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Abstract

We propose a high-order adaptive numerical solver for the semilinear elliptic boundary value problem modelling
magnetic plasma equilibrium in axisymmetric confinement devices. In the fixed boundary case, the equation is posed
on curved domains with piecewise smooth curved boundaries that may present corners. The solution method we
present is based on the hybridizable discontinuous Galerkin method and sidesteps the need for geometry-conforming
triangulations thanks to a transfer technique that allows to approximate the solution using only a polygonal subset
as computational domain. Moreover, the solver features automatic mesh refinement driven by a residual-based a
posteriori error estimator. As the mesh is locally refined, the computational domain is automatically updated in order
to always maintain the distance between the actual boundary and the computational boundary of the order of the local
mesh diameter. Numerical evidence is presented of the suitability of the estimator as an approximate error measure
for physically relevant equilibria with pressure pedestals, internal transport barriers, and current holes on realistic
geometries.
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1. Introduction

In toroidally axisymmetric configurations and in the absence of flows, the steady-state equations of magnetohy-
drodynamics (MHD) yield the following partial differential equation for the poloidal flux function ψ = ψ(r, z), known
as the Grad-Shafranov equation [1, 2, 3]

− ∆∗ψ = µ0r2 dp
dψ

+
1
2

dg2

dψ
=: F(r, ψ). (1)

In Equation (1), r is the radial coordinate in the (r, φ, z) coordinate system naturally associated with the toroidal
geometry, φ being the ignorable coordinate for the axisymmetric configurations we consider here, ψ = ψp/2π where
ψp is the poloidal magnetic flux, p = p(ψ) is the plasma pressure, 2πg(ψ) = −Ip is the net poloidal current flowing in
the plasma and the toroidal field coils, and the elliptic toroidal operator is defined by

∆∗ψ := r2div
(

1
r2 grad ψ

)
= r∂r

(
1
r
∂rψ

)
+ ∂2

zψ = r∂r

(
1
r
∂rψ

)
+ r∂z

(
1
r
∂zψ

)
= r∇̃ ·

(
1
r
∇̃ψ

)
.
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Above, for simplicity in the manipulations we have defined the operator ∇̃ := (∂r, ∂z) that acts formally like a vector
of partial derivatives independent of the coordinate system.

Both p and g are free functions of ψ, which are determined from other physical processes or experimental data,
and taken as input to the partial differential equation. In general, p and g are such that F(r, ψ) is a nonlinear function
of ψ, so that the Grad-Shafranov equation is a semi-linear partial differential equation. Together with the boundary
conditions, p and g determine the nature of the MHD equilibrium. Once ψ is computed, the equilibrium magnetic
configuration is fully determined, through the relations

B =
1
r
∇ψ × eφ +

g(ψ)
r

eφ (2)

µ0J =
1
r

dF
dψ
∇ψ × eφ −

1
r

∆∗ψ eφ (3)

where B is the magnetic field and J is the current density, and eφ is the unit vector in the toroidal direction.
In this article, we will focus on fixed boundary equilibria, for which the boundary Γ of the computational domain

Ω is known, and corresponds to the boundary of the confinement region of the plasma. Physically, it must be a level
set of ψ, and without loss of generality, we can let Γ := ∂Ω be the level set ψ = 0. We are therefore interested in the
following Dirichlet boundary value problem

−r∇̃ ·
(

1
r
∇̃ψ

)
= F(r, ψ) in Ω ⊂ R2, (4a)

ψ = 0 on Γ. (4b)

For plasma physics applications, the solution ψ to (4), the corresponding magnetic field B and the current density J
given by Equations (2) and (3), are used as input for stability, transport, and radio-frequency (RF) wave propagation
and heating solvers [4, 5, 6, 7, 8, 9, 10]. This gives stringent performance requirements on numerical solvers for
the Grad-Shafranov equation. The solver should be fast, so that the time to compute the equilibrium configuration is
negligible compared to the run time of the stability, transport, or RF wave solvers. The solver should also be accurate,
because some of the physical quantities of interest depend not only on ψ, but also on the first derivatives of ψ, as
is obvious for B and J, and on the second derivatives of ψ, as is the case for the magnetic curvature for example.
Because of the central role of the Grad-Shafranov equation in magnetic confinement fusion, many numerical solvers
for Eq.(4) have been developed in the last decades, relying on a vast range of formulations and numerical schemes.
A good summary of early efforts can be found in [11]. More recently, approaches based on bi-cubic finite elements
[7, 12, 13], on spectral elements [6, 14], on the hybridizable discontinuous Galerkin method[15], and on integral
equation methods [16, 17] have led to fast, high order accurate, and flexible solvers. Even so, none of these solvers
simultaneously satisfy the four criteria required for optimal performance in magnetic confinement fusion applications,
which can be listed as follows: 1) the solver must be fast; 2) it must be able to handle arbitrary boundaries Γ, which may
or may not have corners (corresponding to magnetic X-points); 3) it must compute derivatives with high accuracy; and
4) it must have automatic adaptive refinement capabilities, in order to resolve the strong gradients in internal transport
barriers and in edge pedestals without having a fine grid throughout the computational domain, where the solution is
typically very smooth and requires few grid points for good accuracy. In this article, we present the first numerical
Grad-Shafranov solver which satisfies these four performance requirements.

To achieve this goal, we added adaptive refinement capabilities to the Hybridizable Discontinuous Galerkin (HDG)
Grad-Shafranov solver we originally presented in [15]. The solver relies on reformulating the problem as a first order
system [18], which takes the form

q −
1
r
∇̃ψ = 0 in Ω ⊂ R2, (5a)

−∇̃ · q =
F
r

in Ω ⊂ R2, (5b)

ψ = 0 on ∂Ω. (5c)

The auxiliary variable q will be referred to as the flux. This mixed formulation has the practical advantage of discretiz-
ing q directly, thus providing additional accuracy for the the physically meaningful quantity. Our enhanced solver
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exploits the natural suitability of discontinuous Galerkin methods for parallel computation, sidesteps the geometrical
complexities by carrying on the computations on a polygonal subdomain of Ω discretized by a simple non-fitting and
shape regular triangulation, handling the curved boundaries with a high order transferring technique, approximates
the partial derivatives of ψ directly, and features automatic mesh refinement driven by a local error estimator.

The structure of the paper is as follows. Starting with geometric considerations, Section 2 describes the discretiza-
tion of the mixed form (5), introducing the basic concepts of the hybridizable discontinuous Galerkin method and the
components of the solution process including the treatment of curved boundaries, the accelerated iteration process
to handle the non-linearity of the Grad-Shafranov equation, and a post-processing step yielding an approximation
to ψh that converges with an additional order of accuracy. Throughout Section 2 the problem is posed on a fixed
computational domain with a given mesh. Adaptivity is then addressed in Section 3, which starts by introducing a
residual-based local error estimator and by briefly discussing choices for the element marking strategy. The remaining
part of the section discusses the issue of refining the embedded triangulation while maintaining the distance between
the computational domain and the boundary always on the order of the local mesh parameter. The resulting strategy
generates a sequence of updates of the computational domain that approximate the physical domain by exhaustion as
the refinement progresses. In Section 4 we present numerical experiments to demonstrate the efficiency and reliability
of the error estimator, as well as the convergence properties of the numerical solution. The experiments are carried out
in realistic geometries first for a Solov’ev equilibrium for which an exact solution is available, and then for physically
relevant benchmark problems with sharp and localized features, specifically an equilibrium with a pressure pedestal,
and equilibrium with an internal transport barrier, and an equilibrium with a deep current hole. Concluding remarks
are given in the final Section 5.

