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Abstract

This article is concerned with a compressible fluid flow with non-homogeneous Dirichlet bound-
ary condition. First, we reformulate the problem in its dual mixed form, and then we study its
corresponding well posedness. Next, in order to circumvent the well known Babuška-Brezzi con-
dition, we analyse a stabilised formulation of the resulting approach. Additionally, we endow the
scheme with an a posteriori error estimator that is reliable and efficient. Finally, we provide nu-
merical experiments that illustrate the performance of the corresponding adaptive algorithm and
support its use in practice.

Mathematics Subject Classifications (1991): 65N15, 65N30, 65N50
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1 Introduction

In [15] a dual mixed finite element method for the incompressible fluid flow was introduced and
analysed. The approach there follows the ideas developed in [14], i.e., the incompressible fluid flow
is reformulated using the new variable so-called pseudostress, which is in relation with the pressure
and gradient of the velocity. The main advantage of this new variable is the accurate approximation
to physical quantities such as the stress and vorticity, allowing to use the pair of conforming Raviart-
Thomas with discontinuos polynomial as the finite element space. Furthermore, in order to obtain
more flexibility in the finite element spaces, the stabilisation of this approach has been studied in
[19], and additionally its corresponding extension to quasi Newtonian flows and Brinkman model were
developed in [20] and [4], respectively.
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On the other hand, studying linear elasticity problem, in [3] we present an alternative a posteriori
error estimator to the previous one developed in [12]. This approach is based on the Ritz projection
of the error (see [11]). As result, in the case of homogeneous Dirichlet boundary condition, we obtain
a reliable and local efficient a posteriori error estimator, that only requires the computation of four
residuals per element, which is a low computational cost comparing with the eleven terms included in
the estimator developed in [12] for the same case. This kind of a posteriori error estimator, at least,
have been developed satisfactorily in different directions, for example, the Poisson problem is studied
in [11], Darcy flow in [8] and [9], the Brinkman model in [5], linear elasticity in [3] and recently the
Oseen equations in [10].

Then, our interest in this article is to study a compressible fluid flow using a stabilised mixed
approach. In order to describe as clear as possible the stabilisation procedure, we begin by applying a
dual mixed approach, where the well posedness is consequence of the standard Babuška-Brezzi theory.
After that, we include the analysis of a stabilised formulation, which allows us to expand the choice
of stable pairs that could be used to approximate the solution. In addition, and strongly motivated
by the reduction of computational cost obtained with the a posteriori error estimator based on Ritz
projection of the error, we endowed the new approach with an estimator of this type, which have only
five terms, thus it has a low computational cost.

In what follows, in order to describe the model of interest, we let Ω be a bounded and simply
connected domain in R2 with polygonal boundary Γ. Then, given the source terms f̃ ∈ L2

0(Ω),
f ∈ [L2(Ω)]2 and g ∈ [H1/2(Γ)]2, we look for the velocity (vector field) u and the pressure (scalar
field) p such that

−ν∆u + ∇p = f in Ω , div(u) = f̃ in Ω , and u = g on Γ , (1)

where ν > 0 is the fluid viscosity of the flow and the datum g satisfies the compatibility condition∫
Γ g · n = 0, with n being the unit outward normal at Γ. In addition, for uniqueness purposes, we

seek p ∈ L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω q = 0}.

The rest of the paper is organised as follows. In Section 2, we analysed the dual mixed variational
formulation for the compressible fluid flow in the plane, the corresponding Galerkin scheme and the
simplest finite element subspaces that can be used. Section 3 is concerned with a stabilisation of the
dual mixed approach, whereas in Section 4, we develop an a posteriori error analysis and deduce a
new a posteriori error estimate. Finally, in Section 5 we provide several numerical experiments that
support the use of our a posteriori error estimates in practice.

We end this section with some notations to be used throughout the paper. Given a Hilbert
space H, we denote by H2 (resp., H2×2) the space of vectors (resp., square tensors) of order 2 with
entries in H. Given τ := (τij) and ζ := (ζij) ∈ R2×2, we denote τ t := (τji), tr(τ ) := τ11 + τ22 and
τ : ζ :=

∑2
i,j=1 τij ζij . We also use the standard notations for Sobolev spaces and norms. Finally, C or

c (with or without subscripts) denote generic constants, independent of the discretization parameters,
that may take different values at different occurrences.
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2 The dual mixed formulation

We begin this work introducing the dual mixed formulation for the Stokes system. To this end,
we first reformulate problem (1) introducing the pseudostress σ := ν∇u − pI in Ω as an additional
unknown. Considering the compressibility condition div(u) = f̃ in Ω, it is not difficult to see that
p = ν

2 f̃ −
1
2tr(σ) in Ω, which implies that σ ∈ H0 := {τ ∈ H(div; Ω) :

∫
Ω tr(τ ) = 0}. This relation

allows us to eliminate the pressure of the second order problem (1) and thus derive the following first
order system: Find (σ,u) ∈ H0 × [H1(Ω)]2

