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The continuous unit operation of flotation is extensively used in mineral processing,

wastewater treatment, and other applications for selectively separating hydrophobic par-
ticles (or droplets) from hydrophilic ones, where both are suspended in a viscous fluid.
Within a flotation column, the hydrophobic particles are attached to gas bubbles that are

injected and float as aggregates forming a foam or froth at the top that is skimmed. The
hydrophilic particles sediment and are discharged at the bottom. The hydrodynamics of

a flotation column is described in simplified form by studying three phases, namely the

fluid, the aggregates, and solid particles, in one space dimension. The relative movements
between the phases are given by constitutive drift flux functions. The resulting model
is a system of two scalar conservation laws with a multiply discontinuous flux for the

aggregates and solids volume fractions as functions of height and time. The model is of
triangular nature since one equation can be solved independently of the other. Based

on the theory of conservation laws with discontinuous flux, steady-state solutions that
satisfy all jump and entropy conditions are constructed. For the existence of the indus-
trially relevant steady states, conditions on feed flows and concentrations are established

and mapped as “operating charts”. A numerical method that exploits the triangular
structure, is formulated on a pair of staggered grids, and is employed for the simulation

of the fill-up and transitions between steady states of the flotation column.

Keywords: Kinematic flow models, flotation, sedimentation, conservation law, discontin-
uous flux, non-strictly hyperbolic triangular system.
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1. Introduction

1.1. Scope

The flotation process, also known as froth flotation, is a process for selectively
separating hydrophobic materials (that are repelled by water) from hydrophilic
(that would be attracted to water), where both are supposed to be present as a
disperse phase suspended in a viscous fluid. A typical application is the recovery
of valuable minerals, such as copper- and lead-bearing minerals, from low-grade
ores. This physico-chemical separation process functions roughly as follows: gas is
introduced close to the bottom of a column (see Fig. 1), and the bubbles generated
rise upward throughout the pulp that contains the solid particles, which can be
divided in two main groups. The hydrophobic particles (minerals or ores that should
be recovered) attach to the bubbles that float to the top of the column, forming
foam or froth carrying the valuable material (the concentrate in mining) that is
removed usually through a launder. On the other hand, the hydrophilic particles,
also known as slimes or gangue, do not attach to bubbles, but remain and settle to
the bottom of the vessel, unless they are trapped in the bulk upflow. Close to the
top, additional wash water can be injected to assist with the rejection of entrained
impurities46 and to increase the froth stability and improve recovery.27,38

Partly based on Refs. 16, 28, 43, we presented in Ref. 8 a one-dimensional two-
phase model describing only the movement of gas bubbles and fluid. The flotation
column in Ref. 8 has a separate gas inlet near the bottom, which is commonly used
in mineral processing. The hydrophobic particles then attach to the gas bubbles
inside the column. Other devices have a common feed inlet for both slurry and gas
bubbles, so that the aggregation process, the attachment of hydrophobic particles
to bubbles, mostly occurs in the inlet pipe. Here, we model such a column (see
Fig. 1) and assume that the bubbles are fully loaded with hydrophobic particles as
the mixture enters the column, so that no aggregation occurs inside the column.

The two-phase model in Ref. 8 is a nonlinear scalar conservation law with a
multiply discontinuous flux function because of the feed sources of gas, feed slurry,
and wash water, and the lower and upper outlets of tailings and concentrate, re-
spectively. It is the purpose of this contribution to extend that formulation and
advance a new spatially one-dimensional three-phase model that also includes the
settling of solid particles within the flotation column. The three-phase flow of solids,
gas (bubbles or aggregates) and fluid is modelled in one dimension. The governing
partial di↵erential equations (PDEs) can be written as the system
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(1.1)

where the independent variables are time t > 0 and height z 2 R. The unknowns are
the volume fraction of bubbles � 2 [0, 1) and ' = �

s

/(1��), where �
s

2 [0, 1) is the
volume fraction of solids. Both unknowns are functions of height z and time t. The
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Fig. 1. Left: Schematic of a flotation column with constant cross-sectional area,27 including heights
of feed inlets z

F

and z
W

, the underflow level z
U

and the e✏uent level z
E

. Middle: A schematic of
a column with feed inlet downcomer; cf. the Reflux Flotation Cell by Dickinson and Galvin.16,28

Right: Corresponding conceptual model of the flotation column indicating the volumetric flows of
the feed Q

F

, wash water Q
W

, underflow Q
U

and e✏uent Q
E

, and the spatially piecewise constant
bulk velocity q = q(z, t). The one-dimensional model with three zones inside the column are

complemented with underflow and e✏uent zones in z < z
U

and z > z
E

, respectively.

flux functions J(�, z, t) and F (',�, z, t) contain nonlinear constitutive functions of �
and ' that describe the rise of bubbles and settling of solids. The fluxes J and F

are discontinuous in z at several positions associated with singular feed sources,
the underflow and the e✏uent, and depend on t via the possibly time varying in-
and outflows. The possibly varying cross-sectional area is denoted by A(z). The
right-hand side of the equation contains the Dirac measure �zF(·) := �(·� z

F

) and
given positive source functions.

The novelty of this contribution, besides the derivation of (1.1) that will be made
explicit in later parts of the paper, is firstly, an analysis of possible steady states,
that is, stationary solutions, which have layers of di↵erent concentrations of bub-
bles (foam) and particles separated by discontinuities in concentration. Since the
system (1.1) is triangular, our approach is to solve each equation locally as a scalar
conservation law with discontinuous flux and use the entropy condition of Ref. 17,
which gives the vanishing viscosity entropy solution.1 The resulting steady states
represent the stationary modes of operation of a flotation column without chang-
ing control parameters. Roughly speaking, our main result is a characterization of
steady states of (1.1), along with restrictions on feed flows and other parameters
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for their existence. Here we single out those steady states that are relevant for op-
eration in real applications and visualize in so-called operating charts the necessary
constraints for the control of the volumetric flows.

Secondly, we advance a numerical di↵erence scheme for (1.1) that treats the
equations consecutively, and where the basic idea is to place discontinuities of co-
e�cients inside cells so that the usual Godunov method can be applied and the
scheme, which is based on a pair of staggered grids (one for each unknown), becomes
simple. The scheme satisfies an invariant region principle (producing approximate
volume fractions between zero and one). Two examples show its use for simulating
flotation column operations, such as transitions between steady states.

1.2. Related work

The two-phase flow of rising bubbles in a liquid has often been modelled with
the drift-flux theory by Wallis;47 see, e.g., Refs 6, 15, 16, 28, 29, 43, 46. The theory
considers the relationships between the nonlinear flux of bubbles relative to the
fluid (denoted here the batch drift flux) and the applied bulk flows that arise due to
the inlets and outlets of the column. The drift-flux theory means a rigorous way of
investigating the hydrodynamics in one dimension; however, it is applicable under
steady-state conditions only. In this way Stevenson et al.42 analysed steady-state
conditions for settling gangue in foam.

It is well known that the batch drift flux is a particular nonlinear function of the
local volume fraction of bubbles. This form has been verified experimentally. The
function is unimodal with one inflection point to the right of the maximum. The
same qualitative shape has the well-known nonlinear batch settling flux of small
particles that settle in a fluid.35 As pointed out by Stevenson et al.,43 the flotation
column shown in Figure 1 with one inlet of gas and fluid (or suspension) works
in principle as an inverted clarifier-thickener used for continuous sedimentation.
The corresponding theory for sedimentation for particles in a liquid started with
Kynch35 and is often denoted the solids-flux theory.19,20,23,24,36

PDE models for this type of processes have inherent di�culties with non-
uniqueness for two reasons. One is the nonlinear batch-flux functions: for a given
flux, there may be more than one volume fraction possible. The other reason is
caused by the fact that the inlet flux should be split into two. Nature chooses a
single solution; however, the non-uniqueness is a known problem for PDE models of
sedimentation that are derived from fundamental principles, like the conservation
of mass and linear momentum.3,14 Conservation laws with discontinuous flux are
here a key ingredient for which specific entropy conditions1,5, 17,21,30 and numerical
schemes13 have been developed to get the physically correct solutions. In particu-
lar, Karlsen and Towers33 proved that the scalar version of the scheme introduced
herein produces the vanishing viscosity entropy solutions. The theoretical results
have motivated further analysis of the continuous sedimentation process with ap-
plications to control in mineral processing and wastewater treatment.10,11,18,19,22
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Related areas of application of similar PDE models, where flux discontinuities also
appear, include vehicular tra�c and crowd dynamics; see Refs. 4, 12, 45 and refer-
ences therein. Conservation laws with discontinuous flux also appear in models of
supply chains or factories with finite work in progress bu↵er,2 and geologic carbon
dioxide migration and storage.7

To the authors’ knowledge, the process of flotation (mathematically analogous
to that of continuous sedimentation) has not yet been described by PDEs that
would be based on these theories developed since the 1990s. Bascur3 noticed that
his two-phase framework could be used for both solid-liquid and gas-liquid separa-
tion processes. Several modelling aspects of the processes in a flotation column are
given by Cruz,15 who also reviewed earlier works. Tian et al.44 set up a hyperbolic
system that includes the attachment process; however, they assume that the flux
functions are linear. While the vast majority of references to flotation processes
are related to mineral processing, we mention that flotation processes are also used
for removing other small particles, oil droplets, printing ink and organic matter in
diverse processes such as wastewater treatment.25,26,40,41

1.3. Outline of the paper

The remainder if this work is organized as follows. In Section 2 we introduce the
mathematical model. The flotation column is modelled in one spatial dimension, i.e.
we assume that all variables depend only on height z and time t. The corresponding
volumetric flows and the cross-sectional area are specified in Section 2.1. The fluid,
solid (particle), and aggregate (bubble) phases are described in Section 2.2, and
the corresponding balance equations are introduced in Section 2.3. To convert these
equations into a solvable model, we utilize in Section 2.4 well-known constitutive
assumptions for the flux of bubbles rising in a flotation column relative to the
suspension (drift-flux theory) and the settling of particles in a liquid (solids-flux
theory). In particular, we arrive at algebraic expressions for the total flux functions J
and F arising in in (1.1). These functions involve material specific constitutive
functions that are introduced in Section 2.5. The properties of the resulting zone
flux functions (for the aggregates and the particles), corresponding to the algebraic
form of J and F in each zone, are discussed in Section 2.6. In Section 2.7 we
comment on properties of (1.1) related to hyperbolicity and entropy solutions arising
from the assumptions introduced so far. Section 2 concludes with Section 2.8 that
outlines construction of stationary (steady-state) solutions of a conservation law
with discontinuous flux, in particular the entropy conditions.

Sections 3, 4 and 5 describe the construction of steady-state solutions of (1.1).
Section 3 deals with with steady states for the aggregate phase, in part following
Ref. 8 where we classified all steady-solutions for a model that only takes into ac-
count gas bubbles and fluid, and where the flotation column has separate inlets of
gas and feed slurry. The steady states for � are made possible through the jump
conditions (called couplings herein) across z

U

and z
E

, z
F

, and z
W

are analysed in
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Sections 3.1, 3.2 and 3.3, respectively. The information is summarized in Section 3.4.
We denote by a desired steady-state solution a steady-state solution for which no
aggregates leave through the bottom and there is a layer of froth at the top of
the column. (This is desired for stationary continuous operation in most applica-
tions.) Such steady states (for �) are singled out in Section 3.5. The result are four
qualitatively di↵erent desired steady states for �. In Section 4, we identify the cor-
responding steady states for the solid phase. The couplings across z

U

and z
E

, z
W

,
and z

F

are analysed in Sections 4.1, 4.2 and 4.3, respectively. The steady states for
solids are summarized in Section 4.4. In Section 5 we analyse the existence of desired
steady states with and without wash water. The corresponding desired steady-state
solutions for the solid phase are constructed in Sections 5.2, 5.3 and 5.4.

The necessary conditions for the di↵erent steady states presented in Sections 3,
4 and 5 are nonlinear inequalities and equalities involving the volumetric flows Q

U

,
Q

F

, Q
W

, and the incoming volume fractions of aggregates �
F

and solids �
s,F. In

Section 6, we assume that the feed volume fractions �
F

and �
s,F are given and

present restrictions on the control variables Q
F

, Q
U

and Q
W

for each qualitatively
possible desired steady state. Then in many cases these inequalities can be visualized
as two-dimensional regions in the (Q

U

, Q
F

)-plane which we call operating charts;
these plots provide information on how these parameters can be chosen to attain a
determined steady state. These charts are generated in Sections 6.1 to 6.10 for ten
di↵erent combinations of desired steady states of the aggregate and solids phases.

