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Abstract

This paper deals with the a posteriori error analysis for an augmented mixed
discontinuous formulation for the stationary Stokes problem. By considering an ap-
propriate auxiliary problem, we derive an a posteriori error estimator. We prove that
this estimator is reliable and locally efficient, and consists of just five residual terms.
Numerical experiments confirming the theoretical properties of the augmented dis-
continuous scheme as well as of the estimator. They also show the capability of the
corresponding adaptive algorithm to localize the singularities and the large stress
regions of the solution, are also reported.
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1 Introduction

Recently in [10] we developed an analysis of the DG method for stationary Stokes prob-
lem, based on velocity pseudo-stress formulation. The approach there introduce a new
unknown called pseudo-stress, which allows us to eliminate the pressure and obtain a
nonstandard first order system for the Stokes problem. The well posedness of the result-
ing DG scheme, in dual-primal mixed formulation, is a straightforward consequence of
Babuška-Brezzi theory for high-order approximation spaces. For low-order methods, the
use of the Raviart-Thomas projection and the Fredholm’s alternative, allows us to con-
clude the bijectivity of the operator that defines the DG scheme. A priori error estimates
are then derived, under the well known assumptions:
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• the piecewise divergence of tensors in the approximation space of stresses, belongs
to the discrete space that approximates the velocity,

• the piecewise gradient of elements in the discrete space for velocity, is in the stress
approximation space.

Next, in order to relax these two restrictions, we follow the ideas given in previous works
(see [3], [4] and [5]) to propose two stabilized schemes: one incorporating a div-div term,
and a second one adding a Galerkin least-squares residual. As consequence, for the second
stabilized scheme we can establish existence and uniqueness of the discrete scheme thanks
to Lax-Milgram’s Theorem. This way we circumvent the use of any lifting operators
(i.e we do not need the mild condition ([13])), and thus allows us to use any pair of
approximation spaces for the unknowns. Furthermore, a cheap and easy element by
element post-processing, gives us an approximation of the pressure, which has the optimal
expected rate of convergence.

Strongly motivated by the competitive character of our augmented DG formulation,
we now believe in the need of deriving the corresponding a posteriori error estimator, and
thus to give an adaptive refinement strategy. Several kind of a posteriori error analyses
have been developed for discontinuous Galerkin methods during the last years (see, for
e.g. [11], [15], [22], [23], [28]). In the framework of stabilized DG methods, based on an
appropiate Helmholtz decomposition, we have developed an a posteriori error analysis for
linear elliptic problems (see [5]), Darcy flows (see [4]) and Helmholtz equation (see [8]).
Therefore, the aim of this paper is to complement the analysis done in [10], by extending
our previous works on a posteriori error analysis to the Stokes problem.

Now, in order to describe the model of interest, we let Ω be a bounded and simply
connected domain in R2 with polygonal boundary Γ. Then, given the source terms f ∈
[L2(Ω)]2 and g ∈ [H1/2(Γ)]2, we look for the velocity (vector field) u and the pressure
(scalar field) p such that

−ν∆u + ∇p = f in Ω , div(u) = 0 in Ω , and u = g on Γ , (1.1)

where ν > 0 is the viscosity of the flow and the datum g satisfies the compatibility
condition

∫
Γ
g · ν = 0, with ν stands for the unit outward normal at Γ. In addition, for

uniqueness purposes, we suppose that p ∈ L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω
q = 0}.

We remark that problem (1.1) has been already analyzed in [16], applying the local
discontinuous Galerkin method. Moreover, in [24] a stabilized DG formulation is devel-
oped for Stokes problem. Concerning an a posteriori error estimator for Stokes problem,
we can refer [22] as one of the first papers in this kind of linear problems. In the current
work, we consider the discontinuous approach based on the non-standard velocity-pseudo
stress formulation for the Stokes system, previously introduced in [10]. Our purpose is
to develop the corresponding a posteriori error analysis, which allows us to give an adap-
tive strategy that automatically generates adapted meshes, localizing inner or boundary
layers, or regions where the gradient of the solution is dominant, for example.

The rest of the paper is organized as follows. In Section 2, we review the a priori
error estimates given in [10] to the augmented discontinuous Galerkin scheme. The main
result of the present work is described in Section 3, where we deduce an a posteriori error
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estimator for this scheme. Finally, in Section 4 we give some numerical examples that
confirm the theoretical results derived in this work.

We end this section with some notations to be used throughout the paper. Given any
Hilbert space H, we denote by H2 the space of vectors of order 2 with entries in H, and
by H2×2 the space of square tensors of order 2 with entries in H. In particular, given
τ := (τij), ζ := (ζij) ∈ R2×2, we write, as usual, τ t := (τji), tr(τ ) := τ11 + τ22 and
τ : ζ :=

∑2
i,j=1 τij ζij. For vectors v and w in R2, we denote by v⊗w the matrix whose

ij-th entry is viwj. We also use the standard notations for Sobolev spaces and norms. We
denote by [H1

ΓD
(Ω)]2 := {v ∈ [H1(Ω)]2 : v = 0 on ΓD }, by H = H(div; Ω) := {τ ∈

[L2(Ω)]2×2 : div(τ ) ∈ [L2(Ω)]2 }, and by H0 := {τ ∈ H :
∫

Ω
tr(τ ) = 0}. Note that

H = H0 ⊕ R I, that is, for any τ ∈ H there exist unique τ0 ∈ H0 and d ∈ R such that
τ = τ0+d I. In addition, we define the deviator of the tensor τ ∈ H by τ d := τ− 1

2
tr(τ )I.

We remark that tr(τ d) = 0 in Ω, then for any τ ∈ H, τ d ∈ H0. Finally, we use C or c,
with or without subscripts, to denote generic constants, independent of the discretization
parameters, which may take different values at different occurrences.

2 The augmented DG formulation

In this section, we recall from [10] the augmented discontinuous Galerkin formulations of
the corresponding boundary value problem, considering the non-standard velocity-pseudo
stress formulation. We review the well posedness of the scheme, and provide the associated
a priori error estimate.

2.1 Meshes, averages and jumps

We let {Th}h>0 be a family of shape-regular triangulations of Ω̄ (with possible hanging
nodes) made up of straight-side triangles T with diameter hT and unit outward normal
to ∂T given by νT . As usual, the index h also denotes h := max

T∈Th
hT . Then, given Th, its

edges are defined as follows. An interior edge of Th is the (nonempty) interior of ∂T ∩∂T ′,
where T and T ′ are two adjacent elements of Th, not necessarily matching. Similarly, a
boundary edge of Th is the (nonempty) interior of ∂T ∩∂Ω, where T is a boundary element
of Th. We denote by EI the list of all interior edges of Th (counted only once) on Ω, and by
EΓ the list of all boundary edges, and set E := EI ∪ EΓ the interior grid generated by the
triangulation Th (also called skeleton). Further, for each e ∈ E , he represents its length.
Also, in what follows we assume that Th is of bounded variation, which means that there
exists a constant l > 1, independent of the meshsize h, such that l−1 ≤ hT

hT ′
≤ l for

each pair T, T ′ ∈ Th sharing an interior edge.
Next, to define average and jump operators, we let T and T ′ be two adjacent elements

of Th and x be an arbitrary point on the interior edge e = ∂T ∩ ∂T ′ ∈ EI . In addition, let
q , v and τ be scalar- vector and matrix-valued functions, respectively, that are smooth
inside each element T ∈ Th. We denote by (vT,e, τT,e) the restriction of (vT , τT ) to e.
Then, we define the averages at x ∈ e by:

{v} :=
1

2

(
vT,e + vT ′,e

)
, {τ} :=

1

2

(
τT,e + τT ′,e

)
.
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Similarly, the jumps at x ∈ e are given by

[[v]] := vT,e · νT + vT ′,e · νT ′ , [[v]] := vT,e ⊗ νT + vT ′,e ⊗ νT ′ , [[τ ]] := τT,e νT + τT ′,e νT ′ .

