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Abstract

In this paper we introduce and analyze symmetric and non-symmetric discontinuous Galerkin
methods for the Stokes eigenvalue problem. The formulation is obtained by introducing the so-
called pseudostress tensor and thanks to the structure of the system, the velocity and pressure
variables are eliminated. We propose different DG discretizations to solve the resulting spectral
problem and the convergence analysis is based on the abstract spectral theory for non-compact
operators. We show that the proposed method is spurious modes free and asymptotic estimates for
the eigenvalues and eigenfunctions are proved if the so-called stabilization parameter is sufficiently
large and the meshsize is small enough. We report some numerical experiments to assess the
performance of the methods.
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1. Introduction

The discontinuous Galerkin method (DG) has taken relevance in the recent years to solve
spectral problems (see for instance [1, 5, 6, 14, 16]). Compared with conforming finite elements,
discretisations based on DG methods have a number of attractive features. For instance, the DG
method has the advantage of being flexible in the choice of polynomial degrees, amenable for hp-
adaptivity and relatively simple implementation on highly unstructured meshes. In particular, in
[1], DG methods (symmetric and non-symmetric methods) have been introduced an analyzed for
the Laplace eigenvalue problem. They have proved that for the Hermitian case is possible to obtain
a double order of convergence for the eigenvalues but suboptimal order of convergence for the non-
Hermitian cases. On the other hand, a complete analysis for Maxwell’s eigenvalue problem has been
presented in [6]. The authors have established necessary and sufficient conditions for a spurious
free approximation by an H(curl) interior penalty discontinuous Galerkin method. More recently, a
symmetric DG method has been presented and analyzed in [16] for the elasticity eigenproblem with
reduced symmetry. It has been shown that the proposed scheme provides a correct approximation
of the spectrum and prove asymptotic error estimates for the eigenvalues and the eigenfunctions.
Additionaly in [14], an H(div)-conforming DG method has been studied for the classical velocity-
pressure formulation of the Stokes eigenvalue problem. They proved a priori error estimates for
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the eigenvalues and eigenfunctions. Moreover, an a posteriori error estimator of residual type is
presented.

Now, following the recent work [16], we here propose a new DG discretization for the Stokes
eigenvalue problem, which is based on so-called pseudostress tensor (non-symmetric) of the prob-
lem. We mention that the Stokes eigenvalue problem has attracted much interest since it is
frequently encountered in important applications. For instance, to study the stability of fluid flow
problems and it also appears in the study of the buckling problem of thin plates (see [22]). For
that reason, different finite element formulations to solve this eigenvalue problem have been studied
in the past years. Among the papers on this subject, we cite the following as a minimal sample
[22, 2, 13, 15, 18, 21, 23].

The purpose of the present paper is to introduce and analyze a DG discretization for solving
the Stokes eigenvalue problem. We consider a variational formulation of the problem written in
H(div) as in [21], where an auxiliary variable is introduced, the non-symmetric pseudostress tensor,
and the velocity and pressure are eliminated from the system. We introduce DG discretisations
to approximate the pseudostress tensor by discontinuous finite element spaces of degree k ≥ 1.
Then, we use the abstract spectral theory for non-compact operators (see [8, 9]) to deal with
the continuous and discrete solution operators, which appear as the solution of the continuous
and discrete source problems, and whose spectra are related with the solutions of the eigenvalue
problems. We prove stability of the DG discrete methods considering its symmetric and non-
symmetric nature. This stability will depend on the choice of the so-called stabilization parameter.
Then, we establish that the resulting DG discretizations provide a correct approximation of the
spectrum if the stabilization parameter is sufficiently large and the meshsize h is small enough. We
prove optimal order error estimates for the eigenfunctions and a double order for the eigenvalues
in the symmetric case and sub-optimal order for the non-symmetric methods (cf Theorem 4.4). In
particular, we will see in the numerical tests that the order of convergence for the non-symmetric
methods depend on the choice of the polynomial degree: if the polynomial degree k is odd the
convergence order is k and, if k is even, the convergence order is k + 1. We will also see that the
methods can be affected by the presence of spurious modes if the stabilization parameters are not
chosen appropiately.

The outline of the paper is the following: in Section 2, we describe the continuous problem
in terms of the pseudostress tensor. We recall the spectral characterization of the corresponding
solution operator and the regularity results proved in [21]. In Section 3, we introduce the DG
methods, describing the spaces, the discrete norms and the general framework. We also prove
the stability of the DG methods and we introduce the discrete solution operator. Section 4 is
dedicated to prove error estimates for the eigenfunctions and eigenvalues. In Section 5, we present
some numerical test to assess the performance of the proposed DG methods. Finally, we summarize
some conclusions in Section 6.

We end this section with some of the notations that we will use below. Given any Hilbert space
V , let V n and V n×n denote, respectively, the space of vectors and tensors of order n (n = 2, 3)
with entries in V . In particular, I is the identity matrix of Rn×n and 0 denotes a generic null
vector or tensor. Given τ := (τij) and s := (sij) ∈ Rn×n, we define as usual the transpose tensor
τ t := (τji), the trace tr τ :=

∑n
i=1 τii, the deviatoric tensor τ D := τ − 1

n (tr τ ) I, and the tensor
inner product τ : s :=

∑n
i,j=1 τijsij .

Let Ω be a polyhedral Lipschitz bounded domain of Rn with boundary ∂Ω. For s ≥ 0, ‖·‖s,Ω
stands indistinctly for the norm of the Hilbertian Sobolev spaces Hs(Ω), Hs(Ω)n or Hs(Ω)n×n,
with the convention H0(Ω) := L2(Ω). We also define for s ≥ 0 the Hilbert space Hs(div,Ω) :=
{τ ∈ Hs(Ω)n×n : div τ ∈ Hs(Ω)n}, whose norm is given by ‖τ‖2Hs(div,Ω) := ‖τ‖2s,Ω + ‖div τ‖2s,Ω
and denote H(div,Ω) := H0(div; Ω).
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2. The continuous spectral problem

Let Ω ⊂ Rn, with n = 2, 3, be a bounded and connected Lipschitz domain. We denote by
n the outward unit normal vector to Γ := ∂Ω and assume that Γ admits a disjoint partition
Γ := ΓD ∪ ΓN , we also assume that both ΓD and ΓN have positive measure.

In what follows, we recall the variational formulation of the Stokes eigenvalue problem proposed
in [21]. Also, we summarize some results from this reference.

The Stokes eigenvalue model problem of our interest is the following: Find nontrivial (λ̂,u, p)
such that (see [18])

−div(∇u) +∇p = λ̂u inΩ,

divu = 0 inΩ,

u = 0 onΓD,

(∇u− pI)n = 0 onΓN .

(2.1)

To study this problem, we introduce the so-called pseudostress tensor σ := ∇u − pI (see
[7, 11, 12]), which will be sought in the following functional space

V := {τ ∈ H(div,Ω) : τn = 0 on ΓN}.

Then, we eliminate the pressure p and the velocity u from the above system (see [21] for further
details), to write the following eigenvalue problem: Find λ ∈ R and 0 6= σ ∈ V such that

a(σ, τ ) = λb(σ, τ ) ∀τ ∈ V, (2.2)

where λ := 1 + λ̂ and the bilinear forms a : V × V → R and b : V × V → R are defined as

a(σ, τ ) :=

∫

Ω

divσ · div τ +

∫

Ω

σD : τ D,

b(σ, τ ) :=

∫

Ω

σD : τ D.

We note that a shift argument has been used to write (2.2). This has been done in order to analyze
the variational formulation with a well-posed solution operator (cf. (2.3)).

The bilinear form a is V-elliptic as stated in the following result.

Lemma 2.1. There exists a constant α > 0, depending only on Ω, such that

a(τ , τ ) ≥ α‖τ‖2
div,Ω ∀τ ∈ V.

Proof. See Lemma 2.1 in [20].

According to Lemma 2.1, we are in position to introduce the following solution operator T ,
defined as follows:

T : V → V,

f 7→ Tf := σ̃,
(2.3)

where σ̃ ∈ V is the unique solution, as a consequence of Lemma 2.1 and the Lax-Milgram Theorem,
of the following source problem:

a(σ̃, τ ) = b(f , τ ) ∀τ ∈ V. (2.4)
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Thus, we have that the linear operator T is well defined and bounded. Clearly (λ,σ) ∈ R×V

solves problem (2.2) if and only of (µ = 1/λ,σ) is an eigenpair of T , with µ 6= 0 and σ 6= 0.
Moreover, the linear operator T is self-adjoint with respect to the inner product a(·, ·) in V.