Finally, we introduce in Section 7 a numerical method to solve (1.1), and thereby
to simulate the flotation process. The method is introduced in Section 7.1, which
also includes a statement of the invariant region property of the method (numerical
values of concentrations assume physically revelant values between zero and one).
Two numerical examples of fillup of a flotation columns and transitions between
steady states are presented in Section 7.2. Conclusions are collected in Section 8.

2. Mathematical model

2.1. Volumetric flows and cross-sectional area

The unit is fed with wash water at level z = z
W

and a mixture of aggregates and feed
slurry at z = z

F

; see Fig. 1, where z
U

< z
F

< z
W

< z
E

divide the real line into the
zones inside the column and the underflow and e✏uent zones. The corresponding
volumetric feed flows of wash water, Q

W

� 0, and of feed slurry, Q
F

> 0, are given
functions of time, as is the volumetric underflow rate Q

U

� 0. The resulting e✏uent
volumetric overflow Q

E

= Q
W

+Q
F

�Q
U

is assumed to be nonnegative so that the
mixture is conserved and the vessel is always completely filled with mixture.

To model a feed inlet pipe located in the upper part and centre of a cylindrical
column, the cross-sectional area is assumed to have a discontinuity at the feed inlet:

A(z) =

(
A

E

for z � z
F

,

A
U

for z < z
F

,
where A

E

 A
U

. (2.1)
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In our examples we will use the measures corresponding to the flotation column
that is part of the Reflux Flotation Cell used by Dickinson and Galvin.16,28 The
flotation column is 1m high with a cross-sectional area of A

U

= 83.65 cm2. Feed
slurry and gas bubbles are pumped through a downcomer of external diameter
3.81 cm, which forms an annulus around a 2.54 cm-diameter tube that incorporates
a porous sparger for bubble creation. Hence, the e↵ective horizontal cross-sectional
area above the feed inlet is A

E

= 72.25 cm2. The outlet of the downcomer is po-
sitioned 66.7 cm below the top of the vessel, hence there is a vertical distance of
33.3 cm between the downcomer outlet and the bottom of the flotation column.

2.2. Three phases and suspension

We assume that the attachment of solid hydrophobic particles to bubbles (aggrega-
tion) occurs only in the inlet pipe and is completed before the mixture is fed into
the column. For the mathematical modelling inside the column, we introduce three
phases: the fluid phase, the solid phase, which models solid particles that are sus-
pended in the fluid, and the aggregate phase, which models gas bubbles fully loaded
with hydrophobic particles. Variables are correspondingly indexed by f, s and a. By
suspension we mean the union of the solid and fluid phases. We let �i = �i(z, t)
denote the volume fraction of phase i 2 {a, f, s} and assume that the three phases
fill out the flotation column; �

a

+�
f

+�
s

⌘ 1. When the final form of the governing
equation has been derived we will use the simpler notation � := �

a

; cf. (1.1).
We assume constant phase densities ⇢

a

< ⇢
f

< ⇢
s

, consistently with the as-
sumption that bubbles rise (float) and particles settle (sink). This simplification
can be discussed, since the hydrophobic and hydrophilic particles often have dif-
ferent densities. Introducing two di↵erent solid phases would lead to the additional
modelling problem of sedimentation of a binary suspension, which we postpone for
future analysis. Modelling only one solid phase can nevertheless be of interest. If
the volumetric flows of gas and slurry are adjusted carefully so that all hydrophobic
particles are attached to bubbles, then there are only hydrophilic particles (gangue)
left in the suspension. This is in fact the purpose of the process. It is then of interest
to model the sedimentation of the gangue to predict under what conditions this is
removed through the tailings underflow and not caught by the upstream.

For the constitutive assumptions to be presented later, the aggregate bubbles
and the solid particles are assumed to be monosized. We also suppose that gas
bubbles do not coalesce or break.

2.3. Conservation laws of the three phases

Conservation of mass for each phase implies the system of balance equations

@

@t

�
A(z)�

a

�
+

@

@z

�
A(z)�

a

v
a

�
= Q

F

�
a,F�zF , (2.2)

@

@t

�
A(z)�

s

�
+

@

@z

�
A(z)�

s

v
s

�
= Q

F

�
s,F�zF , (2.3)
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@

@t

�
A(z)�

f

�
+

@

@z

�
A(z)�

f

v
f

�
= Q

F

�
f,F�zF +Q

W

�
f,W⇢

f

�zW , (2.4)

where the right-hand sides contain Dirac functions, volumetric flows and the incom-
ing volume fractions of aggregates �

a,F, solids �s,F and fluid �
f,W ⌘ 1. At the feed

inlet we assume that �
a,F + �

s,F + �
f,F ⌘ 1 with 0 < �

a,F,�s,F,�f,F < 1.
We define the volume-average velocity, or bulk velocity, of the mixture by

q := �
a

v
a

+ �
s

v
s

+ �
f

v
f

(2.5)

and replace (2.4) by the sum of (2.2)–(2.4), which is

@

@z

�
A(z)q

�
= Q

F

�zF +Q
W

�zW . (2.6)

Consequently, in the flotation column q varies with height z because of the two
inlet flows and the two values of the cross-sectional area. In view of (2.1) and since
A(z)q(z, t) = �Q

U

(t) for z < z
F

, we can integrate (2.6) to obtain

q(z, t) =

8
>><

>>:

q
1

:= �Q
U

/A
U

for z < z
F

,

q
2

:= (�Q
U

+Q
F

)/A
E

for z
F

 z < z
W

,

q
3

:= (�Q
U

+Q
F

+Q
W

)/A
E

for z � z
W

.

Hence, this identity replaces (2.4), and we will next rewrite the fluxes in the re-
maining PDEs (2.2) and (2.3) in terms of q and two constitutive functions.

2.4. Convective fluxes expressed in terms of constitutive functions

The drift-flux and the solids-flux theories are given by a batch-drift-flux function
j
b

(�
a

) and a batch-settling-flux function f
b

('), respectively. Here ' is the volume
fraction of solids within the suspension:

' :=
�
s

�
s

+ �
f

=
�
s

1� �
a

. (2.7)

We denote the volume-average velocity, or bulk velocity, of the suspension by

q
sus

:=
�
s

v
s

+ �
f

v
f

�
s

+ �
f

= 'v
s

+
1� �

a

� �
s

1� �
a

v
f

= 'v
s

+ (1� ')v
f

.

Then we define the aggregate-suspension relative velocity

u
asus

:= v
a

� q
sus

= v
a

� 'v
s

� (1� ')v
f

(2.8)

and the solid-fluid relative velocity

u
sf

:= v
s

� v
f

. (2.9)

We will express the two PDEs (2.2) and (2.3) in terms of the velocities q, u
asus

and u
sf

, and the unknowns �
a

and '. Using (2.5), (2.7), (2.8) and (2.9), we obtain
the following expressions for the phase velocities v

a

and v
s

in terms of the bulk
velocity q and the relative velocities u

asus

and u
sf

:

v
a

= q + (1� �
a

)u
asus

, v
s

= q + (1� ')u
sf

� �
a

u
asus

.
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We now define the relative velocities in terms of the constitutive functions by

�
a

(1� �
a

)u
asus

=: j
b

(�
a

), (2.10)

'(1� ')u
sf

=: �f
b

('), (2.11)

where f
b

� in the downwards direction of sedimentation. Then we get the following
expressions for the total fluxes of (2.2) and (2.3):

�
a

v
a

= �
a

q + j
b

(�
a

) =: J(�
a

, z, t),

�
s

v
s

= (1� �
a

)'q � (1� �
a

)f
b

(')� 'j
b

(�
a

) =: �F (',�
a

, z, t),

where the minus sign is to have F positive in the direction of sedimentation. Insert-
ing these expressions into (2.2) and (2.3) we get the governing PDE system (1.1)
with the shorter notation � := �

a

, which will be used in the rest of this paper.
In the under- and overflow zones, all three phases are assumed to have the same

velocity, i.e., u
asus

and u
sf

are zero, which means that we set j
b

:= 0 and f
b

:= 0 in
those zones. The total flux functions in (1.1) are thus given by

J(�, z, t) =

8
>>>>>>><

>>>>>>>:

j
E

(�, t) := q
3

(t)� for z � z
E

,

j
3

(�, t) := q
3

(t)�+ j
b

(�) for z
W

 z < z
E

,

j
2

(�, t) := q
2

(t)�+ j
b

(�) for z
F

 z < z
W

,

j
1

(�, t) := q
1

(t)�+ j
b

(�) for z
U

 z < z
F

,

j
U

(�, t) := q
1

(t)� for z < z
U

,

F (',�, z, t) =

8
>>>>>>><

>>>>>>>:

f
E

(',�, t) := �(1� �)q
3

(t)' for z � z
E

,

f
3

(',�, t) for z
W

 z < z
E

,

f
2

(',�, t) for z
F

 z < z
W

,

f
1

(',�, t) for z
U

 z < z
F

,

f
U

(',�, t) := �(1� �)q
1

(t)' for z < z
U

,

where

fk(',�, t) := (1� �)f
b

(') +
�
j
b

(�)� (1� �)qk(t)
�
'

=(1� �)f
b

(') +
�
jk(�, t)� qk(t)

�
', k = 1, 2, 3. (2.12)

2.5. Constitutive flux functions for rising aggregates and settling

particles

Inside the flotation column, the relative velocities of rising aggregate bubbles relative
to the suspension, u

asus

, and settling particles relative to the fluid, u
sf

(negative
according to the upwards-pointing z-axis), are expressed by constitutive functions,
namely the drift-flux function j

b

and the settling-flux function f
b

(see (2.10) and
(2.11)). Both functions are assumed to depend on one variable, to be non-negative,
continuously di↵erentiable, and unimodal, to satisfy j

b

(0) = j
b

(1) = 0 and f
b

(0) =
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Fig. 2. Properties of flux functions and specific volume fractions. Left: Drift-flux function j
b

and
flux curves for zones 1 and 3. Right: The local minimum �

M

and appurtenant �
m

for a zone flux
j with positive q, and flux curves with zero derivatives at �

max

= 1 and �
infl

. In these and other

plots, we have used the expression (2.15) with n
asus

= 3.2 in the drift-flux function j
b

. The unit
on the vertical axis is cm/s.

f
b

(1) = 0, and to have precisely one inflection point, �
infl

and '
infl

, respectively, to
the right of the respective maximum point; see Fig. 2.

Moreover, we assume that

j
b

(�) = �(1� �)u
asus

(�) = �v
term,aVasus

(�), (2.13)

f
b

(') = �'(1� ')u
sf

(') = 'v
term,sVsf

('), (2.14)

where v
term,a and v

term,s are the terminal velocities of a single aggregate and a
single solid particle, respectively, in an unbounded fluid. There exists a number
of methods to calculate the terminal velocities. Wallis’ generalized correlation48

is recommended and used in this work; see Ref. 43 (Appendix A) for details. This
correlation involves additional quantities such as equilibrium surface tension and the
viscosity of the fluid. Its discussion is beyond our focus; here it su�ces to assume
that v

term,a > 0 and v
term,s > 0 are set constants for a given material.

Furthermore, V
asus

(�) and V
sf

(') are dimensionless hindered-bubbling and
hindered-settling functions satisfying V

asus

(0) = V
sf

(0) = 1. They are often given
by the Richardson-Zaki expression39

V
asus

(�) = (1� �)nasus , n
asus

� 0, � 2 [0,�
max

],

V
sf

(') = (1� ')nsf , n
sf

� 1, ' 2 [0,'
max

].
(2.15)

The maximum possible volume fractions are �
max

= '
max

= 1. Realistic values
of n

asus

range from 2 to 3.2 (cf., e.g., Refs 16, 28, 38, 46). We use n
asus

= 3.2 and
v
term,a = 2.7 cm/s for all plots and simulations in the present article. For the batch-
settling flux f

b

, we use n
sf

= 2.5 (cf., e.g., Ref. 16) and v
term,s = 0.5 cm/s.
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2.6. Properties of the zone flux functions

The properties of the functions j
b

and f
b

are qualitatively the same. We have
j
b

(0) = j
b

(1) = 0, f
b

(0) = f
b

(1) = 0, and there are inflection points �
infl

2 (0, 1)
(see Fig. 2) and '

infl

2 (0, 1). The zone flux functions (for aggregates or solids) have
also an additional linear term due to the bulk velocity of the zone. We suppress the
t-variable when considering steady states, and let j(�) = j

b

(�) + q� denote a zone
flux function. The case for the settling zone flux function f(·,�) is similar; however,
with an additional dependence on �. As will be seen, any steady-state solution can
have at most two constant states of � in each zone.