On boundary edges e, we set {v} := v, {τ} := τ , as well as [[v]] := v · ν, [[v]] := v ⊗ ν
and [[τ ]] := τ ν. Hereafter, as usual divh and ∇h denote the piecewise divergence and
gradient operators, respectively.

2.2 The augmented discrete formulation

We begin reformulating the problem (1.1), to this aim we introduce the pseudo stress
σ := ν∇u− pI in Ω as a new additional unknown. Using the incompressibility condition
div(u) = 0 in Ω, it is not difficult to see that p = −1

2
tr(σ) in Ω, which implies that

σ ∈ H0. This relation allows us rewrite the problem (1.1) as the following linear system
of first order in Ω̄: Find (σ,u) ∈ H0 × [H1(Ω)]2

σd = ν∇u in Ω , div(σ) = −f in Ω, and u = g on Γ . (2.1)

Now, given a mesh Th, we proceed as in [27] (or [14]) and multiply each one of the
equations of (2.1) by suitable test functions. Our purpose is to approximate the exact
solution (σ,u) of (2.1) by discrete functions (σh,uh) in appropriate finite element space
Σh,0 × Vh such that for all T ∈ Th we have

1

ν

∫
T

σd
h : τ d +

∫
T

uh · divτ −
∫
∂T

û · τνT = 0 ∀ τ ∈ Σh,0 ,

∫
T

∇v : σh −
∫
∂T

v · σ̂νT =

∫
T

f · v ∀v ∈ Vh ,

(2.2)

where the numerical fluxes û and σ̂, which usually depend on uh, σh, and the boundary
data, are given by û := û(σh,uh, g) and σ̂ := σ̂(σh,uh, g) for each T ∈ Th such that:

ûT,e :=

{
{uh}+ [[uh]]β − γ[[σh]] if e ∈ EI ,
g if e ∈ EΓ,

(2.3)

and

σ̂T,e :=

{
{σh} − [[σh]]⊗ β − α[[uh]] if e ∈ EI ,
σh − α(uh − g)⊗ ν if e ∈ EΓ .

(2.4)

Here, the auxiliary functions α, γ (scalars) and β (vector), to be chosen appropriately, are
single valued on each edge e ∈ E and such that they allow us to prove the optimal rates of
convergence of our approximation. The corresponding (and now standard) corresponding
analysis let us to set α := α̂

h
, γ := γ̂

h
, and β as an arbitrary vector in R2. Hereafter, α̂

and γ̂ are positive arbitrary constants, while h is defined by

h :=

{
max{hT , hT ′} if e ∈ EI (e = ∂T ∩ ∂T ′) ,
hT if e ∈ EΓ (e = ∂T ∩ Γ) .
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Then, after performing a second integration by parts, summing up over all T ∈ Th and
adding appropriate Galerkin-least squares terms, we obtain the following discrete aug-
mented discontinuous Galerkin formulation (see Subsection 3.4 in [10] for more details):
Find (σh,uh) ∈ Σh,0 × Vh such that

AstabDG ((σh,uh), (τ ,v)) = F stab
DG (τ ,v) ∀ (τ ,v) ∈ Σh,0 × vh , (2.5)

where the bilinear form AstabDG : ((H(div; Th) ∩ [Hε(Ω)]2×2) × H1(Th)) × ((H(div; Th) ∩
[Hε(Ω)]2×2)×H1(Th))→ R and the linear functional F stab

DG : (H(div; Th) ∩ [Hε(Ω)]2×2)×
H1(Th)→ R are defined by

AstabDG ((ζ,w), (τ ,v)) :=
1

ν

∫
Ω

ζd : τ d +

∫
Ω

w · divh(τ )−
∫
EI

(
{w}+ [[w]]β

)
· [[τ ]]

−
∫

Ω

v · divh(ζ) +

∫
EI

(
{v}+ [[v]]β

)
· [[ζ]] +

∫
EI
γ[[ζ]] · [[τ ]] +α(w,v)

+ δ1

∫
Ω

(ν∇hw − ζd) : (ν∇hv + τ d) + δ2

∫
Ω

divh(ζ) · divh(τ ) ,

(2.6)

with α : [H1(Th)]2 × [H1(Th)]2 → R being the bilinear form defined by:

α(w,v) :=

∫
E
α [[v]] : [[w]] , ∀v,w ∈ [H1(Th)]2 .

and

F stab
DG (τ ,v) :=

∫
EΓ
g · τν +

∫
EΓ
α(g ⊗ ν) : (v ⊗ ν)− δ2

∫
Ω

f · divh(τ ) +

∫
Ω

f · v ,

for all (ζ,w), (τ ,v) ∈ (H(div; Th)∩ [Hε(Ω)]2×2)× [H1(Th)]2, with an appropriate ε > 1/2.
The discrete spaces are

Σh :=
{
τh ∈ [L2(Th)]2×2 : τh

∣∣
T
∈ [RTr(T )t]2 ∀T ∈ Th

}
,

Σh,0 :=
{
τh ∈ Σh :

∫
Ω

tr(τh) = 0
}
,

Vh :=
{
vh ∈ [L2(Ω)]2 : vh

∣∣
T
∈ [Pk(T )]2 ∀T ∈ Th

}
,

with k ≥ 1 and r ≥ 0. Hereafter, given an integer κ ≥ 0 we denote by Pκ(T ) the space
of polynomials of degree at most κ on T , and for each T ∈ Th we introduce the local
Raviart-Thomas space of order κ (cf. [29]), RTκ(T ) := [Pκ(T )]2⊕xPκ(T ) ⊆ [Pκ+1(T )]2.

The spaces Σh and Σh,0 are provided with the norm of Σ := H(div; Th)∩ [Hε(Th)]2×2,
with an appropriate ε > 1/2, which is defined by

‖τ‖2
Σ := ‖τ‖2

[L2(Ω)]2×2 + ‖divh(τ )‖2
[L2(Ω)]2 + ‖γ1/2[[τ ]]‖2

[L2(EI)]2 ∀ τ ∈ Σ

while for Vh, we introduce its seminorm | · |h : [H1(Th)]2 → R by

|v|2h := ||α1/2[[v]]||2[L2(EI)]2×2 + ||α1/2v ⊗ ν||2[L2(EΓ)]2×2 ∀v ∈ [H1(Th)]2 ,
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and the norm ||| · |||h : [H1(Th)]2 → R as

|||v|||2h := ||∇hv||2[L2(Ω)]2×2 + |v|2h ∀v ∈ [H1(Th)]2 .

In addition, we define the norm ‖(·, ·)‖DG : Σ× [H1(Th)]2 → R by

‖(τ ,v)‖2
DG := ||τ ||2Σ + |||v|||2h ∀ (τ ,v) ∈ Σ× [H1(Th)]2 .

The well posedness as well as the corresponding rate of convergence is summarized in
the next theorem.

