = ~0 on �wall

a

⇥ (0, T ], (2.3b)

u · n = 0, Dr~✓ · n = ~0 on � sym ⇥ (0, T ], (2.3c)

(⌫"(u)� pI)n = 0, Dr~✓ · n = ~0, on � out

a

⇥ (0, T ], (2.3d)

~✓(0) = ~0, u(0) = 0, ~s(0) = ~0 in ⌦
a

, (2.3e)

where the condition (2.3c) at the symmetry axis indicates slip velocity and zero normal
fluxes.

2.3 Preliminaries on spaces of radially symmetric functions

For ↵ 2 R and 1  p < 1, let Lp
↵(⌦a

) denote the space of measurable functions v on ⌦
a

such that

kvkp
Lp

↵(⌦
a

)

:=

Z

⌦
a

|v|pr↵ dr dz  1,

and let us denote the scalar product in L2

↵(⌦a

) by (·, ·)↵,⌦
a

. Moreover we introduce Hq
↵(⌦a

)
as the space of functions in Lp

↵(⌦a

) whose derivatives up to order q are also in Lp
↵(⌦a

), and
we denote by Hq

↵,j(⌦a

) its restriction to functions with null trace on a given portion � j
a

of
the boundary. By L and L we denote the corresponding vectorial and tensorial counterparts
of the scalar functional space L, we also will use ~L when the number of components of
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the vectorial space depends on m. Furthermore, the space V 1

1

(⌦
a

) := H1

1

(⌦
a

) \ L2

�1

(⌦
a

)
is endowed with the following norm and seminorm:

kvkV 1

1

(⌦
a

)

:=
�
kvk2L2

1

(⌦
a

)

+ |v|2H1

1

(⌦
a

)

+ kvk2L2

�1

(⌦
a

)

�
1/2

,

|v|V 1

1

(⌦
a

)

:=
�
|v|2H1

1

(⌦
a

)

+ kvk2L2

�1

(⌦
a

)

�
1/2

.

Let us define the space

H
0

(div
a

;⌦
a

) :=
�
v 2 L2

1

(⌦
a

) : div
a

v 2 L2

1

(⌦
a

) and v|@⌦
a

· n = 0
 
,

endowed with the following norm

kvk
div

a

,⌦
a

=
�
kvkL2

1

(⌦
a

)

+ kdiv
a

(v)kL2

1

(⌦
a

)

�
1/2

.

The essential boundary conditions (2.3a), (2.3b)
1

, (2.3c)
1

suggest to employ the func-
tional spaces

V 1

1,in,wall

(⌦
a

) :=
�
v 2 V 1

1

(⌦
a

)⇥H1

1

(⌦
a

) : v|� in

a

[�wall

a

= 0 and v|� sym · n = 0
 
,

~H1

1,in(⌦a

) =
�
~ 2 ~H1

1

(⌦
a

) : ~ |� in

a

= ~0
 
.

In what follows, to make notation more concise, we write L2

1

instead of L2

1

(⌦
a

), and
proceed similarly for V 1

1

(⌦
a

), ~L2

1

(⌦
a

), ~H1

1

(⌦
a

), and other spaces of functions defined on ⌦
a

as well as their corresponding norms. That is, in the remainder any space of functions and
corresponding norm whose domain is not specified is understood to refer to functions
defined on ⌦

a

.

2.4 Weak formulation of the axisymmetric problem

For a fixed t > 0, the weak (variational) formulation of problem (2.2), (2.3) is obtained
after testing against suitable functions and applying integration by parts in axisymmetric
coordinates; and it can be formulated as follows:

Find (u(t), p(t), ~✓(t), s(t)) 2 V 1

1

⇥ L2

1

⇥ ~H1

1

⇥ L2

1

such that (2.3a) holds, and
�
⇢
f

@tu(t), v
�
1,⌦

a

+ a
1

�
u(t), v

�

+ c
1

�
u(t);u(t), v

�
+ b
�
v, p(t)

�
= d

1

(~✓, v) for all v 2 V 1

1,in,wall

(⌦
a

), (2.4a)

b
�
u(t), q

�
= 0 for all q 2 L2

1

, (2.4b)
�
�@t~✓(t), ~ 

�
1,⌦

a

+ a
2

�
~✓(t), ~ 

�

+ c
2

�
u(t); ~✓(t), ~ 

�
+ d

2

�
s(t); ~✓(t), ~ 

�
= 0 for all ~ 2 ~H1

1,in(⌦a

), (2.4c)
�
@t~s(t),~l

�
1,⌦

a

+ d
3

�
~✓(t);~s(t),~l

�
� d

4

�
~✓(t),~l

�
= 0 for all l 2 ~L2

1

, (2.4d)

where the bilinear, trilinear, and nonlinear forms are defined as follows for all u, v,w 2 V 1

1

,
q 2 L2

1

, ~s,~l 2 ~L2

1

, and ~✓, ~ 2 ~H1

1

:

a
1

(u, v) :=

Z

⌦
a

K�1⌫u · vr dr dz +
Z

⌦
a

⌫"(u) : "(v)r dr dz +

Z

⌦
a

⌫

r
urvr dr dz,



Axisymmetric Navier-Stokes-Brinkman-transport equations 9

a
2

(~✓, ~ ) :=

Z

⌦
a

Dr~✓ : r~ r dr dz, b(v, q) := �
Z

⌦
a

q div
a

vr dr dz,

c
1

(w;u, v) :=

Z

⌦
a

⇢
f

(w ·r)u · vr dr dz, c
2

(v; ~✓, ~ ) :=

Z

⌦
a

(v ·r)~✓ · ~ r dr dz,

d
1

(~ , v) :=

Z

⌦
a

F (~ ) · vr dr dz, d
2

(~s; ~✓, ~ ) :=

Z

⌦
a

mX

i=1

(f(x, si)✓i i)r dr dz,

d
3

(~ ;~s,~l) :=

Z

⌦
a

mX

i=1

g(x, i)silir dr dz,

d
4

(~ ,~l) :=

Z

⌦
a

mX

i=1

g(x, i)s
max

i lir dr dz.

2.5 Further assumptions and preliminaries

The permeability tensor K 2 [C(⌦
a

)]d⇥d is assumed symmetric and uniformly positive
definite, hence its inverse satisfies

vTK�1(x)v � ↵
1

|v|2 for all v 2 Rd and x 2 ⌦
a

, for a constant ↵
1

> 0.

We also require D to be positive definite, i.e.,

~ TD~ � ↵
2

|~ |2 for all ~ 2 Rm, for a constant ↵
2

> 0.

We assume there exist constants f
1

, f
2

, g
1

, g
2

> 0 such that f
1

 f(x, s)  f
2

, g
1


g(x, ✓)  g

2

, and that f and g are Lipschitz continuous and satisfy
��f(s

1

)� f(s
2

)  |f |
Lip

|s
1

� s
2

|,
��g(✓

1

)� g(✓
2

)
��  |g|

Lip

|✓
1

� ✓
2

|.

These assumptions imply that for all ~s
1

,~s
2

,~s,~l 2 ~L2

1

and ~✓, ~ 2 ~H1

1

such that smax

i  smax,
there hold

d
2

(~s; ~✓, ~✓) � f
1

k~✓k2~L2

1

, (2.5)

d
2

(~s; ~✓, ~ )  f
2

k~✓k~L2

1

k~ k~L2

1

, (2.6)

d
2

(~s
2

; ~✓, ~ )� d
2

(~s
1

; ~✓, ~ )  |f |
Lip

k~s
2

� ~s
1

k~L2

1

k~✓k ~H1

1

k~ k ~H1

1

, (2.7)

d
3

(~ ;~s,~s) � g
1

k~sk2~L2

1

, (2.8)

d
3

(~ ;~s,~l)  g
2

k~sk~L2

1

k~lk~L2

1

, (2.9)

d
4

(~ ,~l)  g
2

smaxk~lk~L2

1

 Cdk~lk~L2

1

. (2.10)

If in addition ~s 2 ~H1

1

, we also get

d
3

(~✓
2

;~s,~l)� d
3

(~✓
1

;~s,~l)  |g|
Lip

k~✓
2

� ~✓
1

k ~H1

1

k~sk ~H1

1

k~lk~L2

1

. (2.11)

Due to the uniform boundedness of K�1 and D, one can easily establish the following
properties for all u, v,2 V 1

1

, q 2 L2

1

, and ~✓, ~ 2 ~H1:
��a

1

(u, v)
��  CakukV 1

1

kvkV 1

1

, (2.12a)
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��a
2

(~✓, ~ )
��  Ĉak~✓k ~H1

1

k~ k ~H1

1

, (2.12b)
��b(v, q)

��  kvkV 1

1

kqkL2

1

, (2.12c)
��d

1

(~✓, v)
��  CF k~✓k ~H1

1

kvkV 1

1

. (2.12d)

Moreover, thanks to the axisymmetric version of the well-known Sobolev embeddings (see
[9, 30]), we have that for p̂ � 1,

kwkLp̂
1

 C⇤
p̂kwkV 1

1

for all w 2 V

1

1

, (2.13)

where the constant C⇤
p̂ > 0 depends only upon |⌦

a

| and p̂. Also, for u, v,w 2 H1

1

and
~✓, ~ 2 ~H1

1

, Hölder’s inequality and (2.13) with 1

p̂ + 1

p̂⇤ = 1

2

imply that (see [18])

��c
1

(w;u, v)
��  CvkwkH1

1

kukH1

1

kvkH1

1

,
��c

2

(w; ~✓, ~ )
��  C̄vkwkH1

1

k~✓kH1

1

k~ k~L3

1

,
��c

2

(w; ~✓, ~ )
��  ĈvkwkH1

1

k~✓k ~H1

1

k~ k ~H1

1

.