The form of j
b

singles out certain distinguished values of the volume fraction
that appear in the steady-state solution (see Fig. 2). For f(·,�), the analogous
distinguished values depend also on the local value of �. This will be clear in the
specific cases of steady states.

The inflection point �
infl

of j is independent of q, but other distinguished values
depend on q. If j(�) has a zero in (0, 1), which can happen only for q < 0, then we
denote it by �

Z

= �
Z

(q). If j(�) < 0 for all � 2 (0, 1], we set �
Z

:= 0. We define

q̄ := �j0
b

(1), ¯̄q := �j0
b

(�
infl

),

which are the bulk velocities such that the derivative of j(�) is zero at �
max

= 1
and �

infl

, respectively. To reduce the number of cases for steady-state solutions, we
assume (as we did in Ref. 8) that

q̄ = �j0
b

(1) = 0,

in accordance with the common Richardson-Zaki function (2.15). For q̄ <

q < ¯̄q, there is a local minimizer �
M

of j(�) on the right of �
infl

. Then
0 = j0(�

M

) = j0
b

(�
M

) + q. To obtain a definition of �
M

for all values of q, we note
that the restriction (j

b

|
(�infl,1))

0 is an increasing function so that we can define

�
M

= �
M

(q) :=

8
>><

>>:

1 if q  q̄,

((j
b

|
(�infl,1)

)0)�1(�q) if q̄ < q < ¯̄q,

�
infl

if q � ¯̄q.

Given �
M

and q � 0, we define �
m

= �
m

(q) as the unique value satisfying

j(�
m

) = j(�
M

), 0  �
m

 �
infl

.

For q < ¯̄q, j(�) assumes a local maximum at �M 2 [0,�
infl

). Let q
neg

:= �j0
b

(0) be
the value below which j is a decreasing function. For q  q

neg

, the local maximum
is �M := 0. For q � ¯̄q, we set �M := �

infl

.
In many instances it is convenient to write out the dependence on q also of the

flux function, i.e. j(�; q). From the definitions above (cf. Ref. 19, Lemma 2) we
obtain the following properties:
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Lemma 2.1. The following properties hold:

�0
M

(q)

8
>><

>>:

= 0 if q < q̄,

< 0 if q̄ < q < ¯̄q,

= 0 if q > ¯̄q,

(�M)0(q)

8
>><

>>:

= 0 if q < q
neg

,

> 0 if q
neg

< q < ¯̄q,

= 0 if q > ¯̄q,

d

dq
j
�
�
M

(q); q
�
= �

M

(q),
d

dq
j
�
�M(q); q

�
= �M(q).

For the specific zone flux functions jk, k = 1, 2, 3, we use the notation �kM =
�
M

(qk), etc.

2.7. A comment on the triangular hyperbolic system and entropy

solutions

The governing equations for the conservative variables � := �
a

and �
s

inside the
column are the following:

@

@t

✓
A(z)

✓
�

�
s

◆◆
+

@

@z

✓
A(z)

✓
J(�, z, t)

�F (�
s

/(1� �),�, z, t))

◆◆
= Q

F

(t)

✓
�
F

(t)
�
s,F(t)

◆
�zF .

(2.16)

Inside a zone where A ⌘ constant and there is no source term, the triangular sys-
tem (2.16) is non-trivial to analyse. It is non-strictly hyperbolic since the di↵erence
of the eigenvalues �� and ��s of the Jacobian, which is

�� � ��s = q + j0
b

(�)�
✓
q � f 0

b

(')� j
b

(�)

1� �

◆
= j0

b

(�) +
j
b

(�)

1� �
+ f 0

b

('),

may have any sign by the following argument. All three terms are positive for small �
and '. For large ', the third term is negative and for the common drift-flux function
j
b

(�) = C�(1� �)n, the sum of the first two terms is (1� �)n�1(1� n�), which is
also negative for � > 1/n. Furthermore, the eigenvector r� = (1, 0)T implies that
r�� ·r� = �j00

b

(�), which may have any sign, so this field is not genuinely nonlinear.
The equation for � of (1.1) does not contain the unknown '. Hence, this equa-

tion can in principle be solved first for a desired time period by the method of
characteristics and the theory for scalar conservation laws with discontinuous flux
function. When � is a known function, the second equation of (1.1) can in princi-
ple be solved for ' by the same scalar theory. The system (1.1) can therefore be
analysed by the theory of a scalar conservation law with discontinuous flux function.

Within each zone, where we assume that the cross-sectional area A is constant,
the governing equation has the form �t+g(�)⇠ = 0 for some flux function g, and we
consider the Cauchy problem for this equation. A piecewise smooth function � =
�(⇠, t) is said to be an entropy solution if � is continuously di↵erentiable everywhere
except along a finite number of curves ⇠ = ⇠

d

(t) 2 C1 of discontinuities, where the
following two conditions are satisfied. At each point (⇠

d

(t), t) of discontinuity, the
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(non-equal) values �± := �(⇠
d

(t)±, t) satisfy the jump condition

⇠0
d

(t) = S(�+,��) :=
g(�+)� g(��)

�+ � �� , (2.17)

and the jump entropy condition

S(u,��) � S(�+,��) for all u between �+ and ��. (2.18)

It is well known that entropy solutions in the sense of Oleinik37 are also the unique
entropy solutions in the sense of Kružkov-type32,34 integral inequalities. On the
other hand, at the spatial discontinuities of each of the equations in (1.1), a gener-
alized entropy is needed.17,21,33 Since we only construct steady-state solutions, we
review that condition next for this purpose, which means less notation than for the
transient case.

2.8. Construction of steady-state solutions for a conservation law

with discontinuous flux

Consider the Riemann problem for a scalar conservation law with discontinuous
flux function:

@�

@t
+

@

@⇠

�
(1�H⇠0)gL(�) +H⇠0gR(�)

�
= 0,

�(⇠, t) =

(
�� if ⇠ < ⇠

0

,

�
+

if ⇠ > ⇠
0

,

where H⇠0(⇠) := H(⇠ � ⇠
0

) is the Heaviside function with a jump at ⇠ = ⇠
0

and �±
are constants. This Cauchy problem should be interpreted in the weak sense and
we seek steady-state solutions. The conservation law across ⇠ = ⇠

0

implies the jump
condition g

L

(��) = g
R

(�
+

) (see (2.17)). This single equation has two unknowns.
The generalized entropy condition17 selects the physically relevant solution in a
neighbourhood of ⇠ = ⇠

0

for a dynamic solution. We define the auxiliary functions

ĝ
R

(�;�
+

) :=

8
><

>:

min
v2[�,�+]

g
R

(v) if �  �
+

,

max
v2[�+,�]

g
R

(v) if � > �
+

,

ǧ
L

(�;��) :=

8
><

>:

max
v2[�,��]

g
L

(v) if �  ��,

min
v2[��,�]

g
L

(v) if � > ��.

Since ǧ
L

(·;��) is non-increasing and ĝ
R

(·;�
+

) is non-decreasing, the intersection
of the graphs of these functions occurs at a unique flux value, if an intersection
exists. For the model of bubble concentrations in a flotation column in Ref. 8,
corresponding to the first equation of (1.1), this is always the case; this statement
can be proven in the same way as for the problem of continuous sedimentation;
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see Ref. 18. This will also follow from the construction of steady states in Section 3.
The analogous situation holds for the constructed steady states for ' in Section 4.

We define the set of �-values of the intersection of ǧ
L

(·;��) and ĝ
R

(·;�
+

) as

�̄ = �̄(�
+

,��) :=
�
� 2 [0, 1] : ĝ

R

(�;�
+

) = ǧ
L

(�;��)
 

and the corresponding unique flux value ⌘(�
+

,��) := ĝ
R

(�̄;�
+

). Since we are here
only interested in stationary solutions, the generalized entropy condition can be
stated as

ĝ
R

(�
+

;�
+

) = ⌘(�
+

,��) = ǧ
L

(��;��), (2.19)

where we note that ĝ
R

(�
+

;�
+

) = g
R

(�
+

) and ǧ
L

(��;��) = g
L

(��).

3. Construction of steady states for the aggregate phase

The steady states of scalar conservation laws with discontinuous flux are stationary
(time-independent) solutions, which are piecewise constant functions of z. We con-
sider first the case when � is constant in each zone. This will be done here for the
first equation of (1.1):

@

@t

�
A(z)�

�
+

@

@z

�
A(z)J(�, z, t)

�
= Q

F

(t)�
F

(t)�zF , (3.1)

which models the situation when gas and feed slurry are fed at the same location
(see Fig. 1), in contrast to the scenario studied in Ref. 8. The constant steady-state
solutions in the five zones are denoted by �

U

, �
1

, �
2

, �
3

and �
E

. We deal with
possible discontinuities within a zone in Section 3.4.

3.1. Couplings at the outflow locations z = zU and z = zE

This case is treated in Ref. 8 and the outcome is that the possible steady-state
values in zones 1 and 3, the underflow zone, and the e✏uent zone are

�
1

2 {0} [ [�
1Z

, 1], �
3

2 [0,�
3m

] [ [�
3M

, 1], (3.2)

�
U

= �A
U

j
1

(�
1

)

Q
U

, �
E

=
A

E

j
3

(�
3

)

Q
E

. (3.3)

3.2. Couplings at z = zF

Near z = z
F

and setting S
F

:= Q
F

�
F

> 0, we obtain from Equation (3.1)

A(z)
@�

@t
+

@

@z

�
(1�HzF)AU

j
1

(�, t) +HzFAE

j
2

(�, t)
�
= S

F

�zF . (3.4)

With the identity ��zF = @(1�HzF)/@z, (3.4) is formally equivalent to

A(z)
@�

@t
+

@

@z

⇣
(1�HzF)

�
A

U

j
1

(�, t) + S
F

�
+HzFAE

j
2

(�, t)
⌘
= 0.
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Thus, the flux functions to consider for the steady-state coupling between �
1

and
�
2

are the following, where we refer to the notation of Section 2.8:

g
L

(�) = A
U

j
1

(�) + S
F

= A
U

j
b

(�)�Q
U

�+ S
F

for z < z
F

, (3.5)

g
R

(�) = A
E

j
2

(�) = A
E

j
b

(�)�Q
U

�+Q
F

� for z > z
F

. (3.6)

Lemma 3.1. The continuous functions g
L

and g
R

given by (3.5) and (3.6) intersect
at the unique volume fraction �int

1,2 2 (0, 1), which is defined by

(A
U

�A
E

)j
b

(�int

1,2) = Q
F

(�int

1,2 � �
F

). (3.7)

Furthermore, g
L

(�M

1

) > g
R

(�M

2

).

Proof. We may write (3.7) as d
1

(�int

1,2) = 0, where d
1

(�) := g
L

(�)� g
R

(�) satisfies
d
1

(0) = S
F

> 0, d(1) = Q
F

(�
F

� 1) < 0 and d00
1

(�) = (A
U

�A
E

)j00
b

(�), which means
that d

1

has the same concave-convex behaviour as j
b

. It follows that there exists a
unique intersection in (0, 1). For any fixed Q

F

, we analyse the di↵erence

d
2

(Q
U

) := g
L

(�M(q
1

); q
1

)� g
R

(�M(q
2

); q
2

), Q
U

� 0,

where q
1

= �Q
U

/A
U

< q
2

= (Q
F

�Q
U

)/A
E

. We have d
2

(0) = S
F

> 0 and

d0
2

(Q
U

) = A
U

d

dq
1

j
1

(�M(q
1

); q
1

)

✓
� 1

A
U

◆
�A

E

d

dq
2

j
2

(�M(q
2

); q
2

)

✓
� 1

A
E

◆

= ��M(q
1

) + �M(q
2

) � 0,

because of Lemma 2.1.

The entropy condition (2.19) is in this case

A
E

|̂
2

(�
2

;�
2

) = ⌘(�
1

,�
2

) = A
U

|̌
1

(�
1

;�
1

) + S
F

(3.8)

and, in particular, the jump condition is

A
E

j
2

(�
2

; ) = A
U

j
1

(�
1

) + S
F

. (FJC)

We have q
1

= �Q
U

/A
U

 0, but q
2

may have any sign. A steady state in zone 1
satisfies �

1

2 {0} [ [�
1Z

, 1]. The corresponding two qualitatively di↵erent ǧ
L

(·;�
1

)
should be coupled with the three possibilities of ĝ

R

(·;�
2

), when �
2

belongs to the
monotonicity intervals of g

R

, which are separated by �M

2

and �
2M

.
For q

2

� 0, the possible couplings are the following, where we purposely have
overlapping boundary cases to minimize the number of necessary conditions:

(a) �
1

= 0, �
2

2 [0,�M

2

]; see Fig. 3(a), which shows that the plateau of ǧ
L

intersects
the leftmost increasing part of ĝ

R

. Then �
2

is uniquely defined by the jump
condition (FJC) and necessary conditions on the volumetric flows are

A
E

j
2

(�M

2

) � S
F

. (FIa)

�
2

 �
1Z

, where �
2

 �M

2

is defined by A
E

j
2

(�
2

) = S
F

. (FIb)
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Fig. 3. Couplings at z
F

for (a), (b) Q
U

= 10 cm3/s, �
F

= 0.7 and Q
F

= 20 cm3/s, with Q
2

=
�Q

U

+Q
F

, (c) Q
U

= 1 cm3/s, �
F

= 0.77 and Q
F

= 40 cm3/s, (d) Q
U

= 90 cm3/s, �
F

= 0.26 and

Q
F

= 120 cm3/s, (e) Q
U

= 10 cm3/s, �
F

= 0.9 and Q
F

= 15 cm3/s, (f) Q
U

= 10 cm3/s, �
F

= 0.9
and Q

F

= 30 cm3/s.

