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Abstract

In this work, we discuss the existence and stability of an inverse problem arising from the determination of
the reaction coefficients for a SIS model. The study is motivated by a remark regarding the final discussion
of the recent paper [H. Xiang and B. Liu, Computers and Mathematical with Applications, 70:805–819,
2015]. The weak point of the work of H. Xiang and B. Liu is that the proofs of existence and stability
results are valid only for the one-dimensional case. Here, we introduce an appropriate framework which is
also valid in the multidimensional case and that generalizes the previous results.
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1. Introduction

In this paper, we are interested in an inverse problem that originates in mathematical epidemiology
theory. We consider that the dynamic processes of transmitted disease is governed by a SIS reaction-
diffusion system for the susceptible and infected individuals population densities. We assume that the
diffusion matrix is the identity and the reaction term consists of two terms modelling the infection process and
the recovery process, which are governed by frequency-dependent transmission function and a proportional
law, respectively. The inverse problem is motivated by the practical situation where state variables can
be measured with relative ease, on the other hand, however, the rates of disease transmission and disease
recovery, which are the coefficients of the model, are very costly or even infeasible. Thus, in the inverse
problem, we want to perform an estimation of the reaction coefficients: disease transmission and disease
recovery rates.

Let us precise the definition of the inverse problem. Indeed, we assume that the direct problem is given
by the following reaction-diffusion system

∂S

∂t
−∆S = −β(x)

SI

S + I
+ γ(x)I, (x, t) ∈ QT := Ω× [0, T ], (1)

∂I

∂t
−∆I = β(x)

SI

S + I
− γ(x)I, (x, t) ∈ QT , (2)

∇S · n = ∇I · n = 0, (x, t) ∈ Γ := ∂Ω× [0, T ], (3)

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω, (4)

where the open bounded set Ω ⊂ Rd represents the physical domain where live the population; S(x, t)
and I(x, t) are the population densities for susceptible and infected individuals at location x and time
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t, respectively; S0 and I0 are the initial densities of susceptible an infected individuals, respectively; the
functions β and γ are the rates of disease transmission and disease recovery, respectively; and n is the unit
external normal to ∂Ω. If we consider that there are experimental observations on Ω at t = T of the densities
for susceptible and infected individuals given by Sobs and Iobs, respectively. Then, the inverse problem of
estimating the unknown coefficients β and γ is defined as follows:

Inverse Problem. Given T > 0 and the set of functions {S0, I0, S
obs, Iobs} defined on Ω, find the

functions β and γ such that (S, I)(x, T ) = (Sobs, Iobs)(x) for x ∈ Ω with (S, I) the solution of (1)-(4).

This inverse problem falls into the class of model calibration or parameter identification problems.
The field of inverse problems for partial differential equations is an area with rapidly progress in the

last years [1, 12, 13]. In particular, in the case of inverse problem arising in the coefficients identification in
diffusion equations, including reaction terms or convection terms, have been addressed in the literature of
the last decades, see for instance [2, 4, 5, 6, 7, 8, 10, 17, 18, 19, 20]. The list is not exhaustive and there is
more contributions focused in different topics: applications, numerical analysis and theoretical analysis. It
is well known that most of the existing inverse problems are not well posed in the sense of Hadamard and
the study of uniqueness and stability of solutions are relevant topics, since imply that we have enough data
to determine an object and convergence of numerical o regularized to the solutions sought, respectively.

In this paper, we investigate the existence and stability of solutions of the inverse problem. Indeed,
to analyze the inverse problem, we consider a reformulation of the inverse problem like an optimal control
problem of the following type:

Optimal control problem. The inverse problem may be recasting as the optimization problem

inf J(β, γ) subject to (β, γ) ∈ Uad(Ω) and (S, I) a solution of (1)-(4). (5)

where the cost functional J and the admissible set Uad(Ω) are appropriately defined.

Then, in order to get the existence of at least one solution of the optimization problem (5), we precise the
definition of Uad(Ω) and assume that Ω is an open bounded and convex set of Rd. The hypothesis on Ω
is considered in order to get the required compactness embedding which permits the pass to the limit in a
minimizing sequence. Now, in the case of the stability result we study the continuous dependence of the
inverse problem solution with respect to the observations.

The rest of this note is organized in two sections: in Section 2 we present the general notation and the
main result and in Section 3 we give the proof of the main result.