Let
X := {τ ∈ V : div τ = 0 in Ω}. (2.5)

It is clear that T |X : X → X reduces to the identity, leading to the conclusion that µ = 1 is an
eigenvalue of T with associated eigenspace X .

In reference [21] has been shown that there exists an operator P : V → V, which satisfies the
following properties:

• P is idempotent and its kernel is given by X ;

• There exist C > 0 and s ∈ (0, 1] depending only on the geometry of Ω such that P (V) ⊂
Hs(Ω)n×n and ‖P (τ )‖s,Ω ≤ C‖div τ‖0,Ω,

• P (V) is invariant for T . Moreover, P (V) is orthogonal to X with respect to the inner
product a(·, ·) of V.

As an immediate consequence of the properties listed above, we have that the space V can
be decomposed in the following direct sum V = X ⊕ P (V). Moreover, we have the following
regularity result, which proof follow the arguments of those in [21, Proposition 3.4].

Proposition 2.1. There exists s ∈ (0, 1] such that,

T (P (V)) ⊂ {τ ∈ Hs(Ω)n×n : div τ ∈ H1+s(Ω)n},

and there exists C > 0 such that, for all f ∈ P (V), if σ∗ = Tf , then

‖σ∗‖s,Ω + ‖divσ∗‖1+s,Ω ≤ C‖f‖div,Ω,

concluding that T |P (V) : P (V) → P (V) is compact.

All the previous results leads to the following spectral characterization of operator T proved in
Theorem 3.5 of [21].

Lemma 2.2. The spectrum of T decomposes as follows: sp(T ) = {0, 1} ∪ {µk}k∈N, where

• µ = 1 is an infinite-multiplicity eigenvalue of T and its associated eigenspace is X .

• µ = 0 is an eigenvalue of T and its associated eigenspace is

Z := {τ ∈ V : τ D = 0} = {qI : q ∈ H1(Ω) and q = 0 onΣ},

• {µk}k∈N ⊂ (0, 1) is a sequence of nondefective finite-multiplicity eigenvalues of T which
converge to 0.

Moreover, the following additional regularity result holds true for eigenfunctions σ associated
to some eigenvalue µ ∈ (0, 1). The proof follow from a classical bootstrap trick.

Proposition 2.2. Let σ ∈ V be an eigenfunction associated with an eigenvalue µ ∈ (0, 1). Then,
there exists a positive constant C > 0, depending on the eigenvalue, such that

‖σ‖r,Ω + ‖divσ‖1+r,Ω ≤ C‖σ‖div,Ω,

with r > 0.
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3. The DG discretization

In this section we will introduce symmetric and non-symmetric DG discretizations to solve the
Stokes eigenvalue problem. We start with standard definitions, then we introduce the DG spaces,
jumps, averages, and the bilinear forms.

Let Th be a shape regular family of meshes which subdivide the domain Ω̄ into triangles/tetrahedra
K. Let hK denote the diameter of the element K and h the maximum of the diameters of all the
elements of the mesh, i.e. h := maxK∈Th

{hK}.

Let F be a closed set. We say that F ⊂ Ω is an interior edge/face if F has a positive (n− 1)-
dimensional measure and if there are distinct elements K and K ′ such that F = K̄ ∩ K̄ ′. A closed
subset F ⊂ Ω is a boundary edge/face if there exists K ∈ Th such that F is an edge/face of K
and F = K̄ ∩ ∂Ω. Let F0

h and F∂
h be the sets of interior edges/faces and boundary edges/face,

respectively. We assume that the boundary mesh F∂
h is compatible with the partition ∂Ω =

ΓD ∪ ΓN ; namely, ⋃

F∈FD

h

F = ΓD and
⋃

F∈FN

h

F = ΓN ,

where FD
h := {F ∈ F∂

h ; F ⊂ ΓD} and FN
h := {F ∈ F∂

h ; F ⊂ ΓN}. Also we denote Fh :=
F0

h ∪ F∂
h and F∗

h := F0
h ∪ FN

h . Also, for any element K ∈ Th, we introduce the set F(K) := {F ∈
Fh; F ⊂ ∂K} of edges/faces composing the boundary of K.

Let Pm(Th) be the space of piecewise polynomials respect to Th of degree at most m ≥ 0;
namely,

Pm(Th) :=
{
v ∈ L2(Ω); v|K ∈ Pm(K), ∀K ∈ Th

}
.

For any k ≥ 1, we define the finite element spaces Vh := Pk(Th)n×n and V
c
h := Vh ∩ V. We

observe that the space V
c
h is the Brezzi-Douglas-Marini (BDM) finite element space. Now, we

recall some well-known properties of the space V
c
h (see [4]).

Let Πh : Ht(Ω)n×n → V
c
h be he tensorial version of the BDM-interpolation operator , which

satisfies the following classical error estimate, see [3, Proposition 2.5.4],

‖τ −Πhτ‖0,Ω ≤ Chmin{t,k+1}‖τ‖t,Ω ∀τ ∈ Ht(Ω)n×n, t > 1/2. (3.6)

Also, for less regular tensorial fields we have the following estimate

‖τ −Πhτ‖0,Ω ≤ Cht(‖τ‖t,Ω + ‖τ‖div,Ω) ∀τ ∈ Ht(Ω)n×n ∩ H(div,Ω) t ∈ (0, 1/2]. (3.7)

Moreover, the following commuting diagram property holds true:

‖div(τ −Πhτ )‖0,Ω = ‖div τ −Rh div τ‖0,Ω ≤ Chmin{t,k}‖div τ‖t,Ω, (3.8)

for div τ ∈ Ht(Ω)n and Rh being the L2(Ω)n-orthogonal projection onto Pk−1(Th)n.

For any t ≥ 0, we define the following broken Sobolev space

Ht(Th)
n := {v ∈ L2(Ω)n; v|K ∈ Ht(K)n ∀K ∈ Th}.

Now, for v := {vK} ∈ Ht(Th)n and τ := {τK} ∈ Ht(Th)n×n the components vK and τK

represent the restrictions v|K and τ |K and, when it is convenient, we will drop the subscript for
these restrictions. The space of the skeletons of the triangulations Th is defined by L2(Fh) :=∏

F∈Fh
L2(F ).
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In the forthcoming analysis, hF ∈ L2(Fh) will represent the piecewise constant function defined
by hF |F := hF for all F ∈ Fh, where hF denotes the diameter of edge/face F .

Next, for v ∈ Ht(Th)n, with t > 1/2, we define averages {v} ∈ L2(Fh)
n and jumps JvK ∈ L2(Fh)

as follows

{v}F := (vK + vK′)/2 and JvKF := vK · nK + vK′ · nK′ ∀F ∈ F(K) ∩ F(K ′),

where nK is the outward unit normal vector to ∂K. Also, on the boundary ∂Ω and for all
F ∈ F(K) ∩ ∂Ω, the averages and jumps are defined by {v}F := vK and JvKF := vK · n,
respectively. For tensorial fields the previous definitions are analogous.

For a tensor field τ ∈ Vh we define divh τ ∈ L2(Ω)n by divh τ |K = div(τ |K) for all K ∈ Th
and we endow V(h) := V + Vh with the following seminorm

|τ |2
V(h) := ‖divh τ‖

2
0,Ω + ‖h

−1/2
F Jτ K‖20,F∗

h

,

which is well defined in V(h) and the norm

‖τ‖2DG := |τ |2V(h) + ‖τ‖20,Ω.

In our analysis, we will need the following discrete trace inequality (see [10])

‖h1/2{v}‖0,F ≤ C‖v‖0,Ω ∀v ∈ Pk(Th). (3.9)

Now, we introduce the symmetric and non-symmetric DG discretizations to solve the Stokes
eigenvalue problem (2.2): Find λh ∈ C and 0 6= σh ∈ Vh such that

ah(σh, τh) = λhb(σh, τ h) ∀τ h ∈ Vh, (3.10)

where the bilinear form ah : Vh × Vh → C is defined by

ah(σh, τ h) :=

∫

Ω

divh σh · divh τh +

∫

Ω

σD
h : τ D

h

+

∫

F∗

h

aSh
−1
F JσhK · Jτ hK −

∫

F∗

h

{divh σh} · Jτ hK − ε

∫

F∗

h

{divh τh} · JσhK, (3.11)

with aS > 0 is the so called stabilization parameter and ε ∈ {−1, 0, 1}. As is studied in [1], the
Hermitian or non-Hermitian nature of the DG method lies in the choice of ε. If ε = 1 we obtain
the classic symmetric interior penalty method (SIP) as the one studied, for example in [16] for the
elasticity eigenproblem. If ε = −1 we obtain the non-symmetric interior penalty method (NIP)
and if ε = 0 the incomplete interior penalty method (IIP).