(b) �
1

= 0, �
2

2 [�M

2

,�
2M

]; see Fig. 3(b), which shows that the plateau of ǧ
L

intersects the plateau of ĝ
R

. Necessary conditions are (FIa) and

A
E

j
2

(�
2M

)  S
F

, (FIIa)
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�
2

 �
1Z

, where �
2

2 [�M

2

,�
2M

] is the solution of A
E

j
2

(�
2

) = S
F

. (FIIb)

(c) �
1

= 0, �
2

2 [�
2M

, 1]; see Fig. 3(c), which shows that the plateau of ǧ
L

intersects
the rightmost increasing part of ĝ

R

. A coupling is possible only if condition
(FIIa) and the following are satisfied:

A
E

j
2

(1) � S
F

, Q
F

(1� �
F

) � Q
U

, (FIIIa)

�
2

 �
1Z

, where �
2

� �
2M

is the solution of A
E

j
2

(�
2

) = S
F

. (FIIIb)

We note that (FIIIa) implies q
2

> 0.
(d) �

1

2 [�
1Z

, 1], �
2

2 [0,�M

2

] and the decreasing part of ǧ
L

intersects the increasing
part of ĝ

R

at �
1

= �
2

= �int

1,2; see Fig. 3(d). This occurs precisely when

�
1Z

 �int

1,2  �M

2

. (FIV)

(e) �
1

2 [�
1Z

, 1], �
2

2 [�M

2

,�
2M

] and the decreasing part of ǧ
L

intersects the plateau
of ĝ

R

; see Fig. 3(e). Necessary conditions are (FJC) and

�
2l

 �
1

 �
2r

, (FV)

where �
2l

and �
2r

are the left and right end points of the plateau of ĝ
R

, i.e.,
�
2l

is the leftmost and �
2r

the rightmost (if it exists) solutions of A
E

j
2

(�) = ⌘,
where ⌘ is given by (3.8).

(f) �
1

2 [�
1Z

, 1], �
2

2 [�
2M

, 1] and the decreasing part of ǧ
L

intersects the rightmost
increasing part of ĝ

R

; see Fig. 3(f). The coupling satisfies �
1

= �
2

= �int

1,2.

The case q
2

< 0 (which is equivalent to Q
F

< Q
U

) means that A
E

j
2

(·) is
unimodal and has its global minimum at �

2M

= 1. Then, subcases (c) and (f) may
occur only if �

1

= �
2

= �int

1,2 = 1. Then (3.7) implies that also �
F

= 1, which is
already removed with our assumption that 0 < �

F

< 1. The cases (a), (b), (d) and
(e) are on the other hand qualitatively the same irrespective of the sign of q

2

.

3.3. Couplings at z = zW

Near z = z
W

there is no source term of (3.1). The auxiliary functions involved in
the entropy condition are A

E

|̌
2

(·;�
2

) and A
E

|̂
3

(·;�
3

). The jump condition

j
2

(�
2

) = j
3

(�
3

) (WJC)

is always valid. This case was analysed in Section 3.6 of Ref. 8, from which we
extract the following possible couplings considering also (3.2):

(a) �
2

2 [0,�M

2

], �
3

2 [0,�
3m

]. Then �
2

� �
3

.
(b) �

2

2 [�
2m

,�
2M

], �
3

= �
3M

. The jump condition j
2

(�
2

) = j
3

(�
3M

) is satisfied
by two values of �

2

in the given interval. Both satisfy �
2

 �
3

. A necessary
condition for this coupling is

j
2

(�M

2

) � j
3

(�
3M

). (WI)



March 28, 2019 11:42 WSPC/INSTRUCTION FILE TRIPHASE

18 R. Bürger, S. Diehl and M. C. Mart́ı

Table 1. Each row shows a possible entropy-satisfying steady-state solution for the aggregate

volume fraction when it is constant in each zone and when the conditions stated are satisfied. The
conditions for a coupling between two zones are given and topmost the jump conditions (FJC)

and (WJC). The outlet concentrations are given by the explicit formulas (3.3).

�
1

(FJC) �
2

(WJC) �
3

1 0 (FIa), (FIb) [0,�M

2

] [0,�
3m

]

2 0 (FIa), (FIb) [�
2m

,�M

2

] (WI) �
3M

3 0 (FIa), (FIIa), (FIIb) [�M

2

,�
2M

] (WI) �
3M

4 0 (FIIa), (FIIIa), (FIIIb), q
2

> 0 [�
2M

, 1] (WII) [�
3M

, 1]

5 [�
1Z

, 1] (FIV) [0,�M

2

] [0,�
3m

]

6 [�
1Z

, 1] (FIV) [�
2m

,�M

2

] (WI) �
3M

7 [�
1Z

, 1] (FV) [�M

2

,�
2M

] (WI) �
3M

8 [�
1Z

, 1] �
1

= �
2

= �int

1,2 [�
2M

, 1] (WII) [�
3M

, 1]

(c) �
2

2 [�
2M

, 1], �
3

2 [�
3M

, 1]. Then �
2

� �
3

and a necessary condition is

j
2

(1) � j
3

(�
3M

), (WII)

which implies q
2

� 0.

3.4. Summary of steady states for the aggregate phase

The possible combinations of couplings for the three zones inside the column imply
the steady states of the aggregate phase shown in Table 1.

Steady-state solutions with a discontinuity inside a zone can be constructed such
that the flux values on both sides of the discontinuity are equal; cf. (2.17). Then the
discontinuity is stationary and it can be located anywhere in the zone. The jump
should also satisfy the entropy condition (2.18). Let �#

i and �"
i denote the solution

values below and above a discontinuity, respectively, in zone i. The values to choose
from are given in Table 1. The following jumps satisfy the entropy condition (2.18):

zone 3: �#
3

= �
3m

, �"
3

= �
3M

,

zone 2: �#
2

2 [�
2m

,�M

2

], �"
2

2 [�M

2

,�
2M

], or

�#
2

2 [�
2M

, 1], �"
2

2 [�M

2

,�
2M

],

zone 1: �#
1

= 0, �"
1

= �
1Z

.

3.5. Desired aggregate steady states

A steady-state solution is called desired if �
U

= 0 and �
3

� �
3M

, i.e., no aggregates
leave through the bottom and there is a layer of froth at the top of the column.
Discontinuities can be located in zones 1 and 3; however, such are easily lost from
a steady-state situation if any bulk flow changes slightly. We limit the discussion of
possible steady states to those that are constant in zones 1 and 3. Table 1 and the
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Fig. 4. Desired aggregate steady states �
SSi, i = 1, . . . , 4, given by (3.9)–(3.11), where values of

the bulk velocities are the same as in Fig. 3: Q
W

= 28.0109 cm3/s for �
SS1

, �
SS3

, �
SS4

, and
Q

W

= 1.0575 cm3/s for �
SS2

. All four steady states are physically relevant entropy-satisfying

solutions of the PDE (3.1), although �
SS2

and �
SS4

are non-monotone.

above-mentioned possible discontinuities within the zones sort out four practically
interesting solutions, namely combinations of rows 2, 3 and 4 in Table 1. All four
satisfy �

1

= �
U

= 0, �
E

= A
E

j
3

(�
3

)/Q
E

� �
3M

and the jump condition (FJC) and
(WJC). The first steady state is constant in each zone:

�
SS1

(z) :=

8
>><

>>:

�
3

= �
3M

� �
2

for z
W

 z < z
E

,

�
2

2 [�
2m

,�
2M

] for z
F

 z < z
W

,

0 for z < z
F

,

(3.9)

and necessary conditions are (WI) and either (FIa)–(FIb) if �
2

2 [�
2m

,�M

2

], or
(FIa), (FIIa)–(FIIb) if �

2

2 [�M

2

,�
2M

]. The second is also constant in each zone:

�
SS2

(z) :=

8
>><

>>:

�
3

2 [�
3M

, 1] for z
W

 z < z
E

,

�
2

2 [�
2M

, 1] for z
F

 z < z
W

,

0 for z < z
F

,

(3.10)

where �
2

� �
3

, and necessary conditions are (FIIa), (FIIIa)–(FIIIb) and (WII);
hence q

2

> 0. The remaining solutions have a discontinuity located at z
d

anywhere
in zone 2:

�
SS3

(z) :=

8
>>>><

>>>>:

�
3

= �
3M

for z
W

 z < z
E

,

�"
2

2 [�M

2

,�
2M

] for z
d

 z < z
W

,

�#
2

2 [�
2m

,�M

2

] for z
F

 z < z
d

,

0 for z < z
F

.

This solution is non-decreasing with z and the necessary conditions are (FIa),
(FIIa)–(FIIb) and (WI). In condition (FIIb), �

2

= �"
2

should be used. Then (FIb)



March 28, 2019 11:42 WSPC/INSTRUCTION FILE TRIPHASE

20 R. Bürger, S. Diehl and M. C. Mart́ı

is implied by (FIIb) (where �
2

= �#
2

is used), since �#
2

 �"
2

. The fourth solution,
which is non-monotone (if Q

W

> 0), is

�
SS4

(z) :=

8
>>>><

>>>>:

�
3

= �
3M

for z
W

 z < z
E

,

�"
2

2 [�M

2

,�
2M

] for z
d

 z < z
W

,

�#
2

2 [�
2M

, 1] for z
F

 z < z
d

,

0 for z < z
F

,

(3.11)

which requires (FIa), (FIIa)–(FIIb), (FIIIa)–(FIIIb) and (WI). This solution will
be discarded later as an undesired solution when imposing conditions on the use of
wash water; see Section 5.

4. Construction of steady states for the solid phase

We now assume that a steady-state solution of (3.1), i.e. the first equation of (1.1),
is a known piecewise constant function and seek steady-state solutions ' = '(z) of
the second equation of (1.1). We do this for the four desired steady-state solutions
�
SSk, k = 1, . . . , 4, given each solution of the aggregate phases (3.9)–(3.11). Then

the second equation of (1.1) becomes

@

@t

�
A(z)(1� �

SSk

(z))'
�
� @

@z

�
A(z)F (',�

SSk

(z), z, t)
�
= Q

F

(t)�
s,F(t)�zF . (4.1)

(The t-variable is suppressed from now on.) The possible couplings across the spatial
discontinuities of the flux functions A(·)F (',�

SSk(·), ·), k = 1, . . . , 4, will now be
investigated. The possible sedimentation flux functions are

f
3

(',�
3

) = (1� �
3

)f
b

(') +
�
j
b

(�
3

)� (1� �
3

)q
3

�
' for z

W

< z < z
E

,

f
2

(',�"
2

) = (1� �"
2

)f
b

(') +
�
j
b

(�"
2

)� (1� �"
2

)q
2

�
' for z

d

< z < z
W

,

f
2

(',�#
2

) = (1� �#
2

)f
b

(') +
�
j
b

(�#
2

)� (1� �#
2

)q
2

�
' for z

F

< z < z
d

,

f
1

(', 0) = f
b

(')� q
1

' for z
U

< z < z
F

,

with obvious modification for �
SS1

and �
SS2

which have no discontinuity in zone 2.
We recall that the total flux F and the zone fluxes fk are positive in the direction

of sedimentation, i.e. opposite to the direction of the z-axis. One could formally
perform the variable change ⇠ := �z in (4.1); however, instead we keep in mind that
in this section the auxiliary functions ǧ

L

and ĝ
R

in the entropy condition (2.19) are
considered to be positive in the downward ⇠-direction, so that ǧ

L

and ĝ
R

refer to
the local fluxes above and below, respectively, a given spatial discontinuity.

