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Abstract

This paper is devoted to the mathematical and numerical analysis of a model describing the flow-
transport interaction in a porous-fluidic domain. The medium consists of a highly permeable mate-
rial, where the flow of an incompressible viscous fluid is governed by Brinkman equations (written
in terms of vorticity, velocity and pressure), and a porous medium where Darcy’s law describes fluid
motion. Gravity and the local fluctuations of a scalar field (representing for instance, the solids
volume fraction, or the concentration of a contaminant) are the main drivers of the fluid patterns on
the whole domain, and the Brinkman-Darcy equations are coupled to a nonlinear transport equa-
tion accounting for mass balance of the scalar. We introduce a mixed-primal variational formulation
of the problem and establish existence and uniqueness of solution using fixed-point arguments and
small-data assumptions. A family of Galerkin discretisations that produce divergence-free discrete
velocities is also presented and analysed using similar tools to those employed in the continuous
problem. Convergence of the resulting mixed-primal finite element method is proven, and some
numerical examples confirming the theoretical error bounds and illustrating the performance of the
proposed discrete scheme are reported.

Key words: Nonlinear transport, Brinkman-Darcy coupling, vorticity-based formulation, fixed-point
theory, mixed finite elements, error analysis.
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1 Introduction

The aim of this paper is to put together an extension of the results from [2, 3] and [4] dealing with
augmented and fully mixed finite element approximations of coupled flow and transport problems,
and coupled Brinkman and Darcy flow, respectively. The coupled system describes the interaction of
flow and transport phenomena in two different domains separated by an interface. Such a formalism
arises naturally, and has been systematically used, in hydrology and biological applications including
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for instance subsurface flow, hydraulic fractures, CO2 sequestration, perfusion of soft living tissues,
etc. In obtaining approximate solutions for the problem under consideration one faces marked dif-
ficulties. These are related to the coupling of mechanisms that act simultaneously, such as active
transport and reaction of the solute and nonlinearities in the diffusion process and in the source term;
as well as the heterogeneities, transmission conditions, and the need of preserving physical properties.
Even if many numerical solutions are already available (see e.g. [11, 14, 15, 16] and the references
therein), up to the authors’ knowledge the only contributions addressing mathematical and numeri-
cal properties of somewhat similar couplings are the recent works [8], where existence and stability
bounds of weak solutions is established also for the nonlinear Navier-Stokes-Darcy flow coupled with
transport; [20], where a mixed finite element scheme approximates the Stokes-Darcy system and a
local discontinuous Galerkin method is employed to discretise the transport equation; and [19] that
analyses stabilised velocity-pressure-concentration formulations for a model where viscosity depends
on the solute concentration.

The main difference of these works with respect to our contribution, is that we propose a formulation
of the problem written in terms of Brinkman vorticity, and the transmission conditions we employ are
slightly different. In addition, we introduce a mixed-primal finite element method for the Brinkman-
Darcy-Transport coupling that produces divergence-free discrete velocities. Following our recent work
[4], the coupling of subdomains is based on a vorticity based fully-mixed formulation for the Brinkman-
Darcy problem, whereas a primal formulation for the transport problem is adapted from [3]. The
solvability of such a coupling will be based on extending the fixed-point strategy introduced in [2]
and [3] to the present context. In particular, we realise that the primal formulation for the transport
problem requires further regularity for the global velocity, initially living in H(div,Ω). In turn, and
in contrast with [2] and [3], we can not exploit augmentation techniques to recover H1(Ω) velocities.
However, a different smoothness assumption is introduced at the level of the continuous analysis of
the transport problem, and subsequently in the solvability of the Brinkman-Darcy-Transport coupling.
More precisely, the derivation of existence of weak solutions relies on a strategy combining classical
fixed-point arguments, suitable regularity assumptions on the decoupled problems, the Lax-Milgram
Lemma, preliminary results from [4], and the Sobolev embedding and Rellich-Kondrachov compactness
theorems. In addition, sufficiently small data allow us to establish uniqueness of weak solution. On the
other hand, the well-posedness of the discrete problem is based on the Brouwer fixed-point theorem
and analogous arguments to those employed in the continuous analysis. Finally, similar arguments as
those utilised in [3, 4] allow us to derive the corresponding Céa estimates for both the Brinkman-Darcy
and transport problems, and these lead to natural a priori error bounds for the Galerkin scheme.

Outline. This paper has been structured as follows. The remainder of this section presents some
notation and preliminary definitions of spaces needed thereafter. The model problem along with
boundary data are stated in Section 2. The weak formulation of the problem and its well-posedness
analysis in the framework of the Schauder fixed-point theorem are collected in Section 3. The associ-
ated Galerkin scheme is then proposed in Section 4 and its solvability is established by the Brouwer
fixed-point theorem. Next, we derive in Section 5 some a priori error estimates, and conclude in
Section 6 with a few numerical examples in 2D and 3D, illustrating the good performance of the
mixed-primal finite element method and confirming the theoretical rates of convergence.

Preliminaries. Standard notation will be adopted for Lebesgue and Sobolev spaces. In addition, by
M and M we will denote the corresponding vectorial and tensorial counterparts of the generic scalar
functional space M, and ‖ · ‖, with no subscripts, will stand for the natural norm of either an element
or an operator in any product functional space. For instance, if Θ ⊆ Rn, n = 2, 3 is a domain, Λ ⊆ Rn
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is a Lipschitz surface, and r ∈ R, we define Hr(Θ) := [Hr(Θ)]n and Hr(Λ) := [Hr(Λ)]n. We also
recall the definition of the following Hilbert spaces

H(div; Θ) :=
{
v ∈ L2(Θ) : div v ∈ L2(Θ)

}
, H(curl; Θ) :=

{
v ∈ L2(Θ) : curl v ∈ L2(Θ)

}
,

normed, respectively, with

‖v‖div;Θ :=
{
‖v‖20,Θ + ‖div v‖20,Θ

}1/2
, ‖v‖curl;Θ :=

{
‖v‖20,Θ + ‖ curlv‖20,Θ

}1/2
,

where, for any vector field v := (v1, . . . , vd)
t ∈ L2(Θ),

div v :=

n∑
i=1

∂ivi, curlv := ∇× v =

∂2v3 − ∂3v2

∂3v1 − ∂1v3

∂1v2 − ∂2v1

 if n = 3, and curlv = ∂1v2 − ∂2v1 if n = 2.

In addition, we also recall the orthogonal decomposition

L2(Θ) = L2
0(Θ) ⊕ P0(Θ) ,

where P0(Θ) is the space of constant functions on Θ, and

L2
0(Θ) = P0(Θ)⊥ :=

{
q ∈ L2(Θ) :

∫
Θ
q = 0

}
.

Equivalently, each q ∈ L2(Θ) can be uniquely decomposed as q = q0 + c, with

q0 := q − 1

|Θ|

∫
Θ
q ∈ L2

0(Θ) and c :=
1

|Θ|

∫
Θ
q ∈ R ,

where L2
0(Θ) is endowed with the usual norm of L2(Θ), and it is easy to see that there holds

‖q‖20,Θ = ‖q0‖20,Θ + |Θ| c2 .

By 0 we will denote the generic null vector (including the null functional and operator), and we will
denote by C and c, with or without subscripts, bars, tildes or hats, generic constants independent of
the discretisation parameters.

2 Governing equations

Let Ω ⊂ Rn, n = 2, 3, denote an heterogeneous porous domain composed of two regions: ΩB, where
the viscous flow patterns characterised by velocity uB, vorticity ωB, and pressure pB can be governed
by the linear Brinkman equations; and ΩD, where the flow of the immiscible fluid obeys to Darcy’s law
written in terms of velocity uD and pressure pD in the porous domain. These subdomains are separated
by an interface Σ, through which exchange of fluid velocities and pressures occurs. We also consider
that a given scalar field φ (representing, for instance, the concentration of a chemical component, the
fluid density, the temperature, or the volume fraction or saturation of a solid phase) is advected and
diffused on the whole Ω according to the mass conservation principle (or energy conservation if the
scalar field stands for e.g. temperature). The model problem can be summarised as follows:

(Brinkman)
µK−1

B uB + µ curl ωB + ∇pB = φfB

ωB − curluB = 0
divuB = 0

 in ΩB , (2.1)
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coupled with

(Darcy)
µK−1

D uD +∇pD = φfD

divuD = 0

}
in ΩD , (2.2)

and
(Transport) βφ− div(ϑ(φ)∇φ − φu− fbk(φ)g) = 0 in Ω, (2.3)

where µ > 0 is the constant viscosity of the fluid in the entire domain Ω, the parameter β is the
porosity of the medium (assumed constant inside each subdomain, but possibly discontinuous across
Σ). Notice that u in (2.3) refers to the global velocity field defined in both ΩB and ΩD, that is
u := 1ΩB

uB + 1ΩD
uD, where 1Ω? is the characteristic function, ? ∈ {B,D}. In addition, KB and

KD are symmetric, bounded, and uniformly positive definite tensors KB,KD, which means that there
exist αKB

> 0 and αKD
> 0 such that

vtK−1
B (x)v ≥ αKB

|v|2 ∀v ∈ Rn,∀x ∈ ΩB ,

and
vtK−1

D (x)v ≥ αKD
|v|2 ∀v ∈ Rn, ∀x ∈ ΩD.

In turn, the tensors KB and KD characterise the absolute permeability of the Brinkman and Darcy
domains, respectively; the function ϑ is a nonlinear diffusivity, and fbk is a nonlinear flux acting on
the direction of the gravity acceleration g, aligned with the negative xn−axis. The specific forms of
these variable coefficients will be made precise later. In addition, we assume that fB ∈ L∞(ΩB) and
fD ∈ L∞(ΩD). We stress that the local fluctuations of φ drive the flow patterns only through the
external load in the momentum equations. In this sense, the coupling mechanisms considered here are
somehow weaker than those studied in [2, 3] for transport-flow in a single domain (where also viscosity
was depending of φ).

