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Centro de Investigación en
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Abstract

Turing machines are studied as dynamical systems since two decades ago. Several results concerning
topological properties such as equicontinuity, periodicity, mortality, entropy, etc. has been established.
These properties strongly depend on the topological model that one consider, and for Turing machines
two main models are pertinent. Here we focus on transitivity, minimality and other adjacent properties.
In the context of Turing machines, transitivity means that there exists a configuration whose evolution
contains every possible configuration over any finite window. Minimality means that every configuration
fulfills this, and is a very strong property. This paper establishes the exact relations existing between four
main properties: transitivity, minimality, existence of blocking words, and reversibility; showing examples
on each non empty class at the intersection of these properties. It also develops the embedding technique,
that combines two Turing machines to produce a third one that, under some particular conditions, will
inherit the properties of one of the original machines. This powerful tool is used to establish undecidability
results and also to multiply the number of examples that we have found.

1 Introduction

The study of Turing machines from a dynamical system point of view was opened by Moore [15] and Kůrka
[14], formalizing three dynamical models: Generalized Shifts (GS), Turing machine with Moving Head (TMH)
and Turing machine with moving Tape (TMT); the first one presented by Moore, and the last two by Kůrka.

In the TMT model, the head is fixed at position 0, and the tape is shifted. Generalized Shifts results
to be equivalent to TMT. On the other hand, the TMH model inserts the head state in the tape, as an
additional symbol that can move, treating the system as a cellular automaton over a sofic subshift. It can be
said that TMH gives predominance to the cells around the position 0 of the tape, while TMT gives relevancy
to the cells around the head. These two different topologies are not equivalent and a given machine may have
different properties depending on the considered topological model, as Kůrka established. The seminal work

∗This work was partially founded by CONICYT FONDECYT 11170177
†This author thanks CONICYT Basal AFB170001, and Université d’Orléans because part of this work was done during an
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of Kůrka inspired a rich line of research that consider properties such as immortality [10, 13, 11], entropy
[14, 17, 12, 9], equicontinuity [6], periodicity [14, 1, 13, 2] and, recently, transitivity and minimality [2, 8].

Also, the column factor of the TMT model, the trace-shift, was deeply studied. This one-way subshift
consists in the sequence of states and symbols that the head reads through the time. Previous works consider
properties such as soficity, complexity, transitivity, periodicity and surjectivity [7, 4, 6, 18, 19].

This research is focused on transitivity and minimality which have been proved undecidable in [8]. Tran-
sitivity is a necessary condition to Devaney chaos [3], it means that there exists a point in the dynamical
system whose orbit is dense, i.e., it passes as near as desired to every other point. Minimality implies that
every point is transitive, which is equivalent to say that the system has no proper subsystem.

In the context of Turing machines with TMT model, a transitive configuration will produce an evolution
that will make appear every combination of tape symbols and head state on every finite window around the
head. A machine with a minimal TMT system has this property for every initial configuration. The first
example of Turing machine with such a strong property was the SMART machine [2], it was used to prove
the undecidability of both, minimality and transitivity, properties by exploiting the embedding technique.

This research establishes the relation between four properties: reversibility, existence of blocking words,
transitivity and minimality. Reversibility is equivalent to surjectivity in Turing machines, which is kept
in TMT and TMH dynamical models, thus it is a necessary condition for transitivity. Nevertheless, the
trace-shift can be surjective even if the machine is not, but only when the machine has what we call blocking
words [18]. Both properties are strongly related with transitivity and minimality, and the exact relations
between them are established in this work.

We present a classification of Turing machines based on how these four properties are distributed on
the three dynamical models: TMT, TMH and the trace-shift. The SMART machine, as a base, is used to
construct several of the presented examples. Also, using the embedding technique, it is possible to prove that
every class of the classification has infinitely many members. We prove that, under some hypothesis, the em-
bedding technique preserves most of the mentioned dynamical properties, providing a better understanding
of this tool.

The present paper is structured as follows: In section 2 the basic definitions are given. Section 3 describes
the embedding technique and their associated tools. The main results are exposed in section 4, where
relationships between the above mentioned properties are established, intersection classes are defined and
examples inside each class are given. In section 5 we establish conditions to preserve the studied properties
through embedding, in this way we prove that each class contains infinitely many Turing machines. Finally,
in section 6 we discuss the repercussions and the future work related to this research.

2 Definitions

2.1 Dynamical systems

A topological dynamical system is a pair (X,T ), where X is a topological space called phase space and
T : X → X is a continuous function called global transition function. For each x ∈ X, an infinite sequence,
called orbit of x, is associated: O(x) = (Tn(x))n∈N. We say that x is pre-periodic if there exists t, n ∈ N
such that T t+n(x) = T t(x), and if t = 0 we say that the point x is periodic. A system (Y, T ) is a subsystem
of (X,T ) if Y ⊆ X is a closed and T -invariant set. The smallest subsystem that contains a given point x is
the closure of its orbit O(x). A system (X,T ) is transitive if there exists some point x such that O(x) = X,
and a point satisfying this is called a transitive point. A system where every point is transitive is a minimal
system. If (Z,F ) is another topological dynamical system and there exists a continuous and onto function
ϕ : X → Z such that F ◦ϕ = ϕ ◦ T , then (Z,F ) is a factor of (X,T ) and it inherits several of its properties.

2.2 Symbolic systems

Given a finite set of symbols Σ, called alphabet, the set ΣZ is the two-sided full shift, while ΣN is the one-sided
full shift. Let T denote either Z or N. An element x of ΣT is an ordered sequence x = (xi)i∈T. The shift
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function σ is defined in ΣT by σ(y)i = yi+1, and it is a bijective function if T = Z. The Cantor metric of the
full shift is: d(x, y) = 2−i, where i = min{|n| : xn 6= yn}. With this metric, ΣT is compact and (ΣT, σ) is
a topological dynamical system. The subsystems of (ΣT, σ) are called subshifts. Frequently, we will prefer
to denote ΣN by Σω, the set of right-infinite sequences; and symmetrically, we will use ωΣ to denote the
left-infinite sequences. Distinguishing the origin in a sequence in ΣZ is important, thus we will add a dot
before the symbol with coordinate 0, for example: x = ...x−2x−1.x0x1x2...

2.3 Languages

Finite sequences of symbols of Σ are called words and the set of all words is denoted by Σ∗; this set
includes the empty word which we denote by ε. A finite word v is said to be a subword1 of another (finite
or infinite) word z, if there exist two indexes i and j, such that v = zizi+1...zj . In this case, we write:
v v z. The length of a word u is denoted by |u|. Given a subshift S, a formal language is defined by
L(S) = {u ∈ Σ∗ : ∃z ∈ S, u v z}. Reciprocally, given a formal language L, a set of right-infinite sequences
can be defined: SL = {z ∈ ΣN : ∀u v z, u ∈ L}. It is a result that S is a subshift if and only if SL(S) = S.

2.4 Turing machines

A Turing machine (TM) is determined by a 3-tuple M = (Q,Σ, δ), where Q is a finite set of states, Σ is an
alphabet, and δ is the local transition function. The usual model includes also an initial and a final state,
and a blank symbol, but we omit them here because we are interested in properties of the whole set of states.
A configuration is a tuple (r, i, w) ∈ X = Q×Z×ΣZ, where r is the current state, i is the head position, and
w represents the contents of a bi-infinite tape, which contains one symbol of Σ on each cell. The transition
function δ specifies the movement and actions of the head. It can be considered in two forms, the quintuple
model and the quadruple model (as seen in [16]), but here we focuses in the quintuple model due to reasons
that we justify later.

Quintuple model. δ : Q × Σ → Q × Σ × {−1, 0, 1}. The machine transforms a configuration (r, i, w)
into (r′, i + c, w′), if there exists the instruction δ(r, wi) = (r′, α′, c), with w′ defined by w′i = α′ and
w′j = wj for all j 6= i.

In this way, the global transition function T : X → X is defined and it may be a partial function.

If δ is not defined over some pair (r, α), we say that this is an error pair and that r is an error state. When
there is no error pair, the Turing machine is complete (c-TM), and T is a total function. When T is onto,
we say that the machine is backward complete. The only way a machine is not onto is due to the existence
of pairs (r, α) which are not present in any tuple of the image of δ, such pairs are called defective pairs, the
state r is called defective state and the symbol α is called a defective symbol for r. If every configuration has
at most one pre-image, the machine is injective. The properties of backward completeness, completeness and
injectivity have the peculiarity that in the presence of one of them, the other two are equivalent, in other
words, either none, only one, or all the three properties are true.

Definition 1. The position function P : X → Z is defined by P(r, i, w) = i.
The support function S : X → ℘(Z) is defined by

S(r, i, w) = {P(Tn(r, i, w)) | n ∈ N}.