1

ν
σd −∇u = −1

2
f̃I in Ω , div(σ) = −f in Ω, and u = g on Γ . (2)

Proceeding in the usual way, we deduce the variational formulation based on velocity-pseudostress,
which reads as follow: Find (σ,u) ∈ H0 × [L2(Ω)]2 such that

a(σ, τ ) + b(τ ,u) = G(τ ) ∀ τ ∈ H0 ,

b(σ,v) = F (v) ∀ v ∈ [L2(Ω)]2 ,
(3)

where the bilinear forms a : H ×H → R and b : H × [L2(Ω)]2 → R are defined by

a(σ, τ ) :=
1

ν

∫
Ω
σd : τ d ∀σ, τ ∈ H and b(τ ,v) :=

∫
Ω

v · div(τ ) ∀ (τ ,v) ∈ H × [L2(Ω)]2 ,

and the linear functionals G : H → R and F : [L2(Ω)]2 → R are given by

G(τ ) := 〈τn,g〉 − 1

2

∫
Ω
f̃ tr(τ ) ∀ τ ∈ H and F (v) := −

∫
Ω

f · v ∀v ∈ [L2(Ω)]2 .

For simplicity, we introduce the spaces H := H × [L2(Ω)]2 and H0 := H0 × [L2(Ω)]2. Existence,
uniqueness and stability are collected in the next result, whose proof is similar to the one of Theorem
2.1 in [7].

Theorem 1 Problem (3) has a unique solution (σ,u) ∈ H0. Moreover, there exists a constant C > 0,
independent of the solution, such that

‖(σ,u)‖H ≤ C
(
‖f‖[L2(Ω)]2 + ‖f̃‖L2(Ω) + ‖g‖[H1/2(Γ)]2

)
. (4)

2.1 An a priori error analysis

Since the dual mixed variational formulation (3) has a similar structure as the one applied for in-
compresible fluid flow developed in [15], in this section we establish the results for their stable pairs.
In what follows, we assume that Ω is a polygonal region and let {Th}h>0 be a regular family of tri-
angulations of Ω̄ such that Ω̄ = ∪{T : T ∈ Th }. Given a triangle T ∈ Th, we denote by hT its
diameter and define the mesh size h := max{hT : T ∈ Th }. In addition, given an integer ` ≥ 0 and

3



a subset S of R2, we denote by P`(S) the space of polynomials in two variables defined in S of total
degree at most `, and for each T ∈ Th, we define the local Raviart-Thomas space of order κ (cf. [23]),
RT κ(T ) := [Pκ(T )]2 ⊕ xPκ(T ) ⊆ [Pκ+1(T )]2 ∀x ∈ T . Then, given an integer r ≥ 0, we define the
finite element subspaces

Hσh :=
{
τ h ∈ H(div; Ω) : τ h|T ∈ [RT r(T )t]2 , ∀T ∈ Th

}
,

Hσ0,h :=

{
τ h ∈ Hσh :

∫
Ω

tr(τ h) = 0

}
,

Hu
h :=

{
vh ∈ [L(Ω)]2 : vh|T ∈ [Pr(T )]2 , ∀T ∈ Th

}
,

Now, setting H0,h := Hσ0,h ×Hu
h , the discrete scheme associated to variational formulation (3) reads

as follows: Find (σh,uh) ∈ H0,h such that

a(σh, τ ) + b(τ ,uh) = G(τ ) ∀ τ ∈ Hσ0,h ,

b(σh,v) = F (v) ∀ v ∈ Hu
h ,

(5)

The well posedness of this Galerkin scheme is guaranteed thanks to Babuška-Brezzi theory, and it
is established in Section III in [15]. The corresponding rate of convergence of the method for this
particular choice of finite element subspaces, is recalled in the next theorem.

Theorem 2 Let (σ,u) ∈ H0 and (σh,uh, ) ∈ H0,h be the unique solutions to problems (3) and (5),
respectively. In addition, Assume that σ ∈ [Ht(Ω)]2×2, div(σ) ∈ [Ht(Ω)]2, u ∈ [Ht+1(Ω)]2 and for
some t ∈ (0, 1]. Then, there exists C > 0, independent of h, such that there holds

‖(σ,u)− (σh,uh)‖H

≤ C ht
(
‖σ‖[Ht(Ω)]2×2 + ‖div(σ)‖[Ht(Ω)]2 + ‖u‖[Ht+1(Ω)]2

)
.