We assume that Ω has a Lipschitz continuous boundary split into two disjoint sub-boundaries with
positive measure, according to two criteria: firstly, ∂Ω = ΓB∪ΓD, where ΓB = ∂ΩB\Σ and ΓD = ∂ΩD\Σ
denote pure Brinkman and Darcy borders, respectively; and secondly ∂Ω = Γ0 ∪ ΓN, where Γ0,ΓN

denote the parts of the boundary where homogeneous Dirichlet or Neumann (zero flux) conditions
are enforced for φ, respectively (see a rough diagram of domains and boundaries in Figure 2.1). The
considered boundary and transmission conditions are:

uD · n = uB · n and pD = pB on Σ,
ωB × n = 0 on ∂ΩB = Σ ∪ ΓB , uB · n = 0 on ΓB , and uD · n = 0 on ΓD ,

φ = 0 on Γ0, and (ϑ(φ)∇φ− φu− fbk(φ)g) · n = 0 on ΓN,
(2.4)

where n denotes the outward normal at ΩB and ΩD. Note that interface conditions are not required in
the transport equation, as the continuity of φ and of the corresponding fluxes is incorporated naturally
in the formulation.

For the sake of our analysis, the variable coefficients need to satisfy the following requirements:
there exist positive constants ϑ1, ϑ2, γ1, γ2, Lϑ, and Lfbk , such that

ϑ1 ≤ ϑ(s) ≤ ϑ2 , and γ1 ≤ fbk(s) ≤ γ2 ∀ s ∈ R , (2.5)

|ϑ(s)− ϑ(t)| ≤ Lϑ |s− t| ∀ s, t ∈ R , (2.6)

and
|fbk(s)− fbk(t)| ≤ Lfbk |s− t| ∀ s, t ∈ R . (2.7)
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Figure 2.1: Sketch of the domains occupied by the incompressible fluid and by the porous medium
(ΩB and ΩD, respectively), interface Σ, and corresponding boundaries.

In view of deriving a weak form of (2.1)-(2.3), and according to the boundary data (2.4), we
introduce the following functional spaces

HB(div; ΩB) :=
{
vB ∈ H(div; ΩB) : vB · n = 0 on ΓB

}
,

H0(curl; ΩB) :=
{
zB ∈ H(curl; ΩB) : zB × n = 0 on ∂ΩB

}
,

HD(div; ΩD) :=
{
vD ∈ H(div; ΩD) : vD · n = 0 on ΓD

}
,

and
H1

Γ0
(Ω) := {ψ ∈ H1(Ω) : ψ|Γ0 = 0},

for which, thanks to the generalised Poincaré inequality, there exists cp > 0, depending only on Ω and
Γ0, such that

‖ψ‖1,Ω ≤ cp |ψ|1,Ω, ∀ψ ∈ H1
Γ0

(Ω). (2.8)

3 Weak formulation and its solvability analysis

In this section we proceed similarly as in [2] and [3] to derive a suitable variational formulation of
(2.1)-(2.2)-(2.3)-(2.4) and analyse its corresponding solvability by using a fixed-point strategy.

3.1 A mixed-primal formulation

We first notice that the continuity of pressure across the interface Σ allows us to define its trace

λ := pD|Σ = pB|Σ ∈ H1/2(Σ) . (3.1)

Then, after testing the momentum equation in (2.1) against vB ∈ HB(div; ΩB), and integrating by
parts, we get

µ

∫
ΩB

K−1
B uB ·vB+ µ

∫
ΩB

vB ·curlωB−
∫

ΩB

pB div vB+〈vB ·n, λ〉Σ =

∫
ΩB

φfB ·vB ∀vB ∈ HB(div; ΩB).
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Next, testing the constitutive equation in (2.1) against zB ∈ H0(curl; ΩB), and integrating by parts,
we obtain ∫

ΩB

ωB · zB −
∫

ΩB

uB · curl zB = 0 ∀ zB ∈ H0(curl; ΩB).

In turn, the incompressibility equation in (2.1) is tested as∫
ΩB

qB divuB = 0 ∀ qB ∈ L2(ΩB) .

On the other hand, testing the first equation of (2.2) with functions in HD(div; ΩD), integrating by
parts, using the corresponding boundary conditions, and employing (3.1), we get

µ

∫
ΩD

K−1
D uD · vD −

∫
ΩD

pD div vD − 〈vD · n, λ〉Σ =

∫
ΩD

φfD · vD ∀vD ∈ HD(div; ΩD) .

In addition, similarly as for the incompressibility condition in ΩB, the second equation in (2.2) is
initially tested as ∫

ΩD

qD div vD = 0 ∀ qD ∈ L2(ΩD) .

Finally, the continuity of normal velocities across Σ (cf. first equation in (2.4)) is imposed weakly,
that is

〈uB · n − uD · n, ξ〉Σ = 0 ∀ ξ ∈ H1/2(Σ) .

Therefore, given φ ∈ H1
Γ0

(Ω), we arrive at the following mixed formulation for the Brinkman-Darcy
coupling: Find ~u := (uB,ωB,uD) ∈ H and ~p := (pB, pD, λ) ∈ Q, such that

A(~u, ~v) + B(~v, ~p) = Fφ(~v) ∀~v := (vB, zB,vD) ∈ H,

B(~u, ~q) = 0 ∀ ~q := (qB, qD, λ) ∈ Q,
(3.2)

where the product spaces are

H := HB(div; ΩB)×H0(curl; ΩB)×HD(div; ΩD) , Q := L2(ΩB)× L2(ΩD)×H1/2(Σ) ,

the bilinear forms A : H×H→ R and B : H×Q→ R are defined by

A(~u, ~v) := µ

∫
ΩB

K−1
B uB · vB + µ

∫
ΩB

ωB · zB + µ

∫
ΩB

vB · curlωB

− µ
∫

ΩB

uB · curl zB + µ

∫
ΩD

K−1
D uD · vD,

B(~v, ~q) := −
∫

ΩB

qB div vB −
∫

ΩD

qD div vD + 〈vB · n− vD · n, ξ〉Σ,

for all ~v ∈ H, ~q ∈ Q, and F ∈ H′ is the functional defined by

Fψ(~v) :=

∫
ΩB

ψfB · vB +

∫
ΩD

ψfD · vD ∀~v ∈ H . (3.3)

Next, we observe that the solution for (3.2) is not unique. Indeed, it suffices to consider ~p := (c, c, c),
with c ∈ R, and note that (0, ~p) is also solution of the associated homogeneous system (see [4,
Theorem 3.1]). In order to guarantee the uniqueness of the solution to (3.2), and similarly to [4], we
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consider, instead of (3.2), the following mixed formulation for the Brinkman-Darcy coupling: Find
(~u, ~p) ∈ H×Q0, such that

A(~u, ~v) + B(~v, ~p) = Fφ(~v) ∀~v ∈ H,

B(~u, ~q) = 0 ∀ ~q ∈ Q0,
(3.4)

where Q0 := L2
0(ΩB)× L2(ΩD)×H1/2(Σ) .

On the other hand, given u in a suitable space (to be indicated later on in Lemma 3.2), testing
with functions in H1

Γ0
(Ω), integrating by parts and using the boundary data, we deduce the following

primal formulation for the transport problem: Find φ ∈ H1
Γ0

(Ω) such that

Cu(φ, ψ) =

∫
Ω
fbk(φ) g · ∇ψ ∀ψ ∈ H1

Γ0
(Ω) , (3.5)

where, the form Cu is defined by

Cu(φ, ψ) :=

∫
Ω
ϑ(φ)∇φ · ∇ψ −

∫
Ω
φu · ∇ψ +

∫
Ω
β φψ ∀φ, ψ ∈ H1

Γ0
(Ω) .

In this way, the mixed-primal formulation of our original coupled problem (2.1)-(2.3);(2.4), reduces
to (3.4)-(3.5), that is: Find (~u, ~p, φ) ∈ H×Q0 ×H1

Γ0
(Ω) such that

A(~u, ~v) + B(~v, ~p) = Fφ(~v) ∀~v ∈ H,

B(~u, ~q) = 0 ∀ ~q ∈ Q0,

Cu(φ, ψ) =

∫
Ω
fbk(φ) g · ∇ψ ∀ψ ∈ H1

Γ0
(Ω) .

(3.6)

The well-posedness of (3.6) is addressed below in Sections 3.3 and 3.4 employing a fixed-point strategy
that is explained in the following section. We remark in advance that, in order to deal with the analysis
of (3.5), and particularly to estimate the second term defining Cu, we will require further regularity
for the global velocity. This assumption will be specified below in Section 3.3.

3.2 Fixed point strategy

We now describe our fixed-point framework for (3.6). According to the definition of the global velocity,
we first introduce the operator S : H1

Γ0
(Ω) −→ H(div; Ω) defined as

S(φ) := u ∀φ ∈ H1
Γ0

(Ω) ,

where u|ΩB
= uB and u|ΩD

= uD are the first and third components of ~u ∈ H, which in turn is the
first component of the unique solution (to be confirmed below) of the problem (3.4) with the given φ.

In turn, we also introduce the operator S̃ : H1
Γ0

(Ω)×H(div; Ω) −→ H1
Γ0

(Ω) defined as

S̃(φ,u) := φ̃ ∀ (φ,u) ∈ H1
Γ0

(Ω)×H(div; Ω) ,

where φ̃ is the unique solution (to be confirmed below) of the linear problem: Find φ̃ ∈ H1
Γ0

(Ω) such
that

Cφ,u(φ̃, ψ̃) = Hφ(ψ̃) ∀ ψ̃ ∈ H1
Γ0

(Ω) , (3.7)
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for fixed (φ,u), where the involved bilinear form is defined as

Cφ,u(φ̃, ψ̃) :=

∫
Ω
ϑ(φ)∇φ̃ · ∇ψ̃ −

∫
Ω
φ̃u · ∇ψ̃ +

∫
Ω
β φ̃ ψ̃ ∀ φ̃, ψ̃ ∈ H1

Γ0
(Ω) , (3.8)

and the linear functional is given by

Hφ(ψ̃) :=

∫
Ω
fbk(φ) g · ∇ψ̃ ∀ ψ̃ ∈ H1

Γ0
(Ω) . (3.9)

Here, we stress in advance that actually S̃ will be well-defined not in the whole space H1
Γ0

(Ω) ×
H(div; Ω), but only in a subspace of it (see Lemma 3.2 below).