The state function Q : X → Q is defined by Q(r, i, w) = r.

These three functions define the current position of the head, the set of cells that the head visits during
the evolution of the system and the current state of the configuration.

We also consider finite configurations (r, i, u.v), where u, v ∈ Σ∗ and −|u| ≤ i ≤ |v| − 1; here we
interpret u as a word to the right: u = u−|u| . . . u−1. T can also act over these configurations if the head

1this notion is usually called “factor”, but here the word “factor” is already used.
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does not try to move outside the limits of u.v. With this spatial limitation, we can consider the dynamics
of T until the head exits the limits of the configuration, and take the time m(r, i, u.v) when this happen,
i. e., such that at Tm(r,i,u.v)(r, i, u.v) the head is on the border and will exit at next iteration. We will
write x ` y if y = T (x) and x `∗ y if there exists a time t such that y = T t(x), this for both, finite and
infinite configurations. Position, state and support functions can also be defined for finite configurations by
P(r, i, u.v) = i, Q(r, i, u.v) = r and S(r, i, u.v) = {P(Tn(r, i, u.v)) | n ∈ [0,m(r, i, u.v)]}. Translations of
global or partial configurations are obtained by overloading the shift function σ, which we define in X by
σ(r, i, w) = (r, i− 1, σ(w)).

Notation. For clearer presentation, we sometimes use the convenient notation ( ... w−1 .w0 ... wi wi+1 ...
r )

to represent the configuration (r, i, w) in this research.

2.4.1 Reversibility in the quintuple model

The reverse T−1 of the global transition function of an injective Turing machine in quintuple model does not
correspond, in general, to the transition function of a Turing machine, because in T−1 the head should move
before reading. Traditionally, the theory of reversible Turing machines has been developed in the quadruple
model, where for each step of the machine is allowed to move or write, but no both at the same time. Any
machine can be expressed in this way, but there is a loss of velocity, and the dynamics is affected. Therefore,
we adopt another, but equivalent, way to define a proper reverse machine, as introduced in [2].

In fact, even if T−1 is not a Turing machine, it is conjugated to one, as we will explain. Any reversible
machine can be characterized by a pair (ρ, µ), where ρ : Q× Σ→ Q× Σ is a partial injective function and a
partial function µ : Q→ {−1, 0,+1}, such that for every non error pair (r, s) we have δ(r, s) = (r′, s′, µ(r′)),
where r ∈ Q, s ∈ Σ and (r′, s′) = ρ(r, s).

We define the reverse machine of M as M−1 = (Q,Σ, δ−1), where δ−1 is defined by δ−1(r′, s′) =
(r, s,−µ(r)) if and only if r ∈ Q, s ∈ Σ, and (r′, s′) = ρ(r, s). Let us call T ′ the transition function
associated to M−1. If we define also the function ϕ : (ΣZ,Z, Q)→ (ΣZ,Z, Q) by ϕ(w, i, r) = (w, i− µ(r), r),
we obtain that T−1 = ϕ−1 ◦ T ′ ◦ ϕ. In this way, a starting configuration of M is a halting configuration of
M−1 and viceversa. From these considerations, we will say that an injective Turing machine is reversible.

2.5 Turing machines seen as dynamical systems

In order to define a dynamical system, we have chosen to restrict our scope to complete machines. Providing
X = Q×Z×ΣZ with the product topology, the pair (X,T ) is a topological dynamical system, but X is not
a compact set. In [14], Kůrka reformulates X in two ways in order to overcome with this problem.

2.5.1 Turing machine with moving head (TMH)

In this model, the head is added as an element of the tape; then, the phase space is the set Xh ⊂ (Σ ∪Q)Z,
defined by Xh = {x ∈ (Σ∪Q)Z | |{i ∈ Z : xi ∈ Q}| ≤ 1}. The transition function Th naturally consists in one
application of the local transition function δ, taking the consideration that the head position is at the right
of the unique cell that contains a state on the tape. Configurations with no state in the tape are headless
configurations and are treated as fixed points. The natural function ψ : X → Xh transforms (r, i, w) into
ψ(r, i, w) = x, where x is defined by xj = wj if j < i, xi = r and xj = wj−1 if j > i.

As defined, Xh is a subshift of (Σ ∪ Q)Z, and it has the same metrics and topology of this set. With
this metrics, ψ results to be a continuous and one-to-one function, but ψ(X) 6= Xh = ψ(X), its topological
closure. Configurations of Xh \ψ(X) are headless configurations, on which Th is defined as the identity. The
transition function Th results to be continuous too.

Finite configurations are pointed words of the form v.v′, where the dot indicates the origin position. If v
or v′ has a symbol in Q, the word contains the ‘head’; if this symbol is not the last character of v′, Th can
be applied to v.v′. A configuration x is an extension of v.v′ if x−|v|...x−1 = v and x0...x|v′|−1 = v′, and it is
noted as v.v′ v x.
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The position, state and support functions can also be defined in ψ(X) naturally, and we will have that
P(x) = P(ψ−1(x)) and it is equal to the unique index i such that xi ∈ Q. Of course, they cannot be defined
in Xh \ ψ(X). We will consider also their extension to finite configurations as before.

If x = ψ(r, i, w) is a periodic point in TMH with period n, then Tn(r, i, w) = (r, i, w). This means that
the evolution of the Turing machine in the time n returns to the same position, having the same state and
the same tape. In this case we call it static periodic point.

2.5.2 Turing machine with moving tape (TMT)

Here the head is fixed at the origin and it is the tape which moves. The phase space is Xt = ωΣ×Q× Σω

and Tt consists in one application of δ by moving the tape instead of the head, as follows.

δ(r, α) = (r′, α′,+1)⇒ Tt(u, r, αv) = (uα′, r′, v)

δ(r, α) = (r′, α′, 0)⇒ Tt(u, r, αv) = (u, r′, α′v)

δ(r, α) = (r′, α′,−1)⇒ Tt(uβ, r, αv) = (u, r′, βα′v)

The function γ : X → Xt to transform from configurations in X to TMT configurations is described
below:

(r, i, w)
γ−→ (...wi−2wi−1, r, wiwi+1...)

If Xt is provided with the natural metrics

d((u, r, u′), (w, r′, w′)) =

{
1 if r 6= r′

2−min{|n| : un 6=wn∨u′n 6=w
′
n} in other case,

the function γ results to be continuous as well as Tt. Unhappily, γ is onto but not one-to-one. In particular,
applying γ to a configuration, we loss information about the original head position. We will call canonical
pre-image γ−1(w, r, w′) to the configuration (r, 0, w.w′), which is the only one to have the head at the origin.
Kůrka defines the notion of relative position of a configuration (w, r, w′) at time t as follows. It represents
the total movement of the head from time 0 to t over the configuration (w, r, w′).

P((w, r, w′), t) = P(T t(γ−1(w, r, w′)))

The support is again defined in terms of P as before by S(w, r, w′) = {P((w, r, w′), t) : t ∈ N}.
We also consider finite configurations in this model (v, r, v′) ∈ Σ∗ × Q × Σ∗. The map Tt acts on finite

configurations while it is allowed, i. e., if |v′| ≥ 2 when the head moves to the right and |v| ≥ 1 when the
head moves to the left. Let us recall the time m(v, r, v′) ∈ Z at which the head violates these conditions.A
configuration (w, r, w′) is an extension of (v, r, v′) if v is a suffix of w and v′ is a prefix of w′, which we also
noted as (v, r, v′) v (w, r, w′). The relative position and support are defined as well for finite configurations
of this model, meanwhile the state function is easily defined in both finite and normal configurations.

If x = γ(r, i, w) is a periodic point in TMT with period n, then ∃d ∈ Z : Tn(r, i, w) = (r, i + d, σd(w)).
This means that we observe the same configuration (r, i, w) in the evolution of the Turing machine, in time
n, but shifted in d positions. In this case, we call it shifted periodic point. Note that this kind of periodic
points includes the static ones, when d = 0.

2.5.3 The trace-shift

The column shift associated to these two systems can be considered [6], but we focus only on the shift
associated to the moving tape model, which we call trace-shift and denote by St. It is obtained from the
projection π : Xt → Q × Σ defined by π(u, r, αv) = (r, α). The trace-shift is the image of the factor map
τ : Xt → St, defined as τ(x) = (π(Tnt (x)))n∈N. As before, we extend the map τ to finite configurations by

τ(u, r, u′) =
(
π(T jt (u, r, u′))

)
j∈{0,...,m(u,r,u′)}

.
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The map τ is not invertible, but given a semi-infinite word w ∈ St, its pre-image x is uniquely defined
over the set of visited cells, i. e., if (u, r, u′), (v, r, v′) ∈ τ−1(w), then S(u, q, u′) = S(v, q, v′) and u|S(u,r,u′) =
v|S(u,r,u′) and u′|S(u,q,u′) = v′|S(v,q,v′). Analogously, given a finite word w ∈ L(St), all of its pre-images have
a common support where they coincides. For a given word w either in St or in L(St), we define its canonical
pre-image (u, r, u′) as the smallest finite (or infinite) configuration whose image by τ is w; u and u′ will only
take values over the support of (u, r, u′).