Theorem 2.1 Let (δ1, δ2) ∈ R2 such that 0 < δ1 <
1
ν

and δ2 > 0. Then, problem (2.5) is
uniquely solvable, and there exists a positive constant CF, independent of the mesh size,
such that there holds

||(σh,uh)||DG ≤ CF B(f , g) , (2.7)

with B(f , g) :=
(
‖f‖2

[L2(Ω)]2 + ‖α1/2g‖2
[L2(EΓ)]2

)1/2
. In addition, assuming that the exact

solution (σ := ν∇u− pI,u) of (2.1) is such that σ|T ∈ [H t(T )]2×2, div(σ|T ) ∈ [H t(T )]2

and u|T ∈ [H1+t(T )]2 with t > 1/2, for all T ∈ Th, there exists Cerr > 0, independent of
the mesh size, such that

‖(σ − σh,u− uh)‖2
DG

≤ Cerr

∑
T∈Th

h
2 min{t,k,r+1}
T

{
‖σ‖2

[Ht(T )]2×2 + ‖div(σ)‖2
[Ht(T )]2 + ‖u‖2

[Ht+1(T )]2

}
. (2.8)

Proof. In [10] we apply the classical Lax–Milgram’s Lemma to prove that (2.5) is well
posed and to deduce the corresponding rate of convergence. Then, it is enough to show
that AstabDG is elliptic on Σh,0×Vh (see Lemma 3.13, Theorems 3.5 and 3.6 in [10]). In our
case, some slight modifications of the related proofs in [10] are needed for (2.5) since the
norm ‖(·, ·)‖DG, now includes the term ‖γ1/2[[τ ]]‖2

[L2(EI)]2 , which has not been considered

in [10]. �

2.3 Oswald interpolation operator

In order to obtain an a posteriori error estimate, we will require a suitable continuous
function that lives in Vh, and approximates the velocity uh. To this end we consider the
Oswald interpolation operator, described in [25], among other papers. In our case, we
consider its vector-wise version, i.e. the operator IOs : Vh → Vh ∩ [H1(Ω)]2 such that,
given a function v ∈ Vh, IOs(v) is the element of Vh that on each Lagrange node x of
Th ∩ Ω, it takes the average of the values of v at this node. This means

IOs(v)(x) :=
1

card(ωx)

∑
T∈ωx

v|T (x) ,

where ωx := {T ∈ Th : x ∈ T}. At boundary (Lagrange) nodes x ∈ Th∩Γ, IOs(v)(x) :=
g(x). One important feature of this operator is that the approximation error is bounded
by [[v]] on the skeleton of Th. Then, proceeding component-wise as in Theorem 2.2 in
[25], it can be proved that: If g is the trace on Γ of a continuous function v in Vh, then
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IOs(v) ∈ Vh ∩ [H1(Ω)]2, such that IOs(v) = g on Γ. In addition, there exists C > 0,
independent of the mesh size, such that

||v − IOs(v)||20,Th ≤ C

(∑
e∈EI

he ||[[v]]||20,e +
∑
e∈EΓ

he ||g − v||20,e

)
, (2.9)

|v − IOs(v)|21,Th ≤ C

(∑
e∈EI

h−1
e ||[[v]]||20,e +

∑
e∈EΓ

h−1
e ||g − v||20,e

)
. (2.10)

Now, for simplicity we assume that the Dirichlet datum g is the trace of a continuous
function in Vh. Otherwise, it will appear a high order oscillation term related to g. In
addition, from here on we set ũh := IOs(uh).

3 An a posteriori error analysis

In this section, in order to deduce an a posteriori error estimator, we follow the ideas
developed in [8], with the help of the Oswald interpolant of uh in the process. Then, at
first, we consider an auxiliar problem to obtain an estimator for the trace of the pseudo
stress error, measure in L2−norm. After that, we apply the well known Helmholtz decom-
position, to derive a reliable and efficient a posteriori error estimate for (2.5). Hereafter,

we denote curl(v) := (−∂v
∂y
, ∂v
∂x

)t for any v ∈ H1(Ω), and curl(v) :=

(
curl(v1)t

curl(v2)t

)
for

all v := (v1, v2)t ∈ [H1(Ω)]2. In what follows, we assume that the solution of the Stokes
problem (1.1) has the regularity (u, p) ∈ [H1+ε(Ω)]2× (Hε(Ω)∩L2

0(Ω)), with ε > 1/2 (see
[18], [19] and [21]). This allows us to ensure that σ ∈ H0 ∩ [Hε(Ω)]2×2, and thus all the
integral on the boundary including normal components of σ are well defined.

The main result of the present work is summarized in the following theorem.

Theorem 3.1 Let (σ,u) be the exact solution of (2.1) and (σh,uh) ∈ Σh,0 × Vh the
unique solution of (2.5). Then there exists Crel > 0, independent of mesh size, such that

||(σ,u)− (σh,uh)||DG ≤ Crel η , (3.1)

where η2 :=
∑

T∈Th η
2
T with η2

T given, for each T ∈ Th, by

η2
T := ‖σd

h − ν∇uh‖2
[L2(T )]2×2 + ‖f + div(σh)‖2

[L2(T )]2 + ||α1/2[[uh]]||2[L2(∂T∩EI)]2×2

+‖γ1/2[[σh]]‖2
[L2(∂T∩EI)]2 + ||α1/2(g − uh)⊗ ν||2[L2(∂T∩EΓ)]2×2 . (3.2)

In addition, there exists Ceff > 0 , independent of mesh size, such that

CeffηT ≤ ||(σ,u)− (σh,uh)||DG,T , (3.3)

where

||(τ ,v)||2DG,T := ‖τ‖2
[L2(T )]2×2 + ‖div(τ )‖2

[L2(T )]2 + ‖γ1/2[[τ ]]‖2
[L2(∂T∩EI)]2

+||α1/2[[v]]||2[L2(∂T )]2×2 + ||∇hv||2[L2(T )]2×2 .
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In what follows, we concentrate in the proof of Theorem 3.1, which is divided in
the next subsections. The next subsection will be of great utility in order to prove the
reliability of the estimator. In particular, it will be used to deduce an a posteriori error
estimator for the trace of the pseudo stress error, measured in L2-norm.

3.1 An auxiliary problem

We consider the following auxiliary problem with null Dirichlet boundary condition: Given
the data f̃ , we find the vector function v and scalar one q, such that, in the distributional
sense holds

−ν∆v +∇q = 0 in Ω ,

div(v) = f̃ in Ω, v = 0 on ∂Ω.
(3.4)

If f̃ ∈ L2
0(Ω) it is very well known that there exists an unique solution (v, q) ∈ [H1

0 (Ω)]2×
L2

0(Ω) such that ‖v‖1,Ω + ‖q‖0,Ω ≤ c‖f̃‖0,Ω, with c > 0 a constant independent of mesh
size (see [19]). In addition, proceeding as in Section 2 in [10], that is, introducing the
unknown τ = −ν∇v + qI ∈ H(div,Ω) and eliminating the variable q = 1

2
tr(τ ) + ν

2
f̃ , we

obtain that (3.4) can be rewritten as the next first order system

1

ν
τ d +∇v =

1

2
f̃I in Ω,

div(τ ) = 0 in Ω, v = 0 on ∂Ω .