2. The discrete problem

Before describing the adaptive algorithm, we will discuss the problem on a fixed, uniform and embedded polygonal
mesh. Most of the details have been described in [15]. However, starting with this standard case will allow us to
introduce the notation and the fundamental ideas underpinning our HDG approach, as well as our treatment of curved
boundaries and the iterative method to treat the non-linearity of the equation. Moreover, the solution of the problem in
this setting will constitute the starting point for the adaptive algorithm. It is therefore worth repeating the key elements
of the numerical scheme for the standard situation here.

The HDG formulation of the problem depends on the specific spatial discretization of the domain where the
equation is posed. Therefore, we will first describe the choice of polygonal subdomain where the problem will be
discretized. The use of a polygonal subset of Ω as the computational domain creates the need to communicate the
Dirichlet boundary conditions from the “true” boundary to that of the polygonal subdomain where the computations
are carried out. Hence, we will then describe the high order transfer scheme that will be used to impose the boundary
conditions on the computational domain. With all these ingredients in place, it will be then possible to pose the discrete
problem and describe the numerical method in detail. A rigorous analysis of the method for general semilinear elliptic
equations is the subject of ongoing work [19].

2.1. The computational domain
We will start by defining the polygonal subdomain where the discrete system will be posed, henceforward the

computational domain, and the grids that will be used for approximation. Following [20], the computational domain
Ωh will be chosen to be a polygonal subdomain of Ω obtained from a regular background triangulation as follows.

Consider T h to be a triangulation of a polygonal domain containing Ω and consisting of uniformly shape-regular
triangles K as in Figure 1 (left). The computational mesh Th and the computational domain Ωh (Figure 1 center) are,
respectively, the set of triangles completely contained in Ω and its interior. More precisely, we define

Th :=
{
K ∈ T h : K ⊂ Ω

}
, ∂Th :=

{
∂K : K ∈ Th

}
, and Ωh :=

(
∪K∈Th K

)◦
.

The boundary of the computational domain will be denoted by Γh and set of all edges e commonly referred to as the
skeleton of the triangulation will be denoted by Eh. We note that the skeleton can be decomposed as Eh = E∂ ∪ E◦

where
E∂ :=

{
e ∈ Eh : e ⊂ Γh

}
and E◦0 :=

{
e ∈ Eh : e 1 Γh

}
3



Background mesh Computational mesh Companion mesh

Figure 1: A uniform, shape-regular background mesh is used to define the initial computational and companion meshes (left). The background
elements completely contained in Ω define the computational mesh Th (center). The union of the background elements defining a minimal cover
of Ω will define the companion mesh Th

c (right). (Colors online).

are the set of boundary edges and interior edges respectively. In addition, a companion grid consisting of those
elements in T h that constitute a minimal cover of Ω will be defined

Th
c :=

{
K ∈ T h |K ∩Ω , ∅

}
,

the companion mesh consists of all the elements in Th together with those background elements that intersect with the
boundary of Ω, as depicted on the right end of Figure 1. The need for this additional companion mesh will become
apparent in Section 3.3, where the mesh refinement strategy will be discussed.

2.2. Extension from subdomains

The definition of the computational domain Ωh as an unfitted and embedded subdomain seems to leave open the
problem of defining the approximate solutions in the intermediate region Ω \ Ωh corresponding to the area between
the “true” boundary and the computational boundary. In particular, one must deal with the problem of defining the
boundary conditions on Γh. This in fact can be dealt with in a natural way through the following transfer procedure.

Consider a point x = (r, z) on the true boundary Γ and a point x = (r, z) on the computational boundary Γh. We
will denote by t the normalized vector anchored at x pointing towards x and by σt(x) the line segment connecting
them, henceforward the transfer path – as in Figure 2 (right). Then, integrating equation (5a) along a transfer path
with direction vector given by t(x) it follows that

ψ(x) = ψ(x̄) −
∫ d(x,x)

0
r(x + t(x)s) q(x + t(x)s) · t(x) ds,

where d(x, x) is the Euclidean distance between x and x. Therefore, as long as q is known along the transfer path, it
is possible to represent exactly the value of ψ at any point x of the computational boundary in terms of its value at one
point x of the physical boundary and the values of the flux. However, the value of q will be determined only within
the computational domain Ωh and thus we will resort to an approximation of q by extrapolation. In order to detail the
extrapolation procedure we must first introduce the following extension of the computational domain.

Consider the set Y consisting of all endpoints of the edges e ∈ E∂0 and denote by hloc(y) the minimum diameter
h over all triangles containing y. To every y ∈ Y we will assign a unique point y ∈ Γ and will denote by σt(y) the
straight line segment connecting them. The assignment must be done such that the Euclidean distance between them
d(y, y) = O(hloc(y)), and that no two pair of such paths intersects. This can be done in different ways, for instance,
following the procedure described in [20].

For a boundary edge e ∈ E∂0 we will denote by Ke
ext the region enclosed by Γ, the paths corresponding to each

endpoint of e, and the edge itself—as depicted on the right end of Figure 2. The union of all these patches covers the
“un-meshed” gap Ω \ Ωh, as can be seen in the center of Figure 2. Each of the patches Ke

ext can be unambiguously
identified with the unique element Ke with which they share the edge e. This allows us to define the extension
E(p) : Ke ∪ Ke

ext → R of a polynomial function p : Ke → R as
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Γ

x

x̄

Γh

σt(x)

t(x)

ψ(x)

ψ(x̄)

e

Γ

y1 y2

ȳ1

ȳ2

Ke
ext

Ke

σt(y1)
σt(y2)

Figure 2: Data on the boundary Γ can be transferred to the boundary of the computational domain using the transfer paths σt (left). The region
Ω \Ωh is divided into patches Ke

ext where the flux will be extrapolated from the neighboring element Ke (right) giving rise to a full tesselation of Ω

(center).

E(p) : Ke ∪ Ke
ext −→ R (6)
x 7−→ p(x).

In other words, the extension E(p) is a polynomial function with the same coefficients as p, but defined on the
larger domain Ke∪Ke

ext. We can finally address the issue of transferring the boundary conditions to the computational
boundary. Let qh be a polynomial approximation to q. Then, for x ∈ Γh ∩ e and x ∈ Γ ∩ Ke

ext, the quantity

ϕh(x) := ψ(x̄) −
∫ d(x,x)

0
r(x + t(x)s) E(qh)(x + t(x)s) · t(x) ds (7)

will be used as an approximation to the boundary value ψ(x). Note that the same formula can be used to define the
approximation of the pointwise value of ψ for any point x ∈ Ke

ext.