4.1. Couplings at z = zU and z = zE

In each of the four cases of �
SSk, the flux function A(z)F (',�, z) in (4.1) becomes

the following on either side of the underflow location z = z
U

, with �
1

= �
U

= 0,

g
L

(') = A
U

f
1

(', 0) = A
U

f
b

(') +Q
U

', z > z
U

,
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g
R

(') = A
U

f
U

(', 0) = Q
U

', z < z
U

.

This is the normal case at the underflow of a clarifier-thickener and the possible
entropy-satisfying steady-state solutions satisfy (see Section 9 in Ref. 18; cf. Sec-
tion 3.1):

'
1

2 [0,'
1m

] [ ['
1M

, 1], '
U

= '
1

+
A

U

Q
U

f
b

('
1

) 2 [0, 1], (4.2)

where the values '
1m

and '
1M

refer to the function f
1

(·, 0) (see Section 2.6).
The two flux functions on either side of z = z

E

are

g
L

(') = A
E

f
E

(',�
E

) = �(1� �
E

)Q
E

' for z > z
E

,

g
R

(') = A
E

f
3

(',�
3

)

= A
E

(1� �
3

)f
b

(') +
�
A

E

j
b

(�
3

)� (1� �
3

)Q
3

�
'

= A
E

(1� �
3

)f
b

(') +
�
A

E

j
3

(�
3

)�Q
3

�
',

= A
E

(1� �
3

)f
b

(')� (1� �
E

)Q
E

' for z < z
E

,

where the last equality follows from (3.3). Irrespective of �
SSk, k = 1, 2, 3, the

situation is analogous to the e✏uent level of a clarifier-thickener and the entropy-
satisfying steady-state solutions satisfy (see Section 9 in Ref. 18; cf. Section 3.1):

'
3

2 {0} [ ['
3Z

, 1], '
E

= �A
E

f
3

('
3

,�
3

)

(1� �
E

)Q
E

2 [0, 1], (4.3)

where '
3Z

is the positive zero of f
3

(·,�
3

).

4.2. Couplings at z = zW

Near z = z
W

, there is no source term in (4.1). The flux functions on either side can
be written as follows, where �

2

should be replaced by �"
2

in the case of �
SS3

or �
SS4

:

g
L

(') = A
E

f
3

(',�
3

) = A
E

(1� �
3

)f
b

(') +
�
A

E

j
3

(�
3

)�Q
E

�
' for z > z

W

,

g
R

(') = A
E

f
2

(',�
2

) = A
E

(1� �
2

)f
b

(') +
�
A

E

j
2

(�
2

)�Q
E

+Q
W

�
' for z < z

W

,

The jump condition is

f
2

('
2

,�
2

) = f
3

('
3

,�
3

) (WJCs)

Since �
U

= 0 for the desired steady states, the conservation law implies Q
F

�
F

=
A

E

j
2

(�
2

) = A
E

j
3

(�
3

) = Q
E

�
E

. Hence, we can rewrite the flux functions as

g
L

(') = A
E

(1� �
3

)f
b

(')�Q
E

(1� �
E

)' for z > z
W

,

g
R

(') = A
E

(1� �
2

)f
b

(') +
�
�Q

E

(1� �
E

) +Q
W

�
'

= A
E

(1� �
2

)f
b

(') +
�
Q

F

�
F

+Q
U

�Q
F

�
' for z < z

W

.

We have g
L

(0) = g
R

(0) = 0, g
L

(1) = �Q
E

(1��
E

)  0 and g
R

(1)�g
L

(1) = Q
W

� 0.
Hence, g

L

is unimodal and has the two zeros 0 and '
3Z

. The larger Q
E

(1� �
E

) is,
the closer '

3Z

is to zero, and below a certain value, g
L

is decreasing with only
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'
3Z

= 0 as its zero. The analogous situation holds for g
R

and '
2Z

. The latter value
does not exist if g

R

is decreasing; hence, we impose

@g
R

@'
(0,�

2

) > 0 , Q
U

�Q
F

(1� �
F

) > �A
E

(1� �
2

)u1
sf

. (WIs)

If (WIs) holds, then the existence of '
2Z

depends on the sign of g
R

(1) = Q
U

�Q
F

(1�
�
F

). This leads to the complementary conditions g
R

(1)  0, which is (FIIIa), and

Q
U

> Q
F

(1� �
F

). ({FIIIa)
Combining these conditions with the possible steady-state values of '

3

given
by (4.3), we have the following cases:

(a) '
3

= 0, (WIs) and (FIIIa). The possible couplings are '
2

= 0 and '
2

= '
2Z

,
where '

2Z

is the positive zero of f
2

(·,�
2

); see Fig. 5(a1) and (a2).
(b) '

3

2 ['
3Z

, 1], (WIs) and (FIIIa). The only possibility is '
2

2 ['
2Z

, 1]; see
Fig. 5(b).

(c) '
3

= 0 and ({FIIIa). The only solution is '
2

= 0; see Fig. 5(c).
(d) '

3

2 ['
3Z

, 1] and ({FIIIa). This case is empty, since ǧ
L

(·;'
3

) with '
3

� '
3Z

will necessarily intersect ĝ
R

at a positive flux value, while g
L

('
3

) < 0.

In conclusion, the following values are so far candidates in zone 2:

'
2

2 {0} [ ['
2Z

, 1]. (4.4)

4.3. Couplings at z = zF

Consider Equation (4.1) near z = z
F

. We set S
s,F := �

s,FQF

and move the source
term into the total flux function with the identity

S
s,F�zF = S

s,F
d

dz
HzF .

Hence, the term S
s,F should be subtracted from the flux in zone 2 counted in the

z-direction. In the downwards ⇠-direction, the fluxes above and below the discon-
tinuity, denoted by g

L

and g
R

, respectively, are given by the following (where we
have used that Q

F

�
F

= A
E

j
2

(�
2

) and Q
2

= �Q
U

+Q
F

)

g
L

(') = A
E

f
2

(',�
2

) + S
s,F

= A
E

(1� �
2

)f
b

(') +
�
A

E

j
b

(�
2

)� (1� �
2

)Q
2

�
'+ S

s,F

= A
E

(1� �
2

)f
b

(') +
�
A

E

j
2

(�
2

)�Q
2

�
'+ S

s,F

= A
E

(1� �
2

)f
b

(') +
�
Q

F

�
F

+Q
U

�Q
F

�
'+ S

s,F

= A
E

(1� �
2

)f
b

(') +
�
Q

U

�Q
F

(1� �
F

)
�
'+ S

s,F for z > z
F

, (4.5)

g
R

(') = A
U

f
1

(', 0) = A
U

f
b

(') +Q
U

' for z < z
F

. (4.6)

In the cases �
SS3

and �
SS4

, �
2

should be replaced by �#
2

. The jump condition is

A
U

f
1

('
1

, 0) = A
E

f
2

('
2

,�
2

) + S
s,F. (FJCs)
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Fig. 5. Couplings at z = z
W

for the solids PDE for (a1), (a2), (b) Q
U

= 13 cm3/s, Q
F

=
40 cm3/s and Q

W

= 3.21 cm3/s, satisfying (FIIIa), (c) Q
U

= 25 cm3/s, Q
F

= 40 cm3/s and

Q
W

= 9.46 cm3/s, satisfying ({FIIIa). All cases are computed using a steady state of type �
SS1

for �. Note that these flux functions depend on the solution �
SS1

; see (2.12). For example, the slopes
of the linear term of the flux functions A

E

f
2

and A
E

f
3

in plots (a1)–(b) are A
E

j
2

(�
SS1,2)�Q

2

⇡
�3.0 cm3/s and A

E

j
3

(�
SS1,3)�Q

3

⇡ �6.21 cm3/s.

Lemma 4.1. The continuous functions g
L

and g
R

given by (4.5) and (4.6) intersect
in one, two or three points 'int

1,2 2 (0, 1) satisfying

�
A

U

�A
E

(1� �
2

)
�
f
b

('int

1,2) + (1� �
F

)Q
F

'int

1,2 � S
s,F = 0. (4.7)

Furthermore, f
b

, g
L

and g
R

have the same concave-convex form with the same

inflection point.

Proof. The left-hand side of (4.7) is the di↵erence of the fluxes (4.6) and (4.5):

d(') := g
R

(')� g
L

(') =
�
A

U

�A
E

(1� �
2

)
�
f
b

(') + (1� �
F

)Q
F

'� S
s,F.

The continuous function d satisfies d(0) = �S
s,F < 0 and

d(1) = (1� �
F

)Q
F

� S
s,F = (1� �

F

� �
s,F)QF

= �
f,FQF

> 0.
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Moreover, d, f
b

, g
L

and g
R

have the same concave-convex form with the same
inflection point, since

d00(') = g00
L

(')� g00
R

(') = (A
U

�A
E

(1� �
2

))f 00
b

(').

The task is now to couple '
2

and '
1

given by (4.4) and (4.2), respectively:

(a) '
2

= 0, '
1

2 [0,'
1m

]; see Fig. 6(a). The value '
1

 '
1m

is the unique solution
of g

R

('
1

) = S
s,F according to (FJCs). This coupling is possible only if

g
R

('
1m

) = g
R

('
1M

) � S
s,F , A

U

f
1

('
1M

, 0) � S
s,F. (FIas)

(b) '
2

= 0, '
1

2 ['
1M

, 1]; see Fig. 6(b). The value '
1

� '
1M

is the unique solution
of g

R

('
1

) = S
s,F according to (FJCs). This coupling is possible only if

A
U

f
1

('
1M

, 0)  S
s,F, ({FIas)

A
U

f
1

(1, 0) � S
s,F , Q

U

� S
s,F. (FIbs)

There are two subcases depending on whether g
L

is unimodal or not:

• g
L

(1) > S
s,F , ({FIIIa); see Fig. 6(b1): The solution exists without further

restrictions.
• g

L

(1)  S
s,F , (FIIIa); see Fig. 6(b2): A coupling is possible only if also

(WIs) and the following conditions hold:

A
U

f
1

('
2Z

, 0) � S
s,F, (FIIs)

'
1M

 '
2Z

. (FIIIs)

(c) '
2

2 ['
2Z

, 1], '
1

2 [0,'
1m

]; see Fig. 6(c). The decreasing part of ǧ
L

intersects
the first increasing part of ĝ

R

. Necessarily, (WIs) and (FIIIa) hold. The coupling
satisfies '

1

= '
2

= 'int

1,2, which is the unique solution of (4.7) satisfying

'
2Z

 'int

1,2  '
1m

. (FIVs)

(d) '
2

2 ['
2Z

, 1], '
1

2 ['
1M

, 1]; see Fig. 6(d). Necessarily, (WIs) and (FIIIa) hold.
The decreasing part of ǧ

L

intersects the rightmost increasing part of ĝ
R

. The
coupling satisfies '

1

= '
2

= 'int

1,2, which is the unique solution of (4.7) greater
than '

1M

.

4.4. Summary of steady states for the solid phase

The steady-state solutions �
SS1

and �
SS2

are constant in every zone and Table 2
gives the possible steady-state solutions for '(z) that are constant in zones 1, 2
and 3. The outlet concentrations are given by the explicit formulas (4.2)–(4.3).

There may also be a discontinuity of '(z) within any of these zones. As be-
fore, we let '"

k and '#
k denote the solution values above and below a discontinuity,

respectively, in zone k. From Table 2, we can conclude that the following jumps,
which satisfy the entropy condition (2.18), are possible:

zone 3: '"
3

= 0, '#
3

= '
3Z

,
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Fig. 6. Couplings at z = z
F

for the solids PDE for (a), (c) Q
U

= 5 cm3/s, Q
F

= 40 cm3/s and
Q

W

= 1.34 cm3/s with �
F

= 0.7 and �
s,F = 0.1, (b1) Q

U

= 21 cm3/s, Q
F

= 40 cm3/s and

Q
W

= 5.45 cm3/s with �
F

= 0.5 and �
s,F = 0.4, (b2) �

F

= 0.7 and �
s,F = 0.12, (d) �

F

= 0.7 and
�
s,F = 0.15. All cases are computed using a steady-state of type �

SS1

for �.

zone 2: '"
2

= 0, '#
2

= '
2Z

,

zone 1: '"
1

= '
1m

, '#
1

= '
1M

.

We next couple the desired steady states of � with the possible ones of '. In order
to reduce the number of steady states, we impose further restrictions on what we
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Table 2. Possible entropy-satisfying stationary solutions '(z) having a constant value in each zone

inside the flotation column with necessary conditions for each coupling, given any of the solutions
�
SS1

or �
SS2

, which are constant in each zone. The jump conditions (FJCs) and (WJCs) always

hold and are therefore written topmost.

