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A mixed-primal finite element method for the coupling
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Abstract

This paper is devoted to the mathematical and numerical analysis of a model describing the flow-
transport interaction in a porous-fluidic domain. The medium consists of a highly permeable mate-
rial, where the flow of an incompressible viscous fluid is governed by Brinkman equations (written
in terms of vorticity, velocity and pressure), and a porous medium where Darcy’s law describes fluid
motion. Gravity and the local fluctuations of a scalar field (representing for instance, the solids
volume fraction, or the concentration of a contaminant) are the main drivers of the fluid patterns on
the whole domain, and the Brinkman-Darcy equations are coupled to a nonlinear transport equa-
tion accounting for mass balance of the scalar. We introduce a mixed-primal variational formulation
of the problem and establish existence and uniqueness of solution using fixed-point arguments and
small-data assumptions. A family of Galerkin discretisations that produce divergence-free discrete
velocities is also presented and analysed using similar tools to those employed in the continuous
problem. Convergence of the resulting mixed-primal finite element method is proven, and some
numerical examples confirming the theoretical error bounds and illustrating the performance of the
proposed discrete scheme are reported.

Key words: Nonlinear transport, Brinkman-Darcy coupling, vorticity-based formulation, fixed-point
theory, mixed finite elements, error analysis.

Mathematics Subject Classifications (2000): 65N30, 76505, 656N12, 65N15.

1 Introduction

The aim of this paper is to put together an extension of the results from [2, [3] and [4] dealing with
augmented and fully mixed finite element approximations of coupled flow and transport problems,
and coupled Brinkman and Darcy flow, respectively. The coupled system describes the interaction of
flow and transport phenomena in two different domains separated by an interface. Such a formalism
arises naturally, and has been systematically used, in hydrology and biological applications including
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for instance subsurface flow, hydraulic fractures, COo sequestration, perfusion of soft living tissues,
etc. In obtaining approximate solutions for the problem under consideration one faces marked dif-
ficulties. These are related to the coupling of mechanisms that act simultaneously, such as active
transport and reaction of the solute and nonlinearities in the diffusion process and in the source term;
as well as the heterogeneities, transmission conditions, and the need of preserving physical properties.
Even if many numerical solutions are already available (see e.g. [I1], 14 [I5] 6] and the references
therein), up to the authors’ knowledge the only contributions addressing mathematical and numeri-
cal properties of somewhat similar couplings are the recent works [§], where existence and stability
bounds of weak solutions is established also for the nonlinear Navier-Stokes-Darcy flow coupled with
transport; [20], where a mixed finite element scheme approximates the Stokes-Darcy system and a
local discontinuous Galerkin method is employed to discretise the transport equation; and [19] that
analyses stabilised velocity-pressure-concentration formulations for a model where viscosity depends
on the solute concentration.

The main difference of these works with respect to our contribution, is that we propose a formulation
of the problem written in terms of Brinkman vorticity, and the transmission conditions we employ are
slightly different. In addition, we introduce a mixed-primal finite element method for the Brinkman-
Darcy-Transport coupling that produces divergence-free discrete velocities. Following our recent work
[4], the coupling of subdomains is based on a vorticity based fully-mixed formulation for the Brinkman-
Darcy problem, whereas a primal formulation for the transport problem is adapted from [3]. The
solvability of such a coupling will be based on extending the fixed-point strategy introduced in [2]
and [3] to the present context. In particular, we realise that the primal formulation for the transport
problem requires further regularity for the global velocity, initially living in H(div,2). In turn, and
in contrast with [2] and [3], we can not exploit augmentation techniques to recover H!(Q2) velocities.
However, a different smoothness assumption is introduced at the level of the continuous analysis of
the transport problem, and subsequently in the solvability of the Brinkman-Darcy-Transport coupling.
More precisely, the derivation of existence of weak solutions relies on a strategy combining classical
fixed-point arguments, suitable regularity assumptions on the decoupled problems, the Lax-Milgram
Lemma, preliminary results from [4], and the Sobolev embedding and Rellich-Kondrachov compactness
theorems. In addition, sufficiently small data allow us to establish uniqueness of weak solution. On the
other hand, the well-posedness of the discrete problem is based on the Brouwer fixed-point theorem
and analogous arguments to those employed in the continuous analysis. Finally, similar arguments as
those utilised in [3, 4] allow us to derive the corresponding Céa estimates for both the Brinkman-Darcy
and transport problems, and these lead to natural a priori error bounds for the Galerkin scheme.

Outline. This paper has been structured as follows. The remainder of this section presents some
notation and preliminary definitions of spaces needed thereafter. The model problem along with
boundary data are stated in Section 2l The weak formulation of the problem and its well-posedness
analysis in the framework of the Schauder fixed-point theorem are collected in Section 3] The associ-
ated Galerkin scheme is then proposed in Section [4] and its solvability is established by the Brouwer
fixed-point theorem. Next, we derive in Section [5| some a priori error estimates, and conclude in
Section [6] with a few numerical examples in 2D and 3D, illustrating the good performance of the
mixed-primal finite element method and confirming the theoretical rates of convergence.

Preliminaries. Standard notation will be adopted for Lebesgue and Sobolev spaces. In addition, by
M and M we will denote the corresponding vectorial and tensorial counterparts of the generic scalar
functional space M, and || - ||, with no subscripts, will stand for the natural norm of either an element
or an operator in any product functional space. For instance, if © C R", n = 2,3 is a domain, A C R"



is a Lipschitz surface, and r € R, we define H"(0) := [H"(0)]" and H"(A) := [H"(A)]". We also
recall the definition of the following Hilbert spaces

H(div;0) = {v e L*©): divwvel?©)}, H(curl;0) := {veL*©): curlvel?©)},

normed, respectively, with

1/2
B + lcurlvlfe} .

9 . 9 1/2
[vllave = {Ilvlde + Idivolde}  Ivlleure == {lv
where, for any vector field v := (vy,...,v9)* € L?(0),

n Oav3 — 03v2
divey = Z@ivi, curlv :=V xv = | O3v1 — dvz | if n =3, and curlv = O1v9 — oy if n = 2.
pa O1v2 — Doy

In addition, we also recall the orthogonal decomposition
L2(0) = L§(©) @ R(O),

where Py(0) is the space of constant functions on ©, and
L3(0) = Py(©)t = {q cL*(0): / q:O}.
©
Equivalently, each ¢ € L?(©) can be uniquely decomposed as ¢ = qo + ¢, with

1 1
g :=q¢— — | ¢ € L{O) and c:—/qeR,
0] Jo! & 101 6 Jo

where L(©) is endowed with the usual norm of L2(©), and it is easy to see that there holds

lallie = laolfe + 0]

By 0 we will denote the generic null vector (including the null functional and operator), and we will
denote by C' and ¢, with or without subscripts, bars, tildes or hats, generic constants independent of
the discretisation parameters.

2 Governing equations

Let Q C R", n = 2,3, denote an heterogeneous porous domain composed of two regions: g, where
the viscous flow patterns characterised by velocity ug, vorticity wg, and pressure pg can be governed
by the linear Brinkman equations; and 2p, where the flow of the immiscible fluid obeys to Darcy’s law
written in terms of velocity up and pressure pp in the porous domain. These subdomains are separated
by an interface X, through which exchange of fluid velocities and pressures occurs. We also consider
that a given scalar field ¢ (representing, for instance, the concentration of a chemical component, the
fluid density, the temperature, or the volume fraction or saturation of a solid phase) is advected and
diffused on the whole Q according to the mass conservation principle (or energy conservation if the
scalar field stands for e.g. temperature). The model problem can be summarised as follows:

pKg'up + pcurlwp + Vps = ¢fp
(Brinkman) wp —curlug = 0
div ug =— 0

in QOp, (2.1)



coupled with

1 .
(Darcy) HKp up —(ii_ivvt]zﬁ ; ng } in Qp, (2.2)

and
(Transport) 86 — div(D(B)Vé — du — fu(é)g) =0 in Q. (2.3)

where > 0 is the constant viscosity of the fluid in the entire domain €2, the parameter 3 is the
porosity of the medium (assumed constant inside each subdomain, but possibly discontinuous across
Y)). Notice that w in refers to the global velocity field defined in both Qp and Qp, that is
u = lo,up + lg,up, where 1, is the characteristic function, x € {B,D}. In addition, K and
Kp are symmetric, bounded, and uniformly positive definite tensors Kg, Kp, which means that there
exist ag, > 0 and ag, > 0 such that

v K5 (z)v > ag,|v? Vv e R Va € Qp,

and
v'Kpl(z)v > agy|v]* Vv € R",Vx € Qp.