2. Main result

We consider the standard notation of functions spaces used in the analysis of parabolic equations, see
for instance [14, 15, 16]. In particular, we use the notations Ck,α(Ω) with k ∈ N and α ∈]0, 1], Lp(Ω)
with p ≥ 1, Wm,p(Ω) with m ∈ N and p ≥ 1, for the Banach spaces of Hölder k−times continuously and
whose kth-partial derivatives are Hölder continuous with exponent α; the space of all functions from Ω to R
which are p-integrable in the sense of Lebesgue; and the usual Sobolev spaces, respectively. In particular,
we consider the notations Cα(Ω) and Hm(Ω) instead of C0,α(Ω) and Wm,2(Ω), respectively.

We consider the admissible set Uad(Ω) and the functional J : Uad(Ω)→ R defined as follows

Uad(Ω) = A (Ω) ∩
[
H |[d/2]|+1(Ω)×H |[d/2]|+1(Ω)

]
, (6)

J(β, γ) :=
1

2

[
‖S(·, T )− Sobs‖2L2(Ω) + ‖I(·, T )− Iobs‖2L2(Ω)

]
+

Γ

2

[
‖∇β‖2L2(Ω) + ‖∇γ‖2L2(Ω)

]
, (7)

with |[·]| the integer part function, Γ ∈ R+ an appropriate regularization parameter and

A (Ω) =
{

(β, γ) ∈ Cα(Ω)× Cα(Ω) : Ran(β)× Ran(γ) ⊆ [b, b]× [r, r] ⊂]0, 1[2, ∇β, ∇γ ∈ L2(Ω)
}
, (8)

2



where Ran(f) denotes the range of a function f . We note that Uad(Ω) = A (Ω) when d = 1 and coincides
with the admissible set considered by Xiang and Liu in [20].

We consider the following set of assumptions:

(H0) The open bounded and convex set Ω is such that ∂Ω is C1.

(H1) The initial conditions S0 and I0 are belong to C2,α(Ω) and satisfy the inequalities

S0(x) ≥ 0, I0(x) ≥ 0,

∫
Ω

I0(x)dx > 0, S0(x) + I0(x) ≥ φ0 > 0,

on Ω, for some positive constant φ0;

(H2) The observation functions Sobs and Iobs are belong to L2(Ω).

In a broad sense, the role of hypotheses are the following: (H0) is necessary to get the appropriate com-
pactness used to prove the existence of solutions for the inverse problem, (H1) is necessary to get the
well-posedness and strictly positive behavior of the solution for the direct problem, and (H2) is necessary
to get that the stability result.

The existence and the uniqueness can be developed by the Shauder’s theory for parabolic equations [14,
15, 16]. Meanwhile, the positive behavior of the solution is a consequence of the maximum principle. More
precisely we have the following result.

Theorem 2.1. Consider that the following hypotheses (H0)-(H1) are satisfied. If (β, γ) ∈ Cα(Ω)×Cα(Ω),
the initial boundary value problem (1)-(4) admits a unique positive classical solution (S, I), such that S and
I are belong to C2+α,1+α/2(QT ) and also S and I are bounded on QT , for any given T ∈ R+.

On the other hand, we consider that the functions P and Q are solutions of the following backward
boundary value problem

∂P

∂t
+ ∆P = β(x)

I
2

(S + I)2
(P −Q), (x, t) ∈ QT := Ω× [0, T ], (9)

∂Q

∂t
+ ∆Q =

(
β(x)

S
2

(S + I)2
− γ(x)

)
(P −Q), (x, t) ∈ QT , (10)

∇P · n = ∇Q · n = 0, (x, t) ∈ Γ := ∂Ω× [0, T ], (11)

P (x, T ) = S(x, T )− Sobs(x), Q(x, T ) = I(x, T )− Iobs(x), x ∈ Ω, (12)

where (β, γ) ∈ Uad and (S, I) is the corresponding solution of (1)-(4) with (β, γ) instead of (β, γ).

Theorem 2.2. Assume that the hypotheses (H0)-(H3) are satisfied. Then, the assertions

(i) There exists at least one solution of (5).

(ii) Let us consider (β, γ) is the solution of (5) and (S, I) the corresponding solutions of (1)-(4) with
(β, γ) instead of (β, γ). Then, the adjoint system to (1)-(4) is given by the system (9)-(12). Moreover,
the solution (9)-(12) is bounded in L∞(0, t;H2(Ω)) for almost all time t in ]0, T ]. In particular the
solution (9)-(12) is bounded in L∞(0, t;L∞(Ω)) for almost all time t in ]0, T ].