Next, Poincaré’s inequality and the positive definiteness of D readily imply the following
coercivities (see [12, Chapter IX]):

a
1

(v, v) � ↵akvk2V 1

1

for all v 2 V 1

in,wall

(⌦
a

), (2.14)

a
2

(~ , ~ ) � ↵̂ak~ k2~H1

1

for all ~ 2 ~H1

1,in(⌦a

). (2.15)

We then proceed to characterise the kernel of the bilinear form b(·, ·) as

X :=
�
v 2 V 1

1,in,wall

(⌦
a

) : b(v, q) = 0 for all q 2 L2

1

 

=
�
v 2 V 1

1,in,wall

(⌦
a

) : div
a

v = 0 a.e. in ⌦
a

 
,

and using integration by parts directly implies the relations (see [12, Section IX.2])

c
1

(w; v, v) = 0 and c
2

(w; ~ , ~ ) = 0

for all w 2 X, v 2 V 1

1,in,wall

(⌦
a

), and ~ 2 ~H1

1,in(⌦a

).
(2.16)

Note that for a given w 2 X, property (2.14) together with (2.16) readily lead to the
ellipticity of the bilinear form

a
1

(·, ·) + c
1

(w, ·, ·) : V 1

1,in,wall

(⌦
a

)⇥ V 1

1,in,wall

(⌦
a

) ! R.

Moreover, it is well known (i.e. [12, Proposition IX.1.1]) that an inf-sup condition holds for
b(·, ·) in the following sense:

sup
v2V 1

1,in,wall

(⌦
a

)\{0}

b(v, q)
kvkV 1

1

� �kqkL2

1

for all q 2 L2

1

.
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3 Well-posedness analysis of the continuous problem

This part of our analysis will be restricted to the case of no-slip velocity boundary condi-
tions on the whole boundary. Then we introduce the spaces

H1

1,⇧ :=
�
w 2 H1

1

: w = 0 on @⌦
a

 
, V 1

1,⇧ :=
�
w 2 V 1

1

: w = 0 on @⌦
a

 
,

and V 1

1,⇧ := V 1

1,⇧ ⇥H1

1,⇧.
From [28], we recall the weighted Sobolev inequality:

Lemma 3.1 For all v 2 H1

1

there holds

kvk2L4

1

 ĈkvkL2

1

|v|H1

1

.

We will also use the following lemma (for its proof in the axysimmetric case we refer the
reader to [12, Chapter IX]):

Lemma 3.2 If (u, p, ~✓,~s) 2 V 1

1,⇧ ⇥ L2

1

⇥ ~H1

1,⇧ ⇥ ~L2

1

solves (2.4), then u 2 X is a solution
of the following reduced problem:

For all t 2 (0, T ], find (u, ~✓, s) 2 X ⇥ ~H1

1,⇧ ⇥ ~L2

1

such that
�
⇢
f

@tu(t), v
�
1,⌦

a

+ a
1

�
u(t), v

�

+ c
1

�
u(t);u(t), v

�
= d

1

(~✓, v) for all v 2 V 1

1,in,wall

(⌦
a

), (3.1a)
�
�@t~✓(t), ~ 

�
1,⌦

a

+ a
2

�
~✓(t), ~ 

�

+ c
2

�
u(t); ~✓(t), ~ 

�
+ d

2

�
~s(t); ~✓(t), ~ 

�
= 0 for all ~ 2 ~H1

1,in(⌦a

), (3.1b)
�
@t~s(t),~l

�
1,⌦

a

+ d
3

�
~✓(t);~s(t),~l

�
� d

4

�
~✓(t),~l

�
= 0 for all ~l 2 ~L2

1

. (3.1c)

Conversely, if (u, ~✓,~s) 2 X ⇥ ~H1

1,⇧ ⇥ ~L2

1

is a solution of (3.1), then there exists a pressure

p 2 L2

1

such that (u, p, ~✓,~s) is a solution of (2.4).

A problem very similar to (2.4) but in Cartesian coordinates has been studied in [1].
There the authors establish existence of solution by the Galerkin method in combination
with the Cauchy-Lipschitz theorem. The same ideas carry over to our case. For this we have
to take into account that F is a Lipschitz-continuous function, and we also require to adapt
the approach incorporating equivalent embedding theorems stated for weighted Sobolev
spaces in [28], as well as weighted Poincaré-type inequalities available from [37, Section
4.3].

Theorem 3.1 Assume that for r � 4,

(u, ~✓, s) 2 L2

�
0, T ;X \W 1,r

1

(⌦
a

)
�
⇥ L2(0, T ; ~H1

1,⇧)⇥ L2

�
0, T ; ~H1

1

�

is a solution to problem (3.1). Then such solution is unique.

Proof. Throughout the proof, and for simplicity of the presentation, we assume that the
model constants are scaled as �, ⇢

b

, ⇢
f

= 1. Let (u
1

, ~✓
1

, s
1

) and (u
2

, ~✓
2

, s
2

) be two solutions
of (3.1). We denote

U := u
1

� u
2

, ~⇥ := ~✓
1

� ~✓
2

, and ~S := ~s
1

� ~s
2

.
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Now, from (3.1b), by adding and subtracting c
2

(u
2

, ~✓
1

, ~⇥) and d
2

(~s
2

, ~✓
1

, ~⇥); and using
properties (2.16) and (2.7) we obtain

(@t ~⇥, ~⇥)
1,⌦

a

+ a
2

( ~⇥, ~⇥)

= �c
2

(U ; ~✓
1

, ~⇥)� d
2

(~s
2

; ~⇥, ~⇥)� d
2

(~s
1

; ~✓
1

, ~⇥) + d
2

(~s
2

, ~✓
1

, ~⇥),

1
2
d
dt

k ~⇥k2~L2

1

+ ↵
2

| ~⇥|2~H1

1

 kUk2~L4

1

|~✓
1

| ~H1

1

k ~⇥k~L4

+ |f |
Lip

k~Sk~L2

1

k~✓
1

k ~H1

1

k ~⇥k~L4

1

.

By Lemma 3.1 and Young’s inequality it follows that

1
2
d
dt

k ~⇥k2~L2

1

+ ↵
2

| ~⇥|2~H1

1

 Ĉ

4

✓
"
1

|U |2H1

1

+
1
"
1

|~✓
1

| ~H1

1

kUk2L2

1

+ "
2

| ~⇥|2~H1

1

+
1
"
2

|~✓
1

|2~H1

1

k ~⇥k2~L2

1

◆
.

(3.2)

Now, selecting v = U in (3.1a), adding and subtracting c
1

(u
2

;u
1

;U), and employing
properties (2.16) and (2.12d), we can readily see that

1
2
d
dt

kUk2L2

1

+ ⌫k"(U)k2L2

1

+ ⌫kUrk2L2

�1

 kUk2L4

1

|u
1

|H1

1

+ CF | ~⇥|~L2

1

kUkL2

1

.

Applying Lemma 3.1 and Young’s inequality we conclude that

1
2
d
dt

kUk2L2

1

+ ↵akUk2V 1

1

 Ĉ"
3

2
|U |2V 1

1

+
Ĉ

2"
3

kUk2L2

1

|u
1

|H1

1

+
CF

2

�
| ~⇥|2~L2

1

+ kUk2L2

1

�
.

(3.3)

In the same manner, from (3.1c), after adding and subtracting d
3

(~✓
2

;~s
1

, ~S), using (2.8),
(2.9), (2.10) and (2.11), we can assert that

1
2
d
dt

k~Sk~L2

1

+ g
1

k~Sk~L2

1

 |g|
Lip

2

�
k ~⇥k2L2

1

+ k~s
1

k2~H1

1

k~Sk2L2

1

�
+

|g|
Lip

smax

2

�
k ~⇥k2~L2

1

+ k~Sk2~L2

1

�
,

(3.4)

and choosing "
1

= 2⌫↵a/Ĉ, "
2

= 2↵
2

/Ĉ and "
3

= ⌫↵a/Ĉ, we obtain from (3.2), (3.3) and
(3.4) that

d
dt

�
kUk2L2

1

+ k ~⇥k2~L2

1

+ k~Sk2~L2

1

�

 C
�
|u

1

|2H1

1

+ |~✓
1

|2~H1

1

+ k~✓
1

k2~L1

2

+ k~s
1

k2~H1

1

+ 1
��
kUk2L2

1

+ k ~⇥k2~L2

1

+ k~Sk2~L2

1

�
.

We may now integrate from ⌧ = 0 to ⌧ = t to infer the bound

kUk2L2

1

+ k ~⇥k2~L2

1

+ k~Sk2~L2

1


Z t

0

C
�
|u

1

|2H1

1

+ |~✓
1

|2~H1

1

+ k~✓
1

k2~L1

2

+ k~s
1

k2~H1

1

+ 1
��
kUk2L2

1

+ k ~⇥k2~L2

1

+ k~Sk2~L2

1

�
d⌧.

Applying Gronwall’s lemma, we now conclude that U = 0, ~⇥ = ~0 and ~S = ~0. ⇤
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4 Spatio-temporal discretisation

4.1 Preliminaries

Let us denote by Th a regular partition of ⌦
a

composed by triangular elements K of
diameter hK . The mesh size will be denoted by h = max{hK , K 2 Th}, and for any
interior edge e in Eh, we will label K� and K+ the elements adjacent to it, while he will
stand for the maximum diameter of the edge. We suppose that v, w are smooth vector and
scalar fields defined over Th. Then, by (v±, w±) we will denote the traces of (v, w) on e
being the extensions from the interiors of the elements K+ and K�, respectively. Let ne

denote the outward unit normal vector to e on K, we define the tangential component of
u on each face e as u⌧ = u � (u · ne)ne. We introduce the average {{·}} and jump J·K
operators as follows:

{{v}} = (v� + v+)/2, {{w}} = (w� + w+)/2,

JvK = (v� � v+), JwK = (w� � w+),

whereas for boundary jumps and averages we adopt the convention that {{v}} = JvK = v,
and {{w}} = JwK = w. In addition, we will use the symbol rh to denote the broken gradient
operator and "h to denote its symmetrised counterpart.

4.2 An axisymmetric H(div)-conforming method

First, we recall the definition of the two-dimensional Brezzi-Douglas-Marini (BDM) spaces
(see e.g. [14]) locally on an element K 2 Th, BDMk(K) := (Pk(K))2, where Pk(K) de-
notes the local space spanned by polynomials of degree up to k. In turn, related to the
axisymmetric setting, as in [22] we define

BDMaxi

k (K) :=
�
v 2 BDMk(K) : v · nK |� sym = 0

 

=
�
(vr, vz)

T 2 BDMk : vr|� sym = 0
 
,

where the associated degrees of freedom are given by
Z

Eh

v · nKpr ds, p 2 Rk(@K) for k � 0,

Z

K

v ·rpr dr dz, p 2 Pk�1

(K) for k � 1,

Z

K

v · curl(bKp)r dr dz, p 2 Pk�2

(K) for k � 2,

where bK denotes a bubble function on the element K and

Rk(@K) :=
�
� 2 L2(@K) : �|e 2 Pk(e), e 2 Eh(K)

 
.