It is noteworthy to remark that when T is a reversible machine, St can be defined as a subshift of ΣZ by
redefining τ(u, r, u′) = (π(Tnt (x)))n∈Z, and all of the results that we will establish in this paper remain true.

X XhXt

X XhXt

St

St

ψγ

T ThTt

ψγ

τ

τ

σ

Figure 1: Commuting diagram of the systems associated to a Turing machine. The map ψ is injective but
not surjective. The maps γ and τ are surjective but not injective.

2.6 Topological properties in Turing machines

Here we recall the two topological properties which are the subject of this article: transitivity and minimality.
These strongly depends on the considered topological model, thus we rewrite them in each case.

In order to present a more clean description, we will exclude two classes of machines, which are less
interesting and for which some of our characterizations fails. First we suppose that the alphabet has at least
2 symbols, otherwise the dynamics is too simple. Next we exclude those machines whose trace-shift consists
in a single finite orbit. 2 These machines have a transitive (and minimal when reversible) trace-shift, but
they do not share other properties of transitive machines, and several of our results fails on these machines.

The spaces Xt and Xh are topologically perfect, i. e., they have not isolated points, and their structure
does not depend on the machine transition function. On the other hand, the trace-shift topology strongly
depends on the machine dynamics, it may be non perfect, but its isolated points corresponds exactly to the
static pre-periodic points of the machine [7].

2.6.1 Transitivity

A transitive system is, as we said earlier, a system with a transitive point. Nevertheless, in the case of the
three Turing machine systems it can be also characterized through open sets as follows, this is because both
Xt and Xh are perfect spaces and isolated points of St are just the periodic points.

Proposition 1. A dynamical system (X,T ) is transitive if and only if for every pair of open sets U , V ,
there exists a time t such that T t(U) ∪ V 6= ∅.

Based on this proposition, transitivity can be characterized on each of the three Turing machine dynamical
models as follows.

Remark 1. Given a Turing machine M = (Q,Σ, δ), the next equivalences hold.

2Such a behavior is possible, for example, if the machine has only one state, two symbols, the head does not move, and the
symbol is just flipped every time.
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• (Xh, Th) is transitive if and only if for every pair of finite configurations (u.u′) and (v.v′), there exists
w w (u.u′), and a time n ∈ N such that Tnh (w) w (v.v′).

• (Xt, Tt) is transitive if and only if for every pair of finite configurations (u, r, u′) and (v, r′, v′), there
exists (w, r, w′) w (u, r, u′) and a time n ∈ N such that Tnt (w, r, w′) w (v, r′, v′).

• (St, σ) is transitive if and only if for every two finite words u, v of L(St), there exists a third word
w ∈ L(St) such that vwu ∈ L(St).

2.6.2 Minimality

A minimal system is a system where every point is a transitive point, as stated before, i.e., a point whose
orbit is dense. This can be stated as follows.

Remark 2. A dynamical system (X,T ) is minimal if and only if for every point x ∈ X and for every open
set U , there exists a time n ∈ N such that Tn(x) ∈ U .

Remark 3. It is important to note that (Xh, Th) is cannot be minimal, because headless configurations are
fixed points.

Next proposition characterizes minimality in TMT and in the trace-shift.

Proposition 2. Given a Turing machine M = (Q,Σ, δ), the next equivalences hold.

• (Xt, Tt) is minimal if and only if for every configuration x ∈ Xt and for every finite configuration
(u, r, u′), there exists a time n ∈ N such that Tnt (x) w (u, r, u′).

• (St, σ) is minimal if and only if for every infinite word w ∈ St and every finite word u ∈ L(St), u v w.

3 Techniques

This research uses some construction techniques that modify and mix one or several Turing machines into a
new one. They are presented below.

Reversing the time
This technique is used in [13]. It takes a reversible Turing machine M = (Q,Σ, δ), and creates two new
reversible machines M+ = (Q × {+},Σ, δ+), and M− = (Q × {−},Σ, δ−), where (r,+) and (r,−) states
represent M in state r running forwards or backwards in time, respectively. More specifically, δ+((q,+), s) =
δ(q, s), and δ−((q,−), s) = δ−1(q, s), where δ−1 is the function defined in section 2.4.1. In other words, M+
and M− corresponds to M and M−1 but with disjoint set states.
Time-reflection
A useful construction consists in to connect the error pairs of M+ with the defective pairs of M− (see
figure 2) to form a new reversible machine that we will call IM . More specifically, the alphabet of IM is
Q× {+,−} and its transition function in the union of δ+, δ−, and for each error pair of M+, ((q,+), s), we
add the instruction δ+((q,+), s) = ((q,−), s,−µ(q)), where µ is the function defined in section 2.4.1. This
machine has the gentle property of innocuousness.

Definition 2. A reversible machine is innocuous if:

• every defective pair (r, β) it corresponds a unique error pair (r′, β), in such a way that

• for every defective configuration (r, i, w), where wi = β, its evolution is either infinite or it leads to the
halting configuration (r′, i− µ(r), w).

In other words, if it halts, it does it at the initial position and with the initial tape contents.
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M+ M−

Figure 2: Technique of time-reflection, the non-complete machine M is connected with its inverse, producing
an innocuous machine IM .

The defective pairs of IM correspond to the defective pairs of M+ and are associated to the error pairs
of M−. If the machine starts on a defective state of M+, all the work that M+ do is undone by M−, thus
the tape is unchanged when the machine finally stops (if this happens). In fact, this composition computes
the function ϕ−1 = T ′ ◦ ϕ ◦ T as seen in 2.4.1.

Other interesting constructions also produces innocuous machines [2], but here we only use this one.

Embedding
This technique, used in [8, 2], serves to insert an innocuous machine inside another to produce a new machine.
We distinguish the host machine H and the invited innocuous machine I. We assume that the alphabet of I
is contained in the alphabet of H. The embeeding uses the defective and error pairs of the invited machine
to connect it with the host. The connection is done by replacing one of the transitions of the host machine
with the whole invited machine. The new machine shares one or more properties with the host, depending on
the particularities of the invited. The new machine is complete, thus this techinque can be used to complete
the machine I.

Formally, I will be embedded in H in the following way: Let us suppose that the defective pairs of I
are (r1, β1), . . . , (rn, βn), and that they are associated to the error pairs (r′1, β1), . . . , (r′n, βn). We select an
instruction from H, lets say δ(p, s) = (p′, s′, c).

This instruction is deleted, and we add the following instructions:

• δ(p, s) = (r1, β1, µ(r1)).

• ∀i ∈ {1, ..., n− 1} : δ(r′i, βi) = (ri+1, βi+1, µ(ri+1)).

• δ(r′n, βn) = (p′, s′, c).

Please refer to figure 3 for a graphical description.
If we start at a state of H in the resulting machine, we will see the evolution of H, alternated with some

intervals of time in which it is the machine I that evolves; except if we fall into an infinite orbit of I. We
can always suppose that we start at H, because evolving I backward will carry us to a defective state, and
finally to H, except if we are over a backward infinite orbit of I.

The embedding will be particularly useful when H is minimal and I is mortal, because in this case, a
single initial configuration of H will allow to test the behavior of I over all its defective configurations. The
new machine formed by H and I is called HI .

p p′
s|s′ c

p p′

r1 r2
. . . rn

I

r′1 r′2 . . . r′n−1 r′n

s|β1 µ(r1)

β1|β2 µ(r2) βn−1|βn µ(rn)

βn|s′c

Figure 3: Embedding technique. The Invited machine I is inserted in the transition δ(p, s) = (p′, s′, c) of
the host machine H.
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4 Classification of Turing machines

In this section, a classification of Turing machines with a topological transitive dynamical system and its
surroundings is presented, according to the properties which are present in the different topological models.
We exhibit concrete examples inside each class, proving in this way that no class is empty. Let us start with
some preliminary results.

Proposition 3. Given a Turing machine M , the next implications hold.

(Xh, Th) transitive ⇒
1

(Xt, Tt) transitive ⇒
2

(St, σ) transitive

Proof. (⇒
1

) Any finite configuration of Xt corresponds to several finite configurations of Xh, thus if a point

exists that visits any finite configuration of Xh, the same point will visit any finite configuration of Xt.