Finally, we define the operator T : H1
Γ0

(Ω) −→ H1
Γ0

(Ω) as

T(φ) := S̃(φ,S(φ)) ∀φ ∈ H1
Γ0

(Ω) , (3.10)

and realise that solving (3.6) is equivalent to seeking a fixed point of T, that is: Find φ ∈ H1
Γ0

(Ω)
such that

T(φ) = φ . (3.11)

3.3 Well-posedness of the uncoupled problem

In this section, we show that the uncoupled problems (3.4) and (3.7) are in fact well-posed. We begin
the solvability analysis with the following result, whose proof is a direct consequence of [4, Theorem
3.2]. Let us remark that similar vorticity-based formulations for Brinkman-Darcy equations can be
analysed using a different approach, as done recently in [6].

Lemma 3.1 For each φ ∈ H1
Γ0

(Ω), problem (3.4) has a unique solution (~u, ~p) ∈ H×Q0. Moreover,
there exists CS > 0, independent of φ, such that

‖S(φ)‖div,Ω ≤ ‖(~u, ~p)‖H×Q0 ≤ CS ‖φ‖0,Ω
{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
, ∀φ ∈ H1

Γ0
(Ω). (3.12)

For the purpose of the next result, which provides the solvability of the uncoupled problem (3.7), we
require that the global velocity u belong to H(div; Ω) ∩Hδ(Ω) for some δ ∈ (0, 1) (when n = 2) or
δ ∈ (1/2, 1) (when n = 3). In turn, according to the aforementioned range for δ, we recall that the
Sobolev embedding Theorem (cf. Ref. [1] [Theorem 4.12], Ref. [17] [Theorem 1.3.4]) establishes the
continuous injection iδ : Hδ(Ω) −→ Lδ

∗
(Ω) with boundedness constant C∗δ , where

δ∗ :=

{
2

1−δ if n = 2 ,
6

3−2δ if n = 3 .
(3.13)

and it also guarantees that the injection i : H1(Ω)→ Ln/δ(Ω) is compact, and hence continuous, with
constant Cδ. In addition, for the subsequent writing we set r0 := ϑ1

2cpCδC
∗
δ
, where ϑ1 and cp are the

constants given in (2.5) and (2.8), respectively.

Lemma 3.2 Let φ ∈ H1
Γ0

(Ω), and u ∈ H(div; Ω) ∩ Hδ(Ω) for some δ ∈ (0, 1) (when n = 2) or
δ ∈ (1/2, 1) (when n = 3), such that ‖u‖δ,Ω < r0. Then, the problem (3.7) has a unique solution

S̃(φ,u) := φ̃ ∈ H1
Γ0

(Ω). Moreover, there exists C
S̃
> 0, independent of (φ,u), such that

‖S̃(φ,u)‖1,Ω ≤ C
S̃
γ2|Ω|1/2|g|. (3.14)
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Proof. We first notice that Cφ,u (cf. (3.8)) is clearly a bilinear form. In turn, employing the upper
bound of ϑ (cf. (2.5)), Cauchy-Schwarz’s inequality, and Hölder’s inequality, it readily follows from
(3.8) that

|Cφ,u(φ̃, ψ̃)| ≤ ϑ2 |φ̃|1,Ω |ψ̃|1,Ω + ‖φ̃‖L2q(Ω) ‖u‖L2p(Ω) |ψ̃|1,Ω + β ‖φ̃‖0,Ω ‖ψ̃‖0,Ω (3.15)

where p, q ∈ [1,+∞) are such that 1/p+ 1/q = 1. Next, choosing p such that 2p = δ∗ (cf. (3.13)), it
readily follows that

2q :=
2p

p− 1
=

n

δ
. (3.16)

In this way, applying the continuous injections iδ : Hδ(Ω) −→ Lδ
∗
(Ω), and i : H1(Ω) → Ln/δ(Ω), the

latter being consequence of the range of δ, and employing the bound for ‖u‖δ,Ω assumed here, we
deduce from (3.15) the existence of a positive constant ‖C‖, depending on ϑ1, ϑ2, β, ‖i‖, ‖i‖, and cp,
such that

|Cφ,u(φ̃, ψ̃)| ≤ ‖C‖ ‖φ̃‖1,Ω ‖ψ̃‖1,Ω ∀ φ̃, ψ̃ ∈ H1
Γ0

(Ω) ,

which proves that Cφ,u is bounded independently of φ and u. On the other hand, applying the same
argument used for the derivation of second term on the right hand side of (3.15), and using (3.13),
(3.16) and (2.8), we find that for each φ̃ ∈ H1

ΓD
(Ω) there holds

Cφ,u(φ̃, φ̃) =

∫
Ω
ϑ(φ) |∇φ̃|2 −

∫
Ω
φ̃u · ∇φ̃ + β ‖φ̃‖20,Ω

≥ ϑ1 |φ̃|21,Ω − C∗δ ‖φ̃‖Ln/δ(Ω) ‖u‖δ,Ω |φ̃|1,Ω + β ‖φ̃‖20,Ω

≥ (ϑ1 − cpCδC
∗
δ ‖u‖δ,Ω) |φ̃|21,Ω

≥ ϑ1

2
|φ̃|21,Ω ≥

ϑ1

2c2
p

‖φ̃‖21,Ω ,

(3.17)

which proves that Cφ,u is H1
Γ0

(Ω)-elliptic with constant α̃ := ϑ1
2 c2p

, independently of both φ and u.

Next, applying Cauchy-Schwarz inequality and the upper bound for fbk given in (2.5), we easily deduce
that

|Hφ(ψ̃)| ≤ γ2 |Ω|1/2 |g| ‖ψ̃‖1,Ω ∀ ψ̃ ∈ H1
ΓD

(Ω) ,

which says that Hφ ∈ H1
Γ0

(Ω)′ and ‖Hφ‖ ≤ γ2 |Ω|1/2 |g|. Consequently, a direct application of the

Lax-Milgram Lemma implies the existence of a unique solution φ̃ := S̃(φ,u) ∈ H1
Γ0

(Ω) of (3.7), and

the corresponding continuous dependence result becomes (3.14) with C
S̃

=
1

α̃
=

2c2
p

ϑ1
. �

At this point we remark that the restriction on ‖u‖δ,Ω in Lemma 3.2 could also have been taken as

‖u‖δ,Ω < ε
ϑ1

cpCδC
∗
δ

with any ε ∈ (0, 1). However, we have chosen ε = 1
2 for simplicity and because it yields a joint

maximisation of the ellipticity constant of Cφ,u. In addition, when dropping the term β ‖φ̃‖20,Ω in
(3.17) we have first assumed that β is small and then utilised the Poincaré inequality (2.8). In turn,
when β is sufficiently large, say β ≥ ϑ1, then the aforementioned expression is kept along the whole
derivation of (3.17), implying that the Poincaré inequality (2.8) is not required.
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We end this section by introducing adequate regularity hypotheses on the operator S which will
be employed to guarantee that the operator T is well defined. In addition, sufficient regularity of the
operator S̃ is also assumed in order to establish its Lipschitz continuity, and then also that for T.
In fact, for the remainder of this paper we follow [3, Eq. (3.23) and Eq. (3.24)], and consider the
following two hypotheses.

Regularity Hypothesis 3.1 For fB ∈ L∞(ΩB), fD ∈ L∞(ΩD), and for each φ ∈ H1
Γ0

(Ω) with

‖φ‖1,Ω ≤ r, r > 0 given, there holds S(φ) ∈ H(div; Ω) ∩Hδ(Ω), for some δ ∈ (0, 1) (when n = 2) or
δ ∈ (1/2, 1) (when n = 3), with

‖S(φ)‖δ,Ω ≤ ĈS(r) ‖φ‖0,Ω
{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
, (3.18)

where ĈS(r) is a positive constant independent of φ, but depending on the upper bound r of its norm.

Regularity Hypothesis 3.2 For each (ϕ,w) ∈ H1
Γ0

(Ω)× (H(div; Ω)∩Hδ(Ω)), with δ ∈ (0, 1) (when
n = 2) or δ ∈ (1/2, 1) (when n = 3), and ‖ϕ‖1,Ω + ‖w‖div,Ω + ‖w‖δ ≤ r, r > 0 given, there holds

S̃(ϕ,w) ∈ H1+δ
Γ0

(Ω), with

‖S̃(ϕ,w)‖1+δ,Ω ≤ Ĉ
S̃
(r)C(Ω) |g|, (3.19)

where C(Ω) is a positive constant depending only on the domain Ω, and Ĉ
S̃
(r) is a positive constant

independent of (ϕ,w), but depending on the upper bound r of its norm.

We remark that similar hypotheses have been employed in [3, Section 3.3]. We also point out, in
advance, that Hypothesis 3.1 is needed in the proof of Lemma 3.3 to make use of Lemma 3.2, which is
crucial to prove that the operator T is well-defined. Afterward, the estimate (3.18) is also employed
in Lemma 3.5 to bound an expression of the form ‖S(φ − ϕ)‖L2p(Ω) in terms of ‖S(φ − ϕ)‖δ,Ω, and
hence of the data at the right hand side of (3.18). In turn, the further regularity from Hypothesis 3.2
is used in the proof of Lemma 3.4 to bound an expression of the form ‖∇S̃(ϕ,w)‖L2p(Ω) in terms of

‖S̃(ϕ,w)‖1+δ,Ω, which subsequently, in the proof of Theorem 3.7, can be bounded by the data at the
right hand side of (3.19).

3.4 Solvability of the fixed-point equation

The well-posedness of the uncoupled problems (3.4) and (3.7) confirms that the operators S, S̃ and
T (cf. Section 3.2) are well defined, and hence now we can address the solvability of the fixed-point
equation (3.11). To this end, we will proceed to verify the hypotheses of the Schauder fixed-point
theorem (see, e.g. [10] [Theorem 9.12-1(b)]).

Lemma 3.3 Given r > 0, we let W φ :=
{
φ ∈ H1

Γ0
(Ω) : ‖φ‖1,Ω ≤ r

}
and assume that

‖fB‖∞,ΩB
+ ‖fD‖∞,ΩD

<
r0

rĈS(r)
and C

S̃
γ2 |Ω|1/2 |g| ≤ r (3.20)

where r0 is the constant specified right before Lemma 3.2. Then T(Wφ) ⊆Wφ.