(iii) Let us consider S, I, β, γ, P and Q as is given in (ii). Then, the following inequality∫
QT

[
(β̂ − β)

S I

S + I
− (γ̂ − γ)I

]
(P −Q)dxdt

+ Γ
[ ∫

Ω

∇β · ∇(β̂ − β)dx +

∫
Ω

∇γ · ∇(γ̂ − γ)dx
]
≥ 0, ∀(β̂, γ̂) ∈ Uad(Ω), (13)

is satisfied.
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(iv) The mapping (β, γ) 7→ (S, I) is continuous from Uad(Ω) ⊂ [L2(Ω)]2 to L∞(0, t;L2(Ω)) for almost all
time t in ]0, T ].

(v) The mapping (β, γ, Sobs, Sobs) 7→ (P,Q) is continuous from Uad(Ω) × L2(Ω) × L2(Ω) ⊂ [L2(Ω)]4 to
L∞(0, t;L2(Ω)) for almost all time t in ]0, T ].

(vi) Given c = (c1, c2) ∈ R2
+ (fix) define the set Uc(Ω) =

{
(β, γ) ∈ Uad(Ω) :

∫
Ω

(β, γ)dx = (c1, c2)
}

. Then,

there exist Γ ∈ R+ such that the solution of (5) is uniquely defined, up an additive constant, on Uc(Ω)
in the L2(Ω) sense for any regularization parameter Γ > Γ.

are satisfied.

Our results on generalize for d ≥ 1 the recent results obtained by Xiang and Liu [20] in the case d = 1.

3. Proof of main result: Theorem 2.2

3.1. Proof of (i)

We note that Uad(Ω) 6= ∅ and J(β, γ) is bounded for any (β, γ) ∈ Uad(Ω). The fact that Uad(Ω) 6= ∅
follows for instance by considering the pair of functions (β, γ)(x) = (b + b, r + r)/2, which is belong to
Uad(Ω). The boundedness of J is deduced by the following three facts: the bounded behavior of S and
T on QT as consequence of Theorem 2.1, the hypothesis (H2) and the fact that ∇β, ∇γ ∈ L2(Ω) by the
definition of Uad(Ω). Then, we can consider that {(βn, γn)} ⊂ U is a minimizing sequence of J and also we
can introduce the notation C> ∈ R+ such that J(βn, γn) < C>.

On the other hand, we claim the compact embedding H |[d/2]|+1(Ω) ⊂ Cα(Ω) for α ∈]0, 1/2]. Indeed,
it can be deduced using two results. First, by Theorem 6[9, pp. 270], we have the Sobolev embedding
H |[d/2]|+1(Ω) ⊂ Cθ(Ω) with θ = 1/2 for d odd and θ ∈]0, 1[ for d even. Then, for all d we have the
continuous embedding H |[d/2]|+1(Ω) ⊂ C1/2(Ω). Second, by Theorem 1.3.1[3, pp. 11], we have the compact
embedding C1/2(Ω) ⊂ Cα(Ω) for all α ∈]0, 1/2]. Hence our claim follows from the chain of embeddings
H |[d/2]|+1(Ω) ⊂ C1/2(Ω) ⊂ Cα(Ω) for all α ∈]0, 1/2].

The compact embedding H |[d/2]|+1(Ω) ⊂ Cα(Ω) for α ∈]0, 1/2], implies that the minimizing sequence
{(βn, γn)} is bounded in the strong topology of Cα(Ω) × Cα(Ω) for all α ∈]0, 1/2], since there exists a
positive constant C (independent of β, γ and n) such that

‖βn‖Cα(Ω) + ‖γn‖Cα(Ω) ≤ C
(
‖βn‖H|[d/2]|+1(Ω) + ‖γn‖H|[d/2]|+1(Ω)

)
, ∀α ∈]0, 1/2].

Now, we note that the right hand is bounded by the fact that βn, γn ∈ H |[d/2]|+1(Ω), see the definition of
Uad(Ω) given on (6).

Let us denote by (Sn, In) the solution of the initial boundary value problem (1)-(4) corresponding to
(βn, γn). Then, by considering the fact that {(βn, γn)} is belong to Cα(Ω) × Cα(Ω) for all α ∈]0, 1/2], by
Theorem 2.1, we have that Sn and In are belong to the Hölder space C2+α,1+α

2 (QT ) and also {(Sn, In)} is
a bounded sequence in the strong topology of C2+α,1+α

2 (QT )× C2+α,1+α
2 (QT ) for all α ∈]0, 1/2].