2.3. The discrete system
We can now present the form of (5) that will be discretized. Given a computational domain Ωh with boundary Γh

and a regular embedded triangulation Th as defined in Section 2.1, we look for functions ψ and q defined on Th and ψ̂
defined on Eh satisfying the system

q −
1
r
∇̃ψ = 0 in K ∀K ∈ Th, (8a)

−∇̃ · q =
F
r

in K ∀K ∈ Th, (8b)

ψ = ψ̂ on ∂K ∀K ∈ Th, (8c)
[[q]] = 0 on e ∀e ∈ E◦h, (8d)

ψ =ϕh on Γh. (8e)

where ϕh is given by (7) and the jump of the flux across two elements K+,K− with exterior normal vectors n+, n−
along a shared edge e is defined in standard fashion as

[[q]] := q+ · n+ + q− · n−

. Note that for the remainder of this article, we will also use this notation for the jump of any scalar quantity a across
two elements, namely [[a]] := a+ − a−. In (8c) and in what follows, quantities with the superscript ̂ must be
understood as defined only on the skeleton of the mesh. The system (8) is the restatement of (5) as a collection of the
local problems (8a) and (8b) satisfying the boundary conditions (8c) or (8e) on each element and “glued” together by
the continuity condition on the flux (8d).

The introduction of the hybrid unknown ψ̂ as a global quantity encoding the boundary conditions allows to fully
decouple the local problems if an appropriate numerical flux is chosen (more on this below). Once the hybrid variable
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has been determined, the local problems for ψ and q can be solved independently. This process is akin to the well
known static condensation technique used to decouple degrees of freedom on the edges/faces of an element from
those on the interior which was first devised for Finite Elements [21] and mixed formulations through hybridization
[22]. The connections between HDG and static condensation have been thoroughly discussed in [23].

When equation (8b) is posed weakly and discretized, one is faced with the choice of a numerical approximation
for the normal flux across the element edges. Due to the fact that it allows to express the weak forms of (8a) and (8b)
entirely in terms of local quantities and also that it allows great freedom of choice for the approximation spaces, the
choice

q̂ · n := q · n− τ(ψ − ψ̂). (9)

has become standard [23] and we will follow it in our discretization. Moreover, it is known that if the stabilization
parameter τ > 0 remains of order O(1), the method achieves optimal convergence order. Therefore, for all the
computations we will set it to be τ = 1.

2.4. The HDG discretization
The HDG method [24] yields piecewise polynomial approximations (qh, ψh, ψ̂h) to the solutions of the weak

formulation obtained by testing (8) with functions in the finite dimensional spaces

Vh = {v ∈ L2(Th) : v|K ∈ Pk(K) ∀K ∈ Th}, (10)
Wh = {w ∈ L2(Th) : w|K ∈ Pk(K) ∀K ∈ Th}, (11)
Mh = {µ ∈ L2(Eh) : µ|e ∈ Pk(e) ∀e ∈ Eh}, (12)

where the space of polynomials of degree k defined on the triangle K is denoted by Pk(K), the product space of two
copies of itself is given by P(K) := [Pk(K)]2 and Pk(e) is the space of polynomials of degree k defined on a given edge
e. The L2 inner products in these spaces are given by

(·, ·)Th :=
∑
K∈Th

(·, ·)K 〈·, ·〉∂Th :=
∑
K∈Th

〈·, ·〉∂K ,

where, as is customary, (·, ·)K and 〈·, ·〉∂K are the L2 inner products on a single element K and on its boundary ∂K
respectively.

Once the choice of trace of the numerical flux given by (9) has been introduced and the system has been tested
with functions (v,w, µ) ∈ Vh ×Wh × Mh, the weak form of the first order system (8) can be understood as consisting
of two parts. The local equations

(rqh, v)Th + (ψh,∇ · v)Th = 〈ψ̂h, v · n〉∂Th , (13a)
−(∇ · qh,w)Th − 〈τ ψh,w〉∂Th = −〈τ ψ̂h,w〉∂Th + (F/r,w)Th , (13b)

that are satisfied by qh and ψh independently on every element of the triangulation, and the global equations

〈qh · n, µ〉∂Th\Γh + 〈τ ψh, µ〉∂Th\Γh = 〈τ ψ̂h, µ〉∂Th\Γh , (13c)

〈ϕh, µ〉Γh = 〈ψ̂h, µ〉Γh , (13d)

that are satisfied by the hybrid unknown ψ̂h at the interior edges of the triangulation E◦h (13c) and at the set of edges
belonging to the boundary of the computational domain, E∂h (13d). For each extended element Kext we can let x ∈
∂Kext ∩ Γ be the starting point of a transfer path and use the equation (7) together with the fact that ψ satisfies
homogeneous Dirichlet boundary conditions to express the transferred boundary value ϕh appearing on (13d) as

ϕh(x) = −

∫ d(x,x)

0
r(x + t(x)s) E(qh)(x + t(x)s) · t(x) ds. (14)

In the previous expression, E(qh) is the extrapolation of the polynomial qh defined on Ke to the neighboring exterior
element Ke

ext obtained by extending the domain of definition of p from Ke to Ke
ext while keeping the same polynomial

form.
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2.5. The solution method
In this section we will first consider the source term F to be independent of ψ; once the solution method has been

described for this simple, linear case, we will come back to address the nonlinear case, in which F = F(r, ψ). We will
denote the basis functions of the approximation spaces Vh, Wh, and Mh respectively by φi, φi, and µi, and define the
Finite Element-style mass and convection matrices

[r]i j := (rφ j, φi)Th [∇·]i j := (∇ · φ j, φi)Th

[τ]i j := 〈τφ j, µi〉∂Th [n]i j := 〈φ j · n, µi〉∂Th .

Moreover, if qh, ψh, ψ̂h, ϕh, and F/r denote respectively the coefficient vectors of the system unknowns, the transferred
boundary conditions, and the source term, we can write the two parts of the HDG system succinctly in matrix form as

[
r ∇·>

−∇· −τ

] [
qh
ψh

]
=

[
n>
−τ

] [
ψ̂h

]
+

[
0

F/r

]
(Local equations), (15a)

[
0
ϕh

]
+

[
nI◦e −τ I◦e
0 0

] [
qh
ψh

]
=

[
−τ I◦e

IΓ
e

] [
ψ̂h

]
(Global equations), (15b)

where the operators I◦e and IΓ
e above are the discrete counterparts of the restriction to the interior edges ψ̂|∂Th\Γh and

boundary edges ψ̂|Γh , respectively. Now, following equation (14) the first term on the left hand side of (15b) comes
from integrating the extrapolation rE(qh) along the transfer paths; it can therefore be expressed in the form[

0
ϕh

]
=

[
0 0
−Q 0

] [
qh
ψh

]
where Q = Q̃ IΓ

K is the composition of two discrete operators: 1) a restriction to the elements with at least one edge
on the computational boundary, denoted as IΓ

K , and 2) the combination of a line integral along the transfer paths and
the inner product with the basis of Mh defined on the skeleton of the mesh, which can be represented as

[Q̃]i j := 〈
∫ d(x,x)

0 r(x + t(x)s) E(φi)(x + t(x)s) · t(x) ds, µi(x)〉∂K .