Notice that, for ε = 1 all the eigenvalues of the discrete problem (3.10) are real. On the other
hand, in the case of non-symmetric methods is expectable to obtain complex eigenvalues with the
discrete method.

For the analysis, we introduce the following norm

‖σ‖∗DG :=
(
‖σ‖2DG + ‖h

1/2
Fh

{divσ}‖20,F∗

h

)1/2
.

It is easy to check that for all σ, τ ∈ V(h), and divσ,div τ ∈ Ht(Ω)n with t > 1/2, the bilinear
form ah(·, ·) is bounded. In fact, there exists a constant C > 0, independent of h, such that

∣∣ah(σ, τ )
∣∣ ≤ C‖σ‖∗DG‖τ‖

∗
DG. (3.12)
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Moreover, by means of (3.9) is possible to prove that for all τh ∈ Vh there exists a positive
constant MDG such that

|ah(σ, τh)| ≤ MDG‖σ‖
∗
DG‖τh‖DG. (3.13)

In order to analyze the discrete eigenvalue problem (3.10), we need to decompose the space
V

c
h. With this aim, we consider the following subspace of X (cf. (2.5)).

X h := {τh ∈ V
c
h : div τ h = 0} .

The following result shows the existence of the discrete counterpart of operator P and estab-
lishes an approximation estimate.

Lemma 3.1. There exist a projection P h : V
c
h → V

c
h with kernel X h and a constant C > 0,

independent of h, such that

‖(P − P h)τh‖div,Ω ≤ C hs‖div τh‖0,Ω ∀τh ∈ V
c
h,

where s ∈ (0, 1] is such that Proposition 2.1 holds true.

Proof. See [21, Lemma 4.4].

The following technical result, proved in [19, Proposition 5.2], will be useful in the forthcoming
analysis.

Proposition 3.1. There exist a projection Ih : Vh → V
c
h and two constants C, C̄ > 0, independent

of h, such that

C ‖τ‖DG ≤
(
‖Ihτ‖

2
div,Ω + ‖h

−1/2
F Jτ K‖20,F∗

h

)1/2

≤ C̄ ‖τ‖DG ∀τ ∈ Vh. (3.14)

Moreover, we have that

‖divh(τ − Ihτ )‖
2
0,Ω +

∑

K∈Th

h−2
K ‖τ − Ihτ‖

2
0,K ≤ C ‖h

−1/2
F Jτ K‖20,F∗

h

, (3.15)

with C > 0 independent of h.

Now we will prove that ah(·, ·) is elliptic in Vh for any ε ∈ {−1, 0, 1}.

Lemma 3.2. For any ε ∈ {−1, 0, 1}, there exists a parameter a∗ > 0 such that for all aS ≥ a∗

there holds
ah(τ h, τh) ≥ αDG‖τh‖

2
DG ∀τ h ∈ Vh,

where αDG > 0, independent of h.

Proof. First, we have that there exists a positive constant αc (cf. Lemma 2.1) such that

a(τh, τ h) ≥ αc‖τh‖
2
div,Ω ∀τ h ∈ V

c
h.

Hence, there exists an operator Θ : V
c
h → V

c
h that satisfies a(τh,Θτh) = αc‖τh‖2div,Ω, with

‖Θτh‖div,Ω ≤ ‖τh‖div,Ω.

Let τ h ∈ Vh which we decompose as follows τ h := τ̃ h + τ c
h with τ c

h := Ihτh ∈ V
c
h. Hence

ah(τ h,Θτ c
h + τ̃h) = αc‖τ c

h‖
2
div,Ω + ah(τ

c
h, τ̃h) + ah(τ̃ h,Θτ c

h) + ah(τ̃ h, τ̃h). (3.16)
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Hence, we need to bound the last three terms on the right hand side of the above equality. For
the last term of the right hand side we have

ah(τ̃ h, τ̃ h) = ‖divh τ̃ h‖
2
0,Ω + ‖τ̃ D

h‖
2
0,Ω + aS‖h

−1/2
F Jτ̃hK‖20,F∗

h

− (1 + ε) ‖h
1/2
F∗

h

{divh τ̃h}‖0,F∗

h
‖h

−1/2
F∗

h

Jτ̃ hK‖0,F∗

h
,

≥ aS‖h
−1/2
F Jτ̃ hK‖20,F∗

h

+

(
1 + ε

2

)(
−‖h

1/2
F∗

h

{divh τ̃ h}‖
2
0,F∗

h

− ‖h
−1/2
F∗

h

Jτ̃ hK‖20,F∗

h

)
,

= aS‖h
−1/2
F Jτ hK‖20,F∗

h

− Ĉ

(
1 + ε

2

)
‖h

−1/2
F∗

h

JτhK‖20,F∗

h

,

where we have used the decomposition τ̃h = τh − τ c
h, (3.9) and (3.15). Moreover, Ĉ is a constant

which depends on the constants of estimates (3.9) and (3.15). Hence

ah(τ̃ h, τ̃h) ≥ (aS − C1)‖h
−1/2
F∗

h

Jτ hK‖20,F∗

h

, (3.17)

with C1 = Ĉ

(
1 + ε

2

)
≥ 0 independent of h.

Next, we bound ah(τ
c
h, τ̃h) (cf. (3.16)), considering once again the decomposition τh := τ̃h+τ c

h

and applying (3.15) as follows

ah(τ
c
h, τ̃h) ≥ −‖div τ c

h‖0,Ω‖divh τ̃ h‖0,Ω − ‖(τ c
h)

D‖0,Ω‖τ̃
D‖0,Ω − ‖h

1/2
F∗

h

{div τ c
h}‖0,F∗

h
‖h

−1/2
F∗

h

Jτ̃ hK‖0,F∗

h
,

≥ −C2‖div τ c
h‖0,Ω‖h

−1/2
F∗

h

Jτ hK‖0,F∗

h
− C3‖τ

c‖0,Ω‖τ̃h‖0,Ω − C4‖div τ c
h‖0,Ω‖h

−1/2
F∗

h

Jτ hK‖0,F∗

h
,

≥ −C5‖τ
c
h‖div,Ω‖h

−1/2
F∗

h

Jτ hK‖0,F∗

h
.

Thus,

ah(τ
c
h, τ̃h) ≥ −

αc

4
‖τ c

h‖
2
div,Ω − C6‖h

−1/2
F∗

h

Jτ K‖20,F∗

h

. (3.18)

On other other hand, to bound ah(τ̃ h,Θτ c
h) (cf. (3.16)), we repeat the previous arguments, to

obtain that for any ε ∈ {−1, 0, 1}, there exist C7 > 0, depending on the constants of estimates
(3.9) and (3.15), such that

ah(τ̃ h,Θτ c
h) ≥ C7‖τ

c
h‖div,Ω‖h

−1/2
F∗

h

Jτ hK‖0,F∗

h
,

Hence, we obtain that there exists a positive constant C8 such that

ah(τ̃ h,Θτ c
h) ≥ −

αc

4
‖τ c

h‖
2
div,Ω − C8‖h

−1/2
F∗

h

JτhK‖20,F∗

h

. (3.19)

Now, adding (3.17), (3.18) and (3.19), defining a∗ :=
αc

2
+C9 with C9 = C1 +C6 +C8 a constant

independent of h, choosing aS such that aS > a∗ and replacing this in (3.16) we obtain

ah(τ h,Θτ c
h + τ̃ h) ≥

αc

2

(
‖τ c

h‖div,Ω + ‖h
−1/2
F∗

h

Jτ hK‖20,F∗

h

)
.

Finally, applying (3.14) in the last estimate we conclude the proof.