The boundedness of the minimizing sequence and the corresponding sequence {(Sn, In)}, implies that
there exist

(β, γ) ∈
[
C1/2(Ω)× C1/2(Ω)

]
∩ Uad(Ω), (S, T ) ∈ C2+ 1

2 ,1+ 1
4 (QT )× C2+ 1

2 ,1+ 1
4 (QT ),

and the subsequences again labeled by {(βn, γn)} and {(Sn, In)} such that

βn → β, γn → γ uniformly on Cα(Ω), (14)

Sn → S, In → I uniformly on Cα,
α
2 (QT ) ∩ C2+α,1+α

2 (QT ). (15)

Moreover, we can deduce that (S, I) is the solution of the initial boundary value problem (1)-(4) correspond-
ing to the coefficients (β, γ).
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Hence, by Lebesgue’s dominated convergence theorem, the weak lower-semicontinuity of L2 norm, and
the definition of the minimizing sequence, we have that

J(β, γ) ≤ lim
n→∞

J(βn, γn) = inf
(β,γ)∈Uad(Ω)

J(β, γ). (16)

Then, (β, γ) is a solution of (5).

3.2. Proof of (ii)

The proof of that (9)-(12) is the adjoint system for (1)-(4) we can follow by the standard arguments
in optimal control theory, see for instance [11]. Now, in order to get the L∞(0, t;H2(Ω)) estimates, let us
consider an arbitrary t ∈]0, T ] and we claim that

‖P (·, t)‖2L2(Ω) + ‖Q(·, t)‖2L2(Ω) ≤ C, (17)

‖∇P (·, t)‖L2(Ω) + ‖∇Q(·, t)‖L2(Ω) ≤ C, (18)

‖∆P (·, t)‖L2(Ω) + ‖∆Q(·, t)‖L2(Ω) ≤ C, (19)

‖P (·, t)‖L∞(Ω) ≤ C, ‖Q(·, t)‖L∞(Ω) ≤ C, (20)

for a some positive generic constants C. We can prove the claims (17)-(20) by energy estimates for an
initial value problem equivalent to (9)-(12). Indeed, in order to transform in an initial boundary problem we
introduce the change of variable τ = T−t for t ∈ [0, T ]. Moreover, consider the notation w1(·, τ) = P (·, T−τ),
w2(·, τ) = Q(·, T − τ), S∗(·, τ) = S̄(·, T − τ), and I∗(·, τ) = Ī(·, T − τ). Then, the adjoint system (9)-(12) is
equivalent to the system

(w1)τ −∆w1 = β(x)

(
I∗

S∗ + I∗

)2

(w1 − w2), in QT , (21)

(w2)τ −∆w2 = β̄(x)

(
S∗

S∗ + I∗

)2

(w1 − w2)− γ̄(x)(w1 − w2), in QT , (22)

∇w1 · n = ∇w2 · n = 0, on Γ, (23)

w1(x, 0) = S̄(x, T )− Sobs(x), w2(x, 0) = Ī(x, T )− Iobs(x), in Ω. (24)

Now, we proceed to get the energy estimates for (21)-(24).
In order to prove (17) and (18), we test (21) by w1 and (22) by w2, and sum the results to get that

1

2

d

dτ

(
‖w1(·, τ)‖2L2(Ω) + ‖w2(·, τ)‖2L2(Ω)

)
+ ‖∇w1(·, τ)‖2L2(Ω) + ‖∇w2(·, τ)‖2L2(Ω)

≤
∫

Ω

|β̄(x)|
(

I∗

S∗ + I∗

)2

|w2
1 − w1w2| dx

+

∫
Ω

(
|β̄(x)|

(
S∗

S∗ + I∗

)2

+ |γ̄(x)|

)
|w1w2 − w2

2| dx

≤
(
b+ r

) [
‖w1(·, τ)‖2L2(Ω) + ‖w2(·, τ)‖2L2(Ω)

]
. (25)

Then, from the Gronwall inequality, we obtain

‖w1(·, τ)‖2L2(Ω) + ‖w2(·, τ)‖2L2(Ω) ≤ exp
(

2(b+ r)T
)(
‖w1(·, 0)‖2L2(Ω) + ‖w2(·, 0)‖2L2(Ω)

)
,

which implies (17). Now, from (25) and (17), we have that

‖∇w1(·, τ)‖2L2(Ω) + ‖∇w2(·, τ)‖2L2(Ω) ≤ (b+ r) exp
(

2(b+ r)T
)(
‖w1(·, 0)‖2L2(Ω) + ‖w2(·, 0)‖2L2(Ω)

)
,
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and we can follow the estimate (18).
On the other hand, using the fact that∫

Ω

(wi)τ∆wi dx = −
∫

Ω

∇[(wi)τ ] · ∇wi dx +

∫
∂Ω

(wi)τ∇(wi) · n dS = −1

2

d

dτ
‖wi(·, τ)‖2L2(Ω),

for i = 1, 2. We note that, multiplying (21) by ∆w1, multiplying (22) by ∆w2, integrating on Ω, and adding
the results, we deduce that