'
1

(FJCs) '
2

(WJCs) '
3

1 [0,'
1m

] (FIas) 0 0

2 [0,'
1m

] (WIs), (FIIIa), (FIVs) ['
2Z

, 1] (WIs), (FIIIa) ['
3Z

, 1]

3 ['
1M

, 1]

⇢
(FIIIa), ({FIas), (FIbs),
(WIs), (FIIs), (FIIIs)

0 0

4 ['
1M

, 1] ({FIIIa), ({FIas), (FIbs) 0 0

5 ['
1M

, 1] (WIs), (FIIIa), '
1

= '
2

'
2Z

(WIs), (FIIIa) 0

6 ['
1M

, 1] (WIs), (FIIIa), '
1

= '
2

['
2Z

, 1] (WIs), (FIIIa) ['
3Z

, 1]

regard as desired steady states.
One of the purposes of a flotation column is to separate out the hydrophilic solids

through the underflow. Consequently, given the possibilities in Table 2, any desired
steady state for the solid phase should satisfy '

E

= 0 and we also require '
3

= 0
(although it is mathematically possible to have a discontinuity within zone 3).
Row 1 of Table 2 gives one possible desired solution with a low '

1

and hence a low
underflow volume fraction of solids. Rows 3 and 4 mean that either '

1

2 ['
1M

, 1]
for a constant solution in zone 1 or '#

1

= '
1M

for a solution with a discontinuity in
zone 1. Moreover, we assume that either '

2

= 0 or if there are particles in zone 2,
they are not moving upwards, i.e., f

2

('
2

,�
2

) = 0. Generally, one wants to avoid
high volumetric flows, which rules out solutions that require condition (FIVs).

5. Desired steady states with and without wash water

5.1. Conditions on the wash water

We have always assumed that the e✏uent volume fraction Q
E

is positive, i.e.

Q
E

= Q
2

+Q
W

= �Q
U

+Q
F

+Q
W

> 0, (E)

where the volumetric flow in zone 2 is Q
2

:= �Q
U

+Q
F

. Wash water is optional in
a flotation column. If Q

W

= 0, then (E) implies Q
2

> 0. Since there is no injection
of fluid above the feed inlet, we conclude that the fluid flow (not identical to the
bulk flow) in zone 2 must be positive, or at least non-negative.

Now consider the case when wash water is applied, i.e. Q
W

> 0. Then Q
2

can
have any sign and so can the fluid flow in zone 2. Although we do not model explicitly
the washing process in the froth region, i.e., hydrophilic particles are washed o↵ the
foam, we impose the natural requirement that the fluid flow in zone 2 should be
downwards, i.e., negative. In view of (2.5), this gives the following condition:

q
2

� �
2

v
a,2 � �

s,2vs,2 < 0. (5.1)
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Fig. 7. Operating chart showing the possible interval for Q
W

for a givenQ
2

= �Q
U

+Q
F

. The lower
bound is given by Q

W

� 0 and (E), and the upper bound by condition (WI). The white region of

allowed points is bounded with a vertex at (Q
2

, Q
W

) = A
E

q
neg

(1, 1) ⇡ (�195.1, 195.1) cm3/s.

This condition can be rewritten in terms of controllable variables and the input
volume fraction �

F

. Firstly, q
2

= (�Q
U

+Q
F

)/A
E

. Secondly, a desired solution has
either no solids in zone 2, �

s,2 = 0, or we may allow a stationary discontinuity with
only fluid above. In both cases, the flux of solids in zone 2 is zero: �

s,2vs,2 = 0.
Thirdly, all aggregates that are fed to the column passes zone 2 and then rise to
the e✏uent; hence, Q

F

�
F

= A
E

�
2

v
a,2 = A

E

j
2

(�
2

). Thus, (5.1) can be rewritten as

�Q
U

+Q
F

�Q
F

�
F

< 0,

which is in fact precisely condition ({FIIIa). Thus, when Q
W

> 0, wash water is
e↵ective only if ({FIIIa) holds. Consequently, (FIIIa) implies that one can as well
choose Q

W

= 0, since a positive value means that all injected wash water will leave
through the e✏uent.

Of all necessary inequality conditions for the desired steady states �
SSk, k =

1, . . . , 4, and those in Table 2 that satisfy '
3

= 0, only (WI) involvesQ
W

. For a given
Q

2

, (WI) gives an upper bound forQ
W

, whereas (E) together withQ
W

� 0 is a lower
bound; see Fig. 7. If Q

2

< 0, then the wash water condition is satisfied; however,
it can be satisfied also for small positive values Q

2

< Q
F

�
F

. If the conditions for a
steady state are such that one has to choose Q

2

> 0, then (E) is satisfied and there
is no need to choose a positive value of Q

W

. Thus, to have wash water in e↵ect in
the froth region in zone 2, one should, if possible, choose values on the volumetric
flows so that Q

2

< 0, and then choose Q
W

> 0 so that (E) satisfied.
For the steady states �

SS2

and �
SS4

(which require (FIIIa)), we set Q
W

= 0.
When Q

W

= 0, there is no spatial discontinuity at z = z
W

, which implies that the
only possible entropy-satisfying connection at z

W

for �
SS4

is �
2M

= �
3M

, i.e., the
solution is continuous. This implies in turn that the entropy-satisfying solution at
z
d

is continuous and equal to �
2M

. Thus, in the cases there is no wash water, �
SS4
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reduces to a special case of �
SS2

, given by (3.10), namely

�
SS20

=

(
�
2

= �
3

= �
2M

for z
F

 z < z
E

,

0 for z < z
F

.

Consequently, only the solutions �
SS1

and �
SS3

allow working wash water. Since
wash water is an advantage, we require condition ({FIIIa) to hold for these cases.

In conclusion, we have the following division of desired steady states with and
without wash water:

�
SS1

and �
SS3

require ({FIIIa) and Q
W

> 0, (WW)

�
SS2

and the special case �
SS20

require (FIIIa) and Q
W

= 0. ({WW)

We now couple these solutions with the desired steady states for '. The steady
states for the solids volume fraction are then given through �SSk`

s

= (1��
SSk)'SS`.

5.2. Steady states of the solid phase in the case �SS1

According to (WW), we require ({FIIIa) for �
SS1

. The two first steady-state solu-
tions for the solid phase are constant in each zone. Row 1 in Table 2 gives

'
SS1

(z) :=

8
>><

>>:

'
3

= 0 for z
W

 z < z
E

,

'
2

= 0 for z
F

 z < z
W

,

'
1

2 [0,'
1m

] for z
U

 z < z
F

,

(5.2)

which requires (FIas) and (FJCs), and row 4 in Table 2 gives

'
SS2

(z) :=

8
>><

>>:

'
3

= 0 for z
W

 z < z
E

,

'
2

= 0 for z
F

 z < z
W

,

'
1

2 ['
1M

, 1] for z
U

 z < z
F

,

(5.3)

which requires the additional conditions ({FIas), (FIbs) and (FJCs). The next so-
lution has a discontinuity at z = z

d

in zone 1 (couplings of row 1 in Table 2):

'
SS3

(z) :=

8
>>>><

>>>>:

'
3

= 0 for z
W

 z < z
E

,

'
2

= 0 for z
F

 z < z
W

,

'"
1

= '
1m

for z
d

 z < z
F

,

'#
1

= '
1M

for z
U

 z < z
d

.

This solution requires the jump condition (FJCs) and is in fact the most wanted one
in a clarifier-thickener, where the discontinuity at z = z

d

is called sludge blanket
level in wastewater treatment and sediment level in mineral processing.
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There are other steady states possible, however, not desired, for example:

'
SS

(z) :=

8
>>>>>>><

>>>>>>>:

'
3

= 0 for z
W

 z < z
E

,

'"
2

= 0 for z
d1

 z < z
W

,

'#
2

= '
2Z

for z
F

 z < z
d1

,

'"
1

= '
1m

for z
d2

 z < z
F

,

'#
1

= '
1M

for z
U

 z < z
d2

.

This requires conditions (FIVs) and (FJCs) according to the first coupling of row 2,
which means that excessively large volumetric flows have to be used. In addition,
there is no point (at least for the intended operation of a flotation column) in having
a layer of particles standing still in the lower part of zone 2.

5.3. Steady states of the solid phase in the case �SS2

According to ({WW), �
SS2

requires (FIIIa) and Q
W

= 0; hence there is no spatial
discontinuity at z = z

W

between zones 2 and 3. The two first desired steady-state so-
lutions for the solid phase are constant in each zone and the jump condition (FJCs)
holds. Row 1 in Table 2 gives that '

SS1

is a solution under the additional condi-
tion (FIas). Row 2 in Table 2 gives that '

SS2

is a solution with the necessary con-
ditions ({FIas), (FIbs), (WIs), (FIIs) and (FIIIs). A third possible solution is '

SS3

,
which requires the jump condition (FJCs). A fourth steady-state solution, which
has a discontinuity at z = z

d

in zone 2, is

'
SS4

(z) :=

8
>>>><

>>>>:

'
3

= 0 for z
W

 z < z
E

,

'"
2

= 0 for z
d

 z  z
W

,

'#
2

= '
2Z

for z
F

 z < z
d

,

'
1

= '#
2

2 ['
1M

, 1] for z
U

 z < z
F

,

which requires also (WIs), see row 5 in Table 2. The region in zone 2 with the
volume fraction '

2Z

consists of solids at rest.

5.4. Steady states of the solid phase in the case �SS3

According to (WW), �
SS3

requires ({FIIIa) and Q
W

> 0. We consider the fluxes of
the solid phase above and below the discontinuity in zone 2 at z

d

and let

g
L

(') = f
2

(',�"
2

) = (1� �"
2

)f
b

(') +
�
j
2

(�"
2

)� q
2

�
',

g
R

(') = f
2

(',�#
2

) = (1� �#
2

)f
b

(') +
�
j
2

(�#
2

)� q
2

�
'.

The stationary discontinuity in � satisfies j
2

(�"
2

) = j
2

(�#
2

); hence, the graphs of g
L

and g
R

intersect precisely at ' = 0 and ' = 1. Since �#
2

 �"
2

, g
L

 g
R

. With '"
2

and
'#
2

denoting the values above and below z = z
d

, and '#
2Z

referring to the function
f
2

(·,�#
2

), we have the following possibilities:
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(a) '"
2

= '#
2

= 0. Possible steady-state solutions for the the solid phase are '
SSk

,
k = 1, 2, 3.

(b) '"
2

= 0 and '#
2

= '#
2Z

. A possible candidate solution is '
SS4

; however, row 5
of Table 2 gives the condition (FIIIa), which contradicts ({FIIIa). Hence, there
exists no steady-state solution in this case.

(c) '"
2

2 ['"
2Z

, 1] and '#
2

2 ['#
2Z

, 1]. Such a jump could occur in a variant of '
SS4

with a possible discontinuity between '"
2

and '#
2

in z
F

< z < z
d

. However,
row 5 of Table 2 gives condition (FIIIa) for '"

2Z

and '#
2Z

to exist. Since this
contradicts ({FIIIa), there exists no steady-state solution in this case.

6. Operating charts for desired steady states

We assume that �
F

and�
s,F are given and will present restrictions on the control

variables Q
F

, Q
U

and Q
W

for each qualitatively possible desired steady state. Many
inequalities can be visualized as two-dimensional regions in the (Q

U

, Q
F

)-plane
which we call operating charts. Other conditions involve the triple (Q

U

, Q
F

, Q
W

),
and in some cases, also the solution value �

2

in zone 2. The equality conditions for
the desired steady states of the aggregate phase are the jump conditions (FJC) and
(WJC), which reduce to the following:

Q
F

�
F

= A
E

j
2

(�
2

;Q
2

/A
E

), (FJC)

A
E

j
2

(�
2

;Q
2

/A
E

) = A
E

j
3

(�
3

; (Q
2

+Q
W

)/A
E

). (WJC)

We need the following lemma for the construction of operating charts, in which
the operator can choose a point (Q

U

, Q
F

). Then Q
2

= �Q
U

+Q
F

is given.

Lemma 6.1. The jump conditions (FJC) and (WJC) for the desired steady states

imply the following for given (Q
U

, Q
F

):

1. Condition (FJC) gives at most one �
2

in each of the intervals (0,�M(Q
2

/A
E

)],
[�M(Q

2

/A
E

),�
M

(Q
2

/A
E

)] and [�
M

(Q
2

/A
E

),�
max

].
2. In the case ({WW), �

3

is determined as in 1.

3. In the case (WW), �
3

= �
3M

= �
M

((Q
2

+ Q
W

)/A
E

) and (WI) and (E) are

satisfied. Furthermore, Q
W

is uniquely determined as the solution of

U := A
E

j
3

✓
�
M

✓
�Q

U

+Q
F

+Q
W

A
E

◆
;
�Q

U

+Q
F

+Q
W

A
E

◆
�Q

F

�
F

= 0.