Proof. It is consequence of approximation properties of finite elements and Céa estimate. We omit
further details. �

3 The stabilised mixed finite element method

The aim of this section is to enlarge the set of stable pairs that allow us to approximate the solution
of (3). This is obtained by modifying the bilinear form, and includes the least squares type terms

δ1

∫
Ω

(ν∇u− σd) : (τ d + ν∇v) =
δ1ν

2

2

∫
Ω
f̃ div(v), ∀(τ ,v) ∈ H , (6)

∫
Ω

div(σ) · div(τ ) = −
∫

Ω
div(τ ) · f ∀τ ∈ H(div; Ω) , (7)
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and ∫
Γ

u · v =

∫
Γ

g · v ∀v ∈ [H1(Ω)]2 . (8)

where δ1 is a real parameter to be determined. We denote by Σ := H × [H1(Ω)]2 and Σ0 :=
H0 × [H1(Ω)]2. Hence, we substract the second from the first equation in (3) and then we add the
terms (6), (7) and (8) to deduce the stabilised mixed formulation: Find (σ,u) ∈ Σ0 such that

A((σ,u), (τ ,v)) = G̃(τ ,v) ∀ (τ ,v) ∈ Σ0 , (9)

where the bilinear form A : Σ×Σ→ R and the linear functional G̃ : Σ→ R are defined by

A((σ,u), (τ ,v)) :=
1

ν

∫
Ω
σd : τ d +

∫
Ω

u · div(τ )−
∫

Ω
v · div(σ)

+ δ1

∫
Ω

(ν∇u− σd) : (ν∇v + τ d) +

∫
Ω

div(σ) · div(τ ) +

∫
Γ

u · v ,

(10)

and

G̃(τ ,v) := 〈τn,g〉 − 1

2

∫
Ω
f̃ tr(τ ) +

∫
Ω

f · v +
ν2δ1

2

∫
Ω
f̃ div(v)

−
∫

Ω
div(τ ) · f +

∫
Γ

g · v

(11)

Now, Proposition IV.3.1 in [13] and Lemma 3.3 in [19] allow us to establish the coercivity of the
bilinear form A, which is included in the next lemma.

Lemma 3 Let δ1 ∈ R such that 0 < δ1 <
1
ν . Then, there exists a constant α > 0, such that

A((τ ,v), (τ ,v)) ≥ α ‖(τ ,v)‖2Σ , (12)

for all (τ ,v) ∈ Σ0.

Furthermore, the continuity follows from straightforward application of Cauchy-Schwarz inequality.
Then, existence and uniqueness of solution of Problem (9) is guaranteed thanks to Lax – Milgram’s
Lemma. In addition, there exists C > 0, independent of the mesh size, such that

‖(σ,u)‖Σ ≤ C{‖f‖[L2(Ω)]2 + ‖f̃‖L2(Ω) + ‖g‖[H1/2(Γ)]2} (13)

Now, given a finite element subspace Σ0,h ⊂ Σ0 , the Galerkin scheme associated with (9) reads: Find
(σh,uh) ∈ Σ0,h such that

A((σh,uh), (τ ,v)) = G̃(τ ,v) ∀ (τ ,v) ∈ Σ0,h . (14)

Since A is bounded and coercive on the whole space Σ0, we remark that the well posedness of (14) is
guaranteed for any arbitrary choice of Σ0,h (a subspace of Σ0). In fact, there exists a constant C > 0,
independent of h, such that

||(σ − σh,u− uh)||Σ ≤ C inf
(τ ,v)∈Σ0,h

||(σ − τ ,u− v)||Σ . (15)
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Additionally, we note the following orthogonality relation

A((σ − σh,u− uh), (τ ,v)) = 0 , ∀ (τ ,v) ∈ Σ0,h . (16)

Now, in order to establish a rate of convergence result, let m ≥ 1 and we define

Xh :=
{
vh ∈ C(Ω) : vh

∣∣
T
∈ Pm(T ), ∀T ∈ Th

}
and Mh := Xh ×Xh . (17)

Then, we consider specific finite element subspaces Σ0,h := Hσ0,h ×Mh. The corresponding a priori
error estimate is given in the next theorem.

Theorem 4 Assume σ ∈ [Ht(Ω)]2×2, div(σ) ∈ [Ht(Ω)]2 and u ∈ [Ht+1(Ω)]2. Then, there exists
Cerr > 0, independent of h, such that

||(σ − σh,u− uh)||Σ ≤ Cerr h
min{t,m,r+1}

(
||σ||[Ht(Ω)]2×2 + ||div(σ)||[Ht(Ω)]2 + ||u||[Ht+1(Ω)]2

)
.

(18)

Proof. It follows straightforwardly from inequality (15) and the approximation properties of the
corresponding finite element subspaces. We omit further details. �

4 An a posteriori error analysis

In this section, we follow [3] (see also [11]) and develop an a posteriori error analysis for the discrete
scheme (14) using an appropriate Ritz projection of the error and a quasi Helmholtz decomposition. We
first introduce some notations and results concerning the Clément and Raviart-Thomas interpolation
operators.

4.1 Notation and some useful results

Given T ∈ Th, we let E(T ) be the set of its edges, and let Eh be the set of all edges induced
by the triangulation Th. Then, we write Eh = EI ∪ EΓ, where EI := {e ∈ Eh : e ⊆ Ω} and
EΓ := {e ∈ Eh : e ⊆ Γ}. Also, for each edge e ∈ Eh, we fix a unit normal vector ne := (n1, n2)t, and
let te := (−n2, n1)t be the corresponding fixed unit tangential vector along e. From now on, when no
confusion arises, we simply write n and t instead of ne and te, respectively. Finally, given a smooth
vector valued field v := (v1, v2)t, we define

curl(v) :=

(
∂v1
∂x2

− ∂v1
∂x1

∂v2
∂x2

− ∂v2
∂x1

)
.