Then, globally, for an integer k and a mesh Th on ⌦, we utilize the discrete spaces

Hk
h :=

�
vh 2 H(div

a

;⌦
a

) : vh|K 2 BDMaxi

k (K) for all K 2 Th

 
,

Yk
h :=

�
qh 2 L2

1

(⌦
a

) : qh|K 2 Pk(K) for all K 2 Th

 
,

Mk
h :=

�
 h 2 C(⌦

a

) :  h|K 2 Pk(K) for all K 2 Th

 
,
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to define the following finite element subspaces for the approximation of the unknowns
u, p, ~✓ and ~s, respectively, where the polynomial degree is k � 1:

Vh := Hk
h \H

0

(div
a

;⌦
a

), Qh := Yk�1

h ,

~Mh,0 := ~Mk
h \ ~H1

1,in(⌦), ~Sh := ~Yk�1

h .

Let us recall that for axisymmetric cases the property div
a

Vh ✓ Qh is not preserved [23],
and let us also recall from [22] the following discrete inf-sup condition for b(·, ·), where �̃
is independent of h:

sup
vh2Vh\{0}

b(vh, qh)
kvhkT 1

h

� �̃kqhkL2

1,0(⌦a

)

for all qh 2 Qh. (4.1)

Associated with these finite-dimensional spaces, we state the following semi-discrete
Galerkin formulation for problem (1.1), (2.1):

For a fixed t > 0, find (uh(t), ph(t), ~✓h(t),~sh(t)) 2 Vh ⇥Qh ⇥ ~Mh,0 ⇥ ~Sh

such that for all (vh, qh, ~ h,~lh) 2 Vh ⇥Qh ⇥ ~Mh,0 ⇥ ~Sh:
�
⇢
f

@tuh(t), v
�
1,⌦

a

+ ah
1

�
uh(t), vh

�

+ ch
1

�
uh(t);uh(t), vh

�
+ b
�
vh, ph(t)

�
= d

1

�
~✓h(t), vh

�
,

b
�
uh(t), qh

�
= 0,

�
�@t~✓h(t), ~ 

�
1,⌦

a

+ a
2

�
~✓h(t), ~ h

�

+ ch
2

�
uh(t); ~✓h(t), ~ h

�
= d

2

�
~sh(t); ~✓h(t), ~ h

�
,

�
@t~sh(t),~lh

�
1,⌦

a

+ d
3

�
~✓h(t);~sh(t),~lh

�
= d

4

�
~✓h(t),~lh

�
.

(4.2)

Here the discrete versions of the trilinear forms a
1

(·, ·), c
1

(·; ·, ·) and c
2

(·; ·, ·) are defined
using a symmetric interior penalty, an upwind approach and a skew-symmetric form, re-
spectively (see e.g. [17, 26, 27]):

ah
1

(u, v) :=

Z

⌦
a

⇣
K�1u · v + ⌫"h(u) : "h(v) + ⌫

ur

r

vr

r

⌘
r dr dz

�
X

e2Eh

Z

e

⇣
{{⌫"h(u)ne}} · Jv⌧ K � {{⌫"h(v)ne}} · Ju⌧ K

+
a
0

he
⌫Ju⌧ K · Jv⌧ K

⌘
r ds,

ch
1

(w;u, v) :=
1
2

Z

⌦
a

((w ·rh)u · v � (w ·rh)v · u) r dr dz

+
X

e2Eh

Z

e

ŵup(u) · vr ds,

ch
2

(uh; ~✓h, ~ h) :=
1
2

✓Z

⌦
a

(v ·rh)~✓ · ~ r dr dz �
Z

⌦
a

(v ·rh)~ · ~✓r dr dz
◆
,

where the fluxes are defined as

ŵup(u) :=
1
2

�
w · nK � |w · nK |

�
(ue � u),
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and ue denotes the trace of u taken from within the exterior of K.
We then proceed with the method of lines, and for the time discretisation we partition

the interval [0, T ] into N subintervals [tn�1

, tn] of length �t. We will use an implicit,
second-order backward di↵erentiation formula (BDF2). Starting from the interpolates u0

h,
~✓ 0

h and ~s 0

h of the initial data onVh, ~Mh,0 and ~Sh, respectively, we solve for n = 1, . . . , N�1
the nonlinear system

✓
un+1

h � 4
3
un
h +

1
3
un�1

h , vh

◆

1,⌦
a

=
2
3
�t
�
d
1

(~✓ n+1

h , vh)� ah
1

(un+1

h , vh)� ch
1

(un+1

h ;un+1

h , vh)� b(vh, p
n+1

h )
�
,

b(un+1

h , qh) = 0,
✓
~✓ n+1

h � 4
3
~✓ n
h +

1
3
~✓ n�1

h , ~ h

◆

1,⌦
a

=
2
3
�t
�
�d

2

(sn+1

h ; ~✓ n+1

h , ~ h)� a
2

(~✓ n+1

h , ~ h)� ch
2

(un+1

h ; ~✓ n+1

h , ~ h)
�
,

✓
~sn+1

h � 4
3
~sn
h +

1
3
~sn�1

h ,~lh

◆

1,⌦
a

=
2
3
�t
�
�d

3

(~✓ n+1

h ;~sn+1

h ,~lh) + d
4

(~✓ n+1

h ,~lh)
�

(4.3)

for all vh 2 Vh, qh 2 Qh, ~ h 2 ~Mh and ~sh 2 ~Sh.
Then, in a way analogous to the continuous case, we define the discrete kernel

Xh :=
�
vh 2 Vh : b(vh, qh) = 0 for all qh 2 Qh

 
,

however we cannot obtain a characterisation analogous to the discrete case. Nevertheless,
owing to the inf-sup condition (4.1), we can consider the following equivalent reduced
problem:

Find (un+1

h , ~✓ n+1

h ,~sn+1

h ) 2 Xh ⇥Mh,0 ⇥ ~Sh

such that for all vh 2 Vh, ~ h 2 ~Mh and ~lh 2 ~Sh,✓
un+1

h � 4
3
un
h +

1
3
un�1

h , vh

◆

1,⌦
a

=
2
3
�t
�
d
1

(~✓ n+1

h , vh)� ah
1

(un+1

h , vh)� ch
1

(un+1

h ;un+1

h , vh)
�
,

✓
~✓ n+1

h � 4
3
~✓ n
h +

1
3
~✓ n�1

h , ~ h

◆

1,⌦
a

=
2
3
�t
�
�d

2

(sn+1

h ; ~✓n+1

h , ~ h)� a
2

(~✓n+1

h , ~ h)� ch
2

(un+1

h ; ~✓n+1

h , ~ h)
�
,

✓
~sn+1

h � 4
3
~sn
h +

1
3
~sn�1

h ,~lh

◆

1,⌦
a

=
2
3
�t
�
�d

3

(~✓ n+1

h ;~sn+1

h ,~lh) + d
4

(~✓ n+1

h ,~lh)
�
.

(4.4)
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4.3 Discrete stability properties

For the subsequent analysis, we introduce for r � 0 the broken Hr
↵(Th) space

Hr
↵(Th) =

�
v 2 L2

↵ : v|K 2 Hr
↵(K),K 2 Th

 
,

as well as the following parameter- and mesh- dependent broken norms

kvk2⇤,Th
:=

X

K2Th

k"h(v)k2L2

1

(K)

+
X

K2Th

kvrkL2

�1

(K)

+
X

e2Eh

1
he

kJv⌧ Kk2L2

1

(e),

kvk2T 1

h
:= kvk2L2

1

(⌦
a

)

+ ⌫kvk2⇤,Th
for all v 2 H1

1

(Th),

kvk2T 2

h
:= kvk2T 1

h
+
X

K2Th

h2

K |v|2H2

1

(K)

for all v 2 H2

1

(Th),

where the stronger norm k·k2T 2

h
is used to show continuity. It can be proven that this norm

is equivalent to k·kT 1

h
on H1

1

(Th) (see [21] and [8]). Finally, adapting the argument used
in [26, Proposition 4.5] and relying on the equivalent weighted Sobolev embeddings in [28]
we have the following discrete Sobolev embedding: for r = 2, 4 there exists a constant
C

emb

> 0 such that

kvkLr
1

 C
emb

kvkT 1

h
for all v 2 H1

1

(Th). (4.5)

Using these norms, we can establish continuity of the trilinear and bilinear forms involved,
stated in the following lemma that can be proved following [32, Section 3.3.2], [22, Section
3] and [8, Section 4].

Lemma 4.1 The following properties hold:
��ah

1

(u, v)
��  CkukT 2

h
kvkT 1

h
for all u 2 H2

1

(Th), v 2 Vh,
��ah

1

(u, v)
��  C̃akukT 1

h
kvkT 1

h
for all u, v 2 Vh,

��b(v, q)
��  kvkT 1

h
kqkL2

1

(⌦
a

)

for all v 2 H1

1

(Th), q 2 L2

1

(⌦),

and for all u, v,w 2 H1

1

(Th) and ~ , ~✓ 2 [H1

1

(⌦)]m, there holds
��d

1

(~✓, v)
��  CF k~✓k ~H1

1

kvkT 1

h
, (4.6a)

��ch
2

(w; ~✓, ~ )
��  C̃kwkT 1

h
k~ k ~H1

1

k~✓k ~H1

1

. (4.6b)

Note that while the coercivity of the form a
2

(·, ·) in the discrete setting is readily implied
by (2.15), there also holds (cf. [27, Lemma 3.2])

ah
1

(v, v) � ↵̃akvk2T 1

h
for all v 2 Vh, (4.7)

provided that a
0

> 0 is su�ciently large and independent of the mesh size.
Let w 2 H

0

(div0;⌦), due to the skew-symmetric form of the operators ch
1

and ch
2

, and
the positivity of the non-linear upwind term of ch

1

(see e.g. [33]), we can write

ch
1

(w;u,u) � 0 for all u 2 Vh, (4.8)

ch
2

(w; ~ h, ~ h) = 0 for all ~ h 2 Mh, (4.9)

as well as the following relation (which is based on (4.5) and follows by the same method
as in [20, 26]):

For any w
1

,w
2

,u 2 H2

1

(Th) there holds for all v 2 Vh
��ch

1

(w
1

;u, v)
���

��ch
1

(w
2

;u, v)
��  C̃ckw1

�w
2

kT 1

h
kvkT 1

h
kukT 1

h
.