In turn, the tensors Kg and Kp characterise the absolute permeability of the Brinkman and Darcy
domains, respectively; the function 1 is a nonlinear diffusivity, and fyx is a nonlinear flux acting on
the direction of the gravity acceleration g, aligned with the negative x,,—axis. The specific forms of
these variable coefficients will be made precise later. In addition, we assume that fz € L*°(Qp) and
fp € L>®(Qp). We stress that the local fluctuations of ¢ drive the flow patterns only through the
external load in the momentum equations. In this sense, the coupling mechanisms considered here are
somehow weaker than those studied in [2, 3] for transport-flow in a single domain (where also viscosity
was depending of ¢).

We assume that 2 has a Lipschitz continuous boundary split into two disjoint sub-boundaries with
positive measure, according to two criteria: firstly, 9Q = I'gUIp, where I's = 0Qp\X and Ip = 9Qp\ X
denote pure Brinkman and Darcy borders, respectively; and secondly 9€) = 'y U Iy, where Ty, I'y
denote the parts of the boundary where homogeneous Dirichlet or Neumann (zero flux) conditions
are enforced for ¢, respectively (see a rough diagram of domains and boundaries in Figure . The
considered boundary and transmission conditions are:

up-n=ug-n and pp=pg on X,
wpxn=0 on =X UIg, ugp-n=0 on Iz, and up-n =0 on Ip, (2.4)
¢=0 on Ty, and (¥¢)Ve—odu— frx(d)g)-n=0 on Iy,

where n denotes the outward normal at (g and 2p. Note that interface conditions are not required in
the transport equation, as the continuity of ¢ and of the corresponding fluxes is incorporated naturally
in the formulation.

For the sake of our analysis, the variable coefficients need to satisfy the following requirements:
there exist positive constants 91, Y2, 71, 72, Ly, and Ly, , such that

P <I(s) <y, and v < frk(s) < 7o VseR, (2.5)
[9(s) —9(t)] < Lyl|s —t] Vs, teR, (2.6)

and
| fox(s) = fox(t)| < Ly, |s —t| Vs, teR. (2.7)



Figure 2.1: Sketch of the domains occupied by the incompressible fluid and by the porous medium
(Qp and Qp, respectively), interface ¥, and corresponding boundaries.

In view of deriving a weak form of (2.1)-(2.3), and according to the boundary data ({2.4]), we
introduce the following functional spaces

Hp(div; Q) := {'UB € H(div;Qp): wvp-m=0 on I‘B} ,
Hy(curl; Qp) := {zB € H(curl;Qp): zpxn=0 on 893} ,
Hp(div; Qp) := {’UD € H(div;p): wvp-n=0 on FD} ,

and
HF, (Q) = {¢ e H(Q) : ¢|r, = 0},

for which, thanks to the generalised Poincaré inequality, there exists ¢, > 0, depending only on € and
Iy, such that

Wle < epltlhe, Vv € Hp (Q). (2.8)

3 Weak formulation and its solvability analysis

In this section we proceed similarly as in [2] and [3] to derive a suitable variational formulation of
(2.1)-(2.2)-(2.3)-(2.4) and analyse its corresponding solvability by using a fixed-point strategy.

3.1 A mixed-primal formulation
We first notice that the continuity of pressure across the interface ¥ allows us to define its trace
A = pplz = pels € H/3(D). (3.1)

Then, after testing the momentum equation in (2.1)) against vg € Hp(div;p), and integrating by
parts, we get

,u/ KlgluB-vB—l—u/ vB-curle—/ ppdivop+(vg-n,\)s = [ ¢fg-vp Vg€ Hp(div; Q).
Qp Qp Qp Qp



Next, testing the constitutive equation in (2.1)) against zp € Hy(curl; Qp), and integrating by parts,
we obtain

/ WR 2B — / ug-curlzg = 0 Vzp € Hy(curl; Qp).
QB QB

In turn, the incompressibility equation in (2.1)) is tested as
/ qg divug = 0 Vgp € LZ(QB) .
Qp

On the other hand, testing the first equation of (2.2]) with functions in Hp(div; Qp), integrating by
parts, using the corresponding boundary conditions, and employing (3.1)), we get

1% KBluD VD — /

pp divop — (vp - n, Ny = ¢fp - vp Vop € Hp(div;Qp).
QD QD QD

In addition, similarly as for the incompressibility condition in Qp, the second equation in (2.2) is
initially tested as

/ gp diveop = 0 Ygp € L2(Qp).
Qp

Finally, the continuity of normal velocities across ¥ (c¢f. first equation in (2.4])) is imposed weakly,
that is
(up-m — up -n, &y =0 Ve e HYZ(D).

Therefore, given ¢ € H%O(Q), we arrive at the following mixed formulation for the Brinkman-Darcy
coupling: Find 4 := (up,wn,up) € H and p':= (pp,pp, \) € Q, such that

A(, V) —i—B(fj,m = f(z)(fj) VU := (UB,ZB,UD) € H,

- . (3.2)
B(u,(j) =0 Vq: (QBanvA) eQa
where the product spaces are
H := Hg(div; Qp) x Hy(curl; Qp) x Hp(div; Qp), Q := L*(Qp) x L2(Qp) x H/2(D),
the bilinear forms A: H x H— R and B: H x Q — R are defined by
A(d, ) = u KgluB-vB—i—u/ wB-zB—i-u/ vp - curlwp
Qp Qgp QB
—u/ up -curlzg + p KBluD-vD,
QB QD
B(v,q) := —/ ¢ div vp —/ gp div vp + (v -m —vp - N, §)x,
QB QD
forall ¥ € H, ¢ € Q, and F € H' is the functional defined by
fw(’l_f) = wa"UB—f'/ Yvfp - vD vVoeH. (3.3)
QB QD

Next, we observe that the solution for (3.2)) is not unique. Indeed, it suffices to consider p:= (¢, c,c),
with ¢ € R, and note that (0,p) is also solution of the associated homogeneous system (see [4),
Theorem 3.1]). In order to guarantee the uniqueness of the solution to (3.2)), and similarly to [4], we



consider, instead of (3.2]), the following mixed formulation for the Brinkman-Darcy coupling: Find
(d,p) € H x Qp, such that

A(d,v) + B(U,p) = Fy(v) VveH,

B(’l_l:,(j) =0 V(TG Q07

where Qp := L3(Qp) x L2(Qp) x HY/2(D).
On the other hand, given w in a suitable space (to be indicated later on in Lemma , testing

with functions in HILO (€2), integrating by parts and using the boundary data, we deduce the following
primal formulation for the transport problem: Find ¢ € H%O(Q) such that

(3.4)

Culort) = [ ald)g- 0 Vo eTh(@). (35)
where, the form C,, is defined by
Culort) i= [90)V6-T0 — [6u-Vo+ [Bov Vo vent®,
In this way, the mixed-primal formulation of our original coupled problem —;, reduces
to (3.4)-(3.5), that is: Find (4,7, ¢) € H x Qg x H%O(Q) such that

A(@,9) + B@.5) = Fol®) Vi€ H,
B('l_i:@ = VCTG Qo, (36)

0
Culdrt)) = /bekw)ng vy e Hb (9).

The well-posedness of is addressed below in Sections and employing a fixed-point strategy
that is explained in the following section. We remark in advance that, in order to deal with the analysis
of , and particularly to estimate the second term defining C,,, we will require further regularity
for the global velocity. This assumption will be specified below in Section [3.3

3.2 Fixed point strategy

We now describe our fixed-point framework for (3.6)). According to the definition of the global velocity,
we first introduce the operator S : H%O(Q) — H(div; Q) defined as

S(¢) =w  VoeH(9),
where u|q, = up and u|q, = up are the first and third components of & € H, which in turn is the
first component of the unique solution (to be confirmed below) of the problem (3.4) with the given ¢.
In turn, we also introduce the operator S : H%O(Q) x H(div; Q) — H%O (Q) defined as
S(¢u) == ¢ V(pw) € HE,(Q) x H(div; ),

where ¢ is the unique solution (to be confirmed below) of the linear problem: Find ¢ € H%O(Q) such
that

Com(0,0) = Hy(¥) Vo € HL (Q), (3.7)



for fixed (¢, u), where the involved bilinear form is defined as

Coul6.0) = [

Q

0OV Vo~ [Gu-Vi+ [ 550 Ve Tenk@. (8

and the linear functional is given by
HolD) 1= [ fu)g Ve v el (@), (3.9)

Here, we stress in advance that actually S will be well-defined not in the whole space H%O(Q) X
H(div; Q), but only in a subspace of it (see Lemma (3.2 below).