We will use the Clément interpolation operator Ih : H1(Ω) → Xh (cf. [18]), where Xh is defined
in (17). A vector version of Ih, say Ih : [H1(Ω)]2 → Hu

h , which is defined componentwise by Ih, is
also required. The following lemma establishes the local approximation properties of Ih.
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Lemma 5 There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there holds

||v − Ih(v)||Hm(T ) ≤ c1 h
1−m
T ||v||H1(ω(T )) , ∀m ∈ {0, 1} , ∀T ∈ Th ,

and
||v − Ih(v)||L2(e) ≤ c2 h

1/2
e ||v||H1(ω(e)) ∀ e ∈ Eh ,

where ω(T ) := ∪{T ′ ∈ Th : T ′ ∩ T 6= ∅}, he denotes the length of the side e ∈ Eh and ω(e) := ∪{T ′ ∈
Th : T ′ ∩ e 6= ∅} .

Proof. We refer to [18]. �
On the other hand, we also need to introduce the Raviart-Thomas interpolation operator (see

[13, 23]), Πk
h : [H1(Ω)]2×2 → Hσh , which given τ ∈ [H1(Ω)]2×2, is characterized by the following

identities: ∫
e

Πk
h(τ )n · q =

∫
e
τn · q , ∀e ∈ Eh , ∀q ∈ [Pk(e)]2 , when k ≥ 0 , (19)

and ∫
T

Πk
h(τ ) : ρ =

∫
T
τ : ρ , ∀T ∈ Th , ∀ρ ∈ [Pk−1(T )]2×2 , when k ≥ 1 . (20)

The operator Πk
h satisfies the following approximation properties.

Lemma 6 There exist constants c3, c4, c5 > 0, independent of h, such that for all T ∈ Th
||τ −Πk

h(τ )||[L2(T )]2×2 ≤ c3 h
m
T |τ |[Hm(T )]2×2 ∀ τ ∈ [Hm(Ω)]2×2 , 1 ≤ m ≤ k + 1 (21)

and for all τ ∈ [Hm+1(Ω)]2×2 with div(τ ) ∈ [Hm(Ω)]2,

||div(τ −Πk
h(τ ))||[L2(T )]2 ≤ c4 h

m
T |div(τ )|[Hm(T )]2 , 0 ≤ m ≤ k + 1 (22)

and
||τn−Πk

h(τ )n||[L2(e)]2 ≤ c5 h
1/2
e ||τ ||[H1(Te)]2×2 ∀ e ∈ Eh , ∀ τ ∈ [H1(Ω)]2×2 , (23)

where Te ∈ Th contains e on its boundary.

Proof. See e.g. [13] or [23]. �
Moreover, the interpolation operator Πk

h can also be defined as a bounded linear operator from
the larger space [Hs(Ω)]2×2 ∩H(div; Ω) into Hσh , for all s ∈ (0, 1] (see, e.g. Theorem 3.16 in [21]). In
this case, there holds the following interpolation error estimate

||τ −Πk
h(τ )||[L2(T )]2×2 ≤ C hsT

{
||τ ||[Hs(T )]2×2 + ||div(τ )||[L2(T )]2

}
, ∀T ∈ Th .

Using (19) and (20), it is easy to show that

div(Πk
h(τ )) = P kh (div(τ )) , (24)

where P kh : [L2(Ω)]2 → Hu
h is the L2−orthogonal projector. It is well known (see, e.g. [17]) that for

each v ∈ [Hm(Ω)]2, with 0 ≤ m ≤ k + 1, there holds

||v − P kh (v)||[L2(T )]2 ≤ C hmT |v|[Hm(T )]2 , ∀T ∈ Th . (25)

The following inverse inequality will also be used.
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Lemma 7 Let l,m ∈ N ∪ {0} such that l ≤ m. Then, there exists c > 0, depending only on k, l,m
and the shape regularity of the triangulations, such that for each T ∈ Th there holds

|q|Hm(T ) ≤ c hl−mT |q|Hl(T ) , ∀ q ∈ Pk(T ) .