(4.10)
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4.4 Existence of discrete solutions

In what follows we will use the following algebraic relation: for any real numbers an+1, an,
an�1 and defining ⇤an := an+1 � 2an + an�1, we have

2(3an+1 � 4an + an�1, an) = |an+1|2 + |2an+1 � an|2 + |⇤an|2

� |an|2 � |2an � an�1|2.
(4.11)

Theorem 4.1 Let (un+1

h , ~✓ n+1

h ,~sn+1

h ) 2 Xh ⇥ ~Mh,0 ⇥ Sh be a solution of problem (4.4).
Then the following bounds are satisfied, where C

1

, C
2

and C
3

are constants independent of
h and �t:

kun+1

h k2L2

1

+ k2un+1

h � un
hk2L2

1

+
nX

j=1

k⇤uj
hk

2

L2

1

+
nX

j=1

�tkuj+1

h k2T 1

h

 C
1

�
k~✓ 1

hk2~L2

1

+ k2~✓ 1

h � ~✓ 0

hk2~L2

1

+ ku1

hk2L2

1

+ k2u1

h � u0

hk2L2

1

�
,

k~✓ n+1

h k2~L2

1

+ k2~✓ n+1

h � ~✓ n
h k2~L2

1

+
nX

j=1

k⇤~✓ j
hk

2

~L2

1

+
nX

j=1

�t|~✓ j+1

h |2~L2

1

 C
2

�
k~✓ 1

hk2~L2

1

+ k2~✓ 1

h � ~✓ 0

hk2~L2

1

�
,

k~sn+1

h k2~L2

1

+ k2~sn+1

h � ~sn
h k2~L2

1

+
nX

j=1

k⇤~sjhk
2

~L2

1

 C
3

�
k~✓ 1

hk2~L2

1

+ k2~✓ 1

h � ~✓ 0

hk2~L2

1

+ k~s 1

hk2~L2

1

+ k2~s 1

h � ~s 0

hk2~L2

1

+ n�tC
2

d

�
.

(4.12)

Proof. First we take ~ h = 4~✓ n+1

h in the second equation of (4.4) and use properties (2.5),
(4.9) and relation (4.11) to deduce the inequality

k~✓ n+1

h k2~L2

1

+ k2~✓ n+1

h � ~✓ n
h k2~L2

1

+ k⇤~✓ n
h k2~L2

1

+ 4↵
2

�t|~✓ n+1

h |2H1

1

 k~✓ n
h k2~L2

1

+ k2~✓ n
h � ~✓ n�1

h k2~L2

1

.

Hence, summing over n, we get

k~✓ n+1

h k2~L2

1

+ k2~✓ n+1

h � ~✓ n
h k2~L2

1

+
nX

j=1

k⇤~✓ j
hk

2

~L2

1

+ 4↵
2

nX

j=1

�t|~✓ j+1

h |2H1

1

 k~✓ 1

hk2~L2

1

+ k2~✓ 1

h � ~✓ 0

hk2~L2

1

.

(4.13)

Similarly, in the third equation of (4.4), we take ~lh = 4~sn+1

h and apply (2.10), (2.8) together
with Young’s inequality to get

k~sn+1

h k2~L2

1

+ k2~sn+1

h � ~sn
h k2~L2

1

+ k⇤~sn
h k2~L2

1

 4�tCdk~✓ n+1

h k~L2

1

+ k~sn
h k2~L2

1

+ k2~sn
h � ~sn�1

h k2~L2

1

 2�tCp|~✓ n+1

h |2~H1

1

+ 2C2

d�t + k~sn
h k2~L2

1

+ k2~sn
h � ~sn�1

h k2~L2

1

.

Summing over n we therefore obtain

k~sn+1

h k2~L2

1

+ k2~sn+1

h � ~sn
h k2~L2

1

+
nX

j=1

k⇤~s j
hk

2

~L2

1
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 2Cp

nX

j=1

�t|~✓ j+1

h |2~H1

1

+ 2n�tC
2

d + k~s 1

hk2~L2

1

+ k2~s 1

h � ~s 0

hk2~L2

1

. (4.14)

We get the second result of (4.12) by replacing (4.13) in (4.14). Finally we take vh = 4un+1

h

in the first equation of (4.4) and apply (4.11), (4.6a), (4.7) and (4.8) to deduce the estimate

kun+1

h k2L2

1

+ k2un+1

h � un
hk2L2

1

+ k⇤un
hk2L2

1

+ 4�t↵̃akun+1

h k2T 1

h

 4�tCF k~✓ n+1

h k~L2

1

kun+1

h kL2

1

+ kun
hk2L2

1

+ k2un
h � un�1

h k2L2

1

.

Now we use Young’s inequality with " = ↵̃a to arrive at

kun+1

h k2L2

1

+ k2un+1

h � un
hk2L2

1

+ k⇤un
hk2L2

1

+ �t2↵̃akun+1

h k2T 1

h

 2
C2

FCp

↵̃a
�t|~✓ n+1

h |2~H1

1

+ kun
hk2L2

1

+ k2un
h � un�1

h k2L2

1

,

and summing over n we can assert that

kun+1

h k2L2

1

+ k2un+1

h � un
hk2L2

1

+
nX

j=1

k⇤uj
hk

2

L2

1

+ 2↵̃a

nX

j=1

�tkuj+1

h k2T 1

h

 C2

FCp

2

nX

j=1

�t|~✓ j+1

h |2~H1

1

+ ku1

hk2L2

1

+ k2u1

h � u0

hk2L2

1

.

(4.15)

Finally we get the first result in (4.12) from the bounds (4.13) and (4.15). ⇤

Theorem 4.2 Assume that

CF

↵̃a
 ↵

2

Cp
. (4.16)

Then problem (4.3) admits at least one solution

(un+1

h , pn+1

h , ~✓ n+1

h ,~sn+1

h ) 2 Vh ⇥Qh ⇥ ~Mh,0 ⇥ ~Sh.

Proof. To simplify the proof we introduce the following constants:

Cu := C
1

�
k~✓ 1

hk~L2

1

+ k2~✓ 1

h � ~✓ 0

hk~L2

1

+ ku1

hkL2

1

+ k2u1

h � u0

hkL2

1

�
,

C✓ := C
2

�
k~✓ 1

hk~L2

1

+ k2~✓ 1

h � ~✓ 0

hk~L2

1

�
,

Cs := C
3

�
k~✓ 1

hk~L2

1

+ k2~✓ 1

h � ~✓ 0

hk~L2

1

+ k~s 1

hk~L2

1

+ k2~s 1

h � ~s 0

hk~L2

1

+ n�tC
2

d

�
.

We shall make use of Brouwer’s fixed-point theorem in the form given by [24, Corollary
1.1, Chapter IV]:

Theorem 4.3 (Brouwer’s fixed-point theorem) Let H be a finite-dimensional Hilbert
space with scalar product denoted by (, )H and corresponding norm k·kH . Let � : H ! H be
a continuous mapping for which there exists µ > 0 such that (�(u), u)H � 0 for all u 2 H
with kukH = µ. Then there exists an element u 2 H such that �(u) = 0, kukH  µ.
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We proceed by induction on n � 2. We define the mapping

� : Xh ⇥ ~Mh,0 ⇥ ~Sh ! Xh ⇥ ~Mh,0 ⇥ ~Sh

using the relation

�
�(un+1

h , ~✓ n+1

h ,~sn+1

h ), (vh, ~ h,~lh)
�
1,⌦

a

=
1
2�t

�
3un+1

h � 4un
h + un�1

h , vh

�
1,⌦

a

+ ah
1

�
un+1

h , vh

�
+ ch

1

�
un+1

h ;un+1

h , vh

�

�
�
F
�
~✓ n+1

h

�
, vh

�
1,⌦

a

+
1
2�t

�
3~✓ n+1

h � 4~✓ n
h + ~✓ n�1

h , ~ h

�
1,⌦

a

+ a
2

�
~✓ n+1

h , ~ h

�

+ ch
2

�
un+1

h ; ~✓ n+1

h , ~ h

�
+ d

2

�
~sn+1

h ; ~✓ n+1

h , ~ h

�

+
1
2�t

�
3~sn+1

h � 4~sn
h + ~sn�1

h ,~lh
�
1,⌦

a

+ d
3

�
~✓ n+1

h ;~sn+1

h ,~lh
�
� d

4

�
~✓ n+1

h ,~lh
�
.

Note this map is well-defined and continuous on Xh ⇥ ~Mh,0 ⇥ ~Sh. On the other hand, if
we take

(vh, ~ h,~lh) = (un+1

h , ~✓ n+1

h ,~sn+1

h ),

and employ (4.8), (4.9), (4.6a) and (4.7), we obtain

�
�(un+1

h , ~✓ n+1

h ,~sn+1

h ), (un+1

h , ~✓ n+1

h ,~sn+1

h )
�
1,⌦

a

� � 1
2�t

k4un
h � un�1

h kL2

1

kun+1

h kL2

1

+ ↵̃akun+1

h k2T 1

h
� CF k✓n+1

h k~L2

1

kun+1

h kL2

1

� 1
2�t

k4~✓ n
h � ~✓ n�1

h k~L2

1

k~✓ n+1

h k~L2

1

+ ↵
2

|~✓ n+1|2~H1

1

+
3
2�t

k~sn+1

h k2L1

2

� 1
2�t

k4~sn
h � ~sn�1

h k~L2

1

k~sn+1

h k~L2

1

� Cdk~✓ n+1

h k~L2

1

.

Next, using (4.12), inequality (4.16) and Young’s inequality with constant "
1

= ↵̃a/CF ,
we deduce that

�
�(un+1

h , ~✓ n+1

h ,~sn+1

h ), (un+1

h , ~✓ n+1

h ,~sn+1

h )
�
1,⌦

a

� ↵̃a

2
kun+1

h k2L2

1

+
3
2�t

k~sn+1

h k2~L2

1

+
↵
2

2Cp
k~✓ n+1

h k2~L2

1

� 5
2�t

Cukun+1

h kL2

1

(⌦
a

)

�
✓

5
2�t

C✓ + Cd

◆
k~✓ n+1

h k~L2

1

� 5
2�t

Csk~sn+1

h k~L2

1

.