Finally, we define the operator T : H%O(Q) — H%O (Q) as

T(¢) == S(¢,S(¢)) Vo € Hp,(Q), (3.10)

and realise that solving (3.6]) is equivalent to seeking a fixed point of T, that is: Find ¢ € H%O(Q)
such that

T(¢) = . (3.11)

3.3 Well-posedness of the uncoupled problem

In this section, we show that the uncoupled problems and are in fact well-posed. We begin
the solvability analysis with the following result, whose proof is a direct consequence of [4, Theorem
3.2]. Let us remark that similar vorticity-based formulations for Brinkman-Darcy equations can be
analysed using a different approach, as done recently in [6].

Lemma 3.1 For each ¢ € H%O(Q), problem (3.4) has a unique solution (u,p) € H x Qp. Moreover,
there exists C's > 0, independent of ¢, such that

IS@)lavo < (@ Plmxqy < CsI9lon {IFalleon + [ folbenn b YoM ). (3.12)

For the purpose of the next result, which provides the solvability of the uncoupled problem , we
require that the global velocity u belong to H(div; Q) N H®(Q) for some 6 € (0,1) (when n = 2) or
0 € (1/2,1) (when n = 3). In turn, according to the aforementioned range for ¢, we recall that the
Sobolev embedding Theorem (cf. Ref. [I] [Theorem 4.12], Ref. [17] [Theorem 1.3.4]) establishes the
continuous injection 45 : H?(Q) — L% () with boundedness constant C%, where

. 2 if n=2,
5 =9 B} (3.13)
3-95 lf n = 3

and it also guarantees that the injection i: H'(Q) — L™%(Q) is compact, and hence continuous, with
constant Cg. In addition, for the subsequent writing we set rg := 2%2720;, where 91 and ¢, are the

constants given in (2.5) and (2.8)), respectively.

Lemma 3.2 Let ¢ € Hp, (Q), and u € H(div; Q) N H’(Q) for some 6 € (0,1) (when n = 2) or
0 € (1/2,1) (when n = 3), such that ||ullso < 70. Then, the problem (3.7) has a unique solution

S(¢p,u):=¢ € H%O(Q) Moreover, there exists Cg > 0, independent of (¢,wu), such that

1S(6, w10 < Cg2lQY?g]. (3.14)

8



Proof. We first notice that Cy., (cf. (3.8)) is clearly a bilinear form. In turn, employing the upper
bound of ¥ (¢f. (2.5)), Cauchy-Schwarz’s inequality, and Holder’s inequality, it readily follows from

that
Cou(6, )] < V2ldlL [Wlie + @lLae) llullieno) [dlie + BlSloa ¥ log (3.15)

where p,q € [1,+00) are such that 1/p + 1/g = 1. Next, choosing p such that 2p = §* (c¢f. (3.13))), it
readily follows that

2p _n
p—1 &
In this way, applying the continuous injections 45 : H(Q) — L% (Q), and i : H'(Q) — L™%(Q), the
latter being consequence of the range of §, and employing the bound for ||u||sq assumed here, we
deduce from ([3.15)) the existence of a positive constant ||C||, depending on 91,%s, 3, ||2]|, ||il|, and ¢,
such that

2q = (3.16)

Cou(d )| < lICI 10l ¥lle ¥ ¢, ¢ € HE (),

which proves that Cy ,, is bounded independently of ¢ and w. On the other hand, applying the same
argument used for the derivation of second term on the right hand side of (3.15)), and using (3.13)),

(3.16) and (2.8)), we find that for each (; € H%D (Q) there holds

Couldd) = /Q 9(6) [V — /Q Ju-V3 + 81d1g
> |€g|%,9 - Cj |’¢~5HLH/5(Q) lulls.0 éla + B ||<g”(2),ﬂ

> (1 — C5Cj lullse) 1911

(3.17)

v

> 19l10 > 22 loll7

91
reg
Next, applying Cauchy-Schwarz inequality and the upper bound for fy given in (2.5)), we easily deduce
that

which proves that Cy,, is H%O (Q)-elliptic with constant a := independently of both ¢ and .

Ho()] < 72|27 (gl [¥lh,e V¥ € HE(Q),

which says that H, € Hf ()" and [|[Hy] < 72(Q|'/?|g|. Consequently, a direct application of the

Lax-Milgram Lemma implies the existence of a unique solution ¢ := g(qﬁ, u) € H%O (Q) of (3.7), and
1 20120

the corresponding continuous dependence result becomes (3.14) with Cg = =~ = 5 O
« 1

At this point we remark that the restriction on ||u||; o in Lemma could also have been taken as

U1
CsC

[ullso < ¢

with any ¢ € (0,1). However, we have chosen ¢ = % for simplicity and because it yields a joint

maximisation of the ellipticity constant of Cg,. In addition, when dropping the term f |\¢~5\|%Q in
we have first assumed that § is small and then utilised the Poincaré inequality . In turn,
when S is sufficiently large, say 8 > 11, then the aforementioned expression is kept along the whole
derivation of , implying that the Poincaré inequality is not required.



We end this section by introducing adequate regularity hypotheses on the operator S which will
be employed to guarantee that the operator T is well defined. In addition, sufficient regularity of the
operator S is also assumed in order to establish its Lipschitz continuity, and then also that for T.
In fact, for the remainder of this paper we follow [3, Eq. (3.23) and Eq. (3.24)], and consider the
following two hypotheses.

Regularity Hypothesis 3.1 For fp € L>*(Qp), fp € L>*(Qp), and for each ¢ € H%O(Q) with
l¢ll1.0 <7, r >0 given, there holds S(¢) € H(div; Q) NH(Q), for some & € (0,1) (when n = 2) or
0 €(1/2,1) (when n = 3), with

18@ise < Cs) 6lo.0 { I Fallse.s + 1ol }- (3.18)

where 63 (r) is a positive constant independent of ¢, but depending on the upper bound r of its norm.

Regularity Hypothesis 3.2 For each (¢, w) € H%D(Q) x (H(div; Q) NH?(Q)), with § € (0,1) (when
n=2)orde (1/2,1) (when n = 3), and ||¢|1,0 + ||w|aiva + |lwls < r, r > 0 given, there holds
S(p, w) € HE(Q), with

1S(e, w)[l1160 < Cg(r) C(Q) |gl, (3.19)

where C'(2) is a positive constant depending only on the domain 2, and ag(r) is a positive constant
independent of (p,w), but depending on the upper bound r of its norm.

We remark that similar hypotheses have been employed in [3, Section 3.3]. We also point out, in
advance, that Hypothesis is needed in the proof of Lemma, to make use of Lemma [3.2] which is
crucial to prove that the operator T is well-defined. Afterward, the estimate is also employed
in Lemma to bound an expression of the form [|S(¢ — ¢)|2r(q) in terms of [[S(¢ — ¢)|ls0, and
hence of the data at the right hand side of . In turn, the further regularity from Hypothesis
is used in the proof of Lemma |3.4] to bound an expression of the form [|[VS(p, w)||p2»(q) in terms of

IS (¢, w)||1+45,0, which subsequently, in the proof of Theorem can be bounded by the data at the
right hand side of (3.19).

3.4 Solvability of the fixed-point equation

The well-posedness of the uncoupled problems and confirms that the operators S, S and
T (cf. Section are well defined, and hence now we can address the solvability of the fixed-point
equation . To this end, we will proceed to verify the hypotheses of the Schauder fixed-point
theorem (see, e.g. [10] [Theorem 9.12-1(b)]).

Lemma 3.3 Given r > 0, we let W := {¢ € Hp (Q): |60 <} and assume that

To
[ falloc.0n + [ follccon < —= and  Cgye|Q?|g] <r (3.20)
rCs(r)

where rq is the constant specified right before Lemma . Then T(W?) C W¢.