Proof. Given φ ∈ Wφ, by virtue of Lemma 3.1, the estimate (3.18) together with the first condition
in (3.20), and Lemma 3.2, it follows that S̃(φ,S(φ)) := T(φ) is well defined. Next, according to the
definition of the operator T (cf. (3.10)), and the continuous dependence estimate (3.14), it readily
follows that

‖T(φ)‖1,Ω = ‖S̃(φ,S(φ))‖1,Ω ≤ C
S̃
γ2 |Ω|1/2 |g|,
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which, due to the second inequality in (3.20), proves that T(φ) ∈Wφ, thus finishing the proof. �

Our next goal is to establish the continuity and compactness of T, which is precisely the purpose
of the following two lemmas.

Lemma 3.4 There exists a positive constant C̃ > 0, depending on Lfbk , Lϑ,C
∗
δ, α̃ ( cf. (2.7), (2.6),

Lemma 3.2), and the boundedness constant C∗δ of the injection iδ : Hδ(Ω)→ Lδ
∗
(Ω), such that for all

(φ,u), (ϕ,w) ∈ H1
Γ0

(Ω)× (H(div; Ω)∩Hδ(Ω)), with ‖u‖δ,Ω, ‖w‖δ,Ω < r0 ( cf. Lemma 3.2), there holds

‖S̃(φ,u)− S̃(ϕ,w)‖1,Ω ≤ C̃
{
|g| ‖φ− ϕ‖0,Ω + ‖S̃(ϕ,w)‖Ln/δ(Ω)‖u−w‖δ,Ω

+ ‖S̃(ϕ,w)‖1+δ,Ω‖φ− ϕ‖Ln/δ(Ω)

}
.

(3.21)

Proof. Given (φ,u), (ϕ,w) as stated, we let φ̃ := S̃(φ,u) and ϕ̃ := S̃(ϕ,w), that is (cf. (3.7))

Cφ,u(φ̃, ψ̃) = Hφ(ψ̃) and Cϕ,w(ϕ̃, ψ̃) = Hϕ(ψ̃) ∀ ψ̃ ∈ H1
Γ0

(Ω) .

Then, according to the ellipticity of Cφ,u with constant α̃, subtracting and adding Hϕ(φ̃ − ϕ̃) =

Cϕ,w(ϕ̃, φ̃− ϕ̃), it follows that

α̃ ‖φ̃− ϕ̃‖21,Ω ≤ Cφ,u(φ̃, φ̃− ϕ̃) − Cφ,u(ϕ̃, φ̃− ϕ̃)

= Hφ(φ̃− ϕ̃)−Hϕ(φ̃− ϕ̃) + Cϕ,w(ϕ̃, φ̃− ϕ̃)− Cφ,u(ϕ̃, φ̃− ϕ̃)

=

∫
Ω

(
fbk(φ)− fbk(ϕ)

)
g · ∇(φ̃− ϕ̃) +

∫
Ω
ϕ̃ (u−w) · ∇(φ̃− ϕ̃)

+

∫
Ω

(
ϑ(ϕ)− ϑ(φ)

)
∇ϕ̃ · ∇(φ̃− ϕ̃) ,

(3.22)

where for the last equality we have employed definitions (3.8) and (3.9). Then applying Cauchy-
Schwarz’s inequality, Hölder’s inequality, the further regularity in Hypothesis 3.2, the Lipschitz-
continuity (2.6)-(2.7), and proceeding similarly as in (3.17) (see also [3, Eq. (3.29)]) on the last
two terms in (3.22), we obtain

α̃ ‖φ̃− ϕ̃‖21,Ω ≤
{
Lfbk |g| ‖φ − ϕ‖0,Ω + C∗δ ‖ϕ̃‖Ln/δ(Ω) ‖u−w‖δ,Ω

}
|φ̃− ϕ̃|1,Ω

+ Lϑ C∗δ ‖φ− ϕ‖Ln/δ(Ω) ‖∇ϕ̃‖δ,Ω |φ̃− ϕ̃|1,Ω ,
(3.23)

In this way, inequalities (3.22) and (3.23) imply (3.21), which finishes the proof. �

The following result is a straightforward consequence of Lemma 3.4

Lemma 3.5 Given r > 0, we let Wφ := {φ ∈ H1
Γ0

(Ω) : ‖φ‖1,Ω ≤ r} and assume (3.20). Then, for
all φ, ϕ ∈ H1

Γ0
(Ω), there holds

‖T(φ)−T(ϕ)‖1,Ω ≤
{
C̃ |g| + r C̃ ĈS(r)(‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD
) ‖T(ϕ)‖Ln/δ(Ω)

}
‖φ− ϕ‖0,Ω

+ C̃ ‖T(ϕ)‖1+δ,Ω‖φ− ϕ‖Ln/δ(Ω),

(3.24)
where C̃ and ĈS(r) are the constants given in Lemma 3.4 and estimate (3.18), respectively.
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Proof. It suffices to recall from Section 3.2 that T(φ) = S̃(φ,S(φ)) ∀φ ∈ H1
Γ0

(Ω), and then apply
Lemmas 3.3, 3.4, the linearity of S, and the estimate (3.18). �

The announced properties of T are proved now.

Lemma 3.6 Given r > 0, we let Wφ :=
{
φ ∈ H1

Γ0
(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume (3.20) ( cf.

Lemma 3.3). Then, T : Wφ →Wφ is continuous and T(Wφ) is compact.

Proof. It follows almost verbatim as the proof of [2, Lemma 3.12]. Indeed, it is basically a consequence
of the Rellich-Kondrachov compactness Theorem (cf. [1, Theorem 6.3], [17, Theorem 1.3.5]), the
specified range of the constant δ involved in the further regularity Hypotheses 3.1 and 3.2, and the
well-known fact that every bounded sequence in a Hilbert space has a weakly convergent subsequence.
We omit further details. �

Finally, the main result of this section is stated as follows.

Theorem 3.7 Assume that the hypotheses of the Lemmas 3.3-3.6 are met. Then, the mixed-primal
problem (3.6) has at least one solution (~u, ~p, φ) ∈ H×Q0 ×H1

Γ0
(Ω) with φ ∈Wφ, satisfying

‖(~u, ~p)‖H×Q0 ≤ r CS

{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
, (3.25)

and
‖φ‖1,Ω ≤ C

S̃
γ2|Ω|1/2|g|, (3.26)

where CS and C
S̃

are the constants specified in Lemmas 3.1 and 3.2, respectively. Moreover, if the data

fB,fD and g are sufficiently small so that, with the constants C̃, ĈS(r), Ĉ
S̃
(r) and C(Ω) from Lemma

3.4, and estimates (3.18) and (3.19), and denoting by Cδ the boundedness constant of the continuous
injection of H1(Ω) into Ln/δ(Ω), there holds

C̃(1 + Ĉ
S̃
(r) CδC(Ω)) |g| + r2 C̃ Cδ ĈS(r)

(
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

)
< 1, (3.27)

then the solution φ is unique in Wφ.

Proof. According to the equivalence between (3.6) and the fixed-point equation (3.11), and thanks
to Lemmas 3.3 and 3.6, the existence of solution is a direct consequence of the Schauder fixed-point
theorem (cf. [10, Theorem 9.12-1(b)]). In turn, the estimates (3.25) and (3.26) follow from (3.12)
(cf. Lemma 3.1) and (3.14) (cf. Lemma 3.2), respectively. Finally, given another solution ϕ ∈Wφ of
(3.11), the estimates (3.24),

‖T(ϕ)‖1,Ω = ‖ϕ‖1,Ω ≤ r, ‖ϕ̃‖1+δ,Ω ≤ Ĉ
S̃
(r)C(Ω) |g| (cf. (3.19)),

and
‖ψ‖Ln/δ(Ω) ≤ Cδ ‖ψ‖1,Ω ∀ψ ∈ H1(Ω) ,

confirm (3.27) as a sufficient condition for concluding that φ = ϕ. �

4 Galerkin scheme

Let Th be a regular family of triangulations of Ω̄B∪ Ω̄D by tetrahedra K of diameter hK with meshsize

h := max{hK : K ∈ Th}, such that Th(Ω?) :=
{
K ∈ Th : K ⊆ Ω̄?

}
is a triangulation of Ω? for

12



each ? ∈
{

B,D
}

. We denote by Th(Σ) the triangulation on Σ induced by Th (either from ΩB or ΩD).

Also, we introduce an independent triangulation Th̃(Σ) of Σ by triangles T̃ of diameter h
T̃

, and define

h̃ := max
{
h
T̃

: T̃ ∈ Th̃(Σ)
}

. We now introduce the following finite dimensional subspaces of the test
and trial spaces appearing in Section 3:

HB
h ⊆ HB(div; ΩB) , HB

0,h ⊆ H0(curl; ΩB) , HD
h ⊆ HD(div; ΩD) , Xh ⊂ H(div; Ω),

QB
h ⊆ L2(ΩB) , QD

h ⊆ L2(ΩD) , QΣ
h ⊆ H1/2(Σ) , Hφ

h ⊆ H1
Γ0

(Ω).
(4.1)

Hence, setting the global spaces

Hh := HB
h ×HB

0,h ×HD
h and Q0,h := QB

h,0 ×QD
h ×QΣ

h ,

the Galerkin scheme for (3.6) becomes: Find (~uh, ~ph, φh) ∈ Hh ×Q0,h ×Hφ
h such that

A(~uh, ~vh) + B(~vh, ~ph) = Fφh(~vh) ∀~vh ∈ Hh,

B(~uh, ~qh) = 0 ∀ ~qh ∈ Q0,h,

Cuh(φh, ψh) = Hφh(ψh) ∀ψh ∈ Hφ
h .

(4.2)

In order to guarantee the well-posedness of the discrete scheme associated to (3.4), and hence of the
Galerkin scheme (4.2), the subspaces introduced in (4.1) can be chosen as follows (see [4, Section 4.1])

H?
h :=

{
v?h ∈ H?(div; Ω?) : v?h|K ∈ RT0(K) ∀K ∈ Th(Ω?)

}
,

Q?
h :=

{
qh ∈ L2(Ω?) : qh|K ∈ P0(K) ∀K ∈ Th(Ω?)

}
,

Q?
h,0 := Q?

h ∩ L2
0(Ω?),

Hφ
h :=

{
ψh ∈ C(Ω) ∩H1

Γ0
(Ω) : ψh|K ∈ P1(K) ∀K ∈ Th

}
,

with ? ∈ {B,D}, and for any K ∈ Th(Ω?)