Then, setting

CR = min

⇢
↵̃a

2
,

3
2�t

,
↵
2

2Cp

�
, Cr = 2max

⇢
5
2�t

Cu,
5
2�t

C✓ + Cd,
5
2�t

Cs

�
,

we may apply the inequality a+ b 
p
2(a2 + b2)1/2, valid for all a, b 2 R, to obtain

�
�(un+1

h , ~✓ n+1

h ,~sn+1

h ), (un+1

h , ~✓ n+1

h ,~sn+1

h )
�
1,⌦

a

� CR

�
kun+1

h k2L2

1

+ k~✓ n+1

h k2~L2

1

+ k~sn+1

h k2~L2

1

�

� Cr

�
kun+1

h k2L2

1

+ k~✓ n+1

h k2~L2

1

+ k~sn+1

h k2~L2

1

�
1/2

.
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Hence, the right-hand side is nonnegative on a sphere of radius r := Cr/CR. Consequently,
by Theorem 4.3, there exists a solution to the fixed-point problem

�
�
un+1

h , ~✓ n+1

h ,~sn+1

h

�
= 0.

The existence of pn+1

h satisfying (4.3) is guaranteed by (4.1). ⇤
Note that unlike conforming discretisations, one cannot directly establish a discrete

version of Theorem 3.1. In fact we were not able to control the discrete norms arising from
(4.10), which would be necessary to establish a discrete counterpart of (3.3). However, even
when uniqueness of the discrete counterpart remains an open problem, our non-exhaustive
selection of numerical examples did not present any di�culties in this regard.

5 A priori error analysis

The following development follows the structure adopted in [2]. We start by recalling some
interpolation results from [10] and [22].

Lemma 5.1 Let Lh be the Lagrange interpolation operator Lh : C0(⌦
a

) ! Vh, where
Vh denotes the space of Lagrange finite elements of order k. We also consider its vectorial
counterpart, keeping the same notation. Then for all l and for all p such that 1  l  k+1,
1  p  +1, l > 3

p or p = 1, l = 3 there exists a constant C⇤ > 0 independent of h, such
that for all v2 W l,p

1

(⌦
a

), the following inequalities hold;

kv � Lh vkLp
1

(⌦
a

)

 C⇤hl|v|W l,p
1

(⌦
a

)

, |v � Lh v|Lp
1

(⌦
a

)

 C⇤hl�1|v|W l,p
1

(⌦
a

)

.

Lemma 5.2 Let ⇧h be the BDMaxi

k interpolation operator ⇧h : C0(⌦
a

) ! Hk
h. Then for

all v 2 Hk+1

1

(⌦
a

), the following inequalities hold:

kv �⇧h vkL2

1

(⌦
a

)

 C⇤hk+1|v|Hk+1

1

(⌦
a

)

, kv �⇧h vkT 1

h
 C⇤hkkvkHk+1

1

(⌦
a

)

.

Proof. The first result comes from [22, Corollary A.7]. The proof of the second result comes
much in the same way as in the Cartesian case, by making use of the equivalent weighted
inverse inequalities and weighted approximation properties proved in [10], see [23, Section
3.1] and [8]. ⇤

Lemma 5.3 Let Ih denote the modified Clément interpolation operator

Ih : H1

0,1(⌦a

) ! Mk
h,

and the same notation is kept for its vectorial counterpart. Then for all l and for all p such
that 1  l  k + 1, 1  p  +1 there exists a constant C⇤ > 0 independently of h such
that for any function v 2 W l,p

1

(⌦
a

),

kv � Ih vkLp
1

(⌦
a

)

 C⇤hl|v|W l,p
1

(⌦
a

)

.

Lemma 5.4 Assume that u 2 H2

1

and ~✓ 2 ~H1

1

. Then
�
@tu(t), v

�
1,⌦

a

+ ah
1

�
u(t), v

�
+ ch

1

�
u(t);u(t), v

�
+ b(v, p)� d

1

�
~✓(t), v

�
= 0,

�
@t~✓(t), ~ 

�
1,⌦

a

+ a
2

�
~✓(t), ~ 

�
+ ch

2

�
~u(t); ~✓(t), ~ 

�
+ d

2

�
~s(t); ~✓(t), ~ 

�
= 0

for all (v, ~ ) 2 Vh ⇥Mh,0. A similar result also holds for the fourth equation in (4.2).



Axisymmetric Navier-Stokes-Brinkman-transport equations 21

Proof. Since we assume u 2 H2

1

(⌦
a

), integration by parts yields the required result. See
also [8]. ⇤

Now we decompose the errors as follows:

u� uh = Eu + ⇠u = (u�⇧h u) + (⇧h u� uh),

p� ph = Ep + ⇠p = (p� Lh p) + (Lh p� ph),

~✓ � ~✓h = E~✓ + ⇠~✓ = (~✓ � Ih
~✓) + (Ih

~✓ � ~✓h),

~s� ~sh = E~s + ⇠~s = (~s� Lh ~s) + (Lh ~s� ~sh).

Assuming that u0

h = ⇧h u(0), ~✓0h = Ih
~✓(0) and ~s0h = Lh ~s(0), we will use also the notation

En
u = u(tn)�⇧h u(tn) and ⇠

n
u = ⇧h u(tn)�un

h, and the corresponding notation for other
variables. Since for the first time iteration of system (4.3) we adopt a backward Euler
scheme, we require error estimates for this step.

Theorem 5.1 Let us assume that

u 2 L1(0, T ;H3

1

) \ L1(0, T ;V 1

1,⇧(⌦a

)), u0 2 L1(0, T ;H1

1

),

u00 2 L1(0, T ;L2

1

), p 2 L1(0, T ;H2

1

), ~✓ 2 L1(0, T ; ~H3

1,⇧(⌦a

)),

~✓ 0 2 L1(0, T ; ~H2

1

), ~✓ 00 2 L1(0, T ; ~L2

1

), ~s 2 L1(0, T ; ~H3

1

),

~s 0 2 L1(0, T ; ~H2

1

), ~s 00 2 L1(0, T ; ~H1

1

),

and also that kukL1
(0,T ;H1

1

)

< M for a su�ciently small constant M > 0 (a precise con-
dition for M, can be found in Theorem 5.2). Then there exist positive constants C1

u, C
1

✓ ,
C1

s , independently of h and �t, such that

k⇠1uk2L2

1

+
1
2
�t↵̃ak⇠uk2T 1

h
 C1

u(h
2k + �4t ),

1
4
k⇠1~✓k

2

~L2

1

+
1
2
�t↵̂ak⇠~✓k

2

~H1

1

 C1

✓ (h
2k + �4t ),

1
2
k⇠1~sk2~L2

1

+
1
2
�tg1k⇠1~sk2~L2

1

 C1

s (h
2k + �4t ).

Proof. Since these bounds are similar to those used in Theorems 5.2–5.4, we postpone some
details until the proof of those theorems. First, based on the regularity assumptions for u,
for all x there exists � 2 (0, 1) such that

u(0) = u(�t)� �tu
0(�t) +

1
2
�2tu

00(�t�),

where u satisfies the error inequality

k⇠1uk2L2

1

+ �t↵̃ak⇠1uk2T 1

h

 �
�
⇧h u(�t)� u(�t)� (u0

h � u(0)), ⇠1u
�
1,⌦

a

+ �tb
�
Lh p(�t)� p(�t), ⇠

1

u

�

+ �ta
h
1

�
⇧h u(�t), ⇠

1

u

�
� �t

�
ch
1

(u1

h;u
1

h, ⇠
1

u)� ch
1

(u(�t),u(�t), ⇠
1

u)
�

� �td1
�
~✓1h � ~✓(�t), ⇠

1

u

�
� �2t

2

�
u00(�t�), ⇠

1

u

�
,

which follows by choosing ⇠1u as test function in the first equation of Lemma 5.4 and
system (4.2), performing an Euler scheme step, subtracting both equations and adding
±ah

1

(⇧h u(�t), ⇠
1

u).
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Now by applying the error approximation results from Lemmas 5.1 to 5.3, Young’s
inequality and the stability properties from Section 4.3, we get

k⇠1uk2L2

1

+
1
4
�t↵̃ak⇠1uk2T 1

h

 Ch2k�t
�
ku(�t)k2Hk+1

1

+ ku(0)k2
Hk+1

1

+ k~✓(�t)k2Hk+1

1

+ kp(�t)k2Hk
1

�

+ C�4t ku00k2L1
(0,�t;L

2

1

)

+ 48C2

F �tk⇠1~✓k
2

~L2

1

.

(5.1)

Next we follow the same steps to obtain for ~✓

1
2
k⇠1~✓k

2

~L2

1

+
1
2
�t↵̂ak⇠1~✓k

2

~H1

1

 C�th
2k�ku(�t)k2Hk+1

1

+ k~✓(�t)k2~Hk+1

1

+ k~✓(0)k2~Hk+1

1

�

+ C�4t kT 00k2L1
(0,�t;L

2

1

)

+
3C̃C⇤�t
2↵̂a

k⇠uk2T 1

h
+

5�t|f |2
Lip

C⇤

↵̂a
k~✓(�t)k2k⇠1~sk2~L2

1

,

(5.2)

and analogously for ~s

1
2
k⇠~sk2~L2

1

+
1
2
�tg1k⇠~sk2~L2

1

 Ch2k�2t
�
k~s(�t)k2~Hk

1

+ k~s(0)k2~Hk
1

+ k~✓(�t)k2~Hk+1

1

�

+ C�4t k~s00k2L1
(0,�t;~L

2

1

)

+
5|g|2

Lip

�t

2g
1

�
1 + k~s(�t)k2~H1

1

�
k⇠~✓k

2

~H1

1

.

(5.3)

In this way, from (5.1) and (5.3) we have that

3C̃C⇤✏
2

�t
2↵̂a

k⇠uk2T 1

h
 C(h2k + �4t ) +

144C̃C⇤C2

F �t
↵̃a↵̂

k⇠1~✓k
2

~L2

1

,

5�t|f |2
Lip

C⇤

↵̂a
k~✓(�t)k2k⇠1~sk2~L2

1

 C(h2k + �4t ) +
25�t|f |2

Lip

C⇤|g|2
Lip

↵̂ag2
1

�
1 + k~s(�t)k2~H1

1

�
k~✓(�t)k2k⇠~✓k

2

~L2

1

.