Proof. Given ¢ € W?, by virtue of Lemma the estimate (3.18)) together with the first condition
in (3.20), and Lemma it follows that S(¢, S(¢)) := T(¢) is well defined. Next, according to the
definition of the operator T (c¢f. (3.10))), and the continuous dependence estimate (3.14)), it readily
follows that

IT(@)]1.0 = [S6.S(@®)lhe < C512192/"?|gl,

10



which, due to the second inequality in ([3.20)), proves that T(¢) € W, thus finishing the proof. U

Our next goal is to establish the continuity and compactness of T, which is precisely the purpose
of the following two lemmas.

Lemma 3.4 There exists a positive constant C > 0, depending on Ly,, , Ly, C;, a (cf. (2.7), (2.6),
Lemma , and the boundedness constant Cj of the injection is : H(Q) — L° (Q), such that for all
(¢,u), (p,w) € HY (Q) x (H(div; Q) "H? (), with ||ulls, |wlsq < ro (cf. Lemma3.2]), there holds

IS(¢,u) — S(p,w)

vo < C{lglllé - ellon + I8(p, )lws(qllu — wllse .
3.21

+ 8¢, w)lh+s0llé — @llars |-
Proof. Given (¢,u), (o, w) as stated, we let ¢ := S(¢,u) and & := S(p, w), that is (cf. B-7)
Cou(d,9) = Ho(¥) and Cow(@,9) = Ho(d) Vi € HE ().

Then, according to the ellipticity of C4, with constant «, subtracting and adding 7—[@(5 - Q) =
Cow (P, ¢ — @), it follows that

IN

Cou(dd—B) — Cou(@, 0 — )

= Ho(0— @) —Hold—3) + Coo(@. 6 — @) — Copu(B, 0 — P)

allo—¢lia

= /Q (fox(®) — for(9)) g~ V(o — &) + / G (u—w) V(d—3) (3.22)

Q
+ [ (90) =908 V6-2),

where for the last equality we have employed definitions and . Then applying Cauchy-
Schwarz’s inequality, Holder’s inequality, the further regularity in Hypothesis the Lipschitz-
continuity (2.6)-(2.7), and proceeding similarly as in (see also [3, Eq. (3.29)]) on the last
two terms in , we obtain

516 - 20 < {Laxlal 16 — @lloe + G5 IFlnrsg lu—wllsa} 16 - Bl o
+ Ly C5 o — ollins IVellsale — @lia,
In this way, inequalities (3.22) and (3.23) imply (3.21f), which finishes the proof. O

The following result is a straightforward consequence of Lemma [3.4

Lemma 3.5 Given r > 0, we let W := {¢ € Hp (Q): ¢l <r} and assume (3.20). Then, for
all p,p € H%O (Q2), there holds

IT(6) = T(@)la < {Clal + C () falloe.s + I ollocn) ITC) sy 16 = elloe
+C T rs0lld = Pl

~ (3.24)
where C' and Cg(r) are the constants given in Lemma and estimate (3.18)), respectively.
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Proof. 1t suffices to recall from Section that T(¢) = S(¢,S(4)) Vo Hf, (Q2), and then apply
Lemmas , the linearity of S, and the estimate (3.18]). O

The announced properties of T are proved now.

Lemma 3.6 Given r > 0, we let W? := {¢ € H%O(Q) . el < r}, and assume (3.20) (cf.
Lemma . Then, T : W? — W is continuous and T(W?) is compact.

Proof. Tt follows almost verbatim as the proof of [2, Lemma 3.12]. Indeed, it is basically a consequence
of the Rellich-Kondrachov compactness Theorem (cf. [I, Theorem 6.3], [I7, Theorem 1.3.5]), the
specified range of the constant ¢ involved in the further regularity Hypotheses and and the
well-known fact that every bounded sequence in a Hilbert space has a weakly convergent subsequence.
We omit further details. O

Finally, the main result of this section is stated as follows.

Theorem 3.7 Assume that the hypotheses of the Lemmas|3.343.6| are met. Then, the mized-primal
problem (3.6]) has at least one solution (4, p,¢) € H x Qp X H%O (Q) with ¢ € W?, satisfying

1@ Pllrxqs < 7 Cs {1 falloe.0n + 1 folloocn (3.25)

and
I¢lho < C572l90'?|g], (3.26)
where Cs and Cg are the constants specified in Lemmas[3.1) and respectively. Moreover, if the data

fi, fo and g are sufficiently small so that, with the constants C, Cs(r), ag(r) and C(Q2) from Lemma
and estimates (3.18)) and (3.19), and denoting by Cs the boundedness constant of the continuous
injection of H'(Q) into L™ (Q), there holds

C(1 + Cs(r) CC@) gl + 1 CCsCs(r) (Ifalloess + Ifollon) <1, (3:27)
then the solution ¢ is unique in W®.

Proof. According to the equivalence between and the fixed-point equation , and thanks
to Lemmas [3.3] and the existence of solution is a direct consequence of the Schauder fixed-point
theorem (cf. [10, Theorem 9.12-1(b)]). In turn, the estimates (3.25) and (3.26) follow from
(cf. Lemma and (c¢f. Lemma , respectively. Finally, given another solution ¢ € W of
, the estimates ,

IT@)lle = lele < 18lhise < Cs()CQ) gl (¢ BI),
and
[l < Csllvlhe V¢ e HY(Q),
confirm (3.27)) as a sufficient condition for concluding that ¢ = ¢. O

4 Galerkin scheme

Let 73, be a regular family of triangulations of Qg UQp by tetrahedra K of diameter hx with meshsize
h = max{hg : K € Ty}, such that 7,(%) = {K cT,: KC Q*} is a triangulation of €, for
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each « € {B,D}. We denote by 7,(X) the triangulation on ¥ induced by Th, (either from Qp or Qp).
Also, we introduce an independent triangulation 7; () of ¥ by triangles T of diameter hz, and define

h := max {hz: T e 7;,(X)}. We now introduce the following finite dimensional subspaces of the test
and trial spaces appearing in Section

Hp C Hp(div; ),  Hg), C Ho(curl; ),  Hj C Hp(div;Qp), X, C H(div;Q),
QF CLAQs), QF CL*Qp), QF CHYA(Y), Hj CHL(Q).
(4.1)
Hence, setting the global spaces
H), := H) x H}, x HY and Qo := Q) x Q) x Q)
the Galerkin scheme for (3.6) becomes: Find (up, pr, o) € Hp x Qo % Hi such that
A(tp, Bp) + B(Uh, pr) = Fy,(Un) V4, € Hy,
B(dn, ) = 0 Vdn € Qo (4.2)

Cun (s n) = Heop (V) Vi, € HY

In order to guarantee the well-posedness of the discrete scheme associated to (3.4)), and hence of the
Galerkin scheme (4.2]), the subspaces introduced in (4.1]) can be chosen as follows (see [4, Section 4.1])

Hj, = {v} € H.(divi):  vflx € RTo(K) VK € Ti(2)},
Q= {an € LX) ailk € R(K) VK € Tu@))},
Qho == Qj ﬂLo(Q*)a
H, = {vn € CE@NHL(Q): ilk €P1(K) VK T},
with x € {B, D}, and for any K € Tp,(%)
RTo(K) = Po(K) ® Po(K)x

is the local Raviart-Thomas space of lowest order. In addition, we set

HE), = {z} € Ho(ewrl;Qg): 2|k € NDy(K) YK € Ta(Qp) },

where for any K € T,(Qp)
N]D)l(K) = Po(K) D Po(K) X X

is the local edge space of Nédélec, that is
NDy (K) = {w:K—>C3: w(x) =a+bxx Ve e K, a,bc (CS}.

In turn, we set X, = 1o, HE + 1QDHE, whereas for the interface X, we consider the following finite
element subspace

QP = {)\B €C): MlpeP(D) VT € 7;3(2)}.