1

2

d

dτ

(
‖w1(·, τ)‖2L2(Ω) + ‖w2(·, τ)‖2L2(Ω)

)
+ ‖∆w1(·, τ)‖2L2(Ω) + ‖∆w2(·, τ)‖2L2(Ω)

≤ (b+ r)
[
2ε‖w1(·, τ)‖2L2(Ω) + 2ε‖w2(·, τ)‖2L2(Ω) +

1

2ε
‖∆w1(·, τ)‖2L2(Ω) +

1

2ε
‖∆w2(·, τ)‖2L2(Ω)

]
,

for any ε > 0. Then, we have that

1

2

d

dτ

(
‖w1(·, τ)‖2L2(Ω) + ‖w2(·, τ)‖2L2(Ω)

)
+

(
1− (b+ r)

2ε

)(
‖∆w1(·, τ)‖2L2(Ω) + ‖∆w2(·, τ)‖2L2(Ω)

)
≤ 2ε(b+ r)

[
‖w1(·, τ)‖2L2(Ω) + ‖w2(·, τ)‖2L2(Ω)

]
.

Now, by selecting ε > (b+ r)/2 and using the estimate (17) we get the inequality (19).
¿From (17), (18) and (19), we have that the norm of P (·, t) and Q(·, t) are bounded in the norm of H2(Ω)

for any t ∈]0, T ]. Thus, by the standard embedding theorem of H2(Ω) ⊂ L∞(Ω), we easily deduce (20) and
conclude the proof of the item (ii).

3.3. Proof of (iii)

We can prove the inequality (13) by straightforward generalization to the multidimensional case the one
dimensional arguments given on the proof Theorem 3.3 in [20].

3.4. Proof of (iv)

Let us consider the set of functions {S, I} and {Ŝ, Î} solutions to the direct problem (1)-(4) and with

the coefficients {β, γ} and {β̂, γ̂}, respectively. Then, we can prove that there exist the positive constant C
such that the inequality

‖(Ŝ − S)(·, t)‖2L2(Ω) + ‖(Î − I)(·, t)‖2L2(Ω) ≤ C
(
‖β̂ − β‖2L2(Ω) + ‖γ̂ − γ‖2L2(Ω)

)
, (26)

holds for any t ∈ [0, T ]. Now, by notational convenience we consider δS, δI, δβ and δγ defined as follows

δS = Ŝ − S, δI = Î − I, δβ = β̂ − β, δγ = γ̂ − γ. (27)

Then, from the systems (1)-(4) for (S, I) and (Ŝ, Ŝ) we have that (δS, δI) satisfy the initial boundary value
problem

(δS)t −∆(δS) = −β̂(x)

(
Ŝ

Ŝ + Î
− S

S + I

)
− δβ(x)

(
Ŝ

Ŝ + Î

)
+ γ̂(x)δI + γ(x)I, in ∈ QT , (28)

(δI)t −∆(δI) = β̂(x)

(
Ŝ

Ŝ + Î
− S

S + I

)
+ δβ(x)

(
Ŝ

Ŝ + Î

)
− γ̂(x)δI − γ(x)I, in ∈ QT , (29)

∇(δS) · n = ∇(δI) · n = 0, on ∈ Γ, (30)

(δS)(x, 0) = (δI)(x, 0) = 0, in Ω. (31)
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Moreover, using the positivity of the solutions for the direct problem given by Theorem 2.1 and the lower
bound of the total population by φ0 (see proof of Lemma 4.1 in [20]), we observe that∣∣∣∣∣ Ŝ

Ŝ + Î
− S

S + I

∣∣∣∣∣ =

∣∣∣∣∣ Ŝ(Î − I)

(Ŝ + Î)(Ŝ + I)
+

I(Ŝ − S)

(Ŝ + I)(S + I)

∣∣∣∣∣ ≤ 1

φ0

(
|δS|+ |δI|

)
. (32)

Now, to prove (26), we test the equations (28) and (29) by δS and δI, respectively. Then, adding the results
and applying the Cauchy-Schwarz inequality, we get

1

2

d

dt

(
‖δS(·, t)‖2L2(Ω) + ‖δI(·, t)‖2L2(Ω)

)
+ ‖∇(δS)(·, t)‖2L2(Ω) + ‖∇(δI)(·, t)‖2L2(Ω)