(3.5)

On the other hand, setting Σ̃ := H(div; Th) and Σ̃0 := {ζ ∈ Σ̃ :
∫

Ω
tr(ζ) = 0}, the

variational formulation associated to (3.5) reads as follow: find (τ ,v) ∈ Σ̃0 × [L2(Ω)]2

such that
1

ν

∫
Ω

τ d : ζ −
∫

Ω

v · divh(ζ) =
1

2

∫
Ω

f̃ tr(ζ) ∀ ζ ∈ Σ̃0 ,

∫
Ω

w · divh(τ ) = 0 ∀w ∈ [L2(Ω)]2 ,

(3.6)

Now, in order to circumvent the inf-sup condition we add the stabilization term given by∫
E
α[[v]] : [[w]] = 0 , ∀w ∈ [H1(Th)]2 , (3.7)

and the least squares type terms

−δ̃1

∫
Ω

(τ d+ν∇hv) : (ζd−ν∇hw) =
νδ̃1

2

∫
Ω

f̃ divh(w), ∀ (ζ,w) ∈ Σ×[H1(Th)]2 , (3.8)

and ∫
Ω

divh(τ ) · divh(ζ) = 0 ∀ ζ ∈ H(div; Th) . (3.9)

where δ̃1 is a real parameter at our disposal. Hence, adding (3.6), (3.7), (3.8), (3.9) and
penalizing with the term

∫
EI
γ[[τ ]] · [[ζ]], we obtain the following stabilized non-comforming

dual mixed variational formulation: Find (τ ,v) ∈ Σ̃0 × [H1(Th)]2 such that

B((τ ,v), (ζ,w)) = G(ζ,w) ∀ (ζ,w) ∈ Σ̃0 × [H1(Th)]2 , (3.10)
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where the bilinear form B : (Σ̃ × [H1(Th)]2) × (Σ̃ × [H1(Th)]2) → R and the linear
functional G : (Σ̃× [H1(Th)]2)→ R are defined by

B((ρ, z), (ζ,w)) :=
1

ν

∫
Ω

ρd : ζd −
∫

Ω

z · divh(ζ) +

∫
Ω

w · divh(ρ)

−δ̃1

∫
Ω

(ζd − ν∇hw) : (ν∇hz + ρd) +

∫
Ω

divh(ζ) · divh(ρ)

+

∫
E
α[[z]] : [[w]] +

∫
EI
γ[[ζ]] · [[ρ]] ,

(3.11)

and

G(ζ,w) :=
1

2

∫
Ω

f̃ tr(ζ) +
νδ̃1

2

∫
Ω

f̃ divh(w)

for all (ρ, z), (ζ,w) ∈ Σ̃× [H1(Th)]2.
Since the norm ‖(·, ·)‖DG now includes the term ‖γ1/2[[τ ]]‖2

[L2(EI)]2 , a slight modification

of the Lemma 3.13 in [10] allows us to establish the coercivity of the bilinear form B, which
is included in the next lemma.

Lemma 3.1 Let δ̃1 ∈ R such that 0 < δ̃1 <
1
ν
. Then, there exists a constant C > 0,

independent of the meshsize, such that

B((ζ,w), (ζ,w)) ≥ C ‖(ζ,w)‖2
DG ∀ (ζ,w) ∈ Σ̃0 × [H1(Th)]2 . (3.12)

Furthermore, the continuity of B relies on a straightforwardly application of Cauchy-
Schwarz inequality. Then, existence and uniqueness of solution for the problem (3.10) is
guaranteed thanks to Lax-Milgram’s Lemma. In addition, there exists C > 0, independent
of the mesh size, such that

‖(τ ,v)‖DG ≤ C‖f̃‖L2(Ω) . (3.13)

3.2 Reliability of the estimator

Here we prove the reliability of the estimator η (upper bound in (3.1)). We begin intro-
ducing the notation, eσ := σ−σh in Ω and eu := u−uh in Ω. Our first aim is to estimate
‖ tr(eσ)‖L2(Ω).

An a posteriori error estimator for ‖ tr(σ−σh)‖L2(Ω) is given in the following theorem.

Theorem 3.2 There exists Ĉ > 0, independent of the meshsize, such that

‖ tr(σ − σh)‖2
L2(Ω) ≤ Ĉ2 η̂2 := Ĉ2

{∑
T∈Th

η̂2
T

}
,

where, for each T ∈ Th, we define

η̂2
T := ||f + div(σh)||2[L2(T )]2 +

∥∥∥∥1

ν
σd
h −∇uh

∥∥∥∥2

[L2(T )]2×2

||α1/2[[uh]]||2[L2(∂T∩EI)]2×2 + ||α1/2(g − uh)⊗ ν||2[L2(∂T∩EΓ)]2×2 . (3.14)
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Proof. First, since tr(eσ) ∈ Σ0, we set f̃ := tr(eσ) in the auxiliary problem (3.10). We
note that

1

2
‖ tr(σ − σh)‖2

L2(Ω) =
1

2

∫
Ω

tr(eσ) tr(σ − σh) = B((τ ,v), (eσ, eu))

− νδ̃1

2

∫
Ω

tr(eσ) divh(eu)

= B((τ ,v), (σ,u))−B((τ ,v), (σh,uh))

−νδ̃1

2

∫
Ω

f̃ divh(uh) .

(3.15)

Using the definition of bilinear form B(·, ·) ( cf. (3.11)), and the facts that σd = ν∇u in
Ω, div(τ ) = 0 in Ω, div(u) = 0 in Ω, [[σ]] = 0 on EI and [[v]] = 0 on E , we deduce, after
integration by parts

B((τ ,v), (σ,u)) =
1

ν

∫
Ω

τ d : σd −
∫

Ω

v · divhσ =

∫
Ω

τ d : ∇u+

∫
Ω

f · v

=

∫
Ω

τ : (∇u)d +

∫
Ω

f · v =

∫
Ω

τ : ∇u+

∫
Ω

f · v

=

∫
EΓ
g · τν +

∫
Ω

f · v .

(3.16)

Analogously, using (3.11) and the facts that div(τ ) = 0 in Ω, [[τ ]] = 0 on EI and [[v]] = 0
on E , we obtain

B((τ ,v), (σh,uh)) =
1

ν

∫
Ω

τ d : σd
h −

∫
Ω

v · divh(σh)

− δ̃1

∫
Ω

(σd
h − ν∇huh) : (ν∇hv + τ d)

=
1

ν

∫
Ω

τ : σd
h −

∫
Ω

v · divh(σh) +

∫
Ω

ũh · div(τ )

− δ̃1

∫
Ω

(σd
h − ν∇huh) : (ν∇hv + τ d) .

Here, we recall that ũh := IOs(uh). Now, after integrating by parts the term

∫
Ω

ũh·div(τ ),

and recalling that ũh = g on Γ, results

B((τ ,v), (σh,uh)) =

∫
Ω

(
1

ν
σd
h −∇huh

)
: τ +

∫
Ω

(∇huh −∇ũh) : τ

+

∫
EΓ
g · τ ν −

∫
Ω

v · divhσh − δ̃1

∫
Ω

(σd
h − ν∇huh) : (ν∇hv + τ d) .

(3.17)
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Then, replacing (3.16) and (3.17) into (3.15) and using the fact that 1
ν
τ d = −∇v + 1

2
f̃I

in Ω, we arrive to

‖ tr(σ − σh)‖2
L2(Ω) =

∫
Ω

(f + divhσh) · v

−
∫

Ω

(
1

ν
σd
h −∇huh

)
: τ −

∫
Ω

(∇huh −∇ũh) : τ .

(3.18)

Next, straightforward applications of the Cauchy-Schwarz inequality imply that∣∣∣∣∫
Ω

(f + divhσh) · v
∣∣∣∣ ≤ ∑

T∈Th

‖f + divhσh‖[L2(T )]2 ‖v‖[L2(T )]2

≤

{∑
T∈Th

‖f + divhσh‖2
[L2(T )]2

}1/2

‖v‖[L2(Ω)]2 ,

(3.19)

and ∣∣∣∣∫
Ω

(
1

ν
σd
h −∇huh

)
: τ

∣∣∣∣
≤
∑
T∈Th

∥∥∥∥1

ν
σd
h −∇uh

∥∥∥∥
[L2(T )]2×2

‖τ‖[L2(T )]2×2

≤ c

{∑
T∈Th

∥∥∥∥1

ν
σd
h −∇uh

∥∥∥∥2

[L2(T )]2×2

}1/2

‖τ‖[L2(Ω)]2×2 .