At the implementation level, both integrals (the line integral and the inner product) involved in Q̃ are approximated
by quadrature rules with matching orders of accuracy. Therefore the global system can be written in matrix form as[

nI◦e −τ I◦e
−Q 0

] [
qh
ψh

]
=

[
−τ I◦e

IΓ
e

] [
ψ̂h

]
, (16)

where the top row is satisfied by the degrees of freedom of ψ̂h lying on the internal edges of the skeleton and the
bottom row is satisfied by those on the edges corresponding to the boundary of the computational domain. Solving
formally the linear system (15a) for (qh, ψh) we obtain[

qh
ψh

]
=

[
r ∇·>

−∇· −τ

]−1 [
n>
−τ

] [
ψ̂h

]
+

[
r ∇·>

−∇· −τ

]−1 [
0

F/r

]
. (17)

This expression for (qh, ψh) can then be substituted into (16) and, from the resulting system, it follows that( [
n I◦e −τ I◦e
−Q 0

] [
r ∇·>

−∇· −τ

]−1 [
n>
−τ

]
−

[
−τ I◦e

IΓ
e

] ) [
ψ̂h

]
= −

[
nI◦e −τ I◦e
−Q 0

] [
r ∇·>

−∇· −τ

]−1 [
0

F/r

]
. (18)

From this equation one can obtain ψ̂h and back-substitute in (17) to obtain (qh, ψh). The relevance of the last two
equations stems from the following observations. First, the matrices and the corresponding linear solves appearing
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on the right hand side of equation (17) are entirely in terms of local quantities, and can therefore be processed fully
in parallel. Second, despite the fact that it involves a global unknown, the system (18) is sparse, for it includes
only degrees of freedom associated to either the skeleton of the mesh or elements with at least one edge on the
computational boundary. Moreover, the linear solves appearing on each side of equation (18) are the same as those in
(17) and therefore have to be computed only once. The solution process can then be split into three steps:

1. Locally (i.e. in parallel) solve the systems[
r ∇·>

−∇· −τ

]−1 [
n>
−τ

]
and

[
r ∇·>

−∇· −τ

]−1 [
0

F/r

]
appearing in equation (17) and store them.

2. Using the local vectors obtained in the first step, assemble the matrices on both sides of equation (18) and solve
the resulting global system, thus recovering the hybrid unknown ψ̂h.

3. Distribute the relevant parts of ψ̂h over local elements and use the local solvers obtained on the first step to
recover (qh, ψh) fully in parallel.

Accelerated Picard iterations. In order to deal with the non-linear nature of the Grad-Shafranov equation, we will
resort to a simple, yet effective, iterative strategy consisting of accelerated Picard iterations. The standard Picard or
fixed point iteration goes as follows. Given a guess for the solution ψn, the source term can be evaluated yielding
a source F := F(r, ψn) that is independent of the solution. The resulting system (15) is a linear problem that can
be solved as described above yielding an update ψn+1. The source term is then updated by evaluation at the newly
computed solution and the process is repeated iteratively until the relative difference between successive updates falls
below a certain predetermined tolerance.

This strategy is simple to implement but may require a large number of iterations to converge for small values of
the tolerance. However, the convergence rate for Picard iterations can be improved by means of a device known as
Anderson acceleration [25]. Anderson’s idea is to improve convergence through the use of information from more
than one previous iterate. This is achieved by defining the update ψn+1

h to be an optimized convex linear combination
of the solutions to (15) obtained on a predetermined number of previous iterations. The coefficients of the convex
linear combination are chosen so that the difference between the solutions and the updates is minimized. This requires
the storage of m previous updates and m previous solutions and the solution of a small (m + 1) × (m + 1) system at
every iteration in order to determine the optimal coefficients.

Below we describe algorithmically the simplest form of the acceleration—which is the version implemented in
our solver—but we refer the reader to the works by Kelly and Toth [26], and Walker and Ni [27], where the method is
studied in detail. If we denote by ε a prescribed tolerance, by ψ0 the initial input, by (−∆∗)−1 the solution operator to
(15) described above, and by ψh the final, approximate solution to the non-linear problem then, in its simplest form,
the acceleration algorithm that uses m previous iterates can be described as follows:
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Algorithm 1: Anderson-accelerated Picard iterations

begin
n = 0 , change = 1;
ψ̃1 = (−∆∗)−1 F(r, ψ0)/r;
G1 = ψ̃1 − ψ0;
ψ1 = ψ̃1;
while change ≥ ε do

n = n + 1;
k = min{m, n};
ψ̃n+1 = (−∆∗)−1 F(r, ψn)/r;
Gn+1 = ψ̃n+1 − ψn ;
Find: (α1, . . . , αk+1) ∈ Rk+1 such that

1.
∑k+1

j=1 α j = 1

2. (α1, . . . , αk+1) = argmin ‖
∑k+1

j=1 α jGn+ j−k‖

ψn+1 =
∑k+1

j=1 α jψ̃
n+ j−k;

change = ‖ψn+1 − ψn‖/‖ψn+1‖;
ψh = ψn+1;

2.6. Non-linear local post-processing

Following the idea introduced by Stenberg [28], once the approximations ψh and qh have been determined from
the solution of (15), it is possible to define a locally post-processed function ψ∗h with enhanced convergence properties.
There a several different ways of defining the post-processing, but in order to take advantage of the increased accuracy
of the post processing as part of a residual estimator we will define ψ∗h to be the piecewise polynomial function
satisfying

ψ∗h ∈ Pk+1(K) ∀K ∈ Th,

(∇ψ∗h,∇wh)K − (F(ψ∗h)/r,∇wh)K = (rqh,∇wh)K − (F(ψh)/r,∇wh)K ∀wh ∈ Pk+1(K), (19a)
(ψ∗h, 1)K = (ψh, 1)K . (19b)

Note that when F is independent of ψ, this reduces to the case analyzed in [29], where it was shown that the solution
to this auxiliary problem converges towards ψ with order k + 2 when k ≥ 1. Numerical evidence suggests that the
simpler post processing that arises if the terms involving F in equation (19a) are dropped is also effective; even in the
semi-linear case. However for our convergence analysis in [19] the effect of the non-linear source term needs to be
considered and this leads to the non linear post processing above. The solution to this auxiliary problem will be used
in the error estimator described in the next section.

3. The adaptive algorithm

In many situations of physical interest, the solution ψ and its derivatives may vary rapidly in localized regions in
Ω [16]. In such cases, adaptive mesh refinement is an effective way to minimize the number of degrees of freedom
for a given target accuracy. Our adaptive strategy follows the standard “solve→ estimate→ mark→ refine” iterative
paradigm. Specifically, starting from an initial triangulation Th,0, the problem is solved and a suitable error estimator
is computed using the obtained approximate solution. Based on the error estimator, a subset of the triangulation
is marked for refinement. This generates a new triangulation Th,1 where the process can be started over until a
predetermined number of cycles is reached or the estimator falls below a given threshold.

Our algorithm is based on theoretical work done by Cockburn and Zhang [30, 31], and Cockburn, Nochetto
and Zhang [32]. In the first references, the authors proposed and studied the performance of a residual-based error
estimator, and in the third one they were able to prove the convergence of the adaptive HDG method assuming that
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Dörfler’s marking criterion is used (we will return to this later). The problems studied in those cases were linear
and the equations were posed in polygonal domains discretized with fitted triangulations. Our focus on the Grad-
Shafranov equation poses additional challenges, namely the semi-linearity of the problem and the non-fitting nature
of the computational domain—which in turn imposes the requirement that the distance between the boundaries Γ

and Γh remains locally O(hloc(y)). The non-linearity is dealt with through the accelerated iterative process described
above. The refinement of the unfitted grid will require some additional care, as we discuss below.