≤
∫

Ω

|β̂(x)|
∣∣∣ Ŝ

Ŝ + Î
− S

S + I

∣∣∣|δS| dx +

∫
Ω

|δβ(x)|

∣∣∣∣∣ Ŝ

Ŝ + Î

∣∣∣∣∣ |δS| dx +

∫
Ω

|γ̂(x)||δI||δS| dx

+

∫
Ω

|δγ(x)||I||δS| dx +

∫
Ω

|β̂(x)|
∣∣∣ Ŝ

Ŝ + Î
− S

S + I

∣∣∣|δI| dx +

∫
Ω

|δβ(x)|
∣∣∣∣ S

S + I

∣∣∣∣ |δI| dx
+

∫
Ω

|γ̂(x)||δI|2 dx +

∫
Ω

|δγ(x)||I||δI| dx

≤ D1

(
‖δS(·, t)‖2L2(Ω) + ‖δI(·, t)‖2L2(Ω)

)
+D2

(
‖δβ‖2L2(Ω) + ‖δγ‖2L2(Ω)

)
, (33)

where D1 = (4b+φ0(1+3r+‖I‖L∞(QT )))/2φ0 and D2 = max
{

1, ‖I‖L∞(QT )

}
. Then, applying the Gronwall

inequality, we deduce that

‖δS(·, t)‖2L2(Ω) + ‖δI(·, t)‖2L2(Ω) ≤ e
D1T

(
‖δS0‖2L2(Ω) + ‖δI0‖2L2(Ω)

)
+D2T

(
‖δβ‖2L2(Ω) + ‖δγ‖2L2(Ω)

)
,

which implies (26) by using (31) and we conclude the proof of the item (iv).

3.5. Proof of (v)

Let us consider the functions S, I, Ŝ, Î, β, γ, β̂ and γ̂ as is given in the proof of the item (iv). Additionally,

we consider {P̂ , Q̂} and {P,Q} solution of the adjoint problem (9)-(12) with {Ŝ, Î, β̂, γ̂, Ŝobs, Îobs} and
{S, I, β, γ, Sobs, Iobs}, respectively. Then, to prove the desired continuous dependence, we need to prove the
existence of two positive constants C̃1 and C̃2 such that the inequality

‖(P̂ − P )(·, t)‖2L2(Ω) + ‖(Q̂−Q)(·, t)‖2L2(Ω)

≤ C̃1

(
‖β̂ − β‖2L2(Ω) + ‖γ̂ − γ‖2L2(Ω)

)
+ C̃2

(
‖Ŝobs − Sobs‖2L2(Ω) + ‖Îobs − Iobs‖2L2(Ω)

)
(34)

holds for any t ∈ [0, T ]. Indeed, additionally to the notation given in (27), we consider that δP = P̂ − P
and δQ = Q̂−Q which satisfy the system

(δP )t + ∆(δP ) = β̂(x)

(
Î

Ŝ + Î

)2

(P̂ − Q̂)− β(x)

(
I

S + I

)2

(P −Q), in QT , (35)

(δQ)t + ∆(δQ) =

β̂(x)

(
Ŝ

Ŝ + Î

)2

− γ̂(x)

 (P̂ − Q̂)−

(
β(x)

(
S

S + I

)2

− γ(x)

)
(P −Q), in QT , (36)

∇(δP ) · n = ∇(δQ) · n = 0, on Γ, (37)

(δP )(x, T ) = δS(x, T )−
(
Ŝobs(x)− Sobs(x)

)
, in Ω, (38)

(δQ)(x, T ) = δI(x, T )−
(
Îobs(x)− Iobs(x)

)
, in Ω. (39)
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Moreover, we can easily prove that the algebraic identity

ζ̂ Â(P̂ − Q̂)− ζ A(P −Q)

=
(
ζ̂ − ζ

)
ÂP̂ + ζ

(
Â− A

)
P̂ + ζ AδP −

(
ζ̂ − ζ

)
ÂQ̂− ζ

(
Â− A

)
Q̂− ζ AδQ (40)

is valid for any selection of ζ̂, ζ, Â, and A.
By selecting (ζ̂, ζ, Â,A) =

(
β̂, β, Ŝ2/(Ŝ+ Î)2, S2/(S+I)2

)
, we have that (40) implies that the right hand

side (RHS) of equation (35) can be rewritten and bounded as follows

RHS of (35) =
(
β̂ − β

)( Î

Ŝ + Î

)2

P̂ + β

( Î

Ŝ + Î

)2

−
(

I

S + I

)2
 P̂ + β

(
I

S + I

)2

δP

−
(
β̂ − β

)( Î

Ŝ + Î

)2

Q̂− β

( Î

Ŝ + Î

)2

−
(

I

S + I

)2
 Q̂− β ( I

S + I

)2

δQ

≤
(
‖P̂‖L∞(QT ) + ‖Q̂‖L∞(QT )