13



4.1 Fixed point strategy

We begin by noticing that the further regularity hypotheses employed in the proof of Lemma (3.2
and Lemma [3:4] respectively, neither are needed nor could be applied in the discrete case. It is
therefore not possible to extend the fixed-point strategy introduced in Section to the present
context. Instead, and in order to guarantee the solvability of , we introduce a new approach
where the operator associated with the discrete version of Brinkman-Darcy problem must satisfy
a uniform boundedness (see below Hypothesis in Section . In what follows, for simplicity of
the presentation, we will restrict the fixed-point scheme and its analysis to the 2D case. Given r > 0,
we first define

Wy = {uh eXp: |lunll < r}, (4.3)

where |||« == [|-[laiv,0 + || [lLs(), with s > 2. At this point, we anticipate that the stipulated range
for s will allow us to employ suitable Sobolev embeddings which will be required for the analysis in
the forthcoming Sections (see below proof of Lemma and Theorem [4.7)).

We now set Y}, := HZ x Wit and introduce the operator §h Y, — Hf defined by

Sh(n,un) = on Y (dn,un) € Ya,

where ¢}, is the unique solution (to be confirmed below) of the linear problem: Find ¢} € H;’: such
that
Conun (s n) = Ho, (Un) Voo € HJ, (4.4)

for given (¢p,up), where

Copup (Phs Un) = /979(¢h)V<Ph'V¢h - /Q(Ph wp, - Vb, + /Qﬂﬂphwh Von, ¥n GH%;

and

Hey, (Yn) = /bekwh)g-wh Vi, € HY .
In turn, we define the operator Sy, : HZ — X}, as
Sh(@h) = wp V(ph c Hi, (4,5)

where wy|qy = 'w],? and wy|o, = wg are the first and third components of wj, € Hy,, which in turn is
the first component of the unique solution (to be confirmed below) of the discrete problem associated

to (3.4): Find (wp, ) € Hy x Qo 4, such that
A(®p, By) + B(Oh,7h) = Fop,(Br) V0, € Hy,

L ~ (4.6)
B(®p,q,) = 0 Y@ € Qon,

with ¢, given. Therefore, by introducing the operator T} : Yy, — Hﬁ x Xp, as

Th(dn, un) = (Su(dn,un), Sn(Su(dn un))) Y (n, up) € Ya, (4.7)

we see that solving (4.2) is equivalent to finding a fixed point of T}, that is: Find (¢n,up) € Y}, such
that
Th(dn, un) = (én, un). (4.8)

Certainly, all the above makes sense if we guarantee that the discrete problems (4.4) and (4.6) are
well-posed. This is precisely the purpose of the next section.
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4.2 'Well-posedness of the uncoupled problem

In this section, we establish the well-posedness of both (4.6 and (4.4]), thus confirming that Sy, gh,
and hence T}, are well-defined.

Lemma 4.1 For each ¢; € HZ, the problem (4.6) has a unique solution (dp,pn) € Hp X Qop.
Moreover, there exists a positive constant Co, independent of h, such that

1Sh(on)llaiv,e < [[(tn, Ph)lExQe < C2H¢hHo,Q{HfBHoo,QB + HfDHoo,QD} Vo € Hp.  (4.9)

Proof. Tt follows directly from [4, Theorem 4.1]. O

Lemma 4.2 Assume that r € (0, 269—:%), where Cg is the boundedness constant of the injection is :
HY(Q) — LS%(Q), with s > 2. Then, for each (¢n,un) € Yy, the problem (4.4)) has a unique solution
Sh(dn,up) == ¢p € Hﬁ Moreover, by denoting C := %, with & as in the proof of Lemma there
holds N

ISh(¢n un)lro < CryalY21gl,  V(dn,un) € Y. (4.10)

Proof. It procceds by similar ideas used in the proof of Lemma Indeed, employing the same
arguments used for the derivation of (3.15)), to the present context, we deduce that

1Conrn (D1 1) | < V2 |nl 1.0 |Un Lo + Blénlloalltnllon  (4.11)

where p, g € [1,+00) are such that 1/p+ 1/q = 1. Thus, choosing p such that 2p = s, with s > 2, it
readily follows that

1.0 + [¢nlliea) llunllpesq) [¥n

2s
2q = > 1. 4.12
¢=— (4.12)

In this way, having in mind that [up|lps) < 7 (¢f. (4.3)), and the fact that, for the 2D case, the

2s
injection is : H(Q) — L5-2(£) is compact, and hence continuous with constant Cs, we deduce the
existence of a positive constant ||C||, depending on 3, 3, r and Cs, such that

Conan (D1, )| < IICl 1ol l¥nllie ¥ én, tn € Hf, (), (4.13)

which proves that Cy, ., is bounded independently of ¢; and wj. On the other hand, applying the
same argument to handle the trilinear term on the right hand side of (4.11]) in the derivation of (4.13),
and employing the estimates (2.5)) and (2.8, we find that for each ¢y, € H%O(Q) there holds

Conun (Dn,0n) = 01|8nlT 0 — 0nllLasrs—20ylunllLe)|@nlie + Bllonlldo

> (01 — Cyepr)|onli g

v

V1,7 19 V17 2
— > —
5 |Pnl1 o > QC%H(/%HLQ,

which proves that Cy, ., is elliptic on HZ X Hi, with the same constant & from Lemma In addition,

the fact that ||H|| is bounded independently of ¢ (c¢f. Proof of Lemma , confirms the same upper

bound for || He, || (HO) The rest of the proof is a direct application of Lax-Milgram’s Lemma. O
h

We point out that the manipulation of the term 3 H(ZhH%Q in the derivation of the ellipticity of C¢,, u,
is the same that was described at the end of the proof of Lemma (see Section 3.3)).

We end this section with an hypothesis of uniform boundedness on the operator Sy (c¢f. (4.5)),
which will be required in the forthcoming Section to guarantee that the operator T}, given in (4.7)) is
well defined and continuous in a certain ball.
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Hypothesis 4.1 There exists s > 2 such that the operator Sy : (H;’:, |- ) = (X, |l - lls,0) (cf.
(4.5) ) is uniformly bounded, that is

ISk(@n)ls@ < Cslignle V¥ én € Hy, (4.14)

where 55 is a positive constant independent of h.

We remark in advance that the estimate ~is needed in the proof of Lemma (see Section
below) to bound an expression of the form [[S;(Sx( - ))|lLs(q) in terms of ||Sy( - )||1,0, which in turn
is bounded by data (cf. ) Afterward, the estimate will be required to properly handle
the expression [|S;(Sk(¢n)) — Sn(Sn(wn))l|Ls(q) in order to derive a Lipschitz continuity property for
T}, (see below Lemma [4.6)).

4.3 Solvability of the fixed-point equation

We now aim to show the solvability of (4.2]) by analyzing the equivalent fixed-point equation (4.8)).
To this end, we will proceed to verify the hypotheses of the Brouwer fixed-point theorem (cf. [10}
Theorem 9.9-2]).

We start by defining the following set
W, = {(6n, un) € Hy x Xy, : [[|(¢n, wn)[[] < 7}, (4.15)

where r was previously fixed in (4.3]), and

(@ wn)lll = llonllie + lluallc = lon

lLe + unllave + l[usllLs@)-

Lemma 4.3 Let Wy, be as in (.15)), and assume that the data g, fg and fp are sufficiently small
so that

(Cs + CIQ gl + C1 C27IQ |g| { Ifpllocn + | Folloesn } < 7. (4.16)
Then T(Wp) C Wy,.
Proof. Given (¢p, us) € Wy, we get from (4.7)), and the estimates (4.14), ([£.9), and (4.10), that
ITh(bn wn)lll = [11(Sh(dn,wn), Sn(Sh(dn, wn)))l|
= [ISu(én, wn)lln.0 + 1Sk(Sh(dn, wn))laivie + ISk(Sa(dn, wn))lLs(o)
< (Cs + C)|QY2|g| + C1 C22lQ gl {l falloon + [ Folloosn}

and hence, employing the condition (4.16]), we conclude that Tp(¢n, up) € Wy, O

In order to prove the continuity of Ty, in the following two lemmas, we derive Lipschitz type-
estimates for Sy, and Sy,.