(6.1)

Proof. Statement 1 follows directly from the concave-convex property of the flux
function j

2

. Then the second statement follows directly. In the third statement,
(WI) is satisfied since (WJC) implies

j
2

(�M

2

) � j
2

(�
2

) = j
3

(�
3M

).

The boundary of condition (E) is the straight line �Q
U

+Q
W

+Q
F

= 0, which for
fixed Q

W

is a contour in the (Q
U

, Q
F

)-plane with gradient (�1, 1). The line passes
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Fig. 8. Operating charts in the case SS11a with �
F

= 0.3 and �
s,F = 0.3. The four first plots

show where each condition is satisfied (white regions). The last plot shows all four conditions

superimposed and curves (red dashed) a long which Q
W

is constant with Q
W

= 0, 10, 20, . . . cm3/s.
The value of Q

W

can be read o↵ on the Q
U

-axis.

the point (Q
W

, 0) and so does the curve defined implicitly by (6.1). The points on
the curve satisfy (E) since the gradient of U is

✓
@U

@Q
U

,
@U

@Q
F

◆
= A

E

(��
3M

,�
3M

� �
F

)
1

A
E

= �
3M

✓
�1, 1� �

F

�
3M

◆
,

where we use Lemma 2.1. That Q
W

is uniquely determined by (6.1) for given
(Q

U

, Q
F

) follows from the implicit function theorem, since

@U

@Q
W

= A
E

�
3M

1

A
E

= �
M

(Q
E

/A
E

),

which is strictly positive when Q
E

> 0, i.e., when (E) holds.

For the desired steady states of the solid phase, condition (WJCs) is satisfied
with '

3

= 0 and either '
2

= 0 or '
2

= '
2Z

, and the one at the feed inlet is

A
U

f
1

('
1

, 0;�Q
U

/A
U

) = Q
F

�
s,F. (FJCs)

6.1. Case SS11: �SS1 and 'SS1

According to (WW), wash water is present and from (3.9), (5.2), row 2 in Table 1
and row 1 in Table 2, we get the following:
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Fig. 9. Operating charts in the case SS11b with �
F

= 0.3 and �
s,F = 0.3. The conditions (FIIa)

and (FIIb) are shown (see Figure (8) for others), and in the third plot all conditions together with
the red dashed lines showing the values of Q

W

= 0, 10, 20, . . . cm3/s.

(a) The case �
2

2 [�
2m

,�M

2

]: The conditions are set of inequalities (FIa), (FIb),
(FIas), ({FIIIa), (WI) and (E) along with the jump conditions. The first four
conditions involve only Q

U

and Q
F

, and these conditions are visualized in Fig. 8
for the choice �

F

= 0.3 and �
s,F = 0.3. The white region in the fifth subplot of

Fig. 8 shows the possible values for (Q
U

, Q
F

). For each such point, Lemma 6.1
gives that Q

W

is uniquely determined. In the fifth subplot of Fig. 8, we have,
for fixed values of Q

W

= 0, 10, 20, . . . cm3/s, drawn the corresponding curves
(dashed red) defined by (6.1). The value of Q

W

for a curve can be read o↵ at
the curve’s intersection with the Q

U

-axis. This is because Q
F

= 0 in (6.1) gives
�
M

(�Q
U

+ Q
W

) = �
max

, which is equivalent to Q
W

= Q
U

. For any chosen
point (Q

U

, Q
F

) in the white region of the fifth subplot of Fig. 8, Lemma 6.1
gives that (WI) and (E) are satisfied. One can for example choose the point
(Q

U

, Q
F

) = (55, 70) cm3/s and solve (6.1) for Q
W

⇡ 10.86 cm3/s.
(b) The case �

2

2 [�M

2

,�
2M

]: The conditions are (FIa), (FIIa), (FIIb), (FIas),
({FIIIa), (WI), (E) and the jump conditions. For �

F

= 0.3 and �
s,F = 0.3

we get the regions shown in Fig. 9, where we show the new conditions in com-
parison with subcase (a).

6.2. Case SS12: �SS1 and 'SS2

According to (WW), wash water is present and from (3.9), (5.3), row 2 in Table 1
and row 4 in Table 2, we get the following:

(a) The case �
2

2 [�
2m

,�M

2

]: The set of conditions are (FIa), (FIb), ({FIas), (FIbs),
({FIIIa), (WI), (E) and (WJC). The first five conditions involve only Q

U

and
Q

F

, and these conditions are visualized in Fig. 10 for the choice �
F

= 0.2 and
�
s,F = 0.6. For low values of �

s,F this steady state does not exist. The wedge-
shaped white region in the sixth subplot of Fig. 10 shows the necessary region
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Fig. 10. Operating charts in the case SS12a with �
F

= 0.2 and �
s,F = 0.6 and �

2

2 [�
2m

,�M

2

].

The five first plots show where each condition is satisfied (white region). The sixth plot shows
all conditions superimposed and the dashed red lines show the corresponding values of Q

W

=
0, 10, 20, . . . cm3/s.

for (Q
U

, Q
F

). Lemma 6.1 gives that (WI) and (E) are satisfied, and the curves
for Q

W

= 0, 10, 20, . . . cm3/s given by (6.1) have been drawn. Condition ({FIas)
is the region above the curve Q

F

= X(Q
U

) which has the derivative (we use
Lemma 2.1)

X 0(Q
U

) =
'
M

(Q
U

/A
U

)

�
s,F

.

The numerator decreases with Q
U

from '
M

(0) = 1 to '
M

('
infl

) = 0.5714.
This explains why a non-empty (white) region exists only for large values of
�
s,F. The convex Q

W

-curves give that we can choose, for example, (Q
U

, Q
F

) =
(40, 45) cm3/s and then (6.1) gives Q

W

= 5.1716 cm3/s.
(b) The case �

2

2 [�M

2

,�
2M

]: The conditions are (FIa), (FIIa), (FIIb), ({FIas),
(FIbs), ({FIIIa), (WI), (E) and (WJC). We can only find this steady state
when there is only a small amount of fluid in the feed inlet. With �

F

= 0.4 and
�
s,F = 0.5, Fig. 11 shows condition (FIIa) and all conditions combined.
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Fig. 11. Operating charts in the case SS12b with �
F

= 0.4 and �
s,F = 0.5 and �
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Fig. 12. Operating charts in the cases SS13a and SS13b.

6.3. Case SS13: �SS1 and 'SS3

According to (WW), wash water is used, �
SS1

is given by (3.9) (see row 2 in Ta-
ble 1) and '

SS3

by (5.3) (row 1 in Table 2), where the jump condition (FJCs) is
condition (FIas) with equality:

A
U

f
�
'
1M

(Q
U

/A
U

), 0,�Q
U

/A
U

�
= Q

F

�
s,F. (FIase)

For given �
s,F, this is a curve in the (Q

U

, Q
F

)-plane shown in dashed blue in Fig. 12.
As in the previous subcases, Lemma 6.1 and imply that (WI), (E) and (WJC) are
satisfied along the shown red dashed lines. We have the following two subcases:

(a) The case �
2

2 [�
2m

,�M

2

]: The inequality conditions are (FIa), (FIb) and
({FIIIa); see Fig. 12 (left), which is drawn in the case �

F

= 0.3 and �
s,F = 0.5.

In order to obtain a discontinuity of solid particles in zone 1, there has to be a
large feed volume fraction of solids for this steady state to exist.

(b) The inequality conditions are �
2

2 [�M

2

,�
2M

]: The conditions are (FIa), (FIIa),
(FIIb) and ({FIIIa). A solution exists only when the feed inlet contains a very
small amount of fluid, see Figure 12 (right) for �

F

= 0.4 and �
s,F = 0.5.
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Fig. 13. Operating charts in the cases SS21 and SS23. In the last plot, the possible values for

(Q
U

, Q
F

) are on the blue dashed line in the white region.

6.4. Case SS21: �SS2 and 'SS1

According to ({WW), Q
W

= 0, and �
SS2

requires (FIIa), (FIIIa), (FIIIb) and
(WII). Since j

2

⌘ j
3

, (WII) is equivalent to Q
2

� 0, and in this case (E), which is
implied by (FIIIa). Row 1 in Table 2 gives that '

SS1

requires (FIas). Lemma 6.1
states that the jump conditions determine �

2

= �
3

2 [�
2M

, 1] uniquely without
any further restriction on the volumetric flows. Analogously, '

1

2 ['
1M

, 1] is deter-
mined by (FJCs) without any restriction on the volumetric flows. The inequality
conditions (FIIa), (FIIIa), (FIIIb) and (FIas) are shown in Fig. 13 for �

F

= 0.6 and
�
s,F = 0.05. This steady state exists only for small �

s,F, but can handle large Q
F

.

6.5. Case SS22: �SS2 and 'SS2

According to ({WW),Q
W

= 0, and �
SS2

requires (FIIa), (FIIIa), (FIIIb) and (WII).
As in the previous case, (FIIIa) implies (WII) and (E), and the jump conditions
give no specific constraint on the volumetric flows. Row 3 in Table 2 gives that '

SS2

requires the inequality conditions ({FIas), (FIbs), (WIs), (FIIs) and (FIIIs). There
are thus eight inequality conditions and we cannot find any non-empty region for
any choices of �

F

and �
s,F.
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Fig. 14. Operating charts in the case SS24.

Fig. 15. Operating charts in the cases SS31, SS32 and SS33.

6.6. Case SS23: �SS2 and 'SS3

As in the previous two cases, ({WW) gives Q
W

= 0. The solution �
SS2

re-
quires (FIIa), (FIIIa) (which implies (WII) and (E)) and (FIIIb), and '

SS3

requires
the equality condition (FIase). The latter condition sharpens case SS21, see the last
plot of Fig. 13.

6.7. Case SS24: �SS2 and 'SS4

As in the previous two cases, ({WW) gives Q
W

= 0. The solution �
SS2

re-
quires (FIIa), (FIIIa) (which implies (WII) and (E)) and (FIIIb), while '

SS4

requires
only (WIs). A non-empty regions is found only for large �

F

, see Fig. 14.

6.8. Case SS31: �SS3 and 'SS1

Condition (WW) gives that wash water can be used and ({FIIIa) holds. The solution
�
SS3

requires the inequality conditions (FIa), (FIIa), (FIIb) and (WI), and row 1
in Table 2 give that '

SS1

requires the additional condition (FIas). Lemma 6.1 gives
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partly that (WI) and (E) are satisfied, and partly that the jump conditions give the
value of Q

W

from (6.1). Fig. 15 (left) shows the operating charts for �
F

= 0.3 and
�
s,F = 0.3.

6.9. Case SS32: �SS3 and 'SS2

Condition (WW) gives that wash water can be used and ({FIIIa) holds. The solution
�
SS3

requires the inequalities (FIa), (FIIa), (FIIb) and (WI), and '
SS2

requires the
additional conditions ({FIas) and (FIbs). Lemma 6.1 gives partly that (WI) and (E)
are satisfied, and partly that the jump conditions give the value of Q

W

from (6.1).
A non-empty region can be found only when there is hardly any fluid and lots of
solids in the feed inlet; see Fig. 15 (middle) when �

F

= 0.3 and �
s,F = 0.6. Hence,

this solution is not of practical interest.

6.10. Case SS33: �SS3 and 'SS3

Condition (WW) gives that wash water can be used and ({FIIIa) holds. The solution
�
SS3

requires the inequalities (FIa), (FIIa), (FIIb) and (WI), and '
SS3

requires the
equality condition (FIase). The latter equality means an additional restriction to
the conditions of case SS31; see Fig. 15 (right), where the blue dashed line for
condition (FIase) crosses the white region only for high values of �

s,F.

7. Numerical simulations

7.1. Numerical method

For the discretization of the model, we exploit that our system of balance laws (1.1)
is triangular. In Ref. 9, the numerical scheme is described and an invariant region
property proved. The scheme uses a staggered grid for the two unknown functions �
and ' of (1.1). The Godunov method is used first to obtain a piecewise constant, in
space and time, approximation ��z of the solution � of the first PDE of (1.1). Then
��z is used as a given function in the second PDE of (1.1). By using a staggered
grid for the numerical approximation of ', the spatially dependent ��z is constant
in a neighbourhood of the cell boundaries and the Godunov flux is well defined.
For the same reason, the two grids should preferably be placed so that the known
spatial discontinuities at z

U

, z
F

, z
W

and z
E

lie inside cells of both grids.
More precisely, we let N cells for each grid cover the column, so that cell no. 1

contains z
U

and cell no. N contains z
E

; see Figure 16. We add extra cells at the
bottom and top to calculate the outlet volume fractions. We define�z := 1/N , zi :=
i�z, i = �1,�1/2, 0, 1/2, . . . , N + 2, so that z

U

= z
1

+�z/4 and z
E

= zN +�z/4.
Each of the injection points z

F

and z
W

will belong to one interval of each grid. The
numerical method implicitly assumes that these two locations are placed a distance
�z/4 from the nearest boundary of both grids. The time discretization is made with
the uniform step length �t, which should satisfy a Courant-Friedrichs-Lewy (CFL)



March 28, 2019 11:42 WSPC/INSTRUCTION FILE TRIPHASE

38 R. Bürger, S. Diehl and M. C. Mart́ı

6

z�1

z0

z1

...