Proof. See Theorem 3.2.6 in [17]. �

4.2 Reliability of the estimator

Let (σ,u) be the unique solution to problem (3) and assume that the Galerkin scheme (14) has a
unique solution, (σh,uh). We define the Ritz projection of the error with respect to the inner product
of Σ,

〈(σ,u), (τ ,v)〉Σ := (σ, τ )H(div; Ω) + (u,v)[H1(Ω)]2 ,

as the unique element (σ̄, ū) ∈ Σ such that for all (τ ,v) ∈ Σ,

〈(σ̄, ū), (τ ,v)〉Σ = A((σ − σh,u− uh), (τ ,v)) . (26)

We remark that the existence and uniqueness of (σ̄, ū) ∈ Σ is guaranteed by the Lax-Milgram Lemma.
Then, taking into account the coercivity of the bilinear form A(·, ·), we are able to bound the error

in terms of the solution of its Ritz projection:

α||(σ − σh,u− uh)||Σ ≤ sup
(τ ,v)∈Σ0

A((σ − σh,u− uh), (τ ,v))

‖(τ ,v)‖Σ

≤ sup
(τ ,v)∈Σ

A((σ − σh,u− uh), (τ ,v))

‖(τ ,v)‖Σ
≤ ||(σ̄, ū)||Σ

. (27)

Then, according to (27), in order to obtain reliable a posteriori error estimates for the discrete
scheme (14), it is enough to bound from above the Ritz projection of the error. To this aim, for each
τ ∈ H(div; Ω), we consider its quasi Helmholtz decomposition (see Lemma 5.1 in [16])

τ = curl(χ) + Φ ,

where χ ∈ [H1(Ω)]2 and Φ ∈ [H1(Ω)]2×2 satisfy div(Φ) = div(τ ) in Ω, and

||χ||[H1(Ω)]2 + ||Φ||[H1(Ω)]2×2 ≤ C ||τ ||H(div; Ω) .

Then, we let χh := Ih(χ) and define

τ h := curl(χh) + Πk
h(Φ) ∈ Hσh . (28)

We refer to (28) as a discrete quasi Helmholtz decomposition of τ h. Therefore, we can write

τ − τ h = curl(χ− χh) + Φ−Πk
h(Φ) , (29)
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which, using (24) and that div(Φ) = div(τ ) in Ω, yields

div(τ − τ h) = div(Φ−Πk
h(Φ)) = (I − P kh )(div(Φ)) = (I − P kh )(div(τ )) . (30)

On the other hand, for each λ̃ ∈ R, we note that A((σ−σh,u−uh), (λ̃I, 0)) = 0, since each ζh ∈ Hσh
can be decompose as ζh = ζ0,h + λI, with ζ0,h ∈ Hσ0,h and λ ∈ R. The orthogonality relation (16) can
be expand to

A((σ − σh,u− uh), (ζh,vh)) = 0 , ∀ (ζh,vh) ∈ Σh . (31)

This latter remark will be useful in the next lemma, which establishes an upper bound for ||(σ̄, ū)||Σ
in terms of residuals.

Lemma 8 Under the assumption that g ∈ H1(Γ), there exists a constant C > 0, independent of h,
such that

C ||(σ̄, ū)||Σ ≤ η :=
( ∑
T∈Th

η2
T

)1/2
, (32)

where

η2
T := ||f + div(σh)||2[L2(T )]2 +

∣∣∣∣∣∣∇uh − 1
ν σ

d
h −

1
2 f̃I
∣∣∣∣∣∣2

[L2(T )]2×2
+ ν2 δ2

1 ‖div(uh)− f̃‖2L2(T )

+
∑

e∈EΓ∩∂T

{
he ||g − uh||2[L2(e)]2 + he

∥∥∥dgdt − duh
dt

∥∥∥2

[L2(e)]2

}
.

Proof. First, for each (τ ,v) ∈ Σ, we denote its induced discrete pair by (τ h, Ih(v)) ∈ Σh, where
τ h is defined in (28) and Ih(v) is the Clément interpolant of v. Hence, We use (31) with (ζh,vh) =
(τ h, Ih(v)) and that (σ,u) is the unique solution for Problem (9) to obtain

〈(σ̄, ū), (τ ,v)〉Σ = A((σ − σh,u− uh), (τ − τ h,v − Ih(v)))

= G̃(τ − τ h,v − Ih(v))−A((σh,uh), (τ − τ h,v − Ih(v)))

Equivalently,
(σ̄, τ )H(div; Ω) = F1(τ − τ h) , ∀ τ ∈ H(div; Ω) ,

(ū,v)[H1(Ω)]2 = F2(v − Ih(v)) , ∀v ∈ [H1(Ω)]2 ,

where F1 : H(div; Ω)→ R and F2 : [H1(Ω)]2 → R are the bounded linear functionals defined as

F1(ρ) := −
∫

Ω
(f + div(σh)) · div(ρ) −

∫
Ω

(
1

ν
σd
h −∇uh +

1

2
f̃ I) : (ρ)

+ 〈(ρ)n,g − uh〉 − δ1ν

∫
Ω

(∇uh −
1

ν
σd
h −

1

2
f̃ I) : (ρ)d ∀ρ ∈ H(div; Ω) ,

9



F2(w) :=

∫
Ω

(f + div(σh)) ·w − δ1ν
2

∫
Ω

(
∇uh −

1

ν
σd
h −

1

2
f̃ I
)

: ∇w

+

∫
Γ
(g − uh) ·w ∀w ∈ [H1(Ω)]2 .