Lemma 4.4 Let Cy be the constant given in Lemma[d.1]l Then, there holds

ISk (dn) — Sn(en)llaiv.e < Callén — on

00 {Ifslloesn + Ifolloen}  Vonon €Hp.  (417)
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Proof. Given ¢y, € Hi, we let i, = (uP,wP ul) € Hy, py = 02,02, \n) € Qop and 0, =

(wE,wE,w]h)) e Hy,, 7, = (rE,rE,Xh) € Qo be the corresponding solutions of (4.6]), so that u; =
ul + uP) =: Sp(¢n) and wy, = wP + wl =: Sp(pp). Then, employing the linearity of the forms A
and B, we deduce from (4.6]) that

.A(’l_ih — ’lf)h,'l_fh) + B('l_fh, Dy, — ’Fh) = ‘7:¢h_90h(17h) V’l_)'h = (’UE,ZE,’UE) € H,

h
B(uy, — Wh,qn) = 0 Y = (g5, a5, &) € Qo
In this way, due to the fact that Sy (¢n — ¢n) = Sk(odn) — Sn(en), the bound (4.17)) follows directly
from estimate (4.9)). (|

Lemma 4.5 Let Ly, , Ly, and o be the constants given in (2.7)), (2.6), and Lemma respectively.
Then, there holds

ISk (6, un) — Sn(en, wp)

1 ~
10 < ={Lalgllon = enloa + Lo VSu(@nwn) s l6n = enlliace)

+ 1ISk(¢n, un)llp2acoyllwn — whHL25(Q)}
(4.18)
Y (dn, up), (o, wp) € H‘ﬁ x W, where p,q € [1,400) are such that 1/p+1/q=1.

Proof. Given (¢n,up), (¢n, wp) as stated, we let (5;1 = gh(géh,uh) and @, = gh(wh,wh), that is (cf.
4.4)) o ~ B ~ B
Conoun (Prs¥n) = Moy, (Vn) and  Cop awy, (Pn, ) = My, (bn) Yooy € HY,.

Next, we proceed analogously as in the proof of Lemma [3.4] In fact, applying Cauchy-Schwarz’s
inequality, the Lipschitz-continuity estimates —, Holder’s inequality to the second term on the
right hand side for the discrete version of , and a L* — L* — L? argument for the corresponding
last term, we deduce that

allon —enlia < {Lfbk 9l o — enlloe + [|@nlliea) lun — wh”]ﬁﬁ(m} |on — @nl10
+ Ly llén — enllua) IVerllLa) lon — énlia -

Then, since the elements of Hﬁ are piecewise polynomials, it follows that ||[V@p|[raq) < 400, and
hence the foregoing equation yields (4.18]). Further details are omitted. U

We now can establish the following result providing a Lipschitz continuity type-estimate for the
operator T},.

Lemma 4.6 Givenr >0, we let Wy, := {(¢p, up) € Hz X Xp  |(@n, wn)||| < r}, and assume (4.16])
(cf. Lemma . Then, there exist constants C3,Cy4,C5 > 0, depending only on Ly, , Ly, o, Cy, Cs
(cf. (2.7)), (2.6]), Lemma Lemma (4.14) ) and the data, such that, for all (¢p,un), (on, wr) €

W, there holds
1T (h. un) — Trlen, wi)lll < Csllon — enllog + CaVSh(Sn, wn)llLallon — enllia)
+C5 [|Sh(ns un) |20 lun — wallesq) -

where p,q € [1,400) are such that 1/p+1/q=1.
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Proof. Tt suffices to recall from Section [4.1] that
T1(Yn,vn) = (Su(¥n,vn), Sh(Sh(¥n,vn)) Y (Un,vn) € Y,

and then apply the estimate (4.14), and Lemmas and O

Consequently, from the foregoing Lemma, choosing 2p and 2q as in the proof of Lemma that
is 2p = s and hence 2q := 82_—52 > 1, and employing the continuous injection i : H!(Q) — L4(2), the
continuity of T}, is derived. In this way, we conclude, thanks to the Brouwer fixed-point theorem (cf.
[10, Theorem 9.9-2]) and Lemmas [4.3| and the main result of this section.

Theorem 4.7 Under the assumptions of Lemma the Galerkin scheme (4.2) has at least one
solution (tp, Dh, ¢n) € Hp X Qo X Hﬁ with (¢n, up) € Wy, and there holds

onllie < Ciy21Q]Yg],

and
I, ) lrxqs < C1 Caal@Y2ig1 { | Falloe.0s + o lloon |-

where Cq, Cy, and 2, are the constants provided by Lemmas and and (2.5) , respectively.

We end this section pointing out that the extension to 3D case of our discrete analysis of fixed-
point to solve (4.2)), is basically based on a new range for the parameter s (c¢f. (4.3), Lemma and
Hypotheses [4.14)). More precisely, for the 3D case, we need to take s > 3 in (4.3]) to then guarantee

3s
the compactness, and hence the continuity, of the injection iy : H'(€2) — L3-3(Q), which is crucial in
the proof of the corresponding Lemma [4.2

5 A priori error estimate

Given (4,7, ¢) € Hx Qo x Hy, () with ¢ € W, and (tn, P, ¢n) € Hp x Qo X HY with (ép, un) € Wi,

(cf. (4.15])), solutions of (3.6) and (4.2)), respectively, we now aim to derive a corresponding a priori
error estimate. To this end, we first observe from (3.6) and (4.2, that the above problems can be

rewritten as follows:

(BD) { A(d, %) + B(®,p) = Fy¥) VoeH,

B(u,q7) = 0 Ve Qo,
A(dp, 0p) + B(Un,pn) = Fs, (U V4, € Hy,
(BD)) (tp, Up) (_’h _)h) o, (Un) _'h h
B(un,qn) = 0 V@i € Qon,

and

(T) Cule,¥) = Hy(¥) Vi € Hy (Q),
(Th) Cup(Pn:¥n) = Hg, (¥n) Vb, € HY .

We begin our analysis by establishing the following result concerning ||(@,p) — (tn, Dh)||HxQo-
Lemma 5.1 There exists Cgp > 0, independent of h, such that
”(ﬁam - (ﬁh7ﬁh)HH><Q0

(5.1)
< G {dist(@ Hy) + dist(5, Qo) + 19— dnllvo (| ollcn + ol ) |-
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Proof. Basically, the proof follows from the corresponding Strang-type error estimate for (BD) and
(BDy,). Indeed, procceding anlogously as in [I3] Section 4] (also see [18]), we deduce the existence of
a positive constant Cg p, independent of h, such that

(4, ) — (tn, Ph)|lHx Qe < CBD {diSt(ﬁaHh) + dist(p, Qon) + [[Fp _F¢hHH;L}' (5.2)

Next, according to the definition of F4 and Fy, (cf. (3.3)), and applying Cauchy-Schwarz’s inequality,
we easily deduce that

175 = Fouler, < 116 = dnlloe (11 Folloem + 1 Follooss)- (5.3)
In this way, by replacing (5.3)) into (5.2, we arrive at ([5.1)), which ends the proof. O

We now derive a Céa estimate for the error ||¢ — ¢p|1,0 under the 2D-dimensional context. To this
end, and in order to simplify the subsequent writing, we introduce the following constants, independent
of the data g, fg, and fp,

Kq = Cg {Lfbk + Ly Cs C;; 6§(r) ’72‘9’1/2}, Ky = Cg (TCS + 8+ 192) +1, and K3 = Cg

where (75 (r) and Cg are the constants given in (3.19)) and (3.14)), and Cf, Cs, Cj, are the boundedness

constants of the continuous injections
. 1 28 < prl 2/8 . s 5*
is :H'(Q) — Ls-2(Q), i:H(Q) — LY°(Q), i5:H(Q) — L° (9), (5.4)

respectively, where s > 2, § € (0,1), and §* := 2/(1 — §). In addition, in order to suitably handle one
of the terms in the derivation of the Céa estimate for ||¢ — ¢p[/1,0, we will additionally assume that
¢ € L>(Q).