RT0(K) := P0(K)⊕ P0(K)x

is the local Raviart-Thomas space of lowest order. In addition, we set

HB
0,h :=

{
zB
h ∈ H0(curl; ΩB) : zB

h |K ∈ ND1(K) ∀K ∈ Th(ΩB)
}
,

where for any K ∈ Th(ΩB)
ND1(K) := P0(K)⊕P0(K)× x

is the local edge space of Nédélec, that is

ND1(K) :=
{
w : K → C3 : w(x) = a + b× x ∀x ∈ K, a, b ∈ C3

}
.

In turn, we set Xh := 1ΩB
HB
h + 1ΩD

HD
h , whereas for the interface Σ, we consider the following finite

element subspace

QΣ
h̃

:=
{
λh̃ ∈ C

0(Σ) : λh̃|T̃ ∈ P1(T̃ ) ∀ T̃ ∈ Th̃(Σ)
}
.
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4.1 Fixed point strategy

We begin by noticing that the further regularity hypotheses employed in the proof of Lemma 3.2
and Lemma 3.4, respectively, neither are needed nor could be applied in the discrete case. It is
therefore not possible to extend the fixed-point strategy introduced in Section 3.2 to the present
context. Instead, and in order to guarantee the solvability of (4.2), we introduce a new approach
where the operator associated with the discrete version of Brinkman-Darcy problem (3.4) must satisfy
a uniform boundedness (see below Hypothesis 4.1 in Section 4.2). In what follows, for simplicity of
the presentation, we will restrict the fixed-point scheme and its analysis to the 2D case. Given r > 0,
we first define

Wu
h :=

{
uh ∈ Xh : ||uh||? ≤ r

}
, (4.3)

where || · ||? := ‖ ·‖div,Ω + ‖ ·‖Ls(Ω), with s > 2. At this point, we anticipate that the stipulated range
for s will allow us to employ suitable Sobolev embeddings which will be required for the analysis in
the forthcoming Sections (see below proof of Lemma 4.2 and Theorem 4.7).

We now set Yh := Hφ
h ×W

u
h and introduce the operator S̃h : Yh → Hφ

h defined by

S̃h(φh,uh) := ϕh ∀ (φh,uh) ∈ Yh,

where ϕh is the unique solution (to be confirmed below) of the linear problem: Find ϕh ∈ Hφ
h such

that
Cφh,uh(ϕh, ψh) = Hφh(ψh) ∀ψh ∈ Hφ

h , (4.4)

for given (φh,uh), where

Cφh,uh(ϕh, ψh) :=

∫
Ω
ϑ(φh)∇ϕh · ∇ψh −

∫
Ω
ϕh uh · ∇ψh +

∫
Ω
β ϕh ψh ∀ϕh, ψh ∈ Hφ

h ,

and

Hφh(ψh) :=

∫
Ω
fbk(φh) g · ∇ψh ∀ψh ∈ Hφ

h .

In turn, we define the operator Sh : Hφ
h → Xh as

Sh(ϕh) := wh ∀ϕh ∈ Hφ
h, (4.5)

where wh|ΩB
= wB

h and wh|ΩD
= wD

h are the first and third components of ~wh ∈ Hh, which in turn is
the first component of the unique solution (to be confirmed below) of the discrete problem associated
to (3.4): Find (~wh, ~rh) ∈ Hh ×Q0,h, such that

A(~wh, ~vh) + B(~vh, ~rh) = Fϕh(~vh) ∀~vh ∈ Hh,

B(~wh, ~qh) = 0 ∀ ~qh ∈ Q0,h,
(4.6)

with ϕh given. Therefore, by introducing the operator Th : Yh → Hφ
h ×Xh as

Th(φh,uh) := (S̃h(φh,uh),Sh(S̃h(φh,uh))) ∀ (φh,uh) ∈ Yh, (4.7)

we see that solving (4.2) is equivalent to finding a fixed point of Th, that is: Find (φh,uh) ∈ Yh such
that

Th(φh,uh) = (φh,uh). (4.8)

Certainly, all the above makes sense if we guarantee that the discrete problems (4.4) and (4.6) are
well-posed. This is precisely the purpose of the next section.
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4.2 Well-posedness of the uncoupled problem

In this section, we establish the well-posedness of both (4.6) and (4.4), thus confirming that Sh, S̃h,
and hence Th, are well-defined.

Lemma 4.1 For each φh ∈ Hφ
h, the problem (4.6) has a unique solution (~uh, ~ph) ∈ Hh × Q0,h.

Moreover, there exists a positive constant C2, independent of h, such that

‖Sh(φh)‖div,Ω ≤ ‖(~uh, ~ph)‖H×Q0 ≤ C2 ‖φh‖0,Ω
{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
∀φh ∈ Hφ

h. (4.9)

Proof. It follows directly from [4, Theorem 4.1]. �

Lemma 4.2 Assume that r ∈ (0, ϑ1
2Cscp

), where Cs is the boundedness constant of the injection is :

H1(Ω)→ L
2s
s−2 (Ω), with s > 2. Then, for each (φh,uh) ∈ Yh, the problem (4.4) has a unique solution

S̃h(φh,uh) := ϕh ∈ Hφ
h. Moreover, by denoting C1 := 1

α̃ , with α̃ as in the proof of Lemma 3.2, there
holds

‖S̃h(φh,uh)‖1,Ω ≤ C1 γ2|Ω|1/2 |g|, ∀(φh,uh) ∈ Yh. (4.10)

Proof. It procceds by similar ideas used in the proof of Lemma 3.2. Indeed, employing the same
arguments used for the derivation of (3.15), to the present context, we deduce that

|Cφh,uh(φ̃h, ψ̃h)| ≤ ϑ2 |φ̃h|1,Ω |ψ̃h|1,Ω + ‖φ̃h‖L2q̃(Ω) ‖uh‖L2p̃(Ω) |ψ̃h|1,Ω + β ‖φ̃h‖0,Ω ‖ψ̃h‖0,Ω (4.11)

where p̃, q̃ ∈ [1,+∞) are such that 1/p̃ + 1/q̃ = 1. Thus, choosing p̃ such that 2p̃ = s, with s > 2, it
readily follows that

2q̃ :=
2s

s− 2
> 1. (4.12)

In this way, having in mind that ‖uh‖Ls(Ω) ≤ r (cf. (4.3)), and the fact that, for the 2D case, the

injection is : H1(Ω) → L
2s
s−2 (Ω) is compact, and hence continuous with constant Cs, we deduce the

existence of a positive constant ‖C‖, depending on ϑ2, β, r and Cs, such that

|Cφh,uh(φ̃h, ψ̃h)| ≤ ‖C‖ ‖φ̃h‖1,Ω ‖ψ̃h‖1,Ω ∀ φ̃h, ψ̃h ∈ H1
Γ0

(Ω) , (4.13)

which proves that Cφh,uh is bounded independently of φh and uh. On the other hand, applying the
same argument to handle the trilinear term on the right hand side of (4.11) in the derivation of (4.13),
and employing the estimates (2.5) and (2.8), we find that for each φ̃h ∈ H1

Γ0
(Ω) there holds

Cφh,uh(φ̃h, φ̃h) ≥ ϑ1|φ̃h|21,Ω − ‖φ̃h‖L2s/s−2(Ω)‖uh‖Ls(Ω)|φ̃h|1,Ω + β‖φ̃h‖20,Ω

≥ (ϑ1 − Cs cpr)|φ̃h|21,Ω

≥ ϑ1

2
|φ̃h|21,Ω ≥

ϑ1

2c2
p

‖φ̃h‖21,Ω,

which proves that Cφh,uh is elliptic on Hφ
h×Hφ

h, with the same constant α̃ from Lemma 3.2. In addition,
the fact that ‖Hφ‖ is bounded independently of φ (cf. Proof of Lemma 3.2), confirms the same upper
bound for ‖Hφh‖(Hφh)′

. The rest of the proof is a direct application of Lax-Milgram’s Lemma. �

We point out that the manipulation of the term β‖φ̃h‖20,Ω in the derivation of the ellipticity of Cφh,uh
is the same that was described at the end of the proof of Lemma 3.2 (see Section 3.3).

We end this section with an hypothesis of uniform boundedness on the operator Sh (cf. (4.5)),
which will be required in the forthcoming Section to guarantee that the operator Th, given in (4.7) is
well defined and continuous in a certain ball.
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Hypothesis 4.1 There exists s > 2 such that the operator Sh : (Hφ
h, ‖ · ‖1,Ω) → (Xh, ‖ · ‖s,Ω) ( cf.

(4.5)) is uniformly bounded, that is

‖Sh(φh)‖Ls(Ω) ≤ C̃s ‖φh‖1,Ω ∀ φh ∈ Hφ
h, (4.14)

where C̃s is a positive constant independent of h.

We remark in advance that the estimate (4.14) is needed in the proof of Lemma 4.3 (see Section 4.3
below) to bound an expression of the form ‖Sh(S̃h( · ))‖Ls(Ω) in terms of ‖S̃h( · )‖1,Ω, which in turn
is bounded by data (cf. (4.10)). Afterward, the estimate (4.14) will be required to properly handle
the expression ‖Sh(S̃h(φh))− Sh(S̃h(ϕh))‖Ls(Ω) in order to derive a Lipschitz continuity property for
Th (see below Lemma 4.6).

4.3 Solvability of the fixed-point equation

We now aim to show the solvability of (4.2) by analyzing the equivalent fixed-point equation (4.8).
To this end, we will proceed to verify the hypotheses of the Brouwer fixed-point theorem (cf. [10,
Theorem 9.9-2]).

We start by defining the following set

Wh := {(φh,uh) ∈ Hφ
h ×Xh : |||(φh,uh)||| ≤ r}, (4.15)

where r was previously fixed in (4.3), and

|||(φh,uh)||| := ‖φh‖1,Ω + ‖uh‖? = ‖φh‖1,Ω + ‖uh‖div,Ω + ‖uh‖Ls(Ω).

Lemma 4.3 Let Wh be as in (4.15), and assume that the data g, fB and fD are sufficiently small
so that

(C̃s + C1)γ2|Ω|1/2|g| + C1C2 γ2|Ω|1/2|g|
{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
≤ r. (4.16)

Then Th(Wh) ⊆Wh.