Remark 3.1. Notice that Lemma 3.2 holds true for both Hermitian and non Hermitian methods.
Moreover, the stability of the DG method depends on some particular stabilization parameter a

∗.
This fact will be relevant for the numerical experiments in the sense that the appearance of possible
spurious modes will depend on how small is this parameter.
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Since the bilinear form ah(·, ·) is coercive for any ε ∈ {−1, 0, 1}, we are in position to introduce
the discrete solution operator associated to (3.10):

T ε
h : V → Vh,

f 7→ T ε
hf := σ̃

ε
h,

(3.20)

where σ̃
ε
h ∈ Vh is the unique solution, as a consequence of Lemma 3.2 and the Lax-Milgram

Theorem, of the following discrete source problem:

ah(σ̃
ε
h, τ h) = b(f , τh) ∀τh ∈ Vh.

Clearly T ε
h is well defined. Moreover, there exists a constant C > 0 independent of h such that

‖T ε
hf‖DG ≤ C‖f‖div,Ω ∀f ∈ V.

It is easy to check that (λh,σh) ∈ C × Vh is a solution of problem (3.10) if and only if
(µh,σh) ∈ C× Vh with µh = 1/λh is an eigenpair of T ε

h, i.e.

T ε
hσh =

1

µh
σh.

In what follows, we write T h instead of T ε
h, for simplicity. The following result gives an

approximation property between the continuous and discrete solution operators.

Lemma 3.3. Let f ∈ P (V) and σ̃ := Tf . Then, for any ε ∈ {−1, 0, 1}

‖(T − T h)f‖DG ≤
MDG

αDG
inf

τh∈Vh

‖Tf − τh‖
∗
DG. (3.21)

where MDG and αDG are the constants of (3.13) and Lemma 3.2, respectively. Moreover, the
following estimate

‖(T − T h)f‖DG ≤ C hs (‖σ̃‖s,Ω + ‖div σ̃‖1+s,Ω) , (3.22)

holds true with a constant C > 0 independent of h and s ∈ (0, 1] as in Proposition 2.1.

Proof. We start by noticing that the DG method is consistent. In fact, we have

ah
(
(T − T h)f , τh

)
= 0 ∀τ h ∈ Vh. (3.23)

Indeed, since div σ̃ ∈ H1+s(Ω)n, we have

ah(σ̃, τh) =

∫

Ω

div σ̃ · divh τh +

∫

Ω

σ̃
d : τ d

h −

∫

F∗

h

{div σ̃} · Jτ hK. (3.24)

It is straightforward to deduce from (2.4)

−∇ (div σ̃) = fd − σ̃
d, (3.25)

Moreover
∫

Ω

div σ̃ · divh τh = −
∑

K∈Th

∫

K

∇(div σ̃) : τh +
∑

K∈Th

∫

∂K

div σ̃ · τ hnK

= −
∑

K∈Th

∫

K

∇(div σ̃) : τh +

∫

F∗

h

{div σ̃} · Jτ hK.

9



Substituting back the last identity and (3.25) into (3.24) we obtain

ah(σ̃, τ h) = b(f , τh) ∀τh ∈ Vh.

and (3.23) follows.

The Céa estimate (3.21) follows in the usual way by taking advantage of (3.23), the discrete
ellipticity, estimate (3.12) and the triangle inequality.

Moreover, we have from (3.21) that

‖(T − T h)f‖DG ≤
MDG

αDG
‖σ̃ −Πhσ̃‖

∗
DG.

Finally, to estimate the term ‖σ̃ − Πhσ̃‖∗DG it is enough to follow the arguments presented in
Theorem 4.1 of [16] and using the regularity result provided by Proposition 2.1.

The following two lemmas are technical results that will be used to prove convergence of the
proposed DG discretization.

Lemma 3.4. There exists a constant C > 0 independent of h, such that for any ε ∈ {−1, 0, 1}
and τ ∈ V

‖(T − T h)Pτ‖DG ≤ C hs ‖div τ‖0,Ω,

with s ∈ (0, 1] as in Proposition 2.1.

Proof. The result is a direct consequence of Lemma 3.3 by noticing that T ◦P ⊂ {τ ∈ [Hs(Ω)n×n] :
div τ ∈ H1+s(Ω)n} for s ∈ (0, 1] due to Proposition 2.1.

Lemma 3.5. There exists a constant C > 0 independent of h such that

‖(T − T h)τ h‖DG ≤ C hs ‖τh‖DG ∀τh ∈ Vh.

with s ∈ (0, 1] as in Proposition 2.1.

Proof. For any τ h ∈ Vh we consider the splitting τ h = τ c
h + τ̃h with τ c

h := Ihτh ∈ V
c
h. We have

that
(T − T h)τ h = (T − T h)τ̃h + (T − T h)τ

c
h = (T − T h)τ̃ h + (T − T h)P hτ

c
h,

where the last identity is due to the fact that (I − P h)τ
c
h ∈ X h and T − T h vanishes identically

on this subspace. It follows that

(T − T h)τh = (T − T h)τ̃ h + (T − T h)(P h − P )τ c
h + (T − T h)Pτ c

h,

Applying triangle inequality with the boundedness of T and T h we have

‖(T − T h)τh‖DG ≤‖(T − T h)τ̃ h‖DG + ‖(T − T h)(P h − P )τ c
h‖DG + ‖(T − T h)Pτ c

h‖DG

≤
(
‖T ‖L([L2(Ω)n×n]2,V) + ‖T h‖L([L2(Ω)n×n]2,Vh)

)(
‖τ̃h‖0,Ω + ‖(P h − P )τ c

h‖div,Ω
)

+ ‖(T − T h)Pτ c
h‖DG.

Using (3.15), Lemma 3.1 and Lemma 3.4 we have that

‖τ̃h‖0,Ω ≤ Ch‖τh‖DG,

‖(P h − P )τ c
h‖div,Ω ≤ Chs‖div τ c

h‖0,Ω ≤ Chs‖τh‖DG

and
‖(T − T h)Pτ c

h‖DG ≤ Chs‖div τ c
h‖0,Ω ≤ Chs‖τh‖DG,

respectively, which gives the result.
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4. Convergence and error estimates

In this section we will adapt the results from [8, 9] to establish spectral correctness of the
proposed DG method, as well to obtain error estimates for the eigenvalues and eigenfunctions.

Let L : V(h) → V(h) be the operator defined in Vh. We define the norm of this operator by

‖L‖L(Vh,V(h)) := sup
0 6=τh∈Vh

‖Lτh‖DG

‖τh‖DG
.

As a direct consequence of Lemma 3.4 and the density of smooth functions in V, we have the
following properties, P1 and P2, which are all that we need to establish spectral correctness (see
[8]) for all the discrete methods (symmetric or non-symmetric).

• P1. ‖T − T h‖L(Vh,V(h)) → 0 as h → 0.

• P2. ∀τ ∈ V, there holds

inf
τ∈Vh

‖τ − τh‖DG → 0 as h → 0.

As we mention before, the goal of this section is to obtain convergence and error estimates of
the DG scheme (see [1, 6, 16] for others DG spectral analysis). In order to do this, first we will
prove that the continuous resolvent is bounded in the DG norm.

From now on, D denotes the unitary disk defined in the complex by D := {z ∈ C : |z| ≤ 1}
where z ∈ sp(T ).

Lemma 4.1. There exists a constant C > 0 independent of h such that for all z ∈ D \ sp(T ) there
holds

‖(zI − T )τ‖DG ≥ C|z| ‖τ‖DG ∀τ ∈ V(h)

Proof. For τ ∈ V(h), we introduce
σ∗ := Tτ ∈ V

and notice that
(zI − T )σ∗ = T (zI − T )τ .

Since T : V → V is a bounded operator and using the fact that ‖(zI − T )σ‖div,Ω ≥ C‖σ‖div,Ω
for z /∈ sp(T ) (see Proposition 2.4 in [20] for instance), we have that

C‖σ∗‖div,Ω ≤ ‖(zI − T )σ∗‖div,Ω ≤ ‖T (zI − T )τ‖div,Ω ≤ ‖T‖L([L2(Ω)n×n]2,V)‖(zI − T )τ‖DG.

On the other hand, we have

‖τ‖DG ≤ |z|−1‖σ∗‖div,Ω + |z|−1‖(zI − T )τ‖DG

≤ |z|−1
(
1 + C‖T ‖L([L2(Ω)n×n]2,V)

)
‖(zI − T )τ‖DG

≤ |z|−1C‖(zI − T )τ‖DG.