(3.20)

Thanks to the approximation property (2.10), we have∣∣∣∣∫
Ω

(∇ũh −∇huh) : τ

∣∣∣∣
≤
∑
T∈Th

‖∇ũh −∇uh‖[L2(T )]2×2‖τ‖[L2(T )]2×2

≤ C

{∑
T∈Th

‖α1/2[[ũh − uh]]‖2
[L2(∂T )]2×2

}1/2

‖τ‖[L2(Ω)]2×2 .

(3.21)

Then, after replacing the inequalities (3.19)–(3.21) into (3.18), the proof follows from
(3.13). �

Now, we are in position to establish an estimator for the velocity. To this aim, we
begin with the following Helmholtz decomposition result.
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Lemma 3.2 There exist ψ ∈ [H1
0 (Ω)]2 and χ ∈ [H1(Ω)]2 with curl(χ)ν = 0 on Γ, such

that
∇h(u− uh) = ∇ψ + curl(χ) .

Furthermore

‖∇ψ‖[L2(Ω)]2×2 + ‖curl(χ)‖[L2(Ω)]2×2 ≤ ‖∇h(u− uh)‖[L2(Ω)]2×2 .

Proof. Let ψ ∈ [H1(Ω)]2 be the unique weak solution of the boundary value problem

−div(∇ψ) = −div(∇h(u− uh)) in Ω , ψ = 0 on Γ .

Since div(∇h(u − uh) − ∇ψ) = 0 in Ω in the sense of distributions, and Ω is simply
connected, the rest of the proof is consequence of Theorem I.3.1 in [20]. We omit further
details. �

Now, for each v := (v1, v2)t ∈ [H1(Ω)]2, let Π0v := (Π0v1,Π0v2)t ∈ [L2(Ω)]2, where
Π0 be a piecewise constant projection from H1(Ω) onto L2(Ω) such that for all z ∈ H1(Ω),
(Π0z)|T := 1

|T |

∫
T
z for each T ∈ Th with ∂T ∩ Γ = ∅ and (Π0z)|T := 0 on each T ∈ Th

with an edge on Γ.
The following lemmas will be applied in the estimates of |||u−uh|||h and ‖σ−σh‖Σ.

Lemma 3.3 Let ψ ∈ [H1
0 (Ω)]2 be the function from Lemma 3.2, and Π0 the piecewise

constant projection defined above. Then, there holds∑
T∈Th

∫
T

ν∇(u− uh) : ∇ψ =
∑
T∈Th

∫
T

(
σd
h − ν∇uh −

1

2
tr(σ − σh)I

)
: ∇ψ

+
∑
T∈Th

∫
T

(f + div(σh)) · (ψ −Π0ψ) +
∑
T∈Th

∫
∂T\Γ

(σhνT − σ̂νT ) · (ψ −Π0ψ) .

(3.22)

Proof. First, since ν∇u = σd in Ω, we have on each T ∈ Th∫
T

ν∇(u− uh) : ∇ψ =

∫
T

(
σ − σh + σd

h − ν∇uh −
1

2
tr(σ − σh)I

)
: ∇ψ .

We remark that ψ ∈ [H1
0 (Ω)]2, and (Π0ψ)|T ∈ [P0(T )]2. Then, after integration by parts,

we obtain that ∑
T∈Th

∫
T

(σ − σh) : ∇ψ =
∑
T∈Th

∫
T

(σ − σh) : ∇(ψ −Π0ψ)

=
∑
T∈Th

{∫
T

(f − div(σh)) · (ψ −Π0ψ) +

∫
∂T

(ψ −Π0ψ) · (σνT − σhνT )

}
.

On the other hand, since [[σ]] = 0 on EI , ψ ∈ [H1
0 (Ω)]2, and [[σ̂]] = 0 on EI , we find

that ∑
T∈Th

∫
∂T

σνT ·ψ =

∫
EI

[[ψ]] : {σ}+

∫
EI
{ψ} · [[σ]]

=

∫
EI

[[ψ]] : {σ̂}+

∫
EI
{ψ} · [[σ̂]] =

∑
T∈Th

∫
∂T

σ̂νT ·ψ .
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Next, taking into account that −div(σ) = f in T and the second equation in (2.2), we
find that∫

∂T

σνT ·Π0ψ =

∫
T

div(σ) ·Π0ψ = −
∫
T

f ·Π0ψ =

∫
∂T

σ̂νT ·Π0ψ ,

which completes the proof. �

Lemma 3.4 Let χ ∈ [H1
0 (Ω)]2 be the function from Lemma 3.2. Then, there exists c > 0,

independent of the mesh size, such that∑
T∈Th

∫
T

∇(u− uh) : curl(χ) ≤ c ‖curl(χ)‖[L2(Ω)]2×2||α1/2[[u− uh]]||[L2(EI)]2×2 .

Proof. First, we define the space W := {w ∈ [H1(Ω)]2 : w = g on Γ}. Then adding
and subtracting w ∈W , integrating by parts, using that curl(χ)ν = 0 on Γ, we deduce
that∑
T∈Th

∫
T

∇(u−uh) : curl(χ) =
∑
T∈Th

{∫
T

∇(u−w) : curl(χ) +

∫
T

∇(w − uh) : curl(χ)

}

=
∑
T∈Th

∫
∂T\Γ

(w − uh) · curl(χ)νT ≤ ĉ
∑
T∈Th

‖w − uh‖[H1/2(∂T\Γ)]2‖curl(χ)νT‖[H−1/2(∂T )]2

≤ c̃
∑
T∈Th

‖w − uh‖[H1/2(∂T\Γ)]2‖curl(χ)‖[L2(T )]2×2

≤ c‖curl(χ)‖[L2(Ω)]2×2

(∑
T∈Th

‖w − uh‖2
[H1/2(∂T\Γ)]2

)1/2

.

Since w ∈W is arbitrary, we obtain∫
Ω

∇h(u− uh) : curl(χ) ≤ c ‖curl(χ)‖[L2(Ω)]2×2 inf
w∈W

(∑
T∈Th

‖w − uh‖2
[H1/2(∂T\Γ)]2

)1/2

.

Then, the rest follows from the proof of the Lemma 4 in [11]. �
The next theorem establishes an estimate for ||∇h(u− uh)||[L2(Ω)]2×2 .

Theorem 3.3 There exists C > 0, independent of the meshsize, such that

ν2‖∇h(u− uh)‖2
[L2(Ω)]2×2 ≤ C η̄2 := C

∑
T∈Th

η̄2
T ,

where, for each T ∈ Th, we define

η̄2
T := ‖σd

h − ν∇uh‖2
[L2(T )]2×2 + ‖f + div(σh)‖2

[L2(T )]2 + ||α1/2[[uh]]||2[L2(∂T∩EI)]2×2

+ ||α1/2(g − uh)⊗ ν||2[L2(∂T∩EΓ)]2×2 + hT ‖σhνT − σ̂νT‖2
[L2(∂T )]2 .