We substitute these inequalities into (5.2) and consider �t su�ciently small such that the
terms multiplying k⇠~✓k

2

~L2

1

can be absorbed into the left-hand side of the inequality to get

1
4
k⇠1~✓k

2

~L2

1

+
1
2
�t↵̂ak⇠~✓k

2

~H1

1

 C1

✓ (h
2k + �4t ). (5.4)

Finally we deduce the first and third desired estimates by directly substituting (5.4) on
(5.1) and (5.3). ⇤

Theorem 5.2 Let (u, p, ~✓,~s) be the solution of (2.2), (2.3) under the assumptions of Sec-

tion 3, and (uh, ph, ~✓h,~sh) be the solution of (4.3). Suppose that

u 2 L1(0, T ;Hk+1

1

) \ L1(0, T ;V 1

1,⇧(⌦a

)),

~✓ 2 L1(0, T ; ~Hk+1

1,⇧ (⌦
a

)), u0 2 L1(0, T ;Hk
1

), u(3) 2 L2(0, T ;L2

1

)
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and kukL1
(0,T ;H1

1

)

< M for a su�ciently small constant M > 0. Then there exist positive
constants C, �

1

� 0 independent of h and �t such that for all m+ 1  N ,

k⇠m+1

u k2L2

1

+ k2⇠m+1

u � ⇠mu k2L2

1

+
mX

n=1

k⇤⇠nuk2L2

1

+
mX

n=1

�t↵̃ak⇠n+1

u k2T 1

h

 C(�4t + h2k) +
mX

n=1

�
1

�tk⇠n+1

~✓
k2~L2

1

.

Proof. We choose as test function vh = ⇠n+1

u in the first equation of (4.3) and insert the
terms

± 1
2�t

�
3u(tn+1

)� 4u(tn) + u(tn�1

), ⇠n+1

u

�
,

± 1
2�t

�
3⇧h u(tn+1

)� 4⇧h u(tn) +⇧h u(tn�1

), ⇠n+1

u

�
, ±ah

1

�
⇧h u(tn+1

), ⇠n+1

u

�
.

Hence we get

1
2�t

�
3⇠n+1

u � 4⇠nu + ⇠n�1

u , ⇠n+1

u

�
1,⌦

a

+
1
2�t

�
3En+1

u � 4En
u + En�1

u , ⇠n+1

u

�
1,⌦

a

+
1
2�t

�
3u(tn+1

)� 4u(tn) + u(tn�1

), ⇠n+1

u

�
1,⌦

a

+ ah
1

(⇠n+1

u , ⇠n+1

u )

+ ah
1

(⇧h u(tn+1

), ⇠n+1

u ) + ch
1

(un+1

h ,un+1

h , ⇠n+1

u ) + b(⇠n+1

u , pn+1

h )

= d
1

(~✓n+1

h , ⇠n+1

u ).

(5.5)

Considering the first equation on Lemma 5.4 at t = tn+1

with v = ⇠n+1

u , and after inserting
the term

± 1
2�t

�
3u(tn+1

)� 4u(tn) + u(tn�1

), ⇠n+1

u

�
1,⌦

a

,

we readily deduce the identity

1
2�t

�
3u(tn+1

)� 4u(tn) + u(tn�1

), ⇠n+1

u

�
1,⌦

a

+ ah
1

�
u(tn), ⇠

n+1

u

�
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1

�
u(tn+1

),u(tn+1

), ⇠n+1

u

�
+ b(⇠n+1

u , p(tn+1

))

= d
1

(~✓(tn+1

), ⇠n+1

u )

�
✓
u0(tn+1

)� 1
2�t

�
3u(tn+1

)� 4u(tn) + u(tn�1

)
�
, ⇠n+1

u

◆

1,⌦
a

.

(5.6)

We can then subtract (5.6) from (5.5) and multiply both sides by 4�t to obtain an identity
I
1

+ I
2

+ · · ·+ I
8

= 0, where

I
1

:= 2
�
3⇠n+1

u � 4⇠nu + ⇠n�1

u , ⇠n+1

u

�
, I

2

:= 4�ta
h
1

(⇠n+1

u , ⇠n+1

u )
1,⌦

a

,

I
3

:= 4�t

✓
u0(tn+1

)� 1
2�t

�
3u(tn+1

)� 4u(tn) + u(tn�1

)
�
, ⇠n+1

u

◆

1,⌦
a

,

I
4

:= 2
�
3En+1

u � 4En
u + En�1

u , ⇠n+1

u

�
, I

5

:= �4�td1(~✓
n+1

h � ~✓(tn+1

), ⇠n+1

u )
1,⌦

a

,

I
6

:= 4�ta
h
1

�
En+1

u , ⇠n+1

u

�
,

I
7

:= 4�t
�
ch
1

(un+1

h ,un+1

h , ⇠n+1

u )� ch
1

�
u(tn+1

),u(tn+1

), ⇠n+1

u

��
,
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I
8

:= 4�tb(⇠
n+1

u , pn+1

h � p(tn+1

)).

For the first term, using (4.11) we can assert that

I
1

= k⇠n+1

u k2L2

1

+ k2⇠n+1

u � ⇠nuk2L2

1

+ k⇤⇠n+1

u k2L2

1

� k⇠nuk2L2

1

� k2⇠nu � ⇠n�1

u k2L2

1

.

Using the ellipticity stated in (4.7), we readily get

I
2

� 4�t↵̃ak⇠n+1

u k2T 1

h
.

By using Taylor’s formula with integral remainder we have

����u
0(tn+1

)� 3u(tn+1

)� 4u(tn) + u(tn�1

)
2�t

���� =
�
3/2
t

2
p
3
ku(3)kL2

(tn�1,tn+1

;L2

1

)

,

then by combining Cauchy-Schwarz and Young’s inequality, we obtain the bound

|I
3

|  �4t
24"

1

ku(3)k2L2

(tn�1

,tn+1

;L2

1

)

+
�t"1
2

k⇠n+1

u k2T 1

h
.

Now we insert ±4�tE
0
u(tn+1

) into the fourth term, which leads to

I
4

= �4�t(E
0
u(tn+1

), ⇠n+1

u )
1,⌦

a

+

✓
E0

u(tn+1

)� 3En+1

u � 4En
u + En�1

u

2�t
, ⇠n+1

u

◆

1,⌦
a

.

Proceeding as before and using Lemma 5.2 on the first term of I
4

, we get

|I
4

|  C

2"
2

h2kku0k2L1
(0,T ;Hk

1

)

+
�t"2
2

k⇠n+1

u k2T 1

h

+
�4tC

2"
3

ku(3)k2L2

(0,T ;L2

1

)

+
�t"3
2

k⇠n+1

u k2T 1

h
.

Now by (4.6a), appealing to Lemma 5.3, and inserting ±4�td1(Ih
~✓n+1, ⇠n+1

u ), we are left
with

|I
5

|  4�tCF k⇠n+1

~✓
+ En+1

~✓
k~L2

1

k⇠n+1

u kT 1

h

 16C2

F �t
2"

4

⇣
Ch2kk~✓k2

L1
(0,T ;

~Hk+1

1

)

+ k⇠n+1

~✓
k2~L2

1

⌘
+
�t"4
2

k⇠n+1

u k2T 1

h
.

And again by Lemmas 5.2 and 4.1 we immediately have

|I
6

|  4�tC̃akEn+1

u kT 1

h
k⇠n+1

u kT 1

h
 2C̃2

a�th
2k

"
5

kuk2
L1

(0,T ;Hk+1

1

)

+
�t"5
2
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u k2T 1

h
.

Adding and subtracting suitable terms within I
7

yields

I
7

= Ĩ
7

� 4�tch
1

�
un+1

h , ⇠n+1

u , ⇠n+1

u

�
,

where we define

Ĩ
7

:= �4�t
�
ch
1

(u(tn+1

),⇧h u(tn+1

), ⇠n+1

u )� ch
1

(⇧h u(tn+1

),⇧h u(tn+1
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u )
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1
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),⇧h u(tn+1
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u )� ch
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u
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+ ch
1

(⇧h u(tn+1

),u(tn+1

), ⇠n+1

u )� ch
1

(u(tn+1

)u(tn+1

), ⇠n+1

u )
�
.

The bound (4.10) and Lemma 5.2 imply that

|Ĩ
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h
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h
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h
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h
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h
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h
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h

�

 4�t
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7
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+
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2
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h

◆

 4�t

✓
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h
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)

kuk2L1
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+
"
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2
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u k2T 1

h

◆
,

where C⇤ is a positive constant coming from Lemma 5.2. Finally, using Lemmas 4.1 and 5.1
we obtain

|I
8

|  8�tCh2k

"
8

kpk2L1
(0,T ;Hk

(⌦
a

))

+
�t"8
2

k⇠n+1

u k2T 1

h
.