Now, using (29), and then proceeding as in Lemmas 3.6, 3.7 and 3.8 in [6], we deduce that there
exists c > 0, independent of h, such that

c|F1(τ − τ h)|

≤

∑
T∈Th

{
||div(σh) + f ||2[L2(T )]2 + ||∇uh −

1

ν
σd
h −

1

2
f̃I||2[L2(T )]2×2 + ν2 δ2

1 ‖div(uh)− f̃‖2L2(T )

}

+
∑
e∈EΓ

{
he ||g − uh||2[L2(e)]2 + he

∥∥∥∥dgdt − duh
dt

∥∥∥∥2

[L2(e)]2

}1/2

‖τ‖H(div; Ω) .

In the same spirit, applying Cauchy - Schwarz inequality and Lemma 5, we infer that there exists
c > 0, independent of h, such that

c|F2(v − Ih(v))|

≤

∑
T∈Th

{
h2
T ||div(σh) + f ||2[L2(T )]2 + δ2

1ν
4||∇uh −

1

ν
σd
h −

1

2
f̃I||2[L2(T )]2×2

}

+
∑
e∈EΓ

he ||g − uh||2[L2(e)]2

1/2

‖v‖[H1(Ω)]2 .

Hence, the proof follows from the above bounds and a discrete Cauchy - Schwarz inequality. �
Motivated by the previous results, we define the a posteriori error estimate

η :=
( ∑
T∈Th

η2
T

)1/2
,

where

η2
T := ||f + div(σh)||2[L2(T )]2 +

∣∣∣∣∣∣∇uh − 1
ν σ

d
h −

1
2 f̃I
∣∣∣∣∣∣2

[L2(T )]2×2
+ ν2 δ2

1 ‖div(uh)− f̃‖2L2(T )

+
∑

e∈EΓ∩∂T

{
he ||g − uh||2[L2(e)]2 + he

∥∥∥dgdt − duh
dt

∥∥∥2

[L2(e)]2

}
In summary, in the next result we establish that the a posteriori error estimator η is reliable and
efficient.
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Theorem 9 Assuming that g ∈ [H1(Γ)]2, there exists a positive constant Crel, independent of h,
such that

||(σ − σh,u− uh)||Σ ≤ Crel η .

Additionally, there exists Ceff > 0, independent of h, such that

η2
T ≤ Ceff||(σ − σh,u− uh)||T (33)

with ||(τ ,v)||2T := ‖τ‖2H(div;T ) + ‖v‖2[H1(T )]2

Proof. The reliability of η (first inequality) follows from (27) and Lemma 8. The efficiency of η
(second inequality) is treated in the next subsection. We omit further details. �

4.3 Efficiency of the estimator

In this section, we proceeds to establish the local efficiency of the local a posteriori error estimate
(33). Since f = −div(σ) in Ω and 1

νσ
d −∇u = −1

2 f̃I in Ω, we have that

||f + div(σh)||[L2(T )]2 = ||div(σ − σh)||[L2(T )]2 ,

and

||∇uh −
1

ν
σd
h −

1

2
f̃I||[L2(T )]2×2 ≤ |u− uh|[H1(T )]2 +

(1 +
√

2)

ν
||σ − σh||[L2(T )]2×2 .

Furthermore, using that div(u) = f̃ in Ω, we deduce

||div(uh)− f̃ ||L2(T ) = ||div(u− uh)||L2(T ) ≤
√

2 |u− uh|[H1(T )]2 .

Now, in order to bound the boundary terms he||g−uh||2[L2(e)]2 , e ∈ EΓ, we need to recall a discrete

trace inequality. Indeed, as established in Theorem 3.10 in [1] (see also equation (2.4) in [2]), there
exists c > 0, depending only on the shape regularity of the triangulations, such that for each T ∈ Th
and e ∈ E(T ), there holds

||v||2L2(e) ≤ c
{
h−1
e ||v||2L2(T ) + he |v|2H1(T )

}
, ∀ v ∈ H1(T ) . (34)

Lemma 10 There exists C > 0, independent of h, such that for each e ∈ EΓ there holds

he||g − uh||2[L2(e)]2 ≤ C
(
||u− uh||2[L2(Te)]2 + h2

Te |u− uh|2[H1(Te)]2

)
,

where Te is the triangle having e as an edge.

Proof. It is a straightforward application of (34), taking into account that u = g on Γ. �
The last term is studied in the following lemma.

Lemma 11 Assume g ∈ [H1(Γ)]2 is component-piecewise polynomial on Γ. Then there exists C > 0,
independent of h, such that for each e ∈ EΓ there holds

he

∥∥∥∥dgdt − duh
dt

∥∥∥∥2

[L2(e)]2
≤ C |u− uh|2[H1(Te)]2 , (35)

where Te is the triangle having e as an edge.