Proof. Given (φh,uh) ∈Wh, we get from (4.7), and the estimates (4.14), (4.9), and (4.10), that

|||Th(φh,uh)||| = |||(S̃h(φh,uh),Sh(S̃h(φh,uh)))|||

= ‖S̃h(φh,uh)‖1,Ω + ‖Sh(S̃h(φh,uh))‖div,Ω + ‖Sh(S̃h(φh,uh))‖Ls(Ω)

≤ (C̃s + C1)γ2|Ω|1/2|g| + C1C2 γ2|Ω|1/2|g| {‖fB‖∞,ΩB
+ ‖fD‖∞,ΩD

} ,

and hence, employing the condition (4.16), we conclude that Th(φh,uh) ∈Wh. �

In order to prove the continuity of Th, in the following two lemmas, we derive Lipschitz type-
estimates for Sh and S̃h.

Lemma 4.4 Let C2 be the constant given in Lemma 4.1. Then, there holds

‖Sh(φh)− Sh(ϕh)‖div,Ω ≤ C2 ‖φh − ϕh‖0,Ω
{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
∀φh, ϕh ∈ Hφ

h. (4.17)
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Proof. Given φh, ϕh ∈ Hφ
h, we let ~uh := (uB

h ,ω
B
h ,u

D
h ) ∈ Hh, ~ph := (pB

h , p
D
h , λh) ∈ Q0,h and ~wh =

(wB
h ,x

B
h ,w

D
h ) ∈ Hh, ~rh := (rB

h , r
D
h , χh) ∈ Q0,h be the corresponding solutions of (4.6), so that uh =

uB
h + uD

h =: Sh(φh) and wh = wB
h + wD

h =: Sh(ϕh). Then, employing the linearity of the forms A
and B, we deduce from (4.6) that

A(~uh − ~wh, ~vh) + B(~vh, ~ph − ~rh) = Fφh−ϕh(~vh) ∀~vh := (vB
h , z

B
h ,v

D
h ) ∈ H,

B(~uh − ~wh, ~qh) = 0 ∀ ~qh := (qB
h , q

D
h , ξh) ∈ Q0,h.

In this way, due to the fact that Sh(φh − ϕh) = Sh(φh) − Sh(ϕh), the bound (4.17) follows directly
from estimate (4.9). �

Lemma 4.5 Let Lfbk , Lϑ, and α̃ be the constants given in (2.7), (2.6), and Lemma 3.2, respectively.
Then, there holds

‖S̃h(φh,uh)− S̃h(ϕh,wh)‖1,Ω ≤
1

α̃

{
Lfbk |g|‖φh − ϕh‖0,Ω + Lϑ ‖∇S̃h(φh,uh)‖L4(Ω) ‖φh − ϕh‖L4(Ω)

+ ‖S̃h(φh,uh)‖L2q̃(Ω)‖uh −wh‖L2p̃(Ω)

}
(4.18)

∀ (φh,uh), (ϕh,wh) ∈ Hφ
h ×W

u
h , where p̃, q̃ ∈ [1,+∞) are such that 1/p̃+ 1/q̃ = 1.

Proof. Given (φh,uh), (ϕh,wh) as stated, we let φ̃h := S̃h(φh,uh) and ϕ̃h := S̃h(ϕh,wh), that is (cf.
(4.4))

Cφh,uh(φ̃h, ψ̃h) = Hφh(ψ̃h) and Cϕh,wh
(ϕ̃h, ψ̃h) = Hϕh(ψ̃h) ∀ ψ̃h ∈ Hφ

h .

Next, we proceed analogously as in the proof of Lemma 3.4. In fact, applying Cauchy-Schwarz’s
inequality, the Lipschitz-continuity estimates (2.6)-(2.7), Hölder’s inequality to the second term on the
right hand side for the discrete version of (3.22), and a L4 − L4 − L2 argument for the corresponding
last term, we deduce that

α̃ ‖φ̃h − ϕ̃h‖21,Ω ≤
{
Lfbk |g| ‖φh − ϕh‖0,Ω + ‖ϕ̃h‖L2q̃(Ω) ‖uh −wh‖L2p̃(Ω)

}
|φ̃h − ϕ̃h|1,Ω

+ Lϑ ‖φh − ϕh‖L4(Ω) ‖∇ϕ̃h‖L4(Ω) |φ̃h − ϕ̃h|1,Ω .

Then, since the elements of Hφ
h are piecewise polynomials, it follows that ‖∇ϕ̃h‖L4(Ω) < +∞, and

hence the foregoing equation yields (4.18). Further details are omitted. �

We now can establish the following result providing a Lipschitz continuity type-estimate for the
operator Th.

Lemma 4.6 Given r > 0, we let Wh := {(φh,uh) ∈ Hφ
h×Xh : |||(φh,uh)||| ≤ r}, and assume (4.16)

( cf. Lemma 4.3). Then, there exist constants C3, C4, C5 > 0, depending only on Lfbk , Lϑ, α̃, C2, C̃s
( cf. (2.7), (2.6), Lemma 3.2, Lemma 4.4, (4.14)) and the data, such that, for all (φh,uh), (ϕh,wh) ∈
Wh, there holds

|||Th(φh,uh)−Th(ϕh,wh)||| ≤ C3 ‖φh − ϕh‖0,Ω + C4 ‖∇S̃h(φh,uh)‖L4(Ω)‖φh − ϕh‖L4(Ω)

+C5 ‖S̃h(φh,uh)‖L2q̃(Ω)‖uh −wh‖L2p̃(Ω) ,

where p̃, q̃ ∈ [1,+∞) are such that 1/p̃+ 1/q̃ = 1.
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Proof. It suffices to recall from Section 4.1 that

Th(ψh,vh) := (S̃h(ψh,vh),Sh(S̃h(ψh,vh))) ∀ (ψh,vh) ∈ Yh,

and then apply the estimate (4.14), and Lemmas 4.4 and 4.5. �

Consequently, from the foregoing Lemma, choosing 2p̃ and 2q̃ as in the proof of Lemma 4.2, that
is 2p̃ = s and hence 2q̃ := 2s

s−2 > 1, and employing the continuous injection i : H1(Ω) → L4(Ω), the
continuity of Th is derived. In this way, we conclude, thanks to the Brouwer fixed-point theorem (cf.
[10, Theorem 9.9-2]) and Lemmas 4.3 and 4.6, the main result of this section.

Theorem 4.7 Under the assumptions of Lemma 4.3, the Galerkin scheme (4.2) has at least one

solution (~uh, ~ph, φh) ∈ Hh ×Q0,h ×Hφ
h with (φh,uh) ∈Wh, and there holds

‖φh‖1,Ω ≤ C1γ2|Ω|1/2|g|,

and
‖(~uh, ~ph)‖H×Q0 ≤ C1C2 γ2|Ω|1/2|g|

{
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

}
,

where C1, C2, and γ2, are the constants provided by Lemmas 4.1 and 4.2, and (2.5) , respectively.

We end this section pointing out that the extension to 3D case of our discrete analysis of fixed-
point to solve (4.2), is basically based on a new range for the parameter s (cf. (4.3), Lemma 4.2, and
Hypotheses 4.14). More precisely, for the 3D case, we need to take s > 3 in (4.3) to then guarantee

the compactness, and hence the continuity, of the injection is : H1(Ω)→ L
3s
s−3 (Ω), which is crucial in

the proof of the corresponding Lemma 4.2.

5 A priori error estimate

Given (~u, ~p, φ) ∈ H×Q0×H1
Γ0

(Ω) with φ ∈W, and (~uh, ~ph, φh) ∈ Hh×Q0,h×Hφ
h with (φh,uh) ∈Wh

(cf. (4.15)), solutions of (3.6) and (4.2), respectively, we now aim to derive a corresponding a priori
error estimate. To this end, we first observe from (3.6) and (4.2), that the above problems can be
rewritten as follows:

(BD)

{
A(~u, ~v) + B(~v, ~p) = Fφ(~v) ∀~v ∈ H,

B(~u, ~q) = 0 ∀ ~q ∈ Q0,

(BDh)

{
A(~uh, ~vh) + B(~vh, ~ph) = Fφh(~vh) ∀~vh ∈ Hh,

B(~uh, ~qh) = 0 ∀ ~qh ∈ Q0,h,

and
(T ) Cu(φ, ψ) = Hφ(ψ) ∀ψ ∈ H1

Γ0
(Ω) ,

(Th) Cuh(φh, ψh) = Hφh(ψh) ∀ψh ∈ Hφ
h .

We begin our analysis by establishing the following result concerning ‖(~u, ~p)− (~uh, ~ph)‖H×Q0 .

Lemma 5.1 There exists CB,D > 0, independent of h, such that

‖(~u, ~p)− (~uh, ~ph)‖H×Q0

≤ CB,D

{
dist(~u,Hh) + dist(~p,Q0,h) + ‖φ− φh‖1,Ω

(
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

)}
.

(5.1)
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Proof. Basically, the proof follows from the corresponding Strang-type error estimate for (BD) and
(BDh). Indeed, procceding anlogously as in [13, Section 4] (also see [18]), we deduce the existence of
a positive constant CB,D, independent of h, such that

‖(~u, ~p)− (~uh, ~ph)‖H×Q0 ≤ CB,D

{
dist(~u,Hh) + dist(~p,Q0,h) + ‖Fφ −Fφh‖H′h

}
. (5.2)

Next, according to the definition of Fφ and Fφh (cf. (3.3)), and applying Cauchy-Schwarz’s inequality,
we easily deduce that

‖Fφ −Fφh‖H′h ≤ ‖φ− φh‖0,Ω
(
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

)
. (5.3)

In this way, by replacing (5.3) into (5.2), we arrive at (5.1), which ends the proof. �

We now derive a Céa estimate for the error ‖φ− φh‖1,Ω under the 2D-dimensional context. To this
end, and in order to simplify the subsequent writing, we introduce the following constants, independent
of the data g, fB, and fD,

K1 := C
S̃

{
Lfbk + Lϑ Cδ C∗δ ĈS̃

(r) γ2 |Ω|1/2
}
, K2 := C

S̃
(rCs + β + ϑ2) + 1, and K3 = C

S̃
.

where Ĉ
S̃
(r) and C

S̃
are the constants given in (3.19) and (3.14), and Cs, Cδ, C∗δ , are the boundedness

constants of the continuous injections

is : H1(Ω) −→ L
2s
s−2 (Ω), i : H1(Ω) −→ L2/δ(Ω), iδ : Hδ(Ω) −→ Lδ

∗
(Ω), (5.4)

respectively, where s > 2, δ ∈ (0, 1), and δ∗ := 2/(1− δ). In addition, in order to suitably handle one
of the terms in the derivation of the Céa estimate for ‖φ − φh‖1,Ω, we will additionally assume that
φ ∈ L∞(Ω).