(3.23)
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Proof. Applying Lemmas 3.2 and 3.3, we obtain

ν‖∇h(u− uh)‖2
[L2(Ω)]2×2 =

∫
Ω

ν∇h(u− uh) : ∇h(u− uh)

=
∑
T∈Th

{∫
T

ν∇(u− uh) : ∇ψ +

∫
T

ν∇(u− uh) : curl(χ)

}
=
∑
T∈Th

∫
T

(
σd
h − ν∇uh −

1

2
tr(σ − σh)I

)
: ∇ψ +

∑
T∈Th

∫
T

(f + div(σh)) · (ψ −Π0ψ)

+
∑
T∈Th

∫
∂T\γ

(σhνT − σ̂νT ) · (ψ −Π0ψ) +
∑
T∈Th

∫
T

ν∇(u− uh) : curl(χ) . (3.24)

Next, thanks to Cauchy-Schwarz inequality, we can bound all terms, but the last one, on
the right hand side of (3.24).∣∣∣∣∣∑

T∈Th

∫
T

(σd
h − ν∇uh) : ∇ψ

∣∣∣∣∣ ≤ ∑
T∈Th

‖σd
h − ν∇uh‖[L2(T )]2×2 ‖∇ψ‖[L2(T )]2×2

≤

{∑
T∈Th

‖σd
h − ν∇uh‖2

[L2(T )]2×2

}1/2

‖∇ψ‖[L2(Ω)]2×2 ,

(3.25)

∣∣∣∣∣∑
T∈Th

∫
T

(
1

2
tr(σ − σh)

)
· div(ψ)

∣∣∣∣∣ ≤ 1√
2

∑
T∈Th

‖ tr(σ − σh)‖L2(T ) ‖∇ψ‖[L2(T )]2×2

≤ 1√
2

{∑
T∈Th

‖ tr(σ − σh)‖2
L2(T )

}1/2

‖∇ψ‖[L2(Ω)]2×2 ,

(3.26)∣∣∣∣∣∑
T∈Th

∫
T

(f + div(σh)) · (ψ −Π0ψ)

∣∣∣∣∣ ≤ c̃
∑
T∈Th

hT ‖f + div(σh)‖[L2(T )]2‖∇ψ‖[L2(T )]2×2

≤ c̃

{∑
T∈Th

h2
T ‖f + div(σh)‖2

[L2(T )]2

}1/2

‖∇ψ‖[L2(Ω)]2×2 ,

(3.27)
and∣∣∣∣∣∑
T∈Th

∫
∂T

(ψ −Π0ψ)(σhνT − σ̂νT )

∣∣∣∣∣ ≤ ĉ
∑
T∈Th

h
1/2
T ‖σhνT − σ̂νT‖[L2(∂T )]2 ‖∇ψ‖[L2(T )]2×2

≤ ĉ

{∑
T∈Th

hT ‖σhνT − σ̂νT‖2
[L2(∂T )]2

}1/2

‖∇ψ‖[L2(Ω)]2×2 .

(3.28)
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Then, using (3.25), (3.26), (3.27), (3.28), Lemmas 3.2, 3.4 and Theorem 3.2 in (3.24) we
arrive to

ν ‖∇h(u− uh)‖[L2(Ω)]2×2 ≤ ‖σd
h − ν∇huh‖[L2(Ω)]2×2 + ||α1/2[[uh]]||[L2(EI)]2×2 + Ĉη̂

+ c̃

{∑
T∈Th

h2
T ‖f + div(σh)‖2

[L2(T )]2

}1/2

+ ĉ

{∑
T∈Th

hT ‖σhνT − σ̂νT‖2
[L2(∂T )]2

}1/2

.

(3.29)
Recalling the definition of the estimator η̂ (cf. (3.23)), and applying a discrete Cauchy-
Schwarz inequality, we obtain

ν ‖∇h(u− uh)‖[L2(Ω)]2×2 ≤ c

{∑
T∈Th

(
‖σd

h − ν∇huh‖2
[L2(T )]2×2

+ ||α1/2(g − uh)⊗ ν||2[L2(∂T∩EΓ)]2×2 + ||α1/2[[uh]]||2[L2(∂T∩EI)]2×2

+‖f + div(σh)‖2
[L2(T )]2 + hT ‖σhνT − σ̂νT‖2

[L2(∂T )]2

)}1/2

,

which let us to conclude the proof. �
On the other hand, since σ − σh ∈ Σ0, from Lemma 3.1 in [6] (see also Lemma 3.10

in [10]), using the relations σd = ν∇u in Ω, −div(σ) = f in Ω, and [[σ]] = 0 on EI , we
deduce that there exists c1 > 0, independent of the mesh size, such that

c1‖σ−σh‖2
[L2(Ω)]2×2 ≤ ‖σd−σd

h‖2
[L2(Ω)]2×2 + ‖divh(σ−σh)‖2

[L2(Ω)]2 + ‖γ1/2[[σ−σh]]‖2
[L2(EI)]2

≤
∑
T∈Th

{
2‖ν∇uh − σd

h‖2
[L2(T )]2×2 + 2‖ν∇(u− uh)‖2

[L2(T )]2×2

+ ‖f + div(σh)||2[L2(T )]2 + ‖γ1/2[[σh]]‖2
[L2(∂T∩EI)]2

}
.

Next result helps us to control the last term in (3.23).

Lemma 3.5 There exists C3 > 0, independent of the mesh size, such that for any e ∈ E

hT ||σhνT − σ̂νT ||2[L2(e)]2 ≤ C3


||γ1/2[[σh]]||2[L2(e)]2 + ||α1/2[[uh]]||2[L2(e)]2×2 if e ∈ EI ,

||α1/2[[uh − g]]||2[L2(e)]2×2 if e ∈ EΓ .

(3.30)

Proof. From the definition of σ̂ (cf. (2.4)), we deduce

σ̂νT − σhνT =


(

1

2
I + β ⊗ νT

)
[[σh]]− α[[uh]]νT on EI ,

−α(uh − g) on EΓ .
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Now, for e ∈ EI , we have (after applying Cauchy-Schwarz appropriately)

||σ̂νT − σhνT ||2[L2(e)]2 ≤ C
(
he||γ1/2[[σh]]||2[L2(e)]2 + h−1

e ||α1/2[[uh]]||2[L2(e)]2×2

)
and then

hT ||σ̂νT − σhνT ||2[L2(e)]2 ≤ C1

(
||γ1/2[[σh]]||2[L2(e)]2 + ||α1/2[[uh]]||2[L2(e)]2×2

)
.

On the other hand, for e ∈ EΓ we obtain

hT ||σ̂νT − σhνT ||2[L2(e)]2 ≤ C2||α1/2[[uh − g]]||2[L2(e)]2×2 ,

and we end the proof. �
Finally, we remark that the reliability of (3.1) follows from Theorem 3.3, Lemma 3.5,

and the fact that the norms are defined by

|||u− uh|||2h = ‖∇h(u− uh)‖2
[L2(Ω)]2×2 + ‖α1/2[[u− uh]]‖2

[L2(E)]2×2 .

and by

‖σ − σh‖2
Σ = ‖σ − σh‖2

[L2(Ω)]2×2 + ‖f + div(σh)‖2
[L2(Ω)]2 + ‖γ1/2[[σh]]‖2

[L2(EI)]2 .

We omit more details.

3.3 Efficiency of the estimator

In this subsection we prove the local efficiency of the estimator η (property (3.3)). We
proceed now to estimate the five terms defining the error indicator η2

T (cf. (3.2)). Using
the fact that σd = ν∇u in Ω, div(σ) = −f in Ω and u ∈ [H1(Ω)]2, we first observe that

‖σd
h − ν∇uh‖[L2(T )]2×2 ≤ ‖σd − σd

h‖[L2(T )]2×2 + ν‖∇(u− uh)‖[L2(T )]2×2

≤ C
{
‖σ − σh‖[L2(T )]2×2 + ‖∇(u− uh)‖[L2(T )]2×2

}
,

(3.31)

‖f + div(σh)‖[L2(T )]2 = ‖div(σ − σh)||[L2(T )]2 , (3.32)

‖α1/2[[uh]]‖[L2(e)]2×2 = ‖α1/2[[u− uh]]‖[L2(e)]2×2 ∀ e ∈ EI , (3.33)

‖α1/2(g − uh)⊗ ν‖[L2(e)]2×2 = ‖α1/2(u− uh)⊗ ν‖[L2(e)]2×2 ∀ e ∈ EΓ , (3.34)

and
‖γ1/2[[σh]]‖2

[L2(EI)]2 = ‖γ1/2[[σ − σh]]‖2
[L2(EI)]2 ∀ e ∈ EI . (3.35)

Finally, we remark that the efficiency of our estimator (cf. (3.3))) follows from (3.31),
(3.32), (3.33), (3.34), and (3.35).