Hence, C|z|‖τ‖DG ≤ ‖(zI − T )τ‖DG, which conclude the proof.

Remark 4.1. Lemma 4.1 implies that the resolvent of T is bounded. This means that there exists
a constant C > 0 independent of h such that

‖(zI − T )−1‖L(V(h),V(h)) ≤ C. (4.26)
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Our next goal is to derive the boundedness of the discrete resolvent for h small enough. The
following results give us this property and their proofs are not included since are similar to those
in Lemma 5.1 and Lemma 5.2 of [16].

Lemma 4.2. If z ∈ D \ sp(T ), there exists h0 > 0 such that for all h ≤ h0,

‖(zI − T h)τ h‖DG ≥ C ‖τh‖DG ∀τh ∈ Vh,

with C > 0 independent of h but depending on |z|.

Lemma 4.3. If z ∈ D \ sp(T ), there exists h0 > 0 such that for all h ≤ h0,

‖(zI − T h)τ‖DG ≥ C ‖τ‖DG ∀τ ∈ V(h),

with C > 0 independent of h but depending on |z|2.

The previous lemma states that if we consider a compact subset E of the complex plane such
that E ∩ sp(T ) = ∅ for h small enough and for all z ∈ E, operator zI−T h is invertible. Moreover,
there exists a positive constant C independent of h such that ‖(zI − T h)

−1‖L(V(h).V(h)) ≤ C for
all z ∈ E. This fact is important since determine that the numerical method is spurious free for h
small enough. This is summarized in the following result proved in [8].

Theorem 4.1. Let E ⊂ C be a compact subset not intersecting sp(T ). Then, there exists h0 > 0
such that, if h ≤ h0, then E ∩ sp(T h) = ∅.

In order to prove convergence between eigenspaces, we introduce the following definitions: let
x ∈ V(h) and E and F be closed subspaces of V(h). We define

δ(x,E) := inf
y∈E

‖x− y‖DG, δ(E,F) := sup
y∈E: ‖y‖DG=1

δ(y,F).

Hence, the gap between two closed subspaces is defined by

δ̂(E,F) := max{δ(E,F), δ(F,E)}.

Let κ ∈ (0, 1) be an isolated eigenvalue of T and let D an open disk in the complex plane with
boundary γ such that κ is the only eigenvalue of T lying in D and γ ∩ sp(T ) = ∅. We introduce
the spectral projector corresponding to the continuous and discrete solution operators T and T h,
respectively

E :=
1

2πi

∫

γ

(zI − T )
−1

dz : V(h) −→ V(h),

Eh :=
1

2πi

∫

γ

(zI − T h)
−1

dz : V(h) −→ V(h)

where Eh is well-defined and bounded uniformly in h due (4.26). Moreover, E |V is a spectral
projection in V onto the (finite dimensional) eigenspace E(V) corresponding to the eigenvalue κ
of T . In fact, we have that (see [16] for further details)

E(V(h)) = E(V).

Moreover, Eh|Vh
is a projector in Vh onto the eigenspace Eh(Vh) corresponding to the eigen-

values of T h : Vh → Vh contained in γ. We also have that

Eh(V(h)) = Eh(Vh).

Now, we will compare Eh(Vh) to E(V) in terms of the gap δ̂. The proof of the next auxiliary
result follows from the definition of E and Eh.
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Lemma 4.4. There exists C > 0 independent of h, such that

‖E − Eh‖L(Vh,V(h)) ≤ C‖T − T h‖L(Vh,V(h)).

The following result will be used to establish the approximation properties of the eigenfunctions
of the continuous problem by means of those of the discrete DG discretisations.

Lemma 4.5. There exists a positive constant C independent of h such that

δ̂(E(V),Eh(Vh)) ≤ C
(
‖T − T h‖L(Vh,V(h)) + δ(E(V),Vh)

)
.

Now, we state the convergence properties of the DG methods.

Theorem 4.2. Let κ ∈ (0, 1) be an eigenvalue of T of algebraic multiplicity m and let Dκ be a
closed disk in the complex plane centered at κ with boundary γ such that Dκ ∩ sp(T ) = {κ}. Let
κ1,h, . . . , κm(h),h be the eigenvalues of T h lying in Dκ and repeated according to their algebraic
multiplicity. Then, for any DG method defined by ε ∈ {−1, 0, 1}, we have that m(h) = m for h
sufficiently small and

lim
h→0

max
1≤i≤m

|κ− κi,h| = 0.

Moreover, if E(V) is the eigenspace corresponding to κ and Eh(Vh) is the T h-invariant subspace
of Vh spanned by the eigenspaces corresponding to {κi,h, i = 1, . . . ,m} then

lim
h→0

δ̂(E(V),Eh(Vh)) = 0.

Proof. See proof of Theorem 5.2 in [16].

Remark 4.2. The above result for the eigenvalues κ of T and κi,h of T h yield analogous conclusion
for the eigenvalues λ = 1/κ of problem (2.2) and the eigenvalues λi,h = 1/κi,h of problem (3.10).

Let us introduce the following distance

δ∗(E(V),Vh) := sup
τ∈E(V),‖τ‖DG=1

inf
τh∈Vh

‖τ − τ h‖
∗
DG.

The following results has been proved in [16, Theorem 6.1] for a fixed eigenvalue κ ∈ (0, 1) of
T .

Theorem 4.3. For h small enough, there exists a positive constant C, independent of h, such that

δ̂
(
E(V),Eh(Vh)

)
≤ Cδ∗(E(V),Vh).

Finally, with the aid of Proposition 2.2, we present the rates of convergence of the proposed
DG methods.

Theorem 4.4. Let r > 0 be such that E(V) ⊂ {τ ∈ Hr(Ω)n×n : div τ ∈ H1+r(Ω)n} (cf.
Proposition 2.2). Then, there exists C1, C2 > 0, independent of h, such that, for ε ∈ {−1, 0} we
have

δ̂(Eh(Vh),E(V)) ≤ C1h
min{r,k}, (4.27)

and
max

1≤i≤m
|λ− λi,h| ≤ C2 h

min{r,k}. (4.28)

Moreover, if ε = 1, (4.27) holds true and there exists C3 > 0, independent of h, such that

max
1≤i≤m

|λ− λi,h| ≤ C3 h
2min{r,k} (4.29)
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Proof. To obtain (4.27) we follow the arguments presented in Theorem 6.2 of [16]. Notice that
(4.28) is a direct consequence of (4.27).

To prove the double order of convergence in the case ε = 1, we procede as follows: let
κ1,h, . . . , κm,h be the eigenvalues of T h : Vh → Vh lying in Dκ and repeated according to their
algebraic multiplicity.

Let σi,h be the eigenfunction corresponding to κi,h and satisfying ‖σh‖DG = 1. We know from
Theorem 4.3 that, if h is sufficiently small,

δ(σh,E(V)) ≤ Cδ∗(E(V),Vh).

Then, there exists an eigenfunction σ ∈ E(X) satisfying

‖σh − σ‖DG = δ(σh,E(V)) ≤δ̂(Eh(Vh),E(V)) ≤ Cδ∗(E(V),Vh) → 0,

as h → 0 and hence, we prove a lower and upper bound of ‖σ‖DG with a constant independent of
h.

On the other hand, proceeding as in the proof of the consistency property in Lemma 3.3 we
obtain that

ah(σ, τ h) = λb(σ, τh) ∀τh ∈ Vh, (4.30)

where from now on, we work with the eigenvalues λ = 1/κ and λi,h = 1/κi,h (cf. Remark 4.2).

Now, with the aid of (4.30), it is easy to show that the identity

ah(σ − σh,σ − σh)− λb(σ − σh,σ − σh) = (λi,h − λ) b(σh,σh)

holds true. On the other hand, due Lemma 3.2 we have that

b(σh,σh) =
ah(σh,σh)

|λi,h|
≥

αDG‖σh‖2DG

|λi,h|
≥ Ĉ > 0.

Since ah(·, ·) and b(·, ·) are bounded bilinear forms, we have

Ĉ|λi,h − λ| ≤ |ah(σ − σh,σ − σh)|+ |λ||b(σ − σh,σ − σh)| ≤ C(‖σ − σh‖
∗
DG)

2.