)(
|δβ|+ 1

φ0

(
|δS|+ |δI|

))
+ b
(
|δP |+ |δQ|

)
. (41)

Similarly, we deduce that

RHS of (36) ≤
(
‖P̂‖L∞(QT ) + ‖Q̂‖L∞(QT )

)(
|δβ|+ |δγ|+ 1

φ0

(
|δS|+ |δI|

))
+ (b+ r)

(
|δP |+ |δQ|

)
. (42)

Then, by testing (35) and (36) by δP and δQ, respectively; using the estimations (41)-(42); and applying
the Cauchy-Schwarz inequality, we get

− d

dt

(
‖δP (·, t)‖2L2(Ω) + ‖δQ(·, t)‖2L2(Ω)

)
+ 2
(
‖∇δP (·, t)‖2L2(Ω) + ‖∇δQ(·, t)‖2L2(Ω)

)
≤ Ẽ1

[
‖δP (·, t)‖2L2(Ω) + ‖δQ(·, t)‖2L2(Ω)

]
+ Ẽ2

(
‖δS(·, t)‖2L2(Ω) + ‖δI(·, t)‖2L2(Ω)

)
+ Ẽ0

(
‖δβ‖2L2(Ω) + ‖δγ‖2L2(Ω)

)
,

with Ẽ0 = 2
(
‖P̂‖L∞(QT ) + ‖Q̂‖L∞(QT )

)
, Ẽ1 = Ẽ0

(
2 + (φ0)−1

)
+ 4(b + r) and Ẽ2 = Ẽ0/φ0. ¿From the

Theorem 2.2-(ii) we have that Ẽi, i = 0, 1, 2 are constants. Then, applying the estimate (26) and rearranging
some terms, we deduce that

− d

dt

(
eẼ1t

[
‖δp1(·, t)‖2L2(Ω) + ‖δp2(·, t)‖2L2(Ω)

])
≤ (Ẽ2C + Ẽ3)

(
‖δβ‖2L2(Ω) + ‖δγ‖2L2(Ω)

)
,

and integrating on [t, T ], we have that

eẼ1t
[
‖δp1(·, t)‖2L2(Ω) + ‖δp2(·, t)‖2L2(Ω)

]
≤ eẼ1T

[
‖δp1(·, T )‖2L2(Ω) + ‖δp2(·, T )‖2L2(Ω)

]
+ T (Ẽ2C + Ẽ3)eC̃1T

(
‖δβ‖2L2(Ω) + ‖δγ‖2L2(Ω)

)
.

Hence, we can deduce (34) by application of the end condition (38)-(39).

3.6. Proof of (vi)

Using the fact that (β, γ) is a solution of (5), from (13) we have that∫
QT

[
(β̂ − β)

SI

S + I
− (γ̂ − γ)I

]
(P −Q)dxdt
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+ Γ
[ ∫

Ω

∇β · ∇(β̂ − β)dx +

∫
Ω

∇γ · ∇(γ̂ − γ)dx
]
≥ 0, ∀(β̂, γ̂) ∈ Uad(Ω), (43)

with (P,Q) a solution of the adjoint problem (9)-(12) with (β, γ) instead of (β, γ). Analogously for (β̃, γ̃)
solution of (5) with (S̃obs, Ĩobs) as observations, we have (13) implies that∫

QT

[
(β̂ − β̃)

S̃ Ĩ

S̃ + Ĩ
− (γ̂ − γ̃)Ĩ

]
(P̃ − Q̃)dxdt

+ Γ
[ ∫

Ω

∇β̃ · ∇(β̂ − β̃)dx +

∫
Ω

∇γ̃ · ∇(γ̂ − γ̃)dx
]
≥ 0, ∀(β̂, γ̂) ∈ Uad(Ω), (44)

with (P̃ , Q̃) a solution of the adjoint problem (9)-(12) with (β̃, γ̃) instead of (β, γ), (S̃ Ĩ) instead of (S I)

and (S̃obs, Ĩobs) instead of (Sobs, Iobs). Then, selecting (β̂, γ̂) = (β, γ) in (43) and (β̂, γ̂) = (β, γ) in (44),
rearranging some terms and applying the Cauchyy-Schwarz we deduce that

Γ
[
‖∇(β̃ − β)‖2L2(Ω) + ‖∇(γ̃ − γ)‖2L2(Ω)