Proof. See Lemma 3.10 in [6]. �

11



5 Numerical experiments

We begin this section by remarking that, for implementation purposes, the null media condition
required by the basis of Hσ0,h can be circumvent by imposing this requirement through a Lagrange
multiplier. More precisely, we solve the following auxiliary discrete scheme: Find (σh,uh, ϕh) ∈
Hh := Hσh ×Hu

h × R such that

A((σh,uh), (τ h,vh)) + ϕh

∫
Ω

tr(τ h) = G̃(τ h,vh) ,

ψh

∫
Ω

tr(σh) = 0 ,

(36)

for all (τ h,vh, ψh) ∈ Hh. An standard argument establishes the equivalence between the variational
problems (14) and (36), for details see for example Theorem 6.1 in [4].

In what follows, DOF stands for the total number of degrees of freedom (unknowns) of (36), that is,
DOF = 2×(Numbers of vertexes of Th) + 2× (Number of edges Th) +1, which leads asymptotically to
4 unknowns per triangle, which reflects the low computational cost, almost the same than the required
by considering the P1−isoP1 elements for the standard velocity-pressure formulation, whose degrees
of freedom are asymptotically 4.5 (unknowns) per triangle. In addition, by setting ph := −1

2tr(σh),
we obtain a reasonable piecewise-linear approximation of the pressure p := −1

2tr(σ).
Hereafter, the individual and total errors are denoted as follows

e(u) := ‖u− uh‖[H1(Ω)]2 , e(σ) := ‖σ − σh‖H(div,Ω) , e :=
(

[e(u)]2 + [e(σ)]2
)1/2

,

e0(p) := ‖p+
1

2
tr(σh)‖L2(Ω) , e0(σd) := ‖σd − σd

h‖[L2(Ω)]2×2

and e0(u) := ‖u− uh‖[L2(Ω)]2 ,

where (σ,u) ∈ H0 × [H1(Ω)]2 and (σh,uh) ∈ Hσ0,h × Hu
h are the unique solutions of the continuous

and discrete formulations, respectively. In addition, if e and ẽ stand for the errors at two consecutive
triangulations with N and Ñ degrees of freedom, respectively, then the experimental rate of conver-

gence is given by r := −2
log(e/ẽ)

log(N/Ñ)
. The definitions of r(u), r(σ), r0(σd), r0(u) and r0(p) are defined

analogously.

5.1 Robustness of the method

The aim here is to exhibit the robustness of our scheme with respect to the viscosity parameter ν. To
do this, we consider the two-dimensional analytical solution of the Navier-Stokes equations derived by
Kovasznay in [22], where the velocity, the pressure and the domain are given by:

u(x, y) =

(
1− eλx cos(2πy)
λ
2π eλx sin(2πy)

)
, p(x, y) = −1

2
e2λx − p0, Ω = (−1/2, 3/2)× (0, 2), (37)

12



with the constant p0 is chosen to ensure p ∈ L2
0(Ω) and the parameter λ is given by:

λ = − 8π2

ν−1 +
√
ν−2 + 16π2

.

We emphasize that here div(u) = 0 in Ω (so the fluid is incompressible) and the solution is smooth.
This is the reason why we present the results just for uniform refinement, and with the viscosity ν
ranging from 1 to 10−4, i.e., for small values of the viscosity. This is in accordance with our interest in
developing an scheme for compressible flow, which usually occurs for small values of viscosity. Tables
1, 2 and 3 show that our scheme is able to deal with moderate small values of viscosity ν. In all
these cases, the method does converge to the exact solution, and with the expected optimal rate of
convergence, as is exposed in Figure 1.

5.2 Testing the deduced a posteriori error estimator

In the next examples, we focus our attention in the iterative process to approximate the exact solution
applying an adaptive algorithm in the mesh refinement, based on our estimator ηT . The algorithm we
consider can be found in [25], and reads as follows:

1. Start with a coarse mesh Th.

2. Solve the Galerkin scheme for the current mesh Th.

3. Compute ηT for each triangle T ∈ Th.

4. Consider stopping criterion and decide to finish or go to the next step.

5. Use Red-blue-green procedure to refine each element T ′ ∈ Th such that

ηT ′ ≥
1

2
max{ηT : T ∈ Th} .

6. Define the resulting mesh as the new Th and go to step 2.

5.2.1 Example 2: Boundary Layer

It is very well known that Kovasznay solution (see [22]) given in Example 1, present a boundary layer
for a large value of the viscosity, therefore in this example we consider this analytical solution with
viscosity ν = 1. The data contained in Table 4 show us that our a posteriori error estimator is capable
to improve the quality of approximation of the solution, as is noticed from Figure 2. In addition,
looking at the index of efficiency column, we notice that our estimator is reliable and efficient, as
predicted by the theory. Figure 4 shows us that the considered adaptive algorithm is able to find the
boundary layer along the segment {−1/2} × [0, 2].