Lemma 5.2 Assume that φ ∈ H1(Ω) ∩ L∞(Ω), and that the data g satisfy

K1 |g| ≤
1

2
. (5.5)

Then, there holds

‖φ− φh‖1,Ω ≤ 2K2 dist(φ,Hφ
h) + 2K3 ‖φ‖∞,Ω ‖u− uh‖0,Ω. (5.6)

Proof. It proceeds almost verbatim as in the proof of [3, Lemma 5.3]. In fact, we first observe by
triangle inequality that

‖φ− φh‖1,Ω ≤ ‖φ− ϕh‖1,Ω + ‖φh − ϕh‖1,Ω ∀ϕh ∈ Hφ
h . (5.7)

Then employing the ellipticity of the bilinear form Cφh,uh with constant α̃, and then adding and
subtracting suitable expressions, we deduce that

α̃ ‖φh − ϕh‖21,Ω ≤ Cφh,uh(φh − ϕh, φh − ϕh)

≤ |Hφh(φh − ϕh) − Hφ(φh − ϕh)|

+ |Cφ,u(φ, φh − ϕh)− Cφh,uh(ϕh, φh − ϕh)| .

(5.8)

Next, according to the definition of Hφ and Hφh (cf. (3.9)), and applying Cauchy-Schwarz’s inequality,
we get

|Hφh(φh − ϕh) − Hφ(φh − ϕh)| ≤ Lfbk |g| ‖φ− φh‖0,Ω |φh − ϕh|1,Ω . (5.9)
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In turn, adding and subtracting suitable expressions, and then applying Hölder’s inequality, the upper
bound of ϑ (cf. (2.5)) and its Lipschitz continuity (cf. (2.6)), and the assumption that φ ∈ L∞(Ω),
we find that

|Cφ,u(φ, φh − ϕh)− Cφh,uh(ϕh, φh − ϕh)|

≤ Lϑ ‖φ− φh‖L2q(Ω) ‖∇φ‖L2p(Ω) |φh − ϕh|1,Ω + ϑ2 |φ− ϕh|1,Ω |φh − ϕh|1,Ω

+ ‖φ‖∞,Ω ‖u− uh‖0,Ω |φh − ϕh|1,Ω + ‖φ− ϕh‖L2q̃(Ω) ‖uh‖L2p̃(Ω) |φh − ϕh|1,Ω

+ β ‖φ− ϕh‖0,Ω ‖φh − ϕh‖0,Ω ,

(5.10)

where p, q, p̃, q̃ ∈ [1,+∞) are such that 1/p + 1/q = 1 and 1/p̃ + 1/q̃ = 1. In this way, choosing 2p
and 2q as in the proof of Lemma 3.2 (cf. (3.16)), 2p̃ and 2q̃ as in the proof of Lemma 4.2 (cf. (4.12)),
and applying the continuous embeddings i, iδ, is (cf. (5.4)), the estimate (3.19), and the fact that
‖uh‖Ls(Ω) ≤ r, it follows from (5.10) that

|Cφ,u(φ, φh − ϕh)− Cφh,uh(ϕh, φh − ϕh)|

≤ Lϑ Cδ C∗δ ĈS̃
(r) γ2|Ω|1/2|g| ‖φ− φh‖1,Ω ‖φh − ϕh‖1,Ω

+ ϑ2 ‖φ− ϕh‖1,Ω ‖φh − ϕh‖1,Ω + rCs ‖φ− ϕh‖1,Ω ‖φh − ϕh‖1,Ω

+ ‖φ‖∞,Ω ‖u− uh‖0,Ω ‖φh − ϕh‖1,Ω + β ‖φ− ϕh‖1,Ω ‖φh − ϕh‖1,Ω .

(5.11)

Thus, by replacing (5.9) and (5.11) into (5.8), and then the resulting estimate into (5.7), employing
the constants defined previously to the statement of the present lemma, and recalling from the proof
of Lemma 3.2 that α̃ = C−1

S̃
, we find, after several algebraic manipulations, that

‖φ− φh‖1,Ω ≤ K1 |g| ‖φ− φh‖1,Ω + K2 ‖φ− ϕh‖1,Ω + ‖φ‖∞,Ω ‖u− uh‖0,Ω ∀ϕh ∈ Hφ
h ,

which, according to the assumption (5.5), and taking the infimum on ϕh ∈ Hφ
h, yields (5.2) and

completes the proof. �

At this point we mention that for the proof of the 3D case of Lemma 5.2, it is required to choose
the parameters δ and δ∗, and hence 2p and 2q, as in proof of Lemma (3.2) (cf. (3.16)) for this case.
In turn, and according to the remark at the end of Section 4.3, for the present case we need to take
s > 3 and then to choose 2p̃ and 2q̃ analogously as in the proof of Lemma 4.2 (cf. (4.12)), in order to

make use of the continuous injection is : H1(Ω)→ L
3s
s−3 (Ω).

We now combine the inequalities provided by Lemmas 5.1 and 5.2 to derive the Céa estimate for
the total error ‖(~u, ~p)−(~uh, ~ph)‖H×Q0 +‖φ−φh‖1,Ω. Indeed, by replacing the estimate for ‖φ−φh‖1,Ω
given by (5.6) into the second term on the right hand side of (5.1), we find that

‖(~u, ~p)− (~uh, ~ph)‖H×Q0 ≤ CB,D

{
dist(~u,Hh) + dist(~p,Q0,h)

}
+ K̃ dist(φ,Hφ

h)

+ 2CB,D‖φ‖∞,Ω
(
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

)
‖u− uh‖0,Ω ,

where
K̃ := 2K2CB,D

(
‖fB‖∞,ΩB

+ ‖fD‖∞,ΩD

)
.
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In this way, assuming now that the data fB and fD satisfy

CB,D‖φ‖∞,Ω‖fB‖∞,ΩB
+ CB,D‖φ‖∞,Ω‖fD‖∞,ΩD

≤ 1

4

we conclude from the foregoing equations that

‖(~u, ~p)− (~uh, ~ph)‖H×Q0 ≤ 2CB,D

{
dist(~u,Hh) + dist(~p,Q0,h)

}
+ 2 K̃ dist(φ,Hφ

h). (5.12)

Consequently, we can establish the following result providing the Céa estimate for the total error
‖(~u, ~p)− (~uh, ~ph)‖H×Q0 + ‖φ− φh‖1,Ω.

Theorem 5.3 Assume that φ ∈ H1(Ω)∩L∞(Ω), and that the data fB,fD and g are sufficiently small
so that

K1 |g| ≤
1

2
and CB,D‖φ‖∞,Ω‖fB‖∞,ΩB

+ CB,D‖φ‖∞,Ω‖fD‖∞,ΩD
≤ 1

4
.

Then, there exists a positive constant C depending only on data, parameters, ‖φ‖∞,Ω, and other
constants, all them independent of h, such that

‖(~u, ~p)− (~uh, ~ph)‖H×Q0 + ‖φ− φh‖1,Ω ≤ C
{

dist(~u,Hh) + dist(~p,Q0,h) + dist(φ,Hφ
h)
}
. (5.13)

Proof. It follows straightforward from (5.12) and (5.6). �

The following theorem provides the rate of convergence of our Galerkin scheme (4.2).

Theorem 5.4 Let Hh := HB
h × HB

0,h × HD
h , Qh,0 := QB

h,0 × QD
h × QΣ

h̃
and Hφ

h, be the subspaces

specified in the Section 4. Let (~u, ~p, φ) := ((uB,ωB,uD), (pB, pD, λ), φ) ∈ H × Q0 × H1
Γ0

(Ω) and

(~uh, ~ph, φh) := ((uB
h ,ω

B
h ,u

D
h ), (pB

h , p
D
h , λh̃), φh) ∈ Hh×Q0,h×Hφ

h be the solutions of the continuous and
discrete problems (3.6) and (4.2), respectively. Assume that u? ∈ Hl(Ω?),divu? ∈ Hl(Ω?), p? ∈ Hl(Ω?)
where ? ∈ {B,D}, ωB ∈ Hl(curl; ΩB), λ ∈ H1/2+l(Σ) and φ ∈ H1+l

Γ0
(Ω), for some l ∈ (0, 1) (when

n = 2) or l ∈ (1/2, 1) (when n = 3). Then, there exists C > 0 and C̃ > 0 independent of h and h̃ such
that

‖(~u, ~p)− (~uh, ~ph)‖H×Q0 + ‖φ− φh‖1,Ω

≤ Chmin{l,k+1}
{
‖uB‖l,ΩB

+ ‖div (uB)‖l,ΩB
+ ‖ωB‖Hl(curl;ΩB) + ‖uD‖l,ΩD

+ ‖div (uD)‖l,ΩD
+ ‖pB‖l,ΩB

+ ‖pD‖l,ΩD
+ ‖φ‖1+l,Ω

}
+ C̃h̃l‖λ‖l+1/2,Σ .