By definition of ‖ · ‖∗DG we have

‖σ − σh‖
∗
DG = ‖σ − σh‖DG + ‖h

1/2
F {div(σ − σh)}‖F∗

h
. (4.31)

Clearly we have

‖σ − σh‖DG ≤ Cδ∗ (E(V),Vh) ≤ Chmin{r,k} (‖σ‖r,Ω + ‖divσ‖1+r,Ω) ≤ Chmin{r,k}‖σ‖div,Ω,

where we have used Proposition 2.2.

To bound the second term in (4.31), we follow the arguments in the proof of Theorem 6.2 of
[16], which is enough conclude the proof.

5. Numerical results

This section is dedicated to report some numerical results for the three different DG discretiza-
tions to solve the Stokes eigenvalue problem introduced in (3.10) and obtained with ε ∈ {−1, 0, 1}.
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These results have been obtained using a FEniCS code [17]. We will present two different situa-
tions: The first consists in apply the method to solve the Stokes eigenvalue problem considering
mixed boundary conditions to observe if the method introduce spurious eigenvalues. In particular,
we will analyze the influence stabilization parameter aS . We note that others spectral analysis
using DG methods introduces spurious eigenvalues (see for instance [16]). On the other hand, in
the second test we apply the method considering homogeneous Dirichlet conditions in order to
approximate smooth eigenfunctions and obtain rates of convergence. These two scenarios will be
tested for the SIP (ε = 1), NIP (ε = 0) and IIP (ε = 0) methods in order to compare them.

From now and on, the stabilization parameter aS in the bilinear form ah(·, ·) in problem (3.10)
will be chosen proportionally to the square of the polynomial degree k as aS = ak2 with a > 0.
Also, in the tests we will consider uniform and non-uniform meshes. In the former case, we consider
the following meshes.

N = 4 N = 6

Figure 1: Uniform meshes

In Figure 1 the parameter N is the refinement level and is related to the number of elements
on each edge. Non-uniform meshes will be considered for certain tests, which are created with the
FEniCS command “generate-mesh”.

5.1. The SIP method

5.1.1. Square domain with mixed boundary conditions.

In the following experiment we will consider the unit square Ω := (0, 1)2 as computational
domain. We will impose mixed boundary conditions in the sense that the bottom of the square is
ΓD and the rest of the boundary is ΓN (cf. (2.1)). We start by determining a reliable stabilization
parameter aS for the SIP method. This is relevant since according to Lemma 3.2, the DG method
is stable when aS > a∗. Moreover, we have proved that the spectral correctness is guaranteed if
aS large enough and the mesh size h is sufficiently small.

In Tables 1, 2, 3 and 4 we report the first ten computed eigenvalues on a fixed uniform mesh
with refinement level N = 8 and for different values of a = 1/2, 1, 2, 4, 8, obtained with the SIP
discrete method and with different polynomial degrees k = 2, 3, 4, 5, respectively.
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a = 1/2 a = 1 a = 2 a = 4 a = 8

2.4673952 2.4674098 2.4673988 2.4674009 2.4674027
6.2783711 6.2783205 6.2786077 6.2786461 6.2786916

15.2050875 13.8080740 15.2048401 15.2070648 15.2075325

22.2022769 15.2299336 22.2044904 22.2064982 22.2078141

26.9367195 17.3551502 26.9393017 26.9471212 26.9491043

43.1056252 22.2101498 27.2595556 43.1376899 43.1479911

48.2638010 26.9399936 30.8054160 48.3254124 48.3358111

61.5890137 43.1227662 43.1497375 61.6831890 61.7107090
64.1452024 48.3054908 48.3070401 64.2950564 64.3252159

74.9906822 49.7022276 61.6537505 75.1861780 75.2318836

Table 1: Computed eigenvalues for k = 2, refinement level of the mesh N = 8 and different stabilization values.

a = 1/2 a = 1 a = 2 a = 4 a = 8

2.4674011 2.4674011 2.4674010 2.4674011 2.4674011
6.2791864 6.2791542 6.2791872 6.2791866 6.2791870

15.2086573 6.4680014 15.2086789 15.208673 15.208676

22.2066096 6.5053145 22.2066065 22.206612 22.206614
26.9479205 15.208699 26.9479235 26.947926 26.947935
43.1405126 22.206666 43.1407403 43.140792 43.140827
48.3293767 26.947820 48.3317069 48.331680 48.331792

50.9847437 30.970406 61.6847900 61.685202 61.685275

59.1914865 31.290172 64.2981726 64.298195 64.298384
61.6796639 43.141623 75.1925479 75.192869 75.193319

Table 2: Computed eigenvalues for k = 3, refinement level of the mesh N = 8 and different stabilization values.

a = 1/2 a = 1 a = 2 a = 4 a = 8

2.4674011 2.4674011 2.4674011 2.4674011 2.4674011
6.2793050 6.2793049 6.2793047 6.2793052 6.2793052
15.2090382 15.2090394 15.2090336 15.2090388 15.2090390
22.2066099 22.2066099 22.2066099 22.2066099 22.2066099
26.9482072 26.9482055 26.9482059 26.9482120 26.9482122

43.1412120 42.2740886 42.7979738 43.1412164 43.1412169

48.3337162 43.1411912 43.1411873 48.3337694 48.3337722
61.6850268 48.3337745 48.3335293 61.6850281 61.6850284

64.2994996 61.6850277 50.2928849 64.2995149 64.2995175

75.1957131 62.7115948 61.6848550 75.1958427 75.1958505

Table 3: Computed eigenvalues for k = 4, refinement level of the mesh N = 8 and different stabilization values.
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a = 1/2 a = 1 a = 2 a = 4 a = 8

2.4674011 2.4674011 2.4674011 2.4674011 2.4674011
6.2793410 6.2793410 6.2793410 6.2793410 6.2793410

8.7584062 14.7272349 15.2091513 15.2091514 15.2091514

8.9525072 14.7446998 22.2066099 22.2066099 22.2066099
15.2091529 15.2091514 26.9482991 26.9482992 26.9482992
22.2066099 22.2066099 43.1413650 43.1413653 43.1413654
26.9482988 26.9482991 48.3344357 48.3344376 48.3344379
43.1413660 43.1413652 61.6850275 61.6850275 61.6850275
48.3344338 48.3344342 64.3000074 64.3000092 64.3000095

61.6850275 60.9324690 75.1969504 75.1969556 75.1969564

Table 4: Computed eigenvalues for k = 5, refinement level of the mesh N = 8 and different stabilization values.

In Tables 1, 2, 3 and 4, the eigenvalues inside boxes correspond to spurious eigenvalues. Thus,
the present DG method (SIP) introduces spurious eigenvalues if the stabilization parameter is not
sufficiently large. We observe from these tables that for all polynomial degrees, when the parameter
a increases, these spurious eigenvalues vanishes from the spectrum. From these results we observe
that for a = 8 there is no presence of spurious eigenvalues in all the tables.

5.1.2. Square domain with smooth eigenfunctions.

The aim of this test is to determine the convergence rate of the SIP method. For this numerical
experiment we consider the square domain Ω := (−1, 1)2 as computational domain. We will
consider the boundary condition u = 0 on the whole boundary.

We report in Table 5 the six lowest eigenvalues computed with the SIP method and with
a = 10 (to avoid the presence of possible spurious eigenvalues). The polynomial degrees are given
by k = 1, 2, 3. We consider non-uniform meshes with N = 10, 20, 30, 40. The table includes orders
of convergence as well as accurate values extrapolated by means of a least-squares fitting. In the
two last columns of the table, we show the values obtained by extrapolating those computed with
different finite element methods, applied to solve the same problem, presented in [21] and [18],
respectively.
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k N = 10 N = 20 N = 30 N = 40 Order λextr [21] [18]

13.23530 13.12312 13.10301 13.09557 2.03 13.08683 13.0860 13.086
23.46703 23.14735 23.08195 23.06083 1.88 23.02751 23.0308 23.031

1
23.48255 23.14789 23.08326 23.06087 1.94 23.02986 23.0308 23.031
32.91691 32.28099 32.15261 32.10993 1.89 32.04518 32.0443 32.053
39.73787 38.85144 38.67522 38.61419 1.90 38.52632 38.5252 38.532
43.21970 42.14111 41.92730 41.85513 1.91 41.74927 41.7588 41.759
13.08798 13.08629 13.08619 13.08618 3.94 13.08617 13.0860 13.086
23.04090 23.03171 23.03122 23.03113 3.99 23.03109 23.0308 23.031

2
23.04164 23.03172 23.03123 23.03113 4.08 23.03110 23.0308 23.031
32.07787 32.05408 32.05274 32.05250 3.92 32.05239 32.0443 32.053
38.57979 38.53426 38.53194 38.53154 4.07 38.53138 38.5252 38.532
41.80864 41.76061 41.75795 41.75750 3.95 41.75728 41.7588 41.759
13.08618 13.08617 13.08617 13.08617 6.19 13.08617 13.0860 13.086
23.03117 23.03109 23.03109 23.03109 5.92 23.03109 23.0308 23.031

3
23.03118 23.03109 23.03109 23.03109 6.10 23.03109 23.0308 23.031
32.05276 32.05240 32.05239 32.05239 6.10 32.05239 32.0443 32.053
38.53189 38.53137 38.53136 38.53136 5.92 38.53136 38.5252 38.532
41.75803 41.75730 41.75729 41.75729 6.00 41.75729 41.7588 41.759

Table 5: Lowest computed eigenvalues for polynomial degrees k = 1, 2, 3, a = 10.