(⇒
2

) (St, σ) is a factor of (Xt, Tt) thus it inherits its transitivity.

There exists a relation between static periodic points (that is, periodic points for Th) and transitivity in
Turing machine dynamical models. The existence of static periodic points avoids transitivity in the three
dynamical systems of Turing machines, as these points are topologically isolated.

Proposition 4 ([7]). If a machine M has a periodic point in TMH, its dynamical systems (Xh, Th), (Xt, Tt)
and (St, σ) are not transitive.

A transitive system needs to be surjective (onto), thus if Th or Tt are transitive, the machine needs to
be reversible. But, if the trace-shift is surjective, the machine do not need to be surjective, in fact, a non
backward complete machine can have a surjective trace-shift. This is possible only in the quintuple model
and when the machine admits blocking words [8, 9]. The idea of a “blocking” configuration that avoids the
head from going beyond some limit appears in several contexts, and it is related to stability and information
travel. Blocking words are also relevant to transitivity and minimality by themselves, as the next propositions
show.

Definition 3. A finite configuration (r, 0, .u) is a blocking word to the left if for every w w .u and every
time n, P(Tn(r, 0, w)) ≥ 0. Analogously, we say that (r, |u| − 1, .u) is a blocking word to the right if for
every w w .u and every time n, P(Tn(r, |u| − 1, w)) ≤ |u| − 1.

Proposition 5. If M has a blocking word, then (Xh, Th) is not transitive.

Proof. If M = (Q,Σ, δ) has a blocking word to the left (r, 0, .u), then no extension of .ru can visit a finite
configuration of the form (r′α.u′), at any time, for any r′ ∈ Q, α ∈ Σ, u′ ∈ Σ∗. This means that (Xh, Th) is
not transitive.

Proposition 6. If M has no blocking word, then the next equivalences hold.

1. (Xt, Tt) is transitive ⇔ (St, σ) is transitive

2. (Xt, Tt) is minimal ⇔ (St, σ) is minimal

Proof. We only include the proof of 1), because the proof of 2) is equivalent.
The left to right implication was already proved, thus let us prove the converse. Let us assume that (St, σ)

is transitive and that M has no blocking word. Let (u, r, u′) and (v, r′, v′) be two finite configurations of
Xt. Since M has no blocking words, there exist finite extensions (su, r, u′s′) and (wv, r′, v′w′) such that the
head visits all the cells of (u, r, u′) and (v, r′, v′) respectively. In other words, S(su, r, u′s′) ⊇ [−|u|, |u′| − 1]
and S(wv, r′, v′w′) ⊇ [−|v|, |v′| − 1] . Let us consider now the words τ(su, r, u′s′) and τ(wv, r′, v′w′). Since
(St, σ) is transitive, there exists a point (x, r, y) ∈ Xt such that τ(x, r, y) starts with τ(su, r, u′s′) and contains
τ(wv, r′, v′w′) afterward. As we have commented in section 2.5.3, τ(su, r, u′s′) determines the state of all
the cells that the head visits when producing it, then (x, r, y) w (u, r, u′). By the same reason, there exist a
time t such that T tt (x, r, y) w (v, r′, v′), which concludes the proof.
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Proposition 7. If the trace-subshift St is minimal, then the machine has no blocking words.

Proof. Let us suppose that the machine T has a blocking word (r, 0, .u), and let wb = τ(ε, r, u) be its
trace. Since St is minimal, there exists s ∈ St that contains wb with bounded gaps N , that is, there exists
(x, r, y) ∈ Xt such that

• (ε, r, u) v (x, r, y),

• s = τ(x, r, y), and

• ∃(ti)i∈N,∀i ∈ N, T tit (x, r, y) w (ε, r, u) ∧ 0 ≤ ti+1 − ti ≤ N .

Since (r, 0, .u) is blocking, we can assert that 0 ≤ P(T tit (x, r, y), t) ≤ N , for every t ∈ [ti, ti+1[. But the
set W = {w ∈ Σ{0,...,N}|(∃r′ ∈ Q)(ε, r′, w) v T tit (x, r, y)} is clearly finite, so there exists a pair i < j such

that there exists w′ ∈W, r′ ∈ Q : (ε, r′, w′) v T tit (x, r, y)∧ (ε, r′, w′) v T tjt (x, r, y). We will suppose, without
loss of generality, that i = 0 and t0 = 0, thus T tit (x, r, y) = (x, r, y).

Let p = P((x, r, y), tj) be the position of the head at time tj , which is larger than or equal to 0 because
(r, 0, .u) is blocking. Until iteration tj only the cells between 0 and p + N have been visited, i. e., 0 ≤
P((x, r, y), t) ≤ p+N , for every t ∈ [0, tj [. Let us call u′ = y[|u|,N [ and v = y[N,p+N [.

Now let us consider the configuration (x, r, uu′vω). The machine behaves over this configuration and
over (x, r, y) in the same way, at least until time tj . At time tj the head position is p, and the N cells to
its right contain the configuration y[0,N [ = uu′. The cells at [p + N,∞[, has not yet been visited and thus

they contain the configuration vω. In other words, T
tj
t (x, r, uu′vω) = (z, r, uu′vω), for some z ∈ ωΣ. Since

the cells to the left of the head position at time tj are not visited any more, the machine will periodically
repeat the same movements, proving that τ(x, r, uu′vω) is a periodical trace; but this is not possible when
St is minimal, unless the machine has a single finite orbit, but we have excluded these machines from our
study.

With these results, we can depict the universe of Turing machines by figure 4. All the inclusions are
strict, and in the next sections we show an example inside each class.
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Trace-shift transitive

k

j

h

i gfe

TMT transitive

d

TMH transitive

b

TMT minimal

c

a

Reversible machine

with blocking wordswithout blocking words

Figure 4: The universe of Turing machines depicted in relation with reversibility, transitivity, blocking words,
and minimality.

4.1 Machine of type a : Transitive in TMH and minimal in TMT

The machine of figure 5 is called SMART, it has several strong properties as it is shown in [2]. In particular,
its TMT system is minimal and its trace-shift is substitutive. As it is also proved in [8], it is topologically
transitive in TMH. We use this machine in next sections to construct other examples. Its state set is
QS = {p, q, b, d}, its symbol set is ΣS = {0, 1, 2} and we call δS its transition function, which is described in
figure 5.

p

b

d

q

0|1I

1|1I
2|2I

0|1J

1|1J
2|2J

2|0J

0|2I
1|0I2|0I

0|2J
1|0J

Figure 5: The SMART machine.
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4.2 Machine of type b: Transitive on TMH, but not minimal in TMT

Figure 6 represents SMARTShift, which is an embedding of the Shift machine of two symbols (figure 8 of
section 4.5) inside SMART (fig. 5). The idea here is to have an infinite evolution in the invited machine.
This evolution will be interrupted each time the head finds a 2 on the tape.

p

b

d

q

r0+

r0−

1|1I
2|2I

0|1J

1|1J
2|2J

2|0J
0|2I
1|0I

2|0I

0|2J
1|0J

0|2I

2|1I

0|0I
1|1I

2|2J

0|0J
1|1J

Figure 6: The embedding of the Shift machine, inside SMART, it produces SMARTShift

Theorem 1. SMARTShift is transitive in TMH, but it is not minimal in TMT.

Proof. As the Shift machine was embedded inside SMART using reversing the time and time-reflection, it
is innocuous. Since SMART is transitive for TMH, the set of transitive points is dense in Xh, this imply in
particular that there exists a transitive point that contains an infinite set of cells with symbol 2 to the right,
let x be such point. When SMARTshift works on x, each interruption of the Shift machine takes a finite
number of iterations, therefore, the transitivity of x is kept, and SMARTShift is also transitive in the TMH
model.

On the other hand, the configuration (ω0, r0+, 0ω) is clearly not a transitive point, then SMARTShift is
not minimal in TMT .

4.3 Machine of type c: Minimal on TMT, but not transitive in TMH.

The machine presented for this example is based on the original SMART (fig. 5) but with twice the number
of states and a bipartite transition graph such that the state alternates between even and odd type. We call
it SMARTP .

Definition 4. The machine SMARTP is defined by (QS ×{e, o}, {0, 1, 2}, δP ), where δP is given by ∀r, r′ ∈
QS , a ∈ {e, o},∀s, s′ ∈ Σ,∀c ∈ {−1,+1}:

δP ((r, a), s) = ((r′,¬a), s′, c) ⇐⇒ δS(r, s) = (r′, s′, c),

and ¬e = o and ¬o = e.

SMARTP has the same dynamics than SMART, but if we start in an even (odd) position of the tape
with a state say (r, e), then on every even (odd) position its state will be of the form (∗, e), and on every
odd (even) position its state will be of the form (∗, o), as stated in the next straightforward lemma.