Hence, by choosing "i = ↵̃a/3 for i = {1, 2, 3, 4, 5, 8}, "
6

= "
7

= 7↵̃a/16, collecting the
above estimates, and summing over 1  n  m for all m+ 1  N ; we get

k⇠m+1

u k2L2

1
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1

+
mX

n=1
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1
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.

where 4C̃cC
⇤M  ↵̃a/4 and �

1

= 24C2

F /↵̃a. Finally, using Theorem 5.1, we get the desired
result. ⇤

Theorem 5.3 Let (u, p, ~✓,~s) be the solution of (2.2), (2.3) under the assumptions of Sec-

tion 3 and (uh, ph, ~✓h,~sh) be the solution of (4.3). If

u 2 L1(0, T ;Hk+1

1

) \ L1(0, T ;V 1
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1
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1
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then there exist constants C, �s, �u > 0, independent of h and �t, such that for all m+1  N
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Proof. Proceeding similarly as in the proof of Theorem 5.2, we choose as test function
~ h = ⇠n+1

~✓
in the second equation of (4.3) and insert suitable additional terms to obtain

the following identity, which is analogous to (5.5):

1
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Starting from the second equation in Lemma 5.4, focusing on t = tn+1

, using ~ = ⇠n+1
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and proceeding as in the derivation of (5.6), we obtain
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(5.8)

Next we proceed to subtract (5.8) from (5.7), and to multiply both sides by 4�t. This leads
to an identity Î
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+ · · ·+ Î
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= 0, where
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For the first, second, and third terms, we use (4.11), (2.15), and Taylor expansion together
with Young’s inequality, respectively, to obtain
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Inserting ±4�tE
0
~✓
(tn+1

) into Î
4

and using Lemma 5.3 leads to the bound
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Employing again Lemma 5.3 in combination with (2.12b) we have
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In order to derive a bound for Î
6

we proceed as for the bound on I
7

in the proof of
Theorem 5.2; namely adding and subtracting suitable terms in the definition of Î

6

, defining
Ĩ
6

in this case by
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and applying (4.9), (4.6b) and Lemma 5.3 to the result, we get
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Next we add and subtract suitable terms in Î
7

to obtain
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After passing the last expression to the left-hand side and using (2.5), we can combine
(2.6) and (2.7), to infer that the remaining terms in Î

7

(which we now denote as Î⇤
7

) are
bounded as follows:
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In this manner, and after choosing "i = 3↵̂a/7 for i 2 {1, 2, 3, 4, 8, 9, 10} and "
5

= "
6

=
"
7

= ↵̂a/4, we can collect the above estimates and sum over 1  n  m, for all m+1  N ,
to get
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Identifying the constants
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we may conclude the proof. ⇤

Theorem 5.4 Let (u, p, ~✓,~s) be the solution of (2.2), (2.3) under the assumptions of Sec-

tion 3, and (uh, ph, ~✓h,~sh) be the solution of (4.3). If

u 2 L1(0, T ;Hk+1

1

) \ L1(0, T ;V 1
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then there exist constants C, �
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> 0 that are independent of h and �t such that for all
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Proof. We choose as test function ~lh = ⇠n+1

~s in the third equation of (4.3) and add and
substract suitable terms. Analogously to (5.6) and (5.7), we obtain
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(5.9)

Now we consider (2.4d) at time t = tn+1

, using also ~l = ⇠n+1

~s as test function. Adding and
subtracting a suitable term, we deduce the relation
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As in the two previous proofs, we subtract (5.10) from (5.9) and multiply both sides by
4�t to obtain Ī
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Ī
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For the first, second, and third terms, we proceed to use (4.11), the ellipticity (2.8), and
Taylor expansion to get
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For the fourth term we include ±4�tE
0
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) and use Taylor’s formula and Lemma 5.3,
which leads to
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To handle Ī
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, we add and subtract the terms
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Then, owing to (2.9), (2.11), Lemma 5.1, and Young’s inequality, we end up with

|Ī
5

|  Cg2
2

�th
2k

"
4

k~sk2
L1

(0,T ;

~Hk
1

)

+
"
4

�t
2

k⇠~sk2~L2

1

+
8|g|2

Lip

�t

"
5

k⇠n+1

~✓
k2~H1

1

k~sk2
L1

(0,T ;

~H1

1

)

+
"
5

�t
2

k⇠~sk2~L2

1

+
C|g|2

Lip

h2k�t

"
6

k~✓k2
L1

(0,T ;

~Hk+1

1

)

k~sk2
L1

(0,T ;

~H1

1

)

"
6

�t
2

k⇠~sk2~L2

1

.

Finally we insert ±4�td4(Ih
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and use Lemma 5.3 in order to deduce the
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It then su�ces to take "i = 3g
1

/4 for all i 2 {1, . . . , 10} and to sum over 1  n  m, for all
m+ 1  N in the above estimates, which, in combination with Theorem 5.2 implies that

k⇠m+1

~s k2~L2

1

+ k2⇠m+1

~s � ⇠m~s k2~L2

1

+
mX

n=1

k⇤⇠n~s k2~L2

1

+
mX

n=1

�tg1k⇠n+1

~s k2~L2

1

 C(�4t + h2k) +
32|g|2

Lip

3g
1

⇣
1 + k~sk2

L1
(0,T ;

~H1

1

)

⌘
�t

mX

n=1

k⇠n+1

~✓
k2~L2

1

,

and the result follows by choosing
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Theorem 5.5 Under the same assumptions of Theorems 5.2 - 5.4, there exist positive
constants �̂u, �̂✓ and �̂s independent of �t and h, such that for a su�ciently small �t and
all m+ 1  N , the following inequalities hold:
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Proof. From Theorem 5.2 and 5.4 we have the estimates
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which, after substituting them back into Theorem5.3, yield
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For the last term on the right-hand side of this last bound we have
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and considering �t su�ciently small and applying Gronwall’s lemma, we readily infer the
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The first and third bounds follow by combining (5.11) and Theorems 5.2 and 5.4. ⇤

Lemma 5.5 Under the same assumptions of Theorem 5.5, we have
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Proof. Owing to the inf-sup condition (4.1), there exists wh 2 X?
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From (4.3) and Lemma 5.4, proceeding as in the proof of Theorem 5.2, we obtain
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Summing over 1  n  m for all m + 1  N and substituting back into equations (5.12)
and (5.13), we obtain
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and the desired result readily follows from Theorem 5.5. ⇤

6 Numerical tests

6.1 Example 1: Accuracy tests

In our first computational test we examine the convergence of the Galerkin method (4.2),
taking as computational domain the square ⌦ = (0, 1)2. We take the parameter values
⌫ = 0.1, k+(x) = 1, g = (0,�1)T , K�1 = I, D = 10�3I, Ds = 1, ⇢

f

= � = 1, ⇢
b

= 0.1,
a
0

= 500 · 10k, where k is the polynomial degree. Following the approach of manufactured
solutions, we prescribe boundary data and additional external forces and adequate source
terms so that the closed-form solutions to (1.1), (2.1) are given by the smooth functions

u(r, z, t) =

✓
0

� cos(r⇡/2) exp(�t)

◆
, ~✓(r, z, t) =

✓
z2r2(3� 2r)(1� exp(�t))
z2r2(3� 2r)(1� exp(�t))

◆
,

p(r, z, t) = (r3 � 2z4) sin(t), ~s(r, z, t) =

✓
1� exp(�z2r2(3� 2r)(t+ exp(t)))
1� exp(�z2r2(3� 2r)(t+ exp(t)))

◆
.
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k DoF eu rate ep rate e~✓ rate es rate

1 75 0.05435 – 0.57400 – 0.26530 – 0.11760 –

259 0.02894 0.909 0.12480 2.201 0.13940 0.928 0.05934 0.986

963 0.01466 0.981 0.05242 1.252 0.07039 0.986 0.02978 0.995

3715 0.00736 0.995 0.02545 1.042 0.03537 0.993 0.01490 0.999

14595 0.00368 0.998 0.01202 1.083 0.01792 0.981 0.00746 0.999

2 195 0.00537 – 0.77890 – 0.00071 – 0.05373 –

715 0.00149 1.848 0.11910 2.710 0.00018 1.947 0.01480 1.860

2739 0.00038 1.953 0.01749 2.767 4.619e-5 2.001 0.00378 1.970

10723 9.074e-5 2.084 0.00249 2.813 1.154e-5 2.001 0.00095 1.992

42435 2.328e-5 1.963 0.00052 2.256 2.909e-6 1.988 0.00024 1.998

Table 6.1 Example 1 (Spatial accuracy test): experimental errors and convergence rates for the ap-

proximate solutions uh, ph, ~✓h and sh. Values are displayed for schemes with first- and second-order in
space

�t êu rate êp rate ê~✓ rate ês rate

2.5 0.5496 – 0.5663 – 17.691 – 0.6738 –

1.25 0.1408 1.964 0.1177 2.266 3.2720 2.435 0.1673 2.009

0.625 0.0289 2.284 0.0258 2.188 0.6621 2.305 0.0409 2.032

0.3125 0.0066 2.119 0.0061 2.091 0.1519 2.124 0.0105 1.965

0.1562 0.0016 2.047 0.0015 1.976 0.0366 2.054 0.0027 1.934

Table 6.2 Example 1 (time accuracy test): experimental errors and convergence rates for the approxi-

mate solutions uh, ph, ~✓h and sh, computed for each refinement level

As u is prescribed everywhere on @⌦
a

, for sake of uniqueness we impose p 2 L2

0,1(⌦a

)
through a real Lagrange multiplier approach. Also note that the exact solutions satisfy the
boundary conditions (2.3a), (2.3b), (2.3c) on the inlet, wall, and symmetry axis, respec-
tively, whereas instead of (2.3d) we set

u = u
out

, Dr~✓ · n = ~0,

on the outlet � out

a

⇥ (0, T ]. The accuracy of the spatial semi-discretisation is tested by
considering a sequence of uniformly refined meshes {Th,l}l of mesh size hl = 2�l

p
2, and

fixing T = 0.005 with �t = 0.001. Relative errors in their natural norms, along with the
corresponding convergence rates are computed as

eu =
ku� uhkT 1

h

kukT 1

h

, ep =
kp� phkL2

1

(⌦
a

)

kpkL2

1

(⌦
a

)

, e~✓ =
k~✓ � ~✓hk ~H1

1

(⌦
a

)

k~✓k ~H1

1

(⌦
a

)

,

e~s =
k~s� ~shk ~H1

1

(⌦
a

)

k~sk ~H1

1

(⌦
a

)

, rate = log(e
(·)/ẽ(·))[log(h/h̃)]

�1,

where e, ẽ denote errors generated on two consecutive meshes of sizes h and h̃, respectively.
These quantities are listed in Table 6.1 for k = 0 and k = 1, and they indicate optimal
error decay in the light of Theorem 5.5.
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Regarding the convergence of the time advancing scheme, now we set T = 5 and
consider a sequence of uniform refined time partitions ⌧l, l 2 {1, 2, 3, 4, 5} where the time
step is 5/2l. Absolute errors are computed as

êu =

 
mX

n=1

�tku(tn+1

)� un+1

h k2T 1

h

!
1/2

, êp =

 
mX

n=1

�tkp(tn+1

)� pn+1

h k2L2

1

!
1/2

,

ê~✓ =

 
mX

n=1

�tk~✓(tn+1

)� ~✓ n+1

h k2~H1

1

!
1/2

, ê~s =

 
mX

n=1

�tk~s(tn+1

)� ~sn+1

h k2~L2

1

!
1/2

,

and we readily observe from Table 6.2 that the method converges to the exact solution
with the expected second-order rate.