13



5.2.2 Example 3: A compressible example

Here we consider the circular section Ω := {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1} \ ([0, 1]× [−1, 0]). Then, we
consider the data f and g are chosen so that the exact solution (u, p) is given by

u(x1, x2) :=
1

8πν

{
− ln(s)

(
1
0

)
+

1

s2

(
(x1 − 2)2

(x1 − 2)(x2 − 1)

)}
+

(
x2

1

x2
2

)
,

and

p(r, θ) := r2/3 sin

(
2

3
θ

)
− 3

2π
,

where s :=
√

(x1 − 2)2 + (x2 − 2)2, and the pressure p is given in polar coordinates. We remark here
that div(u) = 2(x1 + x2), thus we are dealing with a compressible fluid. Table 5 reports us that
the numerical approximation is improved by applying the proposed adaptive algorithm, based on ηT .
We also observe that the index of efficiency remains close to 1, thus allowing to conclude that our
estimator is reliable and efficient. Figure 5 contains a sequence of adapted meshes, based on ηT , from
which we notice that the algorithm is able to detect the singularity at origin.

6 Conclusion and final comments

In this paper, we have extended the applicability of the augmented mixed finite element method to
compressible fluid flow. We present the dual mixed approach as well as the corresponding stabilised
mixed fomulation, based on the introduction of appropriate least squares terms. The a priori error
analysis for both schemes are presented. Additionally, an a posteriori error estimador is developed for
the stabilised one. It is important to mention that our a posteriori error indicator consists only of five
residual terms to be computed on each triangle and it does not contain any jumps across the edges of
the mesh. Moreover, it is shown to be reliable and locally efficient. Numerical results show its good
performance in practice, with efficiency indices around 1 in all the tests examples. We remark that
the a posteriori error indicator proposed in this paper can be easily generalized to 3D. Furthermore,
when the problem is reduced to the particular case of incompressible fluid flow (i.e. when f̃ = 0), the
stabilised approach is the same as the one developed in [19], which the authors obtain an a posteriori
error estimator consisting on 12 terms. In this sense, we propose in this paper an a posteriori error
estimator of low computational cost for a compressible fluid flow model.
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dof e(u) r(u) e(σ) r(σ) e r e/η
291 0.575e+2 —– 0.317e+3 —– 0.322e+3 —- 0.9745
1091 0.327e+2 0.8560 0.204e+3 0.6689 0.206e+3 0.6742 0.9928
4227 0.167e+2 0.9889 0.111e+3 0.8979 0.112e+3 0.9000 1.0014
16643 0.839e+1 1.0061 0.568e+2 0.9770 0.574e+2 0.9777 1.0049
66051 0.420e+1 1.0055 0.286e+2 0.9968 0.289e+2 0.9970 1.0066
263171 0.210e+1 1.0032 0.143e+2 1.0006 0.145e+2 1.0007 1.0074
1050627 0.105e+1 1.0016 0.716e+1 1.0009 0.723e+1 1.0009 1.0077

Table 1: History of convergence and corresponding rates of convergence, Example 1, ν = 1.0 (uniform
refinement)

dof e(u) r(u) e(σ) r(σ) e r e/η
291 0.387e+1 —- 0.314e+0 —- 0.389e+1 —- 0.5141
1091 0.251e+1 0.6570 0.153e+0 1.0910 0.251e+1 0.6592 0.5173
4227 0.130e+1 0.9769 0.749e-1 1.0499 0.130e+1 0.9771 0.5367
16643 0.650e+0 1.0058 0.372e-1 1.0204 0.651e+0 1.0059 0.5437
66051 0.325e+0 1.0048 0.186e-1 1.0081 0.326e+0 1.0048 0.5475
263171 0.163e+0 1.0026 0.929e-2 1.0034 0.163e+0 1.0026 0.5497
1050627 0.813e-1 1.0014 0.464e-2 1.0016 0.815e-1 1.0014 0.5509

Table 2: History of convergence and corresponding rates of convergence, Example 1, ν = 0.01 (uniform
refinement)

dof e(u) r(u) e(σ) r(σ) e r e/η
291 0.449e+1 —- 0.507e-2 —- 0.449e+1 —- 0.5212
1091 0.290e+1 0.6611 0.510e-2 —- 0.290e+1 0.6611 0.5138
4227 0.150e+1 0.9763 0.277e-2 0.9038 0.150e+1 0.9763 0.5282
16643 0.749e+0 1.0127 0.105e-2 1.4160 0.749e+0 1.0127 0.5282
66051 0.373e+0 1.0113 0.349e-3 1.5943 0.373e+0 1.0113 0.5270
263171 0.186e+0 1.0056 0.129e-3 1.4397 0.186e+0 1.0056 0.5270
1050627 0.930e-1 1.0023 0.565e-4 1.1948 0.930e-1 1.0023 0.5275

Table 3: History of convergence and corresponding rates of convergence, Example 1, ν = 0.0001
(uniform refinement)
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Figure 4: Adaptive refined meshes corresponding to 883, 3947, 24723 and 100623 dof (from left to
right, top - bottom) (Example 2, with ν = 1.0)

Figure 5: Adaptive refined meshes corresponding to 12943, 13339, 19045 and 36925 dof (from left to
right, top - bottom) (Example 3, with ν = 1.0)
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