...

...

zN�1

zN

zN+1

zN+2

z

��1/2

�1/2

�3/2

...

...

...

�N�3/2

�N�1/2

�N+1/2

�N+3/2

6

z�1/2

z1/2

z3/2

...

...

...

zN�3/2

zN�1/2

zN+1/2

zN+3/2

z

'0

'1

...

...

...

'N�1

'N

'N+1

underflow

level zU

feed level zF

wash water

level zW

e✏uent

level zE

Fig. 16. Two staggered grids for the discretization of the flotation column with the spatial discon-
tinuities away from cell boundaries.

condition; see below. We simulate NT time steps up to the final time T := NT�t

and tn := n�t for n = 0, 1, . . . , NT .
We allow A(z) to have a finite number of discontinuities and this function is

discretized as follows:

Ai+1/2 :=
1

�z

Z zi+1

zi

A(z) dz, Ai :=
1

�z

Z zi+1/2

zi�1/2

A(z) dz.

The CFL condition is the following:

�tM

✓
kf 0

b

k1 + kj0
b

k1 +
kQk1
A

min

◆
 �z

2
, where

M := max
i=0,1/2,1,...,N+1

⇢
Ai�1/2

Ai
,
Ai+1/2

Ai

�
, kf 0

b

k1 := max
0�1

|f 0
b

(�)|,

kQk1 := max
0tT

(Q
F

(t) +Q
W

(t)), A
min

:= min
i=�1/2,0,1/2,...,N+3/2

Ai.

(7.1)

The time-dependent feed functions are discretized as

Qn
F

:=
1

�t

Z tn+1

tn
Q

F

(t) dt, �n
F

:=
1

�t

Z tn+1

tn
�
F

(t) dt,
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and the same is made for the other volumetric flows and �
s,F. We define the dimen-

sionless function

�
F,i+1/2 :=

Z zi+1

zi

�zF(z) dz :=

(
1 if z

F

2 [zi, zi+1

),

0 otherwise.

We use the flux by Godunov,31 which, for a given flux function g and real values a
and b on the left/right, is

G(g, a, b) =

8
<

:

min
a�b

g(�) if a  b,

max
a���b

g(�) if a > b.
(7.2)

The numerical approximations of the PDE solutions are denoted by �n
i+1/2 ⇡

�(zi+1/2, t
n) and 'n

i ⇡ '(zi, tn). More precisely, the initial data are discretized by

�0

i+1/2 :=
1

Ai+1/2�z

Z zi+1

zi

�(z, 0)A(z) dz, '0

i :=
1

Ai�z

Z zi+1/2

zi�1/2

'(z, 0)A(z) dz,

and the scheme (marching formula) is

�n+1

i+1/2 = �n
i+1/2 +

�t

Ai+1/2�z

�
AiJ n

i �Ai+1

J n
i+1

+Qn
F

�n
F

�
F,i+1/2

�
, (7.3)

'n+1

i =

8
><

>:

'n
i if �̄n

i = 1,

'n
i +

�t(Ai�1/2Fn
i�1/2 �Ai+1/2Fn

i+1/2 +Qn
F

�n
s,F�F,i)

(1� �̄n
i )�z Ai

otherwise,

(7.4)

where �̄n
i := (�n

i�1/2 + �n
i+1/2)/2 and

J n
i := G

�
J(·, zi, tn),�n

i�1/2,�
n
i+1/2

�
,

Fn
i+1/2 := �G

�
F (·,�n

i+1/2, zi+1/2, t
n),'n

i+1

,'n
i

�
.

In the numerical flux J n
i , we replace A(zi) by Ai, and analogously for Fn

i+1/2.
We define an approximate solution for the solids volume fraction �

s

by

�n+1

s,i :=
�
1� �n

i

�
'n+1

i for all i, n,

and the piecewise constant approximate solution on R⇥ [0, T ) as follows, where �
⌦

is the characteristic function of the set ⌦:

��z(z, t) :=
X

i,n

�
[zi,zi+1)

(z)�
[tn,tn+1

)

(t)�n
i+1/2,

��z
s

(z, t) :=
X

i,n

�
[zi�1/2,zi+1/2)

(z)�
[tn,tn+1

)

(t)�n
s,i.

In work under preparation we prove properties of the scheme defined by the
update formulas (7.3) and (7.4), and apply variants of it to other models. Roughly
speaking, the main result can be formulated by the following theorem. Its proof
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is presented in Ref. 9. The key property that needs to be established to prove the
statement is the monotonicity of the update formulas (7.3) and (7.4).

Theorem 7.1. Assume that �t > 0 and �z > 0 are chosen such that the CFL

condition (7.1) is in e↵ect. If the initial data satisfy 0  �(z, 0),�
s

(z, 0)  1, then
the scheme (7.3), (7.4) produces approximate solutions that satisfy the invariant

region property

0  ��z(z, t),��z
s

(z, t)  1 for (z, t) 2 R⇥ [0, T ). (7.5)

7.2. Numerical examples

We use the functions j
b

and f
b

given by (2.13) and (2.14), respectively, with the
parameters and functions V

asus

and V
sf

specified in Section 2.5. The height of the
vessel is 100 cm measured from z

U

= 0 cm and we have placed the injection points
at z

F

= 33.3 cm and z
W

= 66.7 cm, dividing the tank into three zones with the
same height.

7.2.1. Example 1.

In this first example we consider a column filled only with fluid at time t = 0 s,
hence �(z, 0) = �

s

(z, 0) = 0 for all z, when we start feeding aggregates, solids,
fluid and wash water at their corresponding inlets, with �

F

= 0.3 and �
s,F = 0.3.

We choose the volumetric flows so that (Q
U

, Q
F

) = (62, 70) cm3/s lies in the white
region in the operating chart in Figure 8, so that a steady-state of type SS11a is
feasible. Then Q

W

= 17.86 cm3/s is calculated by (6.1) so that (WJC) is satisfied.
These values imply that we have

q(z, t) =

8
>><

>>:

q
1

= �0.741 cm/s for z < z
F

,

q
2

= 0.111 cm/s for z
F

 z < z
W

,

q
3

= 0.358 cm/s for z � z
W

,

0  t < 180, t > 420 s.

Fig. 17 shows the time evolution of the volume fractions of the aggregate and
solid phases, and Fig. 18 shows snapshots at four time points. Initially, the aggre-
gates rise fast to the top while solids settle and a first steady state is almost reached
after t = 180 s, see Fig. 18(a). That steady state corresponds to row 1 of Table 1
and is not among the desired ones, since a froth layer at the top of the vessel is not
obtained (�

3

= �
3m

= 0.1465 < �
3M

= 0.7065), which is not adequate for e�cient
desliming.

At t = 180 s, we close the top of the vessel by setting temporarily Q
U

= Q
F

+Q
W

so thatQ
E

= 0 cm3/s, and let the column be filled of aggregates until t = 420 s, when
we open again the top of the column by setting the volumetric flows to their initial
values. In Fig. 18(b) it can be seen that aggregates have travelled down, interacting
with the solid phase in zone 1 and leaving the tank through the underflow outlet.
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Fig. 17. Example 1: Time evolution of the volume fraction profiles of aggregates � ((a) and (c))
and solids �

s

((b) and (d)) during the first 420 s in the upper row and the entire simulation to

t = 4200 s in the bottom row. Note the discontinuities in the volume fractions at the outlets.

After the top of the column is opened, there is an upwards moving discontinuity
of aggregates in zone 1, below the feed inlet at z = z

F

= 33.3 cm; see Fig. 18(c).
Finally, as can be seen in Fig. 18(d), a second steady state is reached slowly after
t = 4200 s, corresponding to a steady state of type SS11a, as it was expected.

7.2.2. Example 2.

From Figure 15 (left), we know that the volumetric flows chosen in Example 1,
(Q

U

, Q
F

) = (62, 70) cm3/s, also lie in the white region of the operating chart for
steady states of type SS31. If at time t = 4200 s we close the tank just for 10 seconds,
open it again at t = 4210 s and let the system evolve with time, following the same
procedure as in the previous example, then we can see how a steady state of type
SS31, with a stationary discontinuity of the aggregates volume fraction in zone 2, at
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Fig. 18. Example 1: Volume fraction profiles of the aggregate � and solid �
s

phases at (a) t = 180 s,
(b) t = 420 s, (c) t = 2000 s and (d) t = 4200 s.
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Fig. 19. Example 2: Time evolution of the volume fraction profiles of aggregates � and solids �
s

starting from the end profile at t = 4200 s of Example 1.

the point z
d

2 [z
F

, z
W

] = [33.3, 66.7] cm, is reached; see Figs. 19 and 20(d), with:
(
�"
2

= 0.3057 2 [�M

2

,�
2M

] = [0.2569, 0.8472] for z
d

 z < z
W

,

�#
2

= 0.2125 2 [�
2m

,�M

2

] = [0.0401, 0.2569] for z
F

 z < z
d

,

satisfying j
2

(�"
2

) = j
2

(�#
2

).

8. Conclusions

A one-dimensional model is proposed for the hydrodynamic movement of simul-
taneously rising aggregates (air bubbles with attached hydrophobic particles) and
settling hydrophilic particles in the fluid under in- and outflows of a flotation col-
umn. The model is a non-strictly hyperbolic, triangular system of two PDEs, whose
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Fig. 20. Example 2: Volume fraction profiles of the aggregate � and solid �
s

phases at (a) t = 4200 s,
(b) t = 4210 s, (c) t = 4350 s and (d) t = 5000 s.

flux functions have several spatial discontinuities due to the in- and outflows. The
PDEs can in principle be solved consecutively. Each spatial discontinuity means
that locally a scalar conservation law with discontinuous flux should be solved, first
for the aggregate volume fraction, then with this solution as known coe�cients in
the second equation for the volume fraction of solids within the suspension.

The main results of this work are the derivation of the model equations and
the categorization of steady-state solutions for a device called the Reflux Flota-
tion Cell,16,28 where the slurry of water and particles is mixed with air before the
three phases are injected into the column. The classification of steady states; see
Sections 3.4 and 5.2–5.4, is generic in the sense that it does not depend on the par-
ticular choices of the constitutive functions j

b

and f
b

. A numerical scheme is also
suggested, which is able to handle more flexible geometries than in the examples
presented here. The varying cross-sectional area A(z) may be piecewise continuous.

The advantage of modelling three-phase flow with PDEs arising from funda-
mental basic principles is that established theory for PDEs can be used to obtain
a complete description of all possible steady states. Although there are many the-
oretically possible steady states of our model, some of these are undesired due to
large volumetric flows or layers of particles or aggregates standing still relative to
the column. By imposing natural physical requirements, we obtain a reduction of
all possible steady states to a few desired ones. In particular, the additional natural
requirement that the use of wash water should be e↵ective – it should flow down-
wards through the froth region below the wash water inlet – turns up as a one of
the conditions in the categorization of steady states, namely ({FIIIa) in Section 4.
In Section 5, we argue how this and other conditions lead to a natural division of
the desired steady states of the aggregate phase into the two cases (WW), wash
water is in e↵ect, and ({WW), wash water is not injected since it would be flushed
out at the top e✏uent.
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The necessary nonlinear constraints on the volumetric flows for each steady
state are visualized in operating charts for easy use of an operator. Among others,
the capacity of the column is obtained in terms of an upper bound on the feed
volumetric flow Q

F

for given feed volume fractions �
F

and �
s,F. Many steady states

can only occur for large values on the sum �
F

+�
s,F, which means that there is not

much liquid in the feed inlet. Such are probably unrealistic steady states. For the
most common steady states with froth in zones 2 and 3, and solid particles in zone 1,
the operating charts give precise information on the limitations of the volumetric
flows Q

F

, Q
U

and Q
W

for given feed volume fractions �
F

and �
s,F. Whether a

steady state can be achieved or not depends also on the dynamic history, which we
demonstrate with numerical simulations.

Our assumption that all aggregation of hydrophobic particles to bubbles occurs
before the mixture of the three phases is fed into the column should be released in
future work to allow for the aggregation process to occur also inside the column.
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