6.2 Example 2: Validation against experimental data

Now we define a di↵erent adimensionalisation of (1.1a)-(2.1d) that follows the recent model
(tailored specifically for soil-based water filters for arsenic removal) proposed in [31]. This
problem considers only one type of contaminant and only one type of adsorption. Defining
as L, vi, ✓0, smax

the representative length of the column, the linear inflow rate, initial solids
concentration, and maximum adsorption, respectively; we define dimensionless variables as

r̄ =
r

L
, z̄ =

z

L
, ū =

u

vi
, ✓̄ =

✓

✓
0

, p̄ =
L(p� p

atm

)
µvi

, s̄ =
s

s
max

, t̄ = k+✓
0

t,

and we also define the constants

Re =
⇢
f

viL

⌫
, Pe =

viL

D
, Da =



L2

, ↵ =
⇢
b

s
max

✓
0

, � =
k+L2✓

0

D
. (6.1)

Making abuse of notation, the problem defined in ⌦
a

⇥ (0, T ] adopts the form

�Re
Pe

@tu+Reu ·ru+
1
Da

u� 1
�
div

a

("(u)) +rp+
1
�
(ur/r

2)e
1

= 0,

div
a

u = 0,

��

Pe
@t✓ �

1
Pe

div
a

(r✓) + u ·r✓ = �↵�
Pe
@ts,

@ts = ✓(1� s).

The setup consists of a lab-scale filter (a column of height 1 and radius R̄ = 0.11, already
in dimensionless units) where one varies the feed flow rate, the arsenic concentration at the
feed, and also the bed height. Gravitational e↵ects are not considered, and the boundary
and initial conditions are precisely as in (2.3a)-(2.3e). The configuration of the system
implies that the non-dimensional constants from (6.1) assume the values

Re = 68.1, Pe = 1.11 · 105, Da = 8000, ↵ = 248, � = 136,

and the remaining parameter values are � = 0.48, uin(r, z) = (0, 1

¯R2

(r � R̄)(r + R̄))t,

✓in = 1. We employ a structured mesh of 8000 triangular elements and define a constant
time step of �t = 0.15 (adimensional time t = 0.15 ⇡ 1 day).
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Fig. 2 Example 2 (validation against experimental data): contaminant concentration after one day
(left). Value of ✓|

avg

(t) (experimental observation from [31] and numerical simulation) using raw laterite
as the adsorbent (right)

During the filtration process the soil-based bed reaches a point in time where it is no
longer adequate for adsorption. This phenomenon can be observed in Figure 2 where we
plot the evolution of the average concentration of the contaminant ✓ on the outlet, that is

✓
avg

(t) =
2

R̄2

Z

� out

a

✓ r ds.

We also compared the predictions of the model with experimental data, collected for a
filter that uses raw laterite as an adsorbent medium, and to which an arsenic solution is
injected in its upper part [31]. The qualitative results displayed on figure 2 seem to show
an acceptable adjustment to the experimental data. This suggest that the model and the
axisymmetric divergence-conforming scheme can be used e↵ectively as a tool to study the
behaviour of the filtration process under similar flow regimes.

6.3 Example 3: Two contaminants in a two-layer filter

We model a filter with two contaminants and two layers. The domain has a R/L ratio of
0.22. While the inlet is the top wall, the outlet is the region {(z, r)|z = 0 and 0  r 
0.25R}. For (2.2) we take (1.2) with m = 2 and and we consider µ = 8.94 · 10�4 Pa s,
vi = 6.0 · 10�3 m/s, ⇢

f

= 103 kg/m3, ✓in
1

= 8.0 · 10�5 kg/m3, ✓in
2

= 2.0 · 10�5 kg/m3,
smax

1

= 10�3 kg/kg, smax

2

= 10�2 kg/kg. In addition, the rheology of the grains is di↵erent
in the top and bottom halves of the domain. More precisely, we have

D
top

= 3.8 · 10�11 m2/s, D
bot

= 7.6 · 10�12 m2/s, �
top

= 0.32, �
bot

= 0.28,

⇢
b,top = 1050 kg/m3, ⇢

b,bot = 1100 kg/m3, k+

1,top = 5.0 · 10�3 m3/(kg s),

k+

2,top = 0m3/(kg s), k+

1,bot = 2.5 · 10�3 m3/(kg s), k+

2,bot = 10�3 m3/(kg s),
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Fig. 3 Example 3 (two contaminants in two-layer filter): concentration of contaminants at times t =
10, 100, 300

and the permeability K(x) = (x)I has a log-uniform distribution in each layer that
satisfies

1.57 · 10�9 m2  
top

(x)  3.04 · 10�6 m2,

5.18 · 10�10 m2  
bot

(x)  10�6 m2.

Qualitative results for the concentration of the two contaminants at times t = 10, 100 and
300 are shown on Figure 3. As expected, most of the first contaminant is retained in the
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Fig. 4 Example 3 (two contaminants in two-layer filter): concentration of contaminants ✓
avg,i(t) using

a cylinder and changing order of layers (top); and similar computation using a truncated cone (bottom)

upper layer, whereas the second one passes the first layer to begin to be retained in the
lower layer.

Now we change values to smax

1

= 10�7 kg/kg and smax

2

= 10�6 kg/kg and run the
simulation for a longer time to assess how the swapping the order of layers and the geometry
a↵ect the contaminant removal, measured by ✓

avg

(t). For the first two tests we use the same
cylinder, altering only the order of the layers. As we can see from the top panels of Figure 4,
reversing the order of the layers softens the transition towards saturation, but the most
important behaviour is reached essentially at the same time in both cases. We also test
with a truncated cone (see dimensions in the bottom left panel of Figure 4). The saturation
is now achieved in a much shorter time, which could be explained by a combined e↵ect of
volume reduction (and therefore of adsorbent mass), and faster flow patterns that decrease
the retention time and thus the adsorption of the system.

Acknowledgement. We are thankful to Ian Gri�ths (Oxford) for the stimulating discussions about
water filter models and for providing the experimental data employed in Section 6.2.

In addition, this work has been partially supported by projects CRHIAM, project CONICYT /
FONDAP / 15130015; CONICYT / PIA / AFB170001; by CONICYT through the Becas-Chile program
for foreign students; by the INRIA Associated Team “E�cient numerical schemes for non-local transport
phenomena” (NOLOCO; 2018–2020); by SENESCYT Ecuador through the postgraduate scholarship
program; by the Laboratory of Mathematical Modelling, Institute of Personalised Medicine, Sechenov



Axisymmetric Navier-Stokes-Brinkman-transport equations 37

University; and by the Oxford Centre for Doctoral Training on Industrially Focused Mathematical
Modelling.

References

1. Agroum, R., Bernardi, C., Satouri, J.: Spectral discretization of the time-dependent Navier-Stokes
problem coupled with the heat equation. Appl. Math. Comput. 268, 59–82 (2015)

2. Aldbaissy, R., Hecht, F., Mansour, G., Sayah, T.: A full discretisation of the time-dependent Boussi-
nesq (buoyancy) model with nonlinear viscosity. Calcolo 55, 44:1–29 (2018)

3. Amara, M., Capatina-Papaghiuc, D., Denel, B., Terpolilli, P.: Mixed finite element approximation
for a coupled petroleum reservoir model. ESAIM: Math. Model. Numer. Anal. 39, 349–376 (2005)

4. Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: Stabilized mixed approximation of axisymmetric
Brinkman flows. ESAIM: Math. Model. Numer. Anal. 49, 855–874 (2015)

5. Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: Mixed methods for a stream-function–vorticity
formulation of the axisymmetric Brinkman equations. J. Sci. Comput. 71, 348–364 (2017)

6. Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: A vorticity-pressure finite element formulation for
the Brinkman-Darcy coupled problem. Numer. Methods Partial Di↵er. Eq. 35, 528–544 (2019)

7. Aouadi, S.M., Bernardi, C., Satouri, J.: Mortar spectral element discretization of the Stokes problem
in axisymmetric domains. Numer. Methods Partial Di↵er. Eq. 30, 44–73 (2014)

8. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin
methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001/02)

9. Assous, F., Ciarlet, P., Labrunie, S.: Theoretical tools to solve the axisymmetric Maxwell equations.
Math. Methods Appl. Sci. 25, 49–78 (2002)

10. Belhachmi, Z., Bernardi, C., Deparis, S.: Weighted Clément operator and application to the finite
element discretization of the axisymmetric Stokes problem. Numer. Math. 105, 217–247 (2006)

11. Belhachmi, Z., Bernardi, C., Deparis, S., Hecht, F.: An e�cient discretization of the Navier-Stokes
equations in an axisymmetric domain. Part 1: The discrete problem and its numerical analysis. J.
Sci. Comput. 27, 97–110 (2006)

12. Bernardi, C., Dauge, M., Maday, Y.: Spectral methods for axisymmetric domains. in: Series in
Applied Mathematics, Gauthier-Villars, North Holland, Paris, Amsterdam 1999

13. Bernardi, C., Chorfi, N.: Spectral discretization of the vorticity, velocity, and pressure formulation
of the Stokes problem. SIAM J. Numer. Anal. 44, 826–850 (2007)

14. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic
problems. Numer. Math. 47, 217–235 (1985)

15. Bürger, R., Ruiz-Baier, R., Torres, H.: A stabilized finite volume element formulation for
sedimentation-consolidation processes. SIAM J. Sci. Comput. 34, B265–B289 (2012)

16. Bürger, R., Kumar, S., Ruiz-Baier, R.: Discontinuous finite volume element discretization for coupled
flow-transport problems arising in models of sedimentation. J. Comput. Phys. 299, 446–471 (2015)

17. Bürger, R., Kenettinkara, S.K., Ruiz-Baier, R., Torres, H.: Coupling of discontinuous Galerkin
schemes for viscous flow in porous media with adsorption. SIAM J. Sci. Comput. 40, B637–B662
(2018)

18. Bürger, R., Méndez, P.E., Ruiz-Baier, R.: On H(div)-conforming methods for double-di↵usion equa-
tions in porous media. SIAM J. Numer. Anal. 57, 1318–1343 (2019)
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púlveda, Rodrigo Véjar: Exponential stability for the nonlinear Schrödinger equa-
tion with locally distributed damping
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