In this case, since Ω is convex, the problem have smooth eigenfunctions, as a consequence, when
using polinomial degree k, the order of convergence is 2k as the theory predicts (cf. Theorem 4.4).
Moreover, the results obtained by the three methods agree perfectly well.

5.2. The NIP method

Let us recall that the NIP method is obtained by taking ε = −1 in (3.11). The first tests consists
in the observation of spurious eigenvalues with the NIP method. As in the SIP method, we know
that the appearance of spurious eigenvalues depend on the choice of the stabilization parameter,
so we are interested in determine a reliable value of aS and compare it with the observed for the
SIP method.

In this numerical test, we take the same configuration of the problem as in Section 5.1.1. We
also consider different polynomial degress and once more, we fix N = 8 as refinement level for the
mesh.

a = 1/16 a = 1/8 a = 1/4 a = 1/2 a = 1

2.4721900 2.4719820 2.4716086 2.4710183 2.4702292
6.2867722 6.2876798 6.2874953 6.2864875 6.2848802
15.3436563 15.3430793 15.3344816 15.3178801 15.2945247
22.5758800 22.5672129 22.5403719 22.4944190 22.4320860
27.2535812 27.2705417 27.2565378 27.2183176 27.1617122
44.4811198 44.4559551 44.3741072 44.2123471 43.9860753

47.8366427 49.1414414 49.1512947 49.0631795 48.9128539

47.8658246 64.2105023 64.1241730 63.8165901 63.3669044

47.8658246 66.4074400 66.3880515 66.1610536 65.7894196

48.2260686 78.1827930 78.1523273 77.8113776 77.2682228

Table 6: Computed eigenvalues for k = 2, refinement level of the mesh N = 8 and different stabilization values.
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a = 1/16 a = 1/8 a = 1/4 a = 1/2 a = 1

2.4674071 2.4674061 2.4674050 2.4674039 2.4674030
6.2791238 6.2791444 6.2791633 6.2791814 6.2791947
15.2097172 15.2096509 15.2095048 15.2093382 15.2091780
22.2109165 22.2102393 22.2094497 22.2086809 22.2080315
26.9498165 26.9498169 26.9496152 26.9493860 26.9491478
43.1701050 43.1662597 43.1612684 43.1561487 43.1516245
48.3415270 48.3435730 48.3429551 48.3415116 48.3397671
61.7736247 61.7598178 61.7440082 61.7284035 61.7149867
64.3766118 64.3702919 64.3580404 64.3442239 64.3314399
75.2957059 75.2925537 75.2776318 75.2593133 75.2416689

Table 7: Computed eigenvalues for k = 3, refinement level of the mesh N = 8 and different stabilization values.

a = 1/16 a = 1/8 a = 1/4 a = 1/2 a = 1

2.4674007 2.4674008 2.4674008 2.4674008 2.4674009
6.2793114 6.2793111 6.2793103 6.2793092 6.2793081
15.2090047 15.2090065 15.2090084 15.2090117 15.2090170
22.2063854 22.2063998 22.2064222 22.2064539 22.2064926
26.9480089 26.9480258 26.9480473 26.9480762 26.9481107
43.1396640 43.1397720 43.1399213 43.1401316 43.1403915
48.3327684 48.3328818 48.3330010 48.3331479 48.3333152
61.6804055 61.6807669 61.6812586 61.6819186 61.6826970
64.2956445 64.2959311 64.2962817 64.2967717 64.2973955
75.1890992 75.1897554 75.1904693 75.1913947 75.1925052

Table 8: Computed eigenvalues for k = 4, refinement level of the mesh N = 8 and different stabilization values.

We observe in Tables 6, 7 and 8 that, contrary to what happened with the SIP method for the
same problem, the NIP method needs smaller stabilization parameter to avoid spurious eigenvalues.
Moreover, clearly spurious eigenvalues vanish when we increase the polynomial degree, leaving the
physical spectrum clean. This phenomenon does not occur with the symmetric method, and it is
a clear advantage to calculate the physical eigenvalues.

Now, our aim is to analyze the order convergence of the NIP method. With this goal, we
consider the same computational domain and boundary conditions as in Section 5.1.2.

We report in Table 9 the six lowest eigenvalues computed with the NIP method and with
a = 2. The polynomial degrees are given by k = 1, 2, 3, 4. We consider uniform meshes with
N = 10, 20, 30, 40. The table includes orders of convergence as well as accurate values extrapolated
by means of a least-squares fitting. In the two last columns of the table, we show the values obtained
by extrapolating those computed with different finite element methods presented in [21] and [18],
respectively.
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k N = 10 N = 20 N = 30 N = 40 Order λextr [21] [18]

12.28911 12.88060 12.99430 13.03440 1.94 13.08900 13.0860 13.086
20.31663 22.30382 22.70387 22.84625 1.87 23.05260 23.0308 23.031

1
20.94590 22.49347 22.79091 22.89575 1.94 23.03865 23.0308 23.031
27.57492 30.83654 31.50459 31.74283 1.85 32.09233 32.0443 32.053
31.97605 36.76939 37.73881 38.08373 1.87 38.58001 38.5252 38.532
34.19537 39.69930 40.82883 41.23233 1.84 41.83386 41.7588 41.759
13.22024 13.12045 13.10147 13.09479 1.96 13.08590 13.0860 13.086
23.38718 23.12303 23.07220 23.05427 1.94 23.02991 23.0308 23.031

2
23.48972 23.15049 23.08456 23.06124 1.93 23.02951 23.0308 23.031
32.81717 32.25537 32.14363 32.10392 1.89 32.04759 32.0443 32.053
39.64207 38.82517 38.66331 38.60583 1.90 38.52547 38.5252 38.532
43.06625 42.10278 41.91235 41.84481 1.90 41.74981 41.7588 41.759
13.08747 13.08625 13.08619 13.08618 3.98 13.08617 13.0860 13.086
23.03624 23.03143 23.03116 23.03112 3.96 23.03110 23.0308 23.031

3
23.03946 23.03163 23.03120 23.03113 3.97 23.03110 23.0308 23.031
32.07150 32.05363 32.05264 32.05247 3.95 32.05239 32.0443 32.053
38.56114 38.53330 38.53175 38.53149 3.94 38.53136 38.5252 38.532
41.79517 41.75974 41.75778 41.75745 3.95 41.75729 41.7588 41.759
13.08606 13.086 13.08617 13.08617 3.89 13.08617 13.0860 13.086
23.03042 23.031 23.03109 23.03110 3.80 23.03110 23.0308 23.031

4
23.03067 23.031 23.03109 23.03110 3.83 23.03110 23.0308 23.031
32.05094 32.052 32.05237 32.05239 3.69 32.05240 32.0443 32.053
38.52909 38.531 38.53133 38.53135 3.71 38.53137 38.5252 38.532
41.75444 41.757 41.75725 41.75728 3.71 41.75730 41.7588 41.759

Table 9: Lowest computed eigenvalues for polynomial degrees k = 1, 2, 3, 4, a = 2.

We observe in this case that the order of convergence depends on the polinomial degree. How-
ever, we observe in the column λextr that the computed extrapolated values converge to those in
the reference columns. More precisely, with respect to the convergence rates, we note that when
the polynomial degree is even, the order convergence is O(hk) as the theory predicts (cf. (4.28)).
We observe that in this case the eigenfunctions are smooth. On the other hand, for odd polynomial
degrees we see a superconvergence of the scheme (the order is O(hk+1)). This fact has been also
seen in [5] where a DG method has been analyzed for the Maxwell’s eigenvalue problem.