Proof. It follows directly from the Céa estimate (5.13) and the approximation properties of the discrete
subspace specified in the Section 4 (cf. Ref. [4, Section 4.2.2] and [9]). �

6 Numerical examples

Test 1. We begin this section with an accuracy test, where we construct smooth solutions satisfying
(2.1)-(2.3) on Ω = (0, 2)× (0, 1). The Brinkman and Darcy domains are on the left and right parts of
Ω, respectively, and are separated by the interface Σ defined by the parameterisation

(0, 1) 3 t 7→ (x1, x2) = (1 + 0.15[1/2− |t− 1/2|] cos(6πt− 3π), t),
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Figure 6.1: Test 1. Domain configuration for the Brinkman-Darcy problem, where ∂Ω = ΓB ∪ΓD (left
panel), and for the transport equation where ∂Ω = ΓN ∪ Γ0 (right). The unit normal vector on the
interface points towards ΩB.

on which the normal vector is considered pointing to ΩB. The proposed exact solutions are given by

u =

(
sin(πx1) cos(πx2)
− cos(πx1) sin(πx2)

)
, uB = u|ΩB

, uD = u|ΩD
, ωB = 2π sin(πx1) sin(πx2),

p = (x1 − 1/2)(x2 − 1/2), pB = p|ΩB
, pD = p|ΩD

, φ =
5

2
x2

1(2− x1)x2(1− x2),

from which the necessary forcing, boundary, and source terms are generated. The concentration-
dependent functions are ϑ(φ) = φ+ (1− cφ)2, and fbk(φ) = cφ(1− cφ)2, and the remaining physical
parameters assume the values c = 1/2, fB = (1, 0)2, fD = (0.1, 0)t, KB = 0.05, KD = 0.01, β =
0.4χ|ΩB

+ 0.1χ|ΩD
, k = (0,−1)t. We recall that two different splittings of the domain boundary

∂Ω are assumed. First, the distribution of the Brinkman and Darcy boundaries follows the sketch
presented in the left panel of Figure 6.1. According to (2.4), on ΓB we set slip velocities uB · n = 0
and zero tangential vorticity (in this 2D case, it translates to fix the scalar vorticity to zero), but
on Σ we prescribe the vorticity by its exact solution. Normal Darcy velocities are fixed on ΓD:
uD · n = 0. Secondly, by construction, the concentration normal flux is zero on the left side of ΓB,
which constitutes the Neumann boundary ΓN. The remainder of ∂Ω conforms the Dirichlet boundary
Γ0, where we impose φ = 0 (see Figure 6.1, right). Both domains are rendered with a gap on the
interface, for visualisation purposes.

As usual, to determine the convergence of the method we generate a sequence of successively refined
triangulations of Ω (and conforming partitions for ΩB, ΩD and Σ) and proceed to compute errors and
decay rates according to

e(uB) = ‖uB − uBh‖div,ΩB
, e(ωB) = ‖ωB − ωBh‖curl,ΩB

, e(uD) = ‖uD − uDh‖div,ΩD
,

e(pB) = ‖pB − pBh‖0,ΩB
, e(pD) = ‖pD − pDh‖0,ΩD

, e(λ) = ‖λ− λh‖0,Σ‖λ− λh‖1,Σ,
e(φ) = ‖φ− φh‖1,Ω, r(·) = −2 log(e(·)/ê(·))[log(N/N̂)]−1,

where e and ê denote errors produced on two consecutive meshes associated to schemes with N and
N̂ D.o.f. (degrees of freedom), respectively. The results are collected in Figure 6.2, where we plot
the decaying of individual errors with the meshsize, for a lowest-order scheme. All panels indicate an
O(h) convergence, as anticipated by Theorem 5.4. We point out that an average of 7 Picard steps
(accounting for the coupling between the Brinkman-Darcy and transport problems) are required to
reach the stopping tolerance of 1e− 6, whereas an average of 3 Newton steps are sufficient to achieve
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Figure 6.2: Test 1. Convergence history for the lowest-order approximation of the coupled Brinkman-
Darcy-Transport problem.

convergence of the inner linearisation step (with a tolerance of 1e − 7) for the nonlinear advection-
diffusion problem. We also portray the approximate solutions obtained with the proposed method on
a fine mesh (see Figure 6.3).

An important assumption in the solvability analysis was an additional regularity for the discrete
velocity, as stated in Hypothesis 4.1. Even if proving this assumption can be very difficult, we can at
least provide numerical evidence of its validity for the finite element spaces we are employing here.
For instance, we can observe that taking the regularity index as s = 2.5, and obtaining approximate
solutions in the same refinement levels as mentioned above (whose error history is depicted in Figure
6.2), the values reported in Table 6.1 are produced. The ratios between the Ls−norm of the discrete
velocity and the H1−norm of the concentration are tabulated in the last column and they suggest that
the constant C̃s is indeed uniform.

D.o.f. h e(uB) r(uB) e(uD) r(uD) e(φ) r(φ) ‖S(φh)‖Ls(Ω) ‖φh‖1,Ω C̃s
111 0.723 0.5621 – 0.371 – 0.823 – 0.644 1.791 0.521
237 0.479 0.269 1.786 0.267 0.791 0.622 0.678 0.920 1.825 0.570
664 0.285 0.160 0.997 0.155 1.045 0.407 0.819 1.022 1.890 0.569
1920 0.170 0.082 1.308 0.086 1.149 0.264 0.837 0.903 1.894 0.568
6625 0.099 0.043 1.160 0.044 1.117 0.161 0.975 1.082 1.907 0.567
24907 0.048 0.022 0.931 0.022 0.950 0.083 1.011 1.080 1.911 0.565
97907 0.023 0.011 0.956 0.011 0.962 0.022 1.041 1.079 1.911 0.564
382115 0.014 0.006 1.066 0.005 1.161 0.012 1.008 1.078 1.911 0.564

Table 6.1: Test 1. Illustration of Hypothesis 4.1 for the lowest-order scheme, and using s = 2.5.

Test 2. Our second example addresses the applicability of the formulation and the associated nu-
merical scheme in the simulation of groundwater flow, where we have followed the setup adopted in
Test 4.1 of [7]. The computational domain now corresponds to the rectangle Ω = (0, 12) × (0, 6) (in
square meters), where the Brinkman domain (with a maximum height of 4 m) is on the top and the
Darcy subdomain (with a maximum height of 2.25 m) on the bottom. The subdomains are separated
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Figure 6.3: Test 1. Approximate velocity components, vorticity, pressure, and concentration, rendered
on both Brinkman and Darcy domains.

by a step-shaped polygonal interface (see a sketch in the top-left panel of Figure 6.4, where we also
depict sample triangular meshes). We consider µ = 1 Pa·s, β = 0.75, and the permeabilities are again
isotropic and assume the values KB = KD = 1e− 6 m2. Normal velocities are imposed everywhere on
∂Ω. On the top segment of ΓB and in all ΓD these are simply zero, whereas on the left and right sides
of the Brinkman domain we prescribe the parabolic profiles

uB · n =
1

4
(y − 4)(y − 8), and uB · n =

3

16
(y − 4)(8− y),

respectively, as well as the compatible vorticity ωB = 1
2(y − 6) and ωB = 3

8(y − 6), respectively.
Regarding the transport equation, on the left side of the Brinkman domain (denoted by Γ0) we
impose a maximum solute concentration φ = φmax = 0.99, whereas zero total flux is considered on
ΓN = ∂Ω \ Γ0. The nonlinear diffusion assumes the form ϑ(φ) = exp(−1

4φ) and the flux is simply
linear fbk(φ) = 0.001φ. We take k = (0,−1)t and assume that an external source modulates the
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Figure 6.4: Test 2. Sample mesh and domain configuration (top left), and approximate velocity,
pressure, and solute concentration produced with a second-order scheme.

Brinkman flow (for instance due to rain, to wind, or to the leakage of contaminants through the
top portion of the boundary, that represents the surface) so we use fB = (0.1, 0.001)t. We employ
a second-order scheme resulting on a linear system of 1,517,352 unknowns for the Brinkman-Darcy
subproblem and 327,707 D.o.f. for the transport equation. Seven fixed-point iterations were needed
to reach the desired tolerance and only two Newton steps were required for the convergence of the
inner linearisation (probably due to the fact that the nonlinear diffusion is in this case milder than
that used in Tests 1 and 3). The results are collected in Figure 6.4, which shows flow patterns as well
as the solute entering the domain and starting to propagate towards the right.

Test 3. We finalise this section presenting a 3D computation that illustrates the use of our method
in the numerical simulation of filtering devices. Flow-rate conditions are taken similarly to those
employed in [12, 5], namely a cylindrical geometry aligned with the y−axis, with varying cross section;
where the Brinkman domain is the region with largest radius (r = 4 cm and length L = 6 cm), and
the Darcy domain constitutes the two other sections of the device (of radii r = 2 cm and r = 3 cm
and lengths of L = 3 cm and L = 5.1 cm, respectively). We assume that there is an inlet boundary
belonging to ΓB and an outlet disk at the end of the cylinder, on ΓD. The flow is driven basically
by injection of fluid. A Poiseuille Brinkman velocity is prescribed at the inlet, as well a compatible
vorticity

uB · n = 2
(
1− 1

4
(x2 + z2)

)
, and ωB × n =

(
−2x

(
1− 1

4
(x2 + z2)

)
, 0,−2x

(
1− 1

4
(x2 + z2)

))t

,

25



whereas on the outlet boundary we impose a constant Darcy pressure pD = p0 = 0.1. On the remainder
of the domain boundary we set slip conditions for velocity (and zero tangential vorticity on the curved
Brinkman boundary). For the transport equation we impose a constant concentration on the inlet
and assume zero total flux everywhere else, therefore the inlet (the disc of radius 4 m and centred at
the origin) is the boundary Γ0 and the remainder of the boundary is ΓN. The interface conditions
correspond to the ones stated in (2.4), and a depiction of the domain and boundary setup is presented
in the first panel of Figure 6.5. The constitutive equations specifying the nonlinear diffusion ϑ and
the unidirectional flux fbk are simply taken as in Test 1 above, with c = 0.4. Other model parameters
are chosen as

µ = 0.01, KB = 0.01, KD = 0.00001, β =

{
1
2 in ΩB,

10 in ΩD

, fB = (0, cos(xyz) sin(πx) cos(πz), 0)t,

fD = (exp(−xy) + x exp(−x2), cos(πy)− y exp(−y2), xyz − z exp(−z2))t, k = (0, 1, 0)t,

where we note that the hydraulic conductivity is discontinuous across the interface. The domain has
been discretised with an unstructured tetrahedral mesh of 74,108 elements, and we have employed a
first-order scheme. The approximate solutions are shown in the remaining panels of Figure 6.5. The
first observation from the velocity streamlines is that the non-symmetric external forces fB and fD

rapidly disrupt the Poiseuille profile as the flow moves away from the inlet. We can also see that the
Lagrange multiplier enforces correctly the continuity of pressure across the interface but that there
exists a very large Brinkman pressure and a large pressure drop is then seen in the Darcy domain.
Also, the tangential components of vorticity slowly decrease when approaching the the interface. As
the flow patterns stabilise due to the interfacial conditions, the propagation of concentration also
becomes very uniform.

For this problem, the convergence of the Picard algorithm occurred after nine iterations and the
inner Newton iterations for the transport problem converged after four steps.

Acknowledgement. We are grateful to Javier Almonacid (SFU) for stimulating discussions on
interface fluid problems, and for providing an initial implementation of Test 2.
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