Lemma 5.2 Assume that ¢ € HY(Q) NL>®(2), and that the data g satisfy

1
Kilgl < 5. (5.5)
Then, there holds
I6 = Gl < 2Kadist(6,HY) + 2Ks [6]loes [l — wnllog. (5.6)

Proof. Tt proceeds almost verbatim as in the proof of [3, Lemma 5.3]. In fact, we first observe by
triangle inequality that

6 —onllio < 10 —evnllia + lon —enllie Yeu € Hf (5.7)

Then employing the ellipticity of the bilinear form Cg, ., with constant &, and then adding and
subtracting suitable expressions, we deduce that

10 < Copun(dn — On, dn — 0n)
< [Hep (0 — on) — He(on — on) (5.8)

+ |Cu(@, &n — ©n) — Coyy un (s Oh — 01)] -

Next, according to the definition of Hy and Hg, (cf. (3.9))), and applying Cauchy-Schwarz’s inequality,
we get

allon —en

(Hen (dn — on) — He(dn —on)|l < Ly 19l ll¢ — onlloalon — enlie- (5.9)
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In turn, adding and subtracting suitable expressions, and then applying Holder’s inequality, the upper
bound of ¥ (¢f. (2.5)) and its Lipschitz continuity (cf. (2.6)), and the assumption that ¢ € L>(Q),
we find that

ICou(®, On — 1) — Cgpy un (s On — 1)
< Lyll¢ = dnllLzaq) IVAllLer ) [on —

[@lloc.02 [l = unllon [dn = @rlio + ¢ = ¢nlliea) lunllLes) [6n =

+ Y2 |d — pnlia|én —

_l’_

+ B¢ — enlloallon — enlloga,

where p,q,p,q € [1,400) are such that 1/p+ 1/qg =1 and 1/p+ 1/q = 1. In this way, choosing 2p

and 2q as in the proof of Lemma (cf. - 2p and 2q as in the proof of Lemma“ cf. -
and applying the continuous embeddlngs i, ig, 15 (cf. . the estimate ( , and the fact that

lun sy <, it follows from (5.10) that

ICsu(Bs D1 — 1) — Copur, (Phs P — ©1)|
< LyCsCCy(r) 72l 2Igl |6 — dnllre lén — enllie

+ 9

(5.11)

enllio + rCsllo —enlliallon — enllie

enllia-

+ ¢l I —unlloollén —

Thus, by replacing (5.9) and ( into , and then the resulting estimate into , employing
the constants defined prev10usly to the statement of the present lemma, and recalhng from the proof

of Lemma, that a = CST ! we find, after several algebraic manipulations, that

9116 = dnllo + Kallé = enlluo + 16l llu—unlloo  Ven € Hy,

which, according to the assumption (5.5)), and taking the infimum on ¢, € Hi, yields (5.2)) and
completes the proof. O

At this point we mention that for the proof of the 3D case of Lemma it is required to choose
the parameters ¢ and 0%, and hence 2p and 2q, as in proof of Lemma (cf. - for this case.
In turn, and according to the remark at the end of Section [4.3] for the present case we need to take
s > 3 and then to choose 2p and 2q analogously as 1n the proof of Lemma E 4.2| (cf. - in order to

make use of the continuous injection i, : H! () — L3 (Q).

We now combine the inequalities provided by Lemmas [5.1] and [5.2] to derive the Céa estimate for
the total error ||(d, p) — (n, Dh)|[1xQo + |0 — @nll1,0- Indeed, by replacing the estimate for ||¢— ¢4 ||1.0
given by (5.6]) into the second term on the right hand side of (5.1)), we find that

(@, p) — (Un, Ph) |l HxQe < CB,D{diSt(ﬁa Hy,) + dist(p] Qo,h)} + K dist(¢, HY)

+ 208, p 810 (I fi oo + 1 Fplc )

where ~
K = 255050 (Ifilloe.0n + 1o lloo0n) -
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In this way, assuming now that the data fi and fp satisfy

1
Cepldllcalfslons + Copldllcelfollcon <
we conclude from the foregoing equations that
”(12717) - (ﬁh>ﬁh)HHXQ0 <2 CB,D{diSt(ﬂj? Hh) + diSt(ﬁa QO,h)} + 2[A€di8t(¢a Hi) (512)

Consequently, we can establish the following result providing the Céa estimate for the total error
(2, p) — (dn, ) [Hx Qo + | — dnll10-

Theorem 5.3 Assume that ¢ € H'(Q)NL>(Q), and that the data fg, fp and g are sufficiently small
so that 1

1
Kilg| < 5 ond Cepl|#llco.ll felloc.0s + CBpl9lloooll follocon < i

Then, there exists a positive constant C depending only on data, parameters, ||¢|lsq, and other
constants, all them independent of h, such that

1,5 = (@n, ) lraxqy + 16— dllie < € {dist(@, Hy) + dist(7. Qo) + dist(6,H]) . (5.13)

Proof. Tt follows straightforward from (5.12)) and (5.6)). O
The following theorem provides the rate of convergence of our Galerkin scheme (4.2)).

Theorem 5.4 Let Hy, = HE X H(]ih X H],?, Qno == QEO X Q]}? X QEZ and Hi, be the subspaces
specified in the Section . Let (u,p,¢) = ((up,wn,up), (pB,PD,A),®) € H x Qo X H%O(Q) and
(Un, Ph, On) = ((uE, wE, u]h)), (pE,pE, A7) dn) € Hpx Qo xHi be the solutions of the continuous and
discrete problems and ([L2)), respectively. Assume that u, € H'(Q,),divu, € H(Q,), p. € H/()
where x € {B,D}, wp € H'(curl; Qp), A € H/**(X) and ¢ € H%JOFI(Q), for some l € (0,1) (when
n=2)orle(1/2,1) (whenn =3). Then, there exists C > 0 and C > 0 independent of h and h such

that . L
(@, D) — (dn, Pn)llExqe + ¢ — onll1,0

< Chmi“{”k“}{HUB Lag + ldiv (us) o + lwsllacuriog) + lublliop

+ [[div (up)llap + llpBllLes + [Ippllios + ||¢>||1+z,9} + Ol Mlligr o5 -

Proof. Tt follows directly from the Céa estimate (5.13)) and the approximation properties of the discrete
subspace specified in the Section {4 (¢f. Ref. [4, Section 4.2.2] and [9]). O

6 Numerical examples
Test 1. We begin this section with an accuracy test, where we construct smooth solutions satisfying

(2.1))-(2.3]) on € = (0,2) x (0,1). The Brinkman and Darcy domains are on the left and right parts of
Q, respectively, and are separated by the interface 3 defined by the parameterisation

(0,1) 3t + (z1,22) = (1 +0.15[1/2 — |t — 1/2|] cos(67t — 37), 1),
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O O |92 O

Figure 6.1: Test 1. Domain configuration for the Brinkman-Darcy problem, where 092 = g UTp (left
panel), and for the transport equation where 02 = I'v U Ty (right). The unit normal vector on the
interface points towards Qg.

on which the normal vector is considered pointing to 2g. The proposed exact solutions are given by

[ sin(mzy) cos(mxa)

<—cos(7rx1)sin(7rx2)>’ up = ulg,, UD =ulo,, wB msin(may) sin(mas),

5
D= ($1*1/2)({L’2—1/2), DB :p|QBa pD:p‘QDa qb: 51:%(271‘1)1:2(17:52)7

from which the necessary forcing, boundary, and source terms are generated. The concentration-
dependent functions are ¥(¢) = ¢ + (1 — c¢)?, and fii(¢) = chd(1 — c¢)?, and the remaining physical
parameters assume the values ¢ = 1/2, fz = (1,0)?, fp = (0.1,0)*, Kg = 0.05, Kp = 0.01, 8 =
0.4x|as + 0.1x|ay,, & = (0,—1)*. We recall that two different splittings of the domain boundary
0N} are assumed. First, the distribution of the Brinkman and Darcy boundaries follows the sketch
presented in the left panel of Figure . According to , on I'y we set slip velocities up -n =0
and zero tangential vorticity (in this 2D case, it translates to fix the scalar vorticity to zero), but
on Y we prescribe the vorticity by its exact solution. Normal Darcy velocities are fixed on I'p:
up - = 0. Secondly, by construction, the concentration normal flux is zero on the left side of Iy,
which constitutes the Neumann boundary Iy. The remainder of 02 conforms the Dirichlet boundary
Iy, where we impose ¢ = 0 (see Figure right). Both domains are rendered with a gap on the
interface, for visualisation purposes.