]
≤
∫
QT

|β̃ − β|

∣∣∣∣∣ S̃ Ĩ

S̃ + Ĩ
(P̃ − Q̃)− SI

S + I
(P −Q)

∣∣∣∣∣ dxdt+

∫
QT

|γ̃ − γ|
∣∣∣Ĩ(P̃ − Q̃)− I(P −Q)

∣∣∣xdt. (45)

¿From the identity (40) with (ζ̂, ζ, Â,A) =
(

1, 1, Ŝ2/(Ŝ + Î)2, S2/(S + I)2
)

, the estimate (32), and with

(ζ̂, ζ, Â,A) =
(

1, 1, Î, I
)

, we observe that∣∣∣∣∣ S̃ Ĩ

S̃ + Ĩ
(P̃ − Q̃)− SI

S + I
(P −Q)

∣∣∣∣∣
=

∣∣∣∣∣
(
S̃ Ĩ

S̃ + Ĩ
− SI

S + I

)
P̃ +

SI

S + I
(P̃ − P )−

(
S̃ Ĩ

S̃ + Ĩ
− SI

S + I

)
Q̃− SI

S + I
(Q̃−Q)

∣∣∣∣∣
≤ 1

φ0

[
‖P̃‖L∞(QT ) + ‖Q̃‖L∞(QT )

] [
|S̃ − S|+ |Ĩ − I|

]
+ ‖S‖L∞(QT )

[
|P̃ − P |+ |Q̃−Q|

]
,∣∣∣Ĩ(P̃ − Q̃)− I(P −Q)

∣∣∣ ≤ [‖P̃‖L∞(QT ) + ‖Q̃‖L∞(QT )

] [
|S̃ − S|+ |Ĩ − I|

]
+ ‖I‖L∞(QT )

[
|P̃ − P |+ |Q̃−Q|

]
.

Then in (45) by applying the Cauchyy-Schwarz inequality, using the continuous dependence results of items
(iv)- (v), and rearranging some terms, we deduce that

Γ
[
‖∇(β̃ − β)‖2L2(Ω) + ‖∇(γ̃ − γ)‖2L2(Ω)

]
≤ Θ1

[
‖β̃ − β‖2L2(Ω) + ‖γ̃ − γ‖2L2(Ω)

]
+ Θ2

[
‖S̃ − S‖2L∞(0,T ;L2(Ω) + ‖Ĩ − I‖2L∞(0,T ;L2(Ω))

]
+ Θ3

[
‖P̃ − P‖2L∞(0,T ;L2(Ω)) + ‖Q̃−Q‖2L∞(0,T ;L2(Ω))

]
≤
[
Θ1 + Θ2 + Θ3

][
‖β̃ − β‖2L2(Ω) + ‖γ̃ − γ‖2L2(Ω)

]
+ Θ3

[
‖S̃obs − S‖2L2(Ω) + ‖Ĩobs − I‖2L2(Ω)

]
(46)

with

Θ1 = T max

{
1

φ0

[
‖P̃‖L∞(QT ) + ‖Q̃‖L∞(QT )

]
+ ‖S̃‖L∞(QT ), ‖P̃‖L∞(QT ) + ‖Q̃‖L∞(QT )

}
,

Θ2 =
1

2

(
1 +

1

φ0

)[
‖P̃‖L∞(QT ) + ‖Q̃‖L∞(QT )

]
, Θ3 =

1

2

[
‖S‖L∞(QT ) + ‖I‖L∞(QT )

]
.
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Now, considering that (β̂, γ̂), (β, γ) ∈ Uc(Ω), by the generalized Poincaré inequality, we have that there exist
a positive constant Cpoi such that

‖β̂ − β‖2L2(Ω) + ‖γ̂ − γ‖2L2(Ω)

≤ Cpoi
(
‖∇(β̂ − β)‖2L2(Ω) + ‖∇(γ̂ − γ)‖2L2(Ω) + ‖β̂ − β‖2L1(Ω) + ‖γ̂ − γ‖2L1(Ω)

)
= Cpoi

(
‖∇(β̂ − β)‖2L2(Ω) + ‖∇(γ̂ − γ)‖2L2(Ω)

)
.

¿From (46) and selecting Γ = (Θ1 + Θ2 + Θ3)Cpoi, we have that(
Γ− Γ

) [
‖∇(β̂ − β)‖2L2(Ω) + ‖∇(γ̂ − γ)‖2L2(Ω)

]
≤ Υ2

[
‖Ŝobs − Sobs‖2L2(Ω) + ‖Îobs − Iobs‖2L2(Ω)

]
,

which implies the desired uniqueness result given in the item-(vi).
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