Lemma 1. SMARTP satisfies that ∀a ∈ {e, o},∀t ∈ N,∀x ∈ Xh : P(x) − P(T 2t
h (x)) is even ∧ [Q(x) ∈

Q× {a} =⇒ Q(T 2t
h (x)) ∈ Q× {a}].
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Now, we are ready to prove that the machine SMARTP has a minimal TMT model but its TMH model
is not transitive.

Theorem 2. SMARTP has a TMT dynamical system which is minimal, but its TMH dynamical system is
not transitive.

Proof. (Xh, Th) is not transitive because Xh can be divided in three sets: a) configurations without head, b)
configurations with the head on a state (r, a) where a matches with the parity of the head position, and c)
configurations with the head on a state (r, a) where a does not match with the parity of the head position.
Lemma 1 asserts that configurations of type b) cannot be approached from configurations of type c) and
vice versa, which avoids transitivity.

Now we prove that SMARTP is TMT minimal, that is, given any configuration (x, (r, a), x′) ∈ Xt, and
any finite configuration (v, (r′, a′), v′), we must find a time t ∈ N such that T tt (x, (r, a), x′) w (v, (r′, a′), v′).

Let us take ((r, a), 0, x.x′) as the canonical pre-image of (x, (r, a), x′) in X and ((r′, a′), 0, v.v′) a partial
configuration corresponding to (v, (r′, a′), v′). Let us consider the configurations (r, 0, x.x′) and (r′, 0, v.v′),
of the phase space of SMART. We will work with SMART and prove that (x, r, x′) reaches both σi(r′, 0, v.v′)
and σi+1(r′, 0, v.v′), for some i that we will fix later.

Let us take now a point (r, 0, z.z′) such that Ψ((r, 0, z.z′)) ∈ Xh is transitive for the TMH model, whose
existence is proved in [8]. There exist two time steps t and t′ such that T t(r, 0, z.z′) w (r′, 0, v.v′) and
T t
′
(r, 0, z.z′) w σ(r′, 0, v.v′). Thanks to lemma 1, it is clear that t is even and t′ is odd.
Now let us take a finite restriction (r, 0, w.w′) of (r, 0, z.z′) so that

m(r, 0, w.w′) ≥ max{t, t′}. Now we use the minimality of the TMT model of SMART to assert that there
exists a time n such that Tnt (x, r, x′) w (w, r, w′). We now fix i = P(Tn(x, r, x′)), and we obtain that
Tn(r, 0, x.x′) w σi(r, 0, w.w′).

In this way, we have that T t+n(r, 0, x.x′) w σi(r′, 0, v.v′) and also that

T t
′+n(r, 0, x.x′) w σi+1(r′, 0, v.v′), which implies that T t+nt (x, r, x′) w (v, r′, v′) and T t

′+n
t (x, r, x′) w (v, r′, v′).

We come back now to the machine SMARTP . Let us suppose without loss of generality that n is even
(the other case is analogous). We can distinguish two cases.

• a′ = a: Since n+ t is even, we can assert that T t+nt (x, (r, a), x′) w (v, (r′, a′), v′).

• a′ = ¬a: Since n+ t′ is odd, we can assert that T t
′+n
t (x, (r, a), x′) w (v, (r′, a′), v′).

Which completes the proof.

Remark 4. It can be proved that every configuration with head in the TMH model of a TMT minimal Turing
will “see” every pattern at an infinite set of positions, here we have prove this for position 0 and 1, but the
same argument can be repeated for a growing set of positions.

4.4 Machine of type d : Transitive on TMT, but not in TMH, not minimal in
TMT, and without blocking words

In order to have an example of this class, it is enough to take again SMART (or any machine of class a) and
to multiply its movements by two, i. e., instead of moving one cell to the left or right, to move twice. We
call this machine SMARTSkip (see figure 7).

It will not be transitive in TMH, because if the head starts with state p on a even cell, it will not be
able to modify the content of any odd cell, thus many configurations will be unreachable. It is neither
minimal on TMT, as a configuration filled with 2s on every odd cell, for example (ω2, p, 2ω), can never reach
a configuration with two consecutive 1s, for example (11, p, 11).

Theorem 3. SMARTSkip is Transitive on TMT and has not blocking words.
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Proof. It is easy to see that SMARTSkip has not blocking words, because if it start with a state in {p, q, d, b}
and if we focus only on the even cells, we will see SMART in action, and we know that SMART has no
blocking words thanks to its transitivity on the TMH model.

Let (X̂t, T̂t) be the dynamical system with moving tape of SMARTSkip. We need to prove the next claim.

∀(u, r, u′), (v, r′, v′),∃t ∈ N,∃x w (u, r, u′) : F t(x) w (v, r′, v′)

Let us take two finite configurations of X̂t: (u, r, u′), (v, r′, v′). We can assume that r, r′ ∈ {p, q, d, b},
otherwise we just do one step forward. We can also assume that u, u′, v and v′ are of even length. Let z be
a TMH transitive point of SMART such that z w (u−|u|u−|u|+2...u−2ru

′
0u
′
2...u

′
|u′|−2). If we consider:

x = (...0z−|u|−20u, r, u′z|u′|v−|v|+1z|u′|+2...v−1z|u′v|v
′
1z|u′v|+2...v|v|−1z|u′vv′|...)

In other words, the point x consists in z at the even positions, and the odd positions are arranged
in a way such that when the head is positioned at |u′v|, the odd positions surrounded are exactly the
odd positions of vv′. In this way, as z is a TMH transitive point for SMART, ∃t′ ∈ N : T t

′

h (z) w
(v−|v|v−|v|+2...v−2r

′v′0v
′
2...v

′
|v′|−2) and as SMARTSkip works at the even positions as SMART, establishing

t = 2t′ and our x, we can proof our claim.

p p2

q2 qb

b2

d2

d

0|1I

1|1I
2|2I

J

0|1J

1|1J
2|2J

I2|0J

0|2I
1|0II

2|0I

0|2J
1|0J

J

Figure 7: SMARTSkip: The SMART machine with twice its movement.

4.5 Machine of type e: Transitive on TMT, with blocking words

The following is a machine that is transitive on TMT, but not on TMH, with the blocking word to the left:
(r0, 0, .ε).
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r0

0|0I
1|1I

Figure 8: Shift machine

We call this machine the shift machine, because its TMT model is conjugated to the fullshift on two
symbols. As such, this machine is clearly transitive in TMT.

4.6 Machine of type f : Transitive just for the trace-shift and reversible

Now we present a machine that we call Lexicographical Ant (LA) that has a transitive trace-shift, which is not
transitive neither in TMT, nor in TMH, and that has a blocking word. Its transition function is depicted in
figure 9. It has the particularity that it is always “counting”, when it starts from configuration (→, 0, ω0.1ω),
it will persistently comeback to the position 0 and we will see all the binary sequences appearing in increasing
order at the left part of the tape. . The configuration (→, 0, .1) is a blocking word to the right. It avoids
transitivity in the TMT model because the finite configuration ( u 1 v

→ ) cannot reach the finite configuration
( u 1 w
→ ), if v 6= w.
Given two words v = v0...vn−1, v′ = v′0...v

′
n−1 ∈ {0, 1}n, let us define the lexicographical order by v < v′

if
∑n−1
i=0 vi2

n−i−1 <
∑n−1
i=0 v

′
i2
n−i−1.

→ ←
1|1J

0|0I

0|1I

1|0J

Figure 9: The lexicographical ant machine.

Lemma 2. The finite configuration
(
0n 1
→
)

will produce the sequence of finite configurations of the form
( v 1
→ ), in lexicographical order, for every v ∈ {0, 1}n, without exiting the interval [−n, 0].

Proof. Proof by induction on n.

Basis (n = 1): ( 0 1
→ ) ` ( 0 1

← ) ` ( 1 1
→ )

Induction hypothesis (n = k):
(
0k 1
→
)
`∗ ( v 1

→ ) `∗
(
v′ 1
→
)
`∗
(
1k 1
→
)
, for all v, v′ ∈ {0, 1}k such that

v < v′.

Induction thesis (n = k + 1):
(
0k+1 1

→
)
`∗
(
v′′ 1
→
)
`∗
(
v′′′ 1
→
)
`∗
(
1k+1 1

→
)
, for all v′′, v′′′ ∈ {0, 1}k+1

such that v′′ < v′′′.

Case 1. v′′ = 0u′′ and v′′′ = 0u′′′(
0 0k 1

→
)
`H.I.

(
0 u′′ 1

→
)

`H.I.
(
0 u′′′ 1

→
)
`H.I.