As usual, to determine the convergence of the method we generate a sequence of successively refined
triangulations of 2 (and conforming partitions for Qp, Qp and ) and proceed to compute errors and
decay rates according to

e(up) = |lup — upyldiv.ag, €(wB) = |ws — wihllcurLag, €(up) = ||lup — upslldaiv.p
e(ps) = |lpB — PBALll0.98: €(PD) = IPD — PO 0,00, €(A) = [[A = Apllos]A = Anll1s,
e(¢) = | — dnll.0, r(-) = —2log(e(-)/é(-))[log(N/N)] 1,

where e and é denote errors produced on two consecutive meshes associated to schemes with N and
N D.o.f. (degrees of freedom), respectively. The results are collected in Figure , where we plot
the decaying of individual errors with the meshsize, for a lowest-order scheme. All panels indicate an
O(h) convergence, as anticipated by Theorem We point out that an average of 7 Picard steps
(accounting for the coupling between the Brinkman-Darcy and transport problems) are required to
reach the stopping tolerance of le — 6, whereas an average of 3 Newton steps are sufficient to achieve

0,3
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Figure 6.2: Test 1. Convergence history for the lowest-order approximation of the coupled Brinkman-
Darcy-Transport problem.

convergence of the inner linearisation step (with a tolerance of le — 7) for the nonlinear advection-
diffusion problem. We also portray the approximate solutions obtained with the proposed method on
a fine mesh (see Figure [6.3]).

An important assumption in the solvability analysis was an additional regularity for the discrete
velocity, as stated in Hypothesis Even if proving this assumption can be very difficult, we can at
least provide numerical evidence of its validity for the finite element spaces we are employing here.
For instance, we can observe that taking the regularity index as s = 2.5, and obtaining approximate
solutions in the same refinement levels as mentioned above (whose error history is depicted in Figure
, the values reported in Table are produced. The ratios between the L®*—norm of the discrete
velocity and the H' —norm of the concentration are tabulated in the last column and they suggest that
the constant Cs is indeed uniform.

Dof. | h | efup) | r(up) | e(up) | r(up) | e(¢) | r(8) | [S(@n)llL) | [9nllie | Cs

111 0.723 | 0.5621 - 0.371 - 0.823 - 0.644 1.791 | 0.521
237 0.479 | 0.269 | 1.786 | 0.267 | 0.791 | 0.622 | 0.678 0.920 1.825 | 0.570
664 0.285 | 0.160 | 0.997 | 0.155 | 1.045 | 0.407 | 0.819 1.022 1.890 | 0.569
1920 0.170 | 0.082 | 1.308 | 0.086 | 1.149 | 0.264 | 0.837 0.903 1.894 | 0.568
6625 0.099 | 0.043 | 1.160 | 0.044 | 1.117 | 0.161 | 0.975 1.082 1.907 | 0.567
24907 | 0.048 | 0.022 | 0.931 | 0.022 | 0.950 | 0.083 | 1.011 1.080 1.911 | 0.565
97907 | 0.023 | 0.011 | 0.956 | 0.011 | 0.962 | 0.022 | 1.041 1.079 1.911 | 0.564
382115 | 0.014 | 0.006 | 1.066 | 0.005 | 1.161 | 0.012 | 1.008 1.078 1.911 | 0.564

Table 6.1: Test 1. Illustration of Hypothesis [£.1] for the lowest-order scheme, and using s = 2.5.

Test 2. Our second example addresses the applicability of the formulation and the associated nu-
merical scheme in the simulation of groundwater flow, where we have followed the setup adopted in
Test 4.1 of [7]. The computational domain now corresponds to the rectangle @ = (0,12) x (0,6) (in
square meters), where the Brinkman domain (with a maximum height of 4m) is on the top and the
Darcy subdomain (with a maximum height of 2.25m) on the bottom. The subdomains are separated
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Figure 6.3: Test 1. Approximate velocity components, vorticity, pressure, and concentration, rendered
on both Brinkman and Darcy domains.

by a step-shaped polygonal interface (see a sketch in the top-left panel of Figure where we also
depict sample triangular meshes). We consider = 1 Pa-s, 5 = 0.75, and the permeabilities are again
isotropic and assume the values Kg = Kp = le — 6m?. Normal velocities are imposed everywhere on
0f). On the top segment of I'y and in all I'p these are simply zero, whereas on the left and right sides
of the Brinkman domain we prescribe the parabolic profiles

wp == OF-8), ad wpon=s(y—E-y),
respectively, as well as the compatible vorticity wg = %(y —6) and wp = g(y — 6), respectively.
Regarding the transport equation, on the left side of the Brinkman domain (denoted by I'y) we
impose a maximum solute concentration ¢ = ¢nax = 0.99, whereas zero total flux is considered on
I'v = 09\ I's. The nonlinear diffusion assumes the form 9(¢) = exp(—1¢) and the flux is simply
linear fpk(¢) = 0.001¢. We take k = (0,—1)* and assume that an external source modulates the
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Figure 6.4: Test 2. Sample mesh and domain configuration (top left), and approximate velocity,
pressure, and solute concentration produced with a second-order scheme.

Brinkman flow (for instance due to rain, to wind, or to the leakage of contaminants through the
top portion of the boundary, that represents the surface) so we use fz = (0.1,0.001)*. We employ
a second-order scheme resulting on a linear system of 1,517,352 unknowns for the Brinkman-Darcy
subproblem and 327,707 D.o.f. for the transport equation. Seven fixed-point iterations were needed
to reach the desired tolerance and only two Newton steps were required for the convergence of the
inner linearisation (probably due to the fact that the nonlinear diffusion is in this case milder than
that used in Tests 1 and 3). The results are collected in Figure which shows flow patterns as well
as the solute entering the domain and starting to propagate towards the right.

Test 3. We finalise this section presenting a 3D computation that illustrates the use of our method
in the numerical simulation of filtering devices. Flow-rate conditions are taken similarly to those
employed in [12] 5], namely a cylindrical geometry aligned with the y—axis, with varying cross section;
where the Brinkman domain is the region with largest radius (r = 4cm and length L = 6cm), and
the Darcy domain constitutes the two other sections of the device (of radii r = 2cm and r = 3cm
and lengths of L = 3cm and L = 5.1 cm, respectively). We assume that there is an inlet boundary
belonging to I'g and an outlet disk at the end of the cylinder, on I'p. The flow is driven basically
by injection of fluid. A Poiseuille Brinkman velocity is prescribed at the inlet, as well a compatible
vorticity

t
uB.n=2(1—;l(g;2+22)), and wp XxXmn= (—23;(1—;l(x2+z2)),0,—2x(1—i(lﬁ—i—zz))) 7
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whereas on the outlet boundary we impose a constant Darcy pressure pp = pp = 0.1. On the remainder
of the domain boundary we set slip conditions for velocity (and zero tangential vorticity on the curved
Brinkman boundary). For the transport equation we impose a constant concentration on the inlet
and assume zero total flux everywhere else, therefore the inlet (the disc of radius 4 m and centred at
the origin) is the boundary I'y and the remainder of the boundary is I'y. The interface conditions
correspond to the ones stated in , and a depiction of the domain and boundary setup is presented
in the first panel of Figure [6.5] The constitutive equations specifying the nonlinear diffusion ¥ and
the unidirectional flux fy) are simply taken as in Test 1 above, with ¢ = 0.4. Other model parameters
are chosen as

1
I inQ
p =001, Kg=001, Kp=0.00001, 8= {io o QB’ . s = (0, cos(zyz) sin(rz) cos(nz), 0)*,
in Qp

fo = (exp(—ay) + z exp(—2?), cos(my) — yexp(—y®), zyz — zexp(—2%))*, k= (0,1,0)°,

where we note that the hydraulic conductivity is discontinuous across the interface. The domain has
been discretised with an unstructured tetrahedral mesh of 74,108 elements, and we have employed a
first-order scheme. The approximate solutions are shown in the remaining panels of Figure The
first observation from the velocity streamlines is that the non-symmetric external forces fg and fp
rapidly disrupt the Poiseuille profile as the low moves away from the inlet. We can also see that the
Lagrange multiplier enforces correctly the continuity of pressure across the interface but that there
exists a very large Brinkman pressure and a large pressure drop is then seen in the Darcy domain.
Also, the tangential components of vorticity slowly decrease when approaching the the interface. As
the flow patterns stabilise due to the interfacial conditions, the propagation of concentration also
becomes very uniform.

For this problem, the convergence of the Picard algorithm occurred after nine iterations and the
inner Newton iterations for the transport problem converged after four steps.

Acknowledgement. We are grateful to Javier Almonacid (SFU) for stimulating discussions on
interface fluid problems, and for providing an initial implementation of Test 2.
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