Remark 3.1 The local efficiency of estimator η̄T (cf. (3.23)) is proved in analogous way,
with the help of Lemma 3.5.
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4 Numerical examples

In this section we include numerical simulations that are in agreement with the theoretical
results we have derived in the current work. Since it is not an easy task to find a basis
of Σh,0, we incorporate the zero mean value condition of trace of elements in Σh using a
Lagrange multiplier. This action yields us to prove the following result.

Theorem 4.1 Consider the problem: Find (σh,uh,Λ) ∈ Σh × Vh × R such that

AstabDG ((σh,uh), (τ ,v)) + Λ

∫
Ω

tr(τ ) = FDG((τ ,v)) ∀ (τ ,v) ∈ Σh × Vh

µ

∫
Ω

tr(σh) = 0 ∀µ ∈ R . (4.1)

Then, we have

1. If (σh,uh,Λ) ∈ Σh × Vh × R is a solution of (4.1), then Λ = 0 and (σh,uh) ∈
Σh,0 × Vh is a solution of (2.5).

2. If (σh,uh) ∈ Σh,0 × Vh is a solution of (2.5), then (σh,uh, 0) ∈ Σh × Vh × R is a
solution of (4.1).

Next, we proceed to implement (4.1) in order to obtain numerical approximations of
the exact solution. First, we need to introduce some useful notations for the errors and
experimental rates of convergence. For simplicity, we consider the approximation spaces
of lowest order, i.e. (Σh,Vh) := ([RT0(Th)]2×2, [P1(Th)]2), in all examples. We remark
that numerical examples, with uniform refinement, exhibiting that this scheme does work
with a pair of discrete spaces circumventing the mild condition, can be seen in [10].

We let N be the number of degrees of freedom, that in this case corresponds to
N = 12× card(Th) + 1. We also introduce

eΣ(σ) :=
(
||σ − σh||2[L2(Ω)]2×2 + ||γ1/2[[σ − σh]]||2[L2(EI)]2 + ||divh(σ − σh)||2[L2(Ω)]2

)1/2

,

eh(u) := |||u − uh|||h, and e := ||(σ − σh, u − uh)||DG. Moreover, we set e0(u) :=
||u− uh||[L2(Ω)]2 , and e0(p) := ||p− ph||L2(Ω), where the approximation of pressure, ph, is
obtained by the post-process ph := −1

2
tr(σh).

Taking into account that for quasi uniform meshes in 2D, the mesh size h behaves as
O(N−1/2), we set the so called experimental rate of convergence of the total error by

r := −2
log(e/e′)

log(N/N ′)
,

where e and e′ denote the corresponding errors at two consecutive triangulations with
number of degrees of freedom N and N ′, respectively. The experimental rates of conver-
gence for the other errors are defined in analogous way.

The parameters that define the numerical fluxes will be defined by α := 1
h
, γ := 1

h
and

β := (1, 1)t. Moreover, for all examples we consider, the parameters δ1 and δ2 are set as
1/2ν and 1, respectively.
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Now, given an a posteriori error estimator η :=

(∑
T∈Th

η2
T

)1/2

, we use the following

adaptive algorithm (see [31]):

1. Start with a coarse mesh Th.

2. Solve the Galerkin scheme (4.1) for the current mesh Th.

3. Compute ηT for each triangle T ∈ Th.

4. Consider stopping criterion and decide to finish or go to the next step.

5. Use red-blue-green procedure to refine each element T ′ ∈ Th such that

ηT ′ ≥
1

2
max{ηT : T ∈ Th} .

6. Define the resulting mesh as the new Th and go to step 2.

We consider two examples. Their domains Ω as well as their corresponding exact
solutions (u, p) are given in Table 1. Concerning Example 1, we resume our results in
Table 2, where the total error and their components goes to zero as O(N−1/2). This is in
agreement with our expectations, thanks to the smoothness of exact solution. In addition,
we observe that the L2 norms of the deviator of stress error (σ − σh) as well as of the
pressure (p− ph), behaves as O(N−1/2), while the L2 error norm of the velocity decay to
zero as O(N−1).

The analytic solution in Example 2 is taken from [26], where the parameter λ (that
acts as Reynold’s number) is given by

λ := − 8π2

ν−1 +
√
ν−2 + 16π2

.

We remark here that p̄ denotes the real value that makes p to have zero mean value in
Ω. Our purpose with this example, is to show the robustness of our scheme for moderate
values of λ, specially when an adaptive refinement procedure is performed.

In Tables 3, 5 and 7, we display the convergence history and the corresponding rates
of convergence of individual errors as well as the total one, on a sequence of uniform
triangulation refinements, when the viscosity of the fluid ν ∈ {1.0, 0.1, 0.059}. We notice
that for each one of these refinements, the total error behaves as O(N−1/2), which are in
agreement with Theorem 2.1, since the exact solution is smooth enough. In addition, as
in Example 1, we also observe from these tables, that the L2−norm of error of the velocity
decay to zero as O(N−1). This is not covered by the current theory, but it should be a
consequence of duality argument as in [9].

Now, when the estimator η (cf. (3.2)) is taking into account, it helps us to identify
the region in Ω̄ where the total error dominates. This procedure generate a sequence of
adapted meshes, with a decrease of the total error, faster than when uniform refinement
is performed. The history of convergence of the method, for ν ∈ {1.0, 0.1, 0.059}, is
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summarized in Tables 4, 6 and 8, respectively. From these tables, we observe that the total
error behaves as O(N−1/2), and that the index of efficiency in all cases remains bounded.
Figures 1, 2 and 3 (in log-log scale) show us that the adaptive refinement improves the
quality of approximation, by recognizing the region of Ω̄ where η is dominant. This
allows us to confirm that our a posteriori error estimator is reliable and (local) efficient,
in agreement with Theorem 3.1.

Some of the adapted meshes generated by this procedure, are depicted in Figure 4
(ν = 1.0), Figure 5 (ν = 0.1) and Figure 6 (ν = 0.059). In all cases, we notice that the
proposed adaptive refinement algorithm is able to capture a boundary layer close to the
line x1 = −0.5, due to the great values of ∇u.

5 Concluding remarks

In this work, we have developed an a posteriori error analysis for the Stokes problem,
when a DG scheme is applied. It can be seen as the continuation of a previous work,
where the same DG approach looks for suitable approximations of the pseudo stress and
the velocity.

We have derived an a posteriori error estimator is made of only five residual terms.
In addition, we have proven that this estimator is reliable and local-efficient. Numerical
experiments confirm these properties, and show that the adaptive algorithm based on this
estimator, is able to recognize the boundary layer (or region with larger gradients).