(
0 1k 1

→
)
`∗
(

0 0k 1
←

)
`
(
1 0k 1
→

)
`∗
(
1 0k 1

→
)

`H.I.
(
1 1k 1

→
)
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Case 2. v′′ = 0u′′ and v′′′ = 1u′′′(
0 0k 1

→
)
`H.I.

(
0 u′′ 1

→
)

`H.I.
(
0 1k 1

→
)
`∗
(

0 0k 1
←

)
`
(
1 0k 1
→

)
`∗
(
1 0k 1

→
)

`H.I.
(
1 u′′′ 1

→
)
`H.I.

(
1 1k 1

→
)

Case 3. v′′ = 1u′′ and v′′′ = 1u′′′(
0 0k 1

→
)
`H.I.

(
0 1k 1

→
)
`∗
(

0 0k 1
←

)
`
(
1 0k 1
→

)
`∗
(
1 0k 1

→
)

`H.I.
(
1 u′′ 1

→
)
`H.I.

(
1 u′′′ 1

→
)
`H.I.

(
1 1k 1

→
)

Corollary 1. The finite configuration 1
→ is a blocking word to the right.

Proof. By lemma 2, we have that starting from any configuration of the form v 1
→ , where v ∈ {0, 1}n, the

machine will arrive to 1n 1
→ , without going to the right of cell 0. But then again it is on a configuration of

this form, for a larger ‘n’, thus it will never go to the right of cell 0.

Let us take the following function:

a(n) =
{

1+a(n−1
2 ) if n = odd

0 if not
. (1)

This function describes the length of the first block of 1s to the right of the binary extension of n.
It is easy to see that, if we start counting from x =

( ω0 1
→
)
, we have that the corresponding sequence in

the trace-shift is the following.

τ(x) =
∏
i∈N

(
1 1a(i) 0 0a(i)

→ ← ← →

)
(2)

The head of the machine will start at 1
→ . As we already explained, it will switch all the 1s next to this

position. The amount of 1s to convert is given by the a() function.

Lemma 3. The trace-shift of the Lexicographical Ant is described by:

SLA = SL({u}) = O(u), with u =
∏
i∈N

(
1 1a(i) 0 0a(i)

→ ← ← →

)
(3)

Proof. :

O(u) ⊆ SLA. It is clear from equation 2 and the fact that SLA is closed.

SLA ⊆ O(u). It is enough to prove that L(SLA) ⊆ L(u). Let w ∈ L(SLA), and let (v, r, v′) be its canonical pre-image
by τ , i. e., τ(v, r, v′) = w and every coordinate of (v.v′) is visited during the evolution of LA on (v, r, v′).
Let us suppose that v = v0...vm−1 and v′ = v′0...v

′
n−1. We need to prove that x = (ω0,→, 1) `∗ (v, r, v′).

Four cases appear.

r =→ :

v′0 = 1. By corollary 1, v′ = v0, and by lemma 2
( ω0 1

→
)
`∗
( ω0 v 1

→
)

which proves that w is a
subword of u.

16



v′0 = 0. The machine will move to the right until it finds a symbol 1. If v′ has a 1, then by corollary 1 it
is the last symbol of v′. Now let us suppose that j is the last coordinate of v such that vj = 1 (if
v = 0m we are already in a pre-image of u). By lemma 2

( ω0 1
→
)
`∗
( ω0 v0 .. vj−1 0 1 .. 1 1

→
)
`∗( ω0 v0 .. vj−1 0 0 .. 0 1

←
)
`∗
( ω0 v0 .. vj−1 1 0 .. 0 1

→
)

which contains (v, r, v′), proving that w is a
subword of u.
If v′ is equal to 0n, then the head exit (v, r, v′) at iteration n+1, v = ε, and w =

(
0

→
)n

which
is clearly a subword of u.

r =← :

v′0 = 0. In this case,
(
v 0 v′1 .. v

′
n−1

←

)
`∗
(
v 1 v′1 .. v

′
n−1

→

)
. This configuration fits in one of the former

cases, thus it is attained by x. Since the machine is reversible, its predecessor is also attained
by x.

v′0 = 1. Let j be the last coordinate of v such that vj = 0 (if v = 1m, v′ = ε and w =
(

1

←
)m

, which

is clearly a subword of u), then
(
v0 .. vj−1 0 1 .. 1 1 v′1 .. v

′
n←
)
`∗
(
v0 .. vj−1 0 0 .. 0 0 v′1 .. v

′
n←
)
.

Which is proved to be in the orbit of x in the last case, and again this implies, by reversibility,
that the original configuration is reached by x.

We can note that, in fact, the Lexicographical Ant is not transitive in TMT. This is because from
configuration ( 1 0 0 1 1 1

→ ) Tt can never get to ( 1 0 0 1 1 0
→ ), due to Corollary 1. Although, Lexicographical

Ant has a transitive trace-shift, because this is described as the closure of the orbit of a unique infinite word.

Theorem 4. The trace-shift of the Lexicographical Ant is transitive.

4.7 Machine of type g : Transitive for the trace-shift and non reversible

Changing a little bit the “shift machine”, we obtain a machine that is not reversible but whose trace-shift is
still transitive.

r0

0|0I
1|0I

Figure 10: Erasing Shift machine.

This machine “erases” the tape, that is why it is not backward complete: the configuration
(
1 1 1
r0

)
has

no preimage. The state r0 is blocking to the left by itself. Its trace-shift coincides with the trace-shift of the
shift machine, it is thus transitive.

4.8 Machine of type h : Reversible, non-transitive in the trace-shift and with
blocking words.

Any reversible machine with static periodic points is in this class, for example the machine that moves
over the 0s and rebounds over the 1s is not transitive in none of the three systems (figure 11). Any of its
periods contains blocking words to the left and right, for example the blocking word to the left (←, 0, .1001).
Blocking words to the left alternates through the time with blocking words to the right.
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→←

0|0I0|0J

1|1J

1|1I

Figure 11: Bouncing machine.

Other interesting example is the so called “one-dimensional Langton’s ant”, studied in [5] (figure 12).
This reversible machine has no periodic points for the TMH model, and it has one blocking word to the left
(→, 0, .0) and one blocking word to the right (←, 0, .0). It is not transitive because if the blocking word to
the left is found, then only this kind of blocking word will be found in the future and this will systematically
happen (every 1 or 3 steps). The set of configurations St can be divided in two sets, one with the blocking
word to the left and the other with the blocking word to the right.

→←

0|1I0|1J

1|0J

1|0I

Figure 12: One-dimensional Langton’s ant.

4.9 Machine of type i : Reversible, non-transitive in the trace-shift and without
blocking words.

In order to have an example of machines without a transitive trace-shift, reversible and without blocking
words, it is enough to consider a machine composed by two disconnected copies of SMART. Such machine
cannot have a blocking word by definition and it is clearly reversible, but no state from one copy can reach a
state from the other copy through the evolution of the machine, therefore it is not transitive in any dynamical
model.

We present a more interesting example, where the states are all reachable form each other. The Turing
machine called Double Lexicographical Ant (Double LA), depicted in figure 14, is based on the Lexicographical
Ant (LA) machine (fig. 9), but glued with its mirrored form; that is, same computation but in the opposite

direction. We call this mirrored form Right Lexicographical Ant ( ~LA, figure 13).

⇒ ⇐
0|1J

1|0I 0|0J

1|1I

Figure 13: ~LA: Right Lexicographical Ant.

The original Lexicographical Ant adds 1 to the binary number expressed at the left of its blocking word to
the right (→, 0, .1), starting and ending that computation at the position of that blocking word, in an infinite
adding cycle. The Double Lexicographical Ant does the same, but every time it returns to the position of
the once blocking word, it moves to the right and it adds 1s to the binary number represented backwards at
the right, mirroring the computation.
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Another good way to explain this new machine is considering an embedding using LA as the Host, and
replacing the instruction δLA(→, 1) = (←, 1,J) with the machine ( ~LA) without the mirrored instruction,
as the Invited machine. Even when the invited machine is not innocuous in this case, it only modifies cells
that the Host LA never visits, therefore the embedded technique works as intended.

~LA

LA→ ←

⇒ ⇐
0|1J

1|0I

1|1I

0|0I

0|0J

1|1J

0|1I

1|0J

Figure 14: Double LA: An example of a reversible, non-transitive in the trace-shift and without blocking
words machine.

Theorem 5. The machine Double LA is reversible, non-transitive in the trace-shift and without blocking
words.

Proof. The reversibility of the machine can be easily seen in its transition function represented in figure 14.
Also, this machine has no blocking word, as the unique blocking word of the LA machine, which is a blocking
word to the right, is replaced with a computation that has the capacity to go arbitrarily far to the right.