3.1. A residual-type estimator
For an edge e with length he and a function u defined on e (or on a superset containing e) we will denote by ‖u‖e

its L2 norm on e (or the norm of its restriction to e). Considering K to be a generic element of the triangulation Th, we
will adopt the following local error estimator

η2
K = h2

K‖F(ψ∗h)/r + ∇ · qh‖
2
K + ‖qh −

1
r
∇ψ∗h‖

2
K

+
1
2

 ∑
e∈E◦∩∂K

he‖[[qh]]‖2e +
∑

e∈E◦∩∂K

h−1
e ‖[[ψ

∗
h]]‖2e

 +
∑

e∈E∩∂K

h−1
e ‖ψ̂h − ψ

∗
h‖

2
e , (20)

where ψ∗h is the post-processed numerical solution obtained by solving the local auxiliary problem (19). This estimator
is based on the one proposed and analyzed by Cockburn and Zhang [30, 31] for linear elliptic equations posed in
polygonal domains. The global error estimate is obtained by adding all the local contributions over the computational
domain and is therefore defined as

η2(Th) :=
∑
K∈Th

η2
K .

A detailed analysis of the estimator and its properties for semilinear problems like ours as well as possible improve-
ments for it are the subject of a separate communication [19], but some intuitive understanding can be gained by
expressing the estimator in the form η2 = η2

1 + η2
2 + η2

3 + η2
4 + η2

5 , where

η2
1 :=

∑
K∈T

h2
K‖F(ψ∗h)/r + ∇ · qh‖

2
K , η2

2 :=
∑
K∈T

‖qh −
1
r
∇ψ∗h‖

2
K ,

η2
3 :=

1
2

∑
K∈T

∑
e∈E◦∩∂K

he‖[[qh]]‖2e , η2
4 :=

1
2

∑
K∈T

∑
e∈E◦∩∂K

h−1
e ‖[[ψ

∗
h]]‖2e ,

η2
5 :=

∑
K∈T

∑
e∈E∩∂K

h−1
e ‖ψ̂h − ψ

∗
h‖

2
e ,

and studying each term separately. The term η1 corresponds to the local residual of the strong equation for the flux
(8b). Similarly, it would be desirable to consider the residual qh −

1
r∇ψh of the strong equation (8a) as part of the

estimator. However, it would converge with reduced order due to the differentiation of the approximate solution ψh.
To overcome this and achieve the desired order of convergence, the term η2 makes use of the post processed solution
ψ∗h instead, thus preserving the desired convergence order k + 1. In this sense, the second term of the estimator is
reminiscent of indicators based on gradient recovery, where an improved approximation of the gradient is obtained
through post processing and is then used to estimate the error.

Finally, the edge terms η3 and η4 provide, respectively, a measure of the local loss of conformity of the solution and
of its flux, by considering their jumps across element edges in the normal direction. η5 estimates the rate of conver-
gence of the hybrid variable and post-processed solution—restricted to the element boundaries—as approximations
to the local trace.

3.2. Marking strategies
Given an initial triangulation Th,0, the discrete problem is solved and post-processed yielding the approximations

(ψh,0, qh,0, ψ̂h,0, ψ
∗
h,0) which are then used to compute the local error estimator (20). One now must choose the elements

that will be marked for refinement based on the local values of ηK . Different marking strategies have been tried in the
literature. Here we consider Dörfler’s criterion [33, 34] and the so-called maximum criterion [35]. In both cases, one
must first choose a value of the marking parameter γ ∈ [0, 1] and then the elements
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A) Either belonging to a minimal setM such that

γ
∑

K∈Th,0

η2
K ≤

∑
K∈M

η2
K , (Dörfler Marking)

B) or for which the local estimate ηK is such that

γ max
K∈Th,0

{ηK} ≤ ηK , (Maximum marking)

are marked and subsequently refined. The choice of the value of the marking parameter γ depends on the needs and
constraints of the user. It is usually picked based on considerations such as memory availability, desired speed of the
computation, etc. In the case of Dörfler’s marking, values of γ closer to zero result in fewer elements being marked on
each cycle, and very localized refinement; larger values of γ tend to produce refinements that are more uniform. This
qualitative behavior is reversed when maximum marking is used: refinement is localized for large values of gamma
and becomes uniform as the parameter approaches zero.

The convergence of the adaptive refinement loop on fixed polygonal domains was established by Cockburn, No-
chetto and Zhang within the context of hybridizable discontinuous Galerkin methods for linear problems [32]; and
assuming Dörfler’s method for marking. Regarding the maximum marking criterion, Morı́n, Siebert and Veeser [36]
proved the convergence of the method for a wide class of linear problems discretized with Finite Elements. The
analysis of this strategy applied to HDG is still an ongoing task, even for the linear case, but the strategy seems to be
robust, as suggested by our numerical experiments.

3.3. Local mesh refinement
Once some elements of the triangulation have been marked by one of the criteria presented above, triangle re-

finement can be carried out through standard methods such as newest vertex bisection (NVB) [37, 38] or a red-green
procedure [39]. In the standard setting where the computational domain Ωh coincides with the domain of definition
of the PDE, each of the refined meshes {Th,n}n≥0 produced in such fashion will remain a triangulation of the original
domain Ωh.

In the present situation however, the computational domain is in fact a strict subdomain of Ω. Thus, if Th,0 is a
triangulation of a fixed computational domain Ωh built as described in Section 2.1, with every subsequent refinement
step the mesh will drift farther away from satisfying the condition that the distance between the computational bound-
ary ∂Ωh and the actual boundary ∂Ω remains locally of the order of the triangle diameter hloc, as depicted in Figure 3.
As a result, the transfer procedure would not yield satisfactory results.

Level 0 Level 2 Level 4

Figure 3: If the computational domain Ωh (left) is kept
fixed as the mesh is locally refined, the successive trian-
gulations (center and right) will fail to keep the distance
between ∂Ωh and ∂Ω of the order of the local mesh diam-
eter hloc. This effect can be observed, for instance, in the
lower part of the domain.

In order to avoid such situations, we propose a strategy to up-
date the computational domain consistent with the mesh refine-
ment in such a way that the local distance condition is always
satisfied. The method, showed schematically in Figure 4, can be
described as follows:

1) Starting from the computational domain Ωh,0, a pair of
computational and companion meshes Th,0 and Th,0

c are built fol-
lowing the process detailed in Section 2.1.

2) The problem is solved and the error is estimated on the
mesh Th,0, which results in a listM of elements marked for re-
finement (green triangles in the second column of Figure 4).

3) The elements in the companion mesh Th,0
c which corre-

spond to those marked on the computational mesh in the previ-
ous step are marked for refinement. In addition, all the elements
in the companion mesh which intersect the true boundary ∂Ω and
share an edge with any triangle inM are marked for refinement
as well (yellow triangles in the second column of Figure 4). This results in an augmented listMc of elements in the
companion mesh.

4) The companion mesh Th,0 is updated by performing triangle refinement on all elements in Mc, yielding a
temporary background mesh T̃ that completely contains Ω, as depicted in the central column of Figure 4. Note that
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Figure 4: An iteration of the adaptive algorithm is illustrated. The equation is solved on the computational mesh on the top left. The error is
estimated on the initial mesh and a few elements are marked for refinement (top center left). The corresponding elements in the companion mesh
are marked for refinement as well as the elements which both intersect the boundary and share an edge with the ones marked (bottom center
left). The elements are then refined avoiding the creation of hanging nodes (center). From the refined companion mesh the elements completely
contained within Ω are selected as a new computational mesh (top center right) while those forming a minimal cover of Ω are selected as the
updated companion mesh (bottom center right). The data structures are then updated eliminating the unnecessary elements and the process can be
restarted (right).

since the new elements may have smaller diameter, some of them may now in fact be completely contained in Ω even
if the parent triangle was not. In a similar fashion, some of them may neither be contained in Ω nor intersect ∂Ω.