5.3. The IIP method

In this section, we report numerical results using the IIP method to solve the eigenvalue prob-
lem. We recall that we obtain the IIP method considering ε = 0 in (3.11). We have repeated
the same experiment presented in Section 5.1.1. We have observed that the spurious eigenvalues
behave in a similar way as in the NIP case. For that reason, we do not include tables about this
subject.

Now, our aim is to analyze the orders convergence of the IIP method to see if the behavior is
similar as in NIP method. We take the same configuration of the domain as in Section 5.1.2.

We report in Table 10 the six lowest eigenvalues computed with the IIP method and with
a = 2. The polynomial degrees are given by k = 1, 2, 3, 4. Once again, we used uniform meshes
with N = 10, 20, 30, 40. The table includes orders of convergence as well as accurate values
extrapolated by means of a least-squares fitting. In the two last columns of the table, we show the
values obtained by extrapolating those computed with different finite element methods presented
in [21] and [18], respectively.
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k N = 10 N = 20 N = 30 N = 40 Order λextr [21] [18]

12.15236 12.84090 12.97615 13.02409 1.91 13.09081 13.0860 13.086
19.95157 22.17805 22.64447 22.81211 1.81 23.06783 23.0308 23.031

1
20.58540 22.38289 22.73984 22.86663 1.89 23.04710 23.0308 23.031
26.97658 30.61619 31.39938 31.68215 1.77 32.12968 32.0443 32.053
31.16720 36.45615 37.58787 37.99639 1.78 38.63512 38.5252 38.532
33.26501 39.33555 40.65254 41.13008 1.76 41.88800 41.7588 41.759
13.19299 13.11334 13.09828 13.09299 1.97 13.08602 13.0860 13.086
23.31856 23.10478 23.06399 23.04963 1.95 23.03021 23.0308 23.031

2
23.39557 23.12509 23.07311 23.05477 1.94 23.02980 23.0308 23.031
32.66925 32.21382 32.12475 32.09321 1.92 32.04989 32.0443 32.053
39.42492 38.76485 38.63596 38.59036 1.92 38.52748 38.5252 38.532
42.80949 42.03174 41.88019 41.82660 1.92 41.75238 41.7588 41.759
13.08720 13.08624 13.08619 13.08618 3.98 13.08617 13.0860 13.086
23.03516 23.03136 23.03115 23.03111 3.96 23.03111 23.0308 23.031

3
23.03766 23.03152 23.03118 23.03113 3.96 23.03111 23.0308 23.031
32.06743 32.05337 32.05259 32.05246 3.94 32.05239 32.0443 32.053
38.55471 38.53289 38.53167 38.53146 3.93 38.53136 38.5252 38.532
41.78697 41.75922 41.75768 41.75742 3.94 41.75729 41.7588 41.759
13.08609 13.08617 13.08617 13.08617 3.90 13.08617 13.0860 13.086
23.03059 23.03106 23.03109 23.03110 3.82 23.03110 23.0308 23.031

4
23.03078 23.03108 23.03109 23.03110 3.85 23.03110 23.0308 23.031
32.05130 32.05231 32.05238 32.05239 3.73 32.05240 32.0443 32.053
38.52967 38.53124 38.53134 38.53136 3.73 38.53137 38.5252 38.532
41.75516 41.75713 41.75726 41.75728 3.73 41.75730 41.7588 41.759

Table 10: Lowest computed eigenvalues for polynomial degrees k = 1, 2, 3, 4, a = 2.

We observe from Table 10 the same behavior as in NIP method (cf. Table 9). More precisely,
it can be seen that for even polynomial degrees, the order of convergence is O(hk) and for odd
polynomial degrees we observe a superconvergence O(hk+1). Once again, the results obtained by
this method agree perfectly well with the ones reported in the references.

Remark 5.1. For the NIP and IIP (non-symmetric) methods we have used uniform meshes to
solve the discrete eigenvalue problem and in this case we have obtained only real eigenvalues. We
have also tested the methods with non-uniform meshes and we have observed the presence of complex
eigenvalues with an imaginary part close to zero. This has been also observed in other DG spectral
analysis (see for instance [5]).

6. Conclusions

We have presented DG discretizations (symmetric and non-symmetric) to solve the Stokes
eigenvalue problem where the pseudostress tensor is the unknown. We have established spectral
correctness for large enough stabilization parameter and sufficiently small meshsize h. We have seen
that the methods introduce spurious eigenvalues for small values of the stabilization parameter.
Moreover, we have show that for large enough stabilization parameter, the spurious eigenvalues
vanishes for all the methods. In fact, for the SIP method (symmetric) the spurious eigenvalues
needs a larger stabilization parameter to avoid the spurious modes compared with the NIP and IIP
methods (non-symmetric). We have obtained error estimates for eigenfunctions and eigenvalues
for each method. In particular, we have prove a double order of convergence for the SIP method.
We have seen a superconvergence for the NIP and IIP methods in the case of odd polynomial
degrees.
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Prof. Rodolfo Rodŕıguez (Universidad de Concepción, Chile) for the fruitful discussions.

The first author was partially supported by Proyecto Plurianual 2016-2010 of Universidad
del Bı́o-Bı́o (Chile) and CONICYT-Chile through FONDECYT Postdoctorado fellowship 3190204
(Chile). The second author was partially supported by CONICYT-Chile through FONDECYT
project 1180913 (Chile) and by CONICYT-Chile through the project AFB170001 of the PIA
Program: Concurso Apoyo a Centros Cient́ıficos y Tecnológicos de Excelencia con Financiamiento
Basal.

References

[1] P.F. Antonietti, A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the
Laplace eigenproblem, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 3483–3503.

[2] D. Boffi, Finite element approximation of eigenvalue problems. Acta Numerica, 19 (2010),
pp. 1–120.

[3] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications.
Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg, 2013.

[4] F. Brezzi, J.Jr. Douglas and L.D. Marini, Two families of mixed finite elements for
second order elliptic problems, Numer. Math., 47 (1985), pp. 217–235.

[5] A. Buffa, P. Houston and I. Perugia, Discontinuous Galerkin computation of the Maxwell
eigenvalues on simplicial meshes, J. Comput. Appl. Math., 2014 (2007), pp. 317–333.

[6] A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenprob-
lem, SIAM J. Numer. Anal., 44 (2006), pp. 2198–2226.

[7] Z. Cai, Ch. Tong, P.S. Vassilevski and Ch. Wang, Mixed finite element methods for in-
compressible flow: stationary Stokes equations. Numer. Methods Partial Differential Equations,
26 (2010), pp. 957-978.

[8] J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 1: The problem
of convergence, RAIRO Anal. Numér., 12 (1978), pp. 97–112.

[9] J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 2: Error estimates
for the Galerkin method, RAIRO Anal. Numér., 12 (1978), pp. 113–119.

[10] D.N. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods.
Springer-Verlag Berlin Heidelberg 2012.

[11] G.N. Gatica, A. Márquez and M.A. Sánchez, Analysis of a velocity-pressure-
pseudostress formulation for the stationary Stokes equations, Comput. Methods Appl. Mech.
Engrg., 199 (2010), pp. 1064–1079.

[12] G.N. Gatica, A. Márquez, and M.A. Sánchez, Pseudostress-based mixed finite element
methods for the Stokes problem in Rn with Dirichlet boundary conditions. I: A priori error
analysis, Commun. Comput. Phys., 12 (2012), pp. 109–134.

[13] J. Gedicke and A. Khan, Arnold-Winther mixed finite elements for Stokes eigenvalue
problems, SIAM J. Sci. Comput., 40 (2018), pp. A3449–A3469.

22



[14] J. Gedicke and A. Khan, Divergence-conforming discontinuous Galerkin finite elements
for Stokes eigenvalue problems, arXiv:1805.08981v1, (2018), https://arxiv.org/abs/1805.
08981

[15] P. Huang, Lower and upper bounds of Stokes eigenvalue problem based on stabilized finite
element methods, Calcolo, 52 (2015), pp. 109–121.

[16] F. Lepe, S. Meddahi, D. Mora and R. Rodŕıguez, Mixed discontinuous Galerkin ap-
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