Finally, the Double LA machine is not transitive in its trace-shift; to see this, let us remark that the
machine counts at the left and the right of (→, 0, .1) every time in an infinite adding cycle, thus the relative
parity of the numbers is preserved each time the head is at an extension of the configuration (→, 0, .1); this
imply that, for example, it is impossible to find the trace of (→, 0, 0.10) in the trace of any extension of
(→, 0, 0.11).

4.10 Machine of type j : Non-transitive in the trace-shift, non-reversible and
without blocking words.

As we stated in section 4, any machine with a non-surjective trace-shift is non-transitive in any dynamical
model. An example can be seen in figure 15, the Oscillating machine. This machine just rebounds on 0s by
the right and on 1s by the left, while flipping all the symbols every time, its oscillation amplitude is always
growing. It is not reversible, and then it has garden-of-eden (without pre-image) configurations.

h0|1J 1|0I

Figure 15: The Oscillating machine.
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In [18], it is proved that a non-surjective Turing machine can be surjective in its trace-shift if and only
if the configuration with no pre-image has a blocking word that avoids the head from visiting the conflictive
cells in the future. The finite configuration ( 1 .0 0

h ) has no pre-image, because no configuration coming from
the left can produce 1 at position −1, and also no configuration coming from the right can produce 0 at
position 1. Also (h, 0, .0) and (h, 1, .10) are clearly not blocking to the left and right respectively, therefore
the trace-shift of the Oscillating machine is not surjective. Moreover, the Oscillating machine has no blocking
words, as next proposition establishes.

Proposition 8. The Oscillating machine has no blocking word.

Proof. Let us suppose that (h, 0, .v) is a blocking word to the left. If so, v0 has to be 1, otherwise the machine
immediately goes to the left. But this implies that v1 has to be 1 as well, as (h, 1, .00), in two steps, reaches
position −1. The same goes for every vi. As v has to be finite, we can always put a 0 after v making the
head to reach position −1 in |v| steps. Therefore, (h, 0, .v) is not a blocking word to the left.

The same argument can be given to assure that (h, |v| − 1, .v) is not a blocking word to the right, but
exchanging 1 and 0.

4.11 Machine of type k : Non-transitive in the trace-shift, non-reversible and
with a blocking word.

Now, in proposition 4 it is established that a Turing machine with a periodic points in Th cannot have a
transitive dynamical system. As periodic points in Th are blocking, we have also examples for non-transitive
Turing machines with blocking words. As an example, we present the simple machine in figure 16.

h1|1I 0|0�

Figure 16: A simple machine with periodic points in Th. The movement 0 is represented by the symbol �.

5 Enriching the family: Embedding preserving properties

In [8] and [2], a particular embedding was constructed to prove the undecidability of transitivity and ape-
riodicity, respectively. The idea was to embed a reversible machine without periodic points into SMART
in such a way that the resulting machine is either in class (b) or class (i), depending on the characteristics
of the invited machine. This construction shows the stability of these classes under embedding when the
invited machine satisfies certain hypothesis.

Minimality is also proved undecidable with a similar technique but using a simpler embedding, based on
time-reflection. In this section, we will use this embedding technique on the 11 machines presented in the
last section. We will study which properties are preserved through embedding and we will conclude that each
of the 11 classes contains infinitely many members. For this purpose, let us introduce Mortal machines [10]
and Aperiodic machines [13], whose definitions are the following.

Definition 5. A Turing machine M is called mortal if from every configuration it eventually halts. This
results, by compactness, to be equivalent to the existence of a global time tM ∈ N such that for all x ∈ X :
T tM (x) is not defined. We call tM the mortality constant. If M is not mortal, it is called immortal. It is
important to note that the reverse of a mortal machine is also mortal.

Definition 6. A Turing machine M is called static aperiodic if it does not possess any static periodic point.
Note that in this case, we not need that M has a dynamical system ( i.e. it can be incomplete). In the same
way, a Turing machine M is called shifted aperiodic if it does not posses any shifted periodic point.

For the following propositions, consider a reversible non-complete Turing machine M = (QM ,ΣM , δM )
that we use to form an innocuous machine IM by using time-reflection. Later embed this machine into
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some Host Turing machine H = (QH ,ΣH , δH), to form HIM . Also, consider (Xh, Th), (Xt, Tt) and St the
dynamical systems for H and (X̂h, T̂h), (X̂t, T̂t) and Ŝt the dynamical systems for HIM .

Proposition 9. HIM is reversible ⇔ H is reversible.

Proof. Reversibility is a local property. Embedding and time-reflection preserves, for every modified transi-
tion, the written symbol and the moving direction. Also added transitions respect the proceeding direction
of each state, and the written symbols corresponds to defective ones, thus no ambiguity in the proceeding
configuration is introduced.

Proposition 10. Let M be shifted aperiodic, the following assertions hold:

1. For every x ∈ Xh, x is periodic for T̂h ⇒ x is periodic for Th.

2. For every x ∈ Xt, x is periodic for T̂t ⇒ x is periodic for Tt.

3. H is static aperiodic ⇒ HIM is static aperiodic.

4. H is shifted aperiodic ⇒ HIM is shifted aperiodic.

Proof. 1. Let x ∈ Xh be a periodic point for T̂h. Since its state is in QH , the orbit of x stays only for
finite intervals of time in the states QIM . Cutting out this intervals we obtain the orbit of x through
IM , which is also periodic.

2. This case is analogous to the last one.

3. Let us suppose that H is static aperiodic, and let us take a point x static periodic for HIM . Since IM
is shifted aperiodic, the orbit of x contains states of H. Let us suppose, without loss of generality, that
x has a state in H. Now we apply item 1 to x, and we conclude that x is a periodic point of H in
TMH, which is a contradiction.

4. This case is analogous to the last one.

Let us remark that the reciprocal in the last two items does not hold, since an appropriate embedding
can destroy periodic points.

Proposition 11. Let M be shifted aperiodic and ΣM ⊂ ΣH , the following assertions hold:

1. For every x ∈ Xh, with infinitely many symbols in ΣH \ ΣM , x is a transitive point in (Xh, Th) ⇔ x
is a transitive point in (X̂h, T̂h).

2. For every x ∈ Xt, with infinitely many symbols in ΣH \ΣM , x is a transitive point in (Xt, Tt) ⇔ x is
a transitive point in (X̂t, T̂t).

3. HIM is transitive in TMH ⇔ H is transitive in TMH.

4. HIM is transitive in TMT ⇔ H is transitive in TMT.

Proof. 1. Let x be a point in Xh, with infinitely many symbols in ΣH \ΣM . Since x has infinitely many
symbols in ΣH \ ΣM , and M is shifted aperiodic, the orbit of x under the machine HIM cannot stay
infinitely many iterations in the states of IM , because it will eventually find a symbol outside the
alphabet of M . Therefore, the orbit of x under HIM can be described as the orbit of x under H,
interrupted by intervals of times where is IM that acts.
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(⇒) Let us suppose that x is transitive in (Xh, Th), and let (u.u′) be a partial configuration of (X̂h, T̂h).
If (u.u′) has a state in QH , the transitivity of x assures that its orbit will contain (u.u′) at some
iteration. If not, let us extend it to (αu.u′α), with α ∈ ΣH \ ΣM , and make T̂h to run backward
until it reaches a state in QH at finite configuration v; the set of visited cells during this time is
contained in the finite interval [−|u|, |u′|]. The transitivity of x assures that the orbit of x contains
the finite configuration v at some iteration, after which (u.u′) also appears in the orbit of x, which
ends the proof.

(⇐) Now let us assume that x is transitive in (X̂h, T̂h). The orbit of x under T̂h is equal to the orbit
of x under Th where the iterations with a state in IM are cut out. Thus, x is also transitive for
(Xh, Th).

2. If x is a point of Xt, and we consider its dynamic trough Tt or T̂t, the analysis is similar to the last
one, we can conclude the same.

3. (⇐) If H is transitive in the TMH model, then its set of transitive points x is dense in Xh. We can
choose a point x with infinitely many symbols in ΣH \ ΣM , and apply item 1 to conclude that
HIM is transitive too.

(⇒) If HIM is transitive in the TMH model, as before we can choose a point x with infinitely many
symbols in ΣH \ ΣM , but the state of x may be a state of IM . We take the first preimage y of
x with a state in H, and apply 1 to point y and conclude that HIM is transitive for the TMH
model. We can do this because transitivity is inherited by preimage.

4. This case is analogous to the last one.

Proposition 12. Let M be a mortal machine, the following assertions hold:

1. x is a transitive point in (Xt, Tt) ⇔ x is a transitive point in (X̂t, T̂t).