Example Ω u(x1, x2) p(x1, x2)

1 ]− 1, 1[2
(
−ex1(x2 cos(x2) + sin(x2))

ex1x2 sin(x2)

)
2ex1 sin(x2)

2 ]− 1/2, 3/2[×]0, 2[

(
1− eλx1 cos(2πx2)
λ
2π

eλx1 sin(2πx2)

)
−1

2
e2λx1 − p̄

Table 1: Examples considered for Stokes system
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mixed methods for generalized Stokes problem based on the velocity-pseudo stress

21



dof (N)
10

1
10

2
10

3
10

4
10

5
10

6

to
ta
l
er
ro
r
(e
)

10
0

10
1

10
2

10
3

uniform refinement
adaptive refinement

C*N
-1/2

Figure 1: Total error (e) vs DOF (N) for uniform and adaptive refinements (Example 2,
with ν = 1.0)

dof eΣ(σ) rΣ(σ) eh(u) rh(u) e r e/η
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Table 5: History of convergence of error terms and total error, as well as corresponding
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dof eΣ(σ) rΣ(σ) eh(u) rh(u) e r e/η

49 1.7012e+01 —– 1.7751e+01 —– 2.4586e+01 —– 1.342
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164329 4.2818e-01 0.961 5.0490e-01 1.118 6.6201e-01 1.054 1.530
338569 2.9851e-01 0.998 3.6625e-01 0.888 4.7250e-01 0.933 1.565

dof e0(u) r0(u) e0(p) r0(p) e0(σd) r0(σd)

49 4.0318e+00 —– 2.0719e+00 —– 3.9510e+00 —–
133 3.5091e+00 0.278 1.8670e+00 0.209 2.8636e+00 0.645
301 8.2330e-01 3.550 1.1690e+00 1.146 1.8771e+00 1.034
889 3.0236e-01 1.850 6.5085e-01 1.082 1.1329e+00 0.932
2065 1.6126e-01 1.492 3.9701e-01 1.173 6.9542e-01 1.158
4897 1.0350e-01 1.027 2.6877e-01 0.904 4.8487e-01 0.835
9769 5.8741e-02 1.640 1.9328e-01 0.955 3.5715e-01 0.885
20905 3.1057e-02 1.675 1.3722e-01 0.901 2.5485e-01 0.887
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164329 4.0251e-03 2.903 5.0194e-02 0.975 9.4522e-02 0.981
338569 2.7294e-03 1.075 3.4823e-02 1.012 6.6695e-02 0.965

Table 6: History of convergence of error terms and total error, as well as corresponding
rates of convergence, Example 2, ν = 0.1 (adaptive refinement based on η)
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Figure 2: Total error (e) vs DOF (N) for uniform and adaptive refinements (Example 2,
with ν = 0.1)
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dof eΣ(σ) rΣ(σ) eh(u) rh(u) e r e/η

49 5.5800e+00 —– 1.0684e+01 —– 1.2054e+01 —– 1.832
193 4.0886e+00 0.454 1.0222e+01 0.065 1.1009e+01 0.132 1.875
769 2.9120e+00 0.491 6.5701e+00 0.640 7.1865e+00 0.617 2.150
3073 1.4913e+00 0.966 4.1043e+00 0.679 4.3668e+00 0.719 2.518
12289 7.4960e-01 0.993 2.1141e+00 0.957 2.2431e+00 0.961 2.787
49153 3.7490e-01 1.000 1.0572e+00 1.000 1.1217e+00 1.000 2.866
196609 1.8743e-01 1.000 5.2758e-01 1.003 5.5988e-01 1.003 2.892

dof e0(u) r0(u) e0(p) r0(p) e0(σd) r0(σd)

49 2.4612e+00 —– 1.1502e+00 —– 1.1670e+00 —–
193 2.2783e+00 0.113 7.8425e-01 0.559 8.8333e-01 0.406
769 5.6330e-01 2.022 4.1450e-01 0.923 6.0889e-01 0.538
3073 1.4554e-01 1.954 2.1429e-01 0.952 3.5318e-01 0.786
12289 3.8589e-02 1.915 1.0824e-01 0.986 1.8799e-01 0.910
49153 9.9744e-03 1.952 5.3731e-02 1.010 9.6153e-02 0.967
196609 2.5323e-03 1.978 2.6673e-02 1.010 4.8443e-02 0.989

Table 7: History of convergence of error terms and total error, as well as corresponding
rates of convergence, Example 2, ν = 0.059 (uniform refinement)
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Figure 3: Total error (e) vs DOF (N) for uniform and adaptive refinements (Example 2,
with ν = 0.059)
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dof eΣ(σ) rΣ(σ) eh(u) rh(u) e r e/η

49 5.5800e+00 —– 1.0684e+01 —– 1.2054e+01 —– 1.832
133 4.0869e+00 0.624 1.0384e+01 0.057 1.1159e+01 0.154 1.894
301 3.0951e+00 0.681 6.9238e+00 0.992 7.5841e+00 0.946 2.151
769 1.9616e+00 0.972 4.8498e+00 0.759 5.2315e+00 0.792 2.337
1921 1.2461e+00 0.991 3.3875e+00 0.784 3.6094e+00 0.811 2.693
4585 8.1739e-01 0.969 2.3075e+00 0.883 2.4480e+00 0.893 2.770
8521 6.0132e-01 0.991 1.6907e+00 1.004 1.7945e+00 1.002 2.832
19585 4.0615e-01 0.943 1.1004e+00 1.032 1.1730e+00 1.022 2.774
38185 2.8755e-01 1.034 8.1422e-01 0.902 8.6350e-01 0.917 2.889
78337 2.0362e-01 0.961 5.5453e-01 1.069 5.9073e-01 1.057 2.808
152257 1.4603e-01 1.001 4.1224e-01 0.892 4.3734e-01 0.905 2.899
317101 1.0217e-01 0.974 2.7604e-01 1.093 2.9434e-01 1.079 2.804

dof e0(u) r0(u) e0(p) r0(p) e0(σd) r0(σd)

49 2.4612e+00 —– 1.1502e+00 —– 1.1670e+00 —–
133 2.2816e+00 0.152 7.5399e-01 0.846 8.7855e-01 0.569
301 7.3522e-01 2.773 4.2891e-01 1.381 6.1841e-01 0.860
769 3.7305e-01 1.447 2.4562e-01 1.189 4.0612e-01 0.897
1921 1.7552e-01 1.647 1.6208e-01 0.908 2.7489e-01 0.853
4585 7.3515e-02 2.001 1.0948e-01 0.902 1.9727e-01 0.763
8521 4.9936e-02 1.248 7.8029e-02 1.093 1.4426e-01 1.010
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[16] B. Cockburn, G. Kanschat, D. Schötzau and C. Schwab: Local discontin-
uous Galerkin method for the Stokes system. SIAM Journal on Numerical Analysis,
vol. 40, pp. 319-343, (2002).

[17] P. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland,
Amsterdam, (1978).

25



Figure 4: Adaptive refined meshes corresponding to 229, 637, 3817 and 11593 dof (from
left to right, top - bottom) (Example 2, with ν = 1.0)

[18] M. Dauge: Stationary Stokes and Navier-Stokes system on two- or three- dimen-
sional domains with corners. Part I: Linearized equations. SIAM Journal on Math.
Analysis, vol. 20, 1, pp. 74-97, (1989).

[19] G.P. Galdi, C.G Simader and H. Sohr : On the Stokes problem in Lipschitz
domain. Annali di Matematica Pura ed Applicata, vol. CLXVII, pp. 147-163 (1994).

[20] V. Girault and P.A. Raviart: Finite Element Methods for Navier-Stokes Equa-
tions: Theory and Algorithms. Springer Series in Computational Mathematics, 1986.

[21] S. Nicaise: Regularity of the solutions of elliptic systems in polyhedral domains.
Bull. Belg. Math. Soc., vol. 4, pp. 411-429, (1997).
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