5) A new computational domain Ωh,1 and its corresponding triangulation Th,1 are defined by selecting the triangles
in T̃ that are completely contained in Ω. Analogously, a new companion mesh Th,1

c is defined by selecting all the
elements of T̃ that are either completely contained in Ω or intersect the boundary ∂Ω. The remaining triangles are
discarded. The resulting level of refinement will then use the new computational and companion meshes and the
process will continue until the predetermined stopping criterion is met.

Note that no computations are ever carried out using the companion grid, which is needed only to update the
background triangulation in a way that gives rise to a refined computational domain Ωc,n satisfying the separation
condition d(y, ∂Ω) = O(hloc(y)) for every y ∈ ∂Ωc,n. Moreover, since at every level the computational domain
Ωh,n is defined as a subdomain of an increasingly finer background triangulation, the algorithm yields a sequence of
computational domains that effectively “exhaust” Ω as n → ∞ so long as the local estimator ηK remains nonzero on
the elements having an edge on ∂Ωh,n. This is illustrated in Figure 5.

4. Numerical Experiments

We present five examples to showcase the performance of the adaptive algorithm. To establish the correct behavior
of the error estimator and the refinement strategy we begin with a linear test case where the analytic solution is known.
The chosen analytic equilibrium has the advantage of providing the desired geometric and parametric flexibility, but
corresponds to solutions that vary smoothly across the confinement region and thus tend to favour a uniform refinement
strategy. Nevertheless, the availability of an exact solution allows us to verify the overall behavior of the estimator.

More challenging and physically relevant situations arise when the source term of the equation is non-linear and
has large gradients. The solutions for these cases develop features that would be hard to resolve accurately while
simultaneously keeping a small number of elements and using the boundary transfer technique. It was precisely to
address cases like these that we included adaptive refinement capabilities in our solver, and the last four examples in
this section belong to this category. In all the experiments, the maximum criterion was used for marking.
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4.1. A Solov’ev equilibrium

Level 0 Level 3 Level 6
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Figure 5: A sequence of adaptively refined computational
(top) and companion meshes (bottom). As the refinement
progresses, the triangulations approximate the computa-
tional domain by exhaustion. The computations are carried
out using only the meshes in the top row.

In order to test the performance of the error estimator and
the adaptive algorithm, we start with a simple linear setting for
which an exact solution is available. The example corresponds
to a so-called Solov’ev profile [40] where the source term of the
equation is taken to be of the form [41]

F(r, ψ) := (1 − A)r2 + A. (21)

The free parameter A determines the ratio of plasma pressure
to magnetic pressure in the equilibrium of interest. With such
a source term, the Grad-Shafranov equation is linear and exact
solutions can be constructed by imposing physical or geometri-
cal constraints. The case that we will consider here corresponds
to a geometry similar to that of the National Spherical Toroidal
Experiment (NSTX) in the high beta regime.

The exact solution is of the form

ψ =
r4

8
+ A

(
1
2

r2 ln r −
r4

8

)
+

12∑
i=1

ci ψi, (22a)

where A = −0.52 and

ψ1 = 1, ψ7 = 8z6 − 140z4r2 + 75z2r4 − 15r6 ln r

ψ2 = r2, + 180r4z2 ln r − 120r2z4 ln r,

ψ3 = z2 − r2 ln r, ψ8 = z,

ψ4 = r4 − 4r2z2, ψ9 = zr2,

ψ5 = 2z4 − 9z2r2 + 3r4 ln r ψ10 = z3 − 3zr2 ln r,

− 12r2z2 ln r, ψ11 = 3zr4 − 4z3r2,

ψ6 = r6 − 12r4z2 + 8r2z4, ψ12 = 8z5 − 45zr4 − 80z3r2 ln r + 60zr4 ln r. (22b)

Following the process presented in detail in [41] and using the geometric parameters corresponding to NSTX in that
article, the undetermined constants c1, . . . , c12 for the case at hand can be easily computed, and we find

c1 = −0.001479661575325, c2 = −0.366568333204813, c3 = 0.002409406149732,
c4 = −0.023957517168316, c5 = 0.000692888519765, c6 = −0.001768712177298,
c7 = −0.000044132956899, c8 = 0.000433522611526, c9 = 0.008286849573230,
c10 = −0.000044132956899, c11 = −0.001299619729855, c12 = 0.000072050578303.

(22c)

Graphs of the solution and its partial derivatives with these parameter values on the target geometry can be seen in
Figure 6.

To test the behavior of the error estimator with respect to the true error, the equation was solved with polynomial
basis with degrees k = 1, . . . , 4 and uniform mesh refinement (i.e. for any subsequent levels hn+1 = hn/2). The initial
mesh diameter was h = 1.03. The convergence plots for this experiment are shown in the top row of Figure 7, where
it can be seen that the estimator accurately captures the qualitative behavior of the error. Moreover, as can be seen in
Table 1, the rates of convergence of the numerical solutions ψh and qh, as well as those of the error estimator η and all
its component terms η1, . . . , η5 are nearly optimal.

For comparison, five levels of the adaptive algorithm were ran on the same problem for polynomial degrees from
1 to 4 on the same initial grid. Marking was done using the maximum criterion with parameter γ = 0.3: elements
whose estimator is at least 30% of the maximum local estimate are marked. The convergence history can be seen in
the bottom row of Figure 7. As can be seen in the same figure, for k = 4 the number of degrees of freedom after four
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ψ ∂rψ ∂zψ ∂rrψ ∂zzψ Jφ

Figure 6: Exact Solov’ev solution to the Grad-Shafranov equation with source term F(r, ψ) = (1 − A)r2 + A and the parameter values A, c1, . . . , c12
specified in (22) (left), and its partial derivatives with respect to r and z (center). The toroidal current density is displayed on the right.
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Figure 7: Convergence plots for the global error estimator η (left), and the mean square errors for ψh (center), and ∇ψh/r (right) for the Solov’ev
equilibrium arising from the source term (21). The case of uniform refinement is shown in the top row, while adaptive refinement with maximum
marking and γ = 0.3 is displayed in the bottom row. The final mesh for k = 4 in each case is displayed on the left.

levels of uniform refinement is about the same order of magnitude as that of five levels of adaptive refinement, but the
adaptive algorithm places most of the computational effort on the left side of the domain. Comparing with the plot of
∂rrψ in Figure 6 it is clear that the refinement is focusing on the region where the magnitude of the second derivative
in the horizontal direction peaks.

4.2. A pressure pedestal
The following example features a pressure profile that remains almost flat throughout the confinement region and

drops abruptly in the vicinity of the boundary:

p(ψ) = (c1 + c2ψ
2)(1 − e−(ψ/σ)2

). (23)

with c1 = 0.8, c2 = 0.2, and σ2 = 0.005. This kind of profile is quite frequent in magnetic confinement fusion exper-
iments, where the narrow region of fast decrease of the pressure is known as a pressure pedestal. If the equilibrium
is assumed to be neither paramagnetic nor diamagnetic, g(ψ) = constant, and the source term of the Grad-Shafranov
equation is

F(r, ψ) = 2r2ψ

(
c2(1 − e−(ψ/σ)2

) +
1
σ2 (c1 + c2ψ

2)e−(ψ/σ)2
)
, (24)

which has very strong gradients close to the edge of the confinement region since σ is small. Figure 8 shows both the
pressure and the source profiles in an ITER-like geometry with an magnetic X-point (as described in [41]). As can
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Polynomial degree k = 1 Polynomial degree k = 2
ψh qh η η1 η2 η3 η4 η5 ψh qh η η1 η2 η3 η4 η5

h→ h/2 1.32 0.79 1.66 1.68 1.64 1.49 2.1 1.81 2.57 1.66 2.01 2.04 2.02 1.63 1.52 2.78
h/2→ h/4 1.95 2.34 1.8 1.84 1.62 1.59 2.05 1.5 2.7 2.89 2.63 2.64 2.81 2.55 2.93 3.06
h/4→ h/8 1.97 2.11 1.87 1.89 1.82 1.78 2.28 1.81 2.8 2.26 2.66 2.66 2.75 2.62 2.56 2.81

h/8→ h/16 1.99 2.13 1.93 1.95 1.93 1.86 2.33 1.94 2.97 3.02 2.88 2.88 2.91 2.83 2.74 2.85
Polynomial degree k = 3 Polynomial degree k = 4

ψh qh η η1 η2 η3 η4 η5 ψh qh η η1 η2 η3 η4 η5

h→ h/2 3.46 1.66 1.64 1.61 1.82 1.99 1.96 2.82 3.94 2.14 1.39 1.4 1.65 1.28 1.64 2.47
h/2→ h/4 3.52 3.62 3.53 3.53 3.58 3.53 3.91 3.93 4.37 4.02 4.34 4.34 4.29 4.21 4.53 4.56
h/4→ h/8 3.13 2.3 3.26 3.26 3.2 3.34 3.44 3.48 3.64 2.7 3.88 3.89 3.63 3.81 3.92 3.96

h/8→ h/16 4.26 3.78 3.83 3.83 3.81 3.85 3.99 3.71 5.21 4.56 4.78 4.79 4.68 4.67 4.79 4.79

Table 1: Estimated convergence rates (e.c.r.) for the approximate solutions ψh and qh as well as for the error estimator η and all its separate
components in the case of uniform refinement. The exact Solov’ev solution is given in Equation (22). For a given quantity U we denote the L2

error at the k−th refinement level by E(U)k
2. Then, the estimated convergence rate is computed through the formula e.c.r = log2

(
E(U)k

2/E(U)k+1
2

)
.
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Figure 8: A pressure pedestal of the form given by equation (23) for σ2 = 0.005 in an ITER-like geometry (left). Cross sections for values of z
ranging from −0.5 to 0.5 are shown (center left). The corresponding source term of the Grad-Shafranov equation presents sharp gradients on the
outer edge (center right). Cross sections of the source for the same values of z as for the pressure are shown ( right).

be seen from the cross sections at constant values of z in the same figure, the source has large gradients close to the
boundaries, especially in the “outer” region.

The equation was solved using (24) as the source term and the latter parameter values. Figure 9 shows the post-
processed numerical solution obtained when the polynomial basis was chosen to have degree four, and six levels
of refinement were used with marking parameter γ = 0.3. The computational mesh had initial mesh parameter
h = 1.71 × 10−1, whereas the final mesh, displayed in the first block of the figure, consists of 636 elements with
maximum diameter hmax = 1.71 × 10−1 and minimum diameter hmin = 1.07 × 10−2. Our adaptive refinement scheme
clearly focuses degrees of freedom in the region corresponding to the pressure pedestal, where ψ and its derivatives
vary strongly.

4.3. A transport barrier

In magnetic confinement fusion experiments, large pressure gradients may also be observed closer to the core of
the discharge, and correspond to internal transport barriers [42]. To model such situations, we consider a pressure
profile of the form

p(ψ) =
1 + H erf(s(ψ − ψ0))

1 + H
(1 − (1 − ψ)a)b , (25)

where erf(·) is the error function, a and b are natural numbers, and the parameters H and s control the height and the
steepness of the barrier respectively. The parameter ψ0 gives the location of the transport barrier with respect to a
common normalization where ψ ∈ [0, 1] [43, 17]. In Figure 10 we present the behavior of the pressure as a function
of ψ for different parameter values, and thus verify that we are able to model experimentally relevant situations [42,
Figure 3].
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Figure 9: Numerical solution for the equilibrium with a pressure pedestal, Equation (23), with parameter values c1 = 0.8, c2 = 0.2, σ2 = 0.005.
The computation was carried out with a polynomial basis of degree k = 4 and six levels of adaptive refinement with γ = 0.3. The post processed
scalar potential ψ∗ and the partial derivatives of ψ are shown. Cross sections for z = −0.5,−0.25, 0, 0.25, 0.5 are displayed in the center. The
computational grid at the final refinement is shown on the left.
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Figure 10: Left: Different parameter values in (25) give
rise to pressure profiles with increasingly steeper gradients.
Center: In the case g = const. (see equation(1)) the cor-
responding source term for the Grad-Shafranov equation
has a highly localized structure in the neighborhood of the
transport barrier.

Figure 11 shows the numerical solution for a transport barrier
with parameter values H = 0.5, s = 40, ψ0 = 0.3, a = 4, and
b = 2, corresponding to the steepest barrier depicted in Figure
10. Plots of the pressure distribution and the source term in the
confinement geometry are shown side by side. The geometry
for this experiment corresponds to an up-down symmetric ITER-
like configuration with two magnetic X-points [41]. The solution
displayed in the figure was computed adaptively using piecewise
cubic polynomials. The initial mesh consisted of 129 elements,
and the final grid consisted of 514 elements with a ratio hmax =

8.97 × 10−2 and hmin = 7.9 × 10−3. Both meshes can be seen in
Figure 12.

Figure 12 shows the convergence of the global error estima-
tor for basis functions of degrees varying from 1 to 4. All the

experiments started on the initial mesh shown in Figure 12, which subsequently underwent six levels of refinement
with maximum marking using γ = 0.5 (i.e. only those elements whose local contribution is at least 50% of the max-
imum value of ηk are refined at every level). Note that at the finest level of refinement all the examples in the figure
have roughly the same number of degrees of freedom; however, as is expected, higher order discretizations result in
coarser grids (i.e. consisting of fewer elements) and considerably smaller error.

ψ Pressure Horizontal Cross Sections Source
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Figure 11: Left: Poloidal flux corresponding to the source term associated with the transport barrier. Center left: Pressure profile corresponding
to Equation (25) and with parameter values H = 0.5, s = 40, ψ0 = 0.3, a = 4, and b = 2. Center right: Horizontal cross sections for the pressure
and the source at constant values of z. Right: plot of the source term giving rise to the transport barrier. The geometry corresponds to a ITER-like
configuration obtained using the process described in [41].
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Figure 12: Left: Convergence history of the error estimator for the transport barrier after six levels of refinement with γ = 0.5 for basis functions
of degrees from k = 1 to k = 4. All the computations were carried out starting with the initial mesh displayed to the right of the convergence plot.
The final computational grids after six levels of adaptive refinement for k = 1, . . . , 4 are shown on the right.

4.4. A current hole

Another challenging configuration of physical relevance is the family of equilibria with a so-called “current hole”.
This name refers to equilibria for which there is an extended region in the plasma core where the toroidal current Jφ is
nearly zero [44, 45, 46, 47, 48]. The “near absence” of the current (thus the name “hole”) corresponds to a core region
with almost constant pressure. Such equilibria have been observed experimentally in several tokamaks, and are found
to be remarkably robust [48]. They are likely to naturally occur in future large scale tokamaks in fully non-inductive
current drive operation. They have therefore gathered significant interest in recent years [48] (and references therein).

The following source term, adapted from that of the pressure pedestal, can give rise to such an equilibrium

F(r, ψ) = 2r2ψ

c2(1 − e−(ψ/σ1)2
) +

1
σ2

1

(c1 + c2ψ
2)e−(ψ/σ1)2

 + c3(1 − e−(ψ/σ2)2
) cos (c4ψ). (26)

Choosing the values c1 = 0.4, c2 = 0.1, c3 = −18, c4 = 10π as well as σ2
1 = 5 × 10−3 and σ2

2 = 3 × 10−3, the spatial
distribution of the source term will be as shown in Figure 13 for an up-down symmetric D-shaped geometry with
ITER-like parameters (as described in [16]). Recalling the relationship µ0Jφ = F(r, ψ)/r, we see that the current drops
to close to zero in the core of the confinement region and has sharp peaks near the boundary. As can be seen in the
figure, there is a sharp contrast between the almost constant behavior of both the source and the solution in the central
region and the large gradients at the edge. Consistently, the estimator focuses the computational effort on the edges
and keeps a relatively coarse mesh in the core. The computation was ran over six levels of refinement with marking
parameter γ = 0.3; for a polynomial basis of degree four the resulting final mesh shown in the figure consisted of
3310 elements where hmin = 5.1 × 10−3 and hmax = 8.16 × 10−2.

Figure 14 shows the partial derivatives of ψh obtained directly from the components of the flux qh and their
cross sections for different values of z. The second derivatives were computed by differentiating the local polynomial
approximants of ∂rψh and ∂zψh, which introduces additional error. However, the high polynomial order in combination
with the focused mesh refinement imply that, even with the expected deterioration, the approximation remains within
an acceptable range.

4.5. An internal layer

Perhaps one of the most desirable features in an adaptive scheme is the ability to automatically detect localized
features in the solution and to refine the computation locally in order to resolve them accurately. The pressure pedestal
can be turned into a more challenging benchmark along these lines if the source term is modified to

F(r, ψ) = 2r2ψ

c2(1 − e−(ψ/σ1)2
) +

1
σ2

1

(c1 + c2ψ
2)e−(ψ/σ1)2

 + c3(1 − e−(ψ/σ1)2
)e−(1−r−ψ)2/σ2

2 . (27)

This source term is not physically relevant for magnetic confinement fusion applications, because it cannot be cast in
the canonical form of the source in (1) due to the explicit appearance of the coordinate r in the argument of the last
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Figure 13: Source term for an equilibrium with a current hole, given by (26) (first and top-second panels). This gives rise to mesa-like magnetic
flux function (second-bottom and third panels). The refinement is automatically driven towards the boundary (fourth panel). The solution is
up-down symmetric and only cross sections for the upper half are plotted. The evaluation of the source term was done using the post-processed
approximation ψ∗h.
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Figure 14: Approximate first (left three panels) and second (rightmost three panels) partial derivatives of ψh for the equilibrium with the current
hole, whose source term is given by given by (26). Because of the up-down symmetry of the geometry, the cross sections are plotted only for values
of z ranging from 0 to 0.5.

.

exponential. Nevertheless, it represents a good benchmarking problem to test for the detection of internal layers. As
can be seen in Figure 15 (left and center left) the source presents an internal layer that changes abruptly in addition to
the large gradients at both edges of the confinement region. In the figure and the numerical experiment the constants
were taken to be c1 = 0.8, c2 = 0.2, c3 = 15, σ2

1 = 5 × 10−3, and σ2
2 = 7.5 × 10−4. The simulation parameters

were as in the example with the pressure pedestal: the same ITER-like geometry with an x-point, the same starting
grid, polynomial basis of degrees one to four and six levels of refinement with γ = 0.3. As can be seen in the
central panel of Figure 15, the estimator successfully detects the development of internal features in the solution, and
concentrates the refinement in that region. The final grid consists of only 601 elements with maximum mesh diameter
hmax = 1.21 × 10−1 and minimum mesh diameter hmin = 2.14 × 10−2.

The post-processed numerical solution and cross sections at different heights are depicted on the right end of
Figure 15. The sharp change in the slope of the solution drives the interior refinement thus enabling the accurate
approximation of the step-like behavior of the derivative in the horizontal direction (Figure 16). The approximate first
derivatives are shown in Figure 16 along with a plot of the convergence history of the global error estimator.

5. Conclusion

The solver for fixed-boundary Grad-Shafranov equilibria based on the hybridizable discontinuous Galerkin method
we presented has several attractive features beyond the high order approximation properties for ψ and its partial deriva-
tives. The use of an HDG framework provides the code with a robust and reliable method that is naturally suited for
parallelization and addresses the issue of unnecessarily large numbers of degrees of freedom—usually associated with
discontinuous Galerkin discretizations—through hybridization.

The use of a polygonal subdomain to carry out the computations combined with the transfer algorithm to impose
boundary conditions “at a distance” allows for a simple, yet highly accurate, treatment of curved boundaries without
having to resort to more complicated techniques like isoparametric mappings. It also enables a unified treatment of
both smooth geometries and those with corners, corresponding to magnetic X-points. Moreover, in applications where
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Figure 15: The combination of a pressure pedestal with highly localized internal structure of the form given by equation (27) for σ2
1 = 0.005 and

σ2
2 = 7.5 × 10−4 in an ITER-like geometry gives rise to a source term like the one displayed on the left. Cross sections of the source for z-values

ranging from −0.5 to 0.5 are shown in the center left panel. The computational mesh –shown in the center panel after six iterations– is refined
around the region of high curvature in the source. The numerical solution obtained using polynomials of degree k = 4 and cross sections at different
z-values are shown to the right.

∂rψh ∂rψh (cross section) ∂zψh ∂zψh (cross section)

0.6 0.8 1 1.2 1.4
-1.5

-1
-0.5

0
0.5

1

0.6 0.8 1 1.2 1.4
-1.5

-1
-0.5

0
0.5

1

0.6 0.8 1 1.2 1.4

-1

-0.5

0

0.6 0.8 1 1.2 1.4

0

0.5

1

10 3 10 4

10 -4

10 -3

10 -2

10 -1

10 0

Figure 16: For the source term given by Equation (27), the partial derivative of the solution in the r direction (left) develops a step-like change
(center left) due to the structure of the source term. Change in the z direction (center and center right) is less dramatic. The convergence history for
the error estimator is shown on the right for polynomial approximations of degrees one to five using maximum marking for γ = 0.3.

the geometry of the confinement region needs to be updated, this technique provides the additional benefit of avoiding
the need for constant updating of a fitted mesh.

The addition of a local error estimator and adaptive mesh refinement allows for focused computational efforts.
As the numerical experiments show, this feature combined with the updating of the computational domain and the
improved geometric approximation of the physical domain as the refinement progresses allows for efficient detection
of relevant physical effects near the edge (as is the case for equilibria with a pressure pedestal) or the resolution of
highly localized internal structures (as is the case for equilibia with an internal transport barrier).
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Ingenieŕıa Matemática (CI2MA)

Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