2. HIM is minimal in TMT ⇔ H is minimal in TMT.

3. For every x ∈ Xh, x is periodic for Th ⇔ x is periodic for T̂h.

4. For every x ∈ Xt, x is periodic for Tt ⇔ x is periodic for T̂t.

5. HIM is static aperiodic ⇔ H is static aperiodic.

Proof. 1. Since M is mortal, the orbit of x under the machine HIM cannot stay infinitely many iterations
in the states of IM . Therefore, the orbit of x under HIM can be described as the orbit of x under H,
interrupted by intervals of times where is IM that acts.

(⇒) Let us suppose that x is transitive in (Xt, Tt), and let (u, q, u′) be a partial configuration of (X̂t, T̂t).
If q ∈ QH , the transitivity of x assures that its orbit will contain (u, q, u′) at some iteration. If

not, assuming w.l.g. that |u|+ |u′| > 2tM , we know that for some t < 2tm, T̂t
−t

(u, q, u′) will have
a state in QH .

(⇐) Now let us assume that x is transitive in (X̂t, T̂t). The orbit of x under T̂t is equal to the orbit
of x under Tt where the iterations with a state in IM are cut out. Thus, x is also transitive for
(Xt, Tt).

2. (⇐) If H is minimal in TMT, each of its points x ∈ Xt is transitive for Tt. By using item 1, we know
that every x ∈ Xt is also transitive for T̂t. Now if we take a point y ∈ X̂t, there exists a point
x ∈ Xt in its orbit, because IM is mortal. Since x is transitive for T̂t, y is also transitive for T̂t,
and then (X̂t, T̂t) is minimal.

(⇒) If HIM is minimal, every y ∈ X̂t is transitive for T̂t, in particular, every y ∈ Xt is transitive for
T̂t. By using item 1, we know that y is also transitive for Tt, thus (Xt, Tt) is minimal.
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3. One direction was already proved in proposition 10. Let x be a periodic point for Th. Since IM is
mortal, the orbit of x in T̂h is equal to its orbit in Th interrupted with finite intervals where the state
is in IM , this means that x is also periodic for T̂h.

4. This proof is analogous to the last one.

5. This is directly implied by item 3.

Proposition 13. If M is immortal, then HIM cannot be minimal.

Proof. There exists a point x such that its orbits in IM is infinite, therefore that orbit cannot reach any
configuration with states in H.

Corollary 2. Minimality is undecidable, even if we know that the machine is transitive in TMT or in TMH.

For the next proposition, we need to consider a modification of HIM . First, let us consider M a mortal
machine with tM its mortality constant. Also, consider a set of auxiliary states q1, ..., qtM that we add
between H and IM , that are used to move the head tM cells to the right, in such a way that no computation
inside IM would be able to surpass the position of the head after exiting H. Also consider another set
of auxiliary states q−1 , ..., q

−
tM that we add after the last error state of IM to return the head to its original

position before re-entering H. We call this new machine H+tMIM and its left version is called H−tMIM (move
the head to the left before entering IM ). Finally, consider (Xh, Th), (Xt, Tt) and St the dynamical systems

for H and ( ~Xh, ~Th), ( ~Xt, ~Tt) and ~St the dynamical systems for H+tMIM

Proposition 14. Consider a mortal machine M and the embedding H+tMIM and H−tMIM . Given a finite
configuration u of H in the TMH model, the following assertions hold:

1. u is a blocking word to the left (right) in H ⇔ u is a blocking word to the left (right) in H+tMIM

(H−tMIM ).

2. H has a transitive trace-shift ⇔ H+tMIM or H−tMIM have a transitive trace-shift.

Proof. 1. If u = (r, 0, .x) is a finite word of H, the orbit of x w u over H+tMIM is the same that the orbit
of x over H, but interrupted by finite executions of +tMIM , in which the head do not goes to the left
of the point where this execution started. Therefore, u is a blocking word to the left for H if and only
if it is a blocking word to the left for H+tMIM . The same happens with blocking words to the right for
H−tMIM .

2. We first recall that if H has a transitive trace-shift and it has a blocking word to the left (or right),
then all of its blocking words are to the left (or right). Then we will assume, without loss of generality,
that when transitivity is present, H has only blocking words to the left (if any). We will concentrate
on machines with at least one blocking word, because if these words are absent, the transitivity of the
trace-shift is equivalent to the transitivity in the TMT model, which has been already considered in
Proposition 10 and Proposition 11.

(⇒) Let (r, 0, .u) be a blocking word of H to the left, and let u = τH(r, 0, .u). Let us suppose that St
is transitive, and let w ∈ St be a transitive point for (St, σ). Let x be the canonical pre-imagen

of w. Now, let w′ = τH+tMIM
(x). We will prove that w′ is transitive in ~St. Let v′ ∈ L( ~St). We

can assume without loss of generality that v′0 = (q, s) for some q ∈ QH and s ∈ ΣH ; if this were
not the case, we use reversibility of +tMIM to extend v′ backward until to find a state of H, this
happen in finite time, because IM is mortal. Let V ′ be the canonical pre-image of v′ in ~Xt.

Now, let us take v = τH(V ′). The word v will be very similar to v′, except that the machine
+tMIM will not be involved. This will imply SH(v) ⊆ SH+tMIM

(v′), being the possible difference
at the righter cells. If they are not equal, let V be the canonical pre-image of a word of the form
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vzuz′ ∈ L(St) (where z ∈ L(St) exist thanks to the transitivity of St). As u is a blocking word
to the left, we can select z′ as big as we need, such that V w V ′.
Now, τH(V ) v w as w is a transitive point of H, and since the support of V is completely visited
by the head, this imply that there exists n ∈ N such that Tnt (x) w V . As IM is mortal, we can

conclude that ~Tt
n
(x) w V ′, and then v′ v w′, which concludes the proof.

(⇐) Let us suppose that ~St is transitive, and let u,w ∈ L(St). Let U and W be the canonical pre-
image of u and w in Xt, respectively. If we execute H+tMIM over U and W maybe some additional
space will be needed in order to allow +tMIM to run between the steps of H that produce u and
w. Let us take any symbol α ∈ ΣM , and let U ′ = UαtM and W ′ = WαtM . Now we can define
u′ = τH+tMIM

(U ′) and w′ = τH+tMIM
(W ′). By the transitivity of ~St, we know that there exists

a word v′ such that z′ = u′v′w′ ∈ L( ~St). This word z′ is produced by an infinite configuration

x ∈ ~Xt, but since its state is in the first symbol of u′ (which is equal to the first symbol of u),
then x ∈ Xt. We see that τH(x) = uzw, for some z ∈ L(St), which concludes the proof.

With the previous results, we can assure that embedding keeps the properties expressed in the classifica-
tion of figure 4. Therefore, we can prove the following.

Theorem 6. The classes a, b, c, d, e, f, g, h, i, j and k are infinitely countable.

Proof. Using embedding HIM we can preserve the properties of the machines without blocking words
a, b, c, d, i and j, as the last propositions assure. In the same way, using the embedding H+tMIM or H−tMIM ,
we can preserve the properties of the machines with blocking words e, f, g, h and k.

6 Discussion

We explored transitivity and some properties which are related with it. We obtained a chart that shows the
relations between each notion and we have found examples that proves that all the regions of the chart have
“inhabitants”. The embedding technique showed its power helping in the constructions of several examples.
A promising application of this technique is insinuated in the last section, where it is shown how some
properties are preserved by embedding. This proves that each of the presented examples can be multiplied
with this technique, establishing that we have, in fact, an infinite family of examples. Moreover, it shows
that some classes are undecidable even within a bigger class.

It is tempting to enlarge this study, considering other properties, and other embedding techniques, as
the one used in [2]. Such a study should reveal all the potential applications of the tool, and it may help to
find strong results, for example, one could expect to prove a Rice theorem of dynamical properties of Turing
machine, if this exists.

Other related properties has been left to further studies, for example, mixing property, already known
undecidable, the coded family, explored in [19], and the relation of all of these properties with the properties
of periodicity, aperiodicity, time-symmetry, soficity, and the value of the entropy.

Another field of research is the arithmetical hierarchy of all of these classes, as the exact classification
is unknown. Actually, Topological Minimality and Transitivity (in the three models) are known to be Σ0

1-
hard and Π0

1-hard, respectively, and both belong to Π0
2 [19]. Nevertheless, it is unknown whether they are

complete in these classes. Finally, Topological Mixing is proved to be Π0
3 and Π0

1-hard, but again its exact
classification is yet to be determined.

We leave an intriguing open problem: the existence of single orbit machines: machines with a trace-shift
with a single orbit. It is not difficult to construct such a machine if no movement is allowed, in which case
the set of accessible cells (the support) has size 1. But we were unable to construct a single orbit machine
with a larger support. The difficulty comes from the need to produce the whole set of configurations relative
to the “head vision” of the machine. But a proof of non existence